
Orbix Mainframe®

CORBA OTS Guide
Version 6.3, July 2009

© 2009 Progress Software Corporation and/or its affiliates or subsidiaries. All rights reserved.
These materials and all Progress® software products are copyrighted and all rights are reserved by Progress
Software Corporation and/or its affiliates or subsidiaries. The information in these materials is subject to change
without notice, and Progress Software Corporation and/or its affiliates or subsidiaries assume no responsibility
for any errors that may appear therein. The references in these materials to specific platforms supported are
subject to change.

Actional, Actional (and design), Allegrix, Allegrix (and design), Apama, Apama (and Design), Artix, Business
Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64, DataDirect Technologies,
DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend,
Empowerment Center, Fathom, IntelliStream, IONA, IONA (and design), Mindreef, Neon, Neon New Era of
Networks, ObjectStore, OpenEdge, Orbix, PeerDirect, Persistence, POSSENET, Powered by Progress, PowerTier,
Progress, Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress Results, Progress
Software Developers Network, Progress Sonic, ProVision, PS Select, SequeLink, Shadow, SOAPscope,
SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration Server, Sonic Software (and design),
SonicSynergy, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and design), and Your
Software, Our Technology-Experience the Connection are registered trademarks of Progress Software
Corporation or one of its affiliates or subsidiaries in the U.S. and/or other countries. AccelEvent, Apama
Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward, DataDirect Spy, DataDirect
SupportLink, FUSE, FUSE Mediation Router, FUSE Message Broker, FUSE Services Framework, Future Proof,
GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess,
Orbacus, Pantero, POSSE, ProDataSet, Progress ESP Event Manager, Progress ESP Event Modeler, Progress
Event Engine, Progress RFID, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct,
Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser, SmartComponent,
SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects,
SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process Manager,
Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic
Workbench, Sonic XML Server, StormGlass, The Brains Behind BAM, WebClient, Who Makes Progress, and Your
World. Your SOA. are trademarks or service marks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and other countries. Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Any other trademarks contained herein
are the property of their respective owners.

Third Party Acknowledgments:
1. The Product incorporates IBM-ICU 2.6 (LIC-255) technology from IBM. Such technology is subject to the
following terms and conditions: Copyright (c) 1995-2009 International Business Machines Corporation and
others. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright
notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization of the copyright
holder. All trademarks and registered trademarks mentioned herein are the property of their respective owners.
2. The Product incorporates IDL Compiler Front End Technology from Sun Microsystems, Inc. Such technology
is subject to the following terms and conditions: Copyright 1992, 1993, 1994 Sun Microsystems, Inc. Printed in
the United States of America. All Rights Reserved. This product is protected by copyright and distributed under
the following license restricting its use. The Interface Definition Language Compiler Front End (CFE) is made
available for your use provided that you include this license and copyright notice on all media and
documentation and the software program in which this product is incorporated in whole or part. You may copy
and extend functionality (but may not remove functionality) of the Interface Definition Language CFE without
charge, but you are not authorized to license or distribute it to anyone else except as part of a product or
program developed by you or with the express written consent of Sun Microsystems, Inc. ("Sun"). The names of
Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used in advertising or publicity
pertaining to distribution of Interface Definition Language CFE as permitted herein. This license is effective until
terminated by Sun for failure to comply with this license. Upon termination, you shall destroy or return all code
and documentation for the Interface Definition Language CFE. The Interface Definition Language CFE may not be
exported outside of the United States without first obtaining the appropriate government approvals.
INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. INTERFACE
DEFINITION LANGUAGE CFE IS PROVIDED WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF
SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORRECTION, MODIFICATION OR
ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIABILITY WITH RESPECT TO
THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY INTERFACE DEFINITION LANGUAGE
CFE OR ANY PART THEREOF. IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE
FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL DAMAGES, EVEN IF
SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
Sun, Sun Microsystems and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc.
SunSoft, Inc. 2550 Garcia Avenue Mountain View, California 94043. NOTE: SunOS, SunSoft, Sun, Solaris, Sun
Microsystems or the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc.

Updated: July 22, 2009

Contents

List of Figures 9

List of Tables 11

Preface 13

Part 1 C++ Programming

Chapter 7 Transaction Service 21
About Transactions 22
Transaction Managers 24

Chapter 8 OMG OTS and X/Open XA Interfaces 27
Transaction Interfaces 28
OTS Interfaces 30
The X/Open XA Interface 32

Chapter 9 Getting Started with Transactions 33
Application Overview 34
Transaction Demarcation 36
Transaction Propagation and POA Policies 39
XA Resource Manager Integration 41
Application-Specific Resources 44
Configuration Issues 45

Chapter 10 Transaction Demarcation and Control 47
The OTS Current Object 48
Direct Transaction Demarcation 56

Chapter 11 Propagation and Transaction Policies 59
5

CONTENTS
Implicit Propagation Policies 60
Shared and Unshared Transactions 61
Policy Meanings 62
Example Use of an OTSPolicy 65
Example Use of a NonTxTargetPolicy 67
Use of the ADAPTS OTSPolicy 70
Orbix-Specific OTSPolicies 72
Migrating from TransactionPolicies 76
Explicit Propagation 78

Chapter 12 Using XA Resource Managers with OTS 81
The XA Interface 82
XA and Multi-Threading 85
Using the Orbix XA Plug-In 87
Associations between Transactions and Connections 89
Association State Diagram 91
Using a Remote Resource Manager 93

Chapter 13 Transaction Management 97
Synchronization Objects 98
Transaction Identity Operations 101
Transaction Status 103
Transaction Relationships 105
Recreating Transactions 107

Chapter 14 Writing Recoverable Resources 109
The Resource Interface 110
Creating and Registering Resource Objects 113
Resource Protocols 117
Responsibilities and Lifecycle of a Resource Object 127

Chapter 15 Interoperability 133
Use of InvocationPolicies 134
Use of the TransactionalObject Interface 135
Interoperability with Orbix 3 OTS Applications 137
Using the Orbix 3 otstf with Orbix Applications 140
 6

CONTENTS
Part 2 Administration

Chapter 17 OTS Plug-Ins and Deployment Options 143
Overview 145
The OTS Plug-In 147
The OTS Lite Plug-In 149
The OTS RRS Transaction Manager 151
The itotstm Transaction Manager Service 152

Chapter 18 OTS RRS Transaction Manager Configuration 157
OTS RRS Transaction Manager Sample Configuration 158
Configuration Summary of OTS RRS Plug-Ins 161

Chapter 19 OTS RRS General Configuration 165

Chapter 20 Configuring the OTS RRS Plug-in 169
Setting up RRS for the OTS RRS Plug-in 170
OTS RRS Plug-In Configuration Items 171

Chapter 21 Using OTS RRS Transaction Manager 177
Preparing the OTS RRS Transaction Manager 178
Starting the OTS RRS Transaction Manager 184
Stopping the OTS RRS Transaction Manager 186

Part 3 Appendices

Appendix 23 Introduction to OTS Management 191

Appendix 24 RRS Panels 193

Glossary 199

Index 205
7

CONTENTS
 8

List of Figures

Figure 1: OTS and XA 28

Figure 2: Example OTS Application � Funds Transfer 34

Figure 3: Thread and Transaction Associations 49

Figure 4: Association State Diagram 92

Figure 5: Relationship between resources and transactions 111

Figure 6: Rollback after a timeout 118

Figure 7: Successful 2PC protocol with two resources 119

Figure 8: Voting to rollback the transaction. 119

Figure 9: A resource returning VoteReadOnly. 120

Figure 10: A successful 1PC protocol. 121

Figure 11: The 1PC protocol resulting in a rollback. 121

Figure 12: Raising the HeuristicCommit exception 122

Figure 13: Recovery after the failure of a resource object 124

Figure 14: Use of the replay_completion() operation 126

Figure 15: Interoperability with Orbix 3 OTS Applications 137

Figure 16: Using and alternative OTS Implementation 140

Figure 17: The Generic OTS Plug-In 147

Figure 18: Deployment using the OTS Lite Plug-In 149

Figure 19: Using the OTS RRS plug-in with the itotstm service 153

Figure 20: Loading the OTS RRS Plug-In into the Client Adapter 154
9

LIST OF FIGURES
 10

List of Tables

Table 1: OTS Interfaces 30

Table 2: XA Interfaces 32

Table 3: Mapping from TransactionPolicy values 76

Table 4: Coordinator interface identity operations 101

Table 5: Coordinator interface relationship operations 105

Table 6: Heuristic Outcomes 122

Table 7: Mapping TransactionalObject to OTSPolicies 135

Table 8: Features in OTS Implementation 146
11

LIST OF TABLES
 12

Preface
Orbix OTS is a full implementation of the interoperable transaction service
as specified by the Object Management Group. It allows:

� COBOL or PL/I CICS transactions, using the Orbix CICS client adapter,
to initiate two-phase commit processing.

� COBOL or PL/I IMS transactions, using the Orbix IMS client adapter, to
initiate two-phase commit processing.

� C++ programs running on z/OS or z/OS Unix Systems Services to use
two-phase commit processing.

Orbix OTS complies with the following specifications:

� CORBA 2.6

� OTS 1.2

� GIOP 1.2 (default), 1.1, and 1.0

Audience Part 1 of this guide is intended for application programmers who want to
develop OTS transactions, using C++ interfaces. Chapter 1 is relevant to
C++, COBOL and PL/I. However, the rest of Part 1 is relevant to C++ only.

The guide will help you become familiar with the C++ interfaces used for
two-phase commit processing. It assumes that you are familiar with CORBA
concepts and C++.

Note: For information on developing transactions in COBOL or PL/I that
can initiate two-phase commit processing from CICS or IMS, see the
COBOL Programmer�s Guide and Reference and PL/I Programmer�s Guide
and Reference.
13

PREFACE
This guide does not discuss every interface and its operations in detail, but
gives a general overview of the capabilities of the transaction service and
how various components fit together. For detailed information about
individual operations, see the CORBA Programmer�s Reference, C++.

Part 2 and Part 3 of this guide are intended for z/OS system programmers
who want to familiarize with the administration issues that relate to the use
of OTS on the mainframe. All chapters in these parts of the guide are
relevant regardless of which programming language is being used.

Related documentation For the latest versions of Orbix Mainframe product documentation, see the
following web page:

http://www.iona.com/docs/

Organization of this guide This guide is divided into the following chapters:

Chapter 7 provides a brief overview of the basic concepts involved in using
the transactions service. This chapter is relevant to C++, COBOL and PL/I
programmers.

Chapter 8 provides an overview of the transaction service�s interfaces. It
also provides information on the X/Open XA interfaces and how to use them
to interact with compliant resources.

Chapter 9 is a simple example of the steps involved in developing a client
that uses the transaction service. It discusses the basic steps required to use
transactions and the concepts behind them.

Chapter 10 covers transaction demarcation. It covers both using the
transactions Current object, which is convenient but limited, and using the
TransactionFactory and the Terminator interfaces to directly manipulate
demarcation.

Chapter 11 covers how to control how the transaction is propagated to its
target object through the use of POA policies.

Note: For information on setting up the Orbix CICS client adapter or Orbix
IMS client adapter to support two-phase commit processing for CICS or
IMS transactions, see the CICS Adapters Administrator�s Guide and IMS
Adapters Administrator�s Guide.
 14

http://www.iona.com/docs/

PREFACE
Chapter 12 provides a detailed of discussion how to implement
CosTransactions::Resource objects on top of the standard X/Open XA
interface to manage transactional resources.

Chapter 13 covers some additional areas of transaction management. This
includes synchronization objects, transaction identity and status operations,
relationships between transactions and recreating transactions.

Chapter 14 describes the CosTransactions::Resource interface; how
resource objects participate in the transaction protocols, and the
requirements for implementing resource objects.

Chapter 15 describes how Orbix OTS interoperates with older releases of
Orbix and with other OTS implementations, including the Orbix 3 OTS.

Chapter 17 discusses the plug-ins that implement the transaction service,
and the options for deploying them.

Chapter 18 introduces configuration for the OTS RRS plug-in.

Chapter 19 discusses general configuration items for the OTS RRS plug-in.

Chapter 20 discusses configuration items specific to the OTS RRS plug-in.

Chapter 21 discusses how to use the OTS RRS transaction manager.

Appendix 23 discusses troubleshooting through the use of RRS panels.

Appendix 24 provides an introduction on how to set up for management
using IONA Administrator.

Additional resources The Knowledge Base contains helpful articles, written by experts, about
Orbix Mainframe, and other products:

http://www.iona.com/support/kb/

If you need help with Orbix Mainframe or any other products, contact
technical support:

http://www.progress.com/support
15

http://www.iona.com/support/kb/
http://www.progress.com/support

PREFACE
Typographical conventions This guide uses the following typographical conventions:

Keying conventions This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.
 16

PREFACE
[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
17

PREFACE
 18

Part 1
C++ Programming

In this part This part contains the following chapters:

Transaction Service page 21

OMG OTS and X/Open XA Interfaces page 27

Getting Started with Transactions page 33

Transaction Demarcation and Control page 47

Propagation and Transaction Policies page 59

Using XA Resource Managers with OTS page 81

Transaction Management page 97

Writing Recoverable Resources page 109

Interoperability page 133

Note: �Transaction Service� on page 21 is relevant to C++, COBOL and
PL/I programmers. The rest of the chapters in this part are relevant only to
C++ programmers.

CHAPTER 7

Transaction
Service
This chapter describes the transaction processing capabilities
of Orbix, showing how to use the Object Transaction Service
(OTS) for transaction demarcation, propagation and
integration with resource managers. Integration with X/Open
XA compliant resource managers is described.

In this chapter This chapter discusses the following topics:

Note: This chapter is relevant to C++, COBOL and PL/I programmers.
Chapters 2-9 are relevant only to C++ programmers.

About Transactions page 22

Transaction Managers page 24
21

CHAPTER 7 | Transaction Service
About Transactions

What is a transaction? Orbix gives separate software objects the power to interact freely even if they
are on different platforms or written in different languages. Orbix adds to this
power by permitting those interactions to be transactions.

What is a transaction? Ordinary, non-transactional software processes can
sometimes proceed and sometimes fail, and sometimes fail after only half
completing their task. This can be a disaster for certain applications. The
most common example is a bank fund transfer: imagine a failed software
call that debited one account but failed to credit another. A transactional
process, on the other hand, is secure and reliable as it is guaranteed to
succeed or fail in a completely controlled way.

Transaction support in Orbix To support the development of object-oriented, distributed,
transaction-processing applications, Orbix offers:

� An implementation of the Object Management Group�s Object
Transaction Service (OMG OTS).

� Integration with resource managers supporting the X/Open XA
interface.

� A pluggable architecture that supports both a lightweight OTS
implementation and a full recoverable two-phase-commit (2PC)
implementation.

Example The classical illustration of a transaction is that of funds transfer in a
banking application. This involves two operations: a debit of one account
and a credit of another (perhaps after extracting an appropriate fee). To
combine these operations into a single unit of work, the following properties
are required:

� If the debit operation fails, the credit operation should fail, and
vice-versa; that is, they should both work or both fail.

� The system goes through an inconsistent state during the process
(between the debit and the credit). This inconsistent state should be
hidden from other parts of the application.
 22

About Transactions
� It is implicit that committed results of the whole operation are
permanently stored.

Properties of transactions The following points illustrate the so-called ACID properties of a transaction.

Thus a transaction is an operation on a system that takes it from one
persistent, consistent state to another.

Atomic A transaction is an all or nothing procedure �
individual updates are assembled and either
committed or aborted (rolled back) simultaneously
when the transaction completes.

Consistent A transaction is a unit of work that takes a system
from one consistent state to another.

Isolated While a transaction is executing, its partial results
are hidden from other entities accessing the
transaction.

Durable The results of a transaction are persistent.
23

CHAPTER 7 | Transaction Service
Transaction Managers

Purpose of a Transaction Manager Most resource managers, for example databases and message queues,
provide support for native transactions. However, when an application
wants two or more resource managers to be part of the same transaction
some third party must provide the necessary coordination to ensure the
ACID properties are guaranteed for the distributed transaction. This is where
the concept of an transaction manager that is independent of the individual
resource manager comes in.

The application uses the transaction manager to create the transaction.
Each resource manager accessed during the transaction becomes a
participant in the transaction. Then when the application completes the
transaction, either with a commit or rollback request, the transaction
manager communicates with each resource manager.

Two-phase commit protocol When there are two or more participants involved in a transaction the
transaction manager uses a two-phase-commit (2PC) protocol to ensure
that all participants agree on the final outcome of the transaction despite
any failures that may occur. Briefly the 2PC protocol works as follows:

� In the first phase, the transaction manager sends a �prepare� message
to each participant. Each participant responds to this message with a
vote indicating whether the transaction should be committed or rolled
back.

� The transaction manager collects all the prepare votes and makes a
decision on the outcome of the transaction. If all participants voted to
commit the transaction may commit. However if a least one participant
voted to rollback the transaction is rolled back. This completes the first
phase.

� In the second phase the transaction manager sends either commit or
rollback messages to each participant.

The 2PC protocol guarantees the ACID properties despite any failures that
may occur. Usually the transaction manager uses a log to record the
progress of the 2PC protocol so that messages can be replayed during
recovery.
 24

Transaction Managers
One-phase-commit protocol If there is only one participant in the transaction the transaction manager
can use a one-phase-commit (1PC) protocol instead of the 2PC protocol
which can be expensive in terms or the number of messages sent and the
data that must be logged. The 1PC protocol essentially delegates the
transaction completion to the single resource manager. Orbix supports this
1PC protocol which allows developers to make use of the Orbix transaction
manager without suffering the overheads associated with the 2PC protocol.
By making use of the OTS and XA interfaces an application can be easily
extended to support multiple resource managers within a transaction easily.
25

CHAPTER 7 | Transaction Service
 26

CHAPTER 8

OMG OTS and
X/Open XA
Interfaces
The OMG OTS provides interfaces to manage the demarcation
of transactions and the propagation of transaction contexts.
With the X/Open XA interface, integration with compliant
resource managers such as databases and message queues is
provided.

In this chapter This chapter discusses the following topics:

Transaction Interfaces page 28

OTS Interfaces page 30

The X/Open XA Interface page 32
27

CHAPTER 8 | OMG OTS and X/Open XA Interfaces
Transaction Interfaces

Purpose The OMG OTS provides interfaces to manage the demarcation of
transactions (creation and completion), the propagation of transaction
contexts to the participants of the transaction and interfaces to allow
applications to participate in the transaction.

With the X/Open XA interface, integration with compliant resource managers
such as databases and message queues is provided.

Illustration of transaction interfaces

Figure 1 shows these areas of transaction management.

Figure 1: OTS and XA

OTS Transaction Service

Resource
Manager

(Database)

Transactional
Clients

(e.g., Teller)

Transactional
Application
(e.g., Bank)

Resource
Manager
(Message
Queue)

Transactional
Application
(e.g., Bank)

Transaction Demarcation

CosTransactions::Current
begin(), commit(),
rollback(), ...

Transaction Propagation

CosTransactions::OTSPolicy
REQUIRES, ADAPTS, ...

Resource Manager Integration

X/Open XA &
CosTransactions::Resource

Transaction Management

TransactionFactory,
Control, Coordinator,

Terminator, ...
 28

Transaction Interfaces
Transaction Demarcation Transaction demarcation is where the application sets the boundaries of the
transaction. Typically this is done using the OTS Current interface; invoking
the begin() operation at the start of the transaction and either commit() or
rollback() at the end of the transaction. An alternative to using the
Current interface is to create transactions directly using the
TransactionFactory interface and commit or rollback the transactions
using the Terminator interface.

Transaction Propagation Propagation refers to the passing of information related to the transaction to
the application objects that are participants in the transaction. When the
Current interface is used for transaction demarcation this propagation takes
place transparently and is controlled by a number of POA policies.
Transactions created using the TransactionFactory interface must be
propagated by adding an extra parameter to the operation.

Resource Manager Integration Integration with resource managers such as databases is done using the XA
interface. Alternatively an application may use the OTS Resource interface
to provide integration with proprietary resource managers.

Transaction Management The OTS interfaces also provide operations for general transaction
management. These include, setting timeouts, registering resource objects
and synchronization objects, comparing transactions and getting transaction
names
29

CHAPTER 8 | OMG OTS and X/Open XA Interfaces
OTS Interfaces

Supported OTS Interfaces The following is a list of the main interfaces supported by the OTS. All
interfaces are part of the IDL module CosTransactions. For more details on
these interfaces, refer to the CORBA Programmer�s Reference, C++.

Table 1: OTS Interfaces

Interface Purpose

Control The return type of
TransactionFactory::create(). It
provides access to the two controllers of the
transactions, the Coordinator and the
Terminator.

Coordinator Provides operations to register objects that
participate in the transaction.

Current A local interface that provides the concept
of a transaction to the current thread of
control. The Current interface supports a
subset of the operations provided by the
Coordinator and Terminator interfaces.

RecoveryCoordinator Used in certain failure cases to complete
the transaction completion protocol for a
registered resource object.

Resource Represents a recoverable participant in a
transaction. Objects supporting this
interface are registered with a transaction�s
coordinator, and are then invoked at key
points in the transaction�s completion.

SubtransactionAwareRes
ource

Represents a participant that is aware of
nested transactions. Nested transactions
are not supported in this release.
 30

OTS Interfaces
OTS Transaction Modes When using the OTS interfaces for transaction demarcation and
propagation, there are two modes of use:

The preferred mode for most applications is the indirect/implicit mode. The
direct/explicit provides more flexibility but is more difficult to manage (see
�Direct Transaction Demarcation� on page 56 and �Explicit Propagation� on
page 78) for more details.

Synchronization Represents a non-recoverable object
allowing application specific operations to
occur both before and after transaction
completion.

Terminator Provides a means of directly committing or
rolling back a transaction.

TransactionalObject This interface has been deprecated and
replaced with transaction policies (see
Chapter 11).

TransactionFactory Provides a means of directly creating
top-level transactions.

Table 1: OTS Interfaces

Interface Purpose

Indirect/Implicit In the indirect/implicit mode transaction are
created, committed and rolled back using the
Current interface. Propagation takes place
automatically depending on the policies in the
target object�s POA.

Direct/Explicit In the direct/explicit mode transactions are created
using the TransactionFactory and committed or
rolled back using the Terminator object.
Propagation is done by adding a parameter (for
example, the transaction�s control object) to each
IDL operation.
31

CHAPTER 8 | OMG OTS and X/Open XA Interfaces
The X/Open XA Interface

XA Interfaces The X/Open XA interface is a C API between a transaction manager and a
resource manager (for example, a database). The C API provides functions
for opening and closing connections to the resource manager (xa_open()
and xa_close()), managing associations between the current connection
and global transactions (xa_start() and xa_end()), transaction protocols
(xa_prepare(), xa_commit(), xa_rollback() and xa_forget()), and
functions to support recovery (xa_recover()).

Integration with OTS Integration between XA compliant resource managers and the OTS is
provided by several interfaces in the XA module, as detailed in the following
table.

Table 2: XA Interfaces

Interface Purpose

Connector Provides a means of getting
CurrentConnection and ResourceManager
objects.

CurrentConnection Represents the current XA connection to a
resource manager.

BeforeCompletionCallback Allows an application to be called before
the completion of a transaction.

ResourceManager Use to register and unregister
BeforeCompletionCallback objects.
 32

CHAPTER 9

Getting Started
with Transactions
This chapter illustrates the Object Transaction Service (OTS)
by way of an example application. It includes the basic steps
needed to develop an application with the OTS.

In this chapter This chapter discusses the following topics:

Application Overview page 34

Transaction Demarcation page 36

Transaction Propagation and POA Policies page 39

XA Resource Manager Integration page 41

Application-Specific Resources page 44

Configuration Issues page 45
33

CHAPTER 9 | Getting Started with Transactions
Application Overview

Funds transfer application The example application is that of funds transfer between two bank
accounts. Figure 2 shows the application. The client has a reference to two
objects representing two accounts. The account objects are implemented
directly on top of an XA-compliant database and use SQL to access the
database. This example shows the source and destination accounts using
different databases, however they could both be using the same database.

Interface definition The interface for the account objects is defined in IDL as follows:

Figure 2: Example OTS Application � Funds Transfer

SQL/XA

SQL/XA

Database
A

Client

Src
Acc

Dest
Acc

$

Database
B

// IDL
module Bank
{
 typedef float CashAmount;
 interface Account
 {
 exception InsufficientFunds {};
 void deposit(in CashAmount amt);
 void withdraw(in CashAmount amt)
 raises (InsufficientFunds);
 };
 ...
};
 34

Application Overview
TransactionalObject interface
deprecated

Readers familiar with version 1.1 of the OTS specification (used by
OrbixOTM and Orbix 3) will notice that the Account interface does not
inherit from the CosTransactions::TransactionalObject interface. The use
of that interface to mark objects as transactional has been deprecated in
favor of using POA policies in version 1.2 of the specification. The
TransactionalObject interface is still supported for backward compatibility
with the OTS in OrbixOTM and Orbix 3. See �Use of the TransactionalObject
Interface� on page 135 for more details.

Since the TransactionalObject interface is deprecated, application
developers no longer have to change the IDL used by their applications
when adding transactional capabilities.

Transferring funds Given a source and destination account, the funds transfer is performed by
invoking the withdraw() operation on the source account followed by
invoking the deposit() operation on the destination account. The
application will look something like the following:

Completing the application To make this a transactional application we need three more steps:

1. The funds transfer application needs to be wrapped in a transaction to
ensure the ACID properties. This is covered in �Transaction
Demarcation� on page 36.

2. The application must make sure the transaction is propagated to the
two account objects during the invocations of the deposit() and
withdraw() operations. This is covered in �Transaction Propagation
and POA Policies� on page 39

3. The implementation of the account objects must be integrated with an
XA compliant database. This is covered in �XA Resource Manager
Integration� on page 41.

// C++
Bank::Account_var src_acc = ...
Bank::Account_var dest_acc = ...
Bank::CashAmount amount = 100.0;
src_acc->withdraw(amount);
dest_acc->deposit(amount);
35

CHAPTER 9 | Getting Started with Transactions
Transaction Demarcation

Demarcation using OTS current
object

Transaction demarcation refers to setting the boundaries of the transaction.
The simplest way to do this is to use the OTS current object. The following
are the steps involved:

1. Obtain a reference to the OTS current object from the ORB.

2. Create a new transaction.

3. Perform the funds transfer.

4. Complete the transaction by either committing it or rolling it back.

More information on transaction demarcation including other ways of
creating, committing and rolling back transactions is covered in Chapter 10.

Obtain a reference to the OTS
current object from the ORB

The OTS current object supports the CosTransactions::Current interface
and a reference to the object is obtained by calling the ORB operation
resolve_initial_references(�TransactionCurrent�).

Note that the file CosTransactions.hh must be included to use the interfaces
defined in the CosTransactions module. Error handling has been omitted for
clarity:

// C++
...
#include <CosTransactions.hh>
...
int main(int argc, char** argv)
{
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 CORBA::Object_var obj =
 orb->resolve_initial_references(�TransactionCurrent�);
 CosTransactions::Current_var tx_current =
 CosTransactions::Current::_narrow(obj);
 ...
}

 36

Transaction Demarcation
Create a new transaction The next step is the creation of a new top-level transaction. This is done by
invoking begin() on the OTS current object:

If the begin() succeeds, a new transaction is associated with the current
thread of control.

Perform the funds transfer The funds transfer is the same as shown in the application overview. There
are no changes for transaction management. The code is reproduced here
for completeness:

Complete the transaction by either
committing it or rolling it back

Once the work has been done, we need to complete the transaction. Most of
the time the application simply wants to attempt to commit the changes
made: this is done by invoking the commit() operation on the OTS current
object:

The commit() operation only attempts to commit the transaction. It may
happen that due to system failures or other reasons the transaction cannot
be committed; in this case the TRANSACTION_ROLLEDBACK system exception
is raised.

The parameter passed to commit() is a boolean specifying whether
heuristics outcomes should be reported to the client (see �Heuristic
Outcomes� on page 121 for details on heuristic outcomes). In this example
we do not wait for heuristic outcomes.

// C++
tx_current->begin();

// C++
Bank::Account_var src_acc = ...
Bank::Account_var dest_acc = ...
Bank::CashAmount amount = 100.0;
src_acc->withdraw(amount);
dest_acc->deposit(amount);

// C++
try {
 tx_current->commit(IT_false)
} catch (CORBA::TRANSACTION_ROLLEDBACK&) {
 // Transaction has been rolled back.
}

37

CHAPTER 9 | Getting Started with Transactions
If instead of attempting a commit the application wants to roll back the
changes made, the operation rollback() is invoked on the OTS current
object:

// C++
tx_current->rollback()
 38

Transaction Propagation and POA Policies
Transaction Propagation and POA Policies

Propagating the transaction The funds transfer application invokes the withdraw() and deposit()
operations within the context of a transaction associated with the current
thread of control. However the transaction needs to be propagated to the
target objects to ensure that any updates they make are done in the context
of the application�s transaction.

POA Policies To ensure propagation of transaction contexts the target objects must be
placed in a POA with specific OTS POA policies. In particular the POA must
use one of the OTSPolicy values REQUIRES or ADAPTS. The following code
shows the creation of a POA with the REQUIRES OTSPolicy and the activation
of an account object in the POA.

// C++

CORBA::ORB_var orb = ...

// Create a policy object for the REQUIRES OTS Policy.
CORBA::Any policy_val;
policy_val <<= CosTransactions::REQUIRES;
CORBA::Policy_var tx_policy =
 orb->create_policy(CosTransactions::OTS_POLICY_TYPE,
 policy_val);

// Add OTS policy to policy list (just 1 policy in this case).
CORBA::PolicyList policies(1);
policies.length(1);
policies[0] = CORBA::Policy::_duplicate(tx_policy);

// Get a reference to the root POA.
CORBA::Object_var obj =
 orb->resolve_initial_references("RootPOA");
PortableServer::POA_var root_poa =
 PortableServer::POA::_ narrow(obj);

// Create a new POA with the OTS Policy.
PortableServer::POA_var POA tx_poa =
 root_poa->create_POA("REQUIRES TX",
 root_poa->the_POAManager(),
 policies);
39

CHAPTER 9 | Getting Started with Transactions
OTSPolicy values There are three OTSPolicy values: REQURIES, ADAPTS and FORBIDS. REQUIRES
specifies that the object must be invoked within a transaction; ADAPTS
allows the object to be invoked both within and without a transaction;
FORBIDS specifies that the object must not be invoked within a transaction.
See Chapter 11 for a full discussion of POA and client policies relating to
transaction propagation. Support for the deprecated TransactionalObject
interface is discussed in �Use of the TransactionalObject Interface� on
page 135.

// Create object using the transactional POA. This example
// uses servant_to_reference() to create the object
//
// AccountImpl is the servant class implementing the
// IDL interface Account.
AccountImpl* servant = new AccountImpl(...);
PortableService::ObjectId_var id =
 tx_poa->activate_object(servant);
obj = tx_poa->servant_to_reference(servant);
Bank::Account_var account = Bank::Account::_narrow(obj);
 40

XA Resource Manager Integration
XA Resource Manager Integration

Process of using an XA Resource
Manager

Integrating an XA compliant resource manager with OTS managed
transactions involves three steps:

1. Setting up configuration variables for the resource manager.

2. Application initialization.

3. Accessing the database during an OTS transaction.

Full details are in Chapter 12.

Resource Manager Configuration Each resource manager used by an application requires configuration. The
configuration is placed in a namespace that is passed to the
create_resource_manager() operation during application initialization. The
minimum configuration is the specification of the resource manager�s
open-string. This is a resource manager specific string that is passed to the
xa_open() call and contains sufficient information to create an XA
connection to the database. For example this can contain user name and
password details.

The following example shows the configuration for an Oracle database using
the xa_resource_managers:oracle namespace. The thread_model
configuration variable specifies scope of an XA connection (either thread or
process):

Application Initialization Applications using XA resource managers must include the file omg/XA.hh to
access the interfaces in the XA module. During application initialization
ResourceManager and CurrentConnection objects are created to represent

xa_resource_managers:oracle:thread_model = �PROCESS�;
xa_resource_managers:oracle:open_string =
 �Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60+SqlNet=osol�
41

CHAPTER 9 | Getting Started with Transactions
the resource manager being integrated. This is done by getting a reference to
the Connector object (by passing �XAConnector� to
resolve_initial_references()) and calling create_resource_manager():

The create_resource_manager() operation is passed the resource
manager's name, XA switch (xaosw is Oracle's XA switch), open-string and
close string as well as flags that affect the behavior of the resource manager.
It returns a reference to the ResourceManager object and a reference to the
CurrentConnection object (as an out parameter).

Accessing the Database within an
OTS Transaction

The application code used to read and write to the database is the same as
for a normal application with the following exceptions:

1. Before each access to the database the start() operation must be
called on the XA Connection object to associate the connection with
the current transaction.

2. After the database access the end() operation must be called on the
XA Connection object to remove the association with the current
transaction.

3. Resource manager operations related to transaction management such
as the embedded SQL operations BEGIN, COMMIT, or ROLLBACK
must not be used.

// C++
...
CORBA::ORB_var orb = ...

// Get reference to the XAConnector object.
CORBA::Object_var xa_connector_obj =
 orb->resolve_initial_references("XAConnector");
 XA::Connector_var xa_connector =
 XA::Connector::_narrow(xa_connector_obj);

// Get XA Connection object for the resource manager.
XA::CurrentConnection_var current_connection;
XA::ResourceManager_var rm =
 xa_connector->create_resource_manager(
 "xa_resource_managers:oracle",
 xaosw, "",
 current_connection);
 42

XA Resource Manager Integration
The following shows how integration with an XA-compliant database is
achieved using embedded SQL:

// C++
void AccountImpl::deposit(float amt)
{
 // Get the coordinator and otid for the current
 // transaction.
 CosTransactions::Current_var tx_current = ...
 CosTransactions::Control_var control =
 tx_current->get_control();
 CosTransactions::Coordinator_var tx =
 control->get_coordinator();
 CosTransactions::PropagationContext_var ctx =
 tx->get_txcontext();
 const CosTransactions::otid_t& otid = ctx->current.otid;

 // Associate current transaction with the XA connection
 // to the database.
 XA:CurrentConnection_var current_connection = ...
 current_connection->start(tx, otid);

 EXEC SQL BEGIN DECLARE SECTION
 unsigned long acc_id = m_accId;
 float balance = 0.0;
 EXEC SQL END DECLARE SECTION

 // Get the current balance.
 EXEC SQL SELECT BALANCE
 INTO :balance
 FROM ACCOUNTS
 WHERE ACC_ID = :acc_id;

 // Update balance.
 balance += amt;
 EXEC SQL UPDATE ACCOUNTS
 SET BALANCE = :balance
 WHERE ACC_ID = :acc_id;

 // Dissociate the current transaction from the XA
 // connection to the database.
 current_connection->end(tx, otid, IT_true);
}

43

CHAPTER 9 | Getting Started with Transactions
Application-Specific Resources

Resource interface operations The CosTransactions::Resource interface provides a mechanism for
applications to become involved in the commit and rollback protocol of a
transaction. The Resource interface provides five operations that are called
at key points during the commit or rollback protocols:

� prepare()
� commit()
� rollback()
� commit_one_phase()
� forget()

Implementing resource objects An application implements a resource object that supports the Resource
interface and registers an instance of the object with a transaction using the
register_resource() operation provided by the Coordinator interface.
Resource object implementations are responsible for cooperating with the
OTS to ensure the ACID properties for the whole transaction. In particular
resource objects must be able to recover from failures.

The implementation of resource objects is discussed in detail in Chapter 14.
 44

Configuration Issues
Configuration Issues

Issues Before an application using OTS can run there are a number of configuration
issues. These are concerned with loading the appropriate plug-ins and
setting up the client and server bindings to enable implicit propagation of
transactions.

Loading the OTS plug-in For server applications, the OTS plug-in must be loaded explicitly by
including it in the orb_plugins configuration variable. For example:

orb_plugins = [..., �ots�];

The client and server bindings are controlled with the configuration variables
binding:client_binding_list and binding:server_binding_list
respectively. The settings for both variables need to take account of the OTS
for potential bindings. For example, to be considered for the IIOP/GIOP and
collocated-POA bindings the variables must be set as follows:

binding:client_binding_list = [�OTS+POA_Coloc�,
 �OTS+GIOP+IIOP�,
 �POA_Coloc�,
 �GIOP+IIOP�];

binding:server_binding_list = [�OTS�, ��];

Other configuration variables can be used to alter the characteristics of your
application. These are covered in Chapter 18.
45

CHAPTER 9 | Getting Started with Transactions
 46

CHAPTER 10

Transaction
Demarcation and
Control
The most convenient means of demarcating transactions is to
use the OTS Current object. Direct transaction demarcation
using the TransactionFactory and Terminator interfaces
provide more flexibility but is more difficult to manage.

In this chapter This chapter discusses the following topics:

The OTS Current Object page 48

Direct Transaction Demarcation page 56
47

CHAPTER 10 | Transaction Demarcation and Control
The OTS Current Object

Current Interface The OTS Current object maintains associations between the current thread
of control and transactions. The Current interface is defined as follows:

// IDL (in module CosTransactions)
local interface Current : CORBA::Current {

 void begin()
 raises(SubtransactionsUnavailable);

 void commit(in boolean report_heuristics)
 raises(NoTransaction, HeuristicMixed,
 HeuristicHazard);

 void rollback()
 raises(NoTransaction);

 void rollback_only()
 raises(NoTransaction);

 Status get_status();

 string get_transaction_name();

 void set_timeout(in unsigned long seconds);
 unsigned long get_timeout();

 Control get_control();

 Control suspend();

 void resume(in Control which)
 raises(InvalidControl);
};
 48

The OTS Current Object
Threads and transactions The OTS Current object maintains the association between threads and
transactions. This means the same OTS Current object can be used by
several threads. Figure 3 shows the relationship between threads, the OTS
Current object, and the three objects that represent a transaction (Control,
Coordinator and Terminator).

Figure 3: Thread and Transaction Associations

Thread A

Thread B

Current

Control A

Coordinator A

Terminator A

Control B

Terminator B

Coordinator B
49

CHAPTER 10 | Transaction Demarcation and Control
Getting a Reference to the OTS
Current Object

A reference to the OTS Current object is obtained by calling
resolve_initial_references() passing �TransactionCurrent� as the
parameter and narrowing the result to CosTransactions::Current. For
example:

The Current interface is declared as local which means references to the
Current object cannot be passed as parameters to IDL operations or passed
to operations such as object_to_string().

Creating Transactions The begin() operation is used to create a new transaction and associate the
new transaction with the current thread of control. If there is no current
transaction a top-level transaction is created; otherwise a nested transaction
is created (see �Nested Transactions� on page 53).

// C++
CosTransactions::Current_var tx_current;
try {
 CORBA::ORB_var orb = ...
 CORBA::Object_var obj =
 orb->resolve_initial_references("TransactionCurrent");

 tx_current = CosTransactions::Current::_narrow(obj);
}
catch (CORBA::SystemException& ex)
{
 // Error handling.
 ...
}

 50

The OTS Current Object
The following code creates a new transaction:

Committing the Current
Transaction

The commit() operation attempts to commit the current transaction, if any,
and removes the current thread/transaction association. If the commit()
operation returns normally the transaction was successfully committed.
However if the TRANSACTION_ROLLEDBACK system exception is raised the
transaction has been rolled back. In both cases the transaction is
disassociated with the current thread of control.

// C++
CosTransactions::Current_var tx_current = ...
try
{
 tx_current->begin();
}
catch (CosTransactions::SubtransactionsUnavailable& ex)
{
 // Already in a transaction and nested transaction are not
 // supported.
}
catch (CORBA::SystemException& ex)
{
 // Error handling...
}

51

CHAPTER 10 | Transaction Demarcation and Control
For example, the following code attempts to commit the current transaction:

If there is no current transaction the CosTransactions::NoTransaction
exception is raised.

The commit() operation takes a boolean parameter that indicates whether
reporting of heuristic exceptions is permitted. Heuristic exceptions occur
when a there is a conflict or potential conflict between the outcome decided
by the transaction coordinator and the outcome performed by one or more
resource managers (see �Heuristic Outcomes� on page 121 for more
details). If a value of true is passed, the application must be prepared to
catch the HeuristicMixed and HeuristicHazard exceptions; if a value of
false is passed these exceptions are never raised.

// C++
CosTransactions::Current_var tx_current = ...
try
{
 // Attempt to commit the current transaction.
 tx_current->commit(IT_false);
}
catch (CORBA::TRANSACTION_ROLLEDBACK&)
{
 // The transaction was rolled back.
}
catch (CORBA::SystemException& ex)
{
 // Error handling...
}
catch (CosTransactions::NoTransaction& ex)
{
 // There was no transaction to commit.
}

 52

The OTS Current Object
Rolling Back the Current
Transaction

The rollback() operation rolls back the current transaction, if any, and
removes the current thread/transaction association. For example, the
following code rolls back the current transaction:

If there is no current transaction the CosTransactions::NoTransaction
exception is raised.

The rollback_only() operation may also be used to mark a transaction to
be rolled back. This operation does not actively rollback the transaction, but
instead prevents it from ever being committed. This can be useful, for
example, to ensure the current transaction will be rolled back during a
remote operation. Again, the NoTransaction exception is raised if there is no
current transaction.

Nested Transactions Nested transactions, also known as sub-transactions, provide a way of
composing applications from a set of transactions each of which can fail
independently of each other. Nested transactions form a hierarchy known as
a transaction family. No updates are made permanent until the top-level
transaction commits.

When using the Current object, a nested transaction is created by calling
begin() when there is already a transaction associated with the current
thread of control. When nested transaction is committed or rolled back, the
thread transaction association reverts back to the parent transaction.

Note: Nested transactions are not supported in this release of Orbix.

// C++
CosTransactions::Current_var tx_current = ...
try
{
 tx_current->rollback();
}
catch (CORBA::SystemException& ex)
{
 // Error handling...
}
catch (CosTransactions::NoTransaction& ex)
{
 // There was no transaction to commit.
}

53

CHAPTER 10 | Transaction Demarcation and Control
Timeouts The set_timeout() operation sets the timeout in seconds for subsequent
top-level transactions. It does not set the timeout for the current transaction.
Passing a value of 0 means subsequent top-level transactions will never
timeout.

If set_timeout() is not called the default timeout is taken from the
plugins:ots:default_transaction_timeout configuration variable.

The get_timeout() operation returns the current timeout in seconds for
subsequent top-level transactions. It does not return the timeout for the
current transaction.

For example, the following code sets the timeout for subsequent top level
transactions to 30 seconds:

Suspending and Resuming
Transactions

The suspend() operation temporarily removes the association between the
current thread of control and the current transaction if any. Calling
suspend() returns a reference to a control object for the transaction. The
transaction can be resumed later by calling the resume() operation passing
in the reference to the control object.

Suspending a transaction is useful if it is necessary to perform work outside
of the current transaction. For example:

// C++
CosTransactions::Current_var tx_current = ...
tx_current->set_timeout(30);

// C++
CosTransactions::Current_var tx_current = ...
tx_current->begin();
account->deposit(100.0);

// Suspend the current transaction.
CosTransactions::Control_var control =
 tx_current->suspend();

// Do some non-transactional work.
...

// Resume the transaction.
tx_current->resume(control);

tx_current->commit(IT_true);
 54

The OTS Current Object
The resume() operation raises the CosTransactions::InvalidControl
exception if the transaction represented by the control object cannot be
resumed.

Sometimes the work done during the transaction�s suspend state can be
work on a different transaction. Thus, suspend() and resume() give you a
way to work on multiple transactions within the same thread of control.

Miscellaneous Operations The get_status() and get_transaction_name() operations provide
information on the current transaction. The get_control() operations
returns the Control object for the current transaction or nil if there is no
current transaction. This is used to provide access to the Coordinator and
Terminator objects for more advanced control. See Chapter 13 for more
details
55

CHAPTER 10 | Transaction Demarcation and Control
Direct Transaction Demarcation

Using the transaction factory to
create transactions

The alternative to using the OTS Current object is to use the transaction
factory directly to create transactions.

Example The following code shows the creation of a new top-level transaction:

The first step is to obtain a reference to the transaction factory object. This
is done by calling resolve_initial_references() passing a value of
�TransactionFactory� and narrowing the result to
CosTransactions::TransactionFactory.

The create() operation creates a new top-level transaction and returns a
control object representing the new transaction. create() is passed the
timeout in seconds for the transaction. A value of 0 means there is no
timeout.

To complete a transaction created using the transaction factory, the
terminator object is used. The terminator object is obtained by calling
get_terminator() on the control object. The Terminator interface provides
the commit() and rollback() operations. These are the same as the ones
provided by the Current interface except they do not raise the
NoTransaction exception.

// C++
//
// Get a reference to the transaction factory.
CORBA::ORB_var orb = ...
CORBA::Object_var obj =
 orb->resolve_initial_references("TransactionFactory");
CosTransactions::TransactionFactory_var tx_factory =
 CosTransactions::TransactionFactory::_narrow(obj);

// Create a transaction with a timeout of 60 seconds.
CosTransactions::Control_var control =
 tx_factory->create(60);
 56

Direct Transaction Demarcation
Example of a commit The following shows the attempted commit of a transaction using the direct
approach:

// C++
//
try {
 CosTransactions::Terminator_var term =
 control->get_terminator();
 term->commit(IT_true);
} catch (CORBA::TRANSACTION_ROLLEDBACK&){
 // Transaction has been rolled back.
}

57

CHAPTER 10 | Transaction Demarcation and Control
 58

CHAPTER 11

Propagation and
Transaction
Policies
This chapter describes how to control transfer of the
transaction to the target object using POA policies or explicitly.

In this chapter This chapter discusses the following topics:

Implicit Propagation Policies page 60

Shared and Unshared Transactions page 61

Policy Meanings page 62

Example Use of an OTSPolicy page 65

Example Use of a NonTxTargetPolicy page 67

Use of the ADAPTS OTSPolicy page 70

Orbix-Specific OTSPolicies page 72

Migrating from TransactionPolicies page 76

Explicit Propagation page 78
59

CHAPTER 11 | Propagation and Transaction Policies
Implicit Propagation Policies

Implicit and Explicit Propagation Propagation refers to the transfer of the transaction to the target object
during an invocation.

For transactions created using the OTS Current object, propagation is
implicit. That is, the application does not have to change the way the object
is invoked in order for the transaction to be propagated. Implicit propagation
is controlled using POA policies.

For transactions created directly via the TransactionFactory reference,
explicit propagation must be used.

Policies for implicit propagation For implicit propagation, there are two POA policies and one client policy
that affect the behavior of invocations with respect to transactions.

The POA policies are:

� OTSPolicy

� InvocationPolicy

Both policies allow an object to set requirements on whether the object is
invoked in the context of a transaction and transaction model being used.

The client OTS policy is:

� NonTxTargetPolicy

This alters the client�s behavior when invoking on objects that do not permit
transactions.

Note: These three policies replace the deprecated TransactionPolicy and
the use of the deprecated TransactionalObject interface both of which are
still supported in this release. See �Migrating from TransactionPolicies� on
page 76 and �Use of the TransactionalObject Interface� on page 135 for
more details.
 60

Shared and Unshared Transactions
Shared and Unshared Transactions

InvocationPolicy transaction
models

The InvocationPolicy deals with the transaction model supported by the
target object. There are two transaction models:

� shared

� unshared

Shared model The shared model is the familiar end-to-end transaction where the client
and the target object both share the same transaction. That is, an invocation
on an object within a shared transaction is performed within the context of
the transaction associated with the client.

Unshared model An unshared transaction is used for asynchronous messaging where
different transactions are used along the invocation path between the client
and the target object. Here, the target object invocation is performed within
the context of a different transaction than the transaction associated with
the client. Hence, the client and target object does not share the same
transaction. This model is required since with asynchronous messaging it is
not guaranteed that the client and server are active at the same time.

Orbix does not support unshared transactions in this release. They are
included in the following discussion for completeness only.
61

CHAPTER 11 | Propagation and Transaction Policies
Policy Meanings

The three standard OTSPolicy
values

The OTSPolicy has three possible standard values plus additional two values
specific to Orbix. The Orbix-specific values are discussed in �Orbix-Specific
OTSPolicies� on page 72; the standard values and their meanings are:

Objects with the REQUIRES or ADAPTS OTSPolicy are also known as
transactional objects since they support invocations within transactions;
objects with the FORBIDS OTSPolicy or no OTSPolicy at all are known as
non-transactional objects since they do not support invocations within
transactions.

For an example of using an OTSPolicy, see �Example Use of an OTSPolicy�
on page 65.

REQUIRES This policy is used when the target object always expects
to be invoked within the context of a transaction. If there
is no transaction the TRANSACTION_REQUIRED system
exception is raised. This policy guarantees that the target
object is always invoked within a transaction.

FORBIDS This policy is used when the target object does not
permit invocations performed within the context of a
transaction. If a transaction is present the
INVALID_TRANSACTION system exception is raised. This
policy guarantees that the target object is never invoked
within a transaction. This is the default policy.

ADAPTS This policy is used when the target object can accept
both the presence and absence of a transaction. If the
client is associated with a transaction, the target object
is invoked in the context of the transaction; otherwise
the target object is invoked without a transaction. This
policy guarantees that the target object is invoked
regardless of whether there is a transaction or not. Here,
the target object adapts to the presence or not of a
transaction.
 62

Policy Meanings
The two NonTxTargetPolicy
values

The default behavior for a client that invokes on an object within a
transaction where the target object has the FORBIDS OTSPolicy (or where the
object does not have any OTSPolicy, since FORBIDS is the default) is for the
INVALID_TRANSACTION exception to be raised. This behavior can be altered
with the NonTxTargetPolicy. The policy values and their meanings are:

Setting the policies As with all client policies, there are four ways in which they may be set:

1. Using configuration. For the NonTxTargetPolicy the variable to set is
policies:non_tx_target_policy.

2. Set the policy on the ORB using the CORBA::PolicyManager interface.

3. Set the policy for the current invocation using the
CORBA::PolicyCurrent interface.

4. Set the policy on the target object using the
CORBA::Object::_set_policy_overrides() operation.

For more information on client policies see the chapter on Using Policies in
the CORBA Programmer�s Guide, C++. For an example of using a
NonTxTargetPolicy see �Example Use of a NonTxTargetPolicy� on page 67.

Note that since the default OTSPolicy is FORBIDS, using the PREVENT
NonTxTargetPolicy could result in previously working code becoming
unworkable due to invocations been denied. The PREVENT policy should be
used with care.

PREVENT The invocation is prevented from proceeding and the
INVALID_TRANSACTION system exception is raised. This is
the default behavior

PERMIT The invocation proceeds but the target object is not
invoked within the context of the transaction. This
satisfies the target object�s requirements and allows the
client to make invocations on non-transactional objects
within a transaction.
63

CHAPTER 11 | Propagation and Transaction Policies
The three InvocationPolicy values Finally, the choice of which transaction model (shared or unshared) that an
object supports is done using the InvocationPolicy. This has three values:

Note that the UNSHARED and EITHER InvocationPolicies cannot be used in
combination with the FORBIDS and ADAPTS OTSPolicies. Attempting to
create a POA with these policy combinations results in the
PortableServer::InvalidPolicy exception being raised.

SHARED The target object supports only shared transactions. This
is the default. An asynchronous invocation results in the
TRANSACTION_MODE system exception being raised.

UNSHARED The target object supports only unshared transactions. A
synchronous invocation results in the TRANSACTION_MODE
system exception begin raised.

EITHER The target object supports both shared and unshared
transactions.
 64

Example Use of an OTSPolicy
Example Use of an OTSPolicy

Steps to create an object with an
OTSPolicy

The following are the steps to create an object with a particular OTS policy:

1. Create a CORBA Policy object that represents the desired OTS policy.
This is done by calling the ORB operation create_policy() passing in
the value CosTransactions::OTS_POLICY_VALUE as the first parameter
and the policy value (encoded as an any) as the second parameter.

2. Create a POA that includes the OTSPolicy in its policy list. This is done
by calling create_POA().

3. Create an object using the new POA.

Example The following code sample shows an object being created in a POA that
uses the ADAPTS OTSPolicy. For clarity, the POA is created off the root POA
and only one new policy is added.

// C++
//
// Create CORBA policy object for ADAPTS OTSPolicy
CORBA::Any tx_policy_value;
tx_policy_value <<= CosTransactions::ADAPTS;

CORBA::ORB_var orb = ...
CORBA::Policy_var tx_policy = orb->create_policy(
 CosTransactions::OTS_POLICY_TYPE, tx_policy_value);

// Create a POA using the transactional policy.
CORBA::PolicyList policies(1);
policies.length(1);
policies[0] = CORBA::Policy::_duplicate(tx_policy)

// Get a reference to the root POA.
CORBA::Object_var obj =
orb->resolve_initial_references("RootPOA");
PortableServer::POA_var root_poa = PortableServer::_narrow(obj);
65

CHAPTER 11 | Propagation and Transaction Policies
// Set up nil POAManager reference.
PortableServer::POAManager_var nil_mgr =
PortableServer::POAManager::_nil();

PortableServer::POA_var tx_poa =
root_poa->create_POA("TX ADAPTS", nil_mgr, policies);

// Create object using the transactional POA. This example
// uses servant_to_reference() to create the object

// AccountImpl is the servant class implementing the
// IDL interface Account.
AccountImpl* servant = new AccountImpl(...);

PortableServer::ObjectId_var id =
 tx_poa->activate_object(servant);

obj = tx_poa->servant_to_reference(servant);
Account_var account = Account::_narrow(obj);
 66

Example Use of a NonTxTargetPolicy
Example Use of a NonTxTargetPolicy

Steps to use a NonTxTargetPolicy The following are the steps for a client to use a NonTxTargetPolicy when
invoking on a non-transactional object:

1. Get a reference to the PolicyCurrent or PolicyManager object.

2. Create a CORBA Policy object that represents the desired
NonTxTargetPolicy. This is done by calling the
CORBA::ORB::create_policy() operation passing in the value
CosTransactions::NON_TX_TARGET_POLICY_TYPE as the first parameter
and the policy value (encoded as an any) as the second parameter.

3. Call the set_policy_overrides() operation on the PolicyCurrent or
PolicyManager object passing in a policy list containing the
NonTxTargetPolicy. Alternatively call the _set_policy_overrides()
operation on the target object itself.

4. Invoke on the non-transaction object (from within a transaction).
67

CHAPTER 11 | Propagation and Transaction Policies
Example The following code shows a client using the PERMIT NonTxTargetPolicy to
invoke on a non-transactional object within a transaction. The client uses
the PolicyCurrent object to set the policy. Assume that the Account object
is using the REQUIRES or ADAPTS OTSPolicy and the AuditLog object is using
the FORBIDS OTSPolicy or no OTSPolicy at all:

// C++
//
// Get reference to PolicyCurrent object.
CORBA::ORB_var orb = ...
CORBA::Object_var obj =
 orb->resolve_initial_references(�PolicyCurrent�);

CORBA::PolicyCurrent_var policy_current =
 CORBA::PolicyCurrent::_narrow(obj);

// Create PERMIT NonTxTarget policy.
CORBA::PolicyList policy_list(1);
policy_list.length(1);

CORBA::Any tx_policy_value;
tx_policy_value <<= CosTransactions::PERMIT;

policy_list[0] = orb->create_policy(
 CosTransactions::NON_TX_TARGET_POLICY_TYPE,
 tx_policy_value);

// Set policy overrides.
policy_current->set_policy_overrides(policy_list,
 CORBA::ADD_OVERRIDE);

// Invoke on target object
CosTransctions::Current_var tx_current = ...
Account_var account = ...
AuditLog_var log = ...

tx_current->begin();
account->deposit(100.00);
log->append(�User ... deposited 100 to account ...�);
tx_current->commit(IT_true);
 68

Example Use of a NonTxTargetPolicy
Specifying the default
NonTxTargetPolicy

The default NonTxTargetPolicy value is taken from the
policies:non_tx_target_policy configuration variable, which can be set
to �prevent� and �permit� to represent the PREVENT and PERMIT policy
values. If this configuration variable is not set, the default is PREVENT.
69

CHAPTER 11 | Propagation and Transaction Policies
Use of the ADAPTS OTSPolicy

Using the ADAPTS OTSPolicy The ADAPTS OTSPolicy is useful for implementing services that must work
whether or not the client is using OTS transactions. If the client is using
transactions, the target object simply executes in the same transaction
context and its work will be either committed or rolled back when the client
completes the transaction.

However, if there is no transaction the target object can choose to create a
local transaction for the duration of the invocation.

Example The following code shows how a servant might be implemented to take
advantage of the ADAPTS OTSPolicy (error handling has been omitted):

// C++
void AccountImpl::deposit(float amount)
{
 CosTransactions::Current_var tx_current = ...

 // Test if a transaction was propagated from the client.
 CosTransactions::Control_var control =
 tx_current->get_control();

 if (CORBA::is_nil(control))
 {
 // No current transaction, so create one.
 tx_current->begin();
 }

 // Do the transactional work
 ...

 // If a local transaction was created, commit it.
 if (CORBA::is_nil(control))
 {
 tx_current->commit(IT_true);
 }
}

 70

Use of the ADAPTS OTSPolicy
This approach allows clients to selectively bracket operations with
transactions based on how much work is done. For example, if only a single
server operation is performed then no client transaction needs to be created.
However, if more than one operation is performed the client creates a
transaction to ensure ACID properties for all of the operations.

For example (error handling omitted):

For this example the servant created an OTS transaction. However, it could
just create a local database transaction instead or not create any transaction
at all.

// C++
// Deposit money into a single account (no transaction
// needed).
Account_var acc = ...
acc->deposit(100.00);

// Transfer money between two account (this requires a
// transaction)
Account_var src_acc = ...
Account_var dest_acc = ...
CosTransactions::Current_var tx_current = ...

tx_current->begin();
src_acc->withdraw(200.00);
dest_acc->deposit(200.00);
tx_current->commit(IT_true);
71

CHAPTER 11 | Propagation and Transaction Policies
Orbix-Specific OTSPolicies

The two proprietary OTSPolicy
values

Orbix extends the set of OTSPolicies with two proprietary values to support
automatically created transactions and optimizations. The values and their
meanings are:

Automatic Transactions The ADAPTS OTSPolicy (see �Use of the ADAPTS OTSPolicy� on page 70) is
useful for implementing servants that can be invoked both with and without
transactions. A useful pattern to use is for the servant to check for the
existence of a transaction and create one for the duration of the invocation if
there is none. The AUTOMATIC OTSPolicy provides this functionality without
having to code it into the servant implementation.

From the target object�s point of view the AUTOMATIC OTSPolicy is the same
as REQUIRES since the target object is always invoked in the context of a
transaction. However, from the clients point of view, the AUTOMATIC policy is
the same as ADAPTS since the client can choose whether to invoke on the
object within a transaction or not. In fact, object references created in a POA
with the AUTOMATIC OTSPolicy contain the ADAPTS policy so they can be
used by other OTS implementations that do not support the AUTOMATIC
OTSPolicy.

For the case were the client does not use a transaction and the
automatically created transaction fails to commit, the standard
TRANSACTION_ROLLEDBACK system exception is raised. Reporting of heuristic
exceptions is not supported.

AUTOMATIC This policy is used when the target object always
expects to be invoked within the context of a
transaction. If there is no transaction a transaction is
created for the duration of the invocation. This policy
guarantees that the target object is always invoked
within a transaction. See �Automatic Transactions� on
page 72.

SERVER_SIDE This policy is used in conjunction with just-in-time
transaction creation to optimize the number of
network messages in special cases. See �Just-In-Time
Transaction Creation� on page 73.
 72

Orbix-Specific OTSPolicies
Just-In-Time Transaction Creation Orbix provides three extensions to support the concept of just-in-time (JIT)
transaction creation to eliminate network messages in special conditions.
These extensions are:

1. A configuration option to enable JIT transaction creation, which allows
the creation of a transaction to be delayed until it is really needed.

2. The SERVER_SIDE OTSPolicy which allows a transaction to be created
just before a target object is invoked.

3. A additional operation commit_on_completion_of_next_call() that
allows the next invocation on an object to also commit the transaction.

The use of JIT transaction creation is useful when invocations between a
client and an object involve using a network connection. This is because it
can reduce the number of network messages that are exchanged to create,
propagate and commit a transaction.

Enabling JIT Transaction Creation JIT transaction creation is enabled by setting the
plugins:ots:jit_transactions configuration variable to �true�. When
enabled a call to Current::begin() does not create a transaction; instead,
it remembers that the client requested to create one. The client is said to be
in the context of an empty transaction. At this stage a call to
Current::get_status() would return StatusActive event though a real
transaction has not been created. Likewise, calls to Current::commit() and
Current::rollback() would succeed. A real transaction is only created at
the following points:

1. When any of the following CosTransactions::Current operations are
invoked: rollback_only(), get_control(), get_transaction_name()
or suspend().

2. When an object with any of the standard OTSPolicies is invoked.

If the target object�s OTSPolicy is SERVER_SIDE, a real transaction is not
created until the invocation has reached the object�s POA. Note that unlike
the AUTOMATIC OTSPolicy, this transaction it not terminated when the
invocation has completed. Instead, the client adopts the newly created
transaction.
73

CHAPTER 11 | Propagation and Transaction Policies
When JIT transactions are not enabled, the SERVER_SIDE OTSPolicy
behaves the same as the ADAPTS OTSPolicy, except that unlike the
AUTOMATIC policy, other OTS implementations will not recognize the new
policy.

A final optimization is possible when JIT transaction creation and the
SERVER_SIDE OTSPolicy are used. The OTS current object in Orbix provides
an additional operation that allows a transaction to be committed within the
context of the target object rather than by the client:

The commit_on_completion_of_next_call() operation causes the current
transaction to be committed after the completion of the next object
invocation (so long as the target object is using the SERVER_SIDE
OTSPolicy). The transaction commit is performed by the target object�s
POA, which means that the transaction will have been created and
committed in the context of the target object rather than by the client.

// IDL
module IT_CosTransactions
{
 interface Current : CosTransactions::Current
 {
 void
 commit_on_completion_of_next_call()
 raises (CosTransactions::NoTransaction)
 };
};
 74

Orbix-Specific OTSPolicies
To use the operation the client must include the file
<orbix/cos_transactions.hh> and narrow the OTS current object to the
IT_CosTransactions::Current interface.

Note that the client still must call the commit() operation, though this will
not result in any network messages.

// C++
CosTransactions::Current_var tx_current = ...

IT_CosTransactions::Current_var it_tx_current =
 IT_CosTransactions::Current::_narrow(tx_current);

Account_var account = ...
it_tx_current->begin();

account->deposit(100.00);

it_tx_current->commit_on_completion_of_next_call();
account->deposit(50.00);

it_tx_current->commit(IT_true);
75

CHAPTER 11 | Propagation and Transaction Policies
Migrating from TransactionPolicies

Mapping from TransactionPolicy
values

Previous releases of Orbix used the deprecated
CosTransaction::TransactionPolicy which provided seven standard
policy values and two Orbix extensions. Below is a table that provides the
mapping from TransactionPolicy values to their OTSPolicy and
InvocationPolicy equivalent.

Combining Policy Types It is possible to create a POA that combines all three policy types to support
interoperability with earlier versions of Orbix. However, invalid combinations
result in the PortableServer::InvalidPolicy exception being raised when
PortableServer::POA::create_POA() is called. An invalid combination is
any combination not in Table 3; for example combining Requires_shared
with ADAPTS and SHARED.

The mappings for the Allows_unshared and Allows_either
TransactionPolicies are not supported since this would lead to an invalid
combination of OTSPolicies and InvocationPolicies.

Table 3: Mapping from TransactionPolicy values

TransactionPolicy
Value

OTSPolicy
Value

InvocationPolicy
Value

Allows_shared ADAPTS SHARED

Allows_none FORBIDS SHARED

Requires_shared REQUIRES SHARED

Allows_unshared ADAPTS Not supported

Allows_either ADAPTS Not supported

Requires_unshared REQUIRES UNSHARED

Requires_either REQUIRES EITHER or none

Automatic_shared AUTOMATIC SHARED

Server_side_shared SERVER_SIDE SHARED
 76

Migrating from TransactionPolicies
Note: Support for the TransactionPolicy type may be discontinued in a
future Orbix release. It is recommended that only OTSPolicies and
InvocationPolicies be used.
77

CHAPTER 11 | Propagation and Transaction Policies
Explicit Propagation

Altering the IDL to propagate
explicitly

When a transaction is created directly using the TransactionFactory
interface the transaction must be propagated explicitly to target objects. This
means altering the IDL for the application to add an extra parameter for the
transaction�s Control object.

Example The following is the Account IDL interface modified to support explicit
propagation:

// IDL (in module Bank)
#include <CosTransactions.idl>
...
interface Account
{
 exception InsufficientFunds {};

 void deposit(in CashAmount amt.
 in CosTransactions::Control ctrl);

 void withdraw(in CashAmount amt,
 in CosTransactions::Control ctrl)
 raises (InsufficientFunds);
};
 78

Explicit Propagation
Each invocation on the account object must now take a reference to a
transaction control as its last parameter:

It is also possible to pass a reference to the transaction�s coordinator object
instead of its control object.

// C++
CosTransactions::TransactionFactory_var tx_factory = ...
CosTransactions::Control_var control =
 tx_factory->create(60);

Bank::Account_var src_acc = ...
Bank::Account_var dest_acc = ...
Bank::CashAmount amount = 100.0;
src_acc->withdraw(amount, control);
dest_acc->deposit(amount, control);

CosTransactions::Terminator_var term =
 control->get_terminator();
term->commit(IT_true);
79

CHAPTER 11 | Propagation and Transaction Policies
 80

CHAPTER 12

Using XA
Resource
Managers with
OTS
This chapter describes how to integrate with transactional
systems by implementing CosTransactions::Resource objects
on top of the standard X/Open XA interface.

In this chapter This chapter discusses the following topics:

The XA Interface page 82

XA and Multi-Threading page 85

Using the Orbix XA Plug-In page 87

Associations between Transactions and Connections page 89

Association State Diagram page 91

Using a Remote Resource Manager page 93
81

CHAPTER 12 | Using XA Resource Managers with OTS
The XA Interface

Resource objects To use a transactional system (such as a database system) with the
transaction service, you must connect the transactions provided by the
transactional system to the distributed transactions managed by the
transaction service. With the transaction service, this is achieved by
implementing CosTransactions::Resource objects � each resource
represents a local transaction in the transactional system � and registering
these Resource objects with the distributed transactions.

Because many systems provide a standard interface to their transactional
capabilities � the X/Open XA interface � you can implement
CosTransactions::Resource objects on top of the XA interface, and provide
an easy-to-use integration with the transaction service. This is precisely
what the Orbix XA plug-in provides.

XA Overview XA (X/Open CAE Specification, Distributed Transaction Processing: The XA
specification, December 1991, ISBN: 1 872630 24 3) specifies a standard
C API provided by transactional systems (called Resource Managers in the
XA specification) that want to participate in distributed transactions
 82

The XA Interface
managed by transaction managers developed by other vendors. XA defines a
set of C-function pointers, and a C-struct that holds these function pointers,
xa_switch_t (see orbix_sys/xa.h):

Function pointers Each XA Resource Manager must provide a global instance of xa_switch_t.
For example, Oracle's global xa_switch_t instance is called xaosw.

The function pointers provided by this xa_switch_t instances can be divided
into four categories:

� Functions to connect and disconnect to the XA Resource
Manager:xa_open() and xa_close(). The string passed to xa_open()
typically contains connection information, e.g. a database name and a
username and password.

� Transaction completion functions xa_prepare(), xa_commit(),
xa_rollback(), xa_forget() correspond to the
CosTransactions::Resource operations.

struct xa_switch_t
{
 char name[RMNAMESZ]; /* name of resource manager */
 long flags; /* resource manager specific options */
 long version; /* must be 0 */
 int (*xa_open_entry) /* xa_open function pointer */
 (char *, int, long);
 int (*xa_close_entry) /* xa_close function pointer */
 (char *, int, long);
 int (*xa_start_entry) /* xa_start function pointer */
 (XID *, int, long);
 int (*xa_end_entry) /* xa_end function pointer */
 (XID *, int, long);
 int (*xa_rollback_entry) /* xa_rollback function pointer */
 (XID *, int, long);
 int (*xa_prepare_entry) /* xa_prepare function pointer */
 (XID *, int, long);
 int (*xa_commit_entry) /* xa_commit function pointer */
 (XID *, int, long);
 int (*xa_recover_entry) /* xa_recover function pointer */
 (XID *, long, int, long);
 int (*xa_forget_entry) /* xa_forget function pointer */
 (XID *, int, long);
 int (*xa_complete_entry) /* xa_complete function pointer */
 (int *, int *, int, long);
};
83

CHAPTER 12 | Using XA Resource Managers with OTS
� Recovery function xa_recover() is currently not used by the XA
plug-in.

� Functions used to start and end associations between connections and
a transactions: xa_start(), xa_end()

In order to use an XA connection to do some work within a distributed
transaction, it is necessary to create an association between this
connection and the distributed transaction. xa_start() is used to
create such an association; xa_end(TMSUSPEND) suspends the
association, without releasing the connection; xa_start(TMRESUME)
resumes a suspended association; xa_end(TMSUCCESS) terminates an
association with success; and xa_end(TMFAIL) terminates an
association and marks the transaction rollback-only.

Note: xa_complete() is only used for asynchronous XA, an optional part of XA
which is not supported by any popular XA implementation.
 84

XA and Multi-Threading
XA and Multi-Threading
In the XA specification, the scope of an XA connection is called
thread-of-control. Each thread-of-control can only use the connections that
it has established (using xa_open()). The XA specification maps
thread-of-control to operating system process (2.2.8). Each thread in a
process has access to all the XA connections established by this process.
This is clearly specified in the JTA specification (XA for Java).

Unfortunately, for the C XA API, most vendors implement the following:

� a thread-unsafe mode, in which the scope of each XA connection is the
process (XA thread-of-control maps to process)

� a thread-safe mode, in which the scope of each XA connection is the
thread by which is was created (XA thread-of-control maps to thread)

For example, with Oracle, the +threads={true,false} option of the
OracleXA open string lets the application programmer choose between these
two modes.The thread-of-control equal thread model sometimes simplifies
the API used to access the data. For example, Oracle embedded SQL in
C/C++ (Pro*C/C++) has a notion of a default database connection for
each thread of control.

When the model is thread-of-control equal process, and a process has a
pool of connections to the same database, it is necessary to explicitly specify
which connection to use (with an Oracle AT clause):

EXEC SQL AT :db_name INSERT VALUES(123, 43, 3.49) INTO
SALE_DETAILS;

But when the model is thread-of-control equal thread, and each thread has
one connection to a given database, there is no need to explicitly specify the
connection to use (no AT clause):

EXEC SQL INSERT VALUES(123, 43, 3.49) INTO SALE_DETAILS;

The EXEC SQL statements used in a multi-threaded multi-connection
application look very much like the EXEC SQL statement used in a
single-threaded single-connection application.

The main drawback of tying connection and threads is flexibility since it
prevents the application from managing connections independently of
threads, which limits the kind of connection pooling that can be
implemented. Also, a CORBA server typically dispatches different requests
to different threads: the thread-of-control equal thread model prevents the
85

CHAPTER 12 | Using XA Resource Managers with OTS
use of xa_end(TMSUSPEND) at the end of a request and xa_start(TMRESUME)
at the beginning of the next request in the same transaction, since an
association must be resumed by the thread of control from which it was
suspended.
 86

Using the Orbix XA Plug-In
Using the Orbix XA Plug-In
The Orbix XA plug-in implements and manages
CosTransactions::Resource objects on behalf of the application. It
supports the two thread-of-control models described in the previous
paragraph: when the thread model is XA::PROCESS, it uses a single-threaded
persistent POA to host its CosTransactions::Resource servants. When the
thread model is XA::THREAD, it uses a multi-threaded persistent POA.

You access the XA plug-in by obtaining a reference to the XA::Connector
local object through resolve_initial_references():

Then you create an XA::ResourceManager, by calling
create_resource_manager on the connector. This operation creates a
persistent POA that hosts the resource manager's servant and will host the
CosTransactions::Resource servants. The create_resource_manager
operation also returns an XA::CurrentConnection local object, which

#include <omg/xa.hh>
CORBA::Object_var xa_connector_obj =
 orb- >resolve_initial_references("XAConnector");
XA::Connector_var xa_connector =
 XA::Connector::_narrow(xa_connector_obj);
87

CHAPTER 12 | Using XA Resource Managers with OTS
establishes (with xa_open()) connections when needed, and lets you start,
suspend, resume, and end associations between any transaction and the
current XA thread of control's connection.

The first parameter of create_resource_manager is the name of an Orbix
configuration namespace; this configuration namespace defines the name of
the resource manager persistent POA (defaults to the given namespace
name), the open string when the open_string parameter is empty, the close
string when the close_string parameter is empty, and various other
properties. The resource manager id can also be set in the configuration
using the rmid variable. When the rmid variable is set, the XA integration
uses the value as the rmid passed to xa_open() and all subsequent xa_
calls. When the rmid variable is not set, the XA integration generates a new
rmid value for each CurrentConection object.

XA::CurrentConnection_var current_connection;
XA::ResourceManager_var rm =
 xa_connector->create_resource_manager(
 "xa_resource_managers:oracle",
 // the name of an Orbix configuration namespace
 xaosw, // XA switch
 "", // empty open-string, i.e. the unsecured
 // open-string is specified in configuration
 "", // empty close-string, i.e. the unsecured
 // close-string is specified in the

configuration
 XA::PROCESS, // thread-model
 false, // no automatic association
 false, // do not use dynamic registration
 current_connection // (out) current connection local object
);
 88

Associations between Transactions and Connections
Associations between Transactions and
Connections

The CurrentConnection local interface is defined in the XA module as
follows:

When the thread model is PROCESS, xa_open() is called by the first start
call or the first operation performed by a Resource servant; and xa_close()
is called during shutdown. When the thread model is THREAD, xa_open()
is called the first time a thread calls CurrentConnection::start, or any
operation on a Resource servant; xa_close() is called when this thread
exits.

enum ThreadModel { PROCESS, THREAD };
local interface CurrentConnection
{

void
start(
 // xa_start(TMNOFLAGS) or xa_start(TMJOIN)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid
);
void
suspend(
 // xa_end(TMSUSPEND)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid
);
void resume(
 // xa_start(TMRESUME)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid
);
void end(
 // xa_end(TMSUCCESS) or xa_end(TMFAIL)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid,
 in boolean success
);
ThreadModel thread_model();
long rmid();

};
89

CHAPTER 12 | Using XA Resource Managers with OTS
In order to do some work within a distributed transaction with a given
resource manager, you have to associate the resource manager's current
connection with this transaction, by calling CurrentConnection::start:

The first time CurrentConnection::start() is called with a given
transaction, the XA plug-in creates a CosTransactions::Resource persistent
object and registers this object with the transaction coordinator.

Once you have finished using a connection, it is critical to end the
association with the transaction for two reasons:

� It releases the connection, and makes it available for other transactions

� As long as any connection is associated with a transaction, this
transaction cannot be committed. Some systems (e.g. Oracle) don't
even allow to roll back a transaction while it is associated with any
connection.

The recommended way to start and end (or
start/suspend/resume/suspend...) an association is to use a helper C++
class: the helper class constructor creates the association by calling start,
and the helper class destructor ends the association. The multi-threaded
transfer demo provides a helper Association class which uses start and end;
the single-threaded farm demo provides a helper Association class which
uses start, suspend and resume.

// assuming the OTS transaction is associated with the current
// thread

CosTransactions::Control_var control =
tx_current->get_control();

CosTransactions::Coordinator_var tx =
control->get_coordinator();

CosTransactions::PropagationContext_var ctx =
tx->get_txcontext();

const CosTransactions::otid_t& otid = ctx->current.otid;
current_connection->start(tx, otid);
 90

Association State Diagram
Association State Diagram
Figure 4 shows the state diagram of an association between a transaction
and an XA connection. In this diagram all start, suspend, resume, and end
calls are successful (they do not raise any exception). When start, suspend,
resume or end raises CORBA::INTERNAL with the minor code
IT_XA_MinorCodes::INTERNAL::XAER_RMFAIL_ the new state is
non-existant. When resume, suspend or end raises
CORBA::TRANSACTION_ROLLEDBACK with the minor code
IT_XA_MinorCodes::TRANSACTION_ROLLEDBACK::XA_RB_, the new state is
non-existant. When end raises CORBA::TRANSACTION_ROLLEDBACK with the
minor code
IT_XA_MinorCodes::TRANSACTION_ROLLEDBACK::DEFERRED_ROLLBACK, the
new state is non-existant. For every other exception raised by start, suspend,
resume and end, there is no state transition.
91

CHAPTER 12 | Using XA Resource Managers with OTS
Figure 4: Association State Diagram
 92

Using a Remote Resource Manager
Using a Remote Resource Manager
The Resource servants and the application logic that performs the
transactional data access (for example, through embedded SQL in C/C++
calls) do not need to be in the same process. You use the operation
Connector::connect_to_resource_manager to connect to a remote
XA::ResourceManager:

Some systems (e.g. Oracle) even allow you to create associations between a
given transaction and connections to the same database established by
different processes: this is referred to as tightly coupled threads in the XA
specification.

Using a remote resource manager is particularly useful for single-threaded
servers, because it allows you to make a data-access server available for
other transactions as soon as the transaction has finished with this server
(before the completion of the transaction). See the farm demonstration.

XA::CurrentConnection_var current_connection =
 xa_connector->connect_to_resource_manager(
 "xa_resource_managers:oracle",
// the name of an Orbix configuration namespace
 rm, // object reference to an XA::ResourceManager object
 xaosw, // XA switch
 "", //open string (empty string means that the actual open
 // string is in configuration)
 "", //close string (empty string means that the actual

close
 // string is in configuration)
 XA::PROCESS, // thread-model
 false, // no automatic association
 false, // do not use dynamic registration
);
93

CHAPTER 12 | Using XA Resource Managers with OTS
Before Completion Callback You can register with a resource manager any number of
BeforeCompletionCallback objects:

The before completion callbacks objects are called by the Resource servant
before prepare, commit_one_phase, and rollback on a non-prepared
transaction. If any of these before completion callbacks calls raise an
exception, the transaction is rolled back. A typical use of the
BeforeCompletionCallback is to end a suspended association in a
single-threaded server. See the farm demonstration.

Asynchronous Rollback Support An XA implementation may or may not support asynchronous rollbacks,that
is xa_rollback() may or may not be called on a transaction while this
transaction is actively associated with some connection. This is typically not
documented by the XA implementation � OracleXA does not support
asynchronous rollbacks, while SybaseXA does.

When you set supports_async_rollback to false and use a remote
resource manager, the XA plug-in uses a transient object to handle
asynchronous rollbacks (by deferring them until the association is ended).
This transient object is hosted by the root POA, so you have to activate the
root POA manager.

interface BeforeCompletionCallback
{
 void
 before_completion(
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid,
 in boolean success
);
};
interface ResourceManager
{
 unsigned long register_before_completion_callback(
 in BeforeCompletionCallback bcc);
 void unregister_before_completion_callback(
 in unsigned long key);
};
 94

Using a Remote Resource Manager
Ping Period The Resource Manager can periodically check that the transactions with
which the Resource servants it manages were registered are still alive by
calling get_status on their respective coordinators. When a call to
get_status fails (that is, it raises any exception), and the associated
Resource is not prepared, this Resource is immediately rolled back.
95

CHAPTER 12 | Using XA Resource Managers with OTS
 96

CHAPTER 13

Transaction
Management
This chapter covers some additional areas of transaction
management. This includes Synchronization objects,
transaction identity and status operations, relationships
between transactions and recreating transactions.

In this chapter This chapter discusses the following topics:

Synchronization Objects page 98

Transaction Identity Operations page 101

Transaction Status page 103

Transaction Relationships page 105

Recreating Transactions page 107
97

CHAPTER 13 | Transaction Management
Synchronization Objects

Synchronization interface The transaction service provides a Synchronization interface to allow an
object to be notified before the start of a transaction's completion and after it
is finished. This is useful, for example, for applications integrated with an
XA compliant resource manager where the data is cached inside the
application. By registering a synchronization object with the transaction the
cache can be flushed to the resource manager before the transaction starts
to commit. Without the synchronization object any updates made by the
application could not be moved from the cache to the resource manager.
The Synchronization interface is as follows:

before_completion() This operation is invoked during the commit protocol before any 2PC or 1PC
operations have been called, that is before any XA or Resource prepare
operations.

An implementation may flush all modified data to the resource manager to
ensure that when the commit protocol begins, the data in the resource is up
to date.

Raising a system exception causes the transaction to be rolled back as does
invoking the rollback_only() operation on the Current or Coordinator
interfaces.

The before_completion() operation is only called if the transaction is to be
committed. If the transaction is being rolled back for any reason this
operation is not called.

after_completion() This operation is invoked after the transaction has completed, that is after
all XA or Resource commit or rollback operations have been called. The
operation is passed the status of the transaction so it is possible to

// IDL (in module CosTransactions)
interface Synchronization : CosTransactions::TransactionalObject

{
 void before_completion();

 void (in Status s);
};
 98

Synchronization Objects
determine the outcome. It is possible that before_completion() has not
been called, so the implementation must be able to deal with this
possibility.

An implementation can use this operation to release locks that were held on
behalf of the transaction or to clean up caches. Raising an exception in this
operation has no effect on the outcome of the transaction as this has already
been determined. All system exceptions are silently ignored.

register_synchronization() A synchronization object is registered with a transaction by calling the
register_synchronization() operation on the transaction�s coordinator.
Assuming the SynchronizationImpl class supports the Synchronization
interface the following code may be used:

The register_synchronization() operation raises the Inactive exception
if the transaction has started completion or has already been prepared. A
synchronization object must only be registered once per transaction, this is
the application�s responsibility.

// C++
//
// Get the control and coordinator object for the
// current transaction.
//
CosTransactions::Current_var tx_current = ...
CosTransactions::Control_var control =
 tx_current->get_control();
CosTransactionsCoordinator_var coordinator =
 control->get_coordinator();

//
// Create a synchronization servant and activate it in a
// transactional POA. The OTS Policy should be ADAPTS
//
SynchronizationImpl servant = new SynchronizationImpl();
PortableServer::POA_var poa = ...
CosTransactions::Synchronization_var obj =
 sync_servant->activate(poa);

//
// Register the synchronization once with the transaction
//
coord->register_synchronization(obj);
99

CHAPTER 13 | Transaction Management
Note: Unlike resource objects, synchronization objects are not
recoverable. The transaction service does not guarantee that either
operation on the interface will be called in the event of a failure. It is
imperative that applications use a resource object if they need guarantees
in these situations (to release persistent locks for example).
 100

Transaction Identity Operations
Transaction Identity Operations

Coordinator interface identity
operations

The Coordinator interface provides a number of operations related to the
identify of transactions. Some of these operations are also available in the
Current interface:

// IDL (in module CosTransactions)
interface Coordinator {
 boolean is_same_transaction(in Coordinator tc);
 unsigned long hash_transaction();
 unsigned long hash_top_level_tran();
 string get_transaction_name();
 PropagationContext get_txcontext();
 ...
};

Table 4: Coordinator interface identity operations

Operation Description

is_same_transaction() Takes a transaction coordinator as a
parameters and returns true if both
coordinator objects represent the same
transaction; otherwise returns false.

hash_transaction() Returns a hash code for the transaction
represented by the target coordinator
obejct. Hash codes are uniformly
distributed over the range of a CORBA
unsigned long and are not guaranteed to be
unique for each transaction.

get_transaction_name() Returns a string representation of the
transaction�s identify. This string is not
guaranteed to be unique for each
transaction so it is only useful for display
and debugging purposes. This operation is
also available on the Current interface.
101

CHAPTER 13 | Transaction Management
Maintaining information in
individual transactions

The is_same_transaction() and hash_transaction() operations are
useful when it is necessary for an application to maintain data on a per
transaction basis (for example, for keeping track of whether a particular
transaction has visited the application before to determine whether a
Resource or Synchronization object needs to be registered). The
hash_transation() operation can be used to implement an efficient hash
table while the is_same_transaction() operation can be used for
comparison within the hash table.

For nested transaction families the hash_top_level_transaction() is
provided. This returns the hash code for the top level transaction.

get_txcontext() Returns the PropagationContext structure
for the transaction represented by the target
coordinator object. Amongst other
information, the PropagationContext
structure contains the transaction identifier
in the current.otid field. See �Recreating
Transactions� on page 107 for more
information on the structure of the
PropagationContext.

Table 4: Coordinator interface identity operations

Operation Description
 102

Transaction Status
Transaction Status

Coordinator interface status
operations

The Coordinator::get_status() operation returns the current status of a
transaction. This operation is also provided by Current::get_status() for
the current transaction. The status returned may be one of the following
values:

StatusActive The transaction is active. This is the case after the
transaction has started and before the transaction
has started to be committed or rolled back.

StatusCommitted The transaction has successfully completed its
commit protocol.

StatusCommitting The transaction is in the process of committing.

StatusMarkedRollback The transaction has been marked to be rolled back.

StatusNoTransaction There is no transaction. This can only be returned
from the Current::get_status() operation and
occurs when there is no transaction associated
with the current thread of control.

StatusPrepared The transaction has completed the first phase of
the 2PC protocol.

StatusPreparing The transaction is in the process of the first phase
of the 2PC protocol.

StatusRolledBack The transaction has completed rolling back.

StatusRollingBack The transaction is in the process of being rolled
back.

StatusUnknown The exact status of the transaction is unknown at
this point.
103

CHAPTER 13 | Transaction Management
The following code shows how to obtain the status of a transaction from the
transaction�s coordinator object:

There are two additional status operations for use within nested transaction
families:

� get_top_level_status() returns the status of the top-level
transaction.

� get_parent_status() returns the status of a transaction�s parent.

// C++
CosTransactions::Coordinator_var coord = ...
CosTransactions::Status status = coord->get_status();
if (status == CosTransactions::StatusActive)
{
 ...
} else if (status == CosTransactions::StatusRollingBack)
{
 ...
} else if ...
 104

Transaction Relationships
Transaction Relationships

Coordinator interface relationship
operations

The Coordinator interface provides several operations to test the
relationship between transactions. Each operation takes as a parameter a
reference to another transaction�s coordinator object:

// IDL (in module CosTransactions)
interface Coordinator {
 boolean is_same_transaction(in Coordinator tc);
 boolean is_related_transaction(in Coordinator tc);
 boolean is_ancestor_transaction(in Coordinator tc);
 boolean is_descendant_transaction(in Coordinator tc);
 boolean is_top_level_transaction();
 ...
};

Table 5: Coordinator interface relationship operations

Operation Description

is_same_transaction() returns true if both coordinator objects
represent the same transaction;
otherwise returns false.

is_related_transaction() returns true if both coordinator objects
represent transactions in the same nested
transaction family; otherwise returns
false.

is_ancestor_transaction() returns true if the transaction represented
by the target coordinator object is an
ancestor of the transaction represented
by the coordinator parameter; otherwise
returns false. A transaction is an ancestor
to itself and a parent transaction is an
ancestor to its child transactions.
105

CHAPTER 13 | Transaction Management
Example The following code tests if the transaction represented by the coordinator c1
is an ancestor of the transaction represented by the coordinator c2:

is_descendant_transaction() Returns true if the transaction
represented by the target coordinator
object is a descendant of the transaction
represented by the coordinator
parameter; otherwise returns false. A
transaction is a descendant of itself and
is a descendent of its parent.

is_top_level_transaction() Returns true if the transaction
represented by the target coordinator
object is a top-level transaction;
otherwise returns false.

Table 5: Coordinator interface relationship operations

Operation Description

// C++
CosTransactions::Coordinator_var c1 = ...
CosTransactions::Coordinator_var c2 = ...
if (c1->is_ancestor_transaction(c2))
{
 // c1 is an ancestor of c2
}
else
{
 // c1 is not an ancestor of c2
}

 106

Recreating Transactions
Recreating Transactions

TransactionFactory interface The TransactionFactory interface provides the create() operation for
creating new top-level transactions. The interface also provides a
recreate() operation to import an existing transaction into the local
context. The recreate() is passed a PropagationContext structure and
returns a Control object representing the recreated transaction. The
interfaces and types are declared as follows:

// IDL (in module CosTransactions)
struct otid_t {
 long formatID;
 long bqual_length;
 sequence <octet> tid;
};

struct TransIdentity {
 Coordinator coord;
 Terminator term;
 otid_t otid;
};

struct PropagationContext {
 unsigned long timeout;
 TransIdentity current;
 sequence <TransIdentity> parents;
 any implementation_specific_data;
};

interface TransactionFactory
{
 Control recreate(in PropagationContext ctx);
 ...
};

interface Coordinator
{
 PropagationContext get_txcontext();
 raises (Unavailable);
 ...
};
107

CHAPTER 13 | Transaction Management
The PropagationContext is a structure that encodes sufficient information
about the transaction to successfully recreate it. To get the
PropagationContext for a transaction use the get_txcontext() operation
provided by the Coordinator interface.

Example The following code shows how to use the get_txcontext() and recreate()
operations to explicitly import a transaction given a reference to the Control
object for a foreign transaction:

The PropagationContext structure contains the transaction�s global identifier
in the current.otid field. This is essentially a sequence of octets divided into
two parts: a global transaction identifier and a branch qualifier. This
structure is indented to match the XID transaction identifier format for the
X/Open XA specification.

// C++
CosTransactions::Control_var foreign_control = ...
CosTransactions::Coordinator_var foreign_coord =
 foreign_control->get_coordinator();
CosTransactions::PropagationContext_var ctx =
 foreign_coord->get_txcontext();

CosTransactions::TransactionFactory_var tx_factory = ...
CosTransactions::Control_var control =
 tx_factory->recreate(ctx);
 108

CHAPTER 14

Writing
Recoverable
Resources
The OTS supports resource objects to allow applications to
participate in transactions. For example, an application might
maintain some data for which ACID properties are required.
This chapter describes the CosTransactions::Resource
interface; how resource objects participate in the transaction
protocols and the requirements for implementing resource
objects.

In this chapter This chapter discusses the following topics:

The Resource Interface page 110

Creating and Registering Resource Objects page 113

Resource Protocols page 117

Responsibilities and Lifecycle of a Resource Object page 127
109

CHAPTER 14 | Writing Recoverable Resources
The Resource Interface

Resource interface transaction
operations

The CosTransactions::Resource interface provides a means for
applications to participate in an OTS transaction. The interface is defined as
follows:

Resource object implementations cooperate with the OTS, through these
five operations, to ensure the ACID properties are satisfied for the whole
transaction. Each resource object represents a single participant in a
transaction and throughout the lifecycle of the resource it must respond to
the invocations by the OTS until the resource object is no longer needed.
This may include surviving the failure of the process or node hosting the
resource object or the failure of the process or node hosting the OTS
implementation.

// IDL (in module CosTransactions)
interface Resource
{
 void commit_one_phase()
 raises (HeuristicHazard);

 Vote prepare()
 raises (HeuristicMixed,
 HeuristicHazard);

 void rollback()
 raises (HeuristicCommit,
 HeuristicMixed,
 HeuristicHazard);

 void commit()
 raises (NotPrepared,
 HeuristicRollback,
 HeuristicMixed,
 HeuristicHazard);

 void forget();
};
 110

The Resource Interface
Overview of the use of resource
objects

Figure 5 shows a high level picture of how clients, applications, the OTS
and resource objects interoperate to achieve the ACID properties.

The steps involved are:

1. The client contacts the OTS implementation and creates a transaction.

2. The client makes invocations on the application within the context of
the transaction and updates some data.

3. The application detects that the data is being updated and creates a
resource object. The resource object is registered with the transaction.

4. The client completes by contacting the OTS implementation and
attempting to commit the transaction.

5. The transaction initiates the commit protocol. The choice of which
protocol to use (either 1PC or 2PC) depends on the number of resource
objects registered with the transaction and whether the OTS supports
the 1PC optimization.

Figure 5: Relationship between resources and transactions

Client

Log

Application

Data

Resource

update

write

OTS

Transaction

begin/commit

2PC/1PC
protocol

register
111

CHAPTER 14 | Writing Recoverable Resources
6. Assuming the 2PC protocol is being used, the OTS sends a prepare
message to the resource. The resource stably stores enough
information to recover in case of a crash (for example, by writing the
changes to a log file). The resource object votes to commit the
transaction.

7. The OTS gathers the votes of all resource objects and decides the
outcome of the transaction. This decision is send to all registered
resource objects.

8. The resource object upon receiving the commit or rollback message
makes the necessary changes and saves the decision to the log.

9. The OTS returns the outcome to the client.
 112

Creating and Registering Resource Objects
Creating and Registering Resource Objects

Implementing servants for
resource objects

Implementing servants for resource objects is similar to any servant
implementation. The resource servant class needs to inherit from the
POA_CosTransactions::Resource class to extend the ResourcePOA class and
provide implementations for the five resource operations. For example, the
following class can be used to implement a resource servant:

// C++
class ResourceImpl : public POA_CosTransactions::Resource
{
 public:

 ResourceImpl();

 virtual ~ResourceImpl();

 CosTransactions::Vote
 prepare()
 throw (CORBA::SystemException,
 CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard);

 void
 rollback()
 throw (CORBA::SystemException,
 CosTransactions::HeuristicCommit,
 CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard);

 void
 commit()
 throw(CORBA::SystemException,
 CosTransactions::NotPrepared,
 CosTransactions::HeuristicRollback,
 CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard);
113

CHAPTER 14 | Writing Recoverable Resources
Creating resource objects Resource objects, once prepared, must survive failures until the 2PC
protocol has completed. During recovery any resource objects requiring
completion must be recreated using the same identifier so the transaction
coordinator can deliver the outcome. This means that resource objects must
be created within a POA with a PERSISTENT lifespan policy and a USER_ID ID
assignment policy. For more details see the sections on Setting Object
Lifespan and Assigning Object IDs in the chapter on Managing Server
Objects in the CORBA Programmer�s Guide, C++ for more details.

Tracking resource objects Each resource object can only be used once and may only be registered with
one transaction. It is up to the application to keep track of whether it has
seen a particular transaction before. This can be done efficiently using the
hash_transaction() and is_same_transaction() operations provided by
the Coordinator interface to implement a hash map (see �Transaction
Identity Operations� on page 101 for details).

Some form of unique identifier must be used for the resource object�s
ObjectId. One possibility is to use the transaction identifier (obtained from
the otid field in the transaction�s propagation context).

 void
 commit_one_phase()
 throw(CORBA::SystemException,
 CosTransactions::HeuristicHazard);

 void
 forget()
 throw (CORBA::SystemException);
};
 114

Creating and Registering Resource Objects
Registering resource objects Registration of a resource object with a transaction is done by the
register_resource() operation provided by the transaction�s coordinator
object. For example, the following code sample shows a resource servant
and object being created and registered with a transaction:

// C++
CosTransactions::Current_var tx_current = ...

// Get the transaction�s coordinator object.
CosTransactions::Control_var control =
 tx_current->get_control();
CosTransactions::Coordinator_var coord =
 control->get_coordinator();

// Create resource servant.
ResourceImpl* servant = new ResourceImpl();

// Create resource object. The POA referenced by resource_poa
// has the PERSISTENT lifespan policy and the USER_ID ID
// assignment policy.
PortableServer::POA_var resource_poa = ...
PortableServer::ObjectId_var oid = ...

resource_poa->activate_object_with_id(oid, servant);

CORBA::Object_var obj =
 resource_poa->servant_to_reference(servant);

CosTransactions::Resource_var resource =
 CosTransactions::Resource::_narrow(obj);

// Register the resource with the transaction coordinator.
CosTransactions::RecoveryCoordinator_var rec_coord =
 coord->register_resource(resource);
115

CHAPTER 14 | Writing Recoverable Resources
The register_resource() operation returns a reference to a recovery
coordinator object:

The recovery coordinator object supports a single operation,
replay_completion(), that is used for certain failure scenarios (see �Failure
of the Transaction Coordinator� on page 124). Resource objects must hold
onto the recovery coordinator reference.

The register_resource() operation raises the Inactive exception if the
transaction is no longer active.

// IDL (in module CosTransactions)
interface Coordinator
{
 RecoveryCoordinator register_resource(in Resource r)
 raises(Inactive);
 ...
};

interface RecoveryCoordinator
{
 Status replay_completion(in Resource r)
 raises(NotPrepared);
};
 116

Resource Protocols
Resource Protocols

Protocols supported by resource
objects

Resource object implementations cooperate with the transaction coordinator
to achieve the ACID properties. This section examines the protocols that
resource objects are required to support:

� Rolling back a transaction.

� The 2-phase-commit protocol.

� Read-only resources.

� The 1-phase-commit protocol.

� Heuristic outcomes.

� Failure and recovery

Transaction Rollbacks Up until the time the coordinator makes the decision to commit a
transaction, the transaction may be rolled back for a number of reasons.
These include:

� A client calling the rollback() operation.

� Attempting to commit the transaction after the transaction has been
marked to be rolled-back with the rollback_only() operation.

� The transaction being timed-out.

� The failure of any participant in the transaction.
117

CHAPTER 14 | Writing Recoverable Resources
When the transaction is rolled-back all registered resource are rolled-back
via the rollback() operation. Figure 6 shows a transaction with two
registered resource objects being rolled back after a timeout.

Rollbacks may also occur during the 2PC protocol (see below).

The 2-Phase-Commit Protocol The 2-phase-commit (2PC) protocol is designed so that all participants
within a transaction know the final outcome of the transaction. The final
outcome is decided by the transaction coordinator but each resource object
participating can influence this decision.

During the first phase, the transaction coordinator invokes the prepare()
operation on each resource asking it to prepare to commit the transaction.
Each resource object returns a vote which may be one of three possible
values: VoteCommit indicates the resource is prepared to commit its part of
the transaction; VoteRollback indicates the transaction must be rolled-back;
and VoteReadOnly indicates the resource is no longer interested in the
outcome of the transaction (see �Read-Only Resources� on page 119).

The coordinator makes a decision on whether to commit or rollback the
transaction based on the votes of the resource objects. Once a decision has
been reached the second phase commences where the resource objects are
informed of the transaction outcome.

In order for the coordinator to decide to commit the transaction, each
resource object must have either voted to commit the transaction or
indicated that it is no longer interested in the outcome. Once a resource has
voted to commit, it must wait for the outcome to be delivered via either the
commit() or rollback() operation. The resource must also survive failures.

Figure 6: Rollback after a timeout

OTS Resource A Resource BClient

rollback

rollback

begin

TIMEOUT
 118

Resource Protocols
This means that sufficient information must be stable stored so that during
recovery the resource object and its associated state can be reconstructed.
Figure 7 shows a successful 2PC protocol with two resources objects. Both
resources return VoteCommit from the prepare() operation and the
coordinator decides to commit the transaction resulting in the commit()
operations being invoked on the resources.

If one resource returns VoteRollback the whole transaction is rolled back.
Resources which have already been prepared and which voted to commit
and resources which have not yet been prepared are told to rollback via the
rollback() operation. Figure 8 shows VoteRollback being returned by one
resource which results in the other resource being told to rollback.

Read-Only Resources A resource can return VoteReadOnly from the prepare() operation which
means the resource is no longer interested in the outcome of the
transaction. This is useful, for example, when the application data

Figure 7: Successful 2PC protocol with two resources

OTS Resource A Resource BClient

prepare

prepare

commit

commit

VoteCommit

VoteCommit

commit

Figure 8: Voting to rollback the transaction.

commit
OTS Resource A Resource BClient

prepare

rollback

VoteRollback

TRANSACTION_ROLLEDBACK
119

CHAPTER 14 | Writing Recoverable Resources
associated with the resource was not modified during the transaction. Here
it does not matter whether the transaction is committed or rolled back. By
returning VoteReadOnly the resource is opting out of the 2PC protocol and
the resource object will not be contacted again by the transaction
coordinator.

Figure 9 shows the 2PC protocol with two resource objects. In the first
phase, the first resource returns VoteReadOnly and the second resource
returns VoteCommit. During the second phase only the second resource is
informed of the outcome (commit in this case).

The 1-Phase-Commit Protocol The 1-phase-commit (1PC) protocol is an optimization of the 2PC protocol
where the transaction only has one participant. Here the OTS can short
circuit the 2PC protocol and ask the resource to commit the transaction
directly. This is done by invoking the commit_one_phase() operation rather
than the prepare() operation.

When the 1PC protocol is uses the OTS is delegating the commit decision to
the resource object. If the resource object decides to commit the
transaction, the commit_one_phase() operation returns successfully.

Figure 9: A resource returning VoteReadOnly.

commit

OTS Resource A Resource BClient

prepare

prepare

commit

VoteReadOnly

VoteCommit
 120

Resource Protocols
However, if the resource decides to rollback the transaction it must raise the
TRANSACTION_ROLLEDBACK system exception. Figure 10 shows a successful
1PC protocol.

Figure 11 shows a 1PC protocol resulting in the transaction being
rolled-back.

It is possible for the commit_one_phase() operation to be called even when
more than one resource is registered with a transaction when resources
return VoteReadOnly from prepare(). Assume for example there are three
resources registered with a transaction. If the first two resources both return
VoteReadOnly the third resource does not need to be prepared and the
commit_one_phase() operation can be used instead.

Heuristic Outcomes Heuristics outcomes occur when at least one resource object unilaterally
decides to commit or rollback its part of the transaction and this decision is
in conflict with the eventual outcome of the transaction. For example, a
resource may have a policy that, once prepared, it will decide to commit if
no outcome has been delivered within a certain period. This might be done
to free up access to shared resources.

Figure 10: A successful 1PC protocol.

commit

OTS Resource AClient

commit_one_phase

Figure 11: The 1PC protocol resulting in a rollback.

commit

OTS Resource AClient

commit_one_phase

TRANSACTION_ROLLEDBACK

TRANSACTION_ROLLEDBACK
121

CHAPTER 14 | Writing Recoverable Resources
Any unilateral decisions made must be remembered by the resource. When
the eventual outcome is delivered to the resource it must reply according to
the compatibility of the decisions. For example, if the resource decides to
commit its part of the transaction and the transaction is eventually rolled
back, the resource�s rollback() operation must raise the HeuristicCommit
exception. The following table lists the resource�s response for the various
possible outcomes.

Once a resource has raised a heuristic exception it must remember this until
the forget() operation has been called by the OTS (see Figure 12). For
example, after a failure the OTS might invoke the rollback operation again in
which case the resource must re-raise the HeuristicCommit exception.
Once the forget() operation has been called the resource object is no
longer required and can be deleted.

Table 6: Heuristic Outcomes

Resource Decision Transaction Outcome Resource�s Response

Commit Commit commit() returns successfully.

Commit Rollback rollback() raises HeuristicCommit

Rollback Rollback rollback() returns successfully

Rollback Commit commit() raises HeuristicRollback

Figure 12: Raising the HeuristicCommit exception

commit

OTS Resource AClient

prepare

rollback

VoteCommit

Commit!

HeuristicCommit

HeuristicHazard forget
 122

Resource Protocols
Heuristic outcome are reported to the client only if true is passed to the
commit() operation provided by the OTS Current object. They are reported
by raising one of the exceptions: HeuristicMixed or HeuristicHazard.
HeuristicMixed means a heuristic decision has been made resulting in
some updates being committed and some being rolled back.
HeuristicHazard indicates that a heuristic decision may have been made.

If the commit_one_phase() operation is called by the transaction
coordinator, the commit decision is delegated to the resource
implementation. This means that if the operation fails (that is results in a
system exception other than TRANSACTION_ROLLEDBACK being raised) then
the coordinator cannot know the true outcome of the transaction. For this
case, the OTS raises the HeuristicHazard exception.

Failure and Recovery Resource objects need to be able to deal with the failure of the process or
node hosting the resource and the failure of the process or node hosting the
OTS implementation.

Failure of the Resource If the process or node hosting the resource object fails after the resource has
been prepared, the resource object must be recreated during recovery so
that the outcome of the transaction can be delivered to the resource.
Figure 13 shows a crash occurring sometime after the resource has been
prepared but before the coordinator invokes the commit() operation. When
the coordinator does invoke the commit() operation the resource object is
not active and the coordinator will attempt to commit later. In the meantime
123

CHAPTER 14 | Writing Recoverable Resources
the resource object is recreated and waits for the commit() operation to be
invoked. The next time the coordinator calls commit() the resource receives
the invocation and proceeds as normal.

If the failure occurs before the resource has been prepared, there is no need
to recreate the resource during recovery. When the 2PC protocol starts the
OTS will not be able to contact the resource and the transaction will be
rolled back.

Failure of the Transaction
Coordinator

If the process or node hosting the transaction coordinator fails there are two
possible ways in which the failure is resolved:

1. The transaction coordinator recovers and eventually sends the outcome
to the resource. Here, the resource does not need to participate in the
recovery; either the commit() or rollback() operation will be invoked
as normal.

2. The resource detects that no outcome has been delivered and asks the
transaction coordinator to complete the transactions. This is done
using the replay_completion() operation provided by the recovery
coordinator object.

Figure 13: Recovery after the failure of a resource object

OTS Resource AClient Application
begin

register_resource

commit

prepare

CRASH!

VoteCommit

recreate

create

commit

commit
 124

Resource Protocols
The second way of resolving the failure of the OTS is required because the
OTS supports a behavior called presumed rollback. With presumed rollback,
if a transaction is rolled back the coordinator is not required to stably store
this fact. Instead, on recovery if there is no information available on a
transaction, the transaction is presumed to have rolled back. This saves on
the amount of data that must be stably stored but means the resource
object must check to see if the transaction has been rolled back.

Recall from �Creating and Registering Resource Objects� on page 113 when
a resource is registered with the coordinator a reference to a recovery
coordinator object is returned. The recovery coordinator supports the
RecoveryCoordinator interface:

The sole operation, replay_completion(), takes a resource object and
returns the status of the transaction. If the transaction has not been
prepared the NotPrepared exception is raised. The replay_completion()
operation is meant to hint to the coordinator that the resource is expecting
the transaction to be completed.

To support detecting presumed rolled-back transactions, the
replay_completion() operation is used to detect if the transaction still
exists. If the transaction still exists the operation will either return a valid
status or the NotPrepared exception. However, if the transaction no longer
exists the OBJECT_NOT_EXIST system exception will be raised (other system
exceptions should be ignored).

By periodically calling replay_completion() and checking for the
OBJECT_NOT_EXIST exception, the resource object can detect rolled-back
transactions (see Figure 14). This periodic calling of replay_completion()
must be done before the resource has been prepared, after the resource has
been prepared and after recovery of the resource due to a crash. To
implement the latter, the resource object needs to stably store the recovery
coordinator reference (for example using a stringified IOR) so that after a
failure, the recovery coordinator can be contacted.

// IDL (in module CosTransactions)
interface RecoveryCoordinator
{
 Status replay_completion(in Resource r)
 raises (NotPrepared);
};
125

CHAPTER 14 | Writing Recoverable Resources
Figure 14: Use of the replay_completion() operation

OTS Resource AClient Application
begin

register_resource

replay_completion

NotPrepared
replay_completion

NotPrepared

commit
prepare

replay_completion

CRASH!

replay_completion

OBJECT_NOT_EXIST Rollback!

VoteCommit

create
 126

Responsibilities and Lifecycle of a Resource Object
Responsibilities and Lifecycle of a Resource
Object

Overview This section details the responsibilities of a resource object for each
operation and shows the lifecycle of a resource object.

prepare() Vote prepare() raises (HeuristicMixed, HeuristicHazard);

The prepare() operation is called during the first phase of the 2PC protocol
allowing the resource to vote in the transaction�s outcome and if necessary
prepare for eventual commitment.

Voting is done by returning one of the three values VoteCommit,
VoteRollback and VoteReadOnly:

VoteCommit This indicates that the resource is willing to
commit its part of the transaction and has fully
prepared itself for the eventual outcome of the
transaction. The next invocation on the resource
will be either commit() or rollback().

VoteRollback This indicates that the resource has decided to
rollback the transaction. This ensures that the
transaction will be rolled back. The resource object
can forget about the transaction and no further
operations will be invoked on the resource object.

VoteReadOnly This indicates that the resource does not want to
be further involved in the 2PC protocol. This does
not affect the transaction outcome and the
resource object can forget about the transaction.
No further operations will be invoked on the
resource object.
127

CHAPTER 14 | Writing Recoverable Resources
If a resource object returns VoteCommit it must stably store sufficient
information so that in the event of a failure, the resource object and its state
can be reconstructed and continue to participate in the 2PC protocol. The
actual information that is saved depends on the application, but typically it
will include the following:

� The identity of the transaction. This can be obtained from the otid field
in the transaction�s propagation context which in turn is obtained by
the get_txcontext() operation on the transaction�s coordinator.

� The ObjectID for the resource.

� The reference for the recovery coordinator object associated with the
resource. This can be saved as a stringified IOR obtained by the
object_to_string() operation.

� Sufficient information to redo or undo any modifications made to
application data by the transaction.

The prepare() operation can raise two exceptions dealing with heuristic
outcomes: HeuristicMixed and HeuristicHazard. These exceptions may be
used internally in an OTS implementation; most resource implementations
do not need to raise these exceptions.

commit() void commit() raises (NotPrepared, HeuristicRollback,
HeuristicMixed, HeuristicHazard)

The commit() operation is called during the second phase of the 2PC
protocol after the coordinator has decided to commit the transaction. The
commit() operation may be invoked multiple times due to various failures
such as a network error, failure of the OTS and failure of the application.

Typically the commit() operation does the following:

� Make permanent any modifications made to the data associated with
the resource.

� Cleans up all traces of the transaction, including information stably
stored for recovery.

The commit() operation can raise one of four user exceptions: NotPrepared,
HeuristicRollback, HeuristicMixed, HeuristicHazard. The NotPrepared
exception must be raised if commit() is invoked before the resource has
been prepared (that is, returned VoteCommit from the prepare() operation).
 128

Responsibilities and Lifecycle of a Resource Object
The HeuristicRollback exception must be raised if the resource had
decided to rollback its part of the transaction after being prepared and prior
to the commit() operation being invoked. If this exception is raised it must
be raised on future invocations of the commit() operation and the resource
must wait for the forget() operation to be invoked before cleaning up the
transaction.

The HeuristicMixed and HeuristicHazard exceptions may be used
internally in an OTS implementation; most resource implementations do not
need to raise these exceptions.

rollback() void rollback() raises (HeuristicCommit, HeuristicMixed,
HeuristicHazard)

There are two occasions when the rollback() operation is called:

1. During the second phase of the 2PC protocol after the coordinator has
decided to commit the transaction.

2. When the transaction is rolled back prior to the start of the 2PC
protocol. This may occur for several reasons including the client
invoking the rollback() operation on the OTS Current object, the
transaction begin timed-out, and an attempt to commit a transaction
that has been marked for rollback.

The rollback() operation may be invoked multiple times due to various
failures such as a network error, failure of the OTS and failure of the
application.

Typically the rollback() operation does the following:

� Undo any modifications made to the data associated with the resource.

� Cleans up all traces of the transaction, including information stably
stored for recovery.

The rollback() operation can raise one of three user exceptions:
HeuristicCommit, HeuristicMixed, HeuristicHazard. The
HeuristicCommit exception must be raised if the resource had decided to
commit its part of the transaction after being prepared and prior to the
rollback() operation being invoked. If this exception is raised it must be
raised on future invocations of the rollback() operation and the resource
must wait for the forget() operation to be invoked before cleaning up the
transaction. Heuristic exceptions can only be raised if the resource has been
prepared.
129

CHAPTER 14 | Writing Recoverable Resources
The HeuristicMixed and HeuristicHazard exceptions may be used
internally in an OTS implementation; most resource implementations do not
need to raise these exceptions.

commit_one_phase() void commit_one_phase() raises (HeuristicHazard)

The commit_one_phase() operation may be invoked when there is only one
resource registered with the transaction. The resource decides whether to
commit or rollback the transaction. Typically the commit_one_phase()
operation does the following:

� An attempt is made to commit any changes made to the application
data. If this succeeds the operation returns normally; otherwise the
changes are undone and the TRANSACTION_ROLLEDBACK system
exception is raised.

� Cleans up all traces of the transaction.

The HeuristicHazard exception must be raised if the resource cannot
determine whether the commit attempt was successful or not. If this
exception is raised the resource must wait for the forget() operation to be
invoked before cleaning up the transaction.

forget() void forget()

The forget() operation is called after the resource object raised a heuristic
exception from either commit(), rollback() or commit_one_phase(). The
forget() operation may be invoked multiple times due to various failures
such as a network error, failure of the OTS and failure of the application.
Typically the resource cleans up all traces of the transaction, including
information stably stored for recovery.
 130

Responsibilities and Lifecycle of a Resource Object
Resource Object Checklist The following is a list of things to remember when implementing recoverable
resource objects:

� A resource object can only be registered with one transaction. At the
end of the resource�s lifecycle the resource must be deactivated.

� Resource objects need unique identifiers. This means they must be
created in a POA with a USER_ID ID assignment policy.

� Resource objects must be able to be recreated after a failure. This
means they must be created in a POA with a PERSISTENT lifecycle
policy.

� Resource objects must implement both the 2PC operations
(prepare(), commit(), rollback() and forget()) as well as the 1PC
operation (commit_one_phase()).

� Only return VoteCommit from the prepare() operation if the resource
can commit the transaction and has stably stored sufficient state to be
recreated after a failure.

� If a resource object wants to opt out of the 2PC protocol, it should
return VoteReadOnly from the prepare() operation.

� If the resource takes heuristic decisions, the decisions must be
remembered and reported to the OTS.

� Periodically call the replay_completion() operation to check for
presumed rollback transactions.

� Resources are expensive in terms of 2PC messages and stable storage
for recovery. Design your applications to minimize the number of
resources used.
131

CHAPTER 14 | Writing Recoverable Resources
 132

CHAPTER 15

Interoperability
This chapter describes how the Orbix OTS interoperates with
older releases of Orbix and with other OTS implementations
including the Orbix 3 OTS.

In this chapter This chapter discusses the following topics:

Use of InvocationPolicies page 134

Use of the TransactionalObject Interface page 135

Interoperability with Orbix 3 OTS Applications page 137

Using the Orbix 3 otstf with Orbix Applications page 140
133

CHAPTER 15 | Interoperability
Use of InvocationPolicies

Deprecated policies This release of Orbix introduces the OTSPolicies, InvocationPolicies and
NonTxTargetPolicies that replace the deprecated TransactionPolicies. The
deprecated TransactionPolicies (for example, Requires_shared and
Allows_shared) are supported allowing interoperability between different
releases of Orbix.

When creating Orbix transactional POAs that must interoperate with
previous releases, the policies for the POA must include the deprecated
TransactionPolicy as well as the OTSPolicy and InvocationPolicy. See
�Migrating from TransactionPolicies� on page 76 for more details.

Note: Support for the TransactionPolicy type may be discontinued in a
future Orbix release. It is recommended that only OTSPolicies and
InvocationPolicies be used.
 134

Use of the TransactionalObject Interface
Use of the TransactionalObject Interface

Enabling support for the
TransactionalObject interface

Version 1.1 of the OTS specification uses inheritance from the empty
CosTransactions:TransactionalObject interface to indicate the
transactional requirements of an object. For example, the Orbix 3 OTS only
supports the TransactionalObject interface and not the policies.

Orbix provides support for the TransactionalObject interface, allowing
different behaviors to be configured. This support needs to be enabled by
setting the plugins:ots:support_ots_v11 configuration variable to �true�
(by default this support is not enabled). Once enabled, an object which
supports the TransactionalObject interface is interpreted as having an
effective OTSPolicy which depends on the value of the
plugins:ots:ots_v11_policy configuration variable. Table 7 details this
mapping:

The default value for the plugins:ots:ots_v11_policy is �requires� since
this is the default behavior for the Orbix 3 OTS. For backward compatibility
with previous Orbix releases a value of �allows� is interpreted as �adapts�.

It is recommended that the when support for TransactionalObject is
enabled, the NonTxTargetPolicy PERMIT should be used.

If an object supports TransactionalObject and also uses OTSPolicies, the
OTSPolicies take priority; compatibility checks are not done.

Table 7: Mapping TransactionalObject to OTSPolicies

Inherits from
TransactionalObject

Value of
plugins:ots:ots_v11_policy

Effective
OTSPolicy Value

No n/a FORBIDS

Yes �requires� REQUIRES

Yes �adapts� ADAPTS
135

CHAPTER 15 | Interoperability
To summarize, to enable support for the TransactionalObject interface the
following is required:

1. Set the plugins:ots:support_ots_v11 configuration variable to
�true�.

2. Set the plugins:ots:ots_v11_policy configuration variable to either
�requires� (the default) or �adapts�.

3. Use the PERMIT NonTxTargetPolicy (for example, by setting the
policies:non_tx_target_policy configuration variable to �permit�).
 136

Interoperability with Orbix 3 OTS Applications
Interoperability with Orbix 3 OTS Applications

Overview This section details how an Orbix client can interoperate with an existing
Orbix 3 OTS application. Since Orbix 3 supports only the
TransactionalObject interface this section is an extension of the previous
section �Use of the TransactionalObject Interface� on page 135

Orbix 3 OTS Interoperability Figure 15 shows an Orbix client working with an existing Orbix 3 OTS
application. The first thing to note is that the Orbix 3 OTS always requires a
full 2PC transaction manager such as that provided by RRS (see �The OTS
RRS Transaction Manager� on page 151) or the otstf provided with Orbix 3.
A 1PC-only transaction created by the OTS Lite transaction manager will not
be usable by the Orbix 3 OTS. This means that the Orbix client must be
configured to use an external transaction factory to create transactions.

Using otstf as transaction
manager

To get the Orbix client to use the Orbix 3 otstf server as its transaction
manager, the initial_references:TransactionFactory:reference
configuration variable must be set to the reference of the otstf�s transaction
factory object. This can be done by passing the �T switch to the otstf and
copying the IOR reference output. Alternatively the otstf can publish its

Figure 15: Interoperability with Orbix 3 OTS Applications

Orbix 2000
OTS Client Database

Orbix 3
OTS

Application

Orbix 2000 itotstm
or

Orbix 3 otstf
137

CHAPTER 15 | Interoperability
name to the name service using the �t switch and a suitable corbaname
URL can be used as the reference value (see the section on Resolving
Names with corbaname in the chapter on the Naming Service in the CORBA
Programmer�s Guide, C++).

The Orbix 3 OTS application must be enabled to import standard transaction
contexts. This is done by setting the Orbix 3 OrbixOTS.INTEROP
configuration variable to �TRUE�.

The final consideration is the mapping from inheritance from
TransactionalObject to the effective OTSPolicy. The Orbix 3 OTS provides a
proprietary policy mechanism which mimics the behavior of the OTSPolicies
REQUIRES and ADAPTS (the default being REQUIRES). Therefore, when
selecting the value for the plugins:ots:ots_v11_policy configuration
variable, make sure it matches the policy expected by the Orbix 3
application.

Bypassing otstf It is possible to bypass the use of the otstf server and use the transaction
factory provided by the Orbix 3 OTS application. This is done by modifying
the Orbix 3 application to publish its internal transaction factory reference.
This is illustrated in the following code:

Summary The following is a checklist for enabling interoperability between Orbix
clients and Orbix 3 OTS applications.

1. Set the plugins:ots:support_ots_v11 configuration variable to
�true�.

2. Set the plugins:ots:ots_v11_policy configuration variable to match
the equivalent Orbix 3 OTS policy for the TransactionalObject
interface.

3. Use the PERMIT NonTxTargetPolicy.

// Orbix 3 OTS C++ Application Code
CORBA::ORB_var orb = ...
OrbixOTS::Server_var ots = ...

// Get reference to the local transaction factory.
CosTransactions::TransactionFactory_var tx_factory =
 ots->get_transaction_factory_reference();

// Publish reference (eg, to the name service or a file)
 138

Interoperability with Orbix 3 OTS Applications
4. Set the initial_references:TransactionFactory:reference
configuration variable to refer to either the Orbix 3 otstf�s transaction
factory another transaction factory that supports 2PC.

5. Set the Orbix 3 OrbixOTS.INTEROP configuration variable to �TRUE�.

For more information on the use of the otstf server and setting Orbix 3
transaction policies, refer to the OrbixOTS Programmer�s and
Administrator�s Guide at http://www.iona.com/support/docs/orbixotm/
orbixotm30.xml.
139

CHAPTER 15 | Interoperability
Using the Orbix 3 otstf with Orbix Applications

Using Orbix 3 otstf transaction
manager

Another possible use of Orbix 3 is to use the 2PC otstf transaction manager
with an Orbix OTS application. This setup is shown in Figure 16.

This setup is achieved by setting the
initial_references:TransactionFactory:reference configuration
variable to refer to the otstf�s transaction factory.

Figure 16: Using and alternative OTS Implementation

Orbix 2000
OTS Client Database

Orbix 2000
OTS Server

 Orbix 3 otstf
 140

Part 2
Administration

In this part This part contains the following chapters:

OTS Plug-Ins and Deployment Options page 143

OTS RRS Transaction Manager Configuration page 157

OTS RRS General Configuration page 165

Configuring the OTS RRS Plug-in page 169

Using OTS RRS Transaction Manager page 177

Note: All of these chapters are relevant regardless of which programming
language is being used for application development.

CHAPTER 17

OTS Plug-Ins and
Deployment
Options
Orbix provides a generic OTS plugin that provides an
implementation of the OTS Current object including
transaction propagation. Additionally, there are three OTS
transaction manager implementations: OTS Lite, which
provides a lightweight transaction coordinator supporting only
the 1PC protocol; OTS Encina, which provides full recoverable
2PC support in non-mainframe environments; and OTS RRS,
which provides full recoverable 2PC support in mainframe
environments. This chapter discusses deployment options.

In this chapter This chapter discusses the following topics:

Overview page 145

The OTS Plug-In page 147

The OTS Lite Plug-In page 149

The OTS RRS Transaction Manager page 151
143

CHAPTER 17 | OTS Plug-Ins and Deployment Options
The itotstm Transaction Manager Service page 152

Note: Because OTS Encina is not supported by Orbix Mainframe, it is not
discussed in this chapter.
 144

Overview
Overview

Overview This section provides an overview of the OTS plug-ins that Orbix Mainframe
supports. It discusses the following topics:

� �OTS Plug-ins� on page 145.

� �OTS Lite� on page 145.

� �OTS RRS� on page 145.

� �Features in OTS� on page 146.

OTS Plug-ins Orbix provides a generic OTS plugin that provides an implementation of the
OTS Current object including transaction propagation.

There are two OTS transaction manager implementations supported by
Orbix Mainframe:

� OTS Lite

� OTS RRS

OTS Lite OTS Lite provides lightweight transaction coordinator supporting only the
1PC protocol. It is available as an application plug-in and requires minimal
configuration and administration but can only be used by applications with
only a single resource manager.

OTS RRS OTS RRS provides full recoverable 2PC support in mainframe environments.
It can be used by the following:

� CICS transactions initiating two-phase commit processing.

� IMS transactions initiating two-phase commit processing.

� C++ programs requiring two-phase commit processing in z/OS and
z/OS UNIX System Services.

It is available as a standalone service and as an application plug-in.
145

CHAPTER 17 | OTS Plug-Ins and Deployment Options
Features in OTS Table 8 shows the features supported by these pieces.

Table 8: Features in OTS Implementation

Feature Generic OTS OTS Lite OTS RRS

Current Object Y

Transaction Policies Y

Old Transaction Policies Y

TransactionalObject Y

1PC Protocol Y Y

2PC Protocol N Y

Resource Objects Y Y

Synchronization Objects Y Y

Nested Transactions N N

Web Console Management N Y

XA Support Y Y

Application Plug-In Y Y Y
 146

The OTS Plug-In
The OTS Plug-In

Purpose of the OTS plug-in Any application using the OTS Current object needs to load the OTS plug-in.
This plug-in provides an implementation of the OTS Current object which
provides the thread/transaction association, propagation of the current
transaction to transactional objects and the policies OTSPolicy,
InvocationPolicy and NonTxTargetPolicy. In addition the OTS plug-in
provides the client stubs for the CosTransactions module, so applications
need to link with the OTS plug-in library.

The OTS plug-in does not provide any transaction manager functionality.
Instead the OTS plug-in delegates elsewhere using the standard
CosTransactions module APIs (see Figure 17). This allows different
deployment options to be easily supported through configuration.

Loading the OTS plug-in There are two ways in which the OTS plug-in can be loaded:

1. Explicitly adding the plug-in name �ots� to the orb_plugins
configuration variable. For example: orb_plugins = [..., �ots�];

2. Setting the initial_references:TransactionCurrent:plugin
configuration variable to the value �ots�. This causes the OTS plug-in
to be loaded when
resolve_initial_references(�TransactionCurrent�) is called.

Figure 17: The Generic OTS Plug-In

 Application

OTS Plug-In

?

147

CHAPTER 17 | OTS Plug-Ins and Deployment Options
When using this way, resolve_initial_references() should be
called immediately after ORB_init() has been called and before any
transaction POAs are created.

When the OTS plug-in is initialized it obtains a reference to a transaction
factory object by calling resolve_initial_references(�TransactionFactory�). So
changing which transaction manager to use is just a matter of using
configuration to change the outcome of resolve_initial_references().

Deployment scenarios The remainder of this section describes three possible deployment scenarios
for C++:

� Using the OTS Lite plug-in when only 1PC transactions are required.

� Using the itotstm service with the OTS RRS plug-in where recoverable
2PC transactions are required.

� Using the OTS RRS plug-in loaded into the application itself.

For more information, see the Orbix Deployment Guide at:
http://www.iona.com/support/docs/orbix/6.3/admin.xml
 148

http://www.iona.com/support/docs/orbix/6.3/admin.xml

The OTS Lite Plug-In
The OTS Lite Plug-In

Overview The OTS Lite plug-in is a lightweight transaction manager that only supports
the 1PC protocol. This plug-in allows applications that only access a single
transactional resource to use the OTS APIs without incurring a large
overhead, but allows them to migrate easily to the more powerful 2PC
protocol by switching to a different transaction manager. Figure 18 shows a
client/server deployment that uses the OTS Lite plug-in.

As usual both the client and server applications must load the OTS plug-in.
In addition the client application loads the OTS Lite plug-in, allowing the
client to create 1PC transaction locally.

Figure 18: Deployment using the OTS Lite Plug-In

Client
 Application

OTS Plug-In

OTS Lite Plug-In

Server
 Application

OTS Plug-In
149

CHAPTER 17 | OTS Plug-Ins and Deployment Options
Loading the OTS Lite plug-in As with the OTS plug-in the OTS Lite plug-in can be loaded in two ways:

1. Adding the plug-in name �ots_lite� to the orb_plugins configuration
variable. For example: orb_plugins = [..., �ots�, �ots_lite�];

2. Setting the initial_references:TransactionFactory:plugin
configuration variable to �ots_lite�. This causes the OTS Lite plug-in
to be loaded by the OTS plug-in when
resolve_initial_references(�TransactionFactory�) is called.

The server application does not need to load the OTS Lite plug-in except
when standard interposition is used (that is, when the
plugins:ots:interposition_style configuration variable is set to
�standard�). In this case when the OTS plug-in imports the transaction
from the client a transaction manager is required to create the
sub-coordinated transaction.

This deployment should be used when the application only accesses on
transactional resource (for example, updates a single database).
 150

The OTS RRS Transaction Manager
The OTS RRS Transaction Manager

Overview The OTS RRS Transaction Manager provides full recoverable 2PC
transaction coordination for applications running on the mainframe.

There are two ways in which the OTS RRS Transaction Manager may be
used:

� By configuring the itotstm service to load the OTS RRS plug-in.

� By loading the OTS RRS plug-in directly into the application.

Configuring the OTS RRS Plug-In Various administration steps must be performed before you can successfully
use the OTS RRS plug-in, regardless of whether it is used in the itotstm
service or directly in the application.

Two transient POAs must be created. These serve as namespace POAs
based on which the OTS RRS plug-in creates its persistent POAs. The first
POA is called �iOTS� and the second is a child POA whose name is set by
the plugins:ots_rrs:namespace_poa configuration item. The default value
of this configuration variable is �otstm� for the itotstm service, and �RRS� for
an application loading the plug-in. The POAs should be created using
itadmin as follows:

The minimum configuration required to load the OTS RRS plug-in into an
application is as follows:

Note: If you ran the orbixhlq.JCLLIB(DEPLOY3) JCL to deploy OTS RRS
on the mainframe, the required administration steps are performed
automatically.

itadmin poa create �transient �allowdynamic iOTS

itadmin poa create �transient �allowdynamic iOTS/otstm

<app-scope> {
 initial_references:TransactionFactory:plugin = �ots_rrs�;
 plugins:ots_rrs:namespace_poa = �<name>�;
}

151

CHAPTER 17 | OTS Plug-Ins and Deployment Options
The itotstm Transaction Manager Service

Overview The itotstm program is a standalone transaction manager service which can
be configured to load any transaction manager plug-in. This section shows
how it can be used along with the RRS OTS plug-in to provide 2PC
transactions for an application.

Deploying on the mainframe The JCL in orbixhlq.JCLLIB(DEPLOY3) is run to deploy OTS RRS. Running
this JCL sets the initial_references:TransactionFactory:reference
configuration item in the iona_services.otstm client scope. Clients can use
this reference by passing "-ORBname iona_services.otstm.client" to the
ORB_init() operation or by adding a copy of the variable to the application's
configuration scope.

The CICS and IMS client adapters can be configured to use the itotstm
Transaction Manager service, by adding the
initial_references:TransactionFactory:reference configuration item
into the iona_services.cics_client and iona_services.ims_client
configuration scopes. The Orbix Mainframe configuration is shipped with
this configuration item defined. Running the JCL in
orbixhlq.JCLLIB(DEPLOY3) sets it to the correct value.

Example client/server deployment Figure 19 shows a client/server deployment where the itotstm, in
conjunction with the OTS RRS plug-in, is used to provide 2PC transaction
management. In this case, neither the client nor the server needs to load
any transaction manager plug-in. Instead, the client OTS is configured to
pick up its transaction factory reference from the OTS RRS plug-in loaded
into the itotstm standalone service.
 152

The itotstm Transaction Manager Service

There are two parts to setting up such a deployment:

� Configuring the itotstm to load the OTS RRS plug-in.

� Configuring the OTS plug-in to pick up the reference to the OTS RRS
transaction factory within the itotstm service.

Configuring itotstm The itotstm service uses a configuration scope of otstm by default. This can
be changed by using a different ORB name, using the -ORBname command
line option. Configuring itotstm to load the OTS RRS plug-in can be done by
setting the initial_references:TransactionFactory:plugin configuration
variable to the name of the OTS RRS plug-in �ots_rrs�. Orbix Mainframe is
shipped with this configuration item defined in the otstm scope.

The remainder of the otstm scope should contain the configuration
necessary for the OTS RRS plug-in.

Figure 19: Using the OTS RRS plug-in with the itotstm service

Server
Application

OTS Plug-In

itotstm

OTS RRS Plug-In

OTS Plug-In

Client
Application

OTS Plug-In

Note: The orb_plugins configuration variable must contain �ots�,
because the OTS plug-in is required for synchronization objects.
153

CHAPTER 17 | OTS Plug-Ins and Deployment Options
Configuring the OTS plug-in Next the OTS plug-in loaded into the application needs to pick up the
transaction factory reference of the OTS RRS plug-in. Essentially this means
setting the initial_references:TransactionFactory:refererence
configuration variable in the application�s configuration scope to any
suitable reference. To do this, get the itotstm service to publish the
transaction factory IOR to a file, using the prepare and -publish_to_file
command-line switches. Then use the IOR in the file as the transaction
factory reference.

This deployment option should be used when the application requires (or
might require) full recoverable 2PC transactions. For example, the
application makes use of one or more resource managers.

Loading the OTS RRS Plug-In into
the Application

An alternative to loading the OTS RRS plug-in into the itotstm service is to
load the plug-in directly into the application, such as the client adapter. This
deployment is shown in Figure 20.

This deployment option should be used when the application requires full
recoverable 2PC transactions and also wants to improve performance by
eliminating some of the network messages that are necessary when the
standalone itotstm service is used.

Note: This is performed automatically when you run the
orbixhlq.JCLLIB(DEPLOY3) JCL.

Figure 20: Loading the OTS RRS Plug-In into the Client Adapter

Client Adapter Server
Application

OTS Plug-In OTS Plug-In

OTS RRS Plug-In
 154

The itotstm Transaction Manager Service
To configure this deployment, follow the instructions for configuring the OTS
RRS plug-in and ensure the configuration is performed within the
application�s scope. For example, to configure the IMS client adapter to load
the OTS RRS plug-in, make the following changes in the
iona_services.ims_client scope:

�
plugins:amtp_appc:maximum_sync_level = "2";
initial_references:TransactionFactory:plugin = "otr_rrs";
plugins:ots_rrs:namespace_poa = "otstm";
�

Note: Also, ensure that the initial_references:TransactionFactory:
reference configuration item is preceded by a comment character.
155

CHAPTER 17 | OTS Plug-Ins and Deployment Options
 156

CHAPTER 18

OTS RRS
Transaction
Manager
Configuration
This chapter provides information needed to configure the OTS
RRS Transaction Manager and its components (plug-ins). It
provides descriptions of all the configuration items involved in
running the OTS RRS Transaction Manager. It also provides
details on configuring the various system components used by
the OTS RRS Transaction Manager. These components include
the OTS_RRS plugin.

In this chapter This chapter discusses the following topics:

OTS RRS Transaction Manager Sample Configuration page 158

Configuration Summary of OTS RRS Plug-Ins page 161

Note: Because OTS Encina is not supported by Orbix Mainframe, it is not
discussed in this chapter.
157

CHAPTER 18 | OTS RRS Transaction Manager Configuration
OTS RRS Transaction Manager Sample
Configuration

Overview A sample configuration member is supplied with your Orbix Mainframe
installation that provides an example of how you might configure and deploy
the OTS RRS Transaction Manager on both native z/OS and UNIX System
Services.

This section discusses the following topics:

� �Location of configuration templates� on page 158.

� �Configuration scope� on page 158.

� �Configuration scope example� on page 159.

� �Configuring a domain� on page 160.

Location of configuration
templates

Sample configuration templates are supplied with your Orbix Mainframe
installation in the following locations:

� Non-TLS�orbixhlq.CONFIG(BASETMPL)

� TLS�orbixhlq.CONFIG(TLSTMPL)

The orbixhlq.CONFIG(ORXINTRL) member contains internal configuration
settings.

Configuration scope The OTS RRS Transaction Manager uses an ORBname of
iona_services.otstm. The items specific to the OTS RRS Transaction
Manager configuration are scoped in the iona_services.otstm
configuration scope.
 158

OTS RRS Transaction Manager Sample Configuration
Configuration scope example The following is an example of the iona_services.otstm configuration
scope.

The orbixhlq.CONFIG(ORXINTRL) member contains the following, which
re-opens the scope in the preceding example:

otstm
{
 event_log:filters = ["*=WARN+ERROR+FATAL",
 "IT_OTS_SRV=*",
 "IT_OTS_RRS=*"];

 plugins:ots_rrs:managed = "false";

 policies:iiop:server_address_mode_policy:local_hostname
 = "%{LOCAL_HOSTNAME}";

 plugins:ots_rrs:direct_persistence = "false";

 # Settings for well-known addressing:
 # (mandatory if direct_persistence is enabled)
 #
 # plugins:ots_rrs:iiop:port = 5003;
 # plugins:ots_rrs:iiop:host = "%{LOCAL_HOSTNAME}";

 plugins:orb:is_managed = "false";
 plugins:it_mgmt:managed_server_id:name
 = "iona_services.otstm";

 client
 {
 initial_references:TransactionFactory:reference
 = "%{LOCAL_OTSTM_REFERENCE}";
 };
};

otstm,
{
 initial_references:TransactionFactory:plugin = "ots_rrs";

 plugins:ots_rrs:namespace_poa = "otstm";

};
159

CHAPTER 18 | OTS RRS Transaction Manager Configuration
Configuring a domain See the CORBA Administrator�s Guide for details on how to configure an
Orbix domain.
 160

Configuration Summary of OTS RRS Plug-Ins
Configuration Summary of OTS RRS Plug-Ins

Overview Orbix configuration allows you to configure an application on a per-plug-in
basis. This section provides a summary of the configuration items
associated with plug-ins specific to the OTS RRS Transaction Manager.

This section discusses the following topics:

� �OTS RRS plug-ins� on page 161.

� �Summary of items for the ots_rrs plug-in� on page 161.

� �Summary of remaining configuration items� on page 164.

OTS RRS plug-ins The OTS RRS Transaction Manager consists of the ots_rrs plugin which
uses Resource Recovery Services (RRS) to provide two-phase commit
services for CICS and IMS transactions using the client adapter, or C++
processes running on z/OS or z/OS Unix System Services.

Summary of items for the ots_rrs
plug-in

The following is a summary of the configuration items associated with the
ots_rrs plug-in. (See �OTS RRS Plug-In Configuration Items� on page 171
for more details):

allow_registration_after_
rollback_only

Specifies whether registration of resource
objects is permitted after a transaction is
marked for rollback.

The default is "false".

debug_exits Determines whether debugging WTO
messages are enabled.

The default is "false".

direct_persistence Specifies whether the transaction factory
object can use explicit addressing (for
example, a fixed port).

The default is "false".

global_namespace_poa Specifies the top-level transient POA used
as a namespace for OTS implementations.

The default is "iOTS".
161

CHAPTER 18 | OTS RRS Transaction Manager Configuration
high_water_mark Specifies the maximum number of threads
allowed in the thread pool for RRS exit and
restart events.

The default is 10.

iiop_host Specifies the host on which the OTS RRS is
running, when run in direct persistence
mode.

iiop_port Specifies the port on which OTS RRS listens
on when running in direct persistence
mode.

initial_threads Specifies the number of initial threads in the
thread pool for RRS exit and restart events.

The default is low_water_mark, or 1 if
low_water_mark is not set.

log_name Specifies the resource manager log name.

The default value is rm_name + �.LOG�.

low_water_mark Specifies the minimum number of threads
in the thread pool for RRS exit and restart
events.

The default is -1.

max_active_timeout_handlers Specifies the number of threads to handle
timeouts.

The default is 5.

max_queue_size Specifies the maximum number of request
items that can be queued on the ORB�s
internal work queue for RRS exit and restart
events.

The default is -1.

namespace_poa Specifies the transient POA used as a
namespace.

The default is �RRS�.

orb_name Specifies the ORB name used for the
plugin�s internal ORB when
use_internal_orb is set to true.

The default is the application�s ORB name.
 162

Configuration Summary of OTS RRS Plug-Ins
otid_format_id Specifies the value of the formatID field of a
transaction�s identifier
(CosTransactions::otid_t).

The default is 0x494f4e41.

resource_retry_limit Specifies the maximum number of retries to
deliver a transaction outcome to an
unresponding resource object.

The default is -1, indicating no limit.

resource_retry_timeout Specifies the time in seconds to pause
between retries to an unresponding resource
object.

The default is 5.

rm_name Specifies the resource manager name.

The default value is �ORBIX.OTS�.

transaction_factory_name Specifies the initial reference for the
transaction factory.

The default is �TransactionFactory�.

transaction_timeout_period Specifies the time, in milliseconds, of which
all transaction timeouts are multiples.

The default is 1000.

use_internal_orb Specifies whether the ots_rrs plugin creates
an internal ORB for its own use.

The default is false.
163

CHAPTER 18 | OTS RRS Transaction Manager Configuration
Summary of remaining
configuration items

The following is a summary of the remaining configuration items. (See the
CICS Adapters Administrator�s Guide, IMS Adapters Administrator�s Guide,
and CORBA Administrator�s Guide for more details):

event_log:filters Specifies the types of events the OTS RRS
plug-in logs.

initial_references:
Transaction_Factory:
plugin

Specifies the OTS transaction manager
plugin.

plugins:orb:is_managed Specifies whether the OTS RRS Transaction
Manager is managed using the management
service.

plugins:it_mgmt:managed_
server_id:name

Specifies the server name that you wish to
appear in the IONA Administrator
management console.

policies:iiop:server_
address_mode_policy:
local_hostname

Specifies the server host name that is
advertised by the locator
daemon/configuration repository, and
listened on by server-side IIOP.
 164

CHAPTER 19

OTS RRS General
Configuration
This chapter provides details of the configuration items for the
OTS RRS Transaction Manager. These details specify
configuration items such as the level of Orbix event logging,
hostname, and management.

Overview This chapter discusses the following topics:

� �Orbix event logging� on page 166.

� �Transaction Factory Plug-in� on page 166.

� �Is managed� on page 166.

� �Managed server ID name� on page 166.

� �Local hostname� on page 167.
165

CHAPTER 19 | OTS RRS General Configuration
Orbix event logging The related configuration item is event_log:filters. It specifies the level of
event logging. To obtain events specific to OTS RRS, the IT_OTS_SRV and
IT_OTS_RRS event logging subsystems can be added to this list. For
example:

This logs all IT_OTS_SRV and IT_OTS_RRS events, and any warning, error,
and fatal events from all other subsystems (for example, IT_CORE, IT_GIOP,
and so on). The level of detail provided for IT_OTS_SRV and IT_OTS_RRS
events can be controlled by setting the relevant logging levels. See the
CORBA Administrator�s Guide for more details.

Transaction Factory Plug-in The related configuration item is initial_references:
TransactionFactory:plugin. This specifies the OTS transaction manager
plugin that is to be loaded. To load the OTS RRS plugin set the value to
�ots_rrs�.

Is managed The related configuration item is plugins:orb:is_managed. This specifies
whether OTS RRS can be managed using the management service. Setting
this to true allows for management tasks such as viewing the TimeRunning
attribute of OTS RRS, or shutting down ORTS RRS. The default is "false",
which means the management service does not manage the service.

Managed server ID name The related configuration item is it_mgmt:managed_server_id:name. This
specifies the server name that you wish to appear in the IONA Administrator
management console.

To enable management on a server, ensure that the following configuration
variables are set:

event_log:filters = ["*=WARN+ERROR+FATAL",
 "IT_OTS_SRV=*",
 "IT_OTS_RRS=*"];

plugins:orb:is_managed = true;
plugins:it_mgmt:managed_server_id:name = <your_server_name>;
 166

Local hostname The related configuration item is policies:iiop:server_address_mode_
policy:local_hostname. This specifies the server host name that is
advertised by the locator daemon/configuration repository, and listened on
by server-side IIOP. This variable enables support for multi-homed server
hosts. These are server machines with multiple hostnames or IP addresses
(for example, those using multiple DNS aliases or multiple network interface
cards). The local_hostname variable enables you to explicitly specify the
host name that the server listens on and publishes in its IORs. For example,
if you have a machine with two network addresses (207.45.52.34 and
207.45.52.35), you can explicitly set this variable to either address. For
example:

By default, the local_hostname variable is unspecified.

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";
167

CHAPTER 19 | OTS RRS General Configuration
 168

CHAPTER 20

Configuring the
OTS RRS Plug-in
The ots_rrs plug-in allows CICS client transactions, IMS client
transactions, and C++ programs running on z/OS or z/OS
UNIX System Services to take advantage of two-phase commit
processing.

In this chapter This chapter discusses the following topics:

Setting up RRS for the OTS RRS Plug-in page 170

OTS RRS Plug-In Configuration Items page 171
169

CHAPTER 20 | Configuring the OTS RRS Plug-in
Setting up RRS for the OTS RRS Plug-in

Overview This section provides details of how to set up RRS so that you can use the
OTS RRS plug-in. It discusses the following topics:

� �Prerequisites to using the OTS RRS plugin�.

� �Further reading�.

Prerequisites to using the OTS
RRS plugin

Before you can use the OTS RRS plug-in, you must first enable the required
RRS functionality on your z/OS system. The following components should be
made available:

� RRS itself�The OTS RRS plug-in depends on RRS. It must be running
before you attempt to run the OTS RRS Transaction manager or any
Orbix service that loads the OTS RRS plugin.

� RRS panels�The panels provide for browsing and managing RRS
data. See �RRS Panels� on page 193 for more information on using
RRS panels.

Further reading For more information on setting up RRS, refer to the IBM publication MVS
Programming: Resource Recovery SA22-7616
 170

OTS RRS Plug-In Configuration Items
OTS RRS Plug-In Configuration Items

Overview This section discusses the following topics:

� �Allow registration after rollback� on page 171.

� �Debug Exits� on page 172.

� �Direct persistence� on page 172.

� �Global namespace POA� on page 172.

� �High water mark� on page 172.

� �IIOP host� on page 172.

� �IIOP port� on page 173.

� �Initial threads� on page 173.

� �Log name� on page 173.

� �Low water mark� on page 173.

� �Maximum active timeout handlers� on page 173.

� �Maximum queue size� on page 173.

� �Namespace POA� on page 174.

� �ORB name� on page 174.

� �OTID format ID� on page 174.

� �Resource manager name� on page 174.

� �Resource retry limit� on page 174.

� �Resource retry timeout� on page 175.

� �Transaction factory name� on page 175.

� �Transaction timeout period� on page 175.

� �Use internal ORB� on page 175.

Allow registration after rollback The related configuration item is plugins:ots_rrs:allow_registration_
after_rollback_only. This specifies whether registration of resource
objects is permitted after a transaction is marked for rollback.

If this item is set to true, it means that resource objects can be registered
after a transaction is marked for rollback. If it is set to false, it means that
resource objects cannot be registered after a transaction is marked for
rollback.
171

CHAPTER 20 | Configuring the OTS RRS Plug-in
This has no effect on the outcome of the transaction. The default is false.

Debug Exits The related configuration item is plugins:ots_rrs:debug_exits. This
indicates whether debugging WTO messages are enabled. When RRS
reports an event to the OTS RRS plug-in via an exit, two WTO messages are
issued, as follows:

1. Upon entry, the RRS exit number and URI (Unit of Recovery Identifier)
are displayed.

2. Upon exit, the return code passed to RRS from the OTS RRS plug-in is
displayed.

The values for the exit numbers and return codes can be found in the IBM
publication MVS Programming: Resource Recovery SA22-7616.

The default value is false.

Direct persistence The related configuration item is plugins:ots_rrs:direct_persistence. It
indicates whether the transaction factory object can use explicit
addressing�for example, a fixed port. If this item is set to true, the
addressing information is picked up from plugins:ots_rrs. For example, to
use a fixed port, set plugins_ots_rrs:iiop:port. The default is false.

Global namespace POA The related configuration item is plugins:ots_rrs:global_namespace_poa.
This specifies the top-level transient POA used as a namespace for OTS
implementations. The default is iOTS.

High water mark The related configuration items are plugins:ots_rrs:exit_pool:high_
water_mark and plugins:ots_rrs:restart_pool:high_water_mark. These
specify the maximum number of threads allowed in the thread pool used for
RRS exit and restart events. The default is 10 in each case.

You must ensure that the high_water_mark thread limit does not exceed any
OS-specific thread limit (for example, nkthreads or max_thread_proc).
Otherwise, thread creation failure could put your process into an undefined
state.

IIOP host The related configuration item is plugins:ots_rrs:iiop:host. It specifies
the host on which OTS RRS is running. This is only required when
direct_persistence is set to true.
 172

OTS RRS Plug-In Configuration Items
IIOP port The related configuration item is plugins:ots_rrs:iiop:port. It specifies
the port on which OTS RRS listens when it is running in direct persistent
mode. This is only required when direct_persistence is set to true.

Initial threads The related configuration items are plugins:ots_rrs:exit_pool:initial_
threads and plugins:ots_rrs:exit_pool:initial_threads. These specify
the number of initial threads in the thread pool used for RRS exit and restart
events. These default to the low_water_mark thread limit (or 1, if the
low_water_mark is not set).

Log name The related configuration item is plugins:ots_rrs:log_name. It specifies
the resource manager log name. The default value is rm_name + �.LOG�.

Low water mark The related configuration items are plugins:ots_rrs:exit_pool:low_
water_mark and plugins:ots_rrs:restart_pool:low_water_mark. These
specify the minimum number of threads in the thread pool used for RRS exit
and restart events. If this variable is set, the ORB terminates unused threads
until only this number exists. The ORB can then create more threads, if
needed, to handle the items in its work queue.

The default is -1 in each case, which means do not terminate unused
threads.

Maximum active timeout handlers The related configuration item is plugins:ots_rrs:max_active_timeout_
handlers. This specifies number of threads to handle timeouts. The default
is 5.

Maximum queue size The related configuration items are plugins:ots_rrs:exit_pool:max_
queue_size and plugins:ots_rrs:restart_pool:max_queue_size. These
specify the maximum number of request items that can be queued on the
ORB�s internal work queue for RRS exit and restart events. If this limit is
exceeded, Orbix considers the server to be overloaded, and gracefully closes
down connections to reduce the load. The ORB will reject subsequent
requests until there is free space in the work queue.

The default is -1 in each case, which means that there is no upper limit on
the size of the request queue. In this case, the maximum work queue size is
limited by how much memory is available to the process.
173

CHAPTER 20 | Configuring the OTS RRS Plug-in
There is no direct relationship between max_queue_size and
high_water_mark. A particular value for high_water_mark does not require a
corresponding value for max_queue_size. For example, even if the queue
size is unbounded, each work item should be serviced eventually by the
ORB's available threads. However, this will not occur if the threads are
unavailable indefinitely and unable to execute a new request from the work
queue.

Namespace POA The related configuration item is plugins:ots_rrs:namespace_poa. This
specifies the transient POA used as a namespace. This is useful when there
are multiple instances of the plug-in being used. Each instance must use a
different namespace POA to distinguish itself. The default is RRS.

ORB name The related configuration item is plugins:ots_rrs:orb_name. This specifies
the ORB name used for the plug-in�s internal ORB when use_internal_orb
is set to true. The ORB name determines where the ORB obtains its
configuration information, and is useful when the application ORB
configuration needs to be different from that of the internal ORB. This
defaults to the ORB name of the application ORB.

OTID format ID The related configuration item is plugins:ots_rrs:otid_format_id. This
specifies the value of the formatID field of a transaction�s identifier
(CosTransactions::otid_t). The default is 0x494f4e41.

Resource manager name The related configuration item is plugins:ots_rrs:rm_name. This specifies
the resource manager name. When using the RRS ISPF panels, this name
appears as both a �Work Manager Name� and a �Resource Manager� name
in the logs. The default is �ORBIX.OTS�.

Resource retry limit The related configuration item is plugins:ots_rrs:resource_retry_limit.
This specifies the maximum number of retries to deliver a transaction
outcome to an unresponding resource object. The default is -1, indicating no
limit.
 174

OTS RRS Plug-In Configuration Items
Resource retry timeout The related configuration item is plugins:ots_rrs:resource_retry_
timeout. This silicifies the time, in seconds, between retrying a failed
invocation on a resource object. A negative value means the default is used.
The default is 5.

Transaction factory name The related configuration item is plugins:ots_rrs:transaction_factory_
name. This specifies the initial reference for the transaction factory. This
option must match the corresponding entry in the configuration scope of
your generic OTS plug-in, to allow it to successfully resolve a transaction
factory. The default is TransactionFactory.

Transaction timeout period The related configuration item is plugins:ots_rrs:transaction_timeout_
period. This specifies the time, in milliseconds, of which all transaction
timeouts are multiples. A low value increases accuracy of transaction
timeouts, but increases overhead. This value is multiplied to all transaction
timeouts. To disable all timeouts, set this item to 0 or a negative value. The
default is 1000.

Use internal ORB The related configuration item is plugins:ots_rrs:use_internal_orb. This
specifies whether the ots_rrs plugin creates an internal ORB for its own
use. By default the ots_rrs plugin creates POAs in the application�s ORB.
This option is useful if you want to isolate the transaction service from your
application ORB. The default is false.
175

CHAPTER 20 | Configuring the OTS RRS Plug-in
 176

CHAPTER 21

Using OTS RRS
Transaction
Manager
This chapter provides information on running and using the
OTS RRS Transaction Manager. It provides details on how to
prepare, start, and stop OTS RRS.

In this chapter This chapter discusses the following topics:

Preparing the OTS RRS Transaction Manager page 178

Starting the OTS RRS Transaction Manager page 184

Stopping the OTS RRS Transaction Manager page 186
177

CHAPTER 21 | Using OTS RRS Transaction Manager
Preparing the OTS RRS Transaction Manager

Overview This section describes what needs to be done to run the OTS RRS
Transaction Manager in prepare mode. It discusses the following topics:

� �Prerequisites to running the OTS RRS Transaction Manager in prepare
mode� on page 178.

� �Running the OTS RRS Transaction Manager in prepare mode� on
page 179.

� �Sample JCL to run the OTS RRS Transaction Manager in prepare
mode� on page 179.

� �Location of the OTS RRS Transaction Manager IORs� on page 180.

� �The TransactionFactory IOR� on page 181.

� �The TransactionServiceAdmin IOR� on page 181.

� �Sample configuration file� on page 181.

� �Running the OTS RRS Transaction Manager on z/OS UNIX System
Services� on page 183.

Prerequisites to running the OTS
RRS Transaction Manager in
prepare mode

The load library PDSes in the STEPLIB concatenation of JCL PROC
orbixhlq.JCLLIB(ORXG) must all be APF-authorized. If any PDS in the
STEPLIB concatenation is not APF-authorized, the prepare job will fail.

Use the following system command to list APF-authorized datasets:

If any PDS in the STEPLIB concatenation does not appear in the list, the
PDS can be temporarily authorized using the following system command:

After the STEPLIB PDSes are APF-authorized, run the locator and node
daemon. Ensure that these are prepared as described in the Mainframe
Installation Guide before running them.

D PROG,APF

SETPROG APF,ADD,DSN=pds.name,SMS

Note: Contact your z/OS system programmer to make the data sets
permanently authorized.
 178

Preparing the OTS RRS Transaction Manager
RRS must be running before attempting to run the OTS RRS Transaction
Manager.

Running the OTS RRS Transaction
Manager in prepare mode

Run the OTS RRS Transaction Manager in prepare mode. This generates
IORs and writes them to a file, which you can then include in your
configuration file. A job to run the OTS RRS Transaction Manager in prepare
mode is provided in orbixhlq.JCLLIB(DEPLOY3).

Sample JCL to run the OTS RRS
Transaction Manager in prepare
mode

This JCL contains the default high-level qualifier, so change it to reflect the
proper value for your installation:

//DEPLOY3 JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440,
// COND=(0,NE)
//*
// JCLLIB ORDER=(HLQ.ORBIX63.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*//***

//* JCL to deploy the OTS TM
//* Requires locator and node_daemon to be running
//**
//*
//* Make the following changes before running this JCL:
//*
//* 1. If you ran DEPLOY1 (or DEPLOYT) to configure in a domain
//* other than the default, please ensure that dataset
//* &ORBIXCFG(ORBARGS) has the domain name used by DEPLOY1
//* (or DEPLOYT).
//*
//* 2. Make sure ALL the load libraries in the STEPLIB
//* concatenation of JCL PROC ORXG are APF authorized.
//*
179

CHAPTER 21 | Using OTS RRS Transaction Manager
Location of the OTS RRS
Transaction Manager IORs

When complete, the IORs for the OTS RRS Transaction Manager should be
in orbixhlq.CONFIG(IOROTSTM). The file contains two IORs:

� The TransactionFactory IOR.

� The TransactionServiceAdmin IOR.

//* Prepare the Transaction Service
//*
//PREPOTS EXEC PROC=ORXG,
// PROGRAM=ORXOTSTM,
// LOADLIB=&ORBIX..LOADLIB,
// PPARM='prepare -publish_to_file=DD:ITCONFIG(IOROTSTM)'
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR
//*
//* Update configuration domain with OTS TransactionFactory IOR
//*
//ITCFG1 EXEC ORXADMIN
//SYSIN DD *
 variable modify \
 -type string \
 -value --from_file:3 //DD:ITCONFIG(IOROTSTM) \
 LOCAL_OTSTM_REFERENCE
/*
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR
//*
//* Update configuration domain with OTS TransactionServiceAdmin

IOR
//*
//ITCFG2 EXEC ORXADMIN
//SYSIN DD *
 variable modify \
 -type string \
 -value --from_file:6 //DD:ITCONFIG(IOROTSTM) \
 LOCAL_OTSTM_ADM_REFERENCE
/*
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR
 180

Preparing the OTS RRS Transaction Manager
The TransactionFactory IOR The TransactionFactory IOR is used by the client adapter to communicate
with the OTS RRS Transaction Manager for two-phase commit processing.
The orbixhlq.JCLLIB(DEPLOY3) JCL copies this IOR into the
LOCAL_OTSTM_REFERENCE configuration item, which is found in the
orbixhlq.CONFIG PDS, in the member that corresponds to your
configuration domain name. (The default configuration domain name is
DEFAULT@).

The TransactionServiceAdmin
IOR

The TransactionServiceAdmin IOR is used by itadmin to direct commands
at the OTS RRS Transaction Manager. The orbixhlq.JCLLIB(DEPLOY3) JCL
copies this IOR into the LOCAL_OTSTM_ADM_REFERENCE configuration item,
which is found in the orbixhlq.CONFIG PDS, in the member that
corresponds to your configuration domain name. (The default configuration
domain name is DEFAULT@).

Sample configuration file The following is an extract from a working configuration file for you to
compare your file with.
181

CHAPTER 21 | Using OTS RRS Transaction Manager
�
LOCAL_OTSTM_REFERENCE =

"IOR:000000000000004249444c3a696f6e612e636f6d2f\
49545f436f735472616e73616374696f6e732f5375626f7264696e6174655472

616e736\
16374696f6e466163746f72793a312e300000000000000100000000000000c20

0010200\
0000001d706561636f636b2e6475626c696e2e656d65612e696f6e612e636f6d

0000426\
90000004d3a3e0232311c706561636f636b2e6475626c696e2e656d65612e696

f6e612e\
636f6d13694f5453006f7473746d00666163746f72790016f2d7c36de3998195

a28183a\
3899695c68183a39699a80000000000000300000000000000080000000049545

f410000\
00010000001c0000000010020417000000010001000100010100000000010001

0109000\
0000600000006000000000035";
LOCAL_OTSTM_ADM_REFERENCE =

"IOR:000000000000003249444c3a696f6e612e636f\
6d2f49545f4f54535f5365727669636541646d696e2f5365727669636541646d

696e3a3\
12e300000000000000100000000000000be000102000000001d706561636f636

b2e6475\
626c696e2e656d65612e696f6e612e636f6d000042690000004c3a3e0232311c

7065616\
36f636b2e6475626c696e2e656d65612e696f6e612e636f6d11694f5453006f7

473746d\
0061646d696e0017e3998195a28183a3899695e28599a5898385c18494899500

0000030\
0000000000000080000000049545f41000000010000001c00000000100204170

0000001\
000100010001010000000001000101090000000600000006000000000033";
�

 182

Preparing the OTS RRS Transaction Manager
Running the OTS RRS Transaction
Manager on z/OS UNIX System
Services

You can also run the OTS RRS Transaction Manager in prepare mode from
the UNIX System Services prompt.

Before running the command, do the following:

� Ensure that the environment variable _BPX_SHAREAS is not set in the
shell where itotstm will be run.

� Navigate to the orbixhlq/asp/version/bin directory and issue the
following command to mark itotstm as authorized:

� Navigate to the orbixhlq/shlib directory and issue the following
command to mark DLLs in z/OS UNIX System Services as authorized:

� Ensure that all the load libraries in the STEPLIB concatenation of
PROC orbixhlq.JCLLIB(ORXG) are APF-authorized as described in
Prerequisites to running the OTS RRS Transaction Manager in prepare
mode.

The command is as follows:

The two IORs for TransactionFactory and TransactionServiceAdmin are then
displayed on the console. You can copy them to the appropriate places as
described above. However, in general, it might be easier to obtain the
TransactionFactory and TransactionServiceAdmin IORs using the
orbixhlq.JCLLIB(DEPLOY3) JCL. This is because it automatically copies the
IORs into the PDS-based configuration file.

extattr +a itotstm

extattr +a ORX*

itotstm prepare
183

CHAPTER 21 | Using OTS RRS Transaction Manager
Starting the OTS RRS Transaction Manager

Overview This section describes how to start the OTS RRS Transaction Manager. It
discusses the following topics:

� �Starting the OTS RRS Transaction Manager on native z/OS� on
page 184.

� �Starting the OTS RRS Transaction Manager on z/OS UNIX System
Services� on page 185.

� �Running with a different configuration scope� on page 185.

Starting the OTS RRS Transaction
Manager on native z/OS

In a native z/OS environment, you can start the OTS RRS Transaction
Manager in any of the following ways:

� As a batch job.

� Using a TSO command.

� As a started task (by converting the batch job into a started task).

The following is sample JCL to run the OTS RRS Transaction Manager:

//OTSTM JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX63.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Run the Orbix OTS TM
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
//* 2. Make sure ALL the load libraries in the STEPLIB
//* concatenation of JCL PROC ORXG are APF authorized.
//*
 184

Starting the OTS RRS Transaction Manager
Starting the OTS RRS Transaction
Manager on z/OS UNIX System
Services

On z/OS UNIX System Services, you can start the OTS RRS Transaction
Manager from the shell. The following command is used to run the OTS RRS
Transaction Manager:

Running with a different
configuration scope

To run the OTS RSS Transaction Manager with a different configuration
scope on native z/OS, set the value of PPARM to the new scope, for
example:

To run the OTS RRS Transaction Manager with a different configuration
scope on z/OS UNIX System Services, run a command similar to the
following:

// SET DOMAIN='DEFAULT@'
//*
//GO EXEC PROC=ORXG,
// PROGRAM=ORXOTSTM,

// LOADLIB=&ORBIX..LOADLIB,
// PPARM='run'
//ITDOMAIN DD DSN=&ORBIXCFG(&DOMAIN),DISP=SHR

Note: For the STEPLIB of PROC ORXG, all data sets must be
APF-authorized. See �Prerequisites to running the OTS RRS Transaction
Manager in prepare mode� on page 178 for instructions on how to make
the data sets APF-authorized.

$ itotstm

Note: Before running itotstm, see �Running the OTS RRS Transaction
Manager on z/OS UNIX System Services� on page 183 for a description of
environment variables and extended attributes that must be set.

PPARM=�run -ORBname iona_services.otstm_test�

$ itotstm -ORBname iona_services.otstm_test
185

CHAPTER 21 | Using OTS RRS Transaction Manager
Stopping the OTS RRS Transaction Manager

Overview This section describes how to stop OTS RRS. It discusses the following
topics:

� �Stopping the OTS RRS Transaction Manager on native z/OS� on
page 186.

� �Stopping the OTS RRS Transaction Manager on z/OS UNIX System
Services� on page 186.

� �Stopping the OTS RRS Transaction Manager using itadmin� on
page 186.

� �Stopping the OTS RRS Transaction Manager using the IONA
Administrator� on page 186.

� �Difficulty stopping the OTS RRS Transaction Manager� on page 187

Stopping the OTS RRS
Transaction Manager on native
z/OS

To stop the OTS RRS Transaction Manager job on native z/OS, issue the
STOP (P) operator command from the console.

Stopping the OTS RRS
Transaction Manager on z/OS
UNIX System Services

To stop the OTS RRS Transaction Manager process on z/OS UNIX System
Services, use the kill command or press Ctrl-C if it is running in an active
rlogin shell.

Stopping the OTS RRS
Transaction Manager using
itadmin

Whether using an itadmin JOB on native z/OS, or the interactive shell on
z/OS UNIX System Services, use the otstm stop command to stop the OTS
RRS Transaction Manager.

Stopping the OTS RRS
Transaction Manager using the
IONA Administrator

The OTS RRS Transaction Manager can be stopped from the IONA
Administrator Web Console. In your browser, navigate to the OTS RRS
Transaction Manager server and invoke the shutdown operation.

See �Introduction to OTS Management� on page 191 on how to set up for
the IONA Administrator Web Console.
 186

Stopping the OTS RRS Transaction Manager
Difficulty stopping the OTS RRS
Transaction Manager

After a request to stop has been sent to the OTS RRS Transaction Manager,
RRS itself might decide that it will not allow the OTS RRS Transaction
Manager to unregister itself as a resource manager. This results in the OTS
RRS Transaction Manager continuing to run, despite the stop request.

If this happens, edit and submit the JCL in orbixhlq.JCLLIB(RRSUNSET) to
unregister the OTS RRS Transaction Manager from RRS as a resource
manager, allowing it to stop.
187

CHAPTER 21 | Using OTS RRS Transaction Manager
 188

Part 3
Appendices

In this part This part contains the following chapters:

Introduction to OTS Management page 191

RRS Panels page 193

Note: Both of these appendices are relevant regardless of which
programming language is being used for application development.

APPENDIX 23

Introduction to
OTS Management
This appendix provides an introduction on how to set up for
management using IONA Administrator.

In this Appendix This appendix discusses the following topics:

� �IONA Administrator� on page 191.

� �Configuring for Management� on page 192.

� �What can be managed?� on page 192.

IONA Administrator IONA Administrator is a set of tools that enables you to manage and
configure server applications at runtime. IONA Administrator provides a
graphical user interface known as the IONA Administrator Console. This
enables you to manage applications, configuration settings, event logging,
and user roles.

IONA Administrator also provides a web browser interface known as the
IONA Administrator Web Console. The web console enables you to manage
applications and event logging from anywhere, without the need for a
lengthy download or installation.

For detailed information about IONA Administrator, see the CORBA IONA
Administrator User�s Guide.
191

APPENDIX 23 | Introduction to OTS Management
Configuring for Management Before IONA Administrator can be used, the Orbix environment must first be
configured. This involves:

� Running the management service off-host.

� Configuring the management service IORs.

� Configuring the OTS RRS Transaction Manager service, so that it can
be managed by the off-host management service.

See the Mainframe Management Guide for details on running the
management service off-host, and configuring the management service
IORs.

To enable the OTS RRS Transaction Manager service for management by
the off-host management service, the following configuration variables must
be set in the otstm scope:

What can be managed? The following can be managed:

� Attributes for the OTS RRS Transaction Manager service can be
browsed.

� The OTS RRS Transaction Manager can be shut down.

� Attributes for the OTS RRS Transaction Manager process can be
browsed.

� Attributes for the OTS RRS Transaction Manager ORB can be browsed.

� Attributes for the OTS RRS Transaction Manager workqueues can be
browsed.

� The event log filter attribute can be browsed and dynamically updated.

plugins:ots_rrs:debug_exits = "true";
plugins:it_mgmt:managed_server_id:name =

�iona_services.otstm.myhost�;

Note: The name specified as the setting for plugins:it_mgmt:managed_
server_id:name should be set to a meaningful name for your installation.
This name will appear in the IONA Administrator Web Console.
 192

APPENDIX 24

RRS Panels
When processing transactions using the two-phase commit
protocol, failures might occur. These failures might leave data
in an inconsistent state, and have to be investigated. Often
the investigation will include looking at and manipulating
information maintained by RRS. This appendix discusses
troubleshooting through the use of RRS panels.

In this appendix This appendix discusses the following topics:

� �RRS ISPF Panels� on page 193.

� �Correlate RRS and Client Adapter Information� on page 194.

� �Client Adapter Log Messages� on page 194.

� �Browsing the RRS Log Stream� on page 195.

� �Failure during Two-phase commit� on page 197.

� �RRS Unit of Recovery� on page 197.

RRS ISPF Panels IBM provides a set of Interactive System Productivity Facility (ISPF) panels
that allow for browsing and taking actions. The information that can be
browsed includes:

� RRS Logs

� Resource manager information

� Unit of Recovery (UR) information

� Work manager information

� RRS system information
193

APPENDIX 24 | RRS Panels
The types of actions that can be taken include:

� Act upon URs that are in an InDoubt state due to some failure while
processing a two-phase commit transaction.

� Remove a resource manager�s interest in a UR.

� After a system failure, determine if a resource manager can be
restarted.

For more information see the IBM publication MVS Programming: Resource
Recovery SA22-7616.

Correlate RRS and Client Adapter
Information

To correlate information between two-phase commit transactions processed
by the client adapter, and information kept in RRS, increase the logging
level of the client adapter to get log messages related to two-phase commit
processing.

To do this, configure the client adapter event filter to include INFO_LOW. This
setting logs messages about two-phase commit transactions processed by
the client adapter.

Client Adapter Log Messages When a two-phase commit transaction is processed by the client adapter, a
series of messages similar to the following are logged:

The log messages indicate the following:

(IT_MFU:216) I - Process client request as a transaction:
LUW ID: EXPNET.IMSLU02 459C42471260 0001
Target: corbaloc:rir:/DataObjectA
Operation: write
Interface repository ID: IDL:Data:1.0
�
(IT_MFU:216) I - Two-phase commit begins for updates under LUW

ID: EXPNET.IMSLU02 459C42471260 0001.
(IT_MFU:217) I - Prepare vote is 'commit' for updates under LUW

ID: EXPNET.IMSLU02 459C42471260 0001.
(IT_MFU:220) I - All resources have voted to commit. Proceeding

to commit updates under LUW ID: EXPNET.IMSLU02 459C42471260
0001.

(IT_MFU:221) I - Successfully committed updates under LUW ID:
EXPNET.IMSLU02 459C42471260 0001.

(IT_MFU:219) I - Two-phase commit ends for updates under LUW ID:
EXPNET.IMSLU02 459C42471260 0001.
 194

� A request flowing through the client adapter is to be processed as a
transaction using two-phase commit. A log message identifies the
Localize Unit of Work ID (LUW ID), which ties related two-phase
commit messages together. The target server and the operation for that
server to perform are identified, as well as the interface repository ID.

� After all requests to the server have been completed, the transaction
running in CICS or IMS initiates two-phase commit processing.

� The client adapter detects that the CICS or IMS transaction has
initiated two-phase commit processing, and sends a �prepare� request
to the server. The server replies with a vote to �commit�. The client
adapter issues a log message indicating the vote from the server, and
then returns this vote to the OTS RRS Transaction Manager.

� The OTS RRS Transaction Manager collects the prepare votes from all
participants in the transaction. The result of the vote is returned to the
client adapter, and a log message is issued indicating the result of all
prepare votes.

� The client adapter sends a �commit� request to the server. The server
replies that the commit was successful, and the client adapter logs a
message indicating the successful commit.

� The client adapter logs a message indicating two-phase commit
processing for the transaction is completed.

Browsing the RRS Log Stream The LUW ID can be used to correlate a two-phase commit transaction
processed by the client adapter with information kept in RRS. Using the
RRS panels:

� Select the option for �Browse an RRS log stream�.

� Select the option for �RRS Unit of Recovery State logs� and the option
for a �Summary� report.

� This places you in an ISPF browser. Use the ISPF �find� command to
find the LUW ID displayed in the client adapter�s log messages.
195

APPENDIX 24 | RRS Panels
In the following example, there are four entries in the RRS Unit of Recovery
State logs related to the LUW ID, as follows:

� This RRS log entry indicates that the work manager is the IMS region
that initiated the transaction. The state of the unit of work is
InPrepare.

� This RRS log entry indicates that the work manager is the IMS client
adapter. Note the different URID from the IMS region�s URID in the
preceding log message. The state of the unit of work has transitioned
to InDoubt.

� This RRS log entry indicates that the work manager is the IMS region
that initiated the transaction. The state of the unit of work is InCommit.

HOST 2005/05/19 12:40:04.244794 BLOCKID=000000000008D68C
 URID=BD08459B7E5503740000051C01010000

LOGSTREAM=ATR.IONAPLEX.DELAYED.UR
 PARENT URID=00000000000000000000000000000000
 SURID=N/A
 WORK MANAGER NAME=HOST.IMS81JD3.0076
 STATE=InPrepare EXITFLAGS=00000000 FLAGS=A0000000
 LUWID=EXPNET.IMSLU02 459C42471260 0001 TID= GTID=
�

HOST 2005/05/19,12:40:04.331445,BLOCKID=000000000008DE82
 URID=BD08459C7E5506E8000000E801010000

LOGSTREAM=ATR.IONAPLEX.DELAYED.UR
 PARENT URID=00000000000000000000000000000000
 SURID=N/A
 WORK MANAGER NAME=HOST.IMSCLADP.0042
 STATE=InDoubt EXITFLAGS=00000000 FLAGS=A0000000
 LUWID=EXPNET.IMSLU02 459C42471260 0001 TID= GTID=
�

HOST 2005/05/19,12:40:04.335325,BLOCKID=000000000008E134
 URID=BD08459B7E5503740000051C01010000

LOGSTREAM=ATR.IONAPLEX.DELAYED.UR
 PARENT URID=00000000000000000000000000000000
 SURID=N/A
 WORK MANAGER NAME=HOST.IMS81JD3.0076
 STATE=InCommit EXITFLAGS=00800000 FLAGS=A0000000
 LUWID=EXPNET.IMSLU02 459C42471260 0001 TID= GTID=
�

 196

� This RRS log entry indicates that the work manager is the IMS client
adapter. The state of the unit of work is InCommit.

Failure during Two-phase commit During two-phase commit processing several failures can occur such as:

� z/OS might fail.

� CICS or IMS might fail.

� A CICS or IMS transaction might fail.

� The client adapter might fail.

� APPC/MVS might fail.

� The operating system on which the server is running might fail.

� The server might fail.

� The link between the client adapter and the server might fail.

Failures such as those in the preceding list might cause data to be
inconsistent if they occur while a two-phase commit transaction is being
processed.

RRS Unit of Recovery If a failure has occurred during two-phase commit processing, or a
two-phase commit transaction appears to be hanging, use the
�Display/Update RRS Unit of Recovery information� panel to look at Unit of
Recovery information.

Filters can be used to list Units of Recovery (URs) that are not in a �good
state�. For example, a list of URs that are InDoubt can be listed.

Use the panels to view the URs, and correlate the LUW ID back to the client
adapter log messages to identify any transactions that might have been
processed by the client adapter but that have not completed successfully.
An investigation should then follow to see if there are any data
inconsistencies. Check to see if CICS or IMS has committed data that the

HOST 2005/05/19,12:40:04.337006,BLOCKID=000000000008E431
 URID=BD08459C7E5506E8000000E801010000

LOGSTREAM=ATR.IONAPLEX.DELAYED.UR
 PARENT URID=00000000000000000000000000000000
 SURID=N/A
 WORK MANAGER NAME=HOST.IMSCLADP.0042
 STATE=InCommit EXITFLAGS=00800000 FLAGS=A0000000
 LUWID=EXPNET.IMSLU02 459C42471260 0001 TID= GTID=
�

197

APPENDIX 24 | RRS Panels
server has not committed. Similarly, check to see if the server has
committed data that CICS or IMS has not committed. Manual intervention
might be required to correct any inconsistencies.

After the inconsistency is corrected, the RRS panels can be used to set the
UR state to InCommit or InBackout. For more information, see the IBM
publication MVS Programming: Resource Recovery SA22-7616.
 198

Glossary
A administration

All aspects of installing, configuring, deploying, monitoring, and managing a
system.

C client
An application (process) that typically runs on a desktop and requests services
from other applications that often run on different machines (known as server
processes). In CORBA, a client is a program that requests services from
CORBA objects.

configuration
A specific arrangement of system elements and settings.

configuration domain
Contains all the configuration information that Orbix ORBs, services and
applications use. Defines a set of common configuration settings that specify
available services and control ORB behavior. This information consists of
configuration variables and their values. Configuration domain data can be
implemented and maintained in a centralized Orbix configuration repository
or as a set of files distributed among domain hosts. Configuration domains
let you organize ORBs into manageable groups, thereby bringing scalability
and ease of use to the largest environments. See also configuration file and
configuration repository.

configuration file
A file that contains configuration information for Orbix components within a
specific configuration domain. See also configuration domain.

configuration repository
A centralized store of configuration information for all Orbix components
within a specific configuration domain. See also configuration domain.
199

GLOSSARY
configuration scope
Orbix configuration is divided into scopes. These are typically organized into
a root scope and a hierarchy of nested scopes, the fully-qualified names of
which map directly to ORB names. By organizing configuration properties into
scopes, different settings can be provided for individual ORBs, or common
settings for groups of ORB. Orbix services have their own configuration scopes.

CORBA
Common Object Request Broker Architecture. An open standard that enables
objects to communicate with one another regardless of what programming
language they are written in, or what operating system they run on. The
CORBA specification is produced and maintained by the OMG. See also OMG.

CORBA objects
Self-contained software entities that consist of both data and the procedures
to manipulate that data. Can be implemented in any programming language
that CORBA supports, such as C++ and Java.

D deployment
The process of distributing a configuration or system element into an
environment.

E event
The occurrence of a condition or state change, or the availability of some
information that is of interest to one or more modules in a system. Suppliers
generate events and consumers subscribe to receive them.

I IDL
Interface Definition Language. The CORBA standard declarative language that
allows a programmer to define interfaces to CORBA objects. An IDL file defines
the public API that CORBA objects expose in a server application. Clients use
these interfaces to access server objects across a network. IDL interfaces are
independent of operating systems and programming languages.
 200

GLOSSARY
IIOP
Internet Inter-ORB Protocol. The CORBA standard messaging protocol,
defined by the OMG, for communications between ORBs and distributed
applications. IIOP is defined as a protocol layer above the transport layer,
TCP/IP.

installation
The placement of software on a computer. Installation does not include
configuration unless a default configuration is supplied.

Interface Definition Language
See IDL.

invocation
A request issued on an already active software component.

IOR
Interoperable Object Reference. See object reference.

M management
To direct or control the use of a system or component. Sometimes used in a
more general way meaning the same as Administration. management console

N node daemon
Starts, monitors, and manages servers on a host machine. Every machine
that runs a server must run a node daemon.

O object reference
Uniquely identifies a local or remote object instance. Can be stored in a
CORBA naming service, in a file or in a URL. The contact details that a client
application uses to communicate with a CORBA object. Also known as
interoperable object reference (IOR) or proxy.

object transaction service
See Orbix OTS.
201

GLOSSARY
OMG
Object Management Group. An open membership, not-for-profit consortium
that produces and maintains computer industry specifications for
interoperable enterprise applications, including CORBA. See www.omg.com.

ORB
Object Request Broker. Manages the interaction between clients and servers,
using the Internet Inter-ORB Protocol (IIOP). Enables clients to make requests
and receive replies from servers in a distributed computer environment. Key
component in CORBA.

Orbix OTS
Object Transaction Service. An implementation of the OMG Transaction
Service Specification. Provides interfaces to manage the demarcation of
transactions and the propagation of transaction contexts.

POA
Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object references to all
objects used by an application, manages object state, and provides the
infrastructure to support persistent objects and the portability of object
implementations between different ORB products. Can be transient or
persistent.

protocol
Format for the layout of messages sent over a network.

S server
A program that provides services to clients. CORBA servers act as containers
for CORBA objects, allowing clients to access those objects using IDL
interfaces.

T transaction manager
Manages global transactions on behalf of application programs. A transaction
manager coordinates commands from application programs and resource
managers to start and complete global transactions. When an application
 202

http://www.omg.com

GLOSSARY
completes a transaction, either with a commit or rollback request, the
transaction manager communicates the outcome with each resource
manager.
203

GLOSSARY
 204

Index

Numerics
1PC 25, 120

operation 131
Orbix 3 OTS 137
OTS Lite 145
OTS Lite deployment 149
resource objects 111
successful 121

2PC 118
ACID properties 24
commit() 128
operations 131
OTS Encina 145
OTS plug-in configuration 154
otstf transaction manager 140
prepare() 127
resource objects 111, 114
rollback() 129
rollbacks 118
successful 119
transaction management 152
transaction manager 137

A
ADAPTS policy 62

AUTOMATIC policy 72
code example 65
InvalidPolicy exception 64
Orbix 3 OTS 138
POA policies 39
policy mappings 76
SERVER_SIDE policy 74
Transactional objects 135
using 70

after_completion() 98
Allows_either TransactionPolicy 76
Allows_unshared TransactionPolicy 76
asynchronous XA 84
AUTOMATIC policy 72

policy mappings 76
SEVER_SIDE policy 73

automatic transactions 72
B
before_completion 94

after_completion 99
before_completion() 98
BeforeCompletionCallback interface 32
BeforeCompletionCallback objects, registering 94
begin() 29

current interface 48
invoking 37
JIT transactions 73
nested transactions 53
new transactions 50

bindings 45

C
C API

resource manager integration 32
XA specification 82

client_binding_list 45
client OTS policy 60
close_string

Orbix namespace 88
commit() 29

2PC 118
code example 56
exceptions 37
functions 128
heuristic exceptions 52
heuristic outcomes 122
invoking 37
JIT transactions 73
new transactions 51
resoruce failure 123
resource interface 110
resource objects 113

commit_on_completion_of_next_call() 74
commit_one_phase() 120

invoking 130
Connector interface 32
Control interface 30
Coordinator interface 30

identity operations 101
relationship operations 105
205

INDEX
status operations 103
CosTransactions.hh 36
create()

Control interface 30
new top-level transactions 107
timeouts 56

create_POA() 65
exceptions 76

create_policy() 65
create_resource_manager() 41

calling 42
CurrentConnection interface 32
CurrentConnection object 42
Current interface 29, 30

commit_on_completion_of_next_call() 75
definition 48
Transaction Factory 29

Current object
nested transactions 53
transaction demarcation 36

D
database access 42
direct mode transactions 31

E
EITHER policy 64

policy mappings 76
Encina plug-In

loading 154
Encina plug-in

configuring 154
itotstm service 153

exceptions
forget() 130
heuristic 122, 128
HeuristicCommit 129
HeuristicMixed and HeuristicHazard 52
inactive 116
InvalidControl 55
InvalidPolicy 64, 76
INVALID_TRANSACTION 62, 63
NotPrepared 125
NoTransaction 52, 56
OBJECT_NOT_EXIST 125
See Also system exceptions
TRANSACTION_MODE 64
TRANSACTION_REQUIRED 62
 206
TRANSACTION_ROLLBACK 72
TRANSACTION_ROLLEDBACK 37, 51, 121
user 128, 129

explicit mode transactions 31
explicit propagation

IDL 78
TransactionFactory reference 60

F
FORBIDS policy 40, 62

InvalidPolicy exception 64
forget() 130

G
get_control() 55

real transactions 73
get_parent_status() 104
get_status() 55

Current interface return values 103
get_timeout() 54
get_top_level_status() 104
get_transaction_name() 55, 101

real transactions 73
get_txcontext() 102

PropagationContext 108

H
hash_top_level_transaction() 102
hash_transaction() 101

maintaining data 102
tracking resource objects 114

HeuristicCommit exception 122, 129
heuristic exception 122
HeuristicMixed and HeuristicHazard exceptions 52
HeuristicRollbackException 129
heuristics outcomes 121

I
implicit propagation policy 60
Inactive exception 116
indirect(implicit) mode transactions 31
indirect mode transactions 31
InvalidControl exception 55
InvalidPolicy exception 64

create_POA() 76
INVALID_TRANSACTION exception

FORBIDS policy 62

INDEX
PREVENTS policy value 63
InvocationPolicy 60

transaction models 61
values 64

is_ancestor_transaction() 105
is_descendant_transaction() 106
is_related_transaction(105
is_same_transaction() 101

description 105
maintaining data 102
tracking resource objects 114

is_top_level_transaction() 106
itotstm

configuring 153
transaction manager service 152

J
JIT transaction creation 73

L
Lite plug-in

deployment 149
loading 150
transaction manager 137

M
Multi-threading 85

N
nested transaction families 104
nested transactions 53
NonTxTargetPolicy 60

default value 69
steps for using 67
values 63

NotPrepared exception 125
NoTransaction exception 52, 56

O
OBJECT_NOT_EXIST exception 125
one-phase-commit (1PC) protocol See 1PC
open-string specification 41
Oracle database example 41
orbix/cos_transactions.hh 75
orbix/xa.hh 41
Orbix 3 OTS applications 137
OrbixOTS.INTEROP variable 139
orb_plugins configuration variable 153
otid field 114
OTS Application example

funds transfer 34
OTS application example

completion steps 35
OTS Encina See Under Enicna
OTS Interfaces 30
OTS Lite See Lite
OTS plug-in

loading 147
OTS plug-ins 145

deployment scenarios 148
loading 45
purpose of 147

OTSPolicies, Orbix specific 72
OTSPolicy 60

creating objects 65
values 39, 62

OTS Resource interface 29
otstf

bypassing 138
server 137

OTS transaction modes 31

P
PERMIT NonTxTargetPolicy 138
PERMIT policy 135

value 63
PERSISTENT lifespan policy 114
POA policies 39

transaction propagation 60
PolicyCurrent object 67
PolicyManager object 67
prepare() 118, 127
PREVENT policy value 63
PropagationContext structure 107
propagation policies 60

R
RecoveryCoordinator interface 30, 125
recovery coordinator object 116
recreate() 107
register_resource() 44, 115
register_synchronization() 99
replay_completion() 116, 124

usage model 126
using 131
207

INDEX
REQUIRES policy value 39
resolve_initial_references() 36

transaction factory object 56
XAConnector 42

Resource interface 29, 30
resource interface operations 44
Resource interface transaction operations 110
ResourceManager interface 32
ResourceManager object 42
resource managers, XA compliant 32
resource objects

creating 114
failure/recovery 123
implementation checklist 131
implementing servants 113
protocols supported 117
registering 115
tracking 114
usage model 111

ResourcePOA class 113
resume() 54
rollback() 118

current transactions 53
invoking 38
occasions when called 129
transaction demarcation 29
user exceptions 129

rollback_only() 53, 98
real transactions 73

rollbacks, reasons for 117

S
server_binding_list 45
SERVER_SIDE policy value 72

JIT 73
set_policy_overrides() 67
set_timeout() 54
SHARED policy 64
shared transaction model 61
StatusActive value 103
StatusCommitted value 103
StatusCommitting value 103
StatusMarkedRollback 103
StatusMarkedRollback value 103
StatusNoTransaction value 103
StatusPrepared value 103
StatusPreparing value 103
StatusRolledBack value 103
StatusRollingBack value 103
 208
StatusUnknown value 103
SubtransactionAwareResource interface 30
suspend() 54

real transactions 73
Synchronization interface 31, 98
synchronization objects 100
system exceptions

effects of raising 98
INVALID_TRANSACTION 63
OBJECT_NOT_EXIST 125
TRANSACTION_MODE 64
TRANSACTION_REQUIRED 62
TRANSACTION_ROLLEDBACK 37, 51, 72, 123,

130

T
Terminator interface 31, 56
thread_model configuration variable 41
threads 49
timeouts 54, 118
TransactionalObject interface 31, 35

Orbix support 135
transaction coordinator failure 124
transaction demarcation 29
TransactionFactory interface 31

Current interface 29
declaring 107

transaction family 53
transaction identifier 114
Transaction interface 28

resource manager integration 29
transaction management

OTS interfaces 29
TransactionManager 24
TRANSACTION_MODE exception

SHARED policy value 64
transaction modes 31
TransactionPolicies 134
TransactionPolicy

migrating from 76
transaction propagation 29
TRANSACTION_REQUIRED exception 62
transaction rollbacks, reasons for 117
TRANSACTION_ROLLEDBACK exception 37, 51,

72, 123, 130
transactions 22

automatic 72
creating 50
creating new 37

INDEX
database access steps 42
example 22
maintaining data 102
nested 53
obrix support 22
POA policies 39
propagation policies 60
properties 23
suspending/resuming 54
threads 49

two-phase-commit (2PC) protocol See 2PC

U
UNSHARED policy value 64
unshared transaction model 61
user exceptions 128, 129
USER_ID ID assignment policy 114, 131

V
VoteCommit value 118

using 131
VoteReadOnly value 118, 127

using 131
VoteRollback value 127

X
X/Open XA interface 32
xa_close() 32, 83
xa_commit() 32, 83
xa_complete() 84
XA-compliant database 43
xa_end() 32, 84
xa_forget() 32, 83
XA interfaces 32
xa_open() 32, 83

open-string 41
xaosw 42, 83
xa_prepare() 32, 83
xa_recover() 32, 84
XA resource manager

OTS managed transactions integration 41
xa_rollback() 32, 83
xa_start() 32, 84
xa_switch_t instance 83
XID transaction identifier format 108
209

INDEX
 210

	Preface
	C++ Programming
	Transaction Service
	About Transactions
	Transaction Managers

	OMG OTS and X/Open XA Interfaces
	Transaction Interfaces
	OTS Interfaces
	The X/Open XA Interface

	Getting Started with Transactions
	Application Overview
	Transaction Demarcation
	Transaction Propagation and POA Policies
	XA Resource Manager Integration
	Application-Specific Resources
	Configuration Issues

	Transaction Demarcation and Control
	The OTS Current Object
	Direct Transaction Demarcation

	Propagation and Transaction Policies
	Implicit Propagation Policies
	Shared and Unshared Transactions
	Policy Meanings
	Example Use of an OTSPolicy
	Example Use of a NonTxTargetPolicy
	Use of the ADAPTS OTSPolicy
	Orbix-Specific OTSPolicies
	Migrating from TransactionPolicies
	Explicit Propagation

	Using XA Resource Managers with OTS
	The XA Interface
	XA and Multi-Threading
	Using the Orbix XA Plug-In
	Associations between Transactions and Connections
	Association State Diagram
	Using a Remote Resource Manager

	Transaction Management
	Synchronization Objects
	Transaction Identity Operations
	Transaction Status
	Transaction Relationships
	Recreating Transactions

	Writing Recoverable Resources
	The Resource Interface
	Creating and Registering Resource Objects
	Resource Protocols
	Responsibilities and Lifecycle of a Resource Object

	Interoperability
	Use of InvocationPolicies
	Use of the TransactionalObject Interface
	Interoperability with Orbix 3 OTS Applications
	Using the Orbix 3 otstf with Orbix Applications

	Administration
	OTS Plug-Ins and Deployment Options
	Overview
	The OTS Plug-In
	The OTS Lite Plug-In
	The OTS RRS Transaction Manager
	The itotstm Transaction Manager Service

	OTS RRS Transaction Manager Configuration
	OTS RRS Transaction Manager Sample Configuration
	Configuration Summary of OTS RRS Plug-Ins

	OTS RRS General Configuration
	Configuring the OTS RRS Plug-in
	Setting up RRS for the OTS RRS Plug-in
	OTS RRS Plug-In Configuration Items

	Using OTS RRS Transaction Manager
	Preparing the OTS RRS Transaction Manager
	Starting the OTS RRS Transaction Manager
	Stopping the OTS RRS Transaction Manager

	Appendices
	Introduction to OTS Management
	RRS Panels
	Glossary

