
Silk Performer 18.5

Web Load Testing Tutorial

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Silk Performer are trademarks or registered
trademarks of Micro Focus IP Development Limited or its subsidiaries or affiliated
companies in the United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2017-10-17

ii

Contents

Web Load Testing Tutorial ...4
Web Load Testing Overview ..4

Sample Web 2.0 Application .. 4
Defining a Web Load Test Project ...5
Creating a Test Script ..6

Recording a Test Script .. 6
Try Script Runs ...6
Trying Out Your Test Script ... 6

Analyzing Test Scripts ... 7
Visual Analysis with TrueLog Explorer ... 7
Viewing a Virtual User Summary Report ... 8
Finding Errors in a TrueLog .. 9
Viewing Page Statistics .. 9
Comparing Record and Replay TrueLogs .. 10

Customizing Test Scripts ...10
User-Input Data Customization .. 11
Verifications .. 13
Parsing Functions ...16
Session Handling ... 17
User Profiles ...20

Configuring Monitoring ..21
Defining Monitoring Options ...22

Adjusting Workload ... 22
Workload Models ..22
Defining Workload .. 23

Running Load Tests .. 24
Running a Load Test .. 24
Monitoring Load Tests .. 24
Using a Graph to Monitor Server Performance .. 25

Exploring Test Results ...26
TrueLog On Error ..26
Performance Explorer Overview ...27

Contents | 3

Web Load Testing Tutorial
This tutorial will assist you in the process of using Silk Performer to load-test Web applications, and get you
up and running as quickly as possible. It will help you take full advantage of Silk Performer's ease of use
and leading-edge functionality.

Web Load Testing Overview
The fastest and easiest approach to test today's modern Web applications is to test them on the protocol
level (HTML/HTTP). This approach generates simple scripts that incorporate advanced functionality. When
testing a Web application with built-in AJAX logic and testing on the protocol level has proved to be
unsuccessful we recommend using browser-driven Web load testing.

In addition to facilitating testing of today's modern Web applications on the protocol level (HTTP), Silk
Performer now enables you to use real Web browsers (Internet Explorer) to generate load. In this way, you
can leverage the AJAX logic built into Web applications to precisely simulate complex AJAX behavior
during testing. This powerful testing approach provides results that reflect real-world end user browsing
experience, including rendering time and protocol-level statistics.

Sample Web 2.0 Application
Silk Performer offers a modern sample Web application that you can use to learn about Web 2.0
application testing. The InsuranceWeb sample Web application is built upon ExtJS and JSF frameworks,
uses AJAX technology, and communicates via JSON and XML.

The sample application is hosted at http://demo.borland.com/InsuranceWebExtJS/.

4 | Web Load Testing Tutorial

http://demo.borland.com/InsuranceWebExtJS/

Defining a Web Load Test Project
1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, select Web business transaction (HTML/HTTP).

5. Click Next to create a project based on your settings.

The Workflow - Model Script dialog box appears.

Web Load Testing Tutorial | 5

Creating a Test Script
The easiest approach to creating a test script is to use the Silk Performer Recorder, the Silk Performer
engine for capturing and recording Web traffic and generating test scripts based on the captured traffic.

Recording a Test Script
1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. Select one of the listed browsers from the Application Profile list, depending on the browser you want
to use for recording.

3. In the URL field, enter the URL that is to be recorded.

Note: The InsuranceWeb sample Web 2.0 application is available at http://demo.borland.com/
InsuranceWebExtJS/. In the Select a Service or login list, the Auto Quote and Agent Lookup
services are available for testing while the other listed services do not provide any functionality.

4. Click Start recording. The Silk Performer Recorder dialog opens in minimized form, and the client
application starts.

5. To see a report of the actions that happen during recording, maximize the Recorder dialog by clicking
the Change GUI size button. The maximized Recorder opens at the Actions page.

6. Using the client application, conduct the kind of interaction with the target server that you want to
simulate in your test. The interaction is captured and recorded by the Recorder. A report of your actions
and of the data downloaded appears on the Actions page.

7. To end recording, click the Stop Recording button.

8. Enter a name for the .bdf file and save it. The Capture File page displays. Click Generate Script to
generate a script out of the capture file.

Try Script Runs
Once you have generated a test script, determine if the script runs without error by executing a Try Script
run. A Try Script run determines if a script accurately recreates the actions that you recorded with the
Recorder. It also determines if the script contains any context-specific session information that you must
parameterize before the script can run error free.

With Try Script runs, only a single virtual user is run and the stress test option is enabled so that there
is no think time or delay between the scripted actions.

Trying Out Your Test Script
1. Click the Try Script button on the Silk Performer Workflow bar. The Workflow – Try Script dialog

appears.

2. Choose a script from the Script list box.

3. In the Profile list box, the currently active profile is selected (this is the default profile if you have not
configured an alternate profile).

a) To configure simulation settings for the selected profile, click Settings to the right of the list box.
b) To configure project attributes, select the Project Attributes link.

4. In the Usergroup list of user groups and virtual users, select the user group from which you want to run
a virtual user.

Since this is a Try Script run, only one virtual user will be run.

5. To view the actual data that is downloaded from the Web server during the Try Script in real-time, select
the Animated Run with TrueLog Explorer check box.

6 | Web Load Testing Tutorial

http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/InsuranceWebExtJS/

If you are testing anything other than a Web application, you should disable this option.

6. Click Run. The Try Script begins.

All recorded think times are ignored during Try Script runs. The Monitor window opens, giving you detailed
information about the progress of the Try Script run. If you have selected the Animated option, TrueLog
Explorer opens. Here you can view the actual data that is downloaded during the Try Script run. If any
errors occur during the Try Script run, TrueLog Explorer can help you to find the errors quickly and to
customize session information. Once you have finished examining and customizing your script with
TrueLog Explorer, your script should run without error.

Analyzing Test Scripts
Silk Performer offers several means of evaluating a test script following the execution of a Try Script run.

Visual Analysis with TrueLog Explorer
One of TrueLog Explorer’s most powerful features is its ability to visually render Web content that is
displayed by applications under test. In effect, it shows you what virtual users see when they interact with
an application.

The TrueLog Explorer interface is comprised of the following sections:

• The Workflow Bar acts as your primary interface as you work with TrueLog Explorer. The Workflow Bar
reflects TrueLog Explorer’s built-in testing methodology by supporting its five primary tasks.

• The API Node Tree menu on the left of the interface allows you to expand and collapse TrueLog data
downloaded during tests. Each loaded TrueLog file is displayed here along with links to all relevant API
nodes. You can click a node to display a screen shot in the Screen pane and history details in
Information view.

• The Content pane provides multiple views of all received data.
• The Information pane displays data regarding testing scripts and test runs, including general

information about the loaded TrueLog file, the selected API node, BDL script, and statistics.

Note: HTTP header data is not currently available.

Note: To launch TrueLog Explorer from Silk Performer, choose Results > Explore TrueLog.

Web Load Testing Tutorial | 7

Analyzing a Test Run

1. With the TrueLog from a Try Script run loaded into TrueLog Explorer, click the Analyze Test button on
the Workflow bar.

The Analyze Test dialog box displays.

2. Proceed with one of the following options:

• View a virtual user summary report
• Look for errors in the TrueLog
• Compare the replay test run to the recorded test run

Viewing a Virtual User Summary Report
Virtual user summary reports are summary reports of individual Try Script runs that offer basic descriptions
and timing averages. Each report tracks a single virtual user. Data is presented in tabular format.

Note: Because virtual user summary reports require significant processing, they are not generated by
default.

To enable the automatic display of virtual user reports at the end of animated Try Script runs, or when
clicking the root node of a TrueLog file in the menu tree, check the Display virtual user report check box
at Settings > Options > Workspace > Reports .

Virtual user summary reports include details related to:

8 | Web Load Testing Tutorial

• Virtual users
• Uncovered errors
• Response time information tracked for each transaction defined in a test script
• Page timer measurements for each downloaded Web page
• Measurements related to each Web form declared in a test script, including response time

measurements and throughput rates for form submissions using POST, GET, and HEAD methods.
• Individual timers and counters used in scripts (Measure functions)
• Information covering IIOP, Web forms, TUXEDO, SAP, and others

Finding Errors in a TrueLog
TrueLog Explorer helps you find errors quickly after Try Script runs. Erroneous requests can then be
examined and necessary customizations can be made.

Note: When viewed in the menu tree, API nodes that contain replay errors are tagged with red “X”
marks.

1. Open the TrueLog you want to analyze or modify.

2. Click Analyze Test on the workflow bar. The Workflow - Analyze Test dialog box opens.

3. Click the Find errors link. The Step through TrueLog dialog box appears with the Errors option
selected.

4. Click Find Next to step through TrueLog result files one error at a time.

You can select different increments by which to advance through the TrueLog to visually verify that the
script worked as intended (Whole pages, HTML documents, Form submissions, or API calls).

Viewing Page Statistics
After verifying the accuracy of a test run, TrueLog Explorer can analyze the performance of the application
under “no-load” conditions via the Statistics tab under the Information pane. The Overview page details
total page response times, document download times (including server busy times), and time elapsed for
receipt of embedded objects.

Detailed Web page statistics show exact response times for individual Web page components. These
detailed statistics assist you in pinpointing the root causes of errors and slow page downloads.

Detailed Web page drill-down results include the following data for each page component:

Time Description

DNS The time to translate a host name into an IP address.

Connect The time to establish a connection to a server.

SSL Handshake The time to establish a secure layer on an existing
connection. The client and server exchange certificates
and agree on an encryption technology including related
keys to secure data transmission.

Send The time to hand over the request data from Silk
Performer to the operating system. This value does not
include the time required to send the request data from
the operating system to the server.

Server busy The time to send the request data from the operating
system to the server, the time to calculate the response
data on the server, and the time to send the first byte of
the response data from the server to the client (including
network latency).

Receive The time to receive the entire response data.

Web Load Testing Tutorial | 9

Time Description

Cache statistics

Viewing an Overview Page

1. From the API Node Tree menu, select the API node for which you would like to view statistics.

2. Click the Statistics tab to open Statistics view.

3. Select specific components listed in the URL column for detailed analysis and page drill-down.

Comparing Record and Replay TrueLogs
By comparing a TrueLog that has been generated during the script development process alongside the
corresponding TrueLog was recorded originally, you can verify that the test script runs accurately.

1. Click the Analyze Test button on the Workflow Bar. The Workflow - Analyze Test dialog box appears.

2. Click Compare your test run.

3. The corresponding recorded TrueLog opens in Compare view and the Step through TrueLog dialog
box appears with the Browser Nodes option selected, allowing you to run a node-by-node comparison
of the TrueLogs.

4. Click the Find Next button to step through TrueLog result files one page at a time.

Note: Windows displaying content presented during replay have green triangles in their upper left
corners. Windows displaying content originally displayed during application recording have red
triangles in their upper left corners.

Synchronizing Record and Replay TrueLogs
In compare mode you can synchronize corresponding API nodes between replay and record TrueLogs to
identify differences between recorded values and replayed values.

Note: This feature is disabled when automatic synchronization of TrueLogs is enabled.

1. Enable compare mode by doing one of the following:

• Choose View > Compare Mode .
• Click the Compare Mode button on the toolbar.

2. Open a set of corresponding record and replay TrueLogs.

3. Right-click an API node and choose Synchronize TrueLogs. TrueLog Explorer locates the API node in
the matching TrueLog that best correlates with the selected API node.

Customizing Test Scripts
Once you have generated a test script with Silk Performer and executed a Try Script run, TrueLog Explorer
can help you customize the script in the following ways, among other options:

• Parameterize input data – With user-data customization, you can make your test scripts more realistic
by replacing static, recorded, user-input data with dynamic, parameterized user data that varies with
each transaction. Manual scripting is not required to run such data-driven tests. This feature is available
for Web, database, XML, Citrix, SAPGUI, terminal emulation, and Oracle Forms applications.

• Add verifications to test scripts – With the Add Verifications tool, you can gain insight into data that
is downloaded during tests, enabling you to verify that content sent by servers is received by clients.
Verifications remain useful after system deployment for ongoing performance management. This feature
is available for Web, database, XML, SAPGUI, Citrix, terminal emulation, and Oracle Forms

10 | Web Load Testing Tutorial

applications. TrueLog Explorer supports bitmap and window verification for applications that are hosted
by Citrix servers.

User-Input Data Customization
Without user-input data customization, all simulated transactions are identical and do not account for the
variables that are typically experienced in real world environments.

For example, you can customize the user-input data that is entered into forms during testing using the
Parameter Wizard. The Parameter Wizard lets you specify the values that are to be entered into form
fields during testing. This enables test scripts to be more realistic by replacing recorded user-input data
with randomized, parameterized user data.

Customizing HTML User Data With a New Parameter
Before proceeding, ensure that all static session information has been removed from your test script and
that the most recent Try Script run produced a TrueLog that is open in TrueLog Explorer.

With HTML-based applications, the goal of user-data customization is to customize values submitted to
form fields.

This task explains the process of creating a parameter based on a random variable.

1. Click Customize User Data on the workflow bar. The Workflow - Customize User Data dialog box
opens.

2. Click the Customize user input data in HTML forms link. TrueLog Explorer then performs the
following actions:

• Selects the first WebPageSubmit API call node in the menu tree.
• Opens the Step through TrueLog dialog box (with the Form submissions option button selected).
• Displays Request view

Request view shows the page that contains the HTML form that was submitted by the selected
WebPageSubmit call. When your cursor passes over a form control, a tool tip shows the control’s
name in addition to its initial and submitted values; an orange line indicates the corresponding BDL
form field declaration in Form Data view below.

3. Click Find Next or Find Previous on the Step through TrueLog dialog box to browse through all
WebPageSubmit calls in the TrueLog (these are the calls that are candidates for user-data
customization).

Note: Highlighted HTML controls in Request view identify form fields that can be customized.

4. On the Request page, right-click the form control that you want to customize and choose Customize
Value.

You can replace the recorded values with various types of input data (including predefined values from
files and generic random values) and generate code into your test script that substitutes recorded input
data with your customizations.

The Parameter Wizard opens.

With the Parameter Wizard you can modify script values in two ways:

• Use an existing parameter that is defined in the dclparam or dclrand sections of your script.
• Create a new parameter based on a new constant value, random variable, or values in a multi-

column data file.

After you create a new parameter, that parameter is added to the existing parameters and is available
for further customizations.

5. Click the Create new parameter option button and then click Next to create a new parameter. The
Create New Parameter page opens.

Web Load Testing Tutorial | 11

6. Click the Parameter from Random Variable option button and then click Next. The Random Variable
page opens.

7. From the list box, select the type of random variable that you want to insert into your test script and then
click Next.
A brief description of the selected variable type appears in the lower window.

The Name the variable and specify its attributes page opens.

8. Enter a name for the variable in the Name text box.

9. Specify whether the values should be called in Random or Sequential order.

The Strings from file random variable type generates data strings that can either be selected randomly
or sequentially from a specified file.

10.In the File group box, select a preconfigured data source from the Name list box and then click Next.
The Choose the kind of usage page displays.

11.Specify the new random value to use by selecting one of the following choices:

• Per usage
• Per transaction
• Per test

12.Click Finish. Your test script now uses the random variable for the given form field in place of the
recorded value. The new random variable function appears on the BDL page.

Initiate a Try Script run with the random variable function in your test script to confirm that the script runs
without error.

AJAX and Script Customization
The Silk Performer Recorder can record and replay Web applications that utilize AJAX (Asynchronous
JavaScript and XML) requests. This is possible because Silk Performer recognizes asynchronous AJAX
requests and responses that arrive in the form of either XML or JSON within HTML responses. Silk
Performer scripts AJAX requests that it encounters as WebPageUrl calls.

Silk Performer and TrueLog Explorer support access to values within AJAX requests. This enables script
customizations such as input-data parameterization, verification, parsing, and session-information
customization within AJAX responses.

Tip: The InsuranceWeb demo application, available at http://demo.borland.com/InsuranceWebExtJS/,
offers the functionality to switch between JSON and XML serialization methods for testing purposes.
From the Select a Service or login list, select Agent Lookup for JSON or Agent Lookup (XML)
for XML.

Pretty-Format JSON and XML Data

JSON and XML are data-structure formats commonly used in AJAX applications, REST techniques, and
other environments. Silk Performer supports pretty-formatted viewing of XML and JSON-formatted byte
streams in BDF scripts. Enhanced rendering of JSON formatted data enables easier customization of
string values via TrueLog Explorer’s string customization functions.

When JSON-formatted data is recorded or inserted into a BDF script, Silk Performer displays the raw
JSON byte stream. Once displayed in JSON format, XML can easily be customized using Silk Performer’s
Parameter Wizard.

Silk Performer offers the option of viewing JSON data in either pretty-formatted JSON-rendering view or as
a raw JSON byte stream.

Understanding JSON

According to JSON.org (www.json.org), “JSON (JavaScript Object Notation) is a lightweight data-
interchange format. It is easy for humans to read and write. It is easy for machines to parse and generate.
It is based on a subset of the JavaScript Programming Language...” “JSON is a text format that is

12 | Web Load Testing Tutorial

http://demo.borland.com/InsuranceWebExtJS/

completely language independent but uses conventions that are familiar to programmers of the C-family of
languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others. These properties make
JSON an ideal data-interchange language.”

Enabling Pretty-Formatted JSON and XML Viewing in TrueLog Explorer

Enable pretty-formatted JSON and XML viewing on the Response page if TrueLog Explorer is unable to
detect JSON or XML data. If TrueLog Explorer detects JSON and XML data, it is automatically pretty-
formatted on the Response page.

1. Select a node on the TrueLog menu tree that includes JSON- or XML-formatted data (for example, a
HTTP Post command node).

2. Click the Response tab.

3. Right-click JSON or XML data and choose Render As > JSON or Render As > XML to pretty-format
the data.

Enabling Pretty-Formatted JSON and XML Viewing in Silk Performer

1. Within a BDL script that includes JSON- or XML-formatted data, right-click within the screen data that
you want to view.

2. Select your preferred viewing format from the context menu.

• Select Format As > JSON to format the data in enhanced JSON format.
• Select Format As > XML to format the data as raw XML.

You can also select Format As > Auto Format from the context menu to have Silk Performer determine
the best formatting option for screen data types. By default, JSON and XML data is pretty-formatted in
BDF scripts.

3. Right-click formatted data strings to access Silk Performer’s standard string customization commands.

Note: Because formatted JSON data is integrated into the Silk Performer code editor, JSON-
formatting can be undone/redone using the Undo/Redo buttons on the toolbar.

Note: Pretty-formatted JSON and XML data viewing is also available in TrueLog Explorer.

Verifications
Often application errors do not cause erroneous HTTP responses. Instead, the application responds with
incorrect data values or with error messages incorporated in the HTML content, such as A Servlet
Exception occurred... or Server Too Busy.... A simple check of the HTTP status code will not
uncover this class of errors. Therefore, application errors are often overseen if you do not build additional
checks into your test script. Verification functions help you to check for application errors that are not
simple, standard HTTP errors.

With verification built into your test scripts, your test evolves from being a simple load test to a becoming a
combined load and functionality test. You can use these scripts without major performance penalties, even
during large load test scenarios. They will, therefore, be able to detect a new class of application errors—
errors which only occur under load, but which would be overlooked by a simple load test script without
additional verification checks.

Silk Performer offers three means of enhancing your test scripts with verification functionality:

• Automatically let the Recorder generate verification functions during the recording session.
• Directly enhance the script by coding verification functions manually.
• Apply verifications visually via TrueLog Explorer without the need to write a single line of BDL code.

TrueLog Explorer will automatically generate verification functions into your script.

Web Load Testing Tutorial | 13

Tip: Refer to TrueLog Explorer Help for detailed information.

Automatically Generating Verifications During Recording
To enable the automatic generation of verifications during Silk Performer script recording:

1. Within Silk Performer, choose Settings > Active Profile . The Profile - [<profile name>] - Simulation
dialog appears.

2. Select Record > Web in the shortcut list, then click the Verification tab.

3. In the Recording section, check the Record title verification and Record digest verification check
boxes.

4. Click OK.

Title Verification
Title verification offers a simple, automatic means of checking to see if applications return correct Web
pages. When retrieving HTML documents, the Recorder can automatically generate title verification
functions for each page-level Web API call or low-level Web API call.

Note: Title verification does not work when HTML page titles (contents of the <TITLE HTML> tags)
are not set, or when they share common names.

Title Verification

transaction TMain
begin
 ...
 WebVerifyHtmlTitle("ShopIt - Greetings",
WEB_FLAG_IGNORE_WHITE_SPACE |
 WEB_FLAG_EQUAL | WEB_FLAG_CASE_SENSITIVE, 1,
 SEVERITY_ERROR, bVerifyTitleSuccess1);
 WebPageUrl("http://myHost/shopit");

Digest Verification
Digest verification is useful for verifying the content of relatively static HTML pages. Digest verification is
not useful for HTML pages that are dynamic or contain session information in hyperlinks, embedded
objects, or hidden form fields—and therefore change with each call.

The function calls WebVerifyDataDigest and WebVerifyHtmlDigest check to see if data that Silk
Performer receives during replay differs from the data the Recorder captured during corresponding record
sessions. With these function calls, Silk Performer generates digests that contain information about the
occurrence of all characters and compares those results with digests generated by the Recorder. This
function enables you to see if Silk Performer captures the same data during replay that it captured during
recording. The Recorder automatically generates a digest verification function for each page-level Web API
call and low-level Web API call that retrieves a document with a content type specified for digest verification
(the default content type is text/html).

Digest Verification

const
 gsVerDigest_ShopIt_Greetings := "\h014200000B..."
 "\h016000500A..."
 "\h030001000A..."
 "\h0900410020...";

transaction TMain
begin
 ...

14 | Web Load Testing Tutorial

 WebVerifyDataDigest(gsVerDigest_ShopIt_Greetings, 162);
 WebPageUrl("http://myHost/shopit", "ShopIt - Greetings");
 ...
end TMain;

Enabling Verification Checks During Replay
See verification settings options for a list of possible verification checks that you can enable or disable
during script replay.

Tip: Profile settings in scripts can be overridden using the WebSetOption BDL function.

1. Within Silk Performer, choose Settings > Active Profile . The Profile - [<profile name>] - Simulation
dialog appears.

2. Select Replay > Web in the shortcut list, then click the Verification tab.

3. In the HTML / XML and Data areas, check which verification checks you want to enable during replay.

Inserting Content-Verification Functions

1. Open the TrueLog you want to analyze or modify.

2. Select a TrueLog API node that includes content that you want to have verified (for example, text or an
image).

3. Select the content that is to be verified on the Source page.

Note: This step is not required for page-title and page-digest verification functions.

4. Click Add Verifications on the workflow bar. The Workflow - Add Verifications dialog box opens.

5. Select a pre-enabled verification:

• Verify the page title
• Verify the selected text
• Verify the selected text in an HTML table
• Verify the digest

6. Complete the following dialog box.

Specify how verification functions should be inserted into the BDL script.

Note: Left and right boundaries are automatically identified for you.

7. Repeat the process for each verification you want to add to the BDL script.

8. Click Yes on the Workflow - Add Verifications dialog box. A Try Script run is initiated.

9. Confirm that verifications have passed successfully.

API nodes that include verifications are indicated with blue “V” symbols.

Web Load Testing Tutorial | 15

Parsing Functions
Similar to the verification functions, parsing functions are used to parse content returned from a Web
server and check if the values meet your testing criteria. Different from the verification functions, which
basically check the occurrence of a specified input value, the parsing functions parse the content of a
server response and return the parsed value in a BDL variable. Typically, you will use parsing functions for
the following tasks:

• Parse session IDs and replace static session IDs in the script with parsed, dynamic session IDs to
maintain state information in Web applications. This is one of the main fields of application of parsing
functions.

• Build enhanced verifications into your script with parsing functions, which cannot be done with
verification functions. For example, if you want to verify that the value of column 2 of row 3 in an HTML
table is equal to the sum of the values of column 2 of row 1 and column 2 of row 2. By using parsing
functions to parse out the three values and compare them in our script, you can build this enhanced
verification check.

• Conditional execution of parts of your testing script which depends on the data returned from the server.
For example, an HTTP request returns an HTML page which includes: Results: <nnn> items
found. You want to execute different actions depending on the value of <nnn>. Let's say you want to
exit the transaction if <nnn> = 0, and you want to go to link Details if <nnn> = 1, and you want to go

16 | Web Load Testing Tutorial

to link Next if <nnn> is greater than 0. To accomplish this, you need to parse the value of <nnn>
from the HTML page and script the actions, depending on the value you have parsed out.

Silk Performer offers two means to enhancing your test scripts with parsing functionality:

• Directly enhance your script by coding verification functions manually.
• Apply parsing functions visually in TrueLog Explorer without the need to write a single line of BDL code.

TrueLog Explorer will automatically generate parsing functions in your script.

Tip: Refer to TrueLog Explorer Help for detailed information.

HTML Content Parsing
HTML content parsing functions parse out portions of the rendered, visible HTML content. The HTML
content verification and parsing functions allow you to verify and/or parse the textual content that you see
in your browser. Apply HTML content parsing functions in the HTML view of TrueLog Explorer, which
includes the following functions:

• WebParseHtmlBound

• WebParseHtmlTitle

• WebParseTable

• WebParseResponseTag

• WebParseResponseTagContent

Response Data Parsing
Data parsing functions parse out portions of the response data returned from the server. In cases in which
an HTML document is returned from the server, the complete source code of the HTML document is
parsed. Apply data verification functions in the source view of TrueLog Explorer, which includes the
following functions:

• WebParseDataBound (this function replaces the deprecated WebParseResponseData function)
• WebParseResponseHeader

Session Handling
Web applications often use a unique Web session ID so that the Web server is able to handle further client
requests.

Refer to TrueLog Explorer Help for detailed information.

Customized Session Handling
Web server applications often generate information at runtime that is necessary in order to identify further
client requests. In the response to the browser, the server may include a unique string, commonly known
as the Session ID. This string is returned by the browser to the server as a part of each subsequent
request, allowing the server to identify the unique Web session of which the request is a part. Generally,
Session IDs refer to the method the Web server application uses to identify individual users and to
associate this identification with the state of the user session information that the application has previously
had with those users.

Session IDs can be sent to the client in a number of ways. Most often you will find them included in
cookies, or inside HTML as part of URL's used in hyper links or embedded objects, or in hidden HTML form
fields. Session IDs are sent back to the server in cookies, URL's, and HTTP post data.

Session Information Inside Cookies

From the server:

Set-Cookie: SessionID=LGIJALLCGEBMIBIMFKOEJIMM; path=/

Web Load Testing Tutorial | 17

To the server:

Cookie: SessionID=LGIJALLCGEBMIBIMFKOEJIMM

Session Information in the URL's of HTML Links

From the server:

<html>
 ...
 <a href="/ShopIt/acknowledge.asp?
SessionID=LGIJALLCGEBMIBIMFKOEJIMM" >
 Enter Shop

 ...
</html>

To the server:

GET /ShopIt/acknowledge.asp? SessionID =
LGIJALLCGEBMIBIMFKOEJIMM HTTP/1.1

Session Information in Hidden Form Fields

From the server:

<html>
 ...
 <form action="kindofpayment.asp" method="post" >
 Currently we only accept Credit Cards
 <input type="hidden" name="SessionID"
value="LGIJALLCGEBMIBIMFKOEJIMM">
 <input type="text" name="name" value="Jack " >
 <input type="submit" name="paymentButton" value="Submit">
 </form>
 ...
</html>

To the server:

POST /ShopIt/kindofpayment.asp HTTP/1.1
...
SessionId=LGIJALLCGEBMIBIMFKOEJIMM&name=Jack&paymentButton=Submi
t

When to Use Customized Session Handling
Assuming that a WebPageUrl call in your script uses a URL that contains a session ID as part of the query
string of the URL. When replaying the script, this hard coded static session ID is sent to the server.
Because the session ID does not correctly identify your replayed session—it still identifies the recording
session—the replay won’t work correctly. By not replacing static session IDs in your script with dynamic
values that had been generated at runtime, your Web application will usually generate errors such as We
are sorry, your session has expired. Please return to the login screen and try
again.

The good news is that with Silk Performer, session customization is not often necessary and, even if
manual session customization is needed, Silk Performer's TrueLog Explorer will guide you through the
process.

Most often when you record a script, it will work without any modifications necessary for the customization
of session handling. Silk Performer therefore uses multiple, highly sophisticated methods that prevent the
user from manually handling hard coded session IDs:

18 | Web Load Testing Tutorial

• Cookie Management: When your server uses cookies to exchange session information, Silk Performer
will automatically handle dynamic session ID values. Because Silk Performer exactly emulates the
cookie management of a browser, it will send cookies the same way a browser sends them to your
server. No manual interaction is needed for state management.

• page-level web API: Using the Page-level API when recording (which is the default setting) will generate
scripts that mainly generate context-full Web API function calls such as WebPageLink and
WebPageSubmit. Context-full Web API calls are working on the HTML level, not the HTTP level, and
thus they do not use URL's as parameters. For all context-full API calls, manual session customization
is not needed. The page-level API is used if you choose the application type Web business
transaction (HTML/HTTP) in the Outline Project dialog. Therefore it is strongly recommended that
you use Silk Performer's page-level API instead of the low-level web API.

Due to the heavy use of client side Java Script for dynamically generating HTML, the Silk Performer
Recorder sometimes loses the HTML context and scripts context-less Web API calls. Context-less Web
API calls, such as WebPageUrl and WebPageForm, contain URL's as parameters. In these rare cases,
your script may contain hard coded session IDs. You will find them in the URL parameters of Web API calls
and in the form fields declared in the dclform section of your script.

Context-full script (there is nothing to customize)

transaction TMain
 begin
 WebPageUrl("http://lab38/ShopIt/"); // first call is always
context-less
 WebPageLink("Join the experience!");
 WebPageSubmit("Enter", SHOPIT_MAIN_ASP001);
 WebPageLink("Products");
 end TMain;

 dclform
 SHOPIT_MAIN_ASP001:
 "SessionID" := "" <USE_HTML_VAL>, // hidden value:
 "LGIJALLCGEBMIBIMFKOEJIMM"
 // recognized as a hidden form
 // field, the value is taken from
 // the actual HTML form field.
 "name" := "Jack", // changed
 "New-Name-Button" := "" <USE_HTML_VAL> ; //unchanged
 value: "Enter"

Script with context-less functions (static session data that needs to be
customized is included in the DCLFORM section)

transaction TMain
 begin
 WebPageUrl("http://lab38/ShopIt/"); // first call is always
context-less
 WebPageUrl("http://lab38/ShopIt/main.asp", NULL,
SHOPIT_MAIN_ASP001);
 WebPageForm("http://lab38/ShopIt/main.asp",
SHOPIT_MAIN_ASP002);
 WebPageUrl("http://lab38/ShopIt/products.asp");
 end TMain;

 dclform
 SHOPIT_MAIN_ASP001:
 "from" := "welcome";

 SHOPIT_MAIN_ASP002:
 "SessionID" := "LGIJALLCGEBMIBIMFKOEJIMM",

Web Load Testing Tutorial | 19

 "name" := "Jack",
 "New-Name-Button" := "Enter";

Customizing Session Handling
The following steps are required to customize session handling.

Refer to TrueLog Explorer Help for detailed information.

1. Identify the session ID that needs to be customized.

2. Search for the first response (Web API call in the script) in which the session ID is sent from the server
to the client.

3. Parse out the session ID from the found response of the Web API call into a variable.

4. Replace all occurrences of the hard coded session ID in the script with this variable.

User Profiles

Browser Types

Virtual users in a test can be customized to use any of a wide choice of Web browsers, and of the
functionality they embody. The most popular browsers in use today can be emulated. Lesser-known
browsers are also available, as are browsers serving mobile device users. Custom browsers can be
defined, using different versions of threading technologies and of HTTP.

Bandwidth

Modems are the means that home users typically use to access the Internet. Since a user’s modem is
sometimes the slowest link in the network communication chain, modems can be simulated in a load test.

Virtual users can be customized to use the bandwidth associated with any of the major connection types in
wide use among consumers today. Custom settings can be defined where connections use different
bandwidth settings for downstream (from the server to the client) and upstream (from the client to the
server) traffic.

Adding a Profile

1. Select Project > New Profile . The New Profile dialog opens.

2. Enter a Name for the new profile and click OK. The Profiles folder expands in the Project menu tree
and the new profile is available.

Configuring Browser Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Web icon.

4. Click the Browser tab.

Use the Browser type area to specify browser-specific settings.

5. From the Browser list box, select the Web browser you want to use for your simulation.

The selection you make determines the format of the header information included in your HTTP
requests and the threading model used for simulation.

20 | Web Load Testing Tutorial

Note: For mobile Web application testing (iPhone, iPad, Android, Windows Phone or Blackberry)
you can change the user agent string used for recording.

6. Click OK to save your settings.

Configuring Browser-Simulation Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Web icon.

4. Click the Simulation tab.

Use the Simulation area to set options for realistic simulation of users visiting Web sites.

5. Check the Simulate user behavior for each transaction check box to have each virtual users reset
their browser emulation after each transaction.

Depending on the additional option you select, Silk Performer either simulates users who visit a Web
site for the first time or users who revisit the site. While users who visit a site for the first time have no
persistent cookies stored and no documents cached, users who revisit a page typically have closed
their browsers between the Web site visits, have documents cached, and persistent cookies set.
Disabling this option lets the virtual user emulate a Web browser that is not closed until the end of the
test, thereby reusing cached information throughout multiple transactions.

6. Click the First time user option button to generate a realistic simulation of users who visit a Web site for
the first time.

Persistent connections will be closed, the Web browser emulation will be reset, and the document
cache, the document history, the cookie database, the authentication databases, and the SSL context
cache will be cleared after each transaction. In such instances, Silk Performer downloads the complete
sites from the server, including all files.

7. Click the Revisiting user option button to generate a realistic simulation of users who revisit a Web site.

Persistent connections will be closed, and the document history, the non-persistent cookie database,
the authentication database, and the SSL context cache will be cleared after each transaction. In such
cases, users do not clear the document cache. For more details, review the WebSetUserBehavior
function in the BDL Function Reference.

Use the User tolerance area to adjust the advanced options of the user tolerance simulation.

8. Click OK to save your settings on the Profile - [<profile name>] dialog box.

Configuring Monitoring
Before running a test you need to define how Performance Explorer, the Silk Performer server monitoring
tool, is to monitor local and remote servers involved in your test. Server monitoring reveals, locates, and
assists in resolving server bottlenecks, allowing you to examine the performance of operating systems and
application servers.

Three monitoring options are available:

• Default monitoring - This option directs Performance Explorer to monitor a recommended set of data
sources based on the application type under test. This is equivalent to enabling the Automatically start
monitoring and Use default monitoring template settings for the Performance Explorer workspace
(Settings > Active Profile > Replay > Monitoring > Use default monitoring template).

• Custom monitoring - This option opens Performance Explorer in monitoring mode with the Data
Source Wizard - Select Data Sources dialog box open, enabling you to manually configure data

Web Load Testing Tutorial | 21

sources. Your Performance Explorer monitoring project settings will be saved along with your Silk
Performer project settings.

• No monitoring - This option enables you to run your test without monitoring of any local or remote
servers. With this option the Automatically start monitoring setting is disabled (Settings > Active
Profile > Replay > Monitoring > Use default monitoring template).

Defining Monitoring Options
1. Click Configure Monitoring on the workflow bar. The Workflow - Configure Monitoring dialog box

appears.

2. Select one of the following options and click Next:

• Default monitoring - This option directs Performance Explorer to monitor a recommended set of
data sources based on the application type under test. This is equivalent to enabling the
Automatically start monitoring and Use default monitoring template settings for the
Performance Explorer workspace (Settings > Active Profile > Replay > Monitoring > Use default
monitoring template).

• Custom monitoring - This option opens Performance Explorer in monitoring mode with the Data
Source Wizard - Select Data Sources dialog box open, enabling you to manually configure data
sources. Your Performance Explorer monitoring project settings will be saved along with your Silk
Performer project settings.

• No monitoring - This option enables you to run your test without monitoring of any local or remote
servers. With this option the Automatically start monitoring setting is disabled (Settings > Active
Profile > Replay > Monitoring > Use default monitoring template).

(for Default Monitoring and Custom Monitoring only) A confirmation dialog box will notify you if you have
logging enabled. Logging may skew your test results.

3. Click OK to accept your logging settings or click Cancel to adjust your logging options (Settings >
Active Profile > Results > Logging).

4. (for Custom Monitoring only) Performance Explorer starts and the Data Source Wizard opens.
Complete the steps outlined in the wizard.

5. The Workflow - Workload Configuration dialog box appears. Click OK to accept your monitoring
settings.

Adjusting Workload
Configuring workload is part of the process of conducting a load test. Silk Performer offers different
workload models to be used as a basis for your load test. Before configuring workload, you must select the
model that best fits your needs.

You can define more than one workload model in your load test project and save them for further usage,
but only one workload model can be active at a time. The accepted baseline results are associated with a
workload model. If you copy or rename a workload model, the accepted baseline results are copied or
renamed accordingly.

Workload Models
Silk Performer provides the following workload models:

• Increasing – At the beginning of a load test, Silk Performer does not simulate the total number of users
defined. Instead, it simulates only a specified part of them. Step by step, the workload increases until all
the users specified in the user list are running.

This workload model is especially useful when you want to find out at which load level your system
crashes or does not respond within acceptable response times or error thresholds.

22 | Web Load Testing Tutorial

• Steady State – In this model, the same number of virtual users is employed throughout the test. Every
virtual user executes the transactions defined in the load-testing script. When work is finished, the
virtual user starts again with executing the transactions. No delay occurs between transactions, and the
test completes when the specified simulation time is reached.

This workload model is especially useful when you want to find out about the behavior of your tested
system at a specific load level.

• Dynamic – You can manually change the number of virtual users in the test while it runs. After the
maximum number of virtual users is set, the number can be increased or decreased within this limit at
any time during the test. No simulation time is specified. You must finish the test manually.

This workload model is especially useful when you want to experiment with different load levels and to
have the control over the load level during a load test.

• All Day – This workload model allows you to define the distribution of your load in a flexible manner.
You can assign different numbers of virtual users to any interval of the load test, and each user type can
use a different load distribution. Therefore, you can design complex workload scenarios, such as
workday workloads and weekly workloads. You can also adjust the load level during a load test for
intervals that have not started executing.

This workload model is especially useful when you want to model complex, long lasting workload
scenarios in the most realistic way possible.

• Queuing – In this model, transactions are scheduled by following a prescribed arrival rate. This rate is a
random value based on an average interval that is calculated from the simulation time and the number
of transactions per user specified in dcluser section of your script. The load test finishes when all of
the virtual users have completed their prescribed tasks.

Note: With this model, tests may take longer than the specified simulation time because of the
randomized arrival rates. For example, if you specify a simulation time of 3,000 seconds and want
to execute 100 transactions, then you observe an average transaction arrival rate of 30 seconds.

This workload model is especially useful when you want to simulate workloads that use queuing
mechanisms to handle multiple concurrent requests. Typically, application servers like servlet engines or
transaction servers, which are receiving their requests from Web servers and not from end users, can
be accurately tested by using the queuing model.

• Verification – A verification test run is especially useful when combined with the extended verification
functionality. This combination can then be used for regression tests of Web-based applications. A
verification test run always runs a single user of a specific user type on a specified agent computer.

This workload is especially useful when you want to automate the verification of Web applications and
when you want to start the verification test from the command line interface.

Defining Workload
Prior to the execution of a load test, you must specify the workload model that you want to use and
configure its settings. To select a workload model, click Adjust Workload in the workflow bar.

1. Click Adjust Workload on the workflow bar. The Workflow - Select and adjust Workload dialog box
appears.

2. Select one of the following workload models by clicking the appropriate option button:

• Increasing
• Steady State
• Dynamic
• All Day
• Queuing
• Verification

3. Click Next.

Web Load Testing Tutorial | 23

4. Configure specific workload types based on the steps outlined in the Help.

Running Load Tests
In a load test, multiple virtual users are run by means of a test script against a target server to determine
the load impact on server performance. A large load test requires an appropriate testing environment on
your LAN, including a full complement of agent computers to host the virtual users.

It is essential that you complete the following tasks:

• Set options for the appropriate type of test that is to be run
• Accurately define the required workloads
• Enable the generation of test results to assess server performance

Do not enable complete result-logging during load testing because it might interfere with load-test results.
However, the TrueLog On Error logging option writes necessary log files to a disk when errors occur,
allowing you to inspect replay errors visually.

Running a Load Test
1. Click Run Test on the workflow bar. The Workflow - Workload Configuration dialog box appears.

2. Click Run to start the load test.

3. Click OK on the New Results Files Subdirectory dialog box.

(Optional) To specify a name for the results subdirectory, uncheck the Automatically generate unique
subdirectory check box and enter a name for the new subdirectory in the Specify subdirectory for
results files text box.

Monitor test progress and server activity by viewing the Silk Performer tabular monitor view and the
Performance Explorer graphical monitor view.

Monitoring Load Tests
Detailed real-time information is available to testers while Silk Performer load tests run. Graphic displays
and full textual reporting of activity on both the client side and the server side offer intuitive monitoring of
the progress of tests as they occur.

Directly from the workbench on which the test is conducted, a tester can view comprehensive overview
information about the agent computers and virtual users in the test. A tester can control the level of detail
of the displayed information, from a global view of the progress of all the agent computers in the test to an
exhaustive detail of the transactions conducted by each virtual user. Progress information for each agent
and each user is available in multiple categories. Run-time details for each user include customizable,
color-coded readouts on transactions, timers, functions, and errors as they occur.

In addition, real-time monitoring of the performance of the target server is available in graphical form.
Charts display the most relevant performance-related information from a comprehensive collection of the
Web servers, application servers, and database servers running on all of the OSes most widely used today.
Multiple charts can be open at the same time, and these charts can be juxtaposed to provide the most
relevant comparisons and contrasts for the tester. A menu tree editor allows for the combination of
elements from any data source in the charts. Response times and other performance information from the
client application can be placed in the same chart as performance data from the server. This feature
enables a direct visual comparison so that one can deterimine the influence of server shortcomings on
client behavior.

Monitoring Agent Computers During load Testing
Use the Monitor window to view progress while a load test runs. The top part of the window displays
information about the progress of agent computers and user groups.

24 | Web Load Testing Tutorial

Among the comprehensive number of information options, you can view the following information:

• Status of a particular agent
• Percentage of the test that is complete on an agent
• Number of executed transactions

Monitoring a Specific Agent During load Testing
In the top part of the Monitor window, select the specific agent to monitor.

The following information about the virtual users running on the selected agent appears in the bottom of
the Monitor window:

• Status
• Name of the current transaction
• Percentage of work completed
• Number of executed transactions

Monitoring a Specific Virtual User During load Testing
In the bottom part of the Monitor window, right-click the virtual user that you want to monitor and choose
Show Output of Vuser.

In the Virtual User window, Silk Performer displays detailed run-time information about the selected user,
such as the transactions and functions the user executes and the data the user sends to and receives from
the server.

Tip: Right-click the virtual user area and choose Select Columns to select the columns you want to
view.

Using a Graph to Monitor Server Performance
1. Click Confirm Baseline on the workflow bar. The Workflow - Confirm Baseline dialog box opens.

2. Click Define monitoring options to specify the settings for receiving online performance data. The
Profile Results dialog box opens.

3. In the Profile Results dialog box, check the Automatically start monitoring check box to
automatically start monitoring while running a load test and then choose one of the following options:

• Click the Use default monitoring template option button.
• Click the Use custom monitoring template option button to create a customized monitoring

template.

4. Click Create/Edit Custom Monitor Template. Performance Explorer appears.

5. Close all monitor windows that you are not currently using.

6. Click Monitor Server on the Performance Explorer workflow bar.

Alternatively, you can choose Results > Monitor Server from the menu bar.

The Data Source Wizard / Select Data Sources dialog box opens.

7. Perform one of the following steps:

• If you are certain of the data sources that the server provides, click the Select from predefined
Data Sources option button to then select them from the list of predefined data sources.

• If you are uncertain of the data sources that the server provides, click the Have Data Sources
detected option button to let Performance Explorer scan the server for available data sources.

8. Click Next.

In the menu tree, expand the folder that corresponds to the OS on which the server and application are
running.

Web Load Testing Tutorial | 25

9. Select the server application you want to monitor from the list that appears.
For example, to monitor the OS, select System.

10.Click Next. The Connection Parameters dialog box opens.

11.In the Connection parameters area, specify connection parameters such as the host name or IP
address of the appropriate server system, the port number, and other data required to connect to the
data source.

The specified data depends on the OS running on the computer that you are monitoring.

12.Click Next. The Select Displayed Measures dialog box opens.

13.Expand the menu tree and select the factors you want to monitor.

14.Click Finish. A Monitor graph shows the specified elements in a real-time, color-coded display of the
server performance. Beneath the graph is a list of included elements, a color-coding key, and
performance information about each element.

Exploring Test Results
Silk Performer offers several approaches to displaying, reporting, and analyzing test results. Defined
measurements take place during tests and can be displayed in a variety of graphical and tabular forms.
Options include the following:

• Performance Explorer: This is the primary tool used for viewing test results. A fully comprehensive
array of graphic features displays the results in user-defined graphs with as many elements as are
required. The results of different tests can be compared. There are extensive features for server
monitoring. A comprehensive HTML based overview report that combines user type statistics with time
series test result information is also available.

• TrueLog On Error: Silk Performer provides full visual verification under load capabilities for various
application types. It allows you to combine extensive content verification checks with full error drill-down
analysis during load tests.

• Virtual User Report files: When enabled, these files contain the simulation results for each user.
Details of the measurements for each individual user are presented in tabular form.

• Virtual User Output files: When enabled, these files contain the output of write statements used in test
scripts.

• Baseline Reports: A detailed XML/XSL-based report that provides you with a summary table,
transaction response-time details, timers for all accessed HTML pages, Web forms, and errors that
occurred. This information is available for all user types involved in baseline tests.

• Silk Central Reports: Silk Performer projects can be integrated into Silk Central (Silk Central) test
plans and directly executed from Silk Central. This allows for powerful test-result analysis and reporting.
For detailed information on Silk Central reporting, refer to Silk Central Help.

TrueLog On Error
With Silk Performer TrueLog technology, you can find errors that usually occur to only a subset of users
when your application is under a heavy load. For most applications, this is the type of load that will most
likely be experienced once the application is deployed in the real world. Typical errors include incorrect text
on a Web page, incorrectly computed and displayed values, or application-related messages, such as
Servlet Error or Server Too Busy errors. These are not system-level errors and are displayed on
Web pages with HTTP 200 status codes.

TrueLog Explorer provides a view into Silk Performer verification-under-load capabilities with the following
features:

• Visual content verification allows you to visually define the content that is to be verified.
• TrueLog On Error generation and TrueLog On Error analysis allow you to visually analyze errors to

identify their root causes.

26 | Web Load Testing Tutorial

Viewing Errors in TrueLog Explorer
1. When an error occurs during a load test, you can view the visual content of the TrueLog by clicking the

Explore Results button on the workflow bar. The Workflow - Explore Results dialog opens.
2. Click the Silk TrueLog Explorer link. TrueLog Explorer opens with the Step Through TrueLog dialog

box active. Select Errors.
3. Navigate from one occurrence of an error to the next.

Tip: To display the history of an error, click through the preceding API nodes in the menu tree.

Performance Explorer Overview
Performance Explorer offers two main capabilities:

• Results Analysis
• Real-Time Monitoring

Results Analysis

With the Results Analysis functionality of Performance Explorer, you can analyze the results of a
completed load test by creating charts, tables, and reports. With charts, you can visualize the data that was
collected during the load test, and reports as well as tables help you to summarize important data and
findings. The basis for all charts, tables, and reports is the data in the .tsd files. During each load test, Silk
Performer captures a big amount of data and stores it in several time-series data (.tsd) files. When a load
test is completed, you can load the data (the .tsd files) in Performance Explorer and visualize and edit them
according to your requirements. All charts are fully customizable, and they can contain as many measures

Web Load Testing Tutorial | 27

as required. You can open multiple charts using measures from one or multiple tests to show similarities
and differences. Performance Explorer provides a variety of templates for charts, tables, and reports.
Furthermore, you can place information on client and server performance in a single chart, so that you can
directly view the effect of server performance on client behavior. By saving your changes as a template,
you can reuse your individual settings.

Real-Time Monitoring

With the Real-Time Monitoring functionality of Performance Explorer, you can monitor a broad range of
systems by creating and configuring charts that show the system performance in real-time. It is possible to
open multiple charts at the same time, which allows you to watch the performance of two or more systems
simultaneously, for example the web server performance and the operating system performance. Adding
measures to a chart is easy and intuitive in Performance Explorer: You can drag a single measure or a set
of measures from the tree onto the chart.

Overview Report Measurements
The overview report comprises the following sections:

• General information
• Summary tables
• User types
• Custom charts
• Custom tables
• Detailed charts

General information

The general information section includes administrative information in tabular form as well as important
load test results in a graphical form.

Administrative information includes the project name, a description of the project, the load test number, a
description of the load test, the date of the load test, the duration of the load test, the number of used agent
computers, and the number of virtual users that were running.

The charts display the number of active virtual users, response time measurements for transactions, and
the number of errors that occur over time. Transaction response times are provided for successfully
executed transactions, for failed transactions, and for cancelled transactions.

Additional charts display summary measurements related to the type of load testing project. For example,
in the case of Web application testing, response time measurements for Web pages are presented in a
graph.

Summary tables

This section contains summary measurements in tabular form, that is, aggregate measurements for all
virtual users. The first table provides general information, such as the number of transactions that were
executed and the number of errors that occurred. All the following tables provide summary information
relevant to the type of application that was tested.

User types

For each user group, this section provides detailed measurements in tabular form. The measurements
include transaction response times, individual timers, counters, and response time and throughput
measurements related to the type of application that was tested (Web, database, CORBA, or TUXEDO). In
addition, errors and warnings for all user groups are listed.

28 | Web Load Testing Tutorial

Custom charts

This section contains graphs that you have added manually. You can add charts to and remove charts from
this section at any time. You can save your changes as a template to be displayed for every summary
report.

Custom tables

This section contains tables that you have added manually. You can add tables to and remove tables from
this section at any time. You can save your changes as a template to be displayed for every summary
report.

Detailed charts

This section provides enlarged versions of the charts included in the report. Click a reduced version of a
chart to jump to the enlarged version, and vice versa.

Viewing Overview Reports

1. Click the Explore Results button on the workflow bar. The Workflow - Explore Results dialog
appears.

Web Load Testing Tutorial | 29

2. Click the Silk Performance Explorer button or link. If you have selected the Generate overview report
automatically option in the Settings/Options/Reporting dialog, Performance Explorer opens and
displays an overview summary report for the most recent load test. Additionally, you can choose to use
a previously stored template for the generation of an overview report in this dialog. This setting is a
global setting and will be used with Performance Explorer, regardless of the workload project you are
using.

3. If the overview report does not appear automatically, click the Overview Report button on the workflow
bar.

a) Navigate to the directory of the load test you are working with and select the corresponding .tsd file
and then click Open.

b) Click Next.
c) Optionally, in the Template field, click [...] to navigate to the template file that you want to use.
d) Click Finish.
e) Depending on the load test that you selected, you may be prompted to confirm that you want to load

all relevant files into your project.

The overview report opens.

30 | Web Load Testing Tutorial

Index
A
adding

profiles 20
agents

monitoring during Web testing 24
AJAX

sample Web 2.0 application 4
all day workload model 23

B
browser

Web testing 20
browser-driven Web testing

sample Web 2.0 application 4
browsers

emulation 21
settings 20
simulation 21

C
connections

concurrent 20
cookies 19
CORBA 28
creating a test script

for Web testing 6
customizing

user data 11
user-input data 11

customizing test scripts
Web testing 10

D
Data Source Wizard 25
defining a project

for Web testing 5
defining workload

Web testing 23
digest verification 14
dynamic workload model 23

G
graphs

Web testing 25

I
increasing workload model 22

J
JSON

pretty format 13
understanding 12

M

monitoring
configuring 21, 22
servers 21, 22

monitoring tests
Web testing 24

O

overview page
Web testing 10

overview reports
Web testing 28, 29

P

page statistics
Web testing 9

parameters
random variables 11

parsing functions
HTML context parsing 17
overview 16
response data parsing 17

Performance Explorer
Web testing 27

pop-up window support
sample Web 2.0 application 4

profiles
adding 20

Q

queuing workload model 23

R

recording a test script
for Web testing 6

replay
browser-simulation settings 21

response data parsing 17
running tests

Web testing 24

S

session handling
customizing 20
session information 17
when to use 18

settings
browsers 20

simulation
browsers 21

steady state workload model 23

Index | 31

summary reports
Web testing 8

syncing record/replay TrueLogs 10

T

test results
Web testing 26

test scripts
visual analysis with TrueLog Explorer 7
Web testing 7

title verification 14
TrueLog

analyzing test runs 8
comparing Web record and replay 10
finding errors in 9

TrueLog Explorer
XML 13

TrueLog On Error
Web testing 26, 27

Try Script runs
for Web testing 6

Tuxedo 28

U

user data
customizing 11

user profiles
Web testing 20

V

variables
input attributes 11

verification checks
automatically generating during recording 14
digest verification 14
enabling during replay 15
overview 13
title verification 14

verification workload model 23
verifying content

Web testing 15

W

Web 2.0 testing
sample AJAX-based application 4

Web testing
adjusting workload 22
analyzing test runs 8
analyzing test scripts 7
browser types 20
comparing record and replay TrueLogs 10
content verification 15
creating a test script 6
customizing test scripts 10
customizing user data 11
defining a project 5
defining a workload 23
finding errors in TrueLog 9
monitoring a specific agent 25
monitoring a virtual user 25
monitoring all agent computers 24
monitoring tests 24
monitoriong performance with a graph 25
overview page 10
overview reports 28, 29
page statistics 9
Performance Explorer 27
recording a test script 6
running tests 24
summary reports 8
syncing record/replay TrueLogs 10
test results 26
TrueLog On Error 26, 27
Try Script runs 6
user profiles 20
virtual user summary reports 8
visual analysis with TrueLog Explorer 7
workload models 22

workload
Web testing 22

workload models
Web testing 22

X

XML
pretty format 13

32 | Index

	Contents
	Web Load Testing Tutorial
	Web Load Testing Overview
	Sample Web 2.0 Application

	Defining a Web Load Test Project
	Creating a Test Script
	Recording a Test Script
	Try Script Runs
	Trying Out Your Test Script

	Analyzing Test Scripts
	Visual Analysis with TrueLog Explorer
	Analyzing a Test Run

	Viewing a Virtual User Summary Report
	Finding Errors in a TrueLog
	Viewing Page Statistics
	Viewing an Overview Page

	Comparing Record and Replay TrueLogs
	Synchronizing Record and Replay TrueLogs

	Customizing Test Scripts
	User-Input Data Customization
	Customizing HTML User Data With a New Parameter
	AJAX and Script Customization
	Enabling Pretty-Formatted JSON and XML Viewing in TrueLog Explorer
	Enabling Pretty-Formatted JSON and XML Viewing in Silk Performer

	Verifications
	Automatically Generating Verifications During Recording
	Title Verification
	Digest Verification
	Enabling Verification Checks During Replay
	Inserting Content-Verification Functions

	Parsing Functions
	HTML Content Parsing
	Response Data Parsing

	Session Handling
	Customized Session Handling
	When to Use Customized Session Handling
	Customizing Session Handling

	User Profiles
	Adding a Profile
	Configuring Browser Settings
	Configuring Browser-Simulation Settings

	Configuring Monitoring
	Defining Monitoring Options

	Adjusting Workload
	Workload Models
	Defining Workload

	Running Load Tests
	Running a Load Test
	Monitoring Load Tests
	Monitoring Agent Computers During load Testing
	Monitoring a Specific Agent During load Testing
	Monitoring a Specific Virtual User During load Testing

	Using a Graph to Monitor Server Performance

	Exploring Test Results
	TrueLog On Error
	Viewing Errors in TrueLog Explorer

	Performance Explorer Overview
	Overview Report Measurements
	Viewing Overview Reports

