Silk Performer 18.5

Java Framework Help



Micro Focus

The Lawn

22-30 Old Bath Road

Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Silk Performer are trademarks or registered
trademarks of Micro Focus IP Development Limited or its subsidiaries or affiliated
companies in the United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2017-10-17



Contents

TOOIS anNd SAMPIES .o ———————— 4
Ta el [0 [o1 o] o TP PPPRURPPR 4
[ 0¥/ 1o [=To I [ To ] PP PPPUPUPPPTN 5

Silk Performer .NET EXPIOIEI ettt e e e 5
Silk Performer Visual Studio EXtENSION ..o 5
Silk Performer Java EXPIOrer ... 5
Silk Performer WOrkbencCh ... 6
Sample Applications for testing Java and .NET ... 6
PUDIIC WED SEIVICES ot 6
NET MeSSsage SamPle e 7
.NET Explorer Remoting Sample ... 7
Java RMI SamPleS oo a e 7
SAMPIE TESE PrOJECIS oottt e e e e e e e e e eeaaaaeeas 8
NET SAMPIE PrOJECES ettt e e e e e e e e e e e 8
Java SAMPIE PrOJECES ...ttt aa e e 9

Testing Java COMPONENTS  .ooiiiiiiiiiiiiieie s e e e e e e e e e e e e e e eeeeesaannaa 10
Testing Java COmMPONENtS OVEIVIEW  ...oiiiiiiiiiiiiiiite ettt e e e e e e e e e e eneaeereeeeeeas 10
WOrking With JDK VEISIONS oottt e e e e e e e e e s e beeee s 10
Java Framework APPrOACKH ..ot e e e e e e e 10
PlIUG-IN TOF ECHPSE ettt e e e e e e e e e e e e s ebb b e e eeeas 10
Java EXPIOrEr OVEIVIEW .ottt e ettt et e e e e e e e ettt e e e e e e e e e e e nnnbbebeeeeaaaaeas 11

Java FrameWOrK ..o 12
Java FrameWOork OVEIVIEW  ....ieiiiiiiieii ettt et e e e e e e s sttt e e e e e e e e e e e s e annbbsaeeeeaaaaens 12
What You Can Do With Java Framework ... 12
Java Framework ArChITECIUIE ...t e e e e e e e e 13
ANAtOMY Of @ JAVA USEI oottt e ettt e e e e e e e e e e nnebeneees 14
Runtime-to-Java COMMUNICALION .. e e e e e e e e 15
Java-to-Runtime COMMUNICALION  ......uiiiiiiiiiieee et e e e e e e e e e e 16
Programming With Java FrameWwork ... 17
Visual Programming With Java EXPIOrer ... 17
Structure of a Java Framework ProjeCt  ......oooiiiii i 17

User Group DefiNitiONS  ....uuiiiiiiiiiieee et 18
Initialization TraNSACLION  .....eiiiiiiie e e e e e e 18
Java Method CallsS ... 19
Parameterized Java Method Calls ... 19
ENd TranSACHION et e e e e e e e e e e e e e 20
F e \VZ= 1 (o =To I U 7= o = PP TP PP PPPUPRPTP 21
Static Java Method CallS  .....eeeieeeieeeee s 21
Distinguishing Java MethOdS  ......ooiiiiiiiii e 22
Instantiating Java ODJECES .o 23
Java Objects as Return Parameters ... 23
Exception Handling of Java Method Calls ... 25
JAVA TS ClASS  oiiiiiiiiiii ittt et e e oottt ettt e e e e e e e s e bbbt e e e e e e e e e e e e aane 25
Java TeSt Class OVEIVIEW  ...eeiiiiiiiii ittt ettt e e e e e e e e e e e e as 25
/[T o 0] o= = P T TP PPPRPPRPPP 26
(000§ 511 g1 (o1 (o] SR TP PP ST UPUPPPPPPPPPRRPPPPRIN 26
Example Test Method ..o 26
Java Class SIlKPEIfOIMEr ... e e e e e e e e e 27
NV @] o] i o] oIS =] 1] o PP TP TR TSUPPPP 27
Java User Implementation (deprecated) ... 28

Contents | 3



4

Tools and Samples

Explains the tools, sample applications and test projects that Silk Performer provides for testing Java
and .NET.

Introduction

This introduction serves as a high-level overview of the different test approaches and tools, including Java
Explorer, Java Framework, .NET Explorer, and .NET Framework, that are offered by Silk Performer Service
Oriented Architecture (SOA) Edition.

Silk Performer SOA Edition Licensing

Each Silk Performer installation offers the functionality required to test .NET and Java components. Access
to Java and .NET component testing functionality is however only enabled through Silk Performer licensing
options. A Silk Performer SOA Edition license is required to enable access to component testing
functionality. Users may or may not additionally have a full Silk Performer license.

What You Can Test With Silk Performer SOA Edition
With Silk Performer SOA Edition you can thoroughly test various remote component models, including:

*  Web Services

« .NET Remoting Objects

« Enterprise JavaBeans (EJB)

« Java RMI Objects

* General GUI-less Java and .NET components

Unlike standard unit testing tools, which can only evaluate the functionality of a remote component when a
single user accesses it, Silk Performer SOA Edition can test components under concurrent access by up to
five virtual users, thereby emulating realistic server conditions. With a full Silk Performer license, the
number of virtual users can be scaled even higher. In addition to testing the functionality of remote
components, Silk Performer SOA Edition also verifies the performance and interoperability of components.

Silk Performer SOA Edition assists you in automating your remote components by:

» Facilitating the development of test drivers for your remote components

e Supporting the automated execution of test drivers under various conditions, including functional test
scenarios and concurrency test scenarios

« Delivering quality and performance measures for tested components
Silk Performer offers the following approaches to creating test clients for remote components:

* Visually, without programming, through Java Explorer and .NET Explorer
« Using an IDE (Microsoft Visual Studio)

e Writing Java code

* Recording an existing client

* Importing JUnit or NUnit testing frameworks

* Importing Java classes

« Importing .NET classes

Tools and Samples



Provided Tools

Offers an overview of each of the tools provided with Silk Performer for testing Java and .NET.

Silk Performer .NET Explorer

Silk Performer .NET Explorer, which was developed using .NET, enables you to test Web Services, .NET
Remoting objects, and other GUI-less .NET objects. .NET Explorer allows you to define and execute
complete test scenarios with different test cases without requiring manual programming; everything is done
visually through point and click operations. Test scripts are visual and easy to understand, even for staff
members who are not familiar with .NET programming languages.

Test scenarios created with .NET Explorer can be exported to Silk Performer for immediate reuse in
concurrency and load testing, and to Microsoft Visual Studio for further customization.

Silk Performer Visual Studio Extension

The Silk Performer Visual Studio extension allows you to implement test drivers in Microsoft Visual Studio
that are compatible with Silk Performer. Such test drivers can be augmented with Silk Performer features
that facilitate test organization, verification, performance measurement, test data generation, and reporting.

Tests created with the extension can be run either within Microsoft Visual Studio, with full access to Silk
Performer's functionality, or within Silk Performer, for concurrency and load testing scenarios.

The extension offers the following features:

« Writing test code in any of the main .NET languages (C# or VB.NET).

« Testing Web services / .NET Remoting objects and redirecting HTTP traffic over the Silk Performer Web
engine to take advantage of features such as modem simulation and IP-address multiplexing. SOAP
envelopes can also be explored using TrueLog Explorer.

« Defining virtual users and their transactions through .NET custom attributes. A BDL script is generated
automatically based on the custom attributes that have been applied to classes/methods.

« Running TryScript tests from within Microsoft Visual Studio with the ability to watch virtual user output in
a tool window within Microsoft Visual Studio.

» Exploring the results of Try Scripts.

.NET Resources

e http://msdn.microsoft.com/net

Silk Performer Java Explorer

Silk PerformerJava Explorer, which was developed using Java, enables you to test Web Services,
Enterprise JavaBeans (EJB), RMI objects, and other GUI-less Java objects. Java Explorer allows you to
define and execute complete test scenarios with multiple test cases without requiring manual programming.
Everything can be done visually via point and click operations. Test scripts are visual and easy to
understand, even for personnel who are not familiar with Java programming.

Test scenarios created with Java Explorer can be exported to Silk Performer for immediate reuse in
concurrency and load testing.

i Note: Java Explorer is only compatible with JDK versions 1.2 and later (v1.4 or later recommended).

Tools and Samples | 5


http://msdn.microsoft.com/net

6

Java Resources

« http://java.sun.com
e http://www.javaworld.com

Silk Performer Workbench

Remote component tests that are developed and executed using Java Explorer or .NET Explorer can be
executed within Silk Performer Workbench. Silk Performer is an integrated test environment that serves as
a central console for creating, executing, controlling and analyzing complex testing scenarios. Java
Explorer and .NET Explorer visual test scripts can be exported to Silk Performer by creating Silk Performer
Java Framework and .NET Framework projects. While Java Explorer and .NET Explorer serve as test-beds
for functional test scenarios, Silk Performer can be used to run the same test scripts in more complex
scenarios for concurrency and load testing.

In the same way that Silk Performer is integrated with Java Explorer and .NET Explorer, Silk Performer is
also integrated with Silk Performer's Visual Studio .NET Add-On. Test clients created in Microsoft Visual
Studio using Silk Performer's Visual Studio .NET Add-On functionality can easily be exported to Silk
Performer for concurrency and load testing.

Note: Because there is such a variety of Java development tools available, a Java tool plug-in is not
feasible. Instead, Silk Performer offers features that assist Java developers, such as syntax
highlighting for Java and the ability to run the Java complier from Silk Performer Workbench.

In addition to the integration of Silk Performer with .NET Explorer, Java Explorer, and Microsoft Visual
Studio, you can use Silk Performer to write custom Java and .NET based test clients using Silk Performer's
powerful Java and .NET Framework integrations.

The tight integration of Java and .NET as scripting environments for Silk Performer test clients allows you
to reuse existing unit tests developed with JUnit and NUnit by embedding them into Silk Performer's
framework architecture. To begin, launch Silk Performer and create a new Java or .NET Framework-based
project.

In addition to creating test clients visually and manually, Silk Performer also allows you to create test clients
by recording the interactions of existing clients, or by importing JUnit test frameworks or existing Java/.NET
classes. A recorded test client precisely mimics the interactions of a real client.

i Note: The recording of test clients is only supported for Web Services clients.

To create a Web Service test client based on the recording of an existing Web Service client, launch Silk
Performer and create a new project of application type Web Services/XML/SOAP.

Sample Applications for testing Java and .NET

The sample applications provided with Silk Performer enable you to experiment with Silk Performer's
component-testing functionality.

Sample applications for the following component models are provided:

* Web Services
« .NET Remoting
e Java RMI

Public Web Services

Several Web Services are hosted on publicly accessible demonstration servers:

« http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx

Tools and Samples


http://java.sun.com
http://www.javaworld.com
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx

» http://demo.borland.com/OrderWebServiceEx/OrderService.asmx
* http://demo.borland.com/OrderWebService/OrderService.asmx
* http://demo.borland.com/AspNetDataTypes/DataTypes.asmx

Note: OrderWebService provides the same functionality as OrderWebServiceEx, however it makes
use of SOAP headers in transporting session information, which is not recommended as a starting
point for Java Explorer.

.NET Message Sample

The .NET Message Sample provides a .NET sample application that utilizes various .NET technologies:

*  Web Services
e ASP.NET applications communicating with Web Services
* WinForms applications communicating with Web Services and directly with .NET Remoting objects.

To access the .NET Message Sample:

If you have Silk Performer SOA Edition: Go to Start > Programs > Silk > Silk Performer SOA Edition
18.5 > Sample Applications > .NET Framework Samples .

If you have Silk Performer Enterprise Edition: Go to Start > Programs > Silk > Silk Performer 18.5 >
Sample Applications > .NET Framework Samples .

.NET Explorer Remoting Sample

The .NET Remoting sample application can be used in .NET Explorer for the testing of .NET Remoting.
To access the .NET Explorer Remoting Sample:

If you have Silk Performer SOA Edition: Go to Start > Programs > Silk > Silk Performer SOA Edition
18.5 > Sample Applications > .NET Explorer Samples > .NET Explorer Remoting Sample .

If you have Silk Performer Enterprise Edition: Go to Start > Programs > Silk > Silk Performer 18.5 >
Sample Applications > .NET Explorer Samples > .NET Explorer Remoting Sample .

DLL reference for .NET Explorer: <public user documents>\Silk Performeril8.5\SampleApps
\DOTNET\RemotingSamples\RemotingLib\bin\debug\RemotingLib.dll.

Java RMI Samples

Two Java RMI sample applications are included:

* A simple RMI sample application that is used in conjunction with the sample Java Framework project
(<public user documents>\Silk Performer18.5\Samples\JavaFramework\RMI).

To start the ServiceHello RMI Server, go to: Start > Programs > Silk > Silk Performer 18.5 > Sample
Applications > Java Samples > RMI Sample - SayHello.

« A more complex RMI sample that uses RMI over IIOP is also available. For details on setting up this
sample, go to: Start > Programs > Silk > Silk Performer 18.5 > Sample Applications > Java
Samples > Product Manager. This sample can be used with the sample test project that is available at
<public user documents>\Silk Performerl8.5\SampleApps\RMILdap.

Java RMI can be achieved using two different protocols, both of which are supported by Java Explorer:

» Java Remote Method Protocol (JRMP)
* RMIl over IIOP

Tools and Samples | 7


http://demo.borland.com/OrderWebServiceEx/OrderService.asmx
http://demo.borland.com/OrderWebService/OrderService.asmx
http://demo.borland.com/AspNetDataTypes/DataTypes.asmx

8

Java Remote Method Protocol (JRMP)

A simple example server can be found at <public user documents>\Silk
Performer18.5\SampleApps\Java.

Launch the batch file LaunchRemoteServer .cmd to start the sample server. Then use the Java Explorer
Start Here Wizard to begin testing RMI objects. Select RMI and click Next.

The next dialog asks for the RMI registry settings and a classpath where the RMI interfaces for the client
can be found. Here are the settings to be used for this example:

Host: localhost
Port: 1099

Client Stub Class: <public user documents>\Silk Performerl8.5\SampleApps\Java\Lib
\sampleRmi . jar.

RMI over I1OP

A simple example server can be found at: <public user documents>\Silk
Performerl8._5\SampleApps\Java.

Launch the batch file LaunchRemoteServerRmiOverliop.cmd to start the sample server.

Use the Java Explorer Start Here Wizard to begin testing RMI objects. Select Enterprise
JavaBeans/RMI over 110P and click Next.

The next step asks for the JNDI settings and a classpath where the RMI interfaces for the client can be
found. Here are the settings to be provided for this example:

Server: Sun J2EE Server
Factory: com.sun. jndi.cosnaming.CNCtxFactory
Provider URL: 1iop://localhost:1050

Stub Class: Click Browse and add the following jar file: <public user documents>\Silk
Performer18._5\SampleApps\Java\Lib\sampleRmiOverliop.jar.

Sample Test Projects

The following sample projects are included with Silk Performer. To open a sample test project, open Silk
Performer and create a new project. The Workflow - Outline Project dialog opens. Select the application
type Samples.

NET Sample Projects

.NET Remoting

This sample project implements a simple .NET Remoting client using the Silk Performer .NET Framework.
The .NET Remoting test client, written in C#, comes with a complete sample .NET Remoting server.

Web Services

This sample shows you how to test SOAP Web Services with the Silk Performer .NET Framework. The
sample project implements a simple Web Services client. The Web Services test client, written in C#,
accesses the publicly available demo Web Service at: http://demo.borland.com/BorlandSampleService/
BorlandSampleService.asmx

Tools and Samples


http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx

Java Sample Projects

JDBC

This sample project implements a simple JDBC client using the Silk Performer Java Framework. The JDBC
test client connects to the Oracle demo user scott using Oracle's "thin" JDBC driver. You must configure
connection settings in the databaseUser .bdf BDL script to run the script in your environment. The
sample accesses the EMP Oracle demo table.

RMI/NOP

This sample project implements a Java RMI client using the Silk Performer Java Framework. The test client
uses IIOP as the transport protocol and connects to a RMI server provided as a sample application. For
detailed instructions on setting up this sample project, see <public user documents>\Silk
Performerl8.5\SampleApps\RMILdap\Readme.html.

The Java RMI server can be found at: <public user documents>\Silk
Performerl8.5\SampleApps\RMILdap.

RMI

This sample project implements a Java RMI client using the Silk Performer Java Framework. The test client
connects to a RMI server provided as a sample application. For detailed instructions on setting up this
sample project, see <public user documents>\Silk Performerl8.5\SampleApps\RMILdap
\Readme._html.

To access the Java RMI server:

If you have Silk Performer SOA Edition: Go to Start > Programs > Silk > Silk Performer SOA Edition
18.5 > Sample Applications > Java Samples > RMI Sample - SayHello .

If you have Silk Performer Enterprise Edition: Go to Start > Programs > Silk > Silk Performer 18.5 >
Sample Applications > Java Samples > RMI Sample - SayHello.

Tools and Samples | 9



Testing Java Components

The Java Framework encourages efficiency and tighter integration between QA and development by
enabling developers and QA personnel to coordinate their development and testing efforts while working
entirely within their specialized environments.

Testing Java Components Overview

With the Java Framework developers work exclusively in their Java programming environments while QA
staff work exclusively in Silk Performer. There is no need for staff to learn new tools.

Java developers typically build applications and then hand them off to QA for testing. QA personnel are
then tasked with testing Java applications end-to-end and component-by-component. Typically QA
personnel are not given clients (test drivers) to test applications and they typically are not able to code such
test clients themselves. This is where Java Explorer and the Java Framework are effective. Java Explorer
offers a means of visually scripting test clients. In effect Java Explorer acts like a test client and can be
used to interact with the application under test.

All Java components can be tested with Java Explorer, but the focus lies on the following three Java
components: Enterprise JavaBeans (EJBs), Web Services, and Remote Method Invocation (RMI).

The Java Framework enables users to run stand-alone Java test code, to use other tools to invoke Java
test code, or to execute test code from an exported standalone console.

Working With JDK Versions

Because multiple Java Developer Kit (JDK) versions are available, you need to test components against all
versions. Both Silk Performer's Java Explorer and Java Framework support testing components of various
vendors and of different JDK versions.

Java Framework Approach

The Java Framework approach to component testing is ideal for developers and advanced QA personnel
who are not familiar with BDL (Benchmark Description Language), but are comfortable working with a Java
development tool. With this approach, Java code is used by the QA department to invoke newly created
methods from Silk Performer.

You can generate Java Framework BDL code using the Silk Performer JUnit import tool. The import tool
produces BDL code that can invoke customer test code or customer JUnit testcode. It can also be used to
directly invoke a client API.

Plug-In for Eclipse

Silk Performer offers a plug-in for Eclipse developers that automatically generates all required BDL code
from within the Eclipse SDK. Developers simply write their code in Eclipse and implement certain methods
for integrating with the Silk Performer Java Framework. The plug-in then creates all required BDL scripting
that the QA department needs to invoke newly created methods from Silk Performer. The plug-in for
Eclipse enables developers and QA personnel to better coordinate their efforts, consolidating test assets

10 | Testing Java Components



and enabling both testers and developers to work within the environments with which they are most
comfortable.

Java Explorer Overview

Java Explorer is a GUI-driven tool that is well suited for QA personnel who are proficient with Silk Performer
in facilitating analysis of Java components and thereby creating Silk Performer projects, test case
specifications, and scripts from which tests can be run.

Developers who are proficient with Java may also find Java Explorer helpful for quickly generating basic
test scripts that can subsequently be brought into a development tool for advanced modification.

Java Explorer emulates Java clients. When working with Web services, Java Explorer achieves this through
the use of proxies, which are conversion encoding/decoding modules between the network and client.
Proxies communicate with servers by converting function calls into SOAP (XML) traffic, which is transferred
through HTTP. Requests are decoded on the remote computer where the component resides. The XML
request is then decoded into a real function call, and the function call is executed on the remote server.
The results are encoded into XML and sent back to Java Explorer through SOAP, where they are decoded
and presented to the user. What you see as the return result of the method call is exactly what the server
has sent over the wire through XML.

Testing Java Components | 11



12

Java Framework

As a powerful extension to the Silk Performer Benchmark Description Language, the Java Framework
enables you to implement user behavior in Java. When testing an existing Java application you do not need
to spend much time creating test scripts. The only effort required is embedding existing Java source code
into the framework.

Java Framework Overview

To generate a benchmark executable and run a load test with the help of the Java Framework, two source
files are normally required:

e A Java class that implements the behavior of a virtual user
« A Silk Performer test script that invokes Java method calls

Both source files need to have the same name, with extensions indicating the file types (. bdf for the Silk
Performer test script and . Java for the Java source file).

With Silk Performer it is possible to call Java functions on any Java object from a BDL context with any
number and type of parameter and return parameter. When a Java function returns a complex object, a
handle for the Java object is returned in its place. The handle can be passed to other function calls as an
input parameter, or public methods may be invoked on the object. There is also support for static methods,
cast operations, and exception handling.

Java-based tests are driven by BDL scripts. BDL implements a set of functions that enable you to:

e Set JVM options

* Load aJVM

* Load any Java classes

* Invoke methods on Java classes

The silk.performer package provides the Si lkPerformer class, which enables the Java
implementation to communicate with the runtime system. It implements a set of testing methods that are
also available in BDL.

What You Can Do With Java Framework

The Silk Performer Java Framework allows you to do the following:

« Use the Silk Performer Java Recorder to record/replay Java-based executables. The Java recorder
generates Java Framework projects (BDL code plus recorded Java Framework scripts). Record/replay
scripts can be compared using TrueLog Explorer.

* Reuse existing Java test code for load testing using one of the following methods:

« By generating Java Framework BDL code using the Silk Performer JUnit import tool. The import tool
produces BDL code that can invoke customer test code or customer JUnit test code. It can also
directly invoke a client API.

* By calling Java test code from a Java class that is in turn controlled by a Java Framework BDL script.

« By calling Java test code directly from BDL.

» Create new Java test code:

« Test code can be created visually using Java Explorer. Code can then be exported to Silk Performer.
Java Explorer produces BDL code and Java Framework script.

Java Framework



* Manual coding in a third-party Java IDE. Code can then be used to create a Java Framework project
using one of the three approaches listed above.

» Manual coding via Silk Performer to create Java test code. Silk Performer offers a Java compiler,
syntax highlighting, and other helpful features. Everything except recorded scripts can be scripted
manually.

Java Framework Architecture

The following figure illustrates the architecture of the Silk Performer Java Framework.
The figure is divided into three main sections:

« The upper box illustrates supported technologies and test types.
e The middle box illustrates layers of Java Framework code.
* The lower box illustrates available tools.

Supported Technologies and Test Types (upper box in figure) In one dimension, the upper box shows some
of the supported technologies. The second dimension illustrates the areas of testing in which Java
Framework can be used.

Layers of Java Framework Code (middle box in figure) The middle box shows the layers of Java Framework
code and its connection to various client APIs. The Java Framework API is the “membrane” between BDL
code and Java code, symbolized by arrows in the figure. Some of the arrows point in one direction (see
“Runtime-to-Java Communication”). Some of the arrows show that communication is possible from Java to
the runtime (i.e., Java-to-Runtime communication ).

Available Tools (lower box in figure below) In one dimension, the lower box shows Silk Performer tools for
generating Java Framework code. The second dimension indicates if code generation is done with the help
of Silk Performer tools or 3rd party tools.

In the figure below, pink represents Silk Performer technologies; green represents third party tools; purple
indicates customer code; and blue represents supported technolgies.

Java Framework | 13



Functional Testing
i
Monitoring /;
o
Server L oadtesting ' i
i i
)
|
o o L '
- < = o £
= =] = o
w (7] (4 = &
Client API
E Customer T E
k- E - TestDriver E [
b
E E % Java Framework W =
g2 & & | ScriptClass o3
4 4 L ] L 3 4 4+
¥ ¥ ¥ | | |
Java Framework BDL Code
Mani.lal scriptinfg
Javra Iéramewerl(
Prejee:t Templates """"'? """""" Ird
(S H
s ; Party
55 i i), : . IDE’s
3 i Explorer; SP Java/Junit !
Ty ' Import Tool | i
|
SilkPerformer i
Workhench

Anatomy of a Java User

The below diagram illustrates the components that are required to run a virtual Java user. A BDL script is
executed by Silk Performer. Using the framework, Java classes can be plugged into any BDL script. The
Java Virtual Machine (JVM) is loaded dynamically into the run-time.

14 | Java Framework



Vinual User

BDL Script

Java Class

SilkPerfomrmer
Virtual Machine

Run-Time Java

Runtime-to-Java Communication

Silk Performer provides the following functions for invoking the methods of a Java class from within a test
script:

« JavaSetOption: Sets options for the Java Virtual Machine.

« JavaCreateJavaVM: Initializes and starts the Java Virtual Machine (JVM).

» JavalLoadObiject: Instantiates a Java object and returns a handle on it.

« JavaloadString: Instantiates a Java string object and returns a handle on it.

« JavaCallMethod: Invokes either a dynamic or a static Java method.

« JavaFreeObject: Frees a Java object.

« JavaCastObiject: Casts an object to a type of your choice.

» JavaGetBoolean: Retrieves the Boolean return value.

» JavaGetFloat: Retrieves the float return value.

» JavaGetNumber: Retrieves the int return value.

« JavaGetObiject: Retrieves a handle on the object returned by the last call of JavaCal IMethod on the
specified object or class.

« JavaGetString: Retrieves the string return value

« JavaGetUserObject: Returns the handle on the JavaUser object loaded by JavaUser Init command.

« JavaSetChar: Sets a char parameter for the next function or constructor call.

» JavaGetChar: Retrieves the ordinal number of the char return value.

« JavaSetBoolean: Sets a Boolean parameter for the next function or constructor call.

« JavaSetFloat: Sets a float parameter for the next function or constructor call.

« JavaSetNumber: Sets a numeric parameter for the next function or constructor call.

« JavaSetObject: Sets an object parameter for the next function or constructor call.

« JavaSetString: Sets a string parameter for the next function or constructor call.

« JavaSetByteArray: Convenience function derived from JavaSetString function.

» JavaSetCharArray: Convenience function derived from JavaSetString function.

« JavaRegisterException: Registers a Java exception string under a custom error number.

« JavaUnregisterErrorNumber: Unregisters an exception message.

» JavaGetlLastException: Retrieves the last exception message.

Original Java Framework functions:

Java Framework | 15



16

« JavaUserlnit: Calls the JavaUser Init method of the Java class that implements the behavior of the
virtual user.

« JavaUserRun: Calls the JavaUserRun method of the Java class that implements the behavior of the
virtual user.

« JavaUserMethod: Calls an additional method of the Java class that implements the behavior of the
virtual user.

« JavaUserShutdown: Calls the JavaUserShutdown method of the Java class that implements the
behavior of the virtual user.

e JUnitCallMethod: Invokes a JUnit conform method of a class derived from
Jjunit.framework.TestCase. Prepares the method execution by invoking the setUp() method and
finishes the test by invoking the tearDown() method.

Java-to-Runtime Communication

Silk Performer Class

The SilkPerformer class is used to access runtime information and to forward user information to the
runtime. Here is the functionality offered by the Si lkPerformer class:

» Measure functions for timers and counters

* Synchronization of users (checkpoint = rendezvous) (global functions)

« Extended file functions (file load functions)

e Output functions for logging and errors (Print, Write and Rep functions)

« Global attribute get and set functions accessible from both Java and BDL (AttributeSet, AttributeGet
functions)

« Test functions (Get functions)

* Random functions (Rnd functions)

« Date time format functions (format functions

Class Files

The silk.performer package contains classes that enable the Java user implementation to
communicate with the Silk Performer runtime environment. The class files are bundled in the
JavaUserFramework.zip archive. See the classfi les folder in the installation home directory.

For detailed information on all Java Framework classes and methods, view the Java documentation
(HTML).

* SilkPerformer class
* FileEx

¢ MeasureCounter

e MeasureTimer

e PrintStream

« ReflectionUtil

Java Framework Template

A reference implementation of a BDL script called NewJavaFramework.bdf is included.

Sample Java Class

A sample Java class belonging to a BDL script called NewJavaFramework . java is included.

Java Framework



Sample Applications

Three online samples are available. The sample files and related documentation are available at: <public
user documents>\Silk Performerl8.5\Samples\JavaFramework\.

« Java Framework sample: This sample demonstrates the basic usage of the Java Framework API.

e Java RMI and JDBC: These samples demonstrate how to use the Java Framework API for RMI and
JDBC replay.

e BankSample: This sample demonstrates some advanced features of the Java Framework API.

Installation Requirements

A Java Virtual Machine compatible with Sun Microsystem’s JDK1.1 or JDK1.2 (Java Platform 2) must be
installed on each agent machine. A Sun Java Runtime Engine is available in the Extras section of the Silk
Performer installation package. Note however that a full installation of a Java environment is recommended
so that created Java test classes can be compiled. (See http://java.sun.com/products for details)

Using Sun Microsystem’s JVM1.2, check your PATH environment settings for. . ./jre/bin/classic
or .../jre/bin/hotspot.

Programming With Java Framework
Explains how to implement a Java Framework test project using Silk Performer.

1. Add a new Java Framework script to your project. Within Silk Performer, choose File > New > Java
Framework Scripts (.bdf/.java).

2. Enter a name for the Java class, for example Testclass. Then Save the .bdf and . java templates.

3. Open the Java class by double clicking it in the Project tree menu. Implement the desired Java test
code in one or more member functions of the Java class. For example, public void doFoo()
throws Si lkPerformerException. If you prefer, you can open and modify the Java class in an IDE
instead. Note that Java Explorer offers powerful scripting functionality.

4. Modify the BDF file and make sure that the methods of the Java class are called with correct
parameters. Use JavaSet<Datatype> functions to set the function parameters. Use
JavaGet<Datatype> functions to retrieve return values.

5. Open Profile settings and configure a Java Virtual Machine for the test run. If the Java class requires

additional Java archives, add them to the classpath. The project directory is added to the classpath
automatically and does not have to be configured explicitly.

6. Invoke a Try Script run. The Java and BDL script will then be compiled automatically.

Visual Programming With Java Explorer

Java ExplorerRather than scripting test classes by hand, Java Explorer offers a convenient means of
creating projects for the testing of Web Services, Enterprise Java Beans, and remote objects. Any existing
Java Explorer project can be exported to Silk Performer.

Structure of a Java Framework Project

A Java Framework project consists of at least one BDL script. Additionally, a project may contain one or
more Java source files, class files (compiled Java files), and/or JAR files (collections of class files).

The structure of the BDL script follows the standard syntax. It usually consists of an Init transaction, in
which the Java environment is initialized, one or several transactions defining user behavior, and an end
transaction in which the Java environment is deleted. The BDL script is used as a starting point for the Java

Java Framework | 17


http://java.sun.com/products

18

runtime initialization while later in the script. execution of virtual user behavior, or at least part of it, is
transferred to the Java environment. This is done by instantiating Java objects within the VM and invoking
methods on them.

A Java test class template and corresponding test script can automatically be generated by choosing File >
New > Java Framework Scripts (.bdf/.java). A dialog box opens. Enter the name of the Java test class
that is to be generated.

BDL scripts for invoking existing Java test classes and existing JUnit test classes can easily be created
using the Java / JUnit import tool.

User Group Definitions

The users to be simulated are defined in the workload section of the test script. A virtual user is denoted
by the transactions to be called, along with their frequency.

Usually, user behavior implementation is divided into at least three separate parts: initialization, user
actions, and shutdown. Note the user group definition in the BDL sample below:
dcluser
user
JavaUser
transactions
TInit : begin;
TMyJdavaTrans : 1;
TEnd I end;

Here is a BDL sample that includes multiple transactions:

dcluser

user
JavaUser

transactions
TInit : begin;
TMyTransactionl : 5;
TMyTransaction2 : 2;
TMyTransaction3 : 8;
TEnd > end;

Initialization Transaction

The first transaction executed in a test enables virtual machine initialization. The following function calls
must be performed within this transaction:

JavaCreateJavaVM() initializes and starts the Java Virtual Machine.

JavaSetOption() starts the Java Virtual Machine. Several parameters are required, including home
directory, Java version, and classpath. These may be configured in the Java section of the active profile or
scripted by the JavaSetOption command.

JavaloadObject is used to create a Java object. It is necessary to instantiate the class where the Java
test code resides. For example, if the Java test code was implemented in a class called Test. java, the
following method call would instantiate the class and store a handle on it in a global variable. The handle is
used whenever a reference to the test class is required.

hTestObj := JavalLoadObject(''Test™);

If the Java test class calls Si lkPerformer functions, then a reference to the Si lkPerformer context
object must be passed to the testclass. The SilkPerformer context object must be instantiated first, then
the handle on it can be passed to the constructor of the test class by the JavaSetObject command.

hPerf := JavalLoadObject(*silk/performer/SilkPerformer'™);
JavaSetObject(JAVA_STATIC_METHOD, hPerf);

Java Framework



The corresponding code in the test class must be a constructor that takes the Si lkPerformer context
object as a parameter. It makes sense to store the context object as a member variable so that it can be
used by all method calls in the Java test class.

private SilkPerformer SilkPerformer = null;
public Test(SilkPerformer perf)

SilkPerformer = perf;

}

To avoid memory leaks, references to Java objects in BDL should be freed by the JavaFreeObject
command. The handle on the Si lkPerformer context object is only used in the TInit transaction, so it
can be freed at the end of the transaction. Note that only the reference to the object is freed, the Java
object itself remains alive as long as there are Java references to it. The handle on the instantiated test
object is needed throughout the test. It is freed in the TEnd transaction.

JavaFreeObject(hPerf);

Implementation of the initial transaction should resemble the following:

var
hTestObj > number;
dcltrans
transaction TInit
var
hPerf : number;
begin
JavaCreateJavavVM(Q);

hPerf := JavalLoadObject(*'silk/performer/SilkPerformer™);
JavaSetObject(JAVA_STATIC_METHOD, hPerf);
hTestObj := JavalLoadObject('Test');
JavaFreeObject(hPerf);

end TInit;

Java Method Calls

The main transactions allow you to define most of the actions that a virtual user is to perform during a test.
These actions are defined in any member method of the Java test class, which is defined in the respective
Java script. To call a test method called doFoo for example, the main transaction in the test script would
contain the following function call:

JavaCal IMethod(hTestObj, "testFoo™) calls the testFoo method of the Java test class that is
defined in the respective Java source file, for example Test. java.

Here is an example TMyJavaTrans transaction:

dcltrans
transaction TMyJdavaTrans
begin
JavaCal IMethod(hTestObj, '"doFoo'™);
end TMyJavaTrans;

Note: To create a custom timer measure for a Java or JUnit method call, specify the timer name as
the third optional parameter of the respective JavaCal IMethod or JUnitCal IMethod command.

Parameterized Java Method Calls

As long as test code is parameterized in the Java test class, it may be sufficient to call simple Java
methods that do not take parameters or have return values. Often however it is desirable to customize test
code in BDL and execute it in Java. Attribute functions can be used to pass parameters from BDL to Java

Java Framework | 19



20

code, but with Silk Performer it is also possible to call test methods in a Java test class that expect or return
simple or complex parameters.

To call a test method that takes parameters, use the following function calls prior to invoking the test
method:

« JavaSetNumber( in hObject : number, in nParam : number, in sType : string
optional );

« JavaSetBoolean( in hObject : number, in bParam : boolean );

« JavaSetFloat( in hObject: number, in fParam : float, in sType : string
optional );

« JavaSetObject( in hObject : number, in hParam : number, in sType : string
optional );

+ JavaSetString( in hObject : number, in sParam : string allownull );

« JavaSetChar( in hObject : number, In nParam : number );

« JavaSetByteArray( in hObject : number, in sParam : string allownull, in
nLen : number optional );

« JavaSetCharArray( in hObject : number, in sParam : string allownull, in
nLen : number optional );

The first parameter of the functions must be a valid handle on a Java object, usually the handle on the Java
test object that was retrieved in the TInit transaction.

The data type of the first parameter of the Java test method must match the first usage of the JavaSet*
function, and so on. In parameters are only valid for the following method call on a referenced object.

To call a test method that returns a parameter, use the following function calls after invoking the test
method:

« JavaGetBoolean( in hObject: number ): boolean;

» JavaGetFloat( in hObject: number ): float;

e JavaGetNumber(in hObject: number ): number;

» JavaGetObject( in hObject : number ): number;

« JavaGetString( in hObject : number, out sBuffer : string, in nBufLen : number optional );
« JavaGetChar( in hObject: number ): number;

Here is an example parameterized Java method call:

dcltrans
transaction TMyJdavaTrans
var
fValue : float;
begin

// set the first parameter

JavaSetString(hTestObj, "1™);

// set the second parameter

JavaSetNumber (hTestObj, 1);

// invoke the method

JavaCal IMethod(hTestObj, "doFoo'™);

// retrieve the result

fvalue := JavaGetFloat(hTestObj);

Print(*"doFoo returned "+String(fValue));
end TMyJavaTrans;

End Transaction

The end transaction, executed at the end of a test, implements user termination. This transaction should
free all references on all remaining Java test objects.

JavaFreeObject(in hObject: number) takes a handle on a Java object as a parameter and frees
all references to it.

Java Framework



Here is an example end transaction:

dcltrans
transaction TEnd
begin
JavaFreeObject(hTestObj);
end TEnd;

Advanced Usage

Using a Java Framework script template requires that you have only a basic knowledge of the available
Java Framework functions. If a Java test driver is already available for reuse, then a template project can be
generated in which the Java test class acts as an interface between the original test driver and the Silk
Performer script.

Java test drivers can also be invoked directly from Silk Performer scripts. Normally, you have to update the
BDL script, the Java test class, and the Java test driver. By calling the Java test driver directly, you avoid
having to update the Java test class. To call a test driver directly from BDL, additional syntax is often
required to call static and overloaded methods or to reuse complex objects.

Static Java Method Calls

Static methods can be invoked just like any other method using the JavaCal IMethod function. Since
static methods are defined on a Java class and not on a Java object, the constant JAVA_STATIC_METHOD
must be used in place of a handle to a Java object, for example hTestObj. The second parameter defining
the method name now begins with the fully qualified class name, where the method is defined, then a .’
symbol, and then the method name. A fully qualified class name means that the package that contains the
class must also be specified. Use the /' symbol as a separator between subpackages.

JavaCal IMethod (JAVA_STATIC_METHOD, '“test/mypackage/Test.doFoo') calls the static
doFoo method of the Test class in the mypackage subpackage in the package test.

Like member methods, static methods may also expect and return parameters. To define an input
parameter for a static method, use the following function calls prior to invoking the test method:

« JavaSetNumber (JAVA_STATIC_METHOD, in nParam : number, in sType : string
optional );

« JavaSetBoolean(JAVA _STATIC _METHOD, in bParam : boolean );

o JavaSetFloat(JAVA STATIC _METHOD, in fParam : float, iIn sType : string
optional );

« JavaSetObject(JAVA STATIC_METHOD, in hParam : number, in sType : string
optional );

o JavaSetString(JAVA_STATIC_METHOD, in sParam : string allownull );

o JavaSetChar (JAVA_STATIC_METHOD, in hObject : number, in nParam : number );

« JavaSetByteArray(JAVA STATIC METHOD, in hObject : number, in sParam : string
allownull, in nLen : number optional );

« JavaSetCharArray(JAVA _STATIC_METHOD, in hObject : number, in sParam : string
allownull, In nLen : number optional );

The datatype of the first parameter of the static Java test method must match the first usage of the
JavaSetParameter function, and so on. In parameters are only valid for the following static method call.

To call a static Java method that returns a parameter, use the following function calls after invoking the test
method:

o JavaGetBoolean(JAVA_STATIC_METHOD): boolean;
« JavaGetFloat(JAVA_STATIC_METHOD): float;

Java Framework | 21



22

« JavaGetNumber (JAVA_STATIC_METHOD): number;

« JavaGetObject(JAVA _STATIC_METHOD): number;

o JavaGetString(JAVA_STATIC_METHOD, out sBuffer : string, in nBufLen : number
optional );

« JavaGetChar(JAVA STATIC METHOD, in hObject: number ): number;

Here is an example of a parameterized static Java method call:

dcltrans
transaction TMyStaticJavaTrans
var
fvalue : float;
begin

ThinkTime(0.2);
// set the first parameter
JavaSetString(JAVA_STATIC_METHOD, "1'™);
// set the second parameter
JavaSetNumber (JAVA_STATIC_METHOD, 1, JAVA BYTE);
// invoke the method
JavaCal IMethod(JAVA_STATIC_METHOD, 'test/mypackage/Test.doFoo');
// retrieve the result
fValue := JavaGetFloat(JAVA STATIC METHOD);
Print(""doFoo returned "+String(fvalue));

end TMyStaticJavaTrans;

Additional Samples

<public user documents>\Silk Performerl8.5\Samples\JavaFramework
\JavaFrameworkSample.bdf

<public user documents>\Silk Performerl8.5\Samples\JavaFramework
\JavaFrameworkSample. java

Distinguishing Java Methods

Input parameters specified with JavaSet* functions must exactly match the formal data type of the Java
function. Some BDL functions, such as JavaSetNumber, can be used for more than one Java data type.
The third optional parameter of the BDL function allows you to distinguish between the various Java data
types (in the following example, byte, short, int, and long_.

Java code example

public void doFoo(byte b) {}
public void doFoo(int 1) {}

BDL code example
JavaSetNumber (hTestObj, 127, JAVA_BYTE);
JavaCal IMethod(hTestObj, '"doFoo'™);

If the actual parameters specified by JavaSet* functions and the formal parameters of the Java method
do not match, a java. lang.NoSuchMethodError exception will be thrown.

The following sample shows such a NoSuchMethodError.
Native: 1007 - Java Exception, Native Error 3:
jJava.lang.NoSuchMethodError: doFoo, Test, doFoo((F))

The log output shows that no method named doFoo defined in a class Test could be found with the
method signature doFoo((F)). As abbreviations for the method parameters, standard Java element type
encoding is used.

Java Framework



Additional Samples

<public user documents>\Silk Performerl8.5\Samples\JavaFramework
\JavaFrameworkSample.bdf

<public user documents>\Silk Performerl8.5\Samples\JavaFramework
\JavaFrameworkSample. java

Instantiating Java Objects

The JavalLoadObject function is used to instantiate Java objects, and additionally obtain handles on Java
objects. Such handles can later be used to call methods on objects or they can be used as input
parameters for other method calls. For the JavaLoadObject function, you must provide fully qualified
names of classes to instantiate them as parameters. The '/’ character must be used as a package
separator.

For example, to instantiate a Java object of class java.util _ArrayList in a TMain transaction, the
BDL code looks like this:

transaction TMain

var hList : number;

begin
// invoking constructor of java.util.ArrayList
hList := JavalLoadObject(*java/util/ArrayList™);
// use the object
// ...
// free reference on the object when done
JavaFreeObject(hList);

end TMain;

If a Java class has a constructor that takes parameters, use JavaSet* functions to set those parameters.
In the Java Framework, constructor calls are treated like static method calls, so use the constant
JAVA_STATIC_METHOD instead of an object handle as the first parameter for JavaSet* functions.

For example, to invoke the constructor ArrayList(int initialCapazity) of class
jJava.util _ArrayListin a TMain transaction, the BDL code looks like this:
transaction TMain
var hList : number;
begin
// putting necessary parameters on the stack
JavaSetNumber (JAVA_STATIC_METHOD, 100);
// invoking constructor of java.util_ArraylList
hList := JavalLoadObject(*java/util/ArrayList');
// use the object
// ...
// free reference on the object
JavaFreeObject(hList);
end TMain;

The JavalLoadString function was introduced for convenience; it simplyfies the instantiation of
jJava. lang.String objects.

To create a custom timer measure for a Java object instantiation, specify the timer name as the third
optional parameter of the respective JavaLoadObject or JavalLoadString command.

Java Objects as Return Parameters

Java method calls can return complex Java objects. The JavaGetObject function can be used to retrieve
a handle on such objects. Java objects can also be used as input parameters for other Java method calls.
The JavaSetObject function is used for this purpose.

Java Framework | 23



24

Input parameters specified with the JavaSetOb ject function must exactly match the formal parameters of
the Java method call. If the formal and actual data type do not match exactly, but their assignments are
compatible, then a kind of cast operation must be performed. For example, the formal data type is
jJava.lang.Object. The actual datatype is Java. lang.String. Strings are assignment compatible to
objects.

One time cast operation: The third optional parameter of the JavaSetObject function allows you to
specify the data type that is to be used for the next Java method call.

transaction TMyJdavaTrans

var
hValue :number;
hVector :number;

begin
hvValue := JavaloadString(“'myValue™);
hVector := JavaloadObject(java/Zutil/Vector™);
JavaSetObject(hVector, hValue, "java/lang/Object');
JavaCal IMethod(hVector, "add'™);

end TMyJavaTrans;

A java.util _Vector object expects a java. lang.-Object object as parameter for its add method. So,
as shown above, the Java string hValue must be treated as a java. lang.Object object for the call of
the add method. Therefore the third optional parameter of JavaSetObject is set to java/lang/
Object.

Permanent cast operation: If a Java object that is referenced in BDL code needs to have a specific data
type for several Java method calls, then the JavaCastObject function can be used to permanently
change the data type of the object.

transaction TMyJavaTrans
var
hValue :number;
hVectorl :number;
hVector2 :number;

begin
hVectorl := JavalLoadObject("java/Zutil/Vector');
hVector2 := JavalLoadObject('java/util/Vector');

hValue := JavalLoadString("'myValue™);
JavaCastObject(hValue, "java/lang/Object');

JavaSetObject(hVectorl, hvalue);

JavaSetObject(hVector2, hvalue);

JavaCal IMethod(hVectorl, "add"™);

JavaCal IMethod(hVector2, "add"™);
end TMyJavaTrans;

The actual datatype of a referenced Java object in BDL is slightly different from what is commonly
considered to be the actual datatype of an object in the Java world. If an object is retrieved from a
collection class, then the actual data type of the referenced object equals the formal data type of the
method used to access the object.

transaction TMyJdavaTrans

var
hObj :number;
hVector :number;

begin
hVector := JavaloadObject(*java/Zutil/Vector™);

.. /* some methods filling the Vector */

JavaSetNumber(hVector, 0);
JavaCal IMethod(hVector, "elementAt'™);
hObj := JavaGetObject(hVector);

end TMyJavaTrans;

Java Framework



So in the BDL context, the actual data type of the hObj reference is java/lang/Object, because the
formal return value of the elementAt method is java/lang/Object. The real actual data type of the
Java object in the Java virtual machine is unknown.

You can pass a null object to a Java method call. The following function call can be used to define a null
parameter:

JavaSetObject(hTestObj, JAVA NULL_OBJECT);

Exception Handling of Java Method Calls

Each exception that is not handled by the invoked Java method itself is thrown to the BDL script where a
native Java error is raised. The raised error contains the name of the exception class and the exception
message. However, the raised error does not contain the stack trace of the exception.

The exception stack trace, which belongs to the native Java error, is written to the virtual user log file.
JavaCal IMethod ()

handle = 0x012fdde8
Meth. name = "doFakeScenario"
return value = false

Exception
in my java code

at Test.anotherSubMethod(Test. java:40)

at Test.aSubMethod(Test. java:35)

at Test.doFakeScenario(Test.java:47)

"jJava.lang.RuntimeException: something unexpected thrown

}

Developers often rely on output written to the command console when debugging Java applications. When
doing a Try Script run, all command console output of the Java application is captured as RepMessage
with severity informational. These messages can be viewed in the VU output console and the virtual user
report file.

Advanced Exception Handling

Each exception that is not caught by the Java test driver is thrown to the BDL script, where an error under
facility Native Java (1007) is raised. In most cases the error subcode is 0. To distinguish different Java
exceptions in BDL, error subcodes can be assigned to specific exception messages. Use
JavaRegisterException to assign an error subcode to a specific Java exception. These error
subcodes can be helpful for other BDL functions, such as ErrorAdd, which can be used to change the
severity of errors.

Java Test Class

Within a Silk Performer test script, the Java test class enables you to implement the behavior of virtual
users in Java. You can use all available Java classes to create user behavior that is as realistic as possible;
you can also use a number of Silk Performer functions that can be accessed through an instance of the
SilkPerformer class.

Java Test Class Overview

A Java test class template can be generated automatically by choosing New > Java Framework Scripts
(.bdf/.java). A dialog box opens, requesting the name of the Java test class that is to be generated.

To enable use of Silk Performer functions, the implementation of the Java test class must contain the
following:

Java Framework | 25



26

» Instance of the Si lkPerformer class

« Constructor to enable access to the Silk Performer runtime system

Additionally, there can be any number of member methods containing Java test code. An automatically
generated Java test class will contain one member method, for example:

public void doFoo()

These elements are detailed below:

Required Package

To access several functions that are provided by the Silk Performer runtime system, you must import the
SilkPerformer class. This class is provided in the si lk.performer package. The
JavaUserFramework.zip file, located in the ClassTi les subfolder of the Silk Performer home
directory, is automatically included in the classpath.

Default classpath entries such as javaUserFramework.zip are defined in perfrun.xml in the Silk
Performer home directory.

At the beginning of your Java script, import the Si lkPerformer class using the following statement:
import silk.performer.SilkPerformer;

Class Definition

The Java test class is defined immediately following the import statement. If Test is chosen as the name
of the Java test class, the class definition in the Java script will appear as follows:

public class Test

{
.

Members

As a member of the Java test class, an instance of the Si lkPerformer class enables access to each of
the functions provided by the Silk Performer runtime system. The member is initialized when the
constructor of the Java test class is called.

private SilkPerformer SilkPerformer = null;

Constructor

The constructor of the Java test class is required to assign a Si lkPerformer context object, which is an
instance of the SilkPerformer class, to the previously defined member called Si lkPerformer. The
SilkPerformer context object is passed to the constructor through the constructor’s parameter. The
constructor definition should resemble the following:

public Test(SilkPerformer perf)

SilkPerformer = perf;

}

Example Test Method

Any number of member or static methods may be called within a Silk Performer test script. The methods
may take any basic or complex parameters and have any return values. The only restriction is that arrays of
basic and complex parameters are not supported.

As a member method example, here is the implementation of the doFoo() method:
public void doFoo() throws SilkPerformerException

{

Java Framework



if (SilkPerformer = null)
SilkPerformer.Print(*'"Method \"Foo\" entered.');

SilkPerformer .MeasureStart("'Foo™);

SilkPerformer_MeasureStop("'Foo™);

Note: Any method invoked on the Si lkPerformer context object can throw a Si lkPerformer
exception, for example when the execution of the test is stopped. Si lkPerformerException must
not be caught by the test code. Exceptions must be thrown on the method caller, which is the Silk
Performer runtime.

Java Class SilkPerformer

The SilkPerformer class represents the general class for communication with the test controller. It
allows you to access the Silk Performer runtime system from the test class implementation. A
SilkPerformer object encapsulates methods and information dedicated to a virtual user implemented as
a Java class.

JVM Option Settings

The JavaSetOption(<option id>, <option string>) BDL function can be used to determine options such
as Java version, the Java home directory, and the class path. This function and the allowed option
identifiers are defined in the Java.bdh file.

It is recommended that you set Java options in the profile settings. When Java options are set in both
profile settings and BDL the settings made in BDL take precedence.

Note: When using the Eclipse plug-in, the Java settings defined in Eclipse have precedence over all
other settings.

Option Identifiers

e JAVA_VERSION - (must be defined) Determines the JVM version (1.1.x, 1.2.x, 1.3.x, or 1.4.X).

* JAVA_HOME - (recommended) Determines the installation directory of the JVM that should be used for
replay. Loading of the JVM is independent of the PATH environment, so it is possible to switch between
JVMs without changing the system PATH environment.

e JAVA_CLASSPATH - (recommended) Determines the class path for the JVM. The system class path is
appended by default (-classpath).

e JAVA_DLL - Allows you to specify an individual DLL file path for implementing the JVM that is to be
loaded.

* JAVA_VERBOSE - Enables the verbose option (-verbose) of the JVM. By default, this option is
disabled.

* JAVA_DISABLE_COMPILER - Disables the JIT (Just In Time compiler) of the JVM. By default the JIT is
enabled.

« JAVA CMDLINE_OPTIONS - Enables you to specify any commandline options that are to be passed to
the JVM.

e« JAVA_USE_SYSTEM_CLASSPATH - Determines that the system class path should be appended. By
default it is appended.

e JAVA_DESTROY_JVM_ON_SHUTDOWN - When not set (the default), the current thread is detached from
the JVM upon shutdown, but the JVM is not destroyed. When the option is set, all Java threads are

killed and the JVM is destroyed upon shutdown. Note that to do this, JVMDI must be enabled by setting
-Xdebug -Xnoagent -Djava.compiler=NONE in the commandline options.

Java Framework | 27



* JAVA_SUPPRESS EXCEPTIONS — When not set (the default), Java exceptions raise BDL errors. When
set, Java exceptions are suppressed and must be checked manually using the
JavaGetLastException() command

Examples

e JavaSetOption(JAVA_VERSION, JAVA V14); /[ VM v1.4.x
JavaSetOption(JAVA_HOME, "j2sdk1.4.0_01");
JavaSetOption(JAVA CLASSPATH, "c:/myApplication/classes;c:/myTools/tools.zip");
JavaSetOption(JAVA DISABLE_COMPILER, YES);
JavaSetOption(JAVA_CMDLINE_OPTIONS, ENABLE_JVMDI);

Java User Implementation (deprecated)

This topics lists deprecated technology that is outdated and has been replaced by newer technology.

The Java User methodology simplifies use of the Java Framework. The Java User class works as an
additional layer between BDL and the Java application under test. It defines a JavaUseriInit(), a
JavaUserShutdown () function, and optionally, a JavaUserRun() or custom methods, all with Boolean
return values.

The Init transaction in BDL must call the JavaUser Init() function, the End transaction must call the
JavaUserShutdown() function. Any further BDL transactions may either call the JavaUserRun()
function or one of the custom methods. A Silk Performer object, for enabling Java-to-runtime
Communication, is automatically passed to the Java User class.

e Public JavaUserlImplementation(SilkPerformer perf) // Constructor
e« Public Boolean JavaUserlInit() throws Exception

« Public Boolean JavaUserRun() throws Exception // optional

+ Public Boolean anyMethodName throws Exception // optional

e« Public Boolean JavaUserShutdown() throws Exception

28 | Java Framework



Index

.NET Explorer
.NET message sample 7
.NET Remoting sample 7
overview 4, 5

.NET Framework
.NET message sample 7
.NET Remoting sample 7
ExtensionMicrosoft Visual Studio 5
overview 4

.NET Remoting
sample project 8

.NET Remoting objects
sample 7

.NET testing
provided tools 5

J

Java Explorer
overview 4, 5
RMI sample 7

Java Framework
advanced usage 21
anatomy of a Java user 14
architecture 13
class files 16
deprecated technology 28
Eclipse plug-in 10
end transaction 20

exception handling of Java method calls 25

initialization transaction 18
input parameters 22
installation 16
instantiating Java objects 23
Java class Silk Performer 27
Java exception example 22
Java method calls 19
Java objects as return parameters 23
Java test class
constructor 26
example test method 26
members 26
Java-to-runtime communication 16
JVM option settings 27
overview 4, 10, 12

parameterized Java method calls 19
permanent cast operation 23
project structure 17
RMI sample 7
runtime-to-Java communication 15
sample applications 16
sample project 9
SilkPerformer class 16
static Java method calls 21
testing components with Java Explorer 10
testing JDK versions 10
user group definition 18
visual programming with Java Explorer 17
Java testing
provided tools 5
JDBC test client 9

M

Microsoft Visual Studio, Extension
overview 5

MS Visual Studio, Add-In 4, 6

O

overview 11

R

RMI sample project 9

RMI samples, Java 7

S

SOA Edition
overview 4

W

Web Services
.NET message sample 7
.NET Remoting sample 7

publicly accessible demonstration servers 6

sample project 8

Index | 29



	Contents
	Tools and Samples
	Introduction
	Provided Tools
	Silk Performer .NET Explorer
	Silk Performer Visual Studio Extension
	Silk Performer Java Explorer
	Silk Performer Workbench

	Sample Applications for testing Java and .NET
	Public Web Services
	.NET Message Sample
	.NET Explorer Remoting Sample
	Java RMI Samples

	Sample Test Projects
	.NET Sample Projects
	Java Sample Projects


	Testing Java Components
	Testing Java Components Overview
	Working With JDK Versions
	Java Framework Approach
	Plug-In for Eclipse
	Java Explorer Overview

	Java Framework
	Java Framework Overview
	What You Can Do With Java Framework
	Java Framework Architecture
	Anatomy of a Java User
	Runtime-to-Java Communication
	Java-to-Runtime Communication
	Programming With Java Framework
	Visual Programming With Java Explorer
	Structure of a Java Framework Project
	User Group Definitions
	Initialization Transaction
	Java Method Calls
	Parameterized Java Method Calls
	End Transaction

	Advanced Usage
	Static Java Method Calls
	Distinguishing Java Methods
	Instantiating Java Objects
	Java Objects as Return Parameters
	Exception Handling of Java Method Calls

	Java Test Class
	Java Test Class Overview
	Members
	Constructor
	Example Test Method

	Java Class SilkPerformer
	JVM Option Settings
	Java User Implementation (deprecated)


