Orbix 6.3.9

ORBA Programmer’s Guide: C++

Micro Focus

The Lawn

22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

1/13/17

Contents

P aCe .. 1
Contacting MICIO FOCUSttt et e aeeaas 3
INntroduction to OrbiIX ..o e 5
VY COR B A 2 <t ettt et 5
CORBA OO CtS . ittt et 6

(O] o] [=Tod f R {=To =TS =T o] 1] P 7

(610] 24 27N Y o] o] [Tor=1 1 To] g N = 7=] o 8
Servers and the Portable Object Adapterooiiiiiii i 9

(O] o> Qo [¥To By [T 10T =] o | o 9
DeVvelopmMENT TOOIS. ...t e s 10
Orbix Application DeploymMeENt ..o e 12
CORBA Features and SEIVICES it eae 13
Getting Started With OrbiX ... e 17
Creating a Configuration DOM@aiN........c..euiiiiiiiii i eaneeas 17
Setting the OrbixX ENVIFONMENto e e 25

[(oY | [I VA o] (o I == T o o o] [26
Development from the Command LiNeoooiiiiiiiiiiii e 27
FIrst Application ... e 33
Development Using Code Generationcoiiiiiiiiiiii i 33
Development Without Using Code Generationc..ooiiiiiiiiiiiiiiiiiaaiaaana.. 35
Locating CORBA OB JeCTS .uuuiiiiiii ittt et et e e e eaaneeanas 36

(D TCAV7=T (0] o o g 1= 1 A (=T o 37
Define IDL INterfaCeso 37

Generate starting POINT COOE ...ouiiiiiiii i eaes 38

Compile the IDL definitionscoiiiiiiii i 40

Develop the Server Program ittt 42

Develop the CHent Programceiiii e eaeens 47

Build the appliCationoooi i e 51

Run the appliCationo.eoie i e 51

Enhancing Server Functionalityo e 52
Create a Termination Handler Objecto 53

Initialize the ORB ... e 54

Create a POA for transient ObjJeCtS......ooiiiiiiii i 54

Create servant ObJeCtS.iiiii i e 57

Activate CORBA OB JECTS ...ttt e e e aaae e 57

EXPOrt ODJECt referEeNCeS . .uueiiii e e 58

Activate the POA MaNaQero.ueiiiiieiiii et eaeeeas 59

Shut dOWN the ORB ... et eaee 59

Complete SoUrce Code fOr SEIVEI.CXXu . uuuuun ettt et aan e eaee e raneeanes 62
Defining INterfaces ...t e 67
Modules and Name SCOPING - .- uuui et eaae e aaeens 67

1) €= = T =2 PN 68
INterface CONtENTS 69

(0 o= 7= 1 T] o 1= 69

N 1] 01) (= PP 71

Orbix CORBA Programmer’s Guide C++ iii

Yo=Y o) 1 o 1= 72

[0 0] 1 Y28 11 = = U= L 73
Inheritance Of IDL INTErfaceso.ciiiiiiiii e 73
Forward Declaration of IDL INterfacescooiiieiiiiiiiiiiiiiiiieieeeens 75

LOCAl INTEITACESo e e 76

RV Z2 L8 1Y o= 78
ADSTraCt INTEITaCES ... e e aas 79
LI D F= X = T 1Y 01T 80
BUIE-IN Ty DS ..t e 80
Extended BUilt-iN TYPeS ... i e 82

(070] a0 o] L QB T = T 1Y/ 0 1= 84
(2ST=T0 Lo [0 I @] o] [= 1ot dlN IV o 1= T 88
(DTS T 1T To D= X = U 1Y/ o 11 88
(O] 151 1= | 1 P P 88
(0] 151 = U] M =it o] £=1S1] T] g 1S 91
Developing Applications with Genies ..., 93
Starting DevelopmeNnt ProjJeCtSot 93
GNIE SY MK - -ttt e e 94
Specifying Application CompoNentS.ciiiiii i 95
Selecting INterfaces. ... o 96
INCIUAING FIlES .. ettt aneeaaaas 96
IMplementing SerVaNtS.coii it aaaas 97
Implementing the Server Mainlineccooiiiiiiiii e 100
Implementing @ CHEent ..o e ee s 103
Generating a MaKefile ... e 103
Controlling Code ComMPIeteNeSSt eaeeens 103
General OPTIONS ...t et 106
Compiling the APPlICatioN ... e 106
Generating Signhatures of Individual Operationsccciiiiiiiiiiiiiii e, 106
Configuration SettingS. ... ci. it 107
ORB Initialization and Shutdownooiiiiiiiiiiiiiiiin., 109
Initializing the ORB RUNTIMEoiiiii et aeeeaaas 109
Shutting DOWN the ORBL. ...t e e e aaees 110
Shutting DOWN @ CHENt ... e aeeens 110
ShUttiNg AOWN @ SEIVET ... e eaaeeans 111
USING POLICIES .o 113
Creating Policy and PolicyList ObJects...... ... i 113
Setting Orb and Thread POliCIeSo e 114
Setting Server-Side POICIES ...t e e 116
Setting CHeNt POlICIES. ... e e aaes 117
Setting Policies at Different SCOPES.....ccvvviiiiiiiiii i 117
Managing Object Reference POlICIESvviiiiiiiiiiiii e 118
GettiNg POlICIES i 119
Developing a Client.... ... 123
Mapping IDL INterfaces tO PrOXi€Sciiuiiiiiiiiii e rae e 123
UsiNg Object RefereNCeS. . ..o 124
Counting RefereNCES. el 125

NIl REFEIENCES 126
Object Reference OperationNsccvvviiieiiii i eeaneeans 127
USING _PIr REFEIENCES ... it eaas 129

USING _Var RefEIENCES ...ttt ettt eaas 131

iv Orbix CORBA Programmer’s Guide C++

S 1 1o T @] 0)V = Lo o 134

Initializing and Shutting Down the ORBcoiiiiiiiiii e 137
Invoking Operations and ATtIDULESoiiiiiiii i 137
Passing Parameters in Client INVOCAtiONS.......ccciiiiiiiiiiiii e 138
SIMPIE ParameEterS. ... i 139
Fixed-Length Complex Parameterscoooeiiiiiiiiiiii e 139
Fixed-Length Array Parameters.o e 140
SENNG Parameters. e e 142

0 181 o 1Y 0P 144
Variable-Length Complex Parametersocoiiiiiiiiiiiiiiiii i, 146
Variable-Length Array Parameters.ccoiiiiiiiiiii i 147
Object Reference Parametersoovviiiiiiiiiii it 149
Parameter-Passing RUIES: SUMMANYc.oviiiiiiii i eaaeeas 150
CHENT PONICIES e 152
REDINAPOIICY . .neeiii e eaeens 153
SYNCSCOPEPOIICY et e 153
TIMEOUL PONICIES ... e 154
Implementing Callback ODJECTSooiiii e 162
Developing @ SEIVEr ... et ee e 163
POAS, SKeletons, and SEervVantscooiiiiiiiiii et aeaeens 163
Mapping Interfaces to Skeleton Classes.....c.cvviiiiiiiiiiiiiii e 164
Creating @ Servant ClassSoui ittt et e e aaaas 166
IMplementing OPeratioNS it e e e e aaaneeann 168
Activating CORBA ObBJECTS ...ttt e aaes 168
Handling OULPUL Parameters. . .ottt e e 170
SIMPIE ParameEterS. ... 170
Fixed-Length Complex Parameterscoooeiiiiiiiiiiii e 171
Fixed-Length Array Parameters.o e 172
SENNG Parameters. e e e 173
Variable-Length Complex Parametersocoiiiiiiiiiiiiiiiiii it 175
Variable-Length Array Parameters.ocooiiiiiiiiii i, 176
Object Reference Parametersooiiiiiii i 177
Counting Servant RefereNCeS. . .o et aa s 178
Delegating Servant Implementationscccoiiiiiiii i eeas 179
Implementation INhEritancCeooiiiiiiiii e aee e 181
INterface INNeritanCeo e 181
MUItIPIE INNEIITANCE ..o aaees 182
EXplicit EVeNnt Handlingcooooiiiiiii et aaees 183
Termination Handler. ... e e aee s 183
Compiling and LiNKING ...t e eaeens 184
Managing Server ObDjJeCTS. ... 185
Mapping ODJECES t0 SEIVANTS ..ottt et e eaeeeeanes 185
(@4 == L o = T = 186
Setting POA POIICIES . .uuiiiiii ettt 187

ROOt POA POIICIES . .. 190
USING POA POl CIES . .ttt ettt ettt e e e e e r e e e e anees 190
Enabling the Active ODJeCt Map.....ccveviiiiiiii i e 191
Processing ObjJeCt ReQUESTS. .. .ciiiiiiii i eaeeaas 191
Setting ObjJect LifeSpan......ove e e 193
ASSIgNING ODJECT IDS ... e 195
Activating Objects with Dedicated Servants...........ccoviiiiiiiiiiiiiiiennnn, 195
Activating ObJeCtS.ot 196
Setting Threading SUPPOIto 196
Explicit Object ACtiVatioN. et 197

Orbix CORBA Programmer’s Guide C++ V

IMplicit ObJect ACTIVALION ... e e eaaaas 197

Calling _this() Inside an Operationc.cciiiiiiiiiiiiiiii i eeaaeenns 198

Calling _this() Outside an Operationcciiiiiiiiiiiii i i aaaeenns 198

Managing REQUEST FIOWuii it aaeeans 201

W OTK QUEBUES . ..ttt ettt ettt et et et e et e e e e e e eeeaanaeeens 202
ManUalWOrKQUEUE ... e e e eeaas 203
AUtoMAatiCWOrKQUEUE ... e aees 204

USING @ WOFKQUEUEttt e et ettt e e e 206

Controlling POA Proxificationo i 207
ManNaging SErVaNTScoiiiiiiiiiii e eaaaeeas 209
0L T g To RS T=T V7= Ua L 1Y = T = T =T 210
SErVANT ACHIVATOIS. ...ttt ettt eneas 212

SErVaNT LOCATOIS ...ttt ettt et e ettt e eneeens 216

UsiNg @ Default SErvantcoiiiiii i e aaaeeas 221
Setting a Default Servantcooooiiiii i 223

Creating INactive ODJECTS ... e 223
Asynchronous Method Invocationsccccevvviiiiiiiiinnn.... 227
10 g 01170 R 0 228
Calling Back to Reply HandIersccuiiiiiiiiiii et 229
Interface-to-Reply Handler Mapping.....ccoeeeeiieiiiii i veaeea 229
Implementing a Client with Reply Handlers..........ccooooiiiiiiiiiiiiiiin.. 231
EXCEPIONS i eeeraeaaaaaaaaaan 235
EXception Code MapPPing.ottt ettt e e e e 236
User-Defined EXCEPIONS. e 236
Handling EXCEPLIONSo e aaen 238
Handling User EXCEPLIONS i 238

Handling System EXCEPLIONSo.ueiiiii i ea s 239

Evaluating System EXCePLiONS.......iiiiii i 240

B L £ VAV T T T =T o= o 1 [o 1= 244
EXCEPLION SalOtY ..t e 245
Throwing SyStemM EXCEPLIONS. . .iiiiit ittt eaeeeaas 247
USING TYPE COUES. .. aeaaaaas 249
Type Code COMPONENTS. ...ttt et eaaeens 249

1Y/ 0 1=J@Xo o [@] o =T =1 1 o o - 251
General Type Code OpPerationsccoi i eeaaeas 251

B3 8 L e To [T @] g 1S3 = U g (=P 255
Using the Any Data TYPe..cooiiiiiii et 257
Inserting Typed Values INtO ANY ... eeaas 257
Extracting Typed Values From ANYcouiieiiiiiiii e et aaeens 259
Inserting and Extracting Booleans, Octets, Chars and WChars 261
Inserting and Extracting Array Datac.oeiieiiiiiiiiiii e 262
Inserting and Extracting String Dataccooiiiiiiiiii e 263
Inserting and EXtracting Alias TYPES . .cuuiiii it 265
Querying a CORBA::ANY’S TYPE COAC .. nnmniiii e 266
USIiNG DYNANY ODJeCTS . ..o 267
CreatiNg @ DY N ANY ittt et ettt 269

ol g = e)Y/ o T = Un)Y/ () T 270
create_dyn_any_from_type_code() ...oiiuriiiiiiiiii e 271

Inserting and Extracting DYNANY Valuescooiiiiiiiiiiiiiii i 272
INSErtioN OPEratiONS ...ttt eaaneeens 273

Vi Orbix CORBA Programmer’s Guide C++

EXEraction OpPerationNSeuiie ettt e e e e e eaneeeaneens 274

Iterating Over DyNnANY COMPONENTES ...ciiiiiiiiiei i eieeeaeeeaaees 276
Accessing Constructed DYNANY Valuesccoviiiiiiiiiiiiiiiiii i 278
Generating Interfaces at Runtime ..., 287
USING The DIl ..ottt et eeens 287
Constructing a Request ObjJect.o 289

B =0 {8 T=S3 o 289

e == LT =T {8 T= 2] o () TP 291
INVOKING @ REQUEST .. .t ettt e aaees 293
Retrieving Request ReSUILS.......oiiiiiiiii e eaaee s 294
Invoking Deferred Synchronous ReqUEeSEScvvviiiiiiiiiiiiiiiiiiienannen, 294

L L= T = I 2 295
[0] Y o] o] 1 To= 1 0] g 1= 295
Programming a Server to USe DSH.....ooiiiiiiiiiii i 296
Using the Interface RepoSItOryoviiiiiiiiii i 299
Interface REPOSITOrY Dataooeiiiiii e 300
Abstract Base Interfaces 300
REPOSITOrY ODJECT TYPES ettt ettt et e eaaneens 301
Containment in the Interface RePOSItOrYcoiiiiiiiiiiiiiiii i 305
Contained INterfacecoiiiii i e 307
Container INterfaceo e 309
Repository ObjecCt DeSCHIPTIONSuii it e aaeeas 310
Retrieving Repository INformationccoiiiiiiiiii i 312
SAMPIE USAGE .. ettt et 315
Repository I1DS and FOrMALScoeiieiiiii i e e eae e 316
Controlling Repository IDs with Pragma Directives.........c.cccviiiiiiiiiiiiiennnn.. 317
NAMING SEIVICE ..ottt ettt e e eaaaans 321
NaMING SEIVICE DESIgN ..ttt ettt et r e e aneeeaanees 321
[7= T 1T o T V= U = 322
Representing Names as StriNgS ..oo.eeiiiiiiiii i e vaneens 323
INItIAliZING @ NAME .o e 324
Converting a Name to a StringNameccooiiiiiiiiiii e 325
Obtaining the Initial Naming ContexXtccoiiiiiiiiiii e 325
Building a Naming Graph ... e 326
Binding Naming CONteXES......couuiiie i eeeeas 326
Binding Object ReferenCesoiiii i 329
REDINAING .o el 329
Using Names t0 AcCCeSS ODjJeCTS.o 330
Exceptions Returned to CHEeNtSc.oviiiiiiii e eieeen e 332
Listing Naming ConteXt BindiNgsSooiiiiiiiiiii i eaaees 332
Using a Binding Herator.ooeoiiii it eeaaeens 333
Maintaining the Naming SeIrVICEoiiiiiii i e eaees 335
Federating Naming Graphscooi i e e 337
STz T] o] 1S 0 0 o [P 341
Object Groups and Load BalanCingcceeeiiiiiiii i eas 343
Using Object Groups in OrbiX ..o e 346

Load Balancing EXamPIe ... e 348
Creating an Object Group and Adding Objectsccooeiiiiiiiiieennnn. 349
Accessing Objects from a Client 355
Persistent State SEervViCe ... 357
Introduction to the Persistent State Serviceo, 357

Orbix CORBA Programmer’s Guide C++ Vil

Defining PersiStent Data.....c.cuiiiiiii ittt 357

Datastore Model. ... 358
Abstract Types and Implementationscooiiiiiiiiiiiiii e 359
Defining Storage ObjJeCTS. ..ot 360
Defining Storage HOMIES. ... i e 361
Implementing Storage ODJecCtS.......coviiiiiii e 365
Implementing Storage HOMEeS. ... 367
ACCESSING STOrage ObJECTS .. .ttt e eeens 368
Creating Transactional SeSSIONSciiiiii i 369
Using the SesSiONMaNager.ot 371
Managing Transactional SeSSIONS.........oiiiiiii e 376
Getting a Storage Object Incarnationccovviiiiiiiiiiiiiie i 385

(@ TUT=T oY1 T [- - 385
Associating CORBA and Storage ObjJectS......cccovviiiiiiiiiiiiiiiiiiieeeaenn 385
Thread Safety ..o e 386

L0 LY T T =T o Tox= U Lo o I 386
Delegating to the Master ... e 387
Custom Delegation INterfaceccoooiiiiiiiii e 390
Configuring the Replica GroUp.......cooeiiiiii i 391
Initializing the Replica Groupcccoiiiiiioii e een 393
Operations that Support Replication...........c.ooiiiiiiiiiii it 397

(ST I = T o [W = To T I 1Y =T o] o 1 T 1P 401
abstract storagehome ... 402

F= 10 FS] i = 103] (0] =T [Y4 o L= 402

RS Y= L O = 11T 405

State MeMDEIS ..o e 405
Operation ParameterSuuii ettt aaee e 407

LY o] =0 1< 1Y/ o 1< 407

LSy 0] = o 1= o T o 1 408
FacCtory NatiVe TYPES ..ottt et et e eaes 410
EVENT SeIVICE .. e 411
L@ Y= YT 411
Event Communication Models. 412
Developing an Application Using Untyped Eventsccccvviiiiiiiiiiiiiiiiiinenn. 415
Obtaining an Event Channel.........cooiiiiiiiii e eaeeee 416
Implementing @ SUPPHET ..o e aeee s 418
Implementing @ CONSUIMIET ...t et raaneeans 423
Developing an Application Using Typed EVENTSccooiiiiiiiiiiiiiiiciiiiiieieens 427
Creating the Interface.........oooiiiii i e 428
Obtaining a Typed Event Channel 429
Implementing the SUPPHEr ... e 431
Implementing the CONSUMEer. ... i 434
Portable INterCeptorsSooviiiiiiiii e 439
Tl (=] dot=T o] (o] gl @0 aq] o o] 1= o) £ 439
L1 =] o= o) (o] gl 1Y 0 1= 440
Y=Y YA o T @]] (=T = 442

[(O] =7 o 442

JLIE=Te [o[=To I @] o'a] o 1] 1] o | £ 443
L0 0 [T o2 444

[0 [0V = o {0 Y PP 445

ORB TNItIAlZEN ..o e e e 445
Writing TOR INterCePLOrS ...t e 446
Using Requestinfo ODbjJects. ... 448
Writing Client INterCeplorS e 450

viii

Orbix CORBA Programmer’s Guide C++

INtErcePtioN POINTS. ... e 451

Interception POINT FIOW ... e 451
ClieNtReqUESEINTO ... e 454
Client INterceptor TasKS. ... e e eas 456
WIiting Server INterCePIONS ...ttt ettt eeanes 460
INTErcepPtion POINTS. ...t e 460
Interception POINT FIOW ..o e 461
ServerReqUESTINTO ... e e 464
Server Interceptor TasKS ... 466
Registering Portable INterceptorscooiii i 469
Implementing an ORB Initializero 469
Registering an ORBINItializerccooiiiiiiiii e 473
Setting Up Orbix to Use Portable INnterceptors......ccoviiiiiiiiiiiiiiiiiiiiiiciieeenns 473
Bidirectional GIOP ... e 475
Introduction to Bidirectional GIOP ... e 475
Bidirectional GIOP POlICIES ..o e 476
Configuration PrereqUISITES.ot e eaee e 481
BasSiC BiDIir SCENAIIO ...ttt aee 481
The Stock Feed Demonstrationooiiiiiiiiii i 482
Setting the EXPOrt POLCY ... oo 484
Setting the Offer POIICY ... e 485
Setting the AcCePt POLICY ...uuiii e 487
Advanced BiDir SCENAIIO aaes 489
Interoperability with Orbix Generation 3........ccooiiiiiiiiiiiii e 491
Locating Objects with corbaloc...............ooooiiiiiiiiiiiiiiiin, 493
COrbaloc URL FOIMAL ... e e aee e 493
INAIrect PersiStENCE CasSe ..ottt e 496
Overview of the Indirect Persistence Casecovveeiiiiiiiiiiiiiiiiiaaaann. 496
Registering a Named Key at the Command Linec.oooo.l. 498
Registering a Named Key by Programmingccceeveieiiiiieeraieenainnenn. 499

Using the corbaloc URL in @ Client.......ccoviiiiiiiiii i veaeene 501
DireCt PersiStENCE CaSe. ...t eeeas 501
Overview of the Direct Persistence Case.......ccovevviieiiiiiieiinieaiennaen. 502
Registering a Plain TeXt KeYcoiiiiiiiiii i eiaee 503
Using the corbaloc URL in @ Client......ccoiiiiiiiiiiiii i veeeeae 504
Named Keys and Plain Text Keys Used by Orbix Servicescccccvviveieanns 505
Configuring and LOggINg ..cceeeiiiiiiii e 507
The Configuration Interface e 507
(@3] o 1T 15T o 1 T 508
[0 o T 110 T XS 510
Orbix Compression Plug-in ... 517
Introduction to the ZIOP Plug-In ... e 517
Configuration PrereqUISITES. ..o e e ne 518
CoOMPresSiON POHCIES ...ttt e ee e 519
Programming Compression POICIES.cvi i e 521
Implementing Custom COMPreSSION eae e 523
The IT_Buffer Moduleo 523
Implementing @ COMPIESSOr ... e aeeae 526
Implementing a Compressor FACLOryc.cviiiiiiiiiii i 530
Registering a CompressSor FACLOIY ...ooviiiiii i e e veaaeenns 534

Orbix CORBA Programmer’s Guide C++ iX

Appendix Orbix IDL Compiler Options.........cccovvvviiiiiiiinnnnn. 537

Command Line SWItCNES. e 537
Plug-in SwWitch MOdifiers e 538
IDL Configuration File ... i 542
Appendix Foundation Classes Libraryccooiieiiiio.. 547
INStalled IFC DIr€CTOIIES ...ttt et et ettt et e eeneas 547
Selecting an IFC Library ..o e e 548
Appendix Orbix C++ Libraries............oooiiiiiiiiiiiiiiiiiiie. 549
Appendix Micro Focus Orbix Policies.......cccoeevvviviiiiiiinn.... 551
(O3 1T=T o)] o = = o] 1o 1= 551
@ N o I Tod = PP 552
SECUNTY POl IS ottt et ettt e e aaaees 553
Firewall ProXy POLCIES ...ttt e aaeeens 554
T 5 555

X Orbix CORBA Programmer’s Guide C++

Preface

Orbix is a full implementation from Micro Focus of the Common
Object Request Broker Architecture (CORBA), as specified by the
Object Management Group. Orbix complies with the following
specifications:

* CORBA 2.6
. GIOP 1.2 (default), 1.1, and 1.0

Audience

The CORBA Programmer’s Guide is intended to help you become
familiar with Orbix, and show how to develop distributed
applications using Orbix components. This guide assumes that you
are familiar with programming in C++.

This guide does not discuss every API in great detail, but gives a
general overview of the capabilities of the Orbix development kit
and how various components fit together.

Organization of this guide

Read “Introduction to Orbix” for an overview of Orbix. “Getting
Started with Orbix” shows how you can use code-generation
genies to build a distributed application quickly and easily. “First
Application” describes in detail the basic steps in building client
and server programs. Subsequent chapters expand on those steps
by focusing on topics that are related to application development.

Typographical conventions

This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal
text represents portions of code and literal
names of items such as classes, functions,
variables, and data structures. For
example, text might refer to the
CORBA: : Object class.

Constant width paragraphs represent code
examples or information a system displays
on the screen. For example:

#include <stdio.h>

Orbix CORBA Programmer’s Guide C++ 1

Italic

Italic words in normal text represent
emphasis and new terms.

Italic words or characters in code and
commands represent variable values you
must supply, such as arguments to
commands or path names for your
particular system. For example:

% cd /users/your_name

Note:Some command examples may use
angle brackets to represent variable
values you must supply. This is an older
convention that is replaced with italic
words or characters.

Keying conventions

This guide may use the following keying conventions:

No prompt

[]

{}

2 Orbix CORBA Programmer’s Guide C++

When a command’s format is the same for
multiple platforms, a prompt is not used.

A percent sign represents the UNIX
command shell prompt for a command
that does not require root privileges.

A number sign represents the UNIX
command shell prompt for a command
that requires root privileges.

The notation > represents the DOS or
Windows command prompt.

Horizontal or vertical ellipses in format and
syntax descriptions indicate that material
has been eliminated to simplify a
discussion.

Brackets enclose optional items in format
and syntax descriptions.

Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

A vertical bar separates items in a list of
choices enclosed in { } (braces) in format
and syntax descriptions.

Contacting Micro Focus

Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support

Additional technical information or advice is available from several
sources.

The product support pages contain a considerable amount of
additional information, such as:

* The WebSync service, where you can download fixes and
documentation updates.

* The Knowledge Base, a large collection of product tips and
workarounds.

* Examples and Utilities, including demos and additional
product documentation.

To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.

Note:
Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.

* The name and version number of all products that you think
might be causing a problem.

®* Your computer make and model.

* Your operating system version number and details of any
networking software you are using.

* The amount of memory in your computer.
* The relevant page reference or section in the documentation.

®* Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Orbix CORBA Programmer’s Guide C++ 3

http://www.microfocus.com
http://www.microfocus.com

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from several
sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.

You may want to check these URLs in particular:

® http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software
download and Micro Focus Community files)

* https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsl etters/infocus/newsl etter-subscriptio
n.asp

4 Orbix CORBA Programmer’s Guide C++

http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Why CORBA?

Introduction to Orbix

With Orbix, you can develop and deploy large-scale enterprise-wide
CORBA systemsin C++ and Java. Orbix has an advanced modular
architecture that lets you configure and change functionality without
modifying your application code, and arich deployment architecturethat
lets you configure and manage a complex distributed system.

Today’s enterprises need flexible, open information systems. Most
enterprises must cope with a wide range of technologies,
operating systems, hardware platforms, and programming
languages. Each of these is good at some important business
task; all of them must work together for the business to function.

The common object request broker architecture—CORBA—
provides the foundation for flexible and open systems. It underlies
some of the Internet’s most successful e-business sites, and some
of the world’s most complex and demanding enterprise
information systems.

What is CORBA?

CORBA is an open, standard solution for distributed object
systems. You can use CORBA to describe your enterprise system
in object-oriented terms, regardless of the platforms and
technologies used to implement its different parts. CORBA objects
communicate directly across a network using standard protocols,
regardless of the programming languages used to create objects
or the operating systems and platforms on which the objects run.

CORBA solutions are available for every common environment and
are used to integrate applications written in C, C++, Java, Ada,
Smalltalk, and COBOL, running on embedded systems, PCs, UNIX
hosts, and mainframes. CORBA objects running in these
environments can cooperate seamlessly.

CORBA is widely available and offers an extensive infrastructure
that supports all the features required by distributed business
objects. This infrastructure includes important distributed
services, such as transactions, security, and messaging.

Orbix CORBA Programmer’s Guide C++ 5

CORBA Objects

Orbix

Orbix provides a CORBA development platform for building
high-performance systems. Orbix’s modular architecture supports
the most demanding requirements for scalability, performance,
and deployment flexibility. The Orbix architecture is also
language-independent and can be implemented in Java and C++.
Orbix applications can interoperate via the standard 110P protocol
with applications built on any CORBA-compliant technology.

CORBA objects are abstract objects in a CORBA system that
provide distributed object capability between applications in a
network. Figure 1 shows that any part of a CORBA system can
refer to the abstract CORBA object, but the object is only
implemented in one place and time on some server of the system.

RN
S
\
- _ /\ A server implements a
CORBA object
RN Clients access
/ \ CORBA objects
\ , viaobject
~ references
-~
G
\ IDL interface definitions specify
o 7/ CORBA objects

Figurel: The nature of abstract CORBA objects

An object reference is used to identify, locate, and address a
CORBA object. Clients use an object reference to invoke requests
on a CORBA object. CORBA objects can be implemented by
servers in any supported programming language, such as C++ or
Java.

Although CORBA objects are implemented using standard
programming languages, each CORBA object has a clearly-defined
interface, specified in the CORBA Interface Definition Language (IDL). The
interface definition specifies which member functions, data types,
attributes, and exceptions are available to a client, without
making any assumptions about an object’s implementation.

6 Orbix CORBA Programmer’s Guide C++

With a few calls to an ORB’s application programming interface
(API), servers can make CORBA objects available to client
programs in your network.

To call member functions on a CORBA object, a client programmer
needs only to refer to the object’s interface definition. Clients can
call the member functions of a CORBA object using the normal
syntax of the chosen programming language. The client does not
need to know which programming language implements the
object, the object’s location on the network, or the operating
system in which the object exists.

Using an IDL interface to separate an object’s use from its
implementation has several advantages. For example, you can
change the programming language in which an object is
implemented without affecting the clients that access the object.
You can also make existing objects available across a network.

Object Request Broker

CORBA defines a standard architecture for object request brokers
(ORB). An ORB is a software component that mediates the
transfer of messages from a program to an object located on a
remote network host. The ORB hides the underlying complexity of
network communications from the programmer.

An ORB lets you create standard software objects whose member
functions can be invoked by client programs located anywhere in
your network. A program that contains instances of CORBA
objects is often known as a server. However, the same program
can serve at different times as a client and a server. For example,
a server program might itself invoke calls on other server
programs, and so relate to them as a client.

When a client invokes a member function on a CORBA object, the
ORB intercepts the function call. As shown in Figure 2, the ORB
redirects the function call across the network to the target object.
The ORB then collects results from the function call and returns
these to the client.

Client Host Server Host

ServerQ
Client ’

Object Request Broker

Function
Call

Figure2: The object request broker

Orbix CORBA Programmer’s Guide C++ 7

CORBA Application Basics

You start developing a CORBA application by defining interfaces to
objects in your system in CORBA IDL. You compile these
interfaces with an IDL compiler. An IDL compiler generates C++
or Java code from IDL definitions. This code includes client stub
code with which you develop client programs, and object skeleton
code, which you use to implement CORBA objects.

When a client calls a member function on a CORBA object, the call
is transferred through the client stub code to the ORB. Because
the implemented object is not located in the client’'s address
space, CORBA objects are represented in client code by proxy
objects.

A client invokes on object references that it obtains from the
server process. The ORB then passes the function call through the
object skeleton code to the target object.

Client Host Server Host

Server
Client Q

Client Object
Stub Skeleton

L
Object Request Broker

Function
Call

Figure3: Invoking on a CORBA object

8 Orbix CORBA Programmer’s Guide C++

Servers and the Portable Object Adapter

Server processes act as containers for one or more portable object
adapters. A portable object adapter, or POA, maps abstract
CORBA objects to their actual implementations, or servants, as
shown in Figure 4. Because the POA assumes responsibility for

Client Host Server Host

Client

Server
skeleton

Client stubl Portable object

Figure4: The portable object adapter

mapping servants to abstract CORBA objects, the way that you
define or change an object’s implementation is transparent to the
rest of the application. By abstracting an object’s identity from its
implementation, a POA enables a server to be portable among
different implementations.

Depending on the policies that you set on a POA, object-servant
mappings can be static or dynamic. POA policies also determine
whether object references are persistent or transient, and the
threading model that it uses. In all cases, the policies that a POA
uses to manage its objects are invisible to clients.

A server can have one or more nested POAs. Because each POA
has its own set of policies, you can group objects logically or
functionally among multiple POAs, where each POA is defined in a
way that best accommodates the needs of the objects that it
processes.

Orbix Plug-In Design

Orbix has a modular plug-in architecture. The ORB core supports
abstract CORBA types and provides a plug-in framework. Support
for concrete features like specific network protocols, encryption
mechanisms, and database storage is packaged into plug-ins that
can be loaded into the ORB based on runtime configuration
settings.

Orbix CORBA Programmer’s Guide C++ 9

Plug-ins

A plug-in is a code library that can be loaded into an Orbix
application at runtime. A plug-in can contain any type of code;
typically, it contains objects that register themselves with the ORB
runtimes to add functionality.

Plug-ins can be linked directly with an application, loaded when an
application starts up, or loaded on-demand while the application is
running. This gives you the flexibility to choose precisely those
ORB features that you actually need. Moreover, you can develop
new features such as protocol support for direct ATM or HTTPNG.
Because ORB features are configured into the application rather
than compiled in, you can change your choices as your needs
change without rewriting or recompiling applications.

For example, an application that uses the standard I1OP protocol
can be reconfigured to use the secure SSL protocol simply by
configuring a different transport plug-in. No one transport is
inherent to the ORB core; you simply load the transport set that
suits your application best. This architecture makes it easy for
Micro Focus to support additional transports in the future such as
multicast or special purpose network protocols.

ORB core

The ORB core presents a uniform programming interface to the
developer: everything is a CORBA object. This means that
everything appears to be a local C++ or Java object within the
process. In fact it might be a local object, or a remote object
reached by some network protocol. It is the ORB’s job to get
application requests to the right objects no matter where they
live.

To do its job, the ORB loads a collection of plug-ins as specified by
ORB configuration settings—either on startup or on demand—as
they are needed by the application. For remote objects, the ORB
intercepts local function calls and turns them into CORBA requests
that can be dispatched to a remote object.

In order to send a request on its way, the ORB core sets up a
chain of interceptors to handle requests for each object. The ORB
core neither knows nor cares what these interceptors do, it simply
passes the request along the interceptor chain. The chain might
be a single interceptor which sends the request with the standard
11OP protocol, or a collection of interceptors that add transaction
information, encrypt the message and send it on a secure protocol
such as SSL. All of this is transparent to the application, so you
can change the protocol or services used by your application
simply by configuring a different set of interceptors.

Development Tools

The CORBA developer’s environment contains a number of
facilities and features that help you and your development team
be more productive.

10 Orbix CORBA Programmer’s Guide C++

Code generation toolkit

Micro Focus provides a code generation toolkit that simplifies and
streamlines the development effort. You only need to define your
IDL interfaces; out-of-the box scripts generate a complete
client/server application automatically from an IDL file.

The toolkit also can be useful for debugging: you can use an
auto-generated server to debug your client, and vice versa.
Advanced users can write code generation scripts to automate
repetitive coding in a large application.

For more information about the code generation toolkit, refer to
the CORBA Code Generation Toolkit Guide.

Multi-threading support

Orbix provides excellent support for multi-threaded applications.
Orbix libraries are multi-threaded and thread-safe. Orbix servers
use standard POA policies to enable multi-threading. The ORB
creates a thread pool that automatically grows or shrinks
depending on demand load. Thread pool size, growth and request
queuing can be controlled by configuration settings without any
coding.

Of course, multi-threaded applications must themselves be
thread-safe. This usually means they need to use
thread-synchronization objects such as mutexes or semaphores.
Although most platforms provide similar thread synchronization
facilities, the interfaces vary widely. Orbix includes an
object-oriented thread synchronization portability library which
allows you to write portable multi-threaded code.

Configuration and logging interfaces

Applications can store their own configuration information in Orbix
configuration domains, taking advantage of the infrastructure for
ORB configuration. CORBA interfaces provide access to
configuration information in application code.

Applications can also take advantage of the Orbix logging
subsystem, again using CORBA interfaces to log diagnostic
messages. These messages are logged to log-stream objects that
are registered with the ORB. Log streams for local output, file
logging and system logging (Unix syslogd or Windows Event
Service) are provided with Orbix. You can also implement your
own log streams, which capture ORB and application diagnostics
and send them to any destination you desire.

Portable interceptors

Portable interceptors allow an application to intervene in request
handling. They can be used to log per-request information, or to
add extra “hidden” data to requests in the form of GIOP service
contexts—for example, transaction information or security
credentials.

Orbix CORBA Programmer’s Guide C++ 11

Orbix Application Deployment

Orbix provides a rich deployment environment designed for high
scalability. You can create a location domain that spans any number
of hosts across a network, and can be dynamically extended with
new hosts. Centralized domain management allows servers and
their objects to move among hosts within the domain without
disturbing clients that use those objects. Orbix supports load
balancing across object groups. A configuration domain provides the
central control of configuration for an entire distributed
application.

Orbix offers a rich deployment environment that lets you structure
and control enterprise-wide distributed applications. Orbix
provides central control of all applications within a common
domain.

Location domains

A location domain is a collection of servers under the control of a
single locator daemon. The locator daemon can manage servers
on any number of hosts across a network. The locator daemon
automatically activates remote servers through a stateless
activator daemon that runs on the remote host.

The locator daemon also maintains the implementation repository,
which is a database of available servers. The implementation
repository keeps track of the servers available in a system and the
hosts they run on. It also provides a central forwarding point for
client requests. By combining these two functions, the locator lets
you relocate servers from one host to another without disrupting
client request processing. The locator redirects requests to the
new location and transparently reconnects clients to the new
server instance. Moving a server does not require updates to the
naming service, trading service, or any other repository of object
references.

The locator can monitor the state of health of servers and redirect
clients in the event of a failure, or spread client load by redirecting
clients to one of a group of servers.

Configuration domains

A configuration domain is a collection of applications under
common administrative control. A configuration domain can
contain multiple location domains.

Orbix supports two mechanisms to administer a configuration
domain:

* During development, or for small-scale deployment,
configuration can be stored in an ASCII text file, which is
edited directly.

* For larger deployments, Orbix provides a distributed
configuration server that enables centralized configuration for
all applications spread across a network.

12 Orbix CORBA Programmer’s Guide C++

The configuration mechanism is loaded as a plug-in, so future
configuration systems can be extended to load configuration from
any source such as example HTTP or third-party configuration
systems.

CORBA Features and Services

Orbix fully supports the latest CORBA specification, and in some
cases anticipates features to be included in upcoming
specifications.

Full CORBA 2.3 support and
interoperability

All CORBA 2.3 IDL data types are fully supported, including:

* Extended precision numeric types for 64 bit integer and
extended floating point calculations.

* Fixed point decimals for financial calculations.

* International character sets, including support for code-set
negotiation where multiple character sets are available.

* Objects by value: you can define objects that are passed by
value as well as the traditional pass-by-reference semantics of
normal CORBA objects. This is particularly relevant in Java
based systems, but also supported for C++ using object
factories.

Orbix supports the most recent 1.2 revision of the CORBA
standard General Inter-ORB Protocol (GIOP) and Internet
Inter-ORB Protocol (110P), and also supports previous 1.1 and 1.0
revisions for backwards compatibility with applications based on
other ORBs. Orbix is interoperable with any CORBA-compliant
application that uses the standard I1OP protocol.

Asynchronous messaging and quality of
service

Orbix implements two key parts of the CORBA messaging
specification that are included in CORBA 3.0.

* Asynchronous messaging interfaces allow easy, type-safe
asynchronous calls to normal CORBA operations. This means
that clients can make a request on a remote service, and then
carry on with other work until the reply is ready.

* ORB quality-of-service policies provide finer standardized
control over how the ORB processes requests. For example,
you can specify how quickly a client resumes processing after
sending one-way requests.

Orbix CORBA Programmer’s Guide C++ 13

Interoperable naming service and load
balancing extensions

Orbix supports the interoperable naming service specification. This
is a superset of the original CORBA naming service which adds
some ease-of-use features and provides a standard URL format
for CORBA object references to simplify configuration and
administration of CORBA services.

The Orbix naming service also supports Orbix-specific
load-balancing extensions of OrbixNames 3. A group of objects
can be registered against a single name; the naming service
hands out references to clients so that the client load is spread
across the group.

Object transaction service

Orbix includes the object transaction service (OTS) which is
optimized for the common case where only a single resource
(database) is involved in a transaction. Applications built against
the single resource OTS can easily be reconfigured to use a
full-blown OTS when it is available, since the interfaces are
identical. With Orbix plug-in architecture, applications will not
even need to be recompiled. For the many applications where
transactions do not span multiple databases, the single-resource
OTS will continue to be a highly efficient solution, compared to a
full OTS that performs extensive logging to guarantee transaction
integrity.

Event service

Orbix supports the CORBA event service specification, which
defines a model for indirect communications between ORB
applications. A client does not directly invoke an operation on an
object in a server. Instead, the client sends an event that can be
received by any number of objects. The sender of an event is
called a supplier; the receivers are called consumers. An
intermediary event channel takes care of forwarding events from
suppliers to consumers.

Orbix supports both the push and pull model of event transfer, as
defined in the CORBA event specification. Orbix performs event

transfer using the untyped format, whereby events are based on a
standard operation call that takes a generic parameter of type any.

SSL/TLS

Orbix SSL/TLS provides data security for applications that
communicate across networks by ensuring authentication,
privacy, and integrity features for communications across TCP/IP
connections.

TLS is a transport layer security protocol layered between
application protocols and TCP/IP, and can be used for
communication by all Orbix SSL/TLS components and applications.

14 Orbix CORBA Programmer’s Guide C++

Persistent state service

Orbix includes the first implementation of the persistent state
service (PSS). PSS interposes a CORBA-based abstraction layer
between a server and its persistent storage. Orbix’s
implementation of PSS is based on Berkeley DB, an efficient
embedded database that is included with Orbix. By adding new
PSS driver plug-ins, applications that use PSS can be reconfigured
to store their data in any database without code changes or
recompilation.

Dynamic type support: interface
repository and dynany

Orbix has full support for handling data values that are not known
at compile time. The interface repository stores information about
all CORBA types known to the system and can be queried at
runtime. Clients can construct requests based on runtime type
information using the dynamic invocation interface (DII), and
servers can implement “universal” objects that can implement any
interface at run time with the dynamic skeleton interface (DSI).

Although all of these features have been available since early
releases of the CORBA specification, they are incomplete without
the addition of the DynAny interface. This interface allows clients
and servers to interpret or construct values based purely on
runtime information, without any compiled-in data types.

These features are ideal for building generic object browsers, type
repositories, or protocol gateways that map CORBA requests into
another object protocol.

Orbix CORBA Programmer’s Guide C++ 15

16 Orbix CORBA Programmer’s Guide C++

Getting Started with
Orbix

You can use the CORBA Code Generation Toolkit to develop an Orbix
application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk
of the client and server application code, including makefiles. You
then complete the distributed application by filling in the missing
business logic.

Creating a Configuration Domain

This section describes how to create a simple configuration
domain, simple, which is required for running basic
demonstrations. This domain deploys a minimal set of Orbix
services.

Prerequisites

Before creating a configuration domain, the following prerequisites
must be satisfied:

* Orbix is installed.

®* Some basic system variables are set up (in particular, the
IT PRODUCT DIR, IT LICENSE FILE, and PATH variables).

Fore more details, please consult the Installation Guide.

Licensing

The location of the license file, licenses.txt, is specified by the
IT LICENSE FILE System variable. If this system variable is not
already set in your environment, you can set it now.

Steps

To create a configuration domain, simple, perform the following
steps:

Run itconfigure.

Choose the domain type.

Specify service startup options.

Specify security settings.

Specify fault tolerance settings.

Select services.

Confirm choices.

Finish configuration.

®NOORONE

Orbix CORBA Tutorial for C++ 17

Run itconfigure

To begin creating a new configuration domain, enter itconfigure

at a command prompt. An Orbix Configuration Welcome dialog
box appears, as shown in Figure 5.

Select Create a new domain and click OK.

N
{f} Orbix Configuration Welcome M

Welcaome to the Orbix Configuration tool. Please select an option:

) Open an existing domain

() Go straight int iteonfigure

[] Dont show this dialog again

| Ok I | Cancel

.

Figure5: The Orbix Configuration Welcome Dialog Box

18 Orbix CORBA Tutorial for C++

Choose the domain type

A Domain Type window appears, as shown in Figure 6.

In the Configuration Domain Name text field, type simple.
Under Configuration Domain Type, click the Select Services
radiobutton.

Click Next> to continue.

2, Bervice Startup
3. Security

4. Fault Tolerance
5. Select Services
6. Confirm Choices
7. Deplaying ..

8 Summary

@I Create a Configuration Domain - Standard Mode LdE-J
Stes = DomainType
1. Domain Type Configuration ldentification

You can create many different configuration domains and
access them by their unigue name.
Wihiat name do you wish to give this configuration domain?

Configuration Damain Mame: |Simple|

Configuration Domain Type

The configuration tool can create canfiguration domains with
different comhbinations of Orhix services.
Wihich Orhix services do you want to include in this domain?

@ All Licensed Services

() Select Semvices

Storage Location

Configuration Directary: |C:1F'mgram Files\MicroF ocus\Orhixiete ||

Data Directany: |C:1ngram Files\MicroF ocusiOrhidvar ||

Net- || Einisn || cancel

Figure6: The Domain Type Window

Orbix CORBA Tutorial for C++ 19

-

Specify service startup options

@I Create a Configuration Domain - Standard Mode

A Service Startup window appears, as shown in Figure 7.
You can leave the settings in this Window at their defaults.
Click Next> to continue.

1. Damain Type

2. Service Startup
3. Security
4

. Fault Tolerance

.

Caonfirm Choices

-1

- Dieplaying ..

oo

. Summary

Steps:

Service Startup
Startup

The services you are configuring can be programmed to run
when your computer starts up or manually. All, exceptfor a
minimal set, can start on demand. Do you want. .

@ A minimal set of services launched by a script| can run.
() Al gelected semvices launched on machine startup (as system semwvices).

(O All zelected services launched by a script] can run.
Port

The serices need pors to listen for connections.
The easiest way to setthese portvalues is to set a base value.

Base Port

| <pak || new]| Einigh

] | cancel

20 Orbix CORBA Tutorial for C++

Figure7: The Service Sartup Window

Specify security settings

A Security window appears, as shown in Figure 8.

You can leave the settings in this Window at their defaults (no
security).

Click Next> to continue.

@l Create a Configuration Domain - Standard Mode [&J
SteRs el Security
1. Darmain Type Transports

2. Benvice Startup
3. Security
4. Fault Talerance

What communication protocols dao you want enabled in the domain®?
(@ Insecure Communication (IOP/HTTF)
() Secure and Insecure Communication

Secure Cammunication (TLSIHTTRS
G. Confirm Choices Os o)

7. Deploying .. Security Features

8. Sumimary What security features do you want enabled in the domain®?

[[] Expose Services through Firewall

| =Back H blext= H Einish || Cancel

Figure8: The Security Window

Orbix CORBA Tutorial for C++ 21

Specify fault tolerance settings

A Fault Tolerance window appears, as shown in Figure 9.
You can leave the settings in this Window at their defaults.
Click Next> to continue.

1. Damain Type
2. Semvice Startup
3. Security

4. Fault Tolerance

6. Confirm Choices
7. Deploving ...
8. Bummary

i 5
@I Create a Configuration Domain - Standard Mode w
Steps Fault Tolerance

Replication

You can run multiple replicas ofthe care Orhix senvices to
make your system fault talerant. The service instances an
the replica hosts act as hackups.

Replication Hosts:

| Host Add

| <gack || med= || Emisn || cancel

22 Orbix CORBA Tutorial for C++

Figure9: The Fault Tolerance Window

Select services

A Select Services window appears, as shown in Figure 10.

In the Select Services window, select the following services and
components for inclusion in the configuration domain: Location,
Node daemon, Management, CORBA Interface Repository,

CORBA Naming, and demos.

Click Next> to continue.

Steps

=

.Domain Type

. Service Startup
Security

Fault Tolerance
Select Services
Confirm Choices

Deploying ...

o F T B R i)

Summary

Select Services

rInfrastructure

| [Management
| D istributed Transaction|
[] Configuration
Directory—
CORBA Interface Repository
| & coRBA Naming
[CORBA Trader
COIREIATéIco. Lu.ggin-g
[Basic Logging
| [Event Loaging
- [Motify Logging

| selectan || ciearan |

| [l CORBA Natification
(] CORBA Events

| [UMS (Java Messaging
[mSMotification Bridge

| rSecurity

|1 Components

|| ¥ Demos

Messaging

| et cancel

Figure 10: The Select Services Window

Confirm choices

You now have the opportunity to review the configuration settings
in the Confirm Choices window, Figure 11. If necessary, you can
use the <Back button to make corrections.

Orbix CORBA Tutorial for C++ 23

Click Next> to create the configuration domain and progress to
the next window.

1. Damain Type
2. Bervice Startup
3. Secuyrity

4. Fault Tolerance

6. Confirm Choices
7. Deploying ...
8. Summary

@l Create a Configuration Domain - Standard Mode lﬂh]
Stees = Confirmation

This is vour chance ta review the choices yvou have made.

To deploy the senices an the local host, press Mext. To modify any of your chaices, press Back,
Ifyou don'twant to deplay now but wish to save yvour choices for future use,

press Save to store them in a deplovment descriptar, then press Cancel.

Automatic Activation [=]

IOP Part= Enabled
Easic Logging Service

Automatic Activation

IOF Part= Enabled
Event Logging Service

Automatic Activation

IOF Port = Enabled
Motify Ladaing Service

Automatic Activation

IIOF Fart= Enabiled
CORBA Motification Service

Autarnatic Activation

IOF Part= Enabled
COREA Events Service

Automatic Activation

IIOP Paort= Enabled

| Save |

=Back H hlext= Cancel

24 Orbix CORBA Tutorial for C++

Figure 11: The Confirm Choices Window

Finish configuration

The itconfigure utility now creates and deploys the simple
configuration domain, writing files into the OrbixinstallDir /etc/bin,
OrbixInstalIDir /etc/domain, OrbixinstallDir /etc/1log, and OrbixInstallDir /var
directories.

If the configuration domain is created successfully, you should see
a Summary window with a message similar to that shown in
Figure 12.

Click Finish to quit the itconfigure utility.

Steps Summary
1. Domain Type Configuration is now complete, see details below.
2. Senice Startup Configuration completed successfully.
3. Security au can view the log in ‘cadrbix_G2wansimplelogsisimple_2004_Mow 23 1_59_F.log'
4. Fault Tolerance ; : : 5
: To setvour environment for this configuration damain run;
3. Selact Senices cA0rbix_BZetcihinisimple_env.hat
B, Canfirm Chaices
7. Deploving . ma sta.mhe sempes in 1h|§ conﬂgurat.lnn darmain run;
cACrhix_ B2etcthinistart_simple_serices bat
8. Summary

To stop the services in this configuration domain run:
cA0rhix_ Betcbinistop_simple_serices bat

| <Back [l Finish

Figure 12: Configuration Summary

Setting the Orbix Environment

Prerequisites

Before proceeding with the demonstration in this chapter you
need to ensure:

* The CORBA developer’s kit is installed on your host.
®* Orbix is configured to run on your host platform.
* Your configuration domain is set (see “Setting the domain”).

The Administrator’s Guide contains more information on Orbix
configuration, and details of Orbix command line utilities.

Note: 0S/390, both native and UNIX system services, do
not support the code generation toolkit and distributed
genies. For information about building applications in a
native OS/390 environment, see the readme files and JCL
that are supplied in the DEMO data sets of your iPortal
0S/390 Server product installation.

Orbix CORBA Tutorial for C++ 25

Setting the domain

The scripts that set the Orbix environment are associated with a
particular domain, which is the basic unit of Orbix configuration.
See the Installation Guide, and the Administrator’s Guide for
further details on configuring your environment.

To set the Orbix environment associated with the domain-name
domain, enter:

Windows

> config-dir\etc\bin\domain-name env.bat
UNIX

$. config-dir/etc/bin/domain-name env

config-dir is the root directory where the Appliation Server
Platform stores its configuration information. You specify this
directory while configuring your domain. domain-name is the name of
a configuration domain.

Hello World Example

26 Orbix CORBA Tutorial for C++

This chapter shows how to create, build, and run a complete
client/server demonstration with the help of the CORBA code
generation toolkit. The architecture of this example system is
shown in Figure 13.

Client Machine Server Machine

Client Application Server Application

ORB Operation Call o » | [CORBA
Code Result Code /‘ e

IDL Interface

A

Figure 13: Client makes a single operation call on a server

The client and server applications communicate with each other
using the Internet Inter-ORB Protocol (110P), which sits on top of
TCP/IP. When a client invokes a remote operation, a request
message is sent from the client to the server. When the operation
returns, a reply message containing its return values is sent back
to the client. This completes a single remote CORBA invocation.

All interaction between the client and server is mediated via a set
of IDL declarations. The IDL for the Hello World! application is:

//IDL
interface Hello {

string getGreeting() ;
b

The IDL declares a single Hello interface, which exposes a single
operation getGreeting (). This declaration provides a language
neutral interface to CORBA objects of type Hello.

The concrete implementation of the Hel1lo CORBA object is written
in C++ and is provided by the server application. The server could
create multiple instances of Hello objects if required. However,
the generated code generates only one Hello object.

The client application has to locate the Hello object—it does this
by reading a stringified object reference from the file Hello.ref.
There is one operation getGreeting () defined on the Hello
interface. The client invokes this operation and exits.

Development from the Command Line

Starting point code for CORBA client and server applications can
also be generated using the idlgen command line utility.

The idlgen utility can be used on Windows and UNIX platforms.
You implement the Hello wWorld! application with the following
steps:

1. Define the IDL interface, Hello.

2. Generate starting point code.

3. Complete the server program by implementing the single IDL
getGreeting () operation.

4. Complete the client program by inserting a line of code to
invoke the getGreeting() operation.

Build the demonstration.
6. Run the demonstration.

o

Define the IDL interface

Create the IDL file for the Hello wWorld! application. First of all,
make a directory to hold the example code:

Windows

> mkdir C:\OCGT\HelloExample
UNIX

% mkdir -p OCGT/HelloExample

Create an IDL file c:\oCcGT\HelloExample\hello.idl (Windows) or
OCGT/HelloExample/hello.idl (UNIX) using a text editor.

Enter the following text into the file hello.idl:
//IDL

interface Hello {
string getGreeting() ;
e

This interface mediates the interaction between the client and the
server halves of the distributed application.

Orbix CORBA Tutorial for C++ 27

Generate starting point code

Generate files for the server and client application using the
CORBA Code Generation Toolkit.

In the directory c:\0CGT\HelloExample (Windows) or
0CGT/HelloExample (UNIX) enter the following command:

idlgen cpp poa genie.tcl -all hello.idl

This command logs the following output to the screen while it is
generating the files:

hello.idl:

cpp_poa genie.tcl: creating it servant base overrides.h
cpp_poa genie.tcl: creating it servant base overrides.cxx
cpp_poa genie.tcl: creating HelloImpl.h

cpp_poa genie.tcl: creating HelloImpl.cxx

cpp_poa genie.tcl: creating server.cxx

cpp_poa genie.tcl: creating client.cxx

cpp_poa genie.tcl: creating call funcs.h

cpp_poa genie.tcl: creating call funcs.cxx

cpp_poa genie.tcl: creating it print funcs.h

cpp_poa genie.tcl: creating it print funcs.cxx

cpp_poa genie.tcl: creating it random funcs.h

cpp_poa genie.tcl: creating it random funcs.cxx

cpp_poa genie.tcl: creating Makefile

You can edit the following files to customize client and server
applications:
Client:

client.cxx

Server:

server.cxx
HelloImpl.h
HelloImpl.cxx

Complete the server program

Complete the implementation class, HelloImpl, by providing the
definition of the HelloImpl: :getGreeting() function . ThisC++
function provides the concrete realization of the

Hello: :getGreeting () IDL operation.

28 Orbix CORBA Tutorial for C++

Edit the HelloImpl.cxx file, and delete most of the generated
boilerplate code occupying the body of the
HelloImpl::getGreeting() function. Replace it with the line of code
highlighted in bold font below:

//C++
//File 'HelloImpl.cxx’

char *
HelloImpl: :getGreeting () throw (
CORBA: : SystemException

)
{

char * _result;
_result = CORBA::string dup("Hello World!");

return result;

The function CORBA: :string dup() allocates a copy of the

"Hello World!" string on the free store. It would be an error to
return a string literal directly from the CORBA operation because
the ORB automatically deletes the return value after the function
has completed. It would also be an error to create a copy of the
string using the C++ new operator.

Complete the client program

Complete the implementation of the client main () function in the
client.cxx file. You must add a couple of lines of code to make a
remote invocation of the getGreeting() operation on the Hello
object.

Edit the client.cxx file and search for the line where the
call Hello getGreeting() function is called. Delete this line and
replace it with the two lines of code highlighted in bold font below:

//C++

//File: ‘client.cxx’

if (CORBA::is nil (Hellol))
{
cerr << "Could not narrow reference to interface "
<< "Hello" << endl;

}

else

{

CORBA: :String var strV = Hellol->getGreeting();
cout << "Greeting is: " << strV << endl;

The object reference Hellol refers to an instance of a Hello object
in the server application. It is already initialized for you.

Orbix CORBA Tutorial for C++ 29

30 Orbix CORBA Tutorial for C++

A remote invocation is made by invoking getGreeting() on the
Hellol object reference. The ORB automatically establishes a
network connection and sends packets across the network to
invoke the HelloImpl::getGreeting() function in the server
application.

The returned string is put into a C++ object, strv, of the type
CORBA: :String var. The destructor of this object will delete the
returned string so that there is no memory leak in the above code.

Build the demonstration

The Makefile generated by the code generation toolkit has a
complete set of rules for building both the client and server
applications.

To build the client and server complete the following steps:

1. Open a command line window.
2. Go to the ../0CGT/HelloExample directory.
3. Enter:

Windows

> nmake

UNIX

% make -e

Run the demonstration

Run the application as follows:

1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration,
no services need to run for this demonstration. Proceed to
step 2.

If you have configured Orbix to use configuration repository
based configuration, start up the basic Orbix services.

Open a DOS prompt in Windows, or xterm in UNIX. Enter:
start domain-name services

Where domain-name is the name of the configuration domain.
2. Set the Application Server Platform’s environment.

> domain-name env

3. Run the server program.

Open a DOS prompt, or xterm window (UNIX). From the
C:\OCGT\HelloExample directory enter the name of the

executable file—server.exe (Windows) or server (UNIX).The
server outputs the following lines to the screen:

Initializing the ORB
Writing stringified object reference to Hello.ref
Waiting for requests...

The server performs the following steps when it is launched:
+ It instantiates and activates a single Hel1lo CORBA object.

+ The stringified object reference for the Hello object is
written to the local Hello.ref file.

+ The server opens an IP port and begins listening on the
port for connection attempts by CORBA clients.

4. Run the client program.

Open a new DOS prompt, or xterm window (UNIX). From the
C:\OCGT\HelloExample directory enter the name of the
executable file—client.exe (Windows) or client (UNIX).

The client outputs the following lines to the screen:

Client using random seed 0
Reading stringified object reference from Hello.ref
Greeting is: Hello World!

The client performs the following steps when it is run:

+ It reads the stringified object reference for the Hello
object from the Hello.ref file.

+ It converts the stringified object reference into an object
reference.

+ It calls the remote Hello: :getGreeting () operation by
invoking on the object reference. This causes a
connection to be established with the server and the
remote invocation to be performed.

5. When you are finished, terminate all processes.
Shut down the server by typing ctri-c in the window where it
is running.

6. Stop the Orbix services (if they are running).
From a DOS prompt in Windows, or xterm in UNIX, enter:

stop domain-name services

The passing of the object reference from the server to the client in
this way is suitable only for simple demonstrations. Realistic
server applications use the CORBA naming service to export their
object references instead.

Orbix CORBA Tutorial for C++ 31

32 Orbix CORBA Tutorial for C++

First Application

Thischapter usesasimpleapplication to describethe basic programming
steps required to define CORBA abjects, write server programs that
implement those objects, and write client programsthat accessthem. The
programming steps are the same whether the client and server run on a
single host or are distributed across a network.

Development Using Code Generation

With the code generation toolkit, you can automatically generate a
large amount of the code required for the client and server
programs:

y 4 A

Code Generation Code Generation
Toolkit

IDL Compiler IDL Compiler Toolkit

\.

. Skeleton &
Modifies Stub Modifies
Developer ———» Code Code Developer

N v ¥

y v

Client Program / \\ Server Program /

Client Side Server Side

First, you define a set of interfaces written in the OMG interface
definition language (IDL). The IDL forms the basis of development
for both the client and the server. The toolkit takes the IDL file as
input and, based on the declarations in the IDL file, generates a
complete, working Orbix application. You can then modify the
generated code to add business logic to the application.

WARNING: 0S/390, both native and UNIX system
services, do not support the code generation toolkit and
distributed genies. You must develop Orbix applications
without the code generation toolkit (see page 35).

Orbix CORBA Programmer’s Guide C++ 33

Client development

Client development consists of the following steps:

1.

2.

An IDL compiler takes the IDL file as input and generates
client stub code.

The code generation toolkit takes the IDL file as input and
generates a complete client application.

The generated client is a dummy implementation that invokes
every operation on each interface in the IDL file exactly once.
The dummy client is a working application that can be built
and run right away.

You can modify the dummy client to complete the application.
You do not have to write boilerplate CORBA code.

You build the application.

A makefile is generated by the code generation toolkit.

Server development

Server development consists of the following steps:

1.

2.

34 Orbix CORBA Programmer’s Guide C++

An IDL compiler takes the IDL file as input and generates
server skeleton code.

The code generation toolkit takes the IDL file as input and
generates a complete server application.

Dummy implementation classes are generated for each
interface appearing in the IDL file. The dummy server is a
working application that can be built and run right away.

You can modify the dummy server to complete the application
logic.

You do not have to write boilerplate CORBA code.

The implementations of IDL interfaces can be modified by
adding business logic to the class definitions.

You build the application.
A makefile is generated by the code generation toolkit.

Development Without Using Code Generation

The following section outlines the steps for developing clients and
servers without using the code generation toolkit (see page 33):.

/ Client . . Server \
m Developer IDL Compiler IDL Compiler Developer Wﬂ
E Stub Skeleton
Code Code

\ Client Program / \ Server Program /

Client Side Server Side

First, you define a set of interfaces written in the OMG interface
definition language (IDL). The IDL file forms the basis of
development for both the client and the server.

Client development

Client development consists of the following steps:
1. An IDL compiler takes the IDL file as input and generates
client stub code.

The client stub code is a set of files that enable clients to make
remote invocations on the interfaces defined in the IDL file.

2. You write the rest of the client application from scratch.
3. You build the application.

Typically, you write a customized makefile to build the client
program.

Server development

Server development consists of the following steps:
1. An IDL compiler takes the IDL file as input and generates
server skeleton code.

The server skeleton code is a set of files that enables the server to
service requests on the interfaces in the IDL file.

2. You write the rest of the server application from scratch.

Orbix CORBA Programmer’s Guide C++ 35

You must write an implementation class for each interface
appearing in the IDL file.

3. You build the application.
You typically write a customized makefile to build the server
program.

Locating CORBA Objects

Before developing an Orbix application, you must choose a
strategy for locating CORBA objects.

To find a CORBA object, a client needs to know both the identity of
the object and the location of the server process that provides a
home for that object. In general, CORBA encapsulates both the
identity and location of a CORBA object inside an entity known as
an object reference.

In this chapter, a simple strategy is adopted to pass the object
reference from the server to the client. The strategy, illustrated in
Figure 14, has three steps:

1 The server converts the object reference into a string (stringified
object reference) and writes this stringified object reference to a file.

2 The client reads the stringified object reference from the file and
converts it to a real object reference.

3 The client can now make remote invocations by invoking on the
object reference.

Client Server

invoke

object / \

reference f / servant

stringified
object reference

Figure 14: Smple strategy for passing object referencesto clients

This approach is convenient for simple demonstrations but is not
recommended for use in realistic applications. The CORBA naming
service, described in “Naming Service”, provides a more
sophisticated and scalable approach to distributing object
references.

36 Orbix CORBA Programmer’s Guide C++

Development Steps

You typically develop an Orbix application in the following steps:

1. Define IDL interfaces: Identify the objects required by the
application and define their public interfaces in IDL.

2. Generate starting point code: Use the code generation toolkit
to generate starting point code for the application. You can
then edit the generated files to add business logic.

3. Compile the IDL definitions: The compiler generates the C++
header and source files that you need to implement client and
server programs.

4. Develop the server program: The server acts as a container
for a variety of CORBA objects, each of which supports one
IDL interface. You must add code to provide the business logic
for each type of CORBA object.

The server makes its CORBA objects available to clients by
exporting object references to a well-known location.

5. Develop the client program: The client uses the IDL
compiler-generated mappings to invoke operations on the
object references that it obtains from the server.

6. Build the application.

7. Run the application.

Define IDL interfaces

Begin developing an Orbix enterprise application by defining the
IDL interfaces to the application’s objects. These interfaces
implement CORBA distributed objects on a server application.
They also define how clients access objects regardless of the
object’s location on the network.

An interface definition contains operations and attributes:

* Operations correspond to methods that clients can call on an
object.

* Attributes give you access to a single data value.

Each attribute corresponds either to a single accessor method
(readonly attribute) or an accessor method and a modifier
method (plain attribute).
For example, the IDL code in Example 1 defines an interface for
an object that represents a building. This building object could be
the beginning of a facilities management application such as a
warehouse allocation system.

Example 1: IDL for the Building Interface
//IDL

//File: ’'building.idl’
interface Building {

1 readonly attribute string address;

2 boolean available (in long date) ;
boolean reserveDate(in long date, out long
confirmation) ;

hs

Orbix CORBA Programmer’s Guide C++ 37

The IDL contains these components:

1. The address attribute is preceded by the IDL keyword
readonly, SO clients can read but can not set its value.

2. The Building interface contains two operations: available()
and reserveDate (). Operation parameters can be labeled in,
out, Or inout:

+ in parameters are passed from the client to the object.

+ out parameters are passed from the object to the client.
+ 1inout parameters are passed in both directions.
available() lets a client test whether the building is available
on a given date. This operation returns a boolean (true/false)
value.

reserveDate () takes the date as input, returns a confirmation
number as an out parameter, and has a boolean (true/false)
return value.

All attributes and operations in an IDL interface are implicitly
public. IDL interfaces have no concept of private or protected
members.

Generate starting point code

It’s recommended that you start developing a CORBA application
by using the code generation toolkit to generate starting point
code. The toolkit contains two key components:

The idlgen interpreter is an executable file that processes IDL
files based on the instructions contained in predefined code
generation scripts.

A set of genies (code generation scripts) are supplied with the
toolkit. Most important of these is the cpp poa genie.tcl genie that
is used to generate starting point code for a C++ application.

Taking the building.idl IDL file as input, the cpp poa genie.tcl
genie can produce complete source code for a distributed
application that includes a client and a server program.

To generate starting point code, execute the following command:

idlgen cpp poa genie.tcl -all building.idl

This command generates all of the files you need for this
application. The -all flag selects a default set of genie options that
are appropriate for simple demonstration applications.

The main client file generated by the cpp poa genie.tcl genie is:

client.cxx Implementation of the client.

The main server files generated by the cpp poa genie.tcl genie

are:
server.cxx Server main () containing the
server initialization code.
BuildingImpl.h Header file that declares the
BuildingImpl Servant class.
BuildingImpl.cxx Implementation of the

BuildingImpl servant class.

38 Orbix CORBA Programmer’s Guide C++

it_servant base_ overrides Header file that declares a base

.h class for all servant classes. See
page 198.
it _servant base overrides Implementation of the base class
.CXX for all servant classes. See
page 198.

A makefile is generated for building the application:

Makefile The generated makefile defines
rules to build both the client and
the server.

The following files are also generated and support a dummy
implementation of the client and server programs:

call funcs.h

call funcs.cxx

it print funcs.h

it print funcs.cxx
it random funcs.h
it random funcs.cxx

Dummy implementation of client and
server programs

The generated starting point code provides a complete dummy
implementation of the client and the server programs. The dummy
implementation provides:

* A server program that implements every IDL interface.

Every IDL operation is implemented with default code that
prints the in and inout parameters to the screen when it is
invoked. Return values, inout and out parameters are
populated with randomly generated values. At random
intervals a CORBA user exception might be thrown instead.

* Aclient program that calls every operation on every IDL
interface once.

The dummy client and server programs can be built and run as
they are.

Modifying dummy client and server
programs

Later steps describe in detail how to modify the generated code to
implement the business logic of the Building application.

In the code listings that follow, modifications are indicated as
follows:

* Additions to the generated code are highlighted in bold font.
You can manually add this code to the generated files using a
text editor.

Orbix CORBA Programmer’s Guide C++ 39

* In some cases the highlighted additions replace existing
generated code, requiring you to manually delete the old
code.

Compile the IDL definitions

This step is optional if you use the code generation toolkit to
develop an application. The Makefile generated by the toolkit has
a rule to run the IDL compiler automatically.

After defining your IDL, compile it using the CORBA IDL compiler.
The IDL compiler checks the validity of the specification and
generates code in C++ that you use to write the client and server
programs.

Compile the Building interface by running the IDL compiler as
follows:

idl -base -poa building.idl
The -base option generates client stub and header code in C++.

The -poa option generates server-side code for the portable object
adapter (POA).

Run the IDL compiler with the -flags option to get a complete
description of the supported options.

Output from IDL compilation

The IDL compiler produces several C++ files when it compiles the
building.idl file. These files contain C++ definitions that
correspond to your IDL definitions. You should never modify this
code.

The generated files can be divided into two categories:

* Client stub code is compiled and linked with client programs,
so they can make remote invocations on Building CORBA
objects.

* Server skeleton code is compiled and linked with server
programs, so they can service invocations on Building CORBA
objects.

Client stub code
The stub code is used by clients and consists of the following files:

building.hh A header file containing definitions
that correspond to the various IDL
type definitions. Client source code
must include this file using a #include
preprocessor directive.

buildingC.cxx A file containing code that enables
remote access to Building objects.
This file must be compiled and linked
with the client executable.

Any clients that want to invoke on CORBA objects that support the
Building interface must include the header file building.hh and link
with the stub code buildingC.cxx.

40 Orbix CORBA Programmer’s Guide C++

1

Server skeleton code

The skeleton code is used by servers and consists of the following
files:

buildingS.hh A header file containing type
definitions for implementing
servant classes. Server source
code must include this file using a
#include preprocessor directive.

buildingsS.cxx A file containing skeleton code that
enables servers to accept calls to
Building objects. This file must be
compiled and linked with the
server executable.

building.hh A header file common to client
stub code and server skeleton
code. This file is included by
buildingS.hh, so server files do not
need to explicitly include it.

buildingC.cxx Source file common to client stub
code and server skeleton code.
This file must be compiled and
linked with the server executable.

The skeleton code is a superset of the stub code. The additional
files contain code that allows you to implement servants for the
Building interface.

Server files include the buildings.hh header file, which recursively
includes the file building.hh. The server must be linked with both
buildingC.cxx and buildings.cxx.

IDL to C++ mapping

The IDL compiler translates IDL into stub and skeleton code for a
given language—in this case, C++. As long as the client and
server programs comply with the definitions in the generated
header files, building.hh and buildingsS.hh, the runtime ORB
enables type-safe interaction between the client and the server.

Both the client and the server source files include the generated
header file building.hh, which contains the C++ mappings for the
Building interface (see “Define IDL interfaces” on page 37):

Example2: C++ Stub Code for the Building Interface
class Building : public virtual CORBA: :Object
{

public:

virtual char* address() = 0;

virtual CORBA::Boolean available (CORBA: :Long date) =
0;

Orbix CORBA Programmer’s Guide C++ 41

Example2: C++ Stub Code for the Building Interface

b

virtual CORBA: :Boolean reserveDate (
CORBA: :Long date,
CORBA: :Long out confirmation

) = 0;

The code can be explained as follows:

1.

The Building class defines proxy objects for the Building
interface. This class includes member methods that
correspond to the attributes and operations of the IDL
interface. When a client program calls methods on an object
of type Building, Orbix forwards the method calls to a server
object that supports the Building interface.

The C++ pure virtual member method address () maps to the
readonly IDL string attribute address. Clients call this method
to get the attribute’s current value, which returns the C++
type char*.

The pure virtual C++ member method available () maps to
the IDL operation of the same name. It returns type

CORBA: :Boolean, Which maps to the equivalent IDL type
boolean. Its single parameter is of CORBA: :Long type, which is a
typedef of a basic C++ integer type. This maps to the
operation parameter of IDL type long.

The operation reserveDate () has one input parameter, date,
and one output parameter, confirmation, both of IDL type
long. The return type is CORBA: :Boolean. Input parameters
(specified as IDL in parameters) are passed by value in C++.
Output parameters are passed by reference. Every CORBA
data type has a corresponding out type that is used to
declare output parameters. For basic types, such as short and
long, the out type is a typedef of a reference to the
corresponding C++ type. For example, the CORBA: :Long out
type is defined in the CORBA namespace as:

typedef CORBA::Long& CORBA::Long out;

Other helper data types and methods generated in this file are
described when they are used in this chapter.

Develop the server program

The main programming task on the server side is the
implementation of servant classes. In this demonstration there is
one interface, Building, and one corresponding servant class,
BuildingImpl.

For each servant class, perform these tasks:

42 Orbix CORBA Programmer’s Guide C++

Declare the servant class: The code generation toolkit
generates an outline servant header file for every interface.
The BuildingImpl servant class is declared in the header file
BuildingImpl.h.

Define the servant class: The code generation toolkit
generates a dummy definition of every servant class. The
BuildingImpl servant class is defined in the file
BuildingImpl.cxx.

The other programming task on the server side is the
implementation of the server main (). For this simple
demonstration, the generated server main() does not require any
modification. It is discussed in detail in “Enhancing Server
Functionality” on page 52.

Declare the servant class

The code generation toolkit generates a header file,
BuildingImpl.h, that declares the BuildingImpl servant class. You
can use this starting point code to implement the Building
interface.

Note: The name of the BuildingImpl servant class is not
significant but simply conforms to a naming convention that helps
distinguish servant code from other application code.

You can modify the generated code in BuildingImpl.h to add
member variables needed for the implementation. The code
shown here provides a simple implementation of BuildingImpl.

Manual additions to the generated code are shown in bold font.
Example3: C++ Buildinglmpl Servant Class Header
// File: ’'BuildingImpl.h’

#include "buildingS.hh"
#include "it servant base overrides.h"

class BuildingTImpl
public virtual IT ServantBaseOverrides,
public virtual POA Building

{

public:
BuildingImpl (PortableServer: :POA ptr) ;
virtual ~BuildingImpl () ;

// _create() -- create a new servant.
static POA Building*
_create (PortableServer: :POA ptr) ;

// IDL operations
//
virtual CORBA: :Boolean available (
CORBA: : Long date
) IT THROW DECL ((CORBA: : SystemException)) ;

virtual CORBA::Boolean reserveDate (

CORBA: : Long date,

CORBA: :Long_out confirmation
) IT THROW DECL ((CORBA: : SystemException)) ;

// IDL attributes
//
virtual char* address ()

IT THROW DECL ((CORBA: :SystemException)) ;

private:

Orbix CORBA Programmer’s Guide C++ 43

Example3: C++ Buildinglmpl Servant Class Header

6

IE

[fmmm e eeee
// Private Member Variables

J]mmmmmmmm e

CORBA: :Long m confirmation counter;
CORBA: :Long m reservation[366] ;

// Instance variables for attributes.
CORBA: :String var m_address;

This code can be described as follows:

1.

44 Orbix CORBA Programmer’s Guide C++

Servers include the buildings.hh skeleton file, which declares
the C++ POA Building class.

The poA Building class is a class generated by the IDL
compiler that allows you to implement the Building interface
using the inheritance approach. In general, for any interface,
InterfaceName, & corresponding class, POA InterfaceName, iS
generated by the IDL compiler.

The BuildingImpl servant class inherits from POA Building and
IT ServantBaseOverrides.

The poa Building class is a standard name for the base class
generated for the Building interface. By inheriting from

POA Building, you are indicating to the ORB that BuildingTmpl
is the servant class that implements Building. This approach
to associating a servant class with an interface is called the
inheritance approach.

The IT ServantBaseOverrides class is used to override the
definition of some standard virtual methods. For a discussion
of this class, see page 198.

A member method declaration is generated for each of the
operations in the Building interface.

Orbix uses the IT THROW DECL((exception-list)) Mmacro to
insulate generated code from variations between C++
compilers. The macro maps to throw (exception-1ist) for
compilers that support exceptions, or to an empty string, "",
for compilers that do not.

Member method declarations are generated for each of the
attributes in the Building interface.

Read-only attributes require a single method that returns the
current value of the attribute. Read/write attributes require
two methods: one that returns the current value, and another
that takes an input parameter to set the value.

The lines of code shown in bold font are added to the

generated code to complete the application. Two additional

private member variables are declared to store the state of a

BuildingImpl object.

¢+ The m confirmation counter index counter is incremented
each time a reservation is confirmed.

¢+ The m reservation array has 366 elements (representing
the 365 or 366 days in a year). The elements are equal to
zero when unreserved or a positive integer (the
confirmation number) when reserved.

6. The m address is a CORBA string that stores the address of the
building.
The declared type of m _address, CORBA::String var, IS a smart
pointer type that functions as a memory management aid.
String pointers declared as CORBA: :String var are used in a
similar way to plain char * pointers, except that it is never
necessary to delete the string explicitly.

Note: The code generation toolkit automatically generates
a private member m _address to represent the state of the
IDL address attribute. However, this generated class
member is not part of the standard IDL-to-C++ mapping.
It is generated solely for your convenience and you are
free to remove this line from the generated code if you so
choose.

Define the servant class

The code generation toolkit also generates the BuildingImpl.cxx
file, which contains an outline of the method definitions for the
BuildingImpl servant class. You should edit this file to fill in the
bodies of methods that correspond to the operations and
attributes of the Building interface. It is usually necessary to edit
the constructor and destructor of the servant class as well.

Manual additions made to the generated code are shown in bold
font. In some cases, the additions replace existing generated code
requiring you to manually delete the old code.

Example4: C++ Buildinglmpl Servant Implementation

// File: ’'BuildingImpl.cxx’

#include "BuildingImpl.h"

// _create() -- create a new servant.

POA Building*
BuildingImpl:: create (PortableServer::POA ptr the poa)

{
}

// BuildingImpl constructor

return new BuildingImpl (the poa) ;

//

// Note: since we use virtual inheritance, we must include
an

// initialiser for all the virtual base class constructors
that

// require arguments, even those that we inherit
indirectly.

//

BuildingImpl: :BuildingTImpl (
PortableServer: :POA ptr the poa

)
IT ServantBaseOverrides (the poa),

Orbix CORBA Programmer’s Guide C++ 45

Example4: C++ Buildinglmpl Servant Implementation

2 m_address("200 West Street, Waltham, MA."),
m confirmation counter (1)
{
for (int i=0; i<366; i++) { m reservation[i] = 0; }
}

// ~BuildingImpl destructor.

//
3 BuildingImpl: :~BuildingImpl ()

{
}

// Intentionally empty.

// available() -- Implements IDL
// operation "Building::available()".
//

CORBA: :Boolean
BuildingImpl: :available (
CORBA: :Long date
) IT THROW DECL ((CORBA: :SystemException))

{

4 if (l<=date && date<=366) {
return (m reservation[date-1]==0);
}
return 0;
// reserveDate() -- Implements IDL
// operation "Building::reserveDate()".

//
CORBA: :Boolean
BuildingImpl: :reserveDate (
CORBA: :Long date,
CORBA: :Long out confirmation
) IT THROW DECL ((CORBA: : SystemException))

{

5 confirmation = 0;

if (l<=date && date<=366) {
if (m reservation[date-1]==0) {
m reservation[date-1]=m confirmation counter;
confirmation = m confirmation counter;
m confirmation counter++;

return 1;
}

}

return 0;
1
// address() -- Accessor for IDL attribute

"Building: :address".
//
char *

BuildingImpl: :address ()
IT THROW DECL ((CORBA: :SystemException))
{

6 return CORBA::string dup(m address);

}

46 Orbix CORBA Programmer’s Guide C++

The code can be explained as follows:

1. create() is a static member method of BuildingImpl that
creates BuildingImpl instances.
Note that create() is not a standard part of CORBA. It is
generated by the code generation toolkit for convenience. You
are free to call the constructor directly, or remove the
_create () method entirely.

2. The BuildingImpl constructor is an appropriate place to
initialize any member variables. The three private member
variables—m address, m_confirmation counter and
m_reservation—are initialized here.

3. The BuildingImpl destructor is an appropriate place to free any
member variables that were allocated on the heap. In this
example it is empty.

4. A few lines of code are added here to implement the
available () operation. If an element of the array
m_reservation iS zero, that means the date is available.
Otherwise the array element holds the confirmation number
(a positive integer).

5. A few lines of code are added here to implement the
reserveDate () operation. Because confirmation is declared as
an out parameter in IDL, it is passed by reference in C++. The
value assigned to it is therefore readable by the code that
called reserveDate ().

6. CORBA::string dup() is used to allocate a copy of the string
m_address on the free store.

It would be an error to return the private string pointer
directly from the operation because the ORB automatically
deletes the return value after the operation has completed.

It would also be an error to allocate the string copy using the
C++ new operator.

Develop the client program

The generated code in the client.cxx file takes care of initializing
the ORB and getting a Building object reference. This allows the
client programmer to focus on the business logic of the client
application.

You modify the generated client code by implementing the logic of
the client program. Use the Bulding object reference to access an
object’s attributes and invoke its operations.

Client main()

The code in the client main() initializes the ORB, reads a Building
object reference from the file Building.ref and hands over control
to run warehouse menu (), which is described in the next section.
When run warehouse menu() returns, the generated code shuts
down the ORB.

Orbix CORBA Programmer’s Guide C++ 47

Changes or additions to the code are shown in bold font.
Example5: C++ Client main() Function

//File: ’'client.cxx’

#iﬁclude "building.hh"

// global orb -- make ORB global so all code can find it.
//
CORBA: :ORB var

1 global orb = CORBA::ORB:: nil();

// read reference() -- read an object reference from file.
//
static CORBA::Object ptr
2 read reference (
Eonst char* file
)
{

cout << "Reading stringified object reference from "
<< file << endl;

ifstream ifs(file) ;

CORBA: :String var str;

ifs >> str;

if (1ifs) {
cerr << "Error reading object reference from "

<< file << endl;

return CORBA::Object:: nil();

}

return global orb->string to object (str) ;

// main() -- the main client program.
int
main (int argc, char **argv)
{
int exit status = 0;
try
{
// For temporary object references.
CORBA: :Object var tmp ref;

// Initialise the ORB.

//
3 global orb = CORBA::ORB_init (argc, argv) ;

// Exercise the Building interface.

//

4 tmp ref = read reference("Building.ref");

48 Orbix CORBA Programmer’s Guide C++

Example5: C++ Client main() Function

Building var Buildingl =
Building:: narrow(tmp ref) ;
if (CORBA::is nil (Buildingl))

{

cerr << "Could not narrow reference to
interface "

}

else

run warehouse menu(Buildingl) ;
catch (CORBA: : Exception &ex)
cerr << "Unexpected CORBA exception: " << ex <<

endl;
exit status = 1;

// Ensure that the ORB is properly shutdown and
cleaned up.

//

try

{

<< "Building" << endl;

global orb->shutdown (1) ;
global orb->destroy() ;

!
catch (...)
{
// Do nothing.
1

return exit status;

The code can be explained as follows:

1. Declare the variable global orb in the global scope so that all

parts of the program can easily access the ORB object.

The global orb is temporarily set equal to the value

CORBA: :ORB:: nil (), which represents a blank object reference
of type CORBA: :ORB ptr.

2. Define read reference() to read an object reference from a
file. This method reads a stringified object reference from a
file and converts the stringified object reference to an object
reference using CORBA: :ORB: :string to object (). The return
type of read reference() IS CORBA: :Object ptr—the base type
for object references.

If there is an error, read reference() returns
CORBA: :Object:: nil(), which represents a blank object
reference of type CORBA: :Cbject ptr.

3. Call corBa::0RB init () to get an object reference to the
initialized ORB.

A client must associate itself with the ORB in order to get
object references to CORBA services such as the naming
service or trader service.

Orbix CORBA Programmer’s Guide C++ 49

4. Get areference to a CORBA object by calling read reference (),
passing the name of a file that contains its stringified object
reference.

The tmp_ref variable is of CORBA: :Object var type. This is a
smart pointer type that automatically manages the memory it
references.

5. Narrow the CORBA object to a Building oObject, to yield the
Buildingl object reference.

The mapping for every interface defines a static member
method narrow() that lets you narrow an object reference
from a base type to a derived type. It is similar to a C++
dynamic cast operation, but is used specifically for types
related via IDL inheritance.

6. Replace the lines of generated code in the else clause with a
single call to run warehouse menu().

run warehouse menu () uses the Buildingl object reference to
make remote invocations on the server.

7. The ORB must be explicitly shut down before the client exits.
CORBA: :ORB: :shutdown () stops all server processing,
deactivates all POA managers, destroys all POAs, and causes
the run() loop to terminate. The boolean argument, 1,
indicates that shutdown () blocks until shutdown is complete.
CORBA: :ORB: :destroy () destroys the ORB object and reclaims
all resources associated with it.

When an object reference enters a client’s address space, Orbix

creates a proxy object that acts as a stand-in for the remote servant

object. Orbix forwards method calls on the proxy object to
corresponding servant object methods.

Client business logic

You access an object’s attributes and operations by calling the
appropriate Building class methods on the proxy object. The proxy
object redirects the C++ calls across the network to the
appropriate servant method.

The following code uses the C++ arrow operator (->) on the
Building ptr object warehouse to access Building class methods.

50 Orbix CORBA Programmer’s Guide C++

Additions to the code are shown in bold font.

//File: ’'client.cxx’
void
run warehouse menu(Building ptr warehouseP)
{
CORBA: :String var addressV = warehouseP->address() ;
cout << "The warehouse address is:" << endl
<< addressV.in() << endl;

CORBA: :Long date;
CORBA: :Long confirmation;
char quit = 'n';
do {

cout << "Enter day to reserve warehouse (1,2,...): ";

cin >> date;

if (warehouseP->available (date)) {

if (warehouseP->reserveDate(date, confirmation))
cout << "Confirmation number: "
<< confirmation << endl;

else
cout << "Reservation attempt failed!" << endl;
}
else {
cout << "That date is unavailable." << endl;
}

cout << "Quit? (y,n)";
cin >> quit;

}

while (quit == 'n');

Build the application

The makefile generated by the code generation toolkit has a
complete set of rules for building both the client and server
applications.

To build the client and server, go to the example directory and at
a command line prompt enter:

Windows

> nmake

UNIX

)

% make -e

Run the application

Prerequisites

The prerequisites for running this application are:

* The Orbix deployment environment is installed on the
machine where the demonstration is run.

* Orbix has been correctly configured. See the Application
Server Platform Administrator’s Guide for details.

®* Your classpath includes the necessary Orbix JAR files ().

Orbix CORBA Programmer’s Guide C++ 51

This demonstration assumes that both the client and the server
run in the same directory.

Steps

Perform the following steps to run the application:

1 Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no
services need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Open a new DOS prompt in Windows, or xterm in UNIX. Enter:

start domain-name services

where domain-name is the name of the default configuration domain.

2 Run the server program.

Open a new DOS prompt in Windows, or xterm in UNIX. The
executable file is called server.exe (Windows) or server (UNIX).

The server outputs the following lines to the screen:
Initializing the ORB

Writing stringified object reference to Building.ref
Waiting for requests...

At this point the server is blocked while executing
CORBA: :ORB: :run().

3 Run the client program.

Open a new DOS prompt in Windows, or xterm in UNIX. The
executable file is called client.exe (Windows) or client (UNIX).

4 When you are finished, terminate all processes.

The server can be shut down by typing Ctrl-C in the window where
it is running.

5 Stop the Orbix services (if they are running).
From a DOS prompt in Windows, or xterm in UNIX, enter:

stop domain-name services

where domain-name is the name of the default configuration domain.

Enhancing Server Functionality

In this demonstration, the default implementation of main ()
suffices so there is no need to edit the server.cxx file.

However, for realistic applications, you need to customize the
server main () to specify what kind of POAs are created. You also
need to select which CORBA objects get activated as the server
boots up.

52 Orbix CORBA Programmer’s Guide C++

The default server main () contains code to perform these tasks:

1. Create a Termination Handler Object
2. Initialize the ORB

3. Create a POA for transient objects.
4. Create servant objects.
5.

Activate CORBA objects—the default server code activates
one CORBA object for each of the interfaces defined in the IDL
file.

6. Export object references—an object reference is exported for
each of the activated CORBA objects.

7. Activate the POA manager—so it can process requests on the
CORBA objects it manages.

8. Shut down the ORB—shut down the ORB cleanly before
exiting. Any heap-allocated memory should be deleted.

In this demonstration, there is only one interface, Building, and a
single CORBA object of this type is activated.

The following subsections discuss the code in the server.cxx file
piece by piece. For a complete source listing of server.cxx, see
page 62.

Create a Termination Handler Object

Orbix provides its own IT TerminationHandler class, which handles
server shutdown in a portable manner.

On UNIX, the termination handler handles the following signals:

SIGINT

SIGTERM

SIGQUIT

On Windows, the termination handler is just a wrapper around
SetConsoleCtrlHandler, Which handles delivery of the following
control events:

CTRL_C EVENT

CTRL_BREAK EVENT

CTRL_SHUTDOWN EVENT

CTRL_LOGOFF_EVENT

CTRL_CLOSE_EVENT

The main routine can create a termination handler object on the
stack. On POSIX platforms, it is critical to create this object in the
main thread before creation of any other thread, especially before
calling orBinit (), as follows:

int
main (int argc, char** argv)
{
IT TerminationHandler
termination handler (termination handler callback) ;
/] ...
}

You can create only one termination handler object in a program.
The server shutdown mechanism and
termination handler callback () are discussed in detail in “Shut
down the ORB” on page 59.

Orbix CORBA Programmer’s Guide C++ 53

Initialize the ORB

Before a server can make its objects available to the rest of an
enterprise application, it must initialize the ORB:

Example6: C++ Initializing the ORB

// global orb -- make ORB global so all code can find it.
CORBA: :ORB_var
1 global orb = CORBA::ORB:: nil();

int
main (int argc, char **argv)

{

cout << "Initializing the ORB" << endl;
2 global orb = CORBA::0RB init (argc, argv) ;

The code can be explained as follows:

1. The type CORBA::0ORB var iS a smart pointer class that can be
used to refer to objects of type CORBA: :ORB. Syntactically, a
CORBA: :ORB_var is similar to the pointer type CORBA: :ORB*. The
advantage of using a smart pointer is that it automatically
deletes the memory pointed at as soon as it goes out of
scope. This helps to prevent memory leaks.

The value COrRBA: :0RB:: nil() is an example of a nil object
reference. A nil object reference is a blank value that can
legally be passed as a CORBA parameter or return value.

2. CORBA::ORB init() is used to create an instance of an ORB.
Command-line arguments can be passed to the ORB via argc
and argv. ORB_init () searches argv for arguments of the
general form -oresuffix, parses these arguments, and
removes them from the argument list.

Create a POA for transient objects

A simple POA object is created using the following lines of code:

Example 7:

try {
// For temporary object references.
CORBA: :Object _var tmp ref;

1 tmp ref =
global orb->resolve initial references ("RootPOA") ;
2 PortableServer: :POA var root poa =

PortableServer: :POA: : _narrow (tmp_ref) ;
assert (!CORBA: :is nil (root poa)) ;

3 PortableServer: :POAManager var root poa manager

= root poa->the POAManager () ;
assert (!CORBA: :is_nil (root_poa manager)) ;

54 Orbix CORBA Programmer’s Guide C++

4

Example 7:

// Now create our own POA.
PortableServer: :POA var my poa =
create simple poa("my poa", root poa,
root poa manager) ;

The code can be explained as follows:

1.

Get a reference to the root POA object by calling
resolve initial references ("RootPOA") on the ORB.

resolve initial references() provides a bootstrap mechanism
for obtaining access to key Orbix objects. It contains a
mapping of well-known names to important objects such as
the root POA (RootPOR), the naming service (NameService), and
other objects and services.

Narrow the root POA reference, tmp ref, to the type
PortableServer: :POA ptr USING PortableServer::POA:: narrow().

Because tmp ref is of CORBA: :Object type, which is the generic
base class for object references, methods specific to the
PortableServer: : POA class are not directly accessible. It is
therefore necessary to down-cast the tmp_ref pointer to the
actual type of the object reference using narrow().

Obtain a reference to the root POA manager object.

A POA manager controls the flow of messages to a set of
POAs. CORBA invocations cannot be processed unless the POA
manager is in an active state (see page 59).

Create the my poa POA as a child of root poa. The my poa POA
becomes associated with the root poa manager POA manager.
This means that the root poa manager object controls the flow
of messages into my poa.

Orbix CORBA Programmer’s Guide C++ 55

create_simple poa(Q)

The create simple poa() function is defined as follows:

PortableServer: : POA ptr
create simple poa (

}

A POA is created by invoking PortableServer: : POA: :create POA() ON
an existing POA object. The POA on which this method is invoked
is known as the parent POA and the newly created POA is known

const char* poa_name,
PortableServer: :POA ptr parent poa,
PortableServer: :POAManager ptr poa manager

// Create a policy list.

// Policies not set in the list get default values.

//

CORBA: :PolicyList policies;

policies.length (1) ;

int 1 = 0;

// Make the POA single threaded.

//

policies[i++] = parent poa->create thread policy(
PortableServer: : SINGLE THREAD MODEL

) 7

assert (i==1) ;

return parent poa->create POA (
poa_name,
poa_manager,
policies) ;

as the child POA.
create POA() takes the following arguments:

The POA instance returned by create simple poa() accepts default
values for most of its policies. The resulting POA is suitable for
activating transient CORBA objects. A transient CORBA object is
an object that exists only as long as the server process that
created it. When the server is restarted, old transient objects are

poa_name IS the adapter name. This name is used within the
ORB to identify the POA instance relative to its parent.

poa_manager is a reference to a POA manager object with which

the newly created POA becomes associated.

policies is a list of policies that configure the new POA. For
more information, see “Using POA Policies” on page 190.

no longer accessible.

56 Orbix CORBA Programmer’s Guide C++

Create servant objects

A number of servant objects must be created. A servant is an
object that does the work for a CORBA object. For example, the
BuildingImpl servant class contains the code that implements the
Building IDL interface.

A single BuildingImpl servant object is created as follows:
#include <BuildingImpl.h>

// Note: PortableServer::Servant is a pointer type - it's
// actually a typedef for PortableServer::ServantBasex.

//

PortableServer: :Servant the Building = 0;
the Building = BuildingImpl:: create(my poa) ;

In this example, create() creates an instance of a BuildingImpl
servant. The POA reference my poa that is passed to create()
must be the same POA that is used to activate the object in the
next section “Activate CORBA objects”.

_create() is not a standard CORBA method. It is a convenient
pattern implemented by the code generation toolkit. You can use
the BuildingImpl constructor instead, if you prefer.

Activate CORBA objects

A CORBA object must be activated before it can accept client
invocations. Activation is the step that establishes the link
between an ORB, which receives invocations from clients, and a
servant object, which processes these invocations.

In this step, two fundamental entities are created that are closely
associated with a CORBA object:

* An object ID.

This is a CORBA object identifier that is unique with respect to
a particular POA instance. In the case of a persistent CORBA
object, the object ID is often a database key that is used to
retrieve the state of the CORBA object from the database.

* An object reference.

This is a handle on a CORBA object that exposes a set of
methods mapped from the operations of its corresponding IDL
interface. It can be stringified and exported to client
programs. Once a client gets hold of an object reference, the
client can use it to make remote invocations on the CORBA
object.

A single Building object is activated using the following code:
Example 8:

#include <BuildingImpl.h>

CORBA :Object var tmp ref;

PortableServer: :ObjectId var oid;

Orbix CORBA Programmer’s Guide C++ 57

Example 8:

1 oid = my poa->activate object (the Building) ;
2 tmp ref = my poa->id to reference (oid) ;

The code can be explained as follows:

1. Activate the CORBA object.
A number of things happen when activate object () is called:

+ An unique object ID, oid, is automatically generated by
my poa to represent the CORBA object’s identity.
Automatically generated object IDs are convenient for use
with transient objects.

+ The CORBA object becomes associated with the POA,
my poa.

+ The POA records the fact that the the Building servant
provides the implementation for the CORBA object
identified by oid.

2. Use portableServer::POA::id to reference() to generate an

object reference, tmp ref, from the given object ID.

You can activate a CORBA object in various ways, depending on
the policies used to create the POA. For information about
activating objects in the POA, see “Activating CORBA Objects” on
page 168; for information about activating objects on demand,
see Chapter 1 on page 209.

Export object references

A server must advertise its objects so that clients can find them.
In this demonstration, the Building object reference is exported to
clients using write reference():

write reference (tmp ref, "Building.ref");

This call writes the tmp ref object reference to the Building.ref
file.

write reference () writes an object reference to a file in stringified
form. It is defined as follows:

void
write reference (

CORBA: :Object ptr ref, const char* objref file
)
{

CORBA: :String var stringified ref =

global orb->object to string(ref) ;
cout << "Writing stringified object reference to "
<< objref file << endl;

ofstream os (objref file);
os << stringified ref;
if (los.good())

{
cerr << "Failed to write to " << objref file <<
endl ;

}

58 Orbix CORBA Programmer’s Guide C++

The ref object reference is converted to a string, of type char * by
passing ref as an argument to CORBA: :ORB: :object to string() .
The string is then written to the objref file file.

Note that a smart pointer of CORBA: :String var type is used to
reference the stringified object reference. The smart pointer
automatically deletes the string when it goes out of scope, thereby
avoiding a memory leak.

CORBA clients can read the objref file file to obtain the object
reference.

This approach to exporting object references is convenient to use
for this simple demonstration. Realistic applications, however, are
more likely to use the CORBA naming service instead.

Activate the POA manager

After a server has set up the objects and associations it requires
during initialization, it must tell the ORB to start listening for
requests:

Example 9:

1 // Activate the POA Manager and let the ORB process
requests.

//
root poa manager->activate() ;
2 global orb->run() ;

The code can be explained as follows:

1. A POA manager acts as a gatekeeper for incoming object
requests. The manager can be in four different states: active,
holding, discarding, or inactive (see Table 13 on page 201). A
POA manager can accept object requests only after it is
activated by calling portableServer: : POAManager: :activate ().

2. CORBA::ORB::run() puts the ORB into a state where it listens for
client connection attempts and accepts request messages
from existing client connections.

CORBA: :ORB: :run () is a blocking method that returns only when
CORBA: :ORB: : shutdown () is invoked.

Shut down the ORB

The shutdown mechanism for the demonstration application uses
Orbix’s own IT TerminationHandler class, which enables server
applications to handle delivery of cTrRL-C and similar events in a
portable manner (see page 53 and “Termination Handler” on
page 183).

Before shutdown is initiated, the server is blocked in the execution
of CORBA: :ORB: :run().

Shutdown is initiated when a Ctrl-C or similar event is sent to the
server from any source. You can shut down the server application
as follows:

* On Windows platforms, switch focus to the MS-DOS box
where the server is running and type Ctrl-C.

Orbix CORBA Programmer’s Guide C++ 59

®* On UNIX platforms, switch focus to the xterm window where
the server is running and type Ctrl-C.

* On UNIX, send a signal to a background server process using
the kill system command.

The Orbix termination handler can handle a number of signals or
events (see “Create a Termination Handler Object” on page 53).
As soon as the server receives one of these signals or events, a
thread started by Orbix executes the registered termination
handler callback, termination handler callback().

The termination handler function is defined as follows:

Example 10:

static void
termination handler callback (

long signal
)
{
1 if (!CORBA::is nil (orb))
{
2 global orb->shutdown (IT FALSE) ;

}
}

The code executes as follows:

1. A check is made to ensure that the global orb variable is
initialized.

2. CORBA::ORB::shutdown () is invoked. It takes a single boolean
argument, the wait for completion flag.
When shutdown () is called with its wait for completion flag set
to false, a background thread is created to handle shutdown
and the call returns immediately. See “Explicit Event
Handling” on page 183.

As soon as termination handler () returns, the operating system

returns to the prior execution point and the server resumes

processing in CORBA: :ORB: :run ().

Server execution now reverts to main():

Example 11:

1 global orb->run() ;
// Delete the servants.
2 delete the Building;

// Destroy the ORB and reclaim resources.
try

3 global orb->destroy() ;

}

catch (...)

{
}

return exit status;

// Do nothing.

60 Orbix CORBA Programmer’s Guide C++

The code executes as follows:
1. After the termination handler completes shutdown,
CORBA: :ORB: :run () unblocks and returns.

2. The BuildingImpl servant must be explicitly deleted because it
is not referenced by a smart pointer.

3. CORBA::ORB::destroy () destroys the ORB object.

Note: The shutdown () function is not called after

CORBA: :ORB: :run () returns, because shutdown () is already
called in the signal handler. It is illegal to call shutdown ()
more than once on the same ORB object.

Orbix CORBA Programmer’s Guide C++ 61

Complete Source Code for server.cxx

// Edit idlgen config file to get your own copyright
notice
// placed here.

// Automatically generated server for the following IDL
// interfaces:

// Building

//

#include "it random funcs.h"

#include <iostream.h>

#include <fstream.h>

#include <string.hs>

#include <stdlib.h>

#include <it ts/termination handler.hs
#include <omg/PortableServer.hh>
#include "BuildingImpl.h"

// global orb -- make ORB global so all code can find it.
//

CORBA: :ORB_var

global orb = CORBA::ORB:: nil();

// termination handler callback handles Ctrl-C-like
signals/events

// by shutting down the ORB. This causes ORB::run() to
return,

// and allows the server to shut down gracefully.

static void

termination handler callback (
long signal

)

{

cout << "Processing shutdown signal " << signal <<
endl;
if (!CORBA::is nil (orb))
{
cout << "ORB shutdown ... " << flush;
orb->shutdown (IT FALSE) ;
cout << "done." << endl;

62 Orbix CORBA Programmer’s Guide C++

// write reference() -- export object reference to file.

// This is a useful way to advertise objects for simple
tests and demos.

// The CORBA naming service is a more scalable way to
advertise references.

/!
void
write reference (
CORBA: :Object ptr ref,
const char* objref file

CORBA: :String var stringified ref =
global orb->object to string(ref) ;
cout << "Writing stringified object reference to "
<< objref file << endl;

ofstream os (objref file);
os << stringified ref;
if (los.good())

cerr << "Failed to write to " << objref file <<
endl;

}

// create simple poa() -- Create a POA for simple servant
management .

/!

PortableServer: :POA ptr

create simple poa (
const char* poa_name,
PortableServer: :POA ptr parent poa,
PortableServer: :POAManager ptr poa manager

// Create a policy list.

// Policies not set in the list get default values.

//

CORBA: :PolicyList policies;

policies.length (1) ;

int 1 = 0;

// Make the POA single threaded.

//

policies[i++] = parent poa->create thread policy(
PortableServer: : SINGLE THREAD MODEL

) g

assert (i==1) ;
return parent poa->create POA (poa name,

poa_manager,
policies) ;

Orbix CORBA Programmer’s Guide C++ 63

// main() -- set up a POA, create and export object
references.

//

int
main (int argc, char **argv)

{

64 Orbix CORBA Programmer’s Guide C++

int

exit status = 0; // Return code from

main () .

// Instantiate termination handler
IT TerminationHandler
termination handler (termination handler callback) ;

// Variables to hold our servants.
// Note: PortableServer::Servant is a pointer type -

it's

// actually a typedef for
PortableServer: : ServantBase*.

//

PortableServer: :Servant the Building = 0;

try

{

// For temporary object references.
CORBA: :Object_var tmp_ref;

// Initialise the ORB and Root POA.

//

cout << "Initializing the ORB" << endl;
global orb = CORBA::ORB init (argc, argv) ;
tmp ref =

global orb->resolve initial references ("RootPOA") ;

PortableServer: :POA var root poa =
PortableServer: :POA:: narrow(tmp ref) ;

assert (!CORBA: :is nil (root poa)) ;

PortableServer: : POAManager var root poa manager
= root poa->the POAManager () ;

assert (!CORBA: :is nil (root poa manager)) ;

// Now create our own POA.

//
PortableServer: :POA var my poa =
create simple poa("my poa'", root poa,
root_poa_manager) ;

// Create servants and export object references.

//

// Note: create is a useful convenience function
// created by the genie; it is not a standard CORBA
// function.

//

PortableServer: :ObjectId var oid;

// Create a servant for interface Building.
//

the Building = BuildingImpl:: create(my poa) ;
old = my poa->activate object (the Building) ;
tmp_ref = my poa->id to reference (oid) ;

write reference (tmp ref, "Building.ref") ;

// Activate the POA Manager and let the ORB
process

// requests

//

root poa manager->activate() ;

cout << "Waiting for requests..." << endl;

global orb->run() ;

}

catch (CORBA::Exceptioné& e)

cout << "Unexpected CORBA exception: " << e <<
endl ;
exit status = 1;

// Delete the servants

//
delete the Building;

// Destroy the ORB and reclaim resources.

//
try

{
}

catch (...)

{
}

return exit status;

global orb->destroy() ;

// Do nothing.

Orbix CORBA Programmer’s Guide C++ 65

66 Orbix CORBA Programmer’s Guide C++

Defining Interfaces

The CORBA Interface Definition Language (IDL) is used to describe
interfaces of objects in an enterprise application. An object’s interface
describes that object to potential clients—its attributes and operations,
and their signatures.

An IDL-defined object can be implemented in any language that
IDL maps to, such as C++, Java, and COBOL. By encapsulating
object interfaces within a common language, IDL facilitates
interaction between objects regardless of their actual
implementation. Writing object interfaces in IDL is therefore
central to achieving the CORBA goal of interoperability between
different languages and platforms.

CORBA defines standard mappings from IDL to several
programming languages, including C++, Java, and Smalltalk.
Each IDL mapping specifies how an IDL interface corresponds to a
language-specific implementation. Orbix’s IDL compiler uses these
mappings to convert IDL definitions to language-specific
definitions that conform to the semantics of that language.

This chapter describes IDL semantics and uses. For mapping
information, refer to language-specific mappings in the Object
Management Group’s latest CORBA specification.

Modules and Name Scoping

You create an application’s IDL definitions within one or more IDL
modules. Each module provides a naming context for the IDL
definitions within it.

Modules and interfaces form naming scopes, so identifiers defined
inside an interface need to be unique only within that interface. To
resolve a name, the IDL compiler conducts its search among the
following scopes, in this order:

1. The current interface

2. Base interfaces of the current interface (if any)

3. The scopes that enclose the current interface

In the following example, two interfaces, Bank and Account, are
defined within module BankDemo:

module BankDemo

{

interface Bank {

//. ..
¥
interface Account {
// ...
b
Vi
Within the same module, interfaces can reference each other by

name alone. If an interface is referenced from outside its module,
its name must be fully scoped with the following syntax:

Orbix CORBA Programmer’s Guide C++ 67

Interfaces

module-name: : interface-name
For example, the fully scoped names of interfaces Bank and Account
are BankDemo: :Bank and BankDemo: :Account, respectively.

Nesting restrictions

A module cannot be nested inside a module of the same name.
Likewise, you cannot directly nest an interface inside a module of
the same name. To avoid name ambiguity, you can provide an
intervening name scope as follows:

module A

{

module B

{

interface A {

// ...

Interfaces are the fundamental abstraction mechanism of CORBA.
An interface defines a type of object, including the operations that
the object supports in a distributed enterprise application.

An IDL interface generally describes an object’s behavior through
operations and attributes:

* Operations of an interface give clients access to an object’s
behavior. When a client invokes an operation on an object, it
sends a message to that object. The ORB transparently
dispatches the call to the object, whether it is in the same
address space as the client, in another address space on the
same machine, or in an address space on a remote machine.

* An IDL attribute is short-hand for a pair of operations that get
and, optionally, set values in an object.

68 Orbix CORBA Programmer’s Guide C++

For example, the Account interface in module BankDemo describes
the objects that implement bank accounts:

module BankDemo
{
typedef float CashAmount; // Type for representing cash
typedef string AccountlId; // Type for representing account
ids
/...
interface Account {
readonly attribute AccountId account id;
readonly attribute CashAmount balance;

void
withdraw (in CashAmount amount)
raises (InsufficientFunds) ;

void
deposit (in CashAmount amount) ;
IF
Vi

This interface declares two readonly attributes, Account1d and
balance, which are defined as typedefs of string and float,
respectively. The interface also defines two operations that a
client can invoke on this object, withdraw() and deposit ().

Because an interface does not expose an object’s implementation,
all members are public. A client can access variables in an object’s
implementations only through an interface’s operations or
attributes.

While every CORBA object has exactly one interface, the same
interface can be shared by many CORBA objects in a system.
CORBA object references specify CORBA objects—that is, interface
instances. Each reference denotes exactly one object, which
provides the only means by which that object can be accessed for
operation invocations.

Interface Contents

Operations

An IDL interface can define the following components:
* Operations

e Attributes

* Exceptions

° Types

¢ Constants

Of these, operations and attributes must be defined within the
scope of an interface; all other components can be defined at a
higher scope.

IDL operations define the signatures of an object’s function, which
client invocations on that object must use. The signature of an IDL
operation is generally composed of three components:

Orbix CORBA Programmer’s Guide C++ 69

* Return value data type
* Parameters and their direction
* Exception clause

A operation’s return value and parameters can use any data types
that IDL supports (see “Abstract Interfaces” on page 79).

For example, the Account interface defines two operations,
withdraw() and deposit (); it also defines the exception
InsufficientFunds:

module BankDemo

{

typedef float CashAmount; // Type for representing cash
/...

interface Account {
exception InsufficientFunds {};

void
withdraw(in CashAmount amount)
raises (InsufficientFunds) ;

void
deposit (in CashAmount amount) ;
%
b

On each invocation, both operations expect the client to supply an
argument for parameter amount, and return void. Invocations on
withdraw() can also raise the exception InsufficientFunds, if
necessary.

Parameter direction

Each parameter specifies the direction in which its arguments are
passed between client and object. Parameter passing modes
clarify operation definitions and allow the IDL compiler to map
operations accurately to a target programming language. At
runtime, Orbix uses parameter passing modes to determine in
which direction or directions it must marshal a parameter.

A parameter can take one of three passing mode qualifiers:

in: The parameter is initialized only by the client and is passed to
the object.

out: The parameter is initialized only by the object and returned
to the client.

inout: The parameter is initialized by the client and passed to the
server; the server can modify the value before returning it to the
client.

In general, you should avoid using inout parameters. Because an
inout parameter automatically overwrites its initial value with a
new value, its usage assumes that the caller has no use for the
parameter’s original value. Thus, the caller must make a copy of

70 Orbix CORBA Programmer’s Guide C++

Attributes

the parameter in order to retain that value. By using two
parameters, in and out, the caller can decide for itself when to
discard the parameter.

One-way operations

By default, IDL operations calls are synchronous—that is, a client
invokes an operation on an object and blocks until the invoked
operation returns. If an operation definition begins with the
keyword oneway, a client that calls the operation remains
unblocked while the object processes the call.

Three constraints apply to a one-way operation:

* The return value must be set to void.

. Directions of all parameters must be set to in.
. No raises clause is allowed.

For example, interface Account might contain a one-way operation
that sends a notice to an Account object:

module BankDemo {
//-..
interface Account {
oneway void notice(in string text) ;
/] ...
b
b s

Orbix cannot guarantee the success of a one-way operation call.
Because one-way operations do not support return data to the
client, the client cannot ascertain the outcome of its invocation.
Orbix only indicates failure of a one-way operation if the call fails
before it exits the client’s address space; in this case, Orbix raises
a system exception.

A client can also issue non-blocking, or asynchronous, invocations.
For more information, see “Asynchronous Method Invocations”.

An interface’s attributes correspond to the variables that an object
implements. Attributes indicate which variables in an object are
accessible to clients.

Unqualified attributes map to a pair of get and set functions in the
implementation language, which let client applications read and
write attribute values. An attribute that is qualified with the
keyword readonly maps only to a get function.

For example, the Account interface defines two readonly attributes,
AccountId and balance. These attributes represent information
about the account that only the object implementation can set;
clients are limited to read-only access.

Orbix CORBA Programmer’s Guide C++ 71

Exceptions

IDL operations can raise one or more CORBA-defined system
exceptions. You can also define your own exceptions and explicitly
specify these in an IDL operation. An IDL exception is a data
structure that can contain one or more member fields, formatted
as follows:

exception exception-name {
[member;] ...
s

After you define an exception, you can specify it through a raises
clause in any operation that is defined within the same scope. A
raises clause can contain multiple comma-delimited exceptions:

return-val operation-name([params-list])
raises(exception-name[, exception-name]) ;

Exceptions that are defined at module scope are accessible to all
operations within that module; exceptions that are defined at
interface scope are accessible only to operations within that
interface.

For example, interface Account defines the exception
InsufficientFunds with a single member of data type string. This
exception is available to any operation within the interface. The
following IDL defines the withdraw() operation to raise this
exception when the withdrawal fails:

module BankDemo
{
typedef float CashAmount; // Type for representing
cash
/] ..
interface Account {
exception InsufficientFunds {};

void
withdraw (in CashAmount amount)
raises (InsufficientFunds) ;
// ...
I
Vi

For more about exception handling, see Chapter 1 on page 235.

72 Orbix CORBA Programmer’s Guide C++

Empty Interfaces

IDL allows you to define empty interfaces. This can be useful when
you wish to model an abstract base interface that ties together a
number of concrete derived interfaces. For example, the CORBA
PortableServer module defines the abstract ServantManager
interface, which serves to join the interfaces for two servant
manager types, servant activator and servant locator:

module PortableServer
interface ServantManager {};
interface ServantActivator : ServantManager {
//. ..
interface ServantLocator : ServantManager {

//. ..
s
}i

Inheritance of IDL Interfaces

An IDL interface can inherit from one or more interfaces. All
elements of an inherited, or baseinterface, are available to the derived
interface. An interface specifies the base interfaces from which it
inherits as follows:

interface new-interface : base-interface[, base-interface]...

ovals

For example, the following interfaces, CheckingAccount and
SavingsAccount, inherit from interface Account and implicitly include
all of its elements:

module BankDemo(

typedef float CashAmount; // Type for representing cash
interface Account {

¥

interface CheckingAccount : Account {
readonly attribute CashAmount overdraftLimit;
boolean orderCheckBook () ;

s

interface SavingsAccount : Account {
float calculateInterest ();

hs

An object that implements CheckingAccount can accept invocations
on any of its own attributes and operations and on any of the
elements of interface Account. However, the actual implementation
of elements in a CheckingAccount object can differ from the

Orbix CORBA Programmer’s Guide C++ 73

implementation of corresponding elements in an Account object.
IDL inheritance only ensures type-compatibility of operations and
attributes between base and derived interfaces.

Multiple inheritance

The following IDL definition expands module BankDemo to include
interface PremiumAccount, which inherits from two interfaces,
CheckingAccount and SavingsAccount:

module BankDemo {
interface Account
// .
T

interface CheckingAccount : Account {

ha

interface SavingsAccount : Account {
// ...

interface PremiumAccount :
CheckingAccount, SavingsAccount {
/] ..

Figure 15 shows the inheritance hierarchy for this interface.

| AccounEI

CheckingAccount SavingsAccountI

PremiumAccountl

Figure 15: Multiple inheritance of IDL interfaces

Multiple inheritance can lead to name ambiguity among elements

in the base interfaces. The following constraints apply:

* Names of operations and attributes must be unique across all
base interfaces.

* If the base interfaces define constants, types, or exceptions of
the same name, references to those elements must be fully
scoped.

74 Orbix CORBA Programmer’s Guide C++

Inheritance of the object interface

All user-defined interfaces implicitly inherit the predefined
interface object. Thus, all object operations can be invoked on any
user-defined interface. You can also use Object as an attribute or
parameter type to indicate that any interface type is valid for the
attribute or parameter. For example, the following operation
getAnyObject () serves as an all-purpose object locator:

interface ObjectLocator {
void getAnyObject (out Object obj) ;
)i 5

Note: Itis illegal IDL syntax to inherit interface Object
explicitly.

Inheritance redefinition

A derived interface can modify the definitions of constants, types,
and exceptions that it inherits from a base interface. All other
components that are inherited from a base interface cannot be
changed. In the following example, interface CheckingAccount
modifies the definition of exception InsufficientFunds, which it
inherits from Account:

module BankDemo

{
typedef float CashAmount; // Type for representing
cash

// ...

interface Account {
exception InsufficientFunds {};
Moo

b

interface CheckingAccount : Account {
exception InsufficientFunds {

CashAmount overdraftLimit;

Note: While a derived interface definition cannot override
base operations or attributes, operation overloading is
permitted in interface implementations for those languages
such as C++ that support it.

Forward Declaration of IDL Interfaces

An IDL interface must be declared before another interface can
reference it. If two interfaces reference each other, the module
must contain a forward declaration for one of them; otherwise, the

Orbix CORBA Programmer’s Guide C++ 75

Local Interfaces

IDL compiler reports an error. A forward declaration only declares
the interface’s name; the interface’s actual definition is deferred
until later in the module.

For example, IDL interface Bank defines two operations that return
references to Account objects—create account () and

find account (). Because interface Bank precedes the definition of
interface Account, Account is forward-declared as follows:

module BankDemo
{
typedef float CashAmount; // Type for representing cash
typedef string AccountlId; // Type for representing account
ids

// Forward declaration of Account
interface Account;

// Bank interface...used to create Accounts
interface Bank {
exception AccountAlreadyExists { AccountId account id;

exception AccountNotFound { AccountId account id; };

Account
find account (in AccountId account_ id)
raises (AccountNotFound) ;

Account
create account (

in AccountId account id,

in CashAmount initial balance
) raises (AccountAlreadyExists) ;

¥

// Account interface...used to deposit, withdraw, and query
// available funds.
interface Account {

b

An interface declaration that contains the keyword local defines a
local interface. An interface declaration that omits this keyword can
be referred to as an unconstrained interface, to distinguish it from local
interfaces. An object that implements a local interface is a local
object.

Local interfaces differ from unconstrained interfaces in the
following ways:

* Alocal interface can inherit from any interface, whether local
or unconstrained. However, an unconstrained interface cannot
inherit from a local interface.

* Any non-interface type that uses a local interface is regarded
as a local type. For example, a struct that contains a local
interface member is regarded as a local struct, and is subject
to the same localization constraints as a local interface.

76 Orbix CORBA Programmer’s Guide C++

* Local types can be declared as parameters, attributes, return
types, or exceptions only in a local interface, or as state
members of a valuetype.

* Local types cannot be marshaled, and references to local
objects cannot be converted to strings through
ORB: :object_to_string(). Attempts to do so throw
CORBA: : MARSHAL.

* Any operation that expects a reference to a remote object
cannot be invoked on a local object. For example, you cannot
invoke any DIl operations or asynchronous methods on a local
object; similarly, you cannot invoke pseudo-object operations
such as is_a() or validate connection(). Attempts to do so
throw CORBA: :NO IMPLEMENT.

* The ORB does not mediate any invocation on a local object.
Thus, local interface implementations are responsible for
providing the parameter copy semantics that a client expects.

* Instances of local objects that the OMG defines as supplied by
ORB products are exposed either directly or indirectly through
ORB: :resolve initial references().

Local interfaces are implemented by CORBA: : LocalObject to provide
implementations of Object pseudo operations, and other
ORB-specific support mechanisms that apply. Because object
implementations are language-specific, the LocalObject type is
only defined by each language mapping.

The LocalObject type implements the following Object
pseudo-operations to throw an exception of NO_ IMPLEMENT:

is a()

get interface()

get domain managers ()
get policy()

get client policy()
set policy overrides ()
get policy overrides()
validate connection ()

Orbix CORBA Programmer’s Guide C++ 77

CORBA: :LocalObject also implements the pseudo-operations shown
in Table 1:

Tablel: CORBA::LocalObject pseudo-operation returns
Operation Always returns:
non_existent () False
hash () A hash value that is consistent with

Valuetypes

the object’s lifetime

is equivalent () True if the references refer to the
same LocalObject implementation.

Valuetypes enable programs to pass objects by value across a
distributed system. This type is especially useful for encapsulating
lightweight data such as linked lists, graphs, and dates.

Valuetypes can be seen as a cross between data types such as
long and string that can be passed by value over the wire as
arguments to remote invocations, and objects, which can only be
passed by reference. When a program supplies an object
reference, the object remains in its original location; subsequent
invocations on that object from other address spaces move across
the network, rather than the object moving to the site of each
request.

Like an interface, a valuetype supports both operations and
inheritance from other valuetypes; it also can have data
members. When a valuetype is passed as an argument to a
remote operation, the receiving address space creates a copy it of
it. The copied valuetype exists independently of the original;
operations that are invoked on one have no effect on the other.

Because a valuetype is always passed by value, its operations can
only be invoked locally. Unlike invocations on objects, valuetype
invocations are never passed over the wire to a remote valuetype.

Valuetype implementations necessarily vary, depending on the
languages used on sending and receiving ends of the
transmission, and their respective abilities to marshal and
demarshal the valuetype’s operations. A receiving process that is
written in C++ must provide a class that implements valuetype
operations and a factory to create instances of that class. These
classes must be either compiled into the application, or made
available through a shared library. Conversely, Java applications
can marshal enough information on the sender, so the receiver
can download the bytecodes for the valuetype operation
implementations.

78 Orbix CORBA Programmer’s Guide C++

Abstract Interfaces

An application can use abstract interfaces to determine at runtime
whether an object is passed by reference or by value. For
example, the following IDL definitions specify that operation
Example: :display () accepts any derivation of abstract interface
Describable:

abstract interface Describable {
string get description() ;
}i

interface Example {
void display (in Describable someObject) ;
b s

Given these definitions, you can define two derivations of abstract
interface Describable, valuetype Currency and interface Account:

interface Account : Describable {
// body of Account definition not shown
b

valuetype Currency supports Describable {
// body of Currency definition not shown
T

Because the parameter for display () is defined as a Describable
type, invocations on this operation can supply either Account
objects or currency valuetypes.

All abstract interfaces implicitly inherit from native type

CORBA: :AbstractBase, and map to C++ abstract base classes.
Abstract interfaces have several characteristics that differentiate
them from interfaces:

* The GIOP encoding of an abstract interface contains a boolean
discriminator to indicate whether the adjoining data is an IOR
(TRUE) or a value (FALSE). The demarshalling code can thus
determine whether the argument passed to it is an object
reference or a value.

* Unlike interfaces, abstract interfaces do not inherit from
CORBA: :Object, in order to allow support for valuetypes. If the
runtime argument supplied to an abstract interface type can
be narrowed to an object reference type, then CORBA: :Object
operations can be invoked on it.

®* Because abstract interfaces can be derived by object
references or by value types, copy semantics cannot be
guaranteed for value types that are supplied as arguments to
its operations.

* Abstract interfaces can only inherit from other abstract
interfaces.

Orbix CORBA Programmer’s Guide C++ 79

IDL Data Types

Built-in Types

In addition to IDL module, interface, valuetype, and exception
types, IDL data types can be grouped into the following
categories:

Built-in types such as short, long, and float

Extended built-in types such as long long and wstring

Complex datatypes such as enum and struct, and string

Pseudo object types

Table 2 lists built-in IDL types.

Table2: Built-in IDL types
Data type Size Range of values
short 16 bits -215,..2151
unsigned short 16 bits 0...2%6-1
long 32 bits —231 2813
unsigned long 32 bits 0...2%2-1
float 32 bits IEEE single-precision floating point
numbers
double 64 bits IEEE double-precision floating point
numbers
char 8 bits ISO Latin-1
string variable ISO Latin-1, except NUL
length
string<bound> variable ISO Latin-1, except NUL
length
boolean unspecified TRUE Of FALSE
octet 8 bits 0x0 to Oxff
any variable Universal container type
length

80 Orbix CORBA Programmer’s Guide C++

Integer types

IDL supports short and long integer types, both signed and
unsigned. IDL guarantees the range of these types. For example,
an unsigned short can hold values between 0-65535. Thus, an
unsigned short value always maps to a native type that has at
least 16 bits. If the platform does not provide a native 16-bit type,
the next larger integer type is used.

Floating point types

Types float and double follow IEEE specifications for single- and
double-precision floating point values, and on most platforms map
to native IEEE floating point types.

char

Type char can hold any value from the ISO Latin-1 character set.
Code positions 0-127 are identical to ASCII. Code positions
128-255 are reserved for special characters in various European
languages, such as accented vowels.

String types

Type string can hold any character from the 1SO Latin-1 character
set except NUL. IDL prohibits embedded NuL characters in strings.
Unbounded string lengths are generally constrained only by
memory limitations. A bounded string, such as string<10>, can
hold only the number of characters specified by the bounds,
excluding the terminating NUL character. Thus, a string<6> can
contain the six-character string cheese.

The declaration statement can optionally specify the string’s
maximum length, thereby determining whether the string is
bounded or unbounded:

string [<length>] name

For example, the following code declares data type ShortString,
which is a bounded string whose maximum length is 10
characters:

typedef string<l0> ShortString;
attribute ShortString shortName; // max length is 10 chars

octet

Octet types are guaranteed not to undergo any conversions in
transit. This lets you safely transmit binary data between different
address spaces. Avoid using type char for binary data, inasmuch
as characters might be subject to translation during transmission.
For example, if client that uses ASCII sends a string to a server
that uses EBCDIC, the sender and receiver are liable to have
different binary values for the string’s characters.

any

Type any allows specification of values that express any IDL type,
which is determined at runtime. An any logically contains a
TypeCode and a value that is described by the TypeCode. FOor more
information about the any data type, see Chapter 1 on page 257.

Orbix CORBA Programmer’s Guide C++ 81

Extended Built-in Types

Table 3 lists extended built-in IDL types.

Table3: Extended built-in IDL types
Data type Size Range of values
long long 64 bits —263 2637
unsigned long long | 64 bits 0...-264.1
long double 79 bits IEEE double-extended floating point

number, with an exponent of at least 15
bits in length and signed fraction of at least
64 bits. long double type is currently not
supported on Windows NT.

wchar Unspecified Arbitrary codesets

wstring Variable Arbitrary codesets
length

fixed Unspecified 31 significant digits

long long
The 64-bit integer types long long and unsigned long long support
numbers that are too large for 32-bit integers. Platform support

varies. If you compile IDL that contains one of these types on a
platform that does not support it, the compiler issues an error.

long double

Like 64-bit integer types, platform support varies for long double,
so usage can yield IDL compiler errors.

wchar

Type wchar encodes wide characters from any character set. The

size of a wchar is platform-dependent.

wstring

Type wstring is the wide-character equivalent of type string (see

page 81). Like string-types, wstring types can be unbounded or
bounded. Wide strings can contain any character except NUL.

82 Orbix CORBA Programmer’s Guide C++

fixed

Type fixed provides fixed-point arithmetic values with up to 31
significant digits. You specify a fixed type with the following
format:

typedef fixed< digit-size, scale > name

digit-size specifies the number’s length in digits. The maximum
value for digit-size is 31 and must be greater than scale. A fixed
type can hold any value up to the maximum value of a double.

Scaling options
If scale is a positive integer, it specifies where to place the decimal
point relative to the rightmost digit. For example the following

code declares fixed data type Cashamount to have a digit size of 8
and a scale of 2:

typedef fixed<10,2> CashAmount;

Given this typedef, any variable of type cashamount can contain
values of up to (+/-)99999999.99.

If scale is negative, the decimal point moves to the right scaie
digits, thereby adding trailing zeros to the fixed data type’s value.
For example, the following code declares fixed data type bigNum to
have a digit size of 3 and a scale of -4:

typedef fixed <3,-4> bigNum;
bigNum myBigNum;

If myBigum has a value of 123, its numeric value resolves to
1230000. Definitions of this sort let you store numbers with trailing
zeros efficiently.

Constant fixed types

Constant fixed types can also be declared in IDL, where digit-size
and scale are automatically calculated from the constant value. For
example:

module Circle {
const fixed pi = 3.142857;
be

This yields a fixed type with a digit size of 7, and a scale of s.

Unlike IEEEE floating-point values, type fixed is not subject to
representational errors. IEEE floating point values are liable to
represent decimal fractions inaccurately unless the value is a
fractional power of 2. For example, the decimal value 0.1 cannot
be represented exactly in IEEE format. Over a series of
computations with floating-point values, the cumulative effect of
this imprecision can eventually yield inaccurate results.

Type fixed is especially useful in calculations that cannot tolerate
any imprecision, such as computations of monetary values.

Orbix CORBA Programmer’s Guide C++ 83

Complex Data Types

IDL provides the following complex data types:

* enum
* struct
. union

* multi-dimensional fixed-size arrays
* sequence

enum

An enum (enumerated) type lets you assign identifiers to the
members of a set of values. For example, you can modify the
BankDemo IDL with enum type balanceCurrency:

module BankDemo {
enum Currency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAmount balance;
readonly attribute Currency balanceCurrency;
ooc
: }i

In this example, attribute balanceCurrency in interface Account can
take any one of the values pound, dollar, yen, Or franc.

The actual ordinal values of a enum type vary according to the
actual language implementation. The CORBA specification only
guarantees that the ordinal values of enumerated types
monotonically increase from left to right. Thus, in the previous
example, dollar is greater than pound, yen is greater than dollar,
and so on. All enumerators are mapped to a 32-bit type.

84 Orbix CORBA Programmer’s Guide C++

struct

A struct data type lets you package a set of named members of
various types. In the following example, struct CustomerDetails
has several members. Operation getCustomerDetails () returns a
struct of type CustomerDetails that contains customer data:

module BankDemo(

struct CustomerDetails {
string custID;
string lname;
string fname;
short age;
7o

bi

interface Bank {
CustomerDetails getCustomerDetails
(in string custID) ;
/...
bi
e

A struct must include at least one member. Because a struct
provides a naming scope, member names must be unique only
within the enclosing structure.

union

A union data type lets you define a structure that can contain only
one of several alternative members at any given time. A union
saves space in memory, as the amount of storage required for a
union is the amount necessary to store its largest member.

You declare a union type with the following syntax:

union name switch (discriminator) {
case labell : element-spec;
case label2 : element-spec;
[...]
case labeln : element-spec;
[default : element-spec;]

b s

All IDL unions are discriminated. A discriminated union associates
a constant expression (labell..labeln) wWith each member. The
discriminator’s value determines which of the members is active
and stores the union’s value.

Orbix CORBA Programmer’s Guide C++ 85

For example, the following code defines the IDL union pate, which
is discriminated by an enum value:

enum dateStorage
{ numeric, strMMDDYY, strDDMMYY };

struct DateStructure {
short Day;
short Month;
short Year;

IE

union Date switch (dateStorage) {
case numeric: long digitalFormat;
case strMMDDYY:
case strDDMMYY: string stringFormat;
default: DateStructure structFormat;

I

Given this definition, if Date’s discriminator value is numeric, then
digitalFormat member is active; if the discriminator’s value is
strMMDDYY or strDDMMYY, then member stringFormat is active;
otherwise, the default member structFormat is active.

The following rules apply to union types:

* A union’s discriminator can be integer, char, boolean Or enum,
or an alias of one of these types; all case label expressions
must be compatible with this type.

* Because a union provides a naming scope, member names
must be unique only within the enclosing union.

®* Each union contains a pair of values: the discriminator value
and the active member.

* IDL unions allow multiple case labels for a single member. In
the previous example, member stringFormat is active when
the discriminator is either strMMDDYY or strDDMMYY.

* IDL unions can optionally contain a default case label. The
corresponding member is active if the discriminator value
does not correspond to any other label.

arrays

IDL supports multi-dimensional fixed-size arrays of any IDL data
type, with the following syntax:

[typedef] element-type array-name [dimension-spec] ...

dimension-spec MUSt be a non-zero positive constant integer
expression. IDL does not allow open arrays. However, you can
achieve equivalent functionality with sequence types (see

page 87).

For example, the following code fragment defines a
two-dimensional array of bank accounts within a portfolio:

typedef Account portfolio[MAX ACCT TYPES] [MAX ACCTS]

86 Orbix CORBA Programmer’s Guide C++

An array must be named by a typedef declaration (see “Defining
Data Types” on page 88) in order to be used as a parameter, an
attribute, or a return value. You can omit a typedef declaration
only for an array that is declared within a structure definition.

Because of differences between implementation languages, IDL
does not specify the origin at which arrays are indexed. For
example C and C++ array indexes always start at 0, while Pascal
uses an origin of 1. Consequently, clients and servers cannot
portably exchange array indexes unless they both agree on the
origin of array indexes and make adjustments as appropriate for
their respective implementation languages. Usually, it is easier to
exchange the array element itself instead of its index.

seqgquence

IDL supports sequences of any IDL data type with the following
syntax:

[typedef] sequence < element-type[, max-elements] >
sequence-name

An IDL sequence is similar to a one-dimensional array of
elements; however, its length varies according to its actual
number of elements, so it uses memory more efficiently.

A sequence must be named by a typedef declaration (see
“Defining Data Types” on page 88) in order to be used as a
parameter, an attribute, or a return value. You can omit a typedef
declaration only for a sequence that is declared within a structure
definition.

A sequence’s element type can be of any type, including another
sequence type. This feature is often used to model trees.

The maximum length of a sequence can be fixed (bounded) or
unfixed (unbounded):

* Unbounded sequences can hold any number of elements, up
to the memory limits of your platform.

* Bounded sequences can hold any number of elements, up to
the limit specified by the bound.

The following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

struct LimitedAccounts {
string bankSortCode<10>;
sequence<Account, 50> accounts; // max sequence length
is 50

Ji s

struct UnlimitedAccounts {
string bankSortCode<10>;
sequence<Account> accounts; // no max sequence length

hs

Orbix CORBA Programmer’s Guide C++ 87

Pseudo Object Types

CORBA defines a set of pseudo object types that ORB
implementations use when mapping IDL to a programming
language. These object types have interfaces defined in IDL but
do not have to follow the normal IDL mapping for interfaces and
are not generally available in your IDL specifications.

You can use only the following pseudo object types as attribute or
operation parameter types in an IDL specification:

CORBA: :NamedValue
CORBA: : TypeCode

To use these types in an IDL specification, include the file orb.idl
in the IDL file as follows:

#include <orb.idl>

/] ..

This statement tells the IDL compiler to allow types Namedvalue and
TypeCode.

Defining Data Types

Constants

With typedef, you can define more meaningful or simpler names
for existing data types, whether IDL-defined or user-defined. The
following IDL defines typedef identifier standardAccount, SO it can
act as an alias for type Account in later IDL definitions:

module BankDemo {
interface Account
// ...
s

typedef Account StandardAccount;

¥

IDL lets you define constants of all built-in types except type any.
To define a constant’s value, you can either use another constant
(or constant expression) or a literal. You can use a constant
wherever a literal is permitted.

The following constant types are supported:
. Integer

* Floating-point

®* Character and string

* Wide character and string

* Boolean

® Octet

* Fixed-point

* Enumeration

88 Orbix CORBA Programmer’s Guide C++

Integer

IDL accepts integer lit

const short I1 =

const long I2 =

const long long I3 =
291

const long long I4 =

Both unary plus and u

erals in decimal, octal, or hexadecimal:
-99;

0123; // Octal 123, decimal 83
0x123; // Hexadecimal 123, decimal

+0xaB; // Hexadecimal ab, decimal 171

nary minus are legal.

Floating-point

Floating-point literals

const float f1
part,
const double f2

fraction part
const long double £3

const double f4a

const double f5
exponent

const double fe6
exponent

use the same syntax as C++:

= 3.1e-9; // Integer part, fraction
// exponent

= -3.14; // Integer part and

= .1 // Fraction part only

= 1 // Integer part only

= .1E12 // Fraction part and

= 2E12 // Integer part and

Character and string

Character constants u

se the same escape sequences as C++:

const char Cl1 = 'c¢'; // the character c

const char C2 = '\007'; // ASCII BEL, octal escape
const char C3 = '\x41'; // ASCII A, hex escape
const char C4 = '\n'; // newline

const char C5 = '\t'; // tab

const char C6 = '"\v'; // vertical tab

const char C7 = '\b'; // backspace

const char C8 = '\r'; // carriage return

const char C9 = '\f';
const char C10 = '\a'
const char C11 = '"\\'

// form feed
; // alert
5 // backslash

const char C12 = '\?'; // question mark

const char C13 = '\''; // single quote

// String constants support the same escape sequences as
C++

const string S1 = "Quote: \""; // string with double
quote

const string S2 = "hello world"; // simple string

const string S3 = "hello" " world"; // concatenate

const string S4 = "\xA" "B"; // two characters

character '\xAB

// ("\xA' and 'B'),
// not the single

Orbix CORBA Programmer’s Guide C++ 89

Wide character and string

Wide character and string constants use C++ syntax. Use
Universal character codes to represent arbitrary characters. For

example:

const wchar € = 1" g

const wstring GREETING = L"Hello";
const wchar OMEGA = L'\u03a9';

const wstring OMEGA STR = L"Omega: \u3A9";

Note: IDL files themselves always use the 1SO Latin-1
code set, they cannot use Unicode or other extended
character sets.

Boolean

Boolean constants use the keywords raLSE and TRUE. Their use is
unnecessary, inasmuch as they create needless aliases:

// There is no need to define boolean constants:

const CONTRADICTION = FALSE; // Pointless and confusing
const TAUTOLOGY = TRUE; // Pointless and confusing
Octet

Octet constants are positive integers in the range 0-255.

const octet 01 = 23;
const octet 02 = 0xfO0;

Note: Octet constants were added with CORBA 2.3, so
ORBs that are not compliant with this specification might
not support them.

Fixed-point

For fixed-point constants, you do not explicitly specify the digits
and scale. Instead, they are inferred from the initializer. The
initializer must end in 4 or D. For example:

// Fixed point constants take digits and scale from the
// initialiser:

const fixed wvall = 3D; // fixed<l, 0>
const fixed val2 = 03.14d; // fixed<3,2>
const fixed val3 = -03000.00D; // fixed<4,0>
const fixed val4 = 0.03D; // fixed<3,2>

90 Orbix CORBA Programmer’s Guide C++

The type of a fixed-point constant is determined after removing
leading and trailing zeros. The remaining digits are counted to
determine the digits and scale. The decimal point is optional.

Note: Currently, there is no way to control the scale of a
constant if it ends in trailing zeros.

Enumeration

Enumeration constants must be initialized with the scoped or
unscoped name of an enumerator that is a member of the type of
the enumeration. For example:

enum Size { small, medium, large };

const Size DFL SIZE = medium;
const Size MAX SIZE ::large;

Note: Enumeration constants were added with CORBA
2.3, so ORBs that are not compliant with this specification
might not support them.

Constant Expressions

IDL provides a number of arithmetic and bitwise operators.

Operator precedence

The precedence for operators follows the rules for C++. You can
override the default precedence by adding parentheses.

Arithmetic operators

The arithmetic operators have the usual meaning and apply to
integral, floating-point, and fixed-point types (except for %, which
requires integral operands). However, these operators do not
support mixed-mode arithmetic; you cannot, for example, add an
integral value to a floating-point value. The following code
contains several examples:

// You can use arithmetic expressions to define constants.
const long MIN = -10;

const long MAX = 30;

const long DFLT = (MIN + MAX) / 2;

// Can't use 2 here
const double TWICE PI = 3.1415926 * 2.0;

// 5% discount
const fixed DISCOUNT = 0.05D;
const fixed PRICE = 99.99D;

// Can't use 1 here
const fixed NET_PRICE = PRICE * (1.0D - DISCOUNT) ;

Orbix CORBA Programmer’s Guide C++ 91

Expressions are evaluated using the type promotion rules of C++.
The result is coerced back into the target type. The behavior for
overflow is undefined, so do not rely on it. Fixed-point expressions
are evaluated internally with 62 bits of precision, and results are
truncated to 31 digits.

Bitwise operators

The bitwise operators only apply to integral types. The right-hand
operand must be in the range 0-63. Note that the right-shift
operator >> is guaranteed to inject zeros on the left, whether the
left-hand operand is signed or unsigned:

// You can use bitwise operators to define constants.
const long ALL ONES = -1; // OxEEffffff
const long LHW MASK = ALL ONES << 16; // OxEE££0000
const long RHW MASK = ALL ONES >> 16; // Ox0000ffff

IDL guarantees two’s complement binary representation of values.

92 Orbix CORBA Programmer’s Guide C++

Developing
Applications with
Genies

The code generation toolkit is packaged with several geniesthat can help
your development effort get off to a fast start.

Two genies generate code that you can use immediately for
application development:

®* cpp poa genie.tcl reads IDL code and generates C++ source
files that you can compile into a working application.

®* cpp poa op.tcl generates the C++ signatures of specified
operations and attributes and writes them to a file. You can
use this genie on new or changed interfaces, then update
existing source code with the generated signatures.

Note: 0S/390, both native and UNIX system services, do
not support the code generation toolkit and distributed
genies.

Starting Development Projects

The C++ genie cpp poa genie.tcl creates a complete, working
client and server directly from your IDL interfaces. You can then
add application logic to the generated code. This can improve
productivity in two ways:

* The outlines of your application—class declarations and
operation signatures—are generated for you.

* A working system is available immediately, which you can
incrementally modify and test. With the generated makefile,
you can build and test modifications right away, thereby
eliminating much of the overhead that is usually associated
with getting a new project underway.

In a genie-generated application, the client invokes every
operation and each attribute’s get and set methods, and directs all
display to standard output. The server also writes all called
operations to standard output.

This client/server application achieves these goals:

* Demonstrates or tests an Orbix client/server application for a
particular interface or interfaces.

* Provides a starting point for your application.

* Shows the right way to initialize and pass parameters, and to
manage memory for various IDL data types.

Orbix CORBA Programmer’s Guide C++ 93

Genie Syntax

cpp_poa genie.tcl uses the following syntax:
idlgen cpp poa genie.tcl component-spec [options] idl-file
You must specify an IDL file. You must also specify the application

components to generate, either all components at once, or
individual components, with one of the arguments in Table 4:

Table4: Component specifier argumentsto cpp_poa_genie.tcl

Component Output
specifier
-all All components: server, servant, client, and

makefile (see page 95).

-servant Servant classes to implement the selected
interfaces (see page 97).

-server Server main program (see page 100)

-client Client main program (see page 103).

-makefile A makefile to compile server and client

applications (see page 103).

Each component specifier can take its own arguments. For more
information on these, refer to the discussion on each component
later in this chapter.

You can also supply one or more of the optional switches shown in
Table 5:

Table5: Optional switchesto cpp_poa genie.tcl

Option Description
-complete/-incompl | Controls the completeness of the
ete code that is generated for the

specified components (see
page 103).
-dir Specifies where to generate file

output (see page 106).

-include Specifies to generate code for
included files (see page 96).

-interface-spec Specifies to generate code only for
the specified interfaces (see
page 96).

-v/-s Controls the level of verbosity (see
page 106).

94 Orbix CORBA Programmer’s Guide C++

Specifying Application Components

The -all argument generates the files that implement all
application components: server, servant, client, and makefile. For
example, the following command generates all the files required
for an application that is based on bankdemo.idl:

> idlgen cpp poa genie.tcl -all bankdemo.idl

bankdemo. idl:

idlgen: creating BankDemo BankImpl.h
idlgen: creating BankDemo BankImpl.cxx
idlgen: creating BankDemo AccountImpl.h
idlgen: creating BankDemo AccountImpl.cxx
idlgen: creating server.cxx

idlgen: creating client.cxx

idlgen: creating call funcs.h

idlgen: creating call funcs.cxx

idlgen: creating it print funcs.h
idlgen: creating it print funcs.cxx
idlgen: creating it random funcs.h
idlgen: creating it random funcs.cxx
idlgen: creating Makefile

Alternatively, you can use cpp poa genie.tcl to generate one or
more application components. For example, the following
command specifies to generate only those files that are required
to implement a servant:

> idlgen cpp poa genie.tcl -servant bankdemo.idl

bankdemo. idl:

idlgen: creating BankDemo BankImpl.h
idlgen: creating BankDemo BankImpl.cxx
idlgen: creating BankDemo AccountImpl.h
idlgen: creating BankDemo AccountImpl.cxx
idlgen: creating it print funcs.h

idlgen: creating it print funcs.cxx
idlgen: creating it random funcs.h
idlgen: creating it random funcs.cxx

By generating output for application components selectively, you
can control genie processing for each one. For example, the
following commands specify different -dir options, so that server
and servant files are output to one directory, and client files are
output to another:

> idlgen cpp poa genie.tcl -servant - server bankdemo.idl
-dir c:\app\server

> idlgen cpp poa genie.tcl -client bankdemo.idl -dir
c:\app\client

Orbix CORBA Programmer’s Guide C++ 95

Selecting Interfaces

Including Files

By default, cpp poa genie.tcl generates code for all interfaces in
the specified IDL file. You can specify to generate code for specific
interfaces within the file by supplying their fully scoped names.
For example, the following command specifies to generate code
for the Bank interface in bankdemo.idl:

> idlgen cpp poa genie.tcl -all BankDemo::Bank bankdemo.idl

You can also use wildcard patterns to specify the interfaces to
process. For example, the following command generates code for
all interfaces in module BankDemo:

> idlgen cpp poa genie.tcl BankDemo::* bankdemo.idl

The following command generates code for all interfaces in foo.idl
with names that begin with Foo or end with Bar.

> idlgen cpp poa genie.tcl foo.idl "Foo*" "*Bar"
Note:For interfaces defined inside modules, the wildcard is

matched against the fully scoped interface name, so Foo* matches
FooModule: : Y but not BarModule: : Foo.

Pattern matching is performed according to the rules of the TCL
string match command, which is similar to Unix or Windows
filename matching. Table 6 contains some common wildcard
patterns:

Table6: Wildcard pattern matching to interface names

Wildcard pattern Matches...
* Any string
? Any single character
[xyz] X, y, Or z.

By default, cpp poa genie.tcl generates code only for the specified
IDL files. You can specify also to generate code for all #include
files by supplying the -include option. For example, the following
command specifies to generate code from bankdemo.idl and any
IDL files that are included in it:

> idlgen cpp poa genie.tcl -all -include bankdemo.idl

The default for this option is set in the configuration file through
default.cpp poa genie.want include.

96 Orbix CORBA Programmer’s Guide C++

Implementing Servants

The -servant option generates POA servant classes that implement
IDL interfaces. For example, this command generates a class
header and implementation code for each interface that appears in
IDL file bankdemo.idl:

idlgen cpp poa genie.tcl -servant bankdemo.idl

The genie constructs the implementation class name from the
scoped name of the interface, replacing double colons (::) with an
underscore () and adding a suffix—by default, Impl.. The default
suffix is set in the configuration file through
default.cpp.impl class_ suffix.

For example, BankDemo: : Account is implemented by class
BankDemo AccountImpl. The generated implementation class
contains these components:

* Astatic _create() member method to create a servant.

* A member method to implement each IDL operation for the

interface.

The -servant option can take one or more arguments, shown in
Table 7, that let you control how servant classes are generated:

Table7: Argumentsthat control servant generation

Argument

Purpose

-tie
-notie

Choose the inheritance or tie
(delegation) method for implementing
servants.

-inherit
-noinherit

Choose whether implementation classes
follow the same inheritance hierarchy
as the IDL interfaces they implement.

-default poa
arg

Determines the behavior of implicit
activation, which uses the default POA
associated with a given servant.
default poa can take one of these
arguments:

®* per servant: Set the correct default
POA for each servant.

® exception: Throw an exception on
all attempts at implicit activation.

For more information, see page 197.

-refcount
-norefcount

Choose whether or not servants are
reference counted.

The actual content and behavior of member methods is
determined by the -complete Or -incomplete flag. For more
information, see “Controlling Code Completeness” on page 103.

Orbix CORBA Programmer’s Guide C++ 97

-tie/-notie

A POA servant is either an instance of a class that inherits from a
POA skeleton, or an instance of a tie template class that delegates
to a separate implementation class. You can choose the desired
approach by supplying -tie or -notie options. The default for this
option is set in the configuration file through
default.cpp poa genie.want tie.

With -notie, the genie generates servants that inherit directly
from POA skeletons. For example:

class BankDemo AccountImpl : public virtual
POA BankDemo: : Account

The create() method constructs a servant as follows:

POA BankDemo: :Account*
BankDemo AccountImpl:: create (PortableServer::POA ptr
the poa)

}

With -tie, the genie generates implementation classes that do not
inherit from POA skeletons. The following example uses a create
method to create an implementation object (1), and a tie (2) that
delegates to it:

return new BankDemo AccountImpl (the poa) ;

Example 12: C++ Creating a TIE Object

POA BankDemo: :Account*
BankDemo AccountImpl:: create (PortableServer::POA ptr

the poa)
1 BankDemo AccountImpl* tied object =
new BankDemo AccountImpl () ;
2 POA BankDemo: :Account* the tie =
new

POA BankDemo Account tie<BankDemo AccountImpls (
tied object,
the poa
)i

return the tie;

-inherit/-noinherit

IDL servant implementation classes typically have the same
inheritance hierarchy as the interfaces that they implement, but
this is not required.

* -inherit generates implementation classes with the same
inheritance as the corresponding interfaces.

* -noinherit generates implementation classes that do not
inherit from each other. Instead, each implementation class
independently implements all operations for its IDL interface,
including operations that are inherited from other IDL
interfaces.

98 Orbix CORBA Programmer’s Guide C++

The default for this option is set in the configuration file through
default.cpp poa genie.want inherit.

-default_poa

In the standard CORBA C++ mapping, each servant class provides
a this() method, which generates an object reference and
implicitly activates that object with the servant. Implicit activation
calls default POA() on the same servant to determine the POA in
which this object is activated. Unless you specify otherwise,
_default POA() returns the root POA, which is typically not the POA
where you want to activate objects.

The code that cpp poa genie.tcl generates always overrides
_default POA() in a way that prevents implicit activation.
Applications generated by this genie can only activate objects
explicitly. Two options are available that determine how to
override default POA():

®* per servant: (default) Servant constructors and generated
_create () methods takes a POA parameter. For each servant,
_default POA() returns the POA specified when the servant
was created.

° exception: _default POA() throws a CORBA: : INTERNAL system
exception. This option is useful in a group development
environment, in that it allows tests to easily catch any
attempts at implicit activation.

For more information about explicit and implicit activation, see
“Explicit Object Activation”.

-refcount/-norefcount

Multi-threaded servers need to reference-count their servants in
order to avoid destroying a servant on one thread that is still in
use on another. The POA specification provides the standard
functions _add ref () and _remove ref () to support reference
counting, but by default they do nothing.

* -refcount generates servants that inherit from the standard
class portableServer: :RefCountServantBase, wWhich enables
reference counting. For example:

class BankDemo AccountImpl
: public virtual POA BankDemo: :Account,
public virtual PortableServer::RefCountServantBase

®* -norefcount specifies that servants do not inherit from
RefCountServantBase.

The -refcount option is automatically enabled if you use the
-threads option (see page 101).

The default for this option is set in the configuration file through
default.cpp poa genie.want refcount.

Orbix CORBA Programmer’s Guide C++ 99

Note:-refcount is invalid with -tie. The genie issues a warning if
you combine these options. Tie templates as defined in the POA
standard do not support reference counting, and the genie cannot
change their inheritance. It is recommended that you do not use
the tie approach for multi-threaded servers.

Implementing the Server Mainline

The -server option generates a simple server mainline that
activates and exports some objects. For example, the following
command generates a file called server.cxx that contains a main
program:

> idlgen cpp poa genie.tcl -server bankdemo.idl

The server program performs the following steps:

1. |Initializes the ORB and POA.

2. Installs a signal handler to shut down gracefully if the server
is killed via SIGTERM on Unix or a CTRL-C event on Windows.

3. For each interface:
+ Activates a CORBA object of that interface.

+ Exports a reference either to the naming service or to a
file, depending on whether you set the option -ns or -nons.

4. Catches any exceptions and print a message.

The -server option can take one or more arguments, shown in
Table 8, that let you modify server behavior:

Table8: Options affecting the server

Command line Purpose
option
-threads Choose a single or multi-threaded
-nothreads server. The -threads argument also

implies -refcount (see page 99).

-strategy simple Create servants during start-up.

-strategy activator Create servants on demand with a
servant activator.

-strategy locator Create servants per call with a
servant locator.

-strategy default_servant | For each interface, generate a POA
that uses a default servant.

-ns Determines how to export object
-nons references:

* -ns: use the naming service to
publish object references.

* -nons: write object references to
a file.

100 Orbix CORBA Programmer’s Guide C++

-threads/-nothreads

You can specify the threads policy for all POAs in the server with
one of these options:

-nothreads sets the SINGLE THREAD MODEL policy on all POAs in the
server, which ensures that all calls to application code are made in
the main thread. This policy allows a server to run thread-unsafe
code, but might reduce performance because the ORB can
dispatch only one operation at a time.

-threads sets the OrRB_CTRL MODEL policy on all POAs in the server,
allowing the ORB to dispatch incoming calls in multiple threads
concurrently.

Note:If you enable multi-threading, you must ensure that
your application code is thread-safe and application data
structures are adequately protected by
thread-synchronization calls.

The default for this option is set in the configuration file through
default.cpp poa genie.want threads.

-strategy Options

The POA is a flexible tool that lets servers manage objects with
different strategies. Some servers can use a combination of
strategies for different objects. You can use the genie to generate
examples of each strategy, then cut-and-paste the appropriate
generated code into your own server.

You set a server’s object management strategy through one of the
following arguments to the -strategy option:

-strategy simple: The server creates a POA with a policy of
USE_ACTIVE OBJECT MAP ONLY (see page 192). For each interface in
the IDL file, the server main() creates a servant, activates it with
the POA as a CORBA object, and exports an object reference. After
the ORB is shut down, main() deletes the servants.

This strategy is appropriate for servers that implement a small,
fixed set of objects.

-strategy activator: The server creates a POA and a servant
activator (see “Servant Activators” on page 212). For each
interface, the server exports an object reference. The object
remains inactive until a client first calls on its reference; then, the
servant activator is invoked and creates the appropriate servant,
which remains in memory to handle future calls on that reference.
The servant activator deletes the servants when the POA is
destroyed.

Orbix CORBA Programmer’s Guide C++ 101

This strategy lets the server start receiving requests immediately
and defer creation of servants until they are needed. It is useful
for servers that normally activate just a few objects out of a large
collection on each run, or for servants that take a long time to
initialize.

-strategy locator: The server creates a POA and a servant
locator (see “Servant Locators” on page 216). The server exports
references, but all objects are initially inactive. For every incoming
operation, the POA asks the servant locator to select an
appropriate servant. The generated servant locator creates a
servant for each incoming operation, and deletes it when the
operation is complete.

A servant locator is ideal for managing a cache of servants from a
very large collection of objects in a database. You can replace the
preinvoke and postinvoke methods in the generated locator with
code that looks for servants in a database cache, loads them into
the cache if required, and deletes old servants when the cache is
full.

-strategy default_servant: The server creates a POA for each
interface, and defines a default servant for each POA to handle
incoming requests. A server that manages requests for many
objects that all use the same interface should probably have a
POA that maps all these requests to the same default servant. For
more information about using default servants, see “Setting a
Default Servant” on page 223.

-ns/-nons

Determines how the server exports object references to the
application:

-ns: Use the naming service to publish object references. For each
interface, the server binds a reference that uses the interface
name, in naming context IT GenieDemo. FOr example, for interface
Demo Bank, the genie binds the reference

IT GenieDemo/BankDemo Bank. If you use this option, the naming
service and locator daemon must be running when you start the
server.

For more information about the naming service, see “Naming
Service”.

-nons: Write stringified object references to a file. For each
interface, the server exports a reference to a file named after the
interface with the suffix ref—for example BankDemo Bank.ref

The default for this option is set in the configuration file through
default.cpp poa genie.

102 Orbix CORBA Programmer’s Guide C++

Implementing a Client

The -client option generates client source code in client.cxx. FOr
example:
> idlgen cpp poa genie.tcl -client bank.idl
When you run this client, it performs the following actions for each
interface:
1. Reads an object reference from the file generated by the
server—for example, BankDemo Bank.ref.
2. If generated with the -complete option, for each operation:
+ Calls the operation and passes random values.
+ Prints out the results.
3. Catches raised exceptions and prints an appropriate message.

Generating a Makefile

The -makefile option generates a makefile that can build the
server and client applications. The makefile provides the following
targets

® all: Compile and link the client and server.
* clean: Delete files created during compile and link.

®* clean all: Like clean, it also deletes all the source files
generated by idlgen, including the makefile itself.

To build the client and server, enter nmake (Windows) or make
(UNIX).

Controlling Code Completeness

You can control the extent of the code that is generated for each
interface through the -complete and -incomplete options. These
options are valid for server, servant, and client code generation.

The default for this option is set in the configuration file through
default.cpp poa genie.want complete.

For example, the following commands generate complete servant
and client code and incomplete server mainline code:

> idlgen cpp poa dgenie.tcl -servant -complete bankdemo.idl
> idlgen cpp poa genie.tcl -client -complete bankdemo.idl
> idlgen cpp poa genie.tcl -server -incomplete bankdemo.idl

Setting the -complete option on servant, server, and client
components yields a complete application that you can compile
and run. The application performs these tasks:

* The client application calls every operation in the server
application and passes random values as in parameters.

®* The server application returns random values for inout/out
parameters and return values.

* Client and server print a message for each operation call,
which includes the values passed and returned.

Orbix CORBA Programmer’s Guide C++ 103

Using the -complete option lets you quickly produce a demo or
proof-of-concept prototype. It also offers useful models for typical
coding tasks, showing how to initialize parameters properly,
invoke operations, throw and catch exceptions, and perform
memory management.

If you are familiar with calling and parameter passing rules and
simply want a starting point for your application, you probably
want to use the -incomplete option. This option produces minimal
code, omitting the bodies of operations, attributes, and client-side
invocations.

The sections that follow describe, for each application component,
the differences between complete and incomplete code
generation. All examples assume the following IDL for interface
Account:

// IDL:
module BankDemo
{
// Other interfaces and type definitions omitted...
interface Account
{
exception InsufficientFunds {};
readonly attribute AccountId account id;
readonly attribute CashAmount balance;
void withdraw (
in CashAmount amount
) raises (InsufficientFunds) ;

void
deposit (
in CashAmount amount

) 5

Servant code

Qualifying the -servant option with -incomplete Or -complete yields
the required source files for each IDL interface. Either option
generate the following files for interface Account:

BankDemo AccountImpl.h
BankDemo_AccountImpl.cxx

Incomplete servant

The -incomplete option specifies to generate servant class
BankDemo AccountImpl, which implements the BankDemo: : Account
interface. The implementation of each operation and attribute
throws a CORBA: :NO IMPLEMENT exception.

For example, the following code is generated for the deposit ()
operation:
void
BankDemo AccountImpl: :deposit (
BankDemo: : CashAmount amount
) throw (
CORBA: : SystemException

104 Orbix CORBA Programmer’s Guide C++

)
{

1

All essential elements of IDL code are automatically generated, so
you can focus on writing the application logic for each IDL
operation.

throw CORBA::NO IMPLEMENT() ;

Complete servant

The -complete option specifies to generate several files that
provide the functionality required to generate random values for
parameter passing, and to print those values:

it print funcs.h
it print funcs.cxx
it _random funcs.h
it random funcs.cxx
Member methods are fully implemented to print parameter
values and, if required, return a value to the client. For
example, the following code is generated for the deposit ()
operation:
void
BankDemo AccountImpl: :deposit (
BankDemo: : CashAmount amount
) throw (
CORBA: : SystemException

// Diagnostics: print the values of "in" and "inout"
parameters
cout << "BankDemo AccountImpl::deposit(): "
<< "called with..."
<< endl;
cout << "\tamount = ";
IT print BankDemo CashAmount (cout, amount, 3);
cout << endl;

// Diagnostics.
cout << "BankDemo AccountImpl::deposit(): returning"
<< endl;

Client Code

In a completely implemented client, cpp poa genie.tcl generates
the client source file call funcs.cxx, which contains method calls
that invoke on all operation and attributes of each object. Each
method assigns random values to the parameters of operations
and prints out the values of parameters that they send, and those
that are received back as out parameters. Utility methods to
assign random values to IDL types are generated in the file

it random funcs.cxx, and utility methods to print the values of IDL
types are generated in the file it print funcs.cxx.

An incomplete client contains no invocations.

Orbix CORBA Programmer’s Guide C++ 105

General Options

Both complete and incomplete clients catch raised exceptions and
print appropriate messages.

You can supply switches that control cpp poa genie.tcl genie
output:

-dir: By default, cpp poa_genie.tcl writes all output files to the
current directory. With the -dir option, you can explicitly specify
where to generate file output.

-v/-s: By default, cpp poa_genie.tcl runs in verbose (-v) mode.
With the -s option, you can silence all messaging.

Compiling the Application

To compile a genie-generated application, Orbix must be properly
installed on the client and server hosts:
1. Build the application using the makefile.

2. In separate windows, run first the server, then the client
applications.

Generating Signatures of Individual Operations

IDL interfaces sometimes change during development. A new
operation might be added to an interface, or the signature of an
existing operation might change. When such a change occurs, you
must update existing C++ code with the signatures of the new or
modified operations. You can avoid much of this work with the
cpp_poa op.tcl genie. This genie prints the C++ signatures of
specified operations and attributes to a file. You can then paste
these operations back into the application source files.

For example, you might add a new operation close() to interface
BankDemo: : Account. TO generate the new operation, run the
cpp_poa_op.tcl genie:

> idlgen cpp poa op.tcl bankdemo.idl "*::close"

idlgen: creating tmp

Generating signatures for BankDemo: :Account::close

As in this example, you can use wildcards to specify the names of
operations or attributes. If you do not explicitly specify any
operations or attributes, the genie generates signatures for all
operations and attributes.

By default, wild cards are matched only against names of
operations and attributes in the specified IDL file. If you specify
the -include option, wildcards are also matched against all
operations and attributes in the included IDL files.

106 Orbix CORBA Programmer’s Guide C++

By default, cpp poa op.tcl writes generated operations to file tmp.
You can specify a different file name with the -o command-line
option:

> idlgen cpp poa op.tcl bankdemo.idl -o ops.txt "*::close"

bankdemo.idl:
idlgen: creating ops.txt
Generating signatures for BankDemo: :Account::close

Configuration Settings

The configuration file idlgen.cfg contains default settings for the
C++ genie cpp poa genie.tcl at the scope default.cpp poa genie.

Some other settings are not specific to cpp poa genie.tcl but are
used by the std/cpp poa boa 1lib.tcl library, which maps IDL
constructs to their C++ equivalents. cpp poa genie.tcl uses this
library extensively, so these settings affect the output that it
generates. They are held in the scope default.cpp.

For a full listing of these settings, refer to the CORBA Code
Generation Toolkit Guide.

Orbix CORBA Programmer’s Guide C++ 107

108 Orbix CORBA Programmer’s Guide C++

ORB Initialization and
Shutdown

The mechanisms for initializing and shutting down the ORB on a client
and a server are the same.

The main() of both sever and client must perform these steps:
* Initialize the ORB by calling CORBA: :ORB_init ().

* Shut down and destroy the ORB, by calling shutdown () and
destroy () on the ORB.

Orbix also provides its own IT TerminationHandler class, which
enables applications to handle delivery of ctrl-c and similar
events in a portable manner. For more information, see
“Termination Handler” on page 183.

Initializing the ORB Runtime

Before an application can start any CORBA-related activity, it must
initialize the ORB runtime by calling ORB init (). ORB init () returns
an object reference to the ORB object; this, in turn, lets the client
obtain references to other CORBA objects, and make other
CORBA-related calls.

Calling within main()

It is common practice to set a global variable with the ORB
reference, so the ORB object is accessible to most parts of the
code. However, you should call orB init () only after you call
main () to ensure access to command line arguments. ORB_init ()
scans its arguments parameter for command-line options that
start with -orB and removes them. The arguments that remain can
be assumed to be application-specific.

Supplying an ORB name

You can supply an ORB name as an argument; this name
determines the configuration information that the ORB uses. If
you supply null, Orbix uses the ORB identifier as the default ORB
name. ORB names and configuration are discussed in the
Application Server Platform Administrator’'s Guide.

Orbix CORBA Programmer’s Guide C++ 109

C++ mapping
ORB_init () is defined as follows:

namespace CORBA {

/] ...
ORB ptr ORB init (
int & argc,
char ** aaccv,
const char * orb identifier = ""

)
/] ...
}

ORB_init () expects a reference to argc and a non-constant pointer
to aaccv. ORB_init () scans the passed argument vector for
command-line options that start with -orB and removes them.

Registering portable interceptors

During ORB initialization, portable interceptors are instantiated
and registered through an ORB initializer. The client and server
applications must register the ORB initializer before calling
ORB_init (). For more information, see “Registering Portable
Interceptors” on page 469.

Shutting Down the ORB

For maximum portability and to ensure against resource leaks, a
client or server must always shut down and destroy the ORB at
the end of main():

* shutdown() stops all server processing, deactivates all POA
managers, destroys all POAs, and causes the run() loop to
terminate. shutdown () takes a single Boolean argument; if set
to true, the call blocks until the shutdown process completes
before it returns control to the caller. If set to false, a
background thread is created to handle shutdown, and the call
returns immediately.

* destroy() destroys the ORB object and reclaims all resources
associated with it.

In this section

This section discusses the following topics:

Shutting Down a Client page 110

Shutting down a server page 111

Shutting Down a Client

A client is a CORBA application that does not call CORBA: :ORB: :run ()
and does not process incoming CORBA invocations.

110 Orbix CORBA Programmer’s Guide C++

Example 13 shows how a client is shut down:
Example 13: Shutting down a CORBA client

// C++
int main(int argc, char* argv[])

{

CORBA: :ORB var orb;
try

{

// ORB initialization not shown

1 // SHUTDOWN

orb->shutdown (1) ;
2 orb->destroy () ;
return 0;

}

catch (const CORBA::Exception& e)

{

cout << "Exception occurred: " << e << endl;
return 1;

}

1. A client calls shutdown () with the argument 1(TRUE), causing
the shutdown () operation to remain blocked until ORB
shutdown is complete.

2. The last thing the client does is to call destroy (). You are
required to call destroy () for full CORBA compliancy.

Note:The destroy () function has no effect in Orbix.
Hence, it can be omitted without affecting the runtime
behavior of an Orbix application.

Shutting down a server

Because servers typically process invocations by calling

CORBA: :ORB: :run (), which blocks indefinitely,

CORBA: :ORB: :shutdown () cannot be called from the main thread. The
following are the main ways of shutting down a server:

* Call shutdown(0) from a signal handler.
* Call shutdown(0) from a subthread.
* Call shutdown (0) in the context of an operation invocation.

Orbix CORBA Programmer’s Guide C++ 111

Using a signal handler

Example 14 illustrates shutting down a CORBA server using a
signal handler:

Example 14: Shutting down a server from a signal handler

// C++
CORBA: :ORB var global orb;

void termination handler callback (long sig type)
{

if (!CORBA::is nil (global orb))

{

cout << "Shutting down ORB." << endl;
global orb->shutdown (0) ;

}

else

{

cout << "ORB not initialised, aborting." << endl;
abort () ;

}
int main(int argc, char* argv[])

{

IT TerminationHandler
termination handler (termination handler callback) ;

global orb = CORBA::ORB init (argc, argv) ;

global orb->run() ;
global orb->destroy() ;
return 0;

}

In this example, CORBA: :0RB: :shutdown () is called with a o (FALSE)
argument from a signal handler. The shutdown () operation is not

called at the end of main().

Note:Pay attention to the value of the flag passed to
shutdown () . You can easily cause deadlock in a server by
calling shutdown (1) which forces shutdown () to block until
the ORB shutdown is complete. In a server, shutdown (0),
which returns immediately, is the appropriate form.

See “Create a Termination Handler Object” on page 53 for a
detailed description of the shutdown procedure for a server that

uses a signal handler.

112 Orbix CORBA Programmer’s Guide C++

Using Policies

Orbix supportsa number of CORBA and proprietary policiesthat control
the behavior of application components.

Most policies are locality-constrained; that is, they apply only to

the server or client on which they are set. Therefore, policies can

generally be divided into server-side and client-side policies:

®* Server-side policies generally apply to the processing of
requests on object implementations. Server-side policies can
be set programmatically and in the configuration, and applied
to the server’s ORB and its POAs.

¢ client-side policies apply to invocations that are made from
the client process on an object reference. Client-side policies
can be set programmatically and in the configuration, and
applied to the client’'s ORB, to a thread, and to an object
reference.

The procedure for setting policies programmatically is the same
for both client and server:

1. Create the CORBA::Policy object for the desired policy.

2. Add the policy object to a policyList.

3. Apply the policyList to the appropriate target—ORB, POA,
thread, or object reference.

For detailed information about specific policies, refer to the
chapters that cover client and POA development: “Developing a
Client”, and “Managing Server Objects”.

Creating Policy and PolicyList Objects
Two methods are generally available to create policy objects:

* To apply policies to a POA, usethe appropriate policy factory from the
PortableServer: : POA interface.

® Cal ORB:create policy() on the ORB.

After you create the required policy objects, you add them to a
PolicyList. The policyList is then applied to the desired
application component.

Orbix CORBA Programmer’s Guide C++ 113

Using POA policy factories

The portableServer: : POA interface provides factories for creating
CORBA: : Policy Objects that apply only to a POA (see Table 12 on
page 188). For example, the following code uses POA factories to
create policy objects that specify PERSISTENT and USER_ID policies
for a POA, and adds these policies to a PolicyList.

CORBA: :PolicyList policies;
policies.length (2);

// Use root POA to create POA policies

policies[0] = poa->create lifespan policy
(PortableServer: : PERSISTENT)
policies[1] = poa->create id assignment policy

(PortableServer: :USER ID)

Orbix also provides several proprietary policies to control POA
behavior (see page 113). These policies require you to call
create policy() on the ORB to create policy objects, as described
in the next section.

Calling create_policy()

You call create policy() on the ORB to create policy objects. For
example, the following code creates a policyList that sets a
SyncScope policy of SYNC WITH SERVER; you can then use this
PolicyList to set client policy overrides at the ORB, thread, or
object scope:

#include <omg/messaging.hhs>;

/...

CORBA: :PolicyList policies (1) ;
policies.length (1) ;

CORBA: :Any policy value;

policy any <<= Messaging::SYNC WITH SERVER;

policies[0] = orb->create policy (
Messaging: : SYNC SCOPE POLICY TYPE, policy value);

Setting Orb and Thread Policies

The COrRBA: : PolicyManager interface provides the operations that a
program requires to access and set ORB policies.

CORBA: :PolicyCurrent iS an empty interface that simply inherits all
PolicyManager operations; it provides access to client-side policies
at the thread scope.

ORB policies override system defaults, while thread policies
override policies set on a system or ORB level. You obtain a
PolicyManager or PolicyCurrent through

resolve initial references():

®* resolve initial references ("ORBPolicyManager") returns the
ORB'’s PolicyManager. Both server- and client-side policies can
be applied at the ORB level.

114 Orbix CORBA Programmer’s Guide C++

resolve initial references ("PolicyCurrent") returns a
thread’s PolicyCurrent. Only client-side policies can be applied
to a thread.

The CORBA module contains the following interface definitions and
related definitions to manage ORB and thread policies:

module CORBA {

/] ...
enum SetOverrideType
{ SET OVERRIDE,
ADD OVERRIDE
b
exception InvalidPolicies
{ sequence<unsigned short> indices;
b5

interface PolicyManager {
PolicyList
get policy overrides(in PolicyTypeSeq ts) ;

void
set_policy overrides (

in PolicyList policies,

in SetOverrideType set add
) raises (InvalidPolicies) ;

¥

interface PolicyCurrent : PolicyManager, Current
{

¥

/] ...

set_policy_overrides() overrides policies of the same
PolicyType that are set at a higher scope. The operation takes two
arguments:

A policyList sequence of policy object references that specify
the policy overrides.

An argument of type SetOverrideType:
ADD OVERRIDE adds these policies to the policies already in
effect.

SET OVERRIDE removes all previous policy overrides and
establishes the specified policies as the only override policies
in effect at the given scope.

set policy overrides() returns a new proxy that has the specified
policies in effect; the original proxy remains unchanged.

To remove all overrides, supply an empty policyList and
SET OVERRIDE as arguments.

get_policy_overrides() returns a policyList of object-level
overrides that are in effect for the specified PolicyTypes. The
operation takes a single argument, a PolicyTypeSeqg that specifies

Orbix CORBA Programmer’s Guide C++ 115

the policyTypes to query. If the PolicyTypeSeqg argument is empty,
the operation returns with all overrides for the given scope. If no
overrides are in effect for the specified policyTypes, the operation
returns an empty Policylist.

After get _policy overrides() returns a policyList, you can iterate
through the individual policy objects and obtain the actual setting
in each one by narrowing it to the appropriate derivation (see
“Getting Policies” on page 119).

Setting Server-Side Policies

Orbix provides a set of default policies that are effective if no
policy is explicitly set in the configuration or programmatically.
You can explicitly set server policies at three scopes, listed in
ascending order of precedence:

1. In the configuration, so they apply to all ORBs that are in the
scope of a given policy setting. For a complete list of policies
that you can set in the configuration, refer to the Application
Server Platform Administrator’s Guide.

2. On the server’s ORB, so they apply to all POAs that derive
from that ORB’s root POA. The ORB has a PolicyManager with
operations that let you access and set policies on the server
ORB (see “Setting Orb and Thread Policies” on page 114).

3. On individual POAs, so they apply only to requests that are
processed by that POA. Each POA can have its own set of
policies (see “Using POA Policies” on page 190).

You can set policies in any combination at all scopes. If settings

are found for the same policy type at more than one scope, the

policy at the lowest scope prevails.

Most server-side policies are POA-specific. POA policies are
typically attached to a POA when it is created, by supplying a
PolicyList object as an argument to create POA(). The following
code creates POA persistentPOA as a child of the root POA, and
attaches a PolicyList to it:

//get an object reference to the root POA

CORBA: :Object _var obj =
orb->resolve initial references("RootPOA") ;

PortableServer: :POA var poa = POA:: narrow(obj);

//create policy object
CORBA: : PolicyList policies;
policies.length (2);

// set policy object with desired policies

policies[0] = poa->create lifespan policy
(PortableServer: : PERSISTENT)
policies[1] = poa->create id assignment policy

(PortableServer: :USER ID)

//create a POA for persistent objects
poa = poa->create POA("persistentPOA", NULL, policies);

In general, you use different sets of policies in order to

differentiate among various POAs within the same server process,
where each POA is defined in a way that best accommodates the

116 Orbix CORBA Programmer’s Guide C++

needs of the objects that it processes. So, a server process that
contains the POA persistentPOA might also contain a POA that
supports only transient object references, and only handles
requests for callback objects.

For more information about using POA policies, see page 190.

Setting Client Policies

Orbix provides a set of default policies that are effective if no
policy is explicitly set in the configuration or programmatically.
Client policies can be set at four scopes, listed here in ascending
order of precedence:

1. In the configuration, so they apply to all ORBs that are in the
scope of a given policy setting. For a complete list of policies
that you can set in the configuration, refer to the Application
Server Platform Administrator’s Guide.

2. On the client’s ORB, so they apply to all invocations. The ORB
has a PolicyManager with operations that let you access and
set policies on the client ORB (see “Setting Orb and Thread
Policies” on page 114).

3. On a given thread, so they apply only to invocations on that
thread. Each client thread has a PolicyCurrent with operations
that let you access and set policies on that thread (see
page 114).

4. On individual object references, so they apply only to
invocations on those objects. Each object reference can have
its own set of policies; the Object interface provides
operations that let you access and set an object reference’s
quality of service policies (see “Managing Object Reference
Policies” on page 118).

Setting Policies at Different Scopes

You can set policies in any combination at all scopes. If settings
are found for the same policy type at more than one scope, the
policy at the lowest scope prevails.

For example, the syncScope policy type determines how quickly a
client resumes processing after sending one-way requests. The
default syncScope policy is syNC NONE: Orbix clients resume
processing immediately after sending one-way requests.

You can set this policy differently on the client’s ORB, threads, and
individual object references. For example, you might leave the
default syncscope policy unchanged at the ORB scope, set a thread
to SYNC WITH SERVER; and set certain objects within that thread to
SYNC WITH TARGET. Given these quality of service settings, the client
blocks on one-way invocations as follows:

. Outside the thread, the client never blocks.

* Within the thread, the client always blocks until it knows
whether the invocations reached the server.

* For all objects within the thread that have SYNC WITH TARGET
policies, the client blocks until the request is fully processed.

Orbix CORBA Programmer’s Guide C++ 117

Managing Object Reference Policies

The cOrBA: :Object interface contains the following operations to
manage object policies:

interface Object {

// ...
Policy
get client policy(in PolicyType type) ;

Policy
get policy(in PolicyType type) ;

PolicylList
get policy overrides(in PolicyTypeSeq ts) ;

Object
set policy overrides (

in PolicyList policies,

in SetOverrideType set add
) raises (InvalidPolicies) ;

boolean
validate connection(out PolicyList
inconsistent policies) ;

b

get_client_policy() returns the policy override that is in effect
for the specified pPolicyType. This method obtains the effective
policy override by checking each scope until it finds a policy
setting: first at object scope, then thread scope, and finally ORB
scope. If no override is set at any scope, the system default is
returned.

get_policy() returns the object’s effective policy for the
specified policyType. The effective policy is the intersection of
values allowed by the object’s effective override —as returned by
get client policy()—and the policy that is set in the object’s IOR.
If the intersection is empty, the method raises exception
INV_POLICY. Otherwise, it returns a policy whose value is legally
within the intersection. If the IOR has no policy set for the
PolicyType, the method returns the object-level override.

get_policy_overrides() returns a policyList of overrides that
are in effect for the specified pPolicyTypes. The operation takes a
single argument, a PolicyTypeSeq that specifies the PolicyTypes to
query. If the pPolicyTypeSeq argument is empty, the operation
returns with all overrides for the given scope. If no overrides are
in effect for the specified policyTypes, the operation returns an
empty Policylist.

After get policy overrides() returns a policyList, you can iterate
through the individual policy objects and obtain the actual setting
in each one by narrowing it to the appropriate derivation (see
“Getting Policies” on page 119).

118 Orbix CORBA Programmer’s Guide C++

set_policy_overrides() overrides policies of the same
PolicyType that are set at a higher scope, and applies them to the
new object reference that it returns. The operation takes two
arguments:

®* A policyList sequence of policy object references that specify
the policy overrides.

* An argument of type SetOverrideType:

+ ADD OVERRIDE adds these policies to the policies already in
effect.

s+ SET OVERRIDE removes all previous policy overrides and
establishes the specified policies as the only override
policies in effect at the given scope.
To remove all overrides, supply an empty policyList and
SET OVERRIDE as arguments.

validate_connection() returns true if the object’s effective
policies allow invocations on that object. This method forces
rebinding if one of these conditions is true:

* The object reference is not yet bound.

* The object reference is bound but the current policy overrides
have changed since the last binding occurred; or the binding
is invalid for some other reason.

The method returns false if the object’s effective policies cause
invocations to raise the exception 1nv_poLICY. If the current
effective policies are incompatible, the output parameter
inconsistent policies returns with a policyList of those policies
that are at fault.

If binding fails for a reason that is unrelated to policies,
validate connections () raises the appropriate system exception.

A client typically calls validate connections() when its
RebindPolicy is set to NO REBIND.

Getting Policies

As shown earlier, CORBA: : PolicyManager, CORBA: : PolicyCurrent, and
CORBA: :Object each provide operations that allow programmatic
access to the effective policies for an ORB, thread, and object.
Accessor operations obtain a policyList for the given scope. After
you get a Policylist, you can iterate over its Policy objects. Each
Policy object has an accessor method that identifies its
PolicyType. You can then use the policy object’s PolicyType tO
narrow to the appropriate type-specific policy derivation—for
example, a syncScopePolicy object. Each derived object provides
its own accessor method that obtains the policy in effect for that
scope.

Orbix CORBA Programmer’s Guide C++ 119

The Messaging module provides these policyType definitions:

module Messaging

{

// Messaging Quality of Service
typedef short RebindMode;
const RebindMode TRANSPARENT

const RebindMode NO REBIND = 1;
const RebindMode NO RECONNECT = 2;

0;

typedef short SyncScope;

const SyncScope SYNC NONE = 0;

const SyncScope SYNC WITH TRANSPORT = 1;
const SyncScope SYNC WITH SERVER = 2;
const SyncScope SYNC WITH TARGET = 3;

// PolicyType constants

const CORBA: :PolicyType REBIND POLICY TYPE

= 2353

const CORBA::PolicyType SYNC SCOPE POLICY TYPE
= 24;

// Locally-Constrained Policy Objects

// Rebind Policy (default = TRANSPARENT)
readonly attribute RebindMode rebind mode;

I

interface RebindPolicy : CORBA::Policy {
// Synchronization Policy (default =
SYNC WITH TRANSPORT)

interface SyncScopePolicy : CORBA::Policy {
readonly attribute SyncScope synchronization;
T

120 Orbix CORBA Programmer’s Guide C++

For example, the following code gets the ORB’s SyncScope policy:
#include <omg/messaging.hh>
// get reference to PolicyManager

CORBA: :Object var object;
object =
orb->resolve initial references ("ORBPolicyManager") ;

// narrow
CORBA: : PolicyManager var policy mgr =
CORBA: : PolicyManager: : narrow (object) ;

// set SyncScope policy at ORB scope (not shown)
/] ...

// get SyncScope policy at ORB scope
CORBA: : PolicyTypeSeq types;
types.length(1) ;

types[0] = SYNC SCOPE POLICY TYPE;

// get PolicylList from ORB’s PolicyManager
CORBA: :PolicyList_var pList =
policy mgr->get policy overrides(types) ;

// evaluate first Policy in PolicylList
Messaging: : SyncScopePolicy var sync p =
Messaging: : SyncScopePolicy: : narrow(pList[0]);

Messaging: : SyncScope sync policy =
sync_p->synchronization() ;

cout << "Effective SyncScope policy at ORB level is "
<< sync policy << endl;

Orbix CORBA Programmer’s Guide C++ 121

122 Orbix CORBA Programmer’s Guide C++

Developing a Client

A CORBA client initializes the ORB runtime, handles object references,
invokes operations on objects, and handles exceptions that these
operations throw.

For information about exception handling, see “Exceptions”.

Mapping IDL Interfaces to Proxies

When you compile IDL, the compiler maps each IDL interface to a
client-side proxy class of the same name. Proxy classes implement
the client-side call stubs that marshal parameter values and send
operation invocations to the correct destination object. When a
client invokes on a proxy method that corresponds to an IDL
operation, Orbix conveys the call to the corresponding server
object, whether remote or local.

The client application accesses proxy methods only through an
object reference. When the client brings an object reference into
its address space, the client runtime ORB instantiates a proxy to
represent the object. In other words, a proxy acts as a local
ambassador for the remote object.

For example, interface Bank: :Acount has this IDL definition:

module BankDemo
{
typedef float CashAmount;
exception InsufficientFunds {};
/] ...
interface Account{
void withdraw(in CashAmount amount)
raises (InsufficientFunds) ;

// ... other operations not shown

Given this IDL, the IDL compiler generates the following proxy
class definition for the client implementation:

namespace BankDemo

{

typedef CORBA::Float CashAmount;
/] ...

class Account : public virtual CORBA: :Object

{
/] ...
virtual void withdraw(CashAmount amount) = 0;

}

// other operations not shown ...

}

This proxy class demonstrates several characteristics that are true
of all proxy classes:

Orbix CORBA Programmer’s Guide C++ 123

* Member methods derive their names from the corresponding
interface operations—in this case, withdrawal ().

®* The proxy class inherits from CORBA: :0bject, so the client can
access all the inherited functionality of a CORBA object.

® Account::withdrawal and all other member methods are
defined as pure virtual, so the client code cannot instantiate
the Account proxy class or any other proxy class. Instead,
clients can access the Account object only indirectly through
object references.

Using Object References

For each IDL interface definition, a POA server can generate and
export references to the corresponding object that it implements.
To access this object and invoke on its methods, a client must
obtain an object reference—generally, from a CORBA naming
service.For each generated proxy class, the IDL compiler also
generates two other classes: interface var and interface ptr,
where interface is the name of the proxy class. Briefly, ptr types
are unmanaged reference types, while var types can be
characterized as smart pointers.

Both reference types support the indirection operator ->; when
you invoke an operation on a _var or ptr reference, the
corresponding proxy object redirects the C++ call across the
network to the appropriate member method of the object’s
servant.

While ptr and _var references differ in a number of ways, they
both act as handles to the corresponding client proxy. The client
code only needs to obtain an object reference and use it to
initialize the correct ptr or var reference. The underlying proxy
code and ORB runtime take all responsibility for ensuring
transparent access to the server object

For example, given the previous IDL, the IDL compiler generates
two object reference types to the CORBA object, Bank: :Account:
Account_ptr and Account var. YOU can use either reference type to
invoke operations such as withdrawal () on the Bank: :Account
object. Thus, the following two invocations are equivalent:

1 oo

// withdraw amt is already initialized

// Use a ptr reference
Account ptr accp = ...; // get reference...
balance = accp->withdrawal (withdraw amt) ;

// Use a var reference
Account var accv = ...; // get reference. ..
balance = accv->withdrawal (withdraw amt) ;

Note: Because ptr types are not always implemented as
actual C++ pointers, you should always use the ptr
definition. Regardless of the underlying mapping, a ptr
type is always guaranteed to behave like a pointer, so it is
portable across all platforms and language mappings.

124 Orbix CORBA Programmer’s Guide C++

Counting References

When you initialize a _var or ptr reference with an object
reference for the first time, the client instantiates a proxy and sets
that proxy’s reference count to one. Each proxy class has a
_duplicate () method, which allows a client to create a copy of the
target proxy. In practice, this method simply increments the
reference count on that proxy and returns a new ptr reference to
it. Actual methods for copying ptr and _var references differ and
are addressed separately in this chapter; conceptually, however,
the result is the same.

For example, given an object reference to the Account interface,
the following client code initializes a ptr reference as follows:

Account ptr accpl = ...; // get reference somehow

This instantiates an Account object proxy and automatically sets
its reference count to one:

Account

Figure 16: Reference count for Account proxy is set to one.

The following code copies accpl into reference accp2, thus
incrementing the Account proxy’s reference count to 2

Account ptr accp2 = Account:: duplicate(accpl) ;

The client now has two initialized ptr references, accpl and accp2.
Both refer to the same proxy, so invocations on either are treated
as invocations on the same object.

Account

Figure 17: Reference for Account proxy isincremented to 2.

Orbix CORBA Programmer’s Guide C++ 125

Nil References

When you release a reference, the reference count of the
corresponding proxy is automatically decremented. When the
reference count is zero, Orbix deallocates the proxy. You can
release references in any order, but you can only release a
reference once, and you must not use any reference after it is
released.

Note: A server object is completely unaware of its
corresponding client proxy and its life cycle. Thus, calling
release () and duplicate() on a proxy reference has no
effect on the server object.

Nil references are analogous to C++ null pointers and contain a
special value to indicate that the reference points nowhere. Nil
references are useful mainly to indicate “not there” or optional
semantics. For example, if you have a lookup operation that
searches for objects via a key, it can return a nil reference to
indicate the “not found” condition instead of raising an exception.
Similarly, clients can pass a nil reference to an operation to
indicate that no reference was passed for this operation—that is,
you can use a nil reference to simulate an optional reference
parameter.

You should only use the corea: :is nil() method to test whether a
reference is nil. All other attempts to test for nil have undefined
behavior. For example, the following code is not CORBA-compliant
and can yield unpredictable results:

Object ptr ref = ...;

if (ref != 0) { // WRONG! Use CORBA::is nil
// Use reference...

}

You cannot invoke operations on a nil reference. For example, the
following code has undefined behavior:

Account_ptr accp = Account:: nil();

/] ...
CORBA: : CashAmount bal = accp->balance(); // Crash
imminent !

126 Orbix CORBA Programmer’s Guide C++

Object Reference Operations

Because all object references inherit from CORBA: :Object, you can
invoke its operations on any object reference. CORBA: :Object is a
pseudo-interface with this definition:

module CORBA(//PIDL
/] ..
interface Object({
Object duplicate ()
void release () ;
boolean is nil();
boolean is a(in string repository id) ;
boolean non existent () ;
boolean is equivalent (in Object other object) ;
boolean hash (in unsigned long max) ;
// ...
}
he
Mappings

In C++, these operations are mapped to CORBA: :Object member
methods as follows:is nil() is discussed earlier in this chapter

// In namespace CORBA:

class Object {

public:
static Object ptr duplicate(Object ptr obj) ;
void release (Type ptr) ;
Boolean is nil (Type ptr p);
Boolean is a(const char * repository id);
Boolean non existent () ;
Boolean is equivalent (Object ptr other obj) ;
ULong _hash (ULong max) ;
/...

T

(see page 126). duplicate(), and release() are discussed later in
this chapter (see page 129).

Operation descriptions
The following sections describe the remaining operations.

_is_a() is similar to _narrow() in that it lets you to determine
whether an object supports a specific interface. For example:

CORBA: :Object ptr obj = ...; // Get a reference

if (!CORBA::is nil (obj) &&
obj-> is a("IDL:BankDemo/Account:1.0"))
// It's an Account object...
else
// Some other type of object...

Orbix CORBA Programmer’s Guide C++ 127

The test for nil in this code example prevents the client program
from making a call via a nil object reference.

_is_a() lets applications manipulate IDL interfaces without static
knowledge of the IDL—that is, without having linked the
IDL-generated stubs. Most applications have static knowledge of
IDL definitions, so they never need to call _is a(). In this case,
you can rely on narrow() to ascertain whether an object supports
the desired interface.

_non_existent() tests whether a CORBA object exists.
_non_existent () returns true if an object no longer exists. A return
of true denotes that this reference and all copies are no longer
viable and should be released.

If _non existent () needs to contact a remote server, the operation
is liable to raise system exceptions that have no bearing on the
object’s existence—for example, the client might be unable to
connect to the server.

If you invoke a user-defined operation on a reference to a
non-existent object, the ORB raises the OBJECT NOT EXIST system
exception. So, invoking an operation on a reference to a
non-existent object is safe, but the client must be prepared to
handle errors.

_is_equivalent() tests whether two references are identical. If
_is equivalent () returns true, you can be sure that both
references point to the same object.

A false return does not necessarily indicate that the references
denote different objects, only that the internals of the two
references differ in some way. The information in references can
vary among different ORB implementations. For example, one
vendor might enhance performance by adding cached information
to references, to speed up connection establishment. Because
_is equivalent () tests for absolute identity, it cannot distinguish
between vendor-specific and generic information.

__hash() returns a hash value in the range 0. .max-1. The hash
value remains constant for the lifetime of the reference. Because
the CORBA specifications offer no hashing algorithm, the same
reference on different ORBs can have different hash values.

_hash() is guaranteed to be implemented as a local operation—
that is, it will not send a message on the wire.

_hash() is mainly useful for services such as the transaction
service, which must be able to determine efficiently whether a
given reference is already a member of a set of references.
_hash() permits partitioning of a set of references into an arbitrary
number of equivalence classes, so set membership testing can be
performed in (amortized) constant time. Applications rarely need
to call this method.

128 Orbix CORBA Programmer’s Guide C++

Using _ptr References

The IDL compiler defines a ptr reference type for each IDL
interface. In general, you can think of a _ptr reference as a
pointer to a proxy instance, with the same semantics and
requirements as any C++ pointer.

Duplicating and releasing references

To make a copy of a _ptr reference, invoke the static _duplicate()
member method on an existing object reference. For example:

Account ptr accl = ...; // Get ref from
somewhere. . .

Account ptr acc2; // acc2 has undefined
contents

acc2 = Account:: duplicate(accl) ; // Both reference same
Account

_duplicate () makes an exact copy of a reference. The copy and
the original are indistinguishable from each other. As shown
earlier (see “Counting References” on page 125), duplicate()
also makes a deep copy of the target reference, so the reference
count on the proxy object is incremented. Consequently, you must
call release () on all duplicated references to destroy them and
prevent memory leaks.

To destroy a reference, use the release method. For example:

Account ptr accp = ...; // Get reference from somewhere. ..

// ...Use accp

CORBA: :release (accp) ; // Don't want to use Account
anymore

_duplicate() is type safe. To copy an Account reference, supply an
Account reference argument to duplicate(). Conversely, the
CORBA namespace contains only one release () method, which
releases object references of any type.

Widening and narrowing _ptr references
Proxy classes emulate the inheritance hierarchy of the IDL
interfaces from which they are generated. Thus, you can widen
and narrow ptr references to the corresponding proxies.
Widening assignments

Object references to proxy instances conform to C++ rules for
type compatibility. Thus, you can assign a derived reference to a

base reference, or pass a derived reference where a base
reference is expected.

Orbix CORBA Programmer’s Guide C++ 129

For example, the following IDL defines the CheckingAccount
interface, which inherits from the Account interface shown earlier:

interface CheckingBAccount : Account {
exception InsufficientFunds {};
readonly attribute CashAmount overdraftLimit;
boolean orderCheckBook () ;

¥

Given this inheritance hierarchy, the following widening
assignments are legal:

CheckingAccount ptr ck = ...; // Get checking account
reference

Account ptr accp = ck; // Widening assignment

CORBA: :Object ptr objl = ck; // Widening assignment

CORBA: :Object ptr obj2 = accp; // Widening assignment

Note: Because all proxies inherit from CORBA: :Object, you
can assign any type of object reference to object ptr, such
as ptr references obj1l and obj2.

Ordinary assignments between ptr references have no effect on
the reference count. Thus, the assignments shown in the previous
code can be characterized as shown in Figure 18:

Figure 18: Multiple _ptr references to a proxy object can leave the reference count

unchanged.

Because the reference count is only 1, calling release() on any of
these references decrements the proxy reference count to O,
causing Orbix to deallocate the proxy. Thereafter, all references to
this proxy are invalid.

130 Orbix CORBA Programmer’s Guide C++

Type-safe narrowing of _ptr references

For each interface, the IDL compiler generates a static _narrow ()
method that lets you down-cast a ptr reference at runtime. For
example, the following code narrows an Account reference to a
CheckingAccount reference:

BankDemo: :Account ptr accp = ..; // get a reference from
somewhere

BankDemo: : CheckingAccount ptr ckp =
BankDemo: : CheckingAccount: : narrow (accp) ;

if (CORBA::is nil (ckp))

{
}

else

{

// accp is not of type CheckingAccount

// accp is a CheckingAccount type, so ckp is a valid
reference

}
/...

// release references to Account proxy
CORBA: :release (ckp) ;
CORBA: :release (accp) ;

Because _narrow() calls _duplicate(), it increments the reference
count on the Account proxy—in this example, to 2. Consequently,
the code must release both references.

Using _var References

The IDL compiler defines a _var class type for each IDL interface,
which lets you instantiate var references in the client code. Each
_var references takes ownership of the reference that it is
initialized with, and calls COrBa: :release () when it goes out of
scope.

If you initialize a _var reference with a ptr reference, you cannot
suffer a resource leak because, when it goes out of scope, the var
reference automatically decrements the reference count on the
proxy.

_var references are also useful for gaining exception safety. For
example, if you keep a reference you have just obtained as a var
reference, you can throw an exception at any time and it does not
leak the reference because the C++ run time system calls the
_var’s destructor as it unwinds the stack

Orbix CORBA Programmer’s Guide C++ 131

_var class member methods

Given the Account interface shown earlier, the IDL compiler
generates an Account var class with the following definition:

class Account var{

public:
Account var() ;
Account var (Account ptr &) ;
Account var (const Account var &) ;
~Account var () ;
Account var & operator=(Account ptr &) ;
Account var & operator=(const Account var &) ;
operator Account ptr & ();
Account ptr in() const;
Account ptr & in inout () ;
Account ptr & in out();
Account ptr retn();

private:
Account ptr p; //actual reference stored here

Account_var(): The default constructor initializes the private
_ptr reference to nil.

Account_var(Account_ptr &): Constructing a _var from a ptr
reference passes ownership of the ptr reference to the var. This
method leaves the proxy reference count unchanged.

Account_var(const Account_var &): Copy-constructing a var
makes a deep copy by calling duplicate() on the source
reference. This method increments the proxy reference count.

~Account_var(): The destructor decrements the proxy reference
count by calling release ().

Account_var & operator=(Account_ptr &) / Account_var &
operator=(const Account_var &): Assignment from a pointer
passes ownership and leaves the proxy reference count
unchanged; assignment from another Account var makes a deep
copy and increments the reference count.

operator Account_ptr &(): This conversion operator lets you
pass a _var reference where a ptr reference is expected, so use
of var references is transparent for assignment and parameter
passing.

Account_ptr operator->() const: The indirection operator

permits access to the member methods on the proxy via a var by
returning the internal _ptr reference.

132 Orbix CORBA Programmer’s Guide C++

Account_ptr in() const / Account_ptr & inout() /
Account_ptr & out(): Explicit conversion operators are provided
for compilers that incorrectly apply C++ argument-matching
rules.

Account_ptr _retn(): The retn() method removes ownership of
a reference from a _var without decrementing the reference count.
This is useful if a method must allocate and return a _var
reference, but also throws exceptions.

Widening and narrowing _var
References
You can copy-construct and assign from _var references, but only

if both references are of the same type. For example, the following
code is valid:

Account var accvl = ...; // get object reference
Account var accv2 (accvl) ; // Fine, deep copy
accvl = accvl; // Fine, deep assignment

Unlike ptr references, var references have no inheritance
relationship, so implicit widening among _var references is not
allowed. For example, you cannot use a CheckingAccount var to
initialize an Account var:

CheckingAccount var ckv = ...; // get object reference
accvl = ckv; // Compile-time error
Account var accv3 (ckv) ; // Compile-time error

To widen a _var reference, you must first call duplicate() on the
original _var. Although _duplicate () expects a _ptr reference, a
_var can be supplied in its place, as with any method that expects
a ptr reference. duplicate() returns a ptr reference that can
then be implicitly widened.

For example, in the following statement, duplicate() receives a
CheckingAccount var:

Account var accvl (CheckingAccount:: duplicate(ckv)) ;

_duplicate() returns a CheckingAccount ptr that is implicitly
widened to an Account ptr as the argument to the Account var
constructor. The constructor in turn takes ownership, so the copy
made by duplicate() is not leaked.

In the next statement, _duplicate() expects an Account ptr:

Account var accv2 (Account:: duplicate (ckv)) ;

In fact, a CheckingAccount var argument is supplied, which has a
conversion operator to CheckingAccount ptr. A CheckingAccount ptr
can be passed where an Account ptr is expected, so the compiler
finds an argument match. duplicate() makes a copy of the
passed reference and returns it as an Account_ptr, which is
adopted by the Account var, and no leak occurs.

Orbix CORBA Programmer’s Guide C++ 133

You can also use duplicate() for implicit var widening through
assignment, as in these examples:

accvl

CheckingAccount:: duplicate (ckv) ;
accv2 = Account:: duplicate(ckv) ;

You can freely mix ptr and var references; you only need to
remember that when you give a ptr reference to a var
reference, the var takes ownership:

// Be careful of ownership when mixing var and ptr:

{

CheckingAccount var ckv = ...; // Get reference...
Account ptr accp = ckv; // OK, but ckv still has
ownership

// Can use both ckv and accp here...

CheckingAccount ptr ckp = ...; // Get reference...
ckv = ckp; // ckv now owner, accp
dangles
level = accp->balance() ; // ERROR - accp dangles
} // ckv automatically releases its reference, ckp
dangles!
level = ckp->balance () // ERROR -ckp dangles

String Conversions

Object references can be converted to and from strings, which
facilitates persistent storage. When a client obtains a stringified
reference, it can convert the string back into an active reference
and contact the referenced object. The reference remains valid as
long as the object remains viable. When the object is destroyed,
the reference becomes permanently invalid.

Operations

The object to string() and string to object () operations are
defined in C++ as follows:

// In <corba/orb.hh>:
namespace CORBA {

7 oo

class ORB {

public:
char * object to string(Object ptr op) ;
Object ptr string to object (const char *);
/!

s

//

134 Orbix CORBA Programmer’s Guide C++

object_to_string()

For example, the following code stringifies an Account object
reference:

BankDemo: :Account _ptr accp = ...; // Account reference

// Write reference as a string to stdout

//

try {
CORBA: :String var str = orb->object to string(accp) ;
cout << str << endl;

} catch (...) {
// Deal with error...

}

The example puts the return value from object to stringin a
String var. This ensures that the string is not leaked. This code
prints an IOR (interoperable reference) string whose format is
similar to this:

IOR:
010000002000000049444c3a61636d652e636£6d2£4943532f436f6e74726f6¢C
€65723a2312e300001000000000000004a000000010102000e0000003139322e3
36382e312e3231300049051b000000323€0231310c01000000c¢7010000234800
008000000000000000000010000000600000006000000010000001100

The stringified references returned by object to string() always
contain the prefix 10r:, followed by an even number of
hexadecimal digits. Stringified references do not contain any
unusual characters, such as control characters or embedded
newlines, so they are suitable for text 1/0.

string_to_object()
To convert a string back into a reference, call string to object ():
// Assume stringified reference is in aaccv[1]

try {
CORBA: :Object ptr obj;
obj = orb->string to object (accv([1]) ;
if (CORBA::is nil (obj))
throw 0; // accv[1l] is nil

BankDemo: :Account ptr accp =
BankDemo: :Account: : narrow (obj) ;
if (CORBA::is nil (accp))
throw 0; // Not an Account reference
// Use accp reference. ..

CORBA: :release (accp) ; // Avoid leak

} catch (...) {
// Deal with error...
}

Orbix CORBA Programmer’s Guide C++ 135

The CORBA specification defines the representation of stringified
IOR references, so it is interoperable across all ORBs that support
the Internet Inter-ORB Protocol (110P).

Although the I0R shown earlier looks large, its string
representation is misleading. The in-memory representation of
references is much more compact. Typically, the incremental
memory overhead for each reference in a client can be as little as
30 bytes.

You can also stringify or destringify a nil reference. Nil references
look like one of the following strings:

IOR:00000000000000010000000000000000
IOR:01000000010000000000000000000000

Constraints

IOR string references should be used only for these tasks:

* Store and retrieve an IOR string to and from a storage
medium such as disk or tape.

. Conversion to an active reference.

It is inadvisable to rely on IOR string references as database keys
for the following reasons:

* Actual implementations of IOR strings can vary across
different ORBs—for example, vendors can add proprietary
information to the string, such as a time stamp. Given these
differences, you cannot rely on consistent string
representations of any object reference.

* The actual size of IOR strings—between 200 and 600 bytes—
makes them prohibitively expensive to use as database keys.

In general, you should not compare one IOR string to another. To
compare object references, use is _equivalent () (see page 128).

Note: Stringified IOR references are one way to make references
to initial objects known to clients. However, distributing strings as
e-mail messages or writing them into shared file systems is
neither a distributed nor a scalable solution. More typically,
applications obtain object references through the naming service
(see “Naming Service”).

Using corbaloc URL strings

string to object() can also take as an argument a
corbaloc-formatted URL, and convert it into an object reference. A
corbaloc URL denotes objects that can be contacted by I1OP or
resolve initial references().

A corbaloc URL uses one of the following formats:

corbaloc:rir: /rir-argument
corbaloc: iiop-address[, iiop-address].../key-string

rir-argument: A value that is valid for
resolve initial references(), such as NameService.

136 Orbix CORBA Programmer’s Guide C++

Initializing and

ilop-address: ldentifies a single 11OP address with the following
format:

[iiop] : [major-version-num.minor-version-num@] host-spec [:port-num]

I1OP version information is optional; if omitted, version 1.0 is
assumed. nost-spec can specify either a DNS-style host name or a
numeric IP address; specification of port-num is optional.

key-string: corresponds to the octet sequence in the object key
member of a stringified object reference, or an object’s named key
that is defined in the implementation repository.

For example, if you register the named key BankService for an IOR
in the implementation repository, a client can access an object
reference with string to object () as follows:

// assume that xyz.com specifies a location domain’s host

global orb->string to object
("corbaloc:iiop:xyz.com/BankService") ;

The following code obtains an object reference to the naming

service:

global orb-s>string to object ("corbaloc:rir:/NameService") ;

You can define a named key in the implementation repository
through the eitadmin named key create command. For more
information, see the Application Server Platform Administrator’s
Guide.

Shutting Down the ORB

Before a client application can start any CORBA-related activity, it
must initialize the ORB runtime by calling ORB_init (). ORB_init ()
returns an object reference to the ORB object; this, in turn, lets
the client obtain references to other CORBA objects, and make
other CORBA-related calls.

Procedures for ORB initialization and shutdown are the same for
both servers and clients. For detailed information, see “ORB
Initialization and Shutdown”.

Invoking Operations and Attributes

For each IDL operation in an interface, the IDL compiler generates
a method with the name of the operation in the corresponding
proxy. It also maps each unqualified attribute to a pair of
overloaded methods with the name of the attribute, where one
method acts as an accessor and the other acts as a modifier. For
readonly attributes, the compiler generates only an accessor
method.

An IDL attribute definition is functionally equivalent to a pair of
set/get operation definitions, with this difference: attribute
accessors and modifiers can only raise system exceptions, while
user exceptions apply only to operations.

Orbix CORBA Programmer’s Guide C++ 137

For example, the following IDL defines a single attribute and two
operations in interface Test: :Example:

module Test {

interface Example {
attribute string name;
oneway void set address(in string addr) ;
string get address() ;
}i
I

The IDL compiler maps this definition’s members to the following
methods in the C++ proxy class Example. A client invokes on
these methods as if their implementations existed within its own
address space:

namespace Test {
// ...
class Example : public virtual CORBA: :Object
{
public:
/] ...
virtual char* name() = 0;
virtual void name (const char* itvar name)
virtual void set address(const char* addr) = 0;
virtual char* get address() = 0;

1 oo

]
o

b
b

Passing Parameters in Client Invocations

The C++ mapping has strict rules on passing parameters to
operations. Several objectives underlie these rules:

* Avoid data copying.

* Deal with variable-length types, which are allocated by the
sender and deallocated by the receiver.

* Map the source code so it is location-transparent; source code
does not need to consider whether or not client and server are
collocated.

In general, a variable-length parameter is always dynamically
allocated, and the receiver of the value is responsible for
deallocation. For variable-length out parameters and return
values, the server allocates the value and the client deallocates it.

For string, reference, and variable-length array inout parameters,
the client dynamically allocates the value and passes it to the
server. The server can either leave the initial value’s memory
alone or it can deallocate the initial value and allocate a different
value to return to the client; either way, responsibility for
deallocation of a variable-length inout parameter remains with the
client.

All other parameters are either fixed-length or in parameters. For
these, dynamic allocation is unnecessary, and parameters are
passed either by value for small types, or by reference for
complex types.

138 Orbix CORBA Programmer’s Guide C++

Simple Parameters

For simple fixed-length types, parameters are passed by value if
they are in parameters or return values, and are passed by
reference if they are inout or out parameters.

For example, the following IDL defines an operation with simple
parameters:

interface Example {
long op(
in long in p, inout long inout p, out long
out
)i
T

The proxy member method signature is the same as the signature
of any other C++ method that passes simple types in these
directions:

virtual CORBA: :Long

op (
CORBA: : Long in p,
CORBA: :Long & inout p,
CORBA: :Long & out p

) = 0;

For example, a client can invoke op as follows:

Example var ev = ...; // Get reference

CORBA: :Long inout = 99; // Note initialization

CORBA: :Long out; // No initialization
needed

CORBA: :Long ret val;

ret val = ev->o0p (500, inout, out); // Invoke CORBA
operation

cout << "ret val: " << ret val << endl;

cout << "inout: " << inout << endl;

cout << "out: " << out << endl;

The client passes the constant 500 as the in parameter. For the
inout parameter, the client passes the initial value 99, which the
server can change. No initialization is necessary for the out
parameter and the return value. No dynamic allocation is
required; the client can pass variables on the stack, on the heap,
or in the data segment (global or static variables).

Fixed-Length Complex Parameters

For fixed-length complex types such as fixed-length structures,
parameters are passed by reference or constant reference and are
returned by value.

Orbix CORBA Programmer’s Guide C++ 139

For example, the following IDL defines an operation with
fixed-length complex parameters:

struct FLS { // Fixed-Length Structure
long long val;
double double val;

Vi

interface Example {
FLS op(in FLS in p, inout FLS inout p, out FLS out p);

The corresponding proxy method has the following signature:

typedef FLS & FLS out;

/] ...
virtual FLS

op(const FLS & in p, FLS & inout p, FLS out out p) = 0;

Using the generated proxy method in the client is easy, and no
dynamic memory allocations are required:

Example var ev = ...; // Get reference

FLS in; // Initialize in param
in.long val = 99;
in.double val = 33.0;

FLS inout; // Initialize inout param
inout.long val = 33;
in.double val = 11.0;

FLS out; // Out param
FLS ret val; // Return value
ret val = op(in, inout, out); // Make call

// inout may have been changed, and out and ret val
// contain the values returned by the server.

Fixed-Length Array Parameters

Fixed-length array parameters follow the same parameter-passing
rules as other fixed-length types. However, an array that is
passed in C++ degenerates to a pointer to the first element, so
the method signature is expressed in terms of pointers to array
slices.

For example, the following IDL defines an operation with
fixed-length array parameters:

typedef long Larr[3];
interface Example {
Larr op(in Larr in p, inout Larr inout p, out Larr

out p);
Vi

140 Orbix CORBA Programmer’s Guide C++

The IDL compiler maps this IDL to the following C++ definitions:

typedef CORBA::Long Larr[3];
typedef CORBA::Long Larr slice;
typedef Larr slice * Larr out;
I oo
virtual Larr slice * op(
const Larr in p, Larr slice * inout p, Larr out out p
) = 0;

For in, inout, and out parameters, memory is caller-allocated and
need not be on the heap; the method receives and, for inout and
out parameters, modifies the array via the passed pointer. For the
return value, a pointer must be returned to dynamically allocated
memory, simply because there is no other way to return an array
in C++. Therefore, the client must deallocate the return value
when it is no longer wanted:

Example var ev = ...; // Get reference

Larr in = { 1, 2, 3 }; // Initialize in param

Larr inout = { 4, 5, 6 }; // Initialize inout
param

Larr out; // out param

Larr slice * ret val; // return value

ret val = ev->op(in, inout, out); // Make call

// Use results...

Larr free(ret val); // Must deallocate

here!

In the previous example, the call to Larr free is required to
prevent a memory leak. Alternatively, you can use var types to
avoid the need for deallocation. So, you can rewrite the previous
example as follows:

Example var ev = ...; // Get reference
} // Initialize in param

Larr in = { 1, 2, ;
6 }; // Initialize inout

3
Larr inout = { 4, 5,

param

Larr out; // out param, note var
type!

Larr var ret val; // return value

ret val = ev->op(in, inout, out); // Make call

// Use results...

// No need to deallocate anything here, ret val takes care
of it.

_var types are well-suited to manage the transfer of memory

ownership from sender to receiver because they work
transparently for both fixed- and variable-length types.

Orbix CORBA Programmer’s Guide C++ 141

String Parameters

The C++ mapping does not encapsulate strings in a class, so

string parameters are passed as char *. Because strings are

variable-length types, the following memory management issues

apply:

®* in strings are passed as const char *, soO the callee cannot
modify the string’s value. The passed string need not be
allocated on the heap.

®* inout strings must be allocated on the heap by the caller. The
callee receives a C++ reference to the string pointer. This is
necessary because the callee might need to reallocate the
string if the new value is longer than the initial value. Passing
a reference to the callee lets the callee modify the bytes of the
string and the string pointer itself. Responsibility for
deallocating the string remains with the caller.

* out strings are dynamically allocated by the callee.
Responsibility for deallocating the string passes to the caller.

* Strings returned as the return value behave like out strings:
they are allocated by the callee and responsibility for
deallocation passes to the caller.

For example, the following IDL defines an operation with string
parameters:

interface Example {

string op (
in string in p,
inout string inout p,
out string out p

)i
Vi

The IDL compiler maps this interface to the following class, in
which string parameters are passed as char *:

class String out; // In the CORBA namespace
[/ ..
virtual const char *
op (
const char * in p,
char * & inout p,

CORBA: :String out out p
) = 0;

The following example shows how to invoke an operation that
passes a string in each possible direction:

Example var ev = ...; // Get ref
char * inout = CORBA::string dup("Hello") ; //
Initialize

char * out;
char * ret val;

ret val = ev->op ("Input string", inout, out); // Make call

142 Orbix CORBA Programmer’s Guide C++

// Use the strings...

CORBA: :string free (inout) ; // We retain ownership

CORBA: :string free (out) ; // Caller passed
responsibility

CORBA: :string free(ret val); // Caller passed
responsibility

This example illustrates the following points:

* The in parameter can be allocated anywhere; the example
passes a string literal that is allocated in the data segment.

* The caller must pass a dynamically allocated string as the
inout parameter, because the callee assumes that it can, if
necessary, deallocate that parameter.

* The caller must deallocate the inout and out parameter and
the return value.

The following example shows the same method call as before, but
uses String var variables to deallocate memory:

Example var ev = ...;

CORBA: :String var inout = CORBA::string dup ("Hello") ;
CORBA: :String var out;
CORBA: :String var ret val;

ret val = ev->op("Input string", inout, out);
// Use the strings...

// No need to deallocate there because the String var
// variables take ownership.

Be careful not to pass a default-constructed String var as an in or
inout parameter:

Example var ev = ...;

CORBA: :String var in; // Bad: no initialization
CORBA: :String var inout; // Bad: no initialization
CORBA: :String var out;

CORBA: :String var ret val;

ret val = ev->op(in, inout, out); // Oops :-(

In this example, in and inout are initialized to the null pointer by
the default constructor. However, it is illegal to pass a null pointer
across an interface; code that does so is liable to crash or raise an

exception.

Note: This restriction applies to all types that are passed
by pointer, such as arrays and variable-length types. Never
pass a null pointer or an uninitialized pointer. Only one
exception applies: you can pass a nil reference, even if nil
references are implemented as null pointers.

Orbix CORBA Programmer’s Guide C++ 143

_out Types

IDL out parameters result in proxy signatures that use C++ out
types. out types ensure correct deallocation of previous results
for var types.

For example, the following IDL defines a single out parameter:

interface Person {
void get name (out string name) ;
// ...

The IDL compiler generates the following class:

class Person {

public:
void get name (CORBA::String out name) ;
7 oo

b

The following code fragment uses the person interface, but leaks
memory:

char * name;
Person var person 1 = ...;
Person var person 2 000 f

person 1l->get name (name) ;
cout << "Name of person 1l: " << name << endl;

person 2->get name (name) ; // Bad
news !
cout << "Name of person 2: " << name << endl;

CORBA: :string free (name) ; //
Deallocate

Because variable-length out parameters are dynamically allocated
by the proxy stub, the second call to get name () causes the result
of the first get_name call to leak.

The following code corrects this problem by deallocating
variable-length out parameters between invocations:

char * name;
Person var person 1 5008
Person var person 2 = ...;

person 1l->get name (name) ;

cout << "Name of person 1l: " << name << endl;

CORBA: : String free (name) ; // Much
better!

person 2->get name (name) ; // No
problem

cout << "Name of person 2: " << name << endl;

CORBA: :String free (name) ; //
Deallocate

144 Orbix CORBA Programmer’s Guide C++

However, if we use var types, no deallocation is required at all:

CORBA: :String var name; // Note
String var

Person var person 1 coof

Person var person 2 = ...;

person 1->get name (name) ;

cout << "Name of person 1l: " << name << endl;

person 2->get name (name) ; // No leak
here

cout << "Name of person 2: " << name << endl;

// No need to deallocate name

When the name variable is passed to get name a second time, the
mapping implementation transparently deallocates the previous
string. However, how does the mapping manage to avoid
deallocation for pointer types but deallocates the previous value
for var types?

The answer lies in the formal parameter type CORBA: :String out,
which is a class as outlined here:

class String out { // In the CORBA namespace
public:
String out (char * & s): m ref(s) { m ref = 0 }
String out (String var & s): m ref(s.m ref) {
string free (m ref);
m ref = 0;
1
// Other member methods here...
private:
char * & m ref;
ba

This implementation of CORBA: :String out shows how char * out
parameters are left alone, but var out parameters are
deallocated.

If you pass a char * as an out parameter, the compiler looks for a
way to convert the char * into a String out object. The
single-argument constructor for char * acts as a user-defined
conversion operator, so the compiler finds an argument match by
constructing a temporary string out object that is passed to the
method. Note that the char * constructor is passed a reference to
the string, which it binds to the private member variable m_ref.
The constructor body then assigns zero to the m_ref member.
m_ref is a reference to the passed string, so construction from a
char * clears (sets to null) the actual argument that is passed to
the constructor, without deallocating the previous string.

On the other hand, if you pass a string var as an out parameter,
the compiler uses the second constructor to construct the
temporary string out. That constructor binds the m_ref member
variable to the passed string var’s internal pointer and
deallocates the current string before setting the passed string
pointer to null.

Orbix CORBA Programmer’s Guide C++ 145

_out types are generated for all complex types, such as strings,
sequences, and structures. If a complex type has fixed length,
then the generated out type is simply an alias for a reference to
the actual type (see “Fixed-Length Complex Parameters” on
page 139 for an example).

Note: You can ignore most of the implementation details
for _out types. It is only important to know that they serve
to prevent memory leaks when you pass a _var as an out

parameter.

Variable-Length Complex Parameters

The parameter-passing rules for variable-length complex types
differ from those for fixed-length complex types. In particular, for
out parameters and return values, the caller is responsible for
deallocating the value.

For example, the following IDL defines an operation with
variable-length complex parameters:

struct VLS { // Variable-Length Structure
long long val;
string string val;

}i

interface Example {
VLS op(in VLS in p, inout VLS inout p, out VLS out p);

The IDL compiler maps this IDL to the following C++ definitions:

class VLS out;
// ...

virtual VLS *
op(const VLS & in p, VLS & inout p, VLS out out p) = 0;

The following code calls the op() operation:

Example var ev = ...; // Get reference

VLS in; // Initialize in param
in.long val = 99;

in.string val = CORBA::string dup ("Ninety-nine");

VLS inout; // Initialize inout param

inout.long val = 86;
in.string val = CORBA::string dup ("Eighty-six") ;

VLS * out; // Note *pointer* to out
param

VLS * ret val; // Note *pointer* to return
value

ret val = op(in, inout, out); // Make call

146 Orbix CORBA Programmer’s Guide C++

// Use values...

delete out; // Make sure nothing is
leaked
delete ret val; // Ditto...

As with fixed-length complex types, in and inout parameters can
be ordinary stack variables. However, both the out parameter and
the return value are dynamically allocated by the call. You are
responsible for deallocating these values when you no longer
require them.

You can also use var types to take care of the
memory-management chores for you, as in this modified version
of the previous code:

Example var ev = ...; // Get reference

VLS in; // Initialize in param
in.long val = 99;
in.string val = CORBA::string dup ("Ninety-nine") ;

VLS inout; // Initialize inout param
inout.long val = 86;
in.string val = CORBA::string dup ("Eighty-six");

VLS var out; // Note var type
VLS var ret val; // Note var type
ret val = op(in, inout, out); // Make call

// Use values...

// No need to deallocate anything here

Note: Type any is passed using the same rules—that is,
out parameters and return values are dynamically allocated
by the stub and must be deallocated by the caller. Of
course, you can use CORBA: :Any var to achieve automatic
deallocation.

Variable-Length Array Parameters

Variable-length arrays are passed as parameters in the same way
as fixed-length arrays, except for out parameters: these are
passed as a reference to a pointer. As for strings, the generated
_out class takes care of deallocating values from a previous
invocation held in _var types.

For example, the following IDL defines an operation with
variable-length string array parameters:

typedef string Sarr[3];

interface Example {
Sarr op(in Sarr in p, inout Sarr inout p, out Sarr
out p);

Orbix CORBA Programmer’s Guide C++ 147

The IDL compiler maps this IDL to the following C++ definitions:

typedef CORBA::String mgr Sarr[3];
typedef CORBA::String Mgr Sarr slice;
class Sarr out;
/] ...
virtual Sarr slice * op(
const Sarr in p, Sarr slice * inout p, Sarr out out p
) = 0;

The following code calls the op() operation:
Example var ev = ...; // Get reference
Sarr in;

in[0] = CORBA::string dup ("Bjarne");

in[1] CORBA: : string dup ("Stan") ;
in[2] CORBA: : string dup ("Andrew") ;

Sarr inout;
inout [0] = CORBA::string dup ("Dennis") ;

inout [1] = CORBA::string dup ("Ken") ;

inout [2] = CORBA::string dup ("Brian") ;

Sarr slice * out; // Pointer to array
slice

Sarr slice * ret val; // Pointer to array
slice

ret val = ev->op(in, inout, out); // Make call

// Use values...

Sarr free(out) ; // Deallocate to avoid
leak
Sarr free(ret val); // Ditto...

As always, you can rewrite the code to use var types, and so
prevent memory leaks:

Example var ev = ...; // Get reference
Sarr in;
in[0] = CORBA::string dup ("Bjarne");

in[1] = CORBA::string dup ("Stan") ;
in[2] CORBA: : string dup ("Andrew") ;

Sarr inout;

inout [0] = CORBA::string dup ("Dennis") ;
inout [1] = CORBA::string dup ("Ken") ;
inout [2] = CORBA::string dup ("Brian") ;

148 Orbix CORBA Programmer’s Guide C++

Sarr var out; // Note var type
Sarr var ret val; // Note var type

ret val = ev->op(in, inout, out); // Make call
// Use values...

// No need to free anything here

Object Reference Parameters

You pass object references as parameters as you do strings. For
inout reference, the caller must pass a C++ reference to a _ptr
reference. For an out parameters and return values, the caller is
responsible for deallocation.

For example, the following IDL defines an operation with object
reference parameters:

interface Example {
string greeting() ;

Example op (
in Example in p,
inout Example inout p,
out Example out p

)i
Vi

The IDL compiler maps this IDL to the following C++ definitions:

class Example out;
1 oo
virtual Example ptr op(
Example ptr in p, Example ptr & inout p, Example out

out p
) = 0;
The following code calls the op() operation:

Example var ev = ...;

Example var in = ...; // Initialize in param
Example var inout = ...; // Initialize inout param
Example ptr out; // Note ptr reference
Example ptr ret val; // Note ptr reference

ret val = ev->op(in, inout, out);
// Use references...

CORBA: :release (out) ; // Deallocate
CORBA: :release (ret val) ; // Ditto...

Note that the code explicitly releases the references returned as
the out parameter and the return value.

Orbix CORBA Programmer’s Guide C++ 149

You can also rewrite this code to use var references in order to
avoid memory leaks:

Example var ev = ...;

Example var in = ...; // Initialize in param
Example var inout = ...; // Initialize inout param
Example var out; // Note var reference
Example var ret val; // Note var reference

ret val = ev->op(in, inout, out);
// Use references. ..

// No need to deallocate here

Parameter-Passing Rules: Summary

The following sections summarize the parameter-passing rules for
the C++ mapping.

Never pass null or uninitialized pointers as in or inout
parameters. As shown earlier (see page 143), it is illegal to pass
null pointers or uninitialized pointers as inout or in parameters.
The most likely outcome of ignoring this rule is a core dump.

Nil object references are exempt from this rule, so it is safe to
pass a nil reference as a parameter.

Do not ignore variable-length return values. Ignoring return
values can leak memory. For example, the following interface
defines operation do_something () to return a string value:

// interface Example {
// string do something() ;
// }i

The following client call on do_something() erroneously ignores its
return value:

Example var ev = ...; // Get reference
ev->do_something () ; // Memory leak!

Be careful never to ignore the return, because the memory that
the stub allocates to the return value can never be reclaimed.

Allocate string and reference inout parameters on the heap
and deallocate them after the call. String and reference inout
parameters must be allocated on the heap; ownership of the
memory remains with the caller.

Deallocate variable-length return values and out
parameters. Variable-length types passed as return values or out
parameters are passed by pointer and are dynamically allocated
by the stub. You must deallocate these values to avoid memory
leaks.

150 Orbix CORBA Programmer’s Guide C++

Use _var types for complex inout and out parameters and
return values. Always use a _var type when a value must be
heap-allocated. This includes any complex or variable-length inout
or out parameter or return value. After you have assigned a
parameter to a _var type, you don’t have to worry about
deallocating memory.

For example, the following interface defines three operations:

// Some sample IDL to show how var types make life easier.
interface Example {

string get string();

void modify string(inout string s);

void put string(in string s);
bi
Because var types convert correctly to pass in any direction, the
following code does exactly the right things:

// _var automates memory management.

{
Example var ev = ...; // Get reference
CORBA: :String var s; // Parameter
s = ev->get string(); // Get value
ev->modify string(s); // Change it
ev->put_string(s) ; // Put it somewhere
!

// Everything is deallocated here

Table 9 summarizes parameter-passing rules. It does not show
that out parameters are passed as out types. Instead, it shows
the corresponding alias for fixed-length types, or the type of
constructor argument for the out type for variable-length types.

Table 9: Parameter passing for low-level mapping
IDL Type in inout out Return
Value
simple simple simple & simple & simple
enum enum enum & enum & enum
fixed const Fixed & Fixed & Fixed & Fixed
string const char * char * & char * & char *
wstring const WChar * WChar * & WChar * & WChar *
any const Any & Any & Any * & Any *
objref objref ptr objref ptr & objref ptr & objref ptr
sequence const sequence & sequence & sequence * & sequence *
struct, fixed const struct & struct & struct & struct
union, fixed const union & union & union & union
array, fixed const array array slice * array slice * array slice
*
struct, const struct & struct & struct * & struct *
variable

Orbix CORBA Programmer’s Guide C++ 151

Table9: Parameter passing for low-level mapping
IDL Type in inout out Return
Value
union, const union & union & union * & union *
variable
array, const array array slice * array slice * array slice
variable & *
As Table 9 shows, the parameter type varies for both out
parameters and return values, depending on whether a complex
structure, union, or array is variable length or fixed length.
Table 10 shows the considerably simpler parameter-passing rules
for var types:
Table 10: Parameter passing with _var types
IDL Type in inout/out Return Value
string const String var & String var & String var
wstring const WString var & WString var & WString var
any const Any var & Any var & Any var
objref const objref var & objref var & objref var
sequence const sequence var & Ssequence Vvar & sequence_var
struct const struct var & struct_var & struct_var
union const union var & union var & union var
array const array var & array var & array var

Client Policies

_var types are carefully crafted so that parameter passing is
uniform, regardless of the underlying type. This aspect of var
types, together with their automatic deallocation behavior, makes
them most useful for parameter passing.

Orbix supports a number of quality of service policies, which can
give a client programmatic control over request processing:

* RebindPolicy specifies whether the ORB transparently reopens
closed connections and rebinds forwarded objects.

* SyncScopePolicy determines how quickly a client resumes
processing after sending one-way requests.

* Timeout policies offer different degrees of control over the length
of time that an outstanding request remains viable.

You can set quality of service policies at three scopes, in

descending order of precedence:

1. On individual objects, so they apply only to invocations on
those objects.

2. On a given thread, so they apply only to invocations on that
thread

152 Orbix CORBA Programmer’s Guide C++

RebindPolicy

SyncScopePolicy

3. On the client ORB, so they apply to all invocations.

You can set policies in any combination at all three scopes; the
effective policy is determined on each invocation. If settings are
found for the same policy type at more than one scope, the policy
at the lowest scope prevails.

For detailed information about setting these and other policies on
a client, see “Setting Client Policies” on page 117.

Note: Because all policy types and their settings are
defined in the Messaging module, client code that sets
quality of service policies must include omg/messaging.hh.

A client’s RebindPolicy determines whether the ORB can
transparently reconnect and rebind. A client’s rebind policy is set
by a RebindMode constant, which describes the level of transparent
binding that can occur when the ORB tries to carry out a remote
request:

TRANSPARENT The default policy: the ORB silently reopens
closed connections and rebinds forwarded objects.

NO_REBIND The ORB silently reopens closed connections; it
disallows rebinding of forwarded objects if client-visible policies
have changed since the original binding. Objects can be explicitly
rebound by calling CORBA: :Object: :validate connection() on them.

NO_RECONNECT The ORB disallows reopening of closed
connections and rebinding of forwarded objects. Objects can be
explicitly rebound by calling CORBA: :Object: :validate connection()
on them.

Note: Currently, Orbix requires rebinding on
reconnection. Therefore, NO REBIND and NO RECONNECT
policies have the same effect.

A client’s syncScopePolicy determines how quickly it resumes
processing after sending one-way requests. You specify this
behavior with one of these syncScope constants:

SYNC_NONE The default policy: Orbix clients resume processing
immediately after sending one-way requests, without knowing
whether the request was processed, or whether it was even sent
over the wire.

SYNC_WITH_TRANSPORT The client resumes processing after
a transport accepts the request. This policy is especially helpful
when used with store-and-forward transports. In that case, this
policy offer clients assurance of a high degree of probable
delivery.

Orbix CORBA Programmer’s Guide C++ 153

Timeout Policies

Table 11:

Timeout Policies

SYNC_WITH_SERVER The client resumes processing after the
request finds a server object to process it—that is, the server ORB
sends a NO_EXCEPTION reply. If the request must be forwarded, the
client continues to block until location forwarding is complete.

SYNC_WITH_TARGET The client resumes processing after the
request processing is complete. This behavior is equivalent to a
synchronous (two-way) operation. With this policy in effect, a
client has absolute assurance that a its request has found a target
and been acted on. The object transaction service (OTS) requires
this policy for any operation that participates in a transaction.

Note: This policy only applies to GIOP 1.2 (and higher)
requests.

A responsive client must be able to specify timeouts in order to
abort invocations. Orbix supports several standard OMG timeout
policies, as specified in the Messaging module; it also provides
proprietary policies in the IT corBa module that offer more
fine-grained control. Table 11 shows which policies are supported
in each category:

OMG RelativeRoundtripTimeoutPolicy

Timeout ReplyEndTimePolicy

Policies RelativeRequestTimeoutPolicy
RequestEndTimePolicy

Proprietary BindingEstablishmentPolicy

Timeout RelativeBindingExclusiveRoundtripTimeou
Policies tPolicy
RelativeBindingExclusiveRequestTimeoutP
olicy

RelativeConnectionCreationTimeoutPolicy

InvocationRetryPolicy

154 Orbix CORBA Programmer’s Guide C++

If a request’s timeout expires before the request can complete,
the client receives the system exception CORBA: : TIMEOUT.

Note: When using these policies, be careful that their
settings are consistent with each other. For example, the
RelativeRoundtripTimeoutPolicy Specifies the maximum
amount of time allowed for round-trip execution of a
request.

Orbix also provides its own policies, which let you control
specific segments of request execution—for example,
BindingEstablishmentPolicy lets you set the maximum time
to establish bindings.

It is possible to set the maximum binding time to be
greater than the maximum allowed for roundtrip request
execution. Although these settings are inconsistent, no
warning is issued; and Orbix silently adheres to the more
restrictive policy.

Setting absolute and relative times

Two policies, RequestEndTimePolicy and ReplyEndTimePolicy, set
absolute deadlines for request and reply delivery, respectively,
through the TimeBase: :UtcT type. Other policies set times that are
relative to a specified event—for example,
RelativeRoundtripTimeoutPolicy limits how much time is allowed to
deliver a request and its reply, starting from the request
invocation.

The Orbix libraries include helper class 1T utcT, which provides
ease-of-use operators and methods for working with the types
defined in the TimeBase module. For example, you can use

IT UtcT::current () and IT UtCT::operator+() to obtain an absolute
time that is relative to the current time.You can specify absolute
times in long epoch (15 Oct. 1582 to ~30000AD) Universal Time
Coordinated (UTC), or relative times in 100 nano-seconds units
using the OMG Time Service’s TimeBase: :UtcT type. You can also
convert times to short epoch (Jan. 1 1970 to —2038) UTC in
millisecond units. All times created have zero displacement from
GMT.

For more information, refer to the CORBA Programmer’s
Reference.

Policies

RelativeRoundtripTimeoutPolicy specifies how much time is
allowed to deliver a request and its reply. Set this policy’s value in
100-nanosecond units. No default is set for this policy; if it is not
set, a request has unlimited time to complete.

Note: The programmatic timeout unit (100-nanosecond

unit) differs from the configuration timeout unit
(millisecond unit).

Orbix CORBA Programmer’s Guide C++ 155

The timeout countdown begins with the request invocation, and
includes the following activities:

®* Marshalling in/inout parameters
* Any delay in transparently establishing a binding

If the request times out before the client receives the last
fragment of reply data, all received reply data is discarded. In
some cases, the client might attempt to cancel the request by
sending a GIOP CancelRequest message.

For example, the following code sets a
RelativeRoundtripTimeoutPolicy override on the ORB
PolicyManager, setting a four-second limit on the time allowed to
deliver a request and receive the reply:

TimeBase: :TimeT relative expiry = 4L * 10000000L; // 4
seconds

try{
CORBA: :Any relative roundtrip timeout value;

relative roundtrip timeout value <<= relative expiry;
CORBA: :PolicylList policies (1) ;
policies.length (1) ;
policies[0] = orb->create policy(
Messaging: :RELATIVE RT TIMEOUT POLICY TYPE,
relative roundtrip timeout value
)i
policy manager->set policy overrides (
policies,
CORBA: : ADD OVERRIDE
Wi
}

catch (CORBA::PolicyErrors& pe) {
return 1;
!

catch (CORBA::InvalidPolicies& ip) {
return 1;

catch (CORBA::SystemExceptions se)
return 1;
!

ReplyEndTimePolicy sets an absolute deadline for receipt of a
reply. This policy is otherwise identical to
RelativeRoundtripTimeoutPolicy. Set this policy’s value with a
TimeBase: :UtcT type (see “Setting absolute and relative times” on
page 155).

No default is set for this policy; if it is not set, a request has
unlimited time to complete.

RelativeRequestTimeoutPolicy specifies how much time is
allowed to deliver a request. Request delivery is considered
complete when the last fragment of the GIOP request is sent over
the wire to the target object. The timeout-specified period

156 Orbix CORBA Programmer’s Guide C++

includes any delay in establishing a binding. This policy type is
useful to a client that only needs to limit request delivery time. Set
this policy’s value in 100-nanosecond units.

Note: The programmatic timeout unit (100-nanosecond
unit) differs from the configuration timeout unit
(millisecond unit).

No default is set for this policy; if it is not set, request delivery has
unlimited time to complete.

For example, the following code sets a
RelativeRequestTimeoutPolicy override on the ORB PolicyManager,
setting a three-second limit on the time allowed to deliver a
request:

TimeBase: :TimeT relative expiry = 3L * 10000000L; // 3
seconds

try(
CORBA: :Any relative request timeout value;

relative request timeout value <<= relative expiry;
CORBA: :PolicyList policies (1) ;
policies.length (1) ;
policies[0] = orb->create policy(
Messaging: :RELATIVE REQ TIMEOUT POLICY TYPE,
relative request timeout value
) g
policy manager->set policy overrides (
policies,
CORBA: : ADD OVERRIDE
)i
}

catch (CORBA::PolicyError& pe) {
return 1;
}

catch (CORBA::InvalidPolicies& ip) {
return 1;

catch (CORBA: :SystemException& se) {
return 1;
}

RequestEndTimePolicy sets an absolute deadline for request
delivery. This policy is otherwise identical to
RelativeRequestTimeoutPolicy. Set this policy’s value with a
TimeBase: :UtcT type (see “Setting absolute and relative times” on
page 155).

No default is set for this policy; if it is not set, request delivery has
unlimited time to complete.

BindingEstablishmentPolicy limits the amount of effort Orbix
puts into establishing a binding. The policy equally affects
transparent binding (which results from invoking on an unbound
object reference), and explicit binding (which results from calling
Object:: validate connection().

Orbix CORBA Programmer’s Guide C++ 157

A client’s BindingEstablishmentPolicy is determined by the
members of its BindingEstablishmentPolicyValue, which is defined
as follows:

struct BindingEstablishmentPolicyValue

{

158 Orbix CORBA Programmer’s Guide C++

TimeBase: :TimeT relative expiry;
unsigned short max binding iterations;
unsigned short max forwards;

TimeBase: :TimeT initial iteration delay;
float backoff ratio;

relative expiry limits the amount of time allowed to establish
a binding. Set this member in 100-nanosecond units. The
default value is infinity.

Note: The programmatic timeout unit
(100-nanosecond unit) differs from the configuration
timeout unit (millisecond unit).

max_binding iterations limits the number of times the client
tries to establish a binding. Set to -1 to specify unlimited
retries. The default value is 5.

Note: If location forwarding requires that a new
binding be established for a forwarded IOR, only one
iteration is allowed to bind the new IOR. If the first
binding attempt fails, the client reverts to the previous
IOR. This allows a load balancing forwarding agent to
redirect the client to another, more responsive server.

max_forwards limits the number of forward tries that are
allowed during binding establishment. Set to -1 to specify
unlimited forward tries. The default value is 20.

initial iteration delay sets the amount of time, in
100-nanosecond units, between the first and second tries to
establish a binding. The default value is 0.1 seconds.

Note: The programmatic timeout unit
(100-nanosecond unit) differs from the configuration
timeout unit (millisecond unit).

backoff ratio lets you specify the degree to which delays
between binding retries increase from one retry to the next.
The successive delays between retries form a geometric
progression:

0,
initial iteration delay x backoff ratio?,
initial iteration delay x backoff ratio!,
initial iteration delay x backoff ratio?,
initial iteration delay x

backoff ratio(max_binding_iterations - 2)

The default value is 2.

For example, the following code sets an
BindingEstablishmentPolicy override on an object reference:

try{
CORBA: :Any bind est value;

IT CORBA::BindingEstablishmentPolicyValue val;

val.rel expiry = (TimeBase: :TimeT)30 * 10000000; //
30s

val.max rebinds = (CORBA: :UShort)5; // 5 binding
tries

val.max forwards = (CORBA::UShort)20; // 20
forwards

val.initial iteration delay
= (TimeBase: :TimeT)1000000; // 0.1s
delay
val.backoff ratio = (CORBA::Float)2.0; //
back-off ratio

bind est value <<= val;

CORBA: :PolicyList policies (1) ;
policies.length (1) ;
policies[0] = orb->create policy(
IT CORBA::BINDING ESTABLISHMENT POLICY ID,
bind est value
)i

CORBA: :Object var obj = slave-> set policy overrides (
policies,
CORBA: : ADD OVERRIDE

)i

lots of retries slave =
ClientPolicy: :Slave:: narrow (obj) ;

}

catch (CORBA::PolicyErrors& pe) {
return 1;
!

catch (CORBA::InvalidPolicies& ip) {

return 1;

!

catch (CORBA::SystemExceptions se)
return 1;

}

RelativeBindingExclusiveRoundtripTimeoutPolicy limits the

amount of time allowed to deliver a request and receive its reply,
exclusive of binding attempts. The countdown begins immediately
after a binding is obtained for the invocation. This policy’s value is

set in 100-nanosecond units.

Note: The programmatic timeout unit (100-nanosecond
unit) differs from the configuration timeout unit
(millisecond unit).

Orbix CORBA Programmer’s Guide C++ 159

RelativeBindingExclusiveRequestTimeoutPolicy limits the
amount of time allowed to deliver a request, exclusive of binding
attempts. Request delivery is considered complete when the last
fragment of the GIOP request is sent over the wire to the target
object. This policy’s value is set in 100-nanosecond units.

Note: The programmatic timeout unit (100-nanosecond
unit) differs from the configuration timeout unit
(millisecond unit).

RelativeConnectionCreationTimeoutPolicy specifies how
much time is allowed to resolve each address in an I0OR, within
each binding iteration. Defaults to 8 seconds.

An IOR can have several TaG INTERNET IOP (IIOP transport)
profiles, each with one or more addresses, while each address can
resolve via DNS to multiple IP addresses. Furthermore, each IOR
can specify multiple transports, each with its own set of profiles.

This policy applies to each IP address within an 1OR. Each attempt
to resolve an IP address is regarded as a separate attempt to
create a connection. The policy’s value is set in 100-nanosecond
units.

Note: The programmatic timeout unit (100-nanosecond
unit) differs from the configuration timeout unit
(millisecond unit).

InvocationRetryPolicy applies to invocations that receive the
following exceptions:

* A TRANSIENT exception with a completion status of COMPLETED NO
triggers a transparent reinvocation.

* A coMM FAILURE exception with a completion status of
COMPLETED NO triggers a transparent rebind attempt.

A client’s InvocationRetryPolicy is determined by the members of
its InvocationRetryPolicyValue, which is defined as follows:

struct InvocationRetryPolicyValue

{

unsigned short max retries;
unsigned short max rebinds;
unsigned short max forwards;
TimeBase: :TimeT initial retry delay;
float backoff ratio;

Vi

Note: If an application uses the
InvocationRetryPolicyValue Structure type, all members
must be assigned an appropriate value. The defaults are
only applied, if you choose to use this policy without
setting the InvocationRetryPolicyValue Structure.

* max_retries limits the number of transparent reinvocation

that are attempted on receipt of a TRANSIENT exception. The
default value is 5.

160 Orbix CORBA Programmer’s Guide C++

* max_rebinds limits the number of transparent rebinds that
are attempted on receipt of a cOMM FAILURE exception. The
default value is 5.

Note: This setting is valid only if the effective
RebindPolicy is TRANSPARENT; otherwise, no rebinding
occurs.

* max_forwards limits the number of forward tries that are
allowed for a given invocation. Set to -1 to specify unlimited
forward tries. The default value is 20.

* initial_retry_delay sets the amount of time, in
100-nanosecond units, between the first and second retries.
The default value is 0.1 seconds.

Note: The delay between the initial invocation and
first retry is always O.

This setting only affects the delay between transparent
invocation retries; it has no affect on rebind or forwarding
attempts.

* backoff_ratio lets you specify the degree to which delays
between invocation retries increase from one retry to the
next. The successive delays between retries form a geometric
progression:

OI

initial iteration delay x backoff ratio?,
initial iteration delay x backoff ratio!,
initial iteration delay x backoff ratio?,

.

initial iteration delay x backoff ratio(Max retries - 2)

The default value is 2.

For example, the following code sets an InvocationRetryPolicy
override on an object reference:

try{
CORBA: :Any lots of retries value;

IT CORBA::InvocationRetryPolicyValue val;

val.max retries = (CORBA::UShort)10000; // 10000
retries

val.max_rebinds = (CORBA: :UShort)5; // 5
rebinds

val.max forwards = (CORBA::UShort)20; // 20
forwards

val.initial retry delay
= (TimeBase: :TimeT)1000000; // 0.1ls
delay
val.backoff ratio = (CORBA::Float)2.0; //
back-off ratio

lots of retries value <<= val;

Orbix CORBA Programmer’s Guide C++ 161

CORBA: :PolicyList policies (1) ;
policies.length (1) ;
policies[0] = orb->create policy(
IT CORBA::INVOCATION RETRY POLICY ID,
lots of retries value

) 5

CORBA: :Object var obj = slave-> set policy overrides (
policies,
CORBA: : ADD OVERRIDE

¥

lots of retries slave =
ClientPolicy: :Slave:: narrow (obj) ;

}

catch (CORBA::PolicyError& pe) {
return 1;
}

catch (CORBA::InvalidPolicies& ip) {
return 1;

catch (CORBA::SystemException& se) {
return 1;
}

Implementing Callback Objects

Many CORBA applications implement callback objects on a client
so that a server can notify the client of some event. You
implement a callback object on a client exactly as you do on a
server, by activating it in a client-side POA (see “Activating CORBA
Objects” on page 168). This POA’s LifeSpanPolicy should be set to
TRANSIENT. Thus, all object references that the POA exports are
valid only as long as the POA is running. This ensures that a late
server callback is not misdirected to another client after the
original client shuts down.

It is often appropriate to use a client’s root POA for callback
objects, inasmuch as it always exports transient object references.
If you do so, make sure that your callback code is thread-safe;
otherwise, you must create a POA with policies of

SINGLE THREAD MODEL and TRANSIENT.

162 Orbix CORBA Programmer’s Guide C++

Developing a Server

This chapter explains how to develop a server that implements servants
for CORBA objects.

Server tasks

A CORBA server performs these tasks:

* Uses a POA to map CORBA objects to servants, and to process
client requests on those objects.

* Implements CORBA objects as POA servants.

* Creates and exports object references for these servants.
* Manages memory for POA servants and object references.
* Initializes and shuts down the runtime ORB.

* Passes parameters to server-side operations.

For an overview of server code requirements, see “Enhancing
Server Functionality” on page 52. Although throwing exceptions is
an important aspect of server programming, it is covered
separately in “Exceptions”.

For information on ORB initialization and shutdown, see “ORB
Initialization and Shutdown” on page 109.

POASs, Skeletons, and Servants

CORBA objects exist in server applications. Objects are
implemented, or incarnated, by language-specific servants. Objects
and their servants are connected by the portable object adapter
(POA). The POA provides the server-side runtime support that
connects server application code to the networking layer of the
ORB.

POA tasks

A POA has these responsibilities:
* Create and destroy object references.

* Convert client requests into appropriate calls to application
code.

* Synchronize access to objects.
* Cleanly start up and shut down applications.
For detailed information about the POA, see Chapter 1.

POA skeleton class

For each IDL interface, the IDL compiler generates a poa_skeleton
class that you compile into the server application. Skeleton classes
are abstract base classes. You implement skeleton classes in the
server application code with servant classes, which define the

Orbix CORBA Programmer’s Guide C++ 163

behavior of the pure virtual methods that they inherit. Through a
servant’s inherited connection to a skeleton class, ORB runtime
connects that servant back to the CORBA object that it incarnates.

TIE class

The IDL compiler can also generate a TIE class, which lets you
implement CORBA objects with classes that are unrelated (by
inheritance) to skeleton classes. For more information, see
“Delegating Servant Implementations” on page 179.

Note: The poa prefix only applies to the outermost
naming scope of an IDL construct. So, if an interface is
nested in a module, only the outermost module gets the
poa prefix; constructs nested inside the module do not
have the prefix.

Server request handling

Figure 19 shows how a CORBA server handles an incoming client
request, and the stages by which it dispatches that request to the
appropriate servant. The server’'s ORB runtime directs an
incoming request to the POA where the object was created.
Depending on the POA’s state, the request is either processed or
blocked. A POA manager can block requests by rejecting them
outright and raising an exception in the client, or by queueing
them for later processing.

/ Server N\
Request Servants

N

ORB POR

POA
manager

4o

_

Figure 19: The server-side ORB conveys client requests to the POA via its manager,
and the POA dispatches the request to the appropriate servant.

Mapping Interfaces to Skeleton Classes

When the ORB receives a request on a CORBA object, the POA
maps that request to an instance of the corresponding servant
class and invokes the appropriate method. All operations are
represented as virtual member methods, so dynamic binding
ensures that the proper method in your derived servant class is
invoked.

164 Orbix CORBA Programmer’s Guide C++

For example, interface Account is defined as follows:

module BankDemo
{
typedef float CashAmount; // type represents cash
typedef string AccountlId; // Type represents account
IDs
/...

interface Account

{

exception InsufficientFunds {};

readonly attribute AccountId account id;
readonly attribute CashAmount balance;

void
withdraw(in CashAmount amount)
raises (InsufficientFunds) ;

void
deposit (in CashAmount amount) ;

bi

The IDL compiler maps the Account interface to skeleton class
POA BankDemo: : Account. For purposes of simplification, only
methods that map directly to IDL operations and attribute are
shown:

namespace POA BankDemo
class Account
virtual public PortableServer: :ServantBase

virtual ::BankDemo: :AccountId
account id()
IT THROW DECL ((CORBA: :SystemException)) = 0;

virtual ::BankDemo: :CashAmount
balance () IT THROW DECL ((CORBA: :SystemException))
= 0;

virtual void
withdraw (
: :BankDemo: : CashAmount amount
) IT THROW DECL ((CORBA: :SystemException,
BankDemo: :Account: : InsufficientFunds)) = 0;

virtual void
deposit (
: :BankDemo: : CashAmount amount
) IT THROW DECL ((CORBA: :SystemException)) = 0;

I 5

The following points are worth noting about the skeleton class:

® POA BankDemo: :Account inherits from
PortableServer: :ServantBase. All skeleton classes inherit from
the servantBase class for two reasons:

Orbix CORBA Programmer’s Guide C++ 165

s+ ServantBase provides functionality that is common to all
servants.

+ Servants can be passed generically—you can pass a
servant for any type of object as a pointer or reference to
ServantBase.

The names of the skeleton class and the corresponding
client-side proxy class are different. In this case, the fully
scoped name of the skeleton class is POA BankDemo: : Account,
while the proxy class name is BankDemo: : Account.

This differentiation is important if client and server are linked
into the same program, because it avoids name clashes for
multiply defined symbols. It also preserves location
transparency because it guarantees that collocated calls are
always dispatched by an intervening proxy object, and are
never dispatched as a direct virtual method call from client to
servant. So, if the server decides to delete an object and a
collocated client attempts to make a call on the deleted
object, the proxy raises an OBJECT NOT EXIST exception instead
of attempting to access deallocated memory and causing the
program to crash.

The skeleton class defines methods that correspond to the
interface operations and attributes.

Methods are all defined as pure virtual, so you cannot
instantiate a skeleton class. Instead, you must derive from
the skeleton a concrete servant class that implements the
pure virtual methods that it inherits.

Each method has an exception specification. Orbix generates
exception specifications only for skeleton classes. In this
example, the methods throw system exceptions and, in the
case of withdraw(), the user exception InsufficientFunds.

The throw clause prevents methods from throwing illegal
exceptions. For example, if deposit () throws an exception
other than CORBA: : SystemException, the C++ run time calls the
unexpected method (which, by default, aborts the process).

Apart from the exception specification, the signature of each
skeleton class method is the same as the corresponding proxy
class method.

Identical signatures preserve location transparency. If the
server and client are collocated, the proxy can delegate calls
directly to the skeleton without translating or copying data. It
also simplifies client and server application development in
that one set of parameter passing rules apply to both.

Creating a Servant Class

Each servant class inherits from a skeleton class. The following
code defines servant class AccountImpl, which derives from

skel

166 Orbix CORBA Programmer’s Guide C++

eton class POA BankDemo: :Account. Unlike the skeleton class

methods, the AccountImpl methods that map to IDL operations and
attributes are not pure virtual, so a server can instantiate
AccountImpl as a servant.

#include "BankDemoS.hh" // Generated server-side header

class AccountImpl : public POA BankDemo: :Account {

public:

// Inherited IDL operations

virtual BankDemo: :AccountId
account id() IT THROW DECL ((CORBA: :SystemException)) ;

virtual BankDemo: :CashAmount
balance () IT THROW DECL ((CORBA: :SystemException)) ;

virtual void
withdraw (
BankDemo: : CashAmount amount
) IT THROW DECL ((CORBA: :SystemException,
BankDemo: :Account : : InsufficientFunds)) ;

virtual void
deposit (
BankDemo: : CashAmount amount
) IT THROW DECL ((CORBA: :SystemException)) ;

// other members here

private:

// Prevent copying and assigment of servants
AccountImpl (const AccountImpl &) ;
void operator=(const AccountImpl &) ;

Servant class requirements

The following requirements and recommendations apply to
servant class definitions:

The code must include the generated server header file—in
this case, BankDemoS.hh.

AccountImpl inherits from POA BankDemo: :Account through
virtual inheritance. If, as in this case, the servant class
inherits from only one source, it is unimporant to specify
virtual inheritance. However, a servant class that inherits
from multiple skeleton classes should always use virtual
inheritance to prevent errors.

The choice of name for servant classes is purely a matter of
convention. The examples here and elsewhere apply the Impl
suffix to the original interface name, as in AccountImpl. It is
always good practice to have a naming convention and use it
consistently in your code.

The copy constructor and assignment operator for the servant
class are private to prevent copying and assignment of
servant instances.

Orbix CORBA Programmer’s Guide C++ 167

Servants should not be copied or assigned; only one servant
should incarnate any given CORBA object; otherwise, it is
unclear which servant should handle requests for that object.
It is always good practice to hide a servant’s copy constructor
and assignment operator.
The preceding AccountImpl class is a complete and functional
servant class. It only remains to implement the pure virtual
methods that are inherited from the skeleton. You can also can
add other member variables and methods, public and private, that
can help implement a servant. For example, it is typical to add a
constructor and destructor, and private member variables to hold
the state of the object while the servant is in memory.

Implementing Operations

Most work in developing a servant consists of implementing each
inherited pure virtual method. Because the application code
controls the body of each operation, it largely determines the
application’s overall behavior. The following code outlines an
implementation of the withdraw() method:

void
AccountImpl : :withdraw (
BankDemo: : CashAmount amount
) IT THROW DECL ((
CORBA: : SystemException,
BankDemo: :Account : : InsufficientFunds
))
{

// ... database connection (via PSS) code omitted here

// get a PSS reference to corresponding database
object
IT PSS RefVar<BankDemoStore AccountBaseRef> ref =
my state (accounts home obj.in());

BankDemo: : CashAmount new balance = ref->balance() -
amount ;

if (new balance < 0.0F)

{
cout << " throwing InsufficientFunds" << endl;
throw BankDemo: :Account: : InsufficientFunds () ;

}

ref->balance (new balance) ;

/] ...

cout << " withdrew $" << amount << endl;

)
Activating CORBA Objects

In order to enable clients to invoke on CORBA operations, a server
must create and export object references. These object references
must point back to a CORBA object that is active through its
incarnation by a C++ or Java servant.

168 Orbix CORBA Programmer’s Guide C++

Activation of a CORBA object is a two-step process:

1. Instantiate the CORBA object’s servant. Instantiating a
servant does not by itself activate the CORBA object. The ORB
runtime remains unaware of the existence of the servant and
the corresponding CORBA object.

2. Register the servant and the object’s ID in a POA.

thisQ)

The simplest way to activate a CORBA object is by calling this()
on the servant. The IDL compiler generates a _this() method for
each servant skeleton class. this() performs two separate tasks:

®* Checks the POA to determine whether the servant is
registered with an existing object. If not, this() creates an
object from the servant’s interface, registers a unique ID for
this object in the POA’s active object map, and maps this
object ID to the servant’s address.

* Generates and returns an object reference that includes the
object’s ID and POA identifier.

In other words, the object is implicitly activated in order to return
an object reference.

servant_to_reference()

You can also implicitly activate an object by calling
servant to _reference () on the desired POA. This requires you to
narrow to the appropriate object; however, there can be no
ambiguity concerning the POA in which the object is active, as can
happen through using this() (see page 197).

Explicit activation methods

Alternatively, you can explicitly activate a CORBA object: call
activate object() Or activate object with id() on the POA. You
can then obtain an object reference by calling this() on the
servant. Because the servant is already registered in the POA with
an object ID, the method simply returns an object reference.

The ability to activate an object implicitly or explicitly depends on
a POA’s activation policy. For more information on this topic, see
“Using POA Policies” on page 190.

Note: The object reference returned by this() is independent of
the servant itself; you must eventually call release () on the object
or hold it in a _var reference in order to avoid resource leaks.
Releasing the object reference has no effect on the corresponding
servant.

Orbix CORBA Programmer’s Guide C++ 169

Handling Output Parameters

Server-side rules

Server-side rules for passing output (in/inout) parameters and
return values to the client complement client-side rules. For
example, if the client is expected to deallocate a variable-length
return value, the server must allocate that value.

In general, these rules apply:

* If the type to pass is variable-length, the server dynamically
allocates the value and the client deallocates it.

* String, reference, and variable-length array types are
dynamically allocated and deallocated by the client. Strings
and references can be reallocated by the server.

Other types are passed by value or reference.

The following sections show the server-side rules for passing
output parameters and return values of various IDL types.

Simple Parameters

Simple IDL types such as short or long are passed by value. For
example, the following IDL defines operation Example: :op (), which
passes three long parameters:

interface Example {
long
op(in long in p, inout long inout p, out long out p) ;

b
The corresponding servant class contains this signature for op():

virtual CORBA: :Long

op (
CORBA: : Long in p,
CORBA: :Long & inout p,
CORBA: :Long out out p

) throw (CORBA: : SystemException) ;

170 Orbix CORBA Programmer’s Guide C++

Implementation example

This example has the same mapping as the client, where
CORBA: :Long_out type is simply an alias for CORBA: :Long &. You
might implement this operation as follows:

CORBA: :Long

ExampleImpl: :op (
CORBA: :Long in p, CORBA::Long & inout p,
CORBA: :Long out out p

) throw (CORBA: : SystemException)

{

inout p = 2 * inout p; // Change inout p.
out p = in p * in p; // Set out p
return in p / 2; // Return in p

}

The method simply sets output parameters and return values; the
changes are automatically propagated back to the client.

Fixed-Length Complex Parameters

Fixed-length complex parameters are passed by value or by
reference. For example, the following IDL defines a fixed-length
structure that operation Example: :op() uses in its return value and
parameters:

struct FLS { // Fixed-Length Structure
long long val;
double double val;

Ji s

interface Example {
FLS op(in FLS in p, inout FLS inout p, out FLS out p);

The corresponding servant class contains this signature for op():

typedef FLS & FLS out;

1 oo

virtual FLS

op(const FLS & in p, FLS & inout p, FLS out out p)
throw (CORBA: : SystemException) ;

Orbix CORBA Programmer’s Guide C++ 171

Implementation example

The following code implements the servant operation. No memory
management issues arise; the method simply assigns the values
of output parameters and the return value:

FLS
ExampleImpl::op(const FLS & in p, FLS & inout p, FLS out
out p)
throw (CORBA: : SystemException)
{
cout << in p.long val << endl; // Use in p
cout << in p.double val << endl; // Use in p

cout << inout p.double val << endl; // Use inout p

// Change inout p
inout p.double val = inout p.long val *
in p.double val;

out_p.long val = 99; // Initialize out p
out p.double val = 3.14;

FLS ret val = { 42, 42.0 }; // Initialize return value
return ret_val;

Fixed-Length Array Parameters

Fixed-length arrays are passed as pointers to array slices. The
return value is dynamically allocated. For example, the following
IDL defines a fixed-length array that operation Example::op() uses
in its return value and parameters:

typedef long Larr[3];

interface Example {
Larr op(in Larr in p, inout Larr inout p, out Larr
out p);

The corresponding servant class contains this signature for op() :

typedef CORBA::Long Larr[3];

typedef CORBA::Long Larr slice;

typedef Larr slice * Larr out;

/] ...

virtual Larr slice *

op(const Larr in p, Larr slice * inout p, Larr out out p)
throw (CORBA: : SystemException) ;

172 Orbix CORBA Programmer’s Guide C++

Implementation example

In the following implementation, the generated Larr alloc()
method dynamically allocates the return value:

Larr slice *

ExampleImpl: :

op(const Larr in p, Larr slice * inout p, Larr out out p)
throw (CORBA: : SystemException)

{

int len = sizeof (in p) / sizeof (*in p) ;
// Use incoming values of in p and inout p...

// Modify inout p
inout p[l] = 12345;

// Initialize out p
for (int 1 = 0; 1 < len; i++)
out p[i] =1 * i;

// Return value must be dynamically allocated
Larr slice * ret val = new Larr alloc();
for (int 1 = 0; i1 < len; i++)

ret val[i] =1 * 1 * i;

return ret val;

String Parameters

String-type output parameters and return values must be
dynamically allocated. For example, the following IDL defines a
fixed-length array that operation Example::op() uses in its return
value and parameters:

interface Example {

string op (
in string in p,
inout string inout p,
out string out p

) 5
Vi

The corresponding servant class contains this signature for op():

virtual const char *

op (
const char * in p,
char * & inout p,
CORBA: :String out out p

) throw (CORBA: : SystemException) ;

Memory requirements

The server is constrained by the same memory requirements as
the client:

Orbix CORBA Programmer’s Guide C++ 173

* Strings are initialized as usual.

* inout strings are dynamically allocated and initialized by the
client. The servant can change an inout string by modifying
the bytes of the inout string in place, or shorten the inout
string in place by writing a terminating NUL byte into the
string. To return an inout string that is longer than the initial
value, the servant must deallocate the original copy and
allocate a longer string.

®* out strings must be dynamically allocated.
* Return value strings must be dynamically allocated.

Implementation example
The following code implements the servant operation:

const char *

ExampleImpl: :

op (
const char * in p,
char * & inout p,

CORBA: :String out out p
) throw (CORBA: : SystemException)

{

cout << in p << endl; // Show in p
cout << inout p << endl; // Show inout p

// Modify inout p in place:

//
char * p = inout p;
while (*p != '\0'")

toupper (*p++) ;

// OR make a string shorter by writing a terminating
NUL:

//

*inout p = '\0'; // Set to empty string.

// OR deallocate the initial string and allocate a new
one:

//

CORBA: :string free (inout p) ;
inout p = CORBA::string dup ("New string value") ;

// out strings must be dynamically allocated.

//
out p = CORBA::string dup ("I am an out parameter");

// Return value strings must be dynamically allocated.

//
char * ret val
= CORBA::string dup ("In Xanadu did Kubla
Khan..."));

return ret_val;

174 Orbix CORBA Programmer’s Guide C++

Variable-Length Complex Parameters

out parameters and return values of variable-length complex
types must be dynamically allocated; in and inout parameters are
passed by reference.

For example, the following IDL defines a variable-length structure
that operation Example::op() uses in its return value and
parameters:

struct VLS { // Variable-length structure
long long val;
string string val;

}i

interface Example {
VLS op(in VLS in p, inout VLS inout p, out VLS out p);

The corresponding servant class contains this signature for op():

class VLS out { /* ... */ };

/] ...

virtual VLS *

op(const VLS & in p, VLS & inout p, VLS out out p)
throw (CORBA: : SystemException) ;

Implementation example
The following code implements the servant operation:

VLS *

ExampleImpl: :

op(const VLS & in p, VLS & inout p, VLS out out p)
throw (CORBA: : SystemException)

{

cout << in p.string val << endl; // Use in p

cout << inout p.long val << endl; // Use inout p

inout p.long val = 99; // Modify inout p

out p = new VLS; // Allocate out
param

out p->long val = 1; // Initialize...

out p->string val = CORBA::string dup ("One") ;

VLS * ret val = new VLS; // Allocate return
value
ret val->long val = 2; // Initialize...

ret val->string val = CORBA::string dup ("Two") ;

return ret val;

Orbix CORBA Programmer’s Guide C++ 175

Variable-Length Array Parameters

Like fixed-length arrays, variable-length arrays are passed as
pointers to array slices. out parameters and the return value must

be dynamically allocated.

For example, the following IDL defines a variable-length array that
operation Example::op() uses in its return value and parameters:

typedef string Sarr([3];

interface Example {
Sarr op(in Sarr in p, inout Sarr inout p, out Sarr

out p);
}i

The corresponding servant class contains this signature for op():

typedef CORBA::String mgr Sarr[3];
typedef CORBA::String Mgr Sarr slice;
class Sarr out { /* ... */ };

//
virtual Sarr slice * op(
const Sarr in p, Sarr slice * inout p, Sarr out out p

) throw (CORBA: : SystemException) ;

Implementation example

The following code implements the servant operation. As with all
nested strings, string elements behave like a string var, SO
assignments make deep copies or, if a pointer is assigned, take
ownership:

typedef CORBA::String mgr Sarr[3];
typedef CORBA::String Mgr Sarr slice;
class Sarr out;

/] ...

Sarr slice *
ExampleImpl: :

op (
const Sarr in p, Sarr slice * inout p, Sarr out out p

) throw (CORBA: : SystemException)

{

cout << in p[l] << endl; // Use in p

cout << inout p[0] << endl; // Use inout p

inout p[1] = in p[0]; // Modify inout p
out p = Sarr alloc(); // Allocate out param
out p[0] = CORBA::string dup("In Xanadu did Kubla

Khan") ;
out p[l] = CORBA::string dup("A stately pleasure-dome
out p[2] = CORBA::string dup("decree: Where Alph...");

176 Orbix CORBA Programmer’s Guide C++

// Allocate return value and initialize...

//

Sarr slice * ret val = Sarr alloc() ;
ret val[0] = out p[0];

ret val[l] = inout p([1];

ret_val[2] = in p[2];

return ret val; // Poor Coleridge...

Object Reference Parameters

Object references are passed as ptr references. The following
memory management rules apply to object reference parameters:

* in parameters are initialized by the caller and must not be
released; the caller retains ownership of the in parameter.

* inout parameters are initialized by the caller. To change the
value of an inout parameter, you must call release() on the
original value and use _duplicate() to obtain the new value.

* out parameters and return values must be allocated by
_duplicate() or this(), which calls duplicate() implicitly.
For example, the following IDL defines interface Example; operation
Example: :op() specifies this interface for its return value and

parameters:

interface Example {
string greeting() ;

Example op (
in Example in p,
inout Example inout p,
out Example out p

) 8
Vi

The corresponding servant class contains this signature for op() :

class Example out { /* ... */ };

/] ...
virtual Example ptr op(
Example ptr in p, Example ptr & inout p, Example out

out p
) throw (CORBA: : SystemException) ;

Implementation example
The following implementation dynamically allocates the new value

of inout_p after releasing the previous value. The return value is
dynamically allocated because this() calls duplicate () implicitly.

Orbix CORBA Programmer’s Guide C++ 177

As shown in this example, you should always test for nil before
making a call on a passed in or inout reference. Otherwise, your
servant is liable to make a call on a nil reference and cause a core
dump.

Example ptr
ExampleImpl: :
op (
Example ptr in p, Example ptr & inout p, Example out

out p
) throw (CORBA: : SystemException)

{
// Use in p.
//
if (!CORBA::is nil(in p))
CORBA: :String var s = in p->greeting() ;
cout << 8 << endl;

}

// Use inout p.

//

if (!CORBA::is nil(inout p))
CORBA: :String var s = inout p->greeting() ;
cout << s << endl;

}

// Modify inout p to be the same as in p.

//

CORBA: :release (inout p) ; // First
deallocate,

inout p = Example:: duplicate(in p) ; // then
assign.

// Set return value.

//

return this(); // Return reference to self.

Note: This example is unrealistic in returning a reference
to self, because in order to invoke the operation, the caller
must hold a reference to this object already.

Counting Servant References

Multi-threaded servers need to reference-count their servants in
order to avoid destroying a servant on one thread that is still in
use on another. In general, you should enable reference counting
for servants that are activated in a POA with a policy of
ORB_CTRL_MODEL.

178 Orbix CORBA Programmer’s Guide C++

Enabling reference counting

The POA specification provides the standard methods add ref ()
and remove ref () to support reference counting, but by default
they do nothing. You can enable reference counting by inheriting
the standard class portableServer: :RefCountServantBase in servant
implementations. For example:

class BankDemo AccountImpl
: public virtual POA BankDemo: :Account,
public virtual PortableServer::RefCountServantBase

Implicit reference counting

With reference counting enabled, the POA calls add ref () when it
holds a pointer to a servant in any thread, and calls _remove ref ()
when it is finished with that servant. POA methods that return
servants to user code call _add ref () before they deliver the
servant, so the same code should call _remove ref () on the result
when it is finished.

Explicit reference counting

In your own code, you should call _add ref () for each additional
pointer to a servant, and _remove ref () when you are done with
that pointer (rather than delete it). Doing so ensures that the
servant is deleted when no pointers are held to that servant either
in your own code or in the POA.

Reference counting is ignored by tie-based servants. Tie
templates, as defined in the POA standard, do not support
reference counting, Therefore, it is not recommended that you use
the tie approach for multi-threaded servers.

Delegating Servant Implementations

Previous examples show how Orbix uses inheritance to associate
servant classes and their implementations with IDL interfaces. By
inheriting from IDL-derived skeleton classes, servants establish
their connection to the corresponding IDL interfaces, and thereby
make themselves available to client requests.

Alternatively, you can explicitly associate, or tie a servant and its
operations to the appropriate IDL interface through tie template
classes. The tie approach lets you implement CORBA objects with
classes that are unrelated (by inheritance) to skeleton classes.

In most cases, inheritance and tie approaches are functionally
equivalent; only programming style preferences determine
whether to favor one approach over the other. For more on the
comparative merits of each approach, see “Tie versus inheritance”
on page 181.

Orbix CORBA Programmer’s Guide C++ 179

Creating tie-based servants

Tie-based servants rely on two components:

* Atieobject implements the CORBA object; however, unlike the
inherited approach, the class that it instantiates does not
inherit from any of the IDL-generated base skeleton classes.

* Atieservant instantiates a tie template class, which the IDL
compiler generates when you run it with the -xTIE switch. The
POA regards a tie servant as the actual servant of an object.
Thus, all POA operations on a servant such as
activate object () take the tie servant as an argument. The tie
servant receives client invocations and forwards them to the
tie object.

To create a tie servant and associate it with a tie object:

1 Instantiate the tie object

2 Pass the tie object’s address to the tie object constructor with this
syntax:

tie-template-class<impl-class> tie-servant (tied-object) ;

Example

For example, given an IDL specification that includes interface
BankDemo: : Bank, the IDL compiler can generate tie template class
POA BankDemo: :Bank_ tie. This class supplies a number of operations
that enable its tie servant to control the tie object.

Given implementation class BankImpl, yOou can instantiate a tie
object and create tie servant bank srv_tie for it as follows:

// instantiate tie object and create its tie servant
POA BankDemo: :Bank tie<BankImpl> bank srv tie (new
BankImpl) ;

Given this tie servant, you can use it to create an object
reference:

//create an object reference for bank servant
bank var bankref = bank srv tie. this();

When the POA receives client invocations on the bankref object, it
relays them to tie servant bank srv_tie, which delegates them to
the bank tie object for processing.

Removing tie objects and servants

You remove a tie servant from memory like any other servant—for
example, with PortableServer: :POA: :deactivate object (). If the tie
servant’s tie object implements only a single object, the tie object
is also removed.

180 Orbix CORBA Programmer’s Guide C++

Tie versus inheritance

The tie approach can be useful where implementations must
inherit from an existing class framework, as often occurs with
OODB systems. In this case, you can create object
implementations only with the tie approach. Otherwise, the tie
approach has several drawbacks:

* Because the tie approach requires two C++ instances for each
CORBA object, it uses up more resources.

* Tie-based servants ignore reference counting; therefore, you
should not use the tie approach for multi-threaded servers.

* The tie approach adds an unnecessary layer of complexity to
application code.

In general, unless you have a compelling reason to use the tie
approach, you should favor the inheritance approach in your code.

Implementation Inheritance

IDL inheritance does not constrain your options for implementing
servant classes. In Figure 20, shaded classes represent the
skeleton abstract base classes generated by the IDL compiler;
non-shaded classes represent the servant classes that you provide

POA BankDemo: : Accou

N

AccountImpl POA BankDemo: : CheckingAcco
CheckingAccount Impl

Figure 20: A servant class can inherit base class implementations.

CheckingAccountImpl inherits from AccountImpl, SO
CheckingAccountImpl needs only to implement the two pure virtual
methods that it inherits from CheckingAccount: overdraftLimit ()
and orderCheckBook () . Functions in base interface Account such as
balance () are already implemented in and inherited from
AccountImpl.

Interface Inheritance

You can choose not to derive CheckingAccountImpl () from
AccountImpl (). If all methods in POA BankDemo: : CheckingAccount are
defined as pure virtual, then CheckingAccountImpl must implement

Orbix CORBA Programmer’s Guide C++ 181

the methods that it inherits from POA BankDemo: :Account, as well as
those inherited from POA BankDemo: : CheckingAccount, as shown in
Figure 21

POA BankDemo: : Accou

N

POA BankDemo: : CheckingAcc

el

CheckingAccountIm

AccountImpl

Figure 21: A servant class can implement operations of all base skeleton classes.

Interface inheritance facilitates encapsulation. With interface
inheritance, the derived class servant is independent of the base
class servant. This might be desirable if you plan to split a single
server into two servers: one that implements base objects and
another that implements derived objects.

This model also serves any application design that requires all
base classes to be abstract, while it retains interface inheritance.

Multiple Inheritance

Implementation and interface inheritance extend to multiple
inheritance. In Figure 22, solid arrows indicate inheritance that is
mandated by the C++ mapping. The dotted arrows indicate that
the servants allow either implementation or interface inheritance.

182 Orbix CORBA Programmer’s Guide C++

Given this hierarchy, it is also possible to leave

POA BankDemo: :Account Without an implementation, inasmuch as it
is an IDL abstract base class. In this case, CheckingAccountImpl and
SavingsAccountImpl must provide the required virtual method
implementations.

‘ POA BankDemo: : Accou |

?

‘ AccountImp |

<7

I N
e N
e N
7 A
7 AN

POA BankDemo: : CheckingAcc ‘

}

’ POA BankDemo: : SavingsAcco

I X

| SavingsAccountIm I

\x

N
AN

S ’ POA_BankDemo: : NOWAccou | 4

N 7
N e
N 7
~ s

’ NOWAccountIm |

Figure 22: Inheritance options among servant and base skeleton classes.

Explicit Event Handling

When you call orB: :run (), the ORB gets the thread of control to
dispatch events. This is acceptable for a server that only processes
CORBA requests. However, if your process must also support a
GUI or uses another networking stack, you also must be able to
monitor incoming events that are not CORBA client requests.

The ore interface methods work pending() and perform work () let
you poll the ORB’s event loop for incoming requests:

* work pending() returns true if the ORB’s event loop has at
least one request ready to process.

®* perform work() processes one or more requests before it
completes and returns the thread of control to the application
code. The amount of work processed by this call depends on
the threading policies and the number of queued requests;
however, perform work() guarantees to return periodically so
you can handle events from other sources.

Termination Handler

Orbix provides its own IT TerminationHandler class, which enables
server applications to handle delivery of ctrl-c and similar events
in a portable manner. On UNIX, the termination handler handles
the following signals:

SIGINT
SIGTERM
SIGQUIT

Orbix CORBA Programmer’s Guide C++ 183

On Windows, the termination handler is just a wrapper around
SetConsoleCtrlHandler, which handles delivery of the following
control events:

CTRL_C_EVENT
CTRL_BREAK EVENT
CTRL SHUTDOWN EVENT
CTRL LOGOFF_EVENT
CTRL_CLOSE_EVENT

You can create only one termination handler object in a program.

Example

In the following example, the main routine creates a termination
handler object on the stack. On POSIX platforms, it is critical to
create this object in the main thread before creation of any other
thread, especially before calling orBinit (). The

IT TerminationHandler destructor deregisters the callback, in order
to avoid calling it during static destruction.

static void
termination handler callback (
long signal
)
{
int
main(int argc, char** argv)
{
IT TerminationHandler
termination handler (termination handler callback) ;

cout << "Processing shutdown signal " << signal <<
endl;
if (!CORBA::is nil (orb))
{
cout >> "ORB shutdown ... " << flush;
orb->shutdown (IT FALSE) ;
cout << "done." << endl;

)
Compiling and Linking

Server compile and link requirements are almost the same as the
client, except that it also requires the server-side skeleton code,
which has the format idi-nameS.cxx—for example, BankDemosS. cxx.
You also must link with the poa library, which contains the
server-side run-time support for the POA.

Details for compiling and linking a server differ among platforms.
For more information about platform-specific compiler flags and
libraries, refer to the demo makefiles in your Orbix distribution.

184 Orbix CORBA Programmer’s Guide C++

Managing Server
Objects

A portable object adapter, or POA, maps CORBA objectsto
language-specific implementations, or servants, in a server process. All
interaction with server objects takes place via the POA.

A POA identifies objects through their object IDs, which are
encapsulated within the object requests that it receives. Orbix
views an object as active when its object ID is mapped to a servant;
the servant is viewed as incarnating that object. By abstracting an
object’s identity from its implementation, a POA enables a server
to be portable among different implementations.

Mapping Objects to Servants

Figure 23 shows how a POA manages the relationship between
CORBA objects and servants, within the context of a client
request. A client references an object or invokes a request on it
through an interoperable object reference (IOR). This IOR
encapsulates the information required to find the object, including
its server address, POA, and object ID—in this case, A. On
receiving the request, the POA uses the object’s ID to find its
servant. It then dispatches the requested operation to the servant
via the server skeleton code, which extracts the operation’s
parameters and passes the operation as a language-specific call to
the servant.

S sk

FOA
Object IDs encapalated § "'@
within I0Rs Srat
— \ +
Client recuest et 1D Snat
Y W
Server

Figure 23: A portable object adapter (POA) maps abstract objects to their concrete
implementations (servants)

Orbix CORBA Programmer’s Guide C++ 185

Creating a POA

Depending on a POA’s policies, a servant can be allowed to
incarnate only one object; or it can incarnate multiple objects.
During an object’s lifetime, it can be activated multiple times by
successive servant incarnations.

Mapping options

A POA can map between objects and servants in several ways:

* An active object map retains object-servant mappings throughout
the lifetime of its POA, or until an object is explicitly
deactivated. Before a POA is activated, it can anticipate
incoming requests by mapping known objects to servants, and
thus facilitate request processing.

* A servant manager maps objects to servants on demand, either on
the initial object request, or on every request. Servant
managers can enhance control over servant instantiation, and
help avoid or reduce the overhead incurred by a static
object-servant mapping.

* A single default servant can be used to handle all object requests.
A POA that uses a default servant incurs the same overhead
no matter how many objects it processes.

Depending on its policies, a POA can use just one object-mapping
method, or several methods in combination. For more
information, see “Enabling the Active Object Map” on page 191.

All server processes in a location domain use the same root POA,
which you obtain by calling resolve initial references ("POA").
The root POA has predefined policies which cannot be changed
(see page 190). Within each server process, the root POA can
spawn one or more child POAs. Each child POA provides a unique
namespace; and each can have its own set of policies, which
determine how the POA implements and manages object-servant
mapping. Further, each POA can have its own POA manager and
servant manager.

Using multiple POAs

A number of objectives can justify the use of multiple POAs within
the same server. These include:

* Partition the server into logical or functional groups of
servants. You can associate each group with a POA whose
policies conform with the group’s requirements. For example,
a server that manages Customer and Account servants can
provide a different POA for each set of servants.

You can also group servants according to common processing
requirements. For example, a POA can be configured to
generate object references that are valid only during the
lifespan of that POA, or across all instantiations of that POA
and its server. POAs thus offer built-in support for
differentiating between persistent and transient objects.

186 Orbix CORBA Programmer’s Guide C++

* Independently control request processing for sets of objects.
A POA manager’s state determines whether a POA is active or
inactive; it also determines whether an active POA accepts
incoming requests for processing, or defers them to a queue
(see “Processing Object Requests” on page 191). By
associating POAs with different managers, you can gain finer
control over object request flow.

* Choose the method of object-servant binding that best serves
a given POA. For example, a POA that processes many objects
can map all of them to the same default servant, incurring the
same overhead no matter how many objects it processes.

Procedure for creating a POA

Creating a POA consists of these steps:

1. Set the POA policies.
Before you create a POA, establish its desired behavior
through a CORBA PolicylList, which you attach to the new POA
on its creation. Any policies that are explicitly set override a
new POA'’s default policies (refer to Table 12 on page 188).

2. Create the POA by calling create POA() on an existing POA.

3. If the POA has a policy of USE_SERVANT MANAGER, register its
servant manager by calling set servant manager () on the POA.

4. Enable the POA to receive client requests by calling activate ()
on its POA manager.

Setting POA Policies

A new POA'’s policies are set when it is created. You can explicitly
set a POA’s policies through a CORBA PolicyList object, which is a
sequence of Policy objects.

Creating Policy objects

The portableServer: : POA interface provides factories to create
CORBA Policy object types (see Table 12 on page 188). If a Policy
object type is proprietary to Orbix, you must create the Policy
object by calling create policy() on the ORB (see “Setting
proprietary policies for a POA” on page 189). In all cases, you
attach the PolicyList object to the new POA. All policies that are
not explicitly set in the PolicyList are set to their defaults.

For example, the following code creates policy objects of
PERSISTENT and USER ID:

CORBA: :PolicyList policies;
policies.length (2);

policies[0] = poa->create lifespan policy
(PortableServer: : PERSISTENT)
policies[1] = poa->create id assignment policy

(PortableServer: :USER ID)

Orbix CORBA Programmer’s Guide C++ 187

With the PERSISTENT policy, a POA can create object references
that remain valid across successive instantiations of this POA and
its server process. The USER_ID policy requires the application to
autoassign all object IDs for a POA.

Attaching policies to a POA

After you create a PolicyList object, you attach it to a new POA by
supplying it as an argument to create POA(). The following code
creates POA persistentPOA as a child of the root POA, and attaches
to it the PolicyList object just shown:

//get an object reference to the root POA

CORBA: :Object _var obj =
orb->resolve initial references("RootPOA") ;

PortableServer: :POA var poa = POA:: narrow(obj);

//create policy object
CORBA: :PolicyList policies;
policies.length (2);

// set policy object with desired policies

policies[0] = poa->create lifespan policy
(PortableServer: : PERSISTENT)
policies[1] = poa->create id assignment policy

(PortableServer: :USER ID)

//create a POA for persistent objects
poa = poa->create POA("persistentPOA", NULL, policies);

In general, POA policies let you differentiate among various POAs
within the same server process, where each POA is defined in a
way that best accommodates the needs of the objects that it
processes. For example, a server process that contains the POA
persistentPOA might also contain a POA that supports only
transient object references, and only handles requests for callback
objects.

Note: Orbix automatically removes policy objects when
they are no longer referenced by any POA.

POA Policy factories

The portableServer: : POA interface contains factory methods for
creating CORBA Policy objects:

Table12: POA policy factories and argument options

POA policy factories

Policy options

create id assignment policy ()

SYSTEM ID (default)
USER_ID

create id uniqueness policy ()

UNIQUE ID (default)
MULTIPLE ID

188 Orbix CORBA Programmer’s Guide C++

Table12: POA policy factories and argument options

POA policy factories Policy options
create implicit activation policy() NO IMPLICIT ACTIVATION (default)
IMPLICIT ACTIVATION
create lifespan policy () TRANSIENT (default)
PERSISTENT
create request processing policy () USE_ACTIVE OBJECT MAP ONLY (default)

USE_DEFAULT SERVANT
USE_SERVANT MANAGER

create servant retention policy() RETAIN (default)
NON_RETAIN
create thread policy() ORB_CTRL MODEL (default)

SINGLE THREAD MODEL

For specific information about these methods, refer to their
descriptions in the CORBA Programmer’s Reference.

Setting proprietary policies for a POA

Orbix provides several proprietary policies to control POA
behavior. To set these policies, call create policy() on the ORB to
create Policy objects with the desired policy value, and add these
objects to the POA’s PolicyList.

For example, Orbix provides policies that determine how a POA
handles incoming requests for any object as it undergoes
deactivation. You can specify a DISCARD policy for a POA so it
discards all incoming requests for deactivating objects:

CORBA: :PolicyList policies;
policies.length (1) ;
CORBA: :Any obj deactivation policy value;
obj deactivation policy value <<=

IT PortableServer::DISCARD;

policies[0] = orb->create policy(
(IT PortableServer::0OBJECT DEACTIVATION POLICY ID,
obj deactivation policy wvalue) ;

Orbix-proprietary policies

You can attach the following Orbix-proprietary Policy objects to a
POA’s PolicyList:

ObjectDeactivationPolicy controls how the POA handles
requests that are directed at deactivating objects. This policy is
valid only for a POA that uses a servant activator to control object
activation. For more information, see “Setting deactivation
policies” on page 215.

Orbix CORBA Programmer’s Guide C++ 189

PersistenceModePolicy can specify a policy of

DIRECT PERSISTENCE, SO that the POA uses a well-known address in
the IORs that it generates for persistent objects. This policy is
valid only for a POA that has a PERSISTENT lifespan policy. For more
information, see “Direct persistence” on page 194.

WellKnownAddressingPolicy sets transport configuration
data—for example, address information for persistent objects that
use a well-known address, or I1OP buffer sizes. For more
information, see “Direct persistence” on page 194.

DispatchWorkQueuePolicy specifies the work queue used to
process requests for a POA whose threading policy is set to
ORB_CTRL MODEL. All requests for the POA are dispatched in a thread
controlled by the specified work queue. For more information, see
“Work Queues” on page 202.

WorkQueuePolicy specifies the work queue used by network
transports to read requests for the POA. For more information, see
“Work Queues” on page 202.

InterdictionPolicy disables the proxification of the POA when
using the firewall proxy service. A POA with this policy set to
DISABLE Will never be proxified. For more information, see
“Controlling POA Proxification” on page 207.

Root POA Policies

The root POA has the following policy settings, which cannot be

changed:

Policy Default setting
Id Assignment SYSTEM ID
Id Uniqueness UNIQUE ID

Implicit Activation IMPLICIT ACTIVATION
Lifespan TRANSIENT

Request Processing USE ACTIVE OBJECT MAP ONLY
Servant Retention RETAIN

Thread ORB_CTRL MODEL

Using POA Policies

A POA'’s policies play an important role in determining how the
POA implements and manages objects and processes client
requests. While the root POA has a set of predefined policies that
cannot be changed, any POA that you create can have its policies
explicitly set.

190 Orbix CORBA Programmer’s Guide C++

In this section

The following sections describe POA policies and setting options:

Enabling the Active Object Map page 191
Processing Object Requests page 191
Setting Object Lifespan page 193
Assigning Object IDs page 195
Activating Objects with Dedicated Servants page 195
Activating Objects page 196
Setting Threading Support page 196

Enabling the Active Object Map

A POA’s servant retention policy determines whether it uses an
active object map to maintain servant-object associations.
Depending on its request processing policy (see page 191), a POA
can rely exclusively on an active object map to map object IDs to
servants, or it can use an active object map together with a
servant manager and/or default servant. A POA that lacks an
active object map must use either a servant manager or a default
servant to map between objects and servants.

You specify a POA’s servant retention policy by calling
create servant retention policy() with one of these arguments:

RETAIN: The POA retains active servants in its active object map.

NON_RETAIN: The POA has no active object map. For each
request, the POA relies on the servant manager or default servant
to map between an object and its servant; all mapping
information is destroyed when request processing returns. Thus,
a NON RETAIN policy also requires that the POA have a request
processing policy of USE DEFAULT SERVANT OF USE_SERVANT MANAGER
(see “Processing Object Requests” on page 191).

Servant manager and servant retention
policy

If a POA has a policy of USE_SERVANT MANAGER, its servant retention
policy determines whether it uses a servant activator or servant
locator as its servant manager. A RETAIN policy requires the use of
a servant activator; a NON_RETAIN policy requires the use of a
servant locator. For more information about servant managers,
see Chapter 1.

Processing Object Requests

A POA's request processing policy determines how it locates a
servant for object requests. Four options are available:

Orbix CORBA Programmer’s Guide C++ 191

* Maintain a permanent map, or active object map, between
object IDs and servants and rely exclusively on that map to
process all object requests.

* Activate servants on demand for object requests.
* Locate a servant for each new object request.
* Map object requests to a single default servant.

For example, if the application processes many lightweight
requests for the same object type, the server should probably
have a POA that maps all these requests to the same default
servant. At the same time, another POA in the same server might
be dedicated to a few objects that each use different servants. In
this case, requests can probably be processed more efficiently if
the POA is enabled for permanent object-servant mapping.

You set a POA’s request processing policy by calling
create request processing policy() and supplying one of these
arguments:

e USE_ACTIVE_OBJECT _MAP ONLY
e USE_SERVANT MANAGER
e USE DEFAULT_SERVANT

USE_ACTIVE_OBJECT_MAP_ONLY: All object IDs must be
mapped to a servant in the active object map; otherwise, Orbix
returns an exception of OBJECT NOT EXIST to the client.

During POA initialization and anytime thereafter, the active object
map is populated with all object-servant mappings that are
required during the POA’s lifetime. The active object map
maintains object-servant mappings until the POA shuts down, or
an object is explicitly deactivated through deactivate object ().

Typically, a POA can rely exclusively on an active object map when
it processes requests for a small number of objects.

This policy requires POA to have a servant retention policy of
RETAIN. (see “Enabling the Active Object Map” on page 191).

USE_SERVANT_MANAGER: The POA’s servant manager finds a
servant for the requested object. Depending on its servant
retention policy, the POA can implement one of two servant
manager types, either a servant activator or a servant locator :

* A servant activator can be registered with a POA that has a
RETAIN policy. The servant activator incarnates servants for
inactive objects on receiving an initial request for them. The
active object map retains mappings between objects and their
servants; it handles all subsequent requests for this object.

* If the POA has a policy of NoN RETAIN (the POA has no active
object map), a servant locator must find a servant for an
object on each request; otherwise, an OBJ ADAPTER exception is
returned when clients invoke requests.

USE_SERVANT MANAGER requires the application to register a servant
manager with the POA by calling set servant manager ().

For more information about servant managers, see “Managing
Servants”.

192 Orbix CORBA Programmer’s Guide C++

USE_DEFAULT_SERVANT: The POA dispatches requests to the
default servant when it cannot otherwise find a servant for the
requested object. This can occur because the object’s ID is not in
the active object map, or the POA’s servant retention policy is set
tO NON_RETAIN.

Set this policy for a POA that needs to process many objects that
are instantiated from the same class, and thus can be
implemented by the same servant.

This policy requires the application to register the POA’s default
servant by calling set_servant () on the POA; it also requires the
POA’s ID uniqueness policy to be set to MULTIPLE ID, SO multiple
objects can use the default servant.

Setting Object Lifespan

A POA creates object references through calls to

create reference() Of create reference with id(). The POA’s
lifespan policy determines whether these object references are
persistent—that is, whether they outlive the process in which they
were created. A persistent object reference is one that a client can
successfully reissue over successive instantiations of the target
server and POA.

You specify a POA’s lifespan policy by calling
create lifespan policy () with one of these arguments

TRANSIENT: (default policy) Object references do not outlive
the POA in which they are created. After a transient object’s POA
is destroyed, attempts to use this reference yield the exception
CORBA: :OBJECT NOT EXIST.

PERSISTENT: Object references can outlive the POA in which
they are created.

Transient object references

When a POA creates an object reference, it encapsulates it within
an IOR. If the POA has a TRANSIENT policy, the IOR contains the
server process’s current location—its host address and port.
Consequently, that object reference is valid only as long as the
server process remains alive. If the server process dies, the object
reference becomes invalid.

Persistent object references

If the POA has a PERSISTENT policy, the IOR contains the address of
the location domain’s implementation repository, which maps all
servers and their POAs to their current locations. Given a request
for a persistent object, the location daemon uses the object’s
“virtual” address first, and looks up the server process’s actual
location via the implementation repository.

Orbix CORBA Programmer’s Guide C++ 193

Direct persistence

Occasionally, you might want to generate persistent object
references that avoid the overhead of using the location daemon.
In this case, Orbix provides the proprietary policy of

DIRECT PERSISTENCE. A POA with policies of PERSISTENT and

DIRECT PERSISTENCE generates IORs that contain a well-known
address list for the server process.

A POA that uses direct persistence must also indicate where the
configuration sets the well-known address list to be embedded in
object references. In order to do this, two requirements apply:

®* The configuration must contain a well-known address
configuration variable, with this syntax:

prefix.transport:addr list=[address-spec [,...]]
* The POA must have a WELL KNOWN ADDRESSING POLICY whose
value is set to prefix.

For example, you might create a well-known address configuration
variable in name scope MyConfigapp as follows:

MyConfigApp {
wka:iiop:addr list=["host.com:1075"];

}

Given this configuration, a POA is created in the ORB MyConfigapp
can have its PolicyList set so it generates object references that
use direct persistence, as follows:

CORBA: :PolicyList policies;

policies.length (4);

CORBA: :Any persistence mode policy value;
CORBA: :Any well known addressing policy value;

persistence mode policy value

<<= IT PortableServer: :DIRECT PERSISTENCE;
well known addressing policy value <<=

CORBA: :Any: : from string("wka", IT TRUE) ;

policies[0] = poa->create lifespan policy
(PortableServer: : PERSISTENT) ;

policies[1] = poa->create id assignment policy
(PortableServer: :USER ID) ;

policies[2] = orb->create policy(
(IT PortableServer::PERSISTENCE MODE POLICY ID,
persistence mode policy value) ;

policies[3] = orb->create policy(
IT CORBA::WELL KNOWN ADDRESSING POLICY ID,
well known addressing policy value) ;

Object lifespan and ID assignment

A POA’s lifespan and ID assignment policies have dependencies
upon one another.

194 Orbix CORBA Programmer’s Guide C++

TRANSIENT and SYSTEM ID are the default settings for a new POA,
becuase system-assigned IDs are sufficient for transient object
references. The appication does not need tight control over the
POA'’s ID becuase the POA’s object reference is only valid for the
POA’s current incarnation.

However, PERSISTENT and USER_ID policies are usually set together,
because applications require explicit control over the object IDs of
its persistent object references. When using persistent object
references the POA’s name is part of the information used to
resolve an object’s IOR. For this reason, there is a possibility of
conflicts when using multiple POA’s with the same name and a
lifespan policy of PERSISTENT. This is particularly true when using
indirect persistent IORs.

Assigning Object IDs

The ID assignment policy determines whether object IDs are
generated by the POA or the application. Specify the POA’s ID
assignment policy by calling create id assignment policy () with
one of these arguments:

SYSTEM_ ID: The POA generates and assigns IDs to its objects.
Typically, a POA with a sysTEM ID policy manages objects that are
active for only a short period of time, and so do not need to
outlive their server process. In this case, the POA also has an
object lifespan policy of TRANSIENT. Note, however, that
system-generated IDs in a persistent POA are unique across all
instantiations of that POA.

USER__ID: The application assigns object IDs to objects in this
POA. The application must ensure that all user-assigned IDs are
unique across all instantiations of the same POA.

USER_ID is usually assigned to a POA that has an object lifespan
policy of PERSISTENT—that is, it generates object references whose
validity can span multiple instantiations of a POA or server
process, so the application requires explicit control over object
IDs.

Activating Objects with Dedicated Servants

A POA'’s ID uniqueness policy determines whether it allows a
servant to incarnate more than one object. You specify a POA’s ID
uniqueness policy by calling create id uniqueness policy () with
one of these arguments:

UNIQUE_ ID: Each servant in the POA can be associated with only
one object ID.

Orbix CORBA Programmer’s Guide C++ 195

MULTIPLE_ID: Any servant in the POA can be associated with
multiple object IDs.

Note: If the same servant is used by different POAs, that
servant conforms to the uniqueness policy of each POA.
Thus, it is possible for the same servant to be associated
with multiple objects in one POA, and be restricted to one
object in another.

Activating Objects

A POA'’s activation policy determines whether objects are explicitly
or implicitly associated with servants. If a POA is enabled for
explicit activation, you activate an object by calling

activate object () Or activate object with id() on the POA. A POA
that supports implicit activation allows the server application to
call the this() function on a servant to create an active object
(see “Implicit Object Activation” on page 197).

The activation policy determines whether the POA supports
implicit activation of servants.

Specify the POA’s activation policy by supplying one of these
arguments:

NO_IMPLICIT_ACTIVATION: (default) The POA only supports
explicit activation of servants.

IMPLICIT_ACTIVATION: The POA supports implicit activation of
servants. This policy requires that the POA’s object ID assignment
policy be set to sysSTEM ID, and its servant retention policy be set
tO RETAIN.

For more information, see “Implicit Object Activation” on
page 197.

Setting Threading Support

Specify the POA’s thread policy by supplying one of these
arguments:

ORB_CTRL_MODEL: The ORB is responsible for assigning
requests for an ORB-controlled POA to threads. In a
multi-threaded environment, concurrent requests can be delivered
using multiple threads.

SINGLE_THREAD_MODEL: Requests for a single-threaded POA
are processed sequentially. In a multi-threaded environment, all
calls by a single-threaded POA to implementation code (servants
and servant managers) are made in a manner that is safe for code
that does not account for multi-threading.

Multiple single-threaded POAs might need to cooperate to ensure
that calls are safe when they share implementation code such as a
servant manager.

196 Orbix CORBA Programmer’s Guide C++

Default work queues

Orbix maintains for each ORB two default work queues, one
manual and the other automatic. Depending on its thread policy, a
POA that lacks its own work queue uses one of the default work
gqueues to process requests:

* A POA with a threading policy of SINGLE THREAD MODEL uses the
manual work queue. To remove requests from the manual
work queue, you must call either ORB: :perform work () or
ORB: :run () within the main thread.

* A POA with a threading policy of ORB CTRL, MODEL uses the
automatic work queue. Requests are automatically removed
from this work queue; however, because ORB: :run() blocks
until the ORB shuts down, an application can call this method
to detect when shutdown is complete.

Both threading policies assume that the ORB and the application
are using compatible threading synchronization. All uses of the
POA within the server must conform to its threading policy.

For information about creating a POA workqueue, see page 202.

Explicit Object Activation

If the POA has an activation policy of NO IMPLICIT ACTIVATION, the
server must call either activate object () or

activate object with id() on the POA to activate objects. Either of
these calls registers an object in the POA with either a
user-supplied or system-generated object ID, and maps that
object to the specified servant.

After you explicitly activate an object, you can obtain its object
reference in two ways:

®* Use the object’s ID to call id_to reference () on the POA where
the object was activated. id_to reference() uses the object’s
ID to obtain the information needed to compose an object
reference, and returns that reference to the caller.

* Call this() on the servant. Because the servant is already
registered in the POA with an object ID, the function
composes an object reference from the available information
and returns that reference to the caller.

Implicit Object Activation

A server activates an object implicitly by calling this() on the
servant designated to incarnate that object. this() is valid only if
the POA that maintains these objects has policies of RETAIN,
SYSTEM ID, and IMPLICIT ACTIVATION; otherwise, it raises a
WrongPolicy exception. Thus, implicit activation is generally a good
option for a POA that maintains a relatively small number of
transient objects.

Calling _this()

_this() performs two separate tasks:

Orbix CORBA Programmer’s Guide C++ 197

®* Checks the POA to determine whether the servant is
registered with an existing object. If it is not, this() creates
an object from the servant’s interface, registers a new ID for
this object in the POA’s active object map, and maps this
object ID to the servant.

* Generates and returns an object reference.

In other words, the object is implicitly activated in order to return
an object reference.

You can call _this() on a servant in two ways:
* Withinan operation that is invoked on the servant’s object.

® Qutside an operation.

Calling _this() Inside an Operation

If called inside an operation, this() returns a reference to the
object on which the operation was invoked. Thus, a servant can
always obtain a reference to the object that it incarnates—for
example, in order to register the object as a callback with another
object.

The following interface defines the get _self () operation, whose
implementation returns a reference to the same interface:

interface Whatever {
Whatever get self();

b
You might implement this operation as follows:

Whatever ptr
WhateverImpl::get self () throw(CORBA::SystemException)

{
}

return this(); // Return reference to self

Calling _this() Outside an Operation

You can activate an object and obtain a reference to it by calling
_this() on a servant. This object reference must include
information that it obtains from the POA in which the object is
registered: the fully qualified POA name, protocol information, and
the object ID that is registered in the POA’s active object map.
_this() determines which POA to use by calling default POA() on
the servant.

_default POA() is inherited from the ServantBase class:

class ServantBase {

public:
virtual POA ptr default POA() ;
/] ..

T

198 Orbix CORBA Programmer’s Guide C++

Servant inheritance of _default POA(Q)
Implementation

All skeleton classes and the servants that implement them derive
from servantBase, and therefore inherit its implementation of
_default POA(). The inherited default POA() always returns the
root POA. Thus, calling this() on a servant that does not override
_default POA() returns a transient object reference that points
back to the root POA. All invocations on that object are processed
by the root POA.

As seen earlier, an application typically creates its own POAs to
manage objects and client requests. For example, to create and
export persistent object references, you must create a POA with a
PERSISTENT lifespan policy and use it to generate the desired object
references. If this is the case, you must be sure that the servants
that incarnate those objects also override default POA();
otherwise, calling this() on those servants returns transient
object references whose mappings to servants are handled by the
root POA.

Note: To avoid ambiguity concerning the POA in which an
object is implicitly activated, call servant to reference() on
the desired POA instead of this(). While using
servant to reference() requires you to narrow to the
appropriate object, the extra code is worth the extra
degree of clarity that you achieve.

Overriding _default POA(Q)

To ensure that this() uses the right POA to generate object
references, an application’s servants must override the default
POA. You can do this three ways:

Override _default_POA() to throw a system exception. For
example, default POA() can return system exception

CORBA: : INTERNAL. This prevents use of this() to generate any
object references for that servant.

By overriding default POA() to throw an exception, you ensure
that attempts to use this() yield an immediate error instead of a
subtly incorrect behavior that must be debugged later. Instead,
you must create object references with calls to either

create reference() Or create reference with id() (see page 223),
then explicitly map objects to servants—for example, through a
servant manager, or via the active object map by calling
activate object with id. ().

Disabling default POA() also prevents you from calling this() to
obtain an existing object reference for a servant. To obtain the
reference, you must call servant_to reference ().

Orbix CORBA Programmer’s Guide C++ 199

Override _default_POA() in each servant to return the
correct POA. Calls to this() are guaranteed to use the correct
POA. This approach also raises a wrongpPolicy exception if the POA
that you set for a servant has invalid policies for implicit
activation. such as USER ID.

This approach requires the application to maintain a reference for
the servant’s POA. If all servants use the same POA, you can set
the reference in a global variable or a static private member.
However, if a server uses unique POAs for different groups of
servants, each servant must carry the overhead of an additional
(non-static) data member.

Override _default_POA() in a common base class. Servant
classes that need to override default POA() can inherit from a
common base class that contains an override definition. This
approach to overriding default POA() has two advantages:
* You only need to write the overriding definition of

_default POA() once.
* If you define a servant class that inherits from multiple

servant classes, you avoid inheriting conflicting definitions of
the default poa() method.

Example

Orbix’s cpp poa genie.tcl genie generates servant code that
overrides default POA() in the common base class

IT ServantBaseOverrides. This class overrides default POA() as
follows:

Example 15: Overriding _default_ POA() in a common base class
//File: it servant base overrides.h

class IT ServantBaseOverrides

1 public virtual PortableServer: :ServantBase
{
public:

2 IT ServantBaseOverrides (

PortableServer: :POA ptr
)

virtual
~IT ServantBaseOverrides () ;

virtual PortableServer::POA ptr

3 _default POA() ;
private:
4 PortableServer: :POA var m poa;

200 Orbix CORBA Programmer’s Guide C++

The code executes as follows:

1. 1IT ServantBaseOverrides inherits from
PortableServer: :ServantBase, Which is the base class for all
servant classes.

2. The constructor is passed a reference to a POA object, which it
stores in private member variable m poa.

3. IT ServantBaseOverrides:: default POA() overrides the
definition inherited from PortableServer: :ServantBase. It
returns a copy of the POA reference stored in m_poa.

4. The m poa private member is used to stores the POA
reference.

For more information about using the IT ServantBaseOverrides

class, see “First Application”.

Managing Request Flow

Each POA is associated with a poaManager Object that determines
whether the POA can accept and process object requests. When
you create a POA, you specify its manager by supplying it as an
argument to create POA(). This manager remains associated with
the POA throughout its life span.

create POA() can specify either an existing POA manager, or NULL
to create a poAManager Object. You can obtain the poAManager object
of a given POA by calling the POAManager () on it. By creating POA
managers and using existing ones, you can group POAs under
different managers according to their request processing needs.
Any POA in the POA hierarchy can be associated with a given
manager; the same manager can be used to manage POAs in
different branches.

POA manager states

A POA manager can be in four different states. The poAManager
interface provides four operations to change the state of a POA
manager, as shown in Table 13.

Table 13: POA manager states and interface operations
State Operation Description
Active activate() Incoming requests are accepted for

processing. When a POA manager is
created, it is initially in a holding state.
Until you call activate() on a POA’s
manager, all requests sent to that POA are
queued.

Holding

hold requests() All incoming requests are queued. If the
queue fills to capacity, incoming requests
are returned with an exception of
TRANSIENT.

Orbix CORBA Programmer’s Guide C++ 201

Table 13: POA manager states and interface operations

State

Operation Description

Discarding

discard_requests () All incoming requests are refused and a

system exception of TRANSIENT is raised to
clients so they can reissue their requests.
A POA manager is typically in a discarding
state when the application detects that an
object or the POA in general cannot keep
pace with incoming requests. A POA
manager should be in a discarding state
only temporarily. On resolution of the
problem that required this call, the
application should restore the POA
manager to its active state with

activate ().

Inactive

deactivate () The POA manager is shutting down and

destroying all POAs that are associated
with it. Incoming requests are rejected
with the exception CORBA: :0BJ ADAPTER.

Work Queues

Holding state

The POA manager of the root POA is initially in a holding state, as
is a new POA manager. Until you call activate() on a POA’s
manager, all requests sent to that POA are queued. activate() can
also reactivate a POA manager that has reverted to a holding state
(due to a hold requests() call) or is in a discarding state (due to a
discard requests() call).

If a new POA is associated with an existing active POA manager, it
is unnecessary to call activate (). However, it is generally a good
idea to put a POA manager in a holding state before creating a
new POA with it.

The queue for a POA manager that is in a holding state has limited
capacity, so this state should be maintained for a short time only.
Otherwise, the queue is liable to fill to capacity with pending
requests. When this happens, all subsequent requests return to
the client with a TRANSIENT exception.

Orbix provides two proprietary policies, which allow you to
associate a workQueue with a POA and thereby control the flow of
incoming requests for that POA:

DispatchWorkQueuePolicy associates a work queue with an
ORB_CTRL MODEL POA. All work items for the POA are processed by
the work queue in a thread owned by the work queue.

WorkQueuePolicy associates a work queue with any POA. The
specified work queue will be used by the underlying network
transports for reading requests from the POA.

202 Orbix CORBA Programmer’s Guide C++

Interface

A work queue has the following interface definition:

// IDL
interface WorkQueue

{

readonly attribute long max size;
readonly attribute unsigned long count;

boolean engqueue (in WorkItem work, in long timeout) ;
boolean enqueue immediate (in WorkItem work) ;
boolean is full() ;

boolean is empty () ;

boolean activate() ;

boolean deactivate() ;

boolean owns current thread() ;

void flush() ;

hs

WorkQueue types

You can implement your own WorkQueue interface, or use the
supplied workQueue factories to create one of two WorkQueue types:

¢ ManualWorkQueue
e AutomaticWorkQueue

ManualWorkQueue

A ManualWorkQueue is a work queue that holds incoming requests
until they are explicitly dequeued. It allows the developer full
control over how requests are processed by the POA.

IDL

The interface is defined as follows:

\\ IDL
interface ManualWorkQueue : WorkQueue

{

boolean dequeue (out WorkItem work, in long timeout) ;

boolean do work (in long number of jobs, in long
timeout) ;

void shutdown (in boolean process remaining jobs) ;

b s

Orbix CORBA Programmer’s Guide C++ 203

Creating

You create a ManualWorkQueueFactory by calling
resolve initial references ("IT ManualWorkQueueFactory"). The
ManualWorkQueueFactory has the following interface:

interface ManualWorkQueueFactory

{

ManualWorkQueue create work queue(in long max size) ;

s
create work queue takes the following argument:

max_size is the maximum number of work items that the queue
can hold. If the queue becomes full, the transport considers the
server to be overloaded and tries to gracefully close down
connections to reduce the load.

How requests are processed

Applications that use a ManualWorkQueue must periodically call
dequeue () Or do_work () to ensure that requests are processed. The
developer is in full control of time between calls and if the events
are processed by multiple threads or in a single thread. If the
developer chooses a multithreaded processing method, they are
responsible for ensuring that the code is thread safe.

A false return value from either do work () or dequeue () indicates
that the timeout for the request has expired or that the queue has
shut down.

AutomaticWorkQueue

An AutomaticWorkQueue is a work queue that feeds a thread pool.
Automatic work queues process requests in the same way that the
standard ORB does; however, it does allow the developer to
assign a customized thread pool to a particular POA. Also, the
developer can implement several automatic work queues to
process different types of requests at different priorities.

IDL

The interface is defined as follows:

// IDL
interface AutomaticWorkQueue : WorkQueue

{

readonly attribute unsigned long threads total;
readonly attribute unsigned long threads working;

attribute long high water mark;
attribute long low water mark;

void shutdown (in boolean process remaining jobs) ;

204 Orbix CORBA Programmer’s Guide C++

Creating

You create an AutomaticWorkQueue through the
AutomaticWorkQueueFactory, obtained by calling

resolve initial references ("IT AutomaticWorkQueue"). The
AutomaticWorkQueueFactory has the following interface:

interface AutomaticWorkQueueFactory

{

AutomaticWorkQueue create work queue (

in long max size,

in unsigned long initial thread count,
in long high water mark,

in long low water mark) ;

AutomaticWorkQueue
create work queue with thread stack size(

in long max size,

in unsigned long initial thread count,
in long high water mark,

in long low water mark,

in long thread stack size);

e
create work queue() takes these arguments:

max_size is the maximum number of work items that the queue
can hold. To specify an unlimited queue size, supply a value of -1.

initial_thread_count is the initial number of threads in the
thread pool; the ORB automatically creates and starts these
threads when the workqueue is created.

high_water_mark specifies the maximum number of threads
that can be created to process work queue items. To specify an
unlimited number of threads, supply a value of -1.

low_water_mark lets the ORB remove idle threads from the
thread pool, down to the value of low water mark. The number of
available threads is never less than this value.

If you wish to have greater control of the size of the work queue’s
thread stack, use create work queue with thread stack(). It adds
one argument, thread stack size, to the end of the argument list.
This argument specifies the size of the workqueues thread stack.

How requests are processed

Applications that use an AutomaticWorkQueue do not need to
explicitly dequeue work items; instead, work items are
automatically dequeued and processed by threads in the thread
pool.

If all threads are busy and the number of threads is less than
high water mark, the ORB can start additional threads to process
items in the work queue, up to the value of high water mark. If the
number of threads is equal to high water mark and all are busy,

Orbix CORBA Programmer’s Guide C++ 205

and the work queue is filled to capacity, the transport considers
the server to be overloaded and tries to gracefully close down
connections to reduce the load.

Using a WorkQueue

Creating the WorkQueue

To create a POA with a workQueue policy, follow these steps:

1. Create a work queue factory by calling
resolve initial references () with the desired factory type by
supplying an argument of IT AutomaticWorkQueueFactory OF
IT ManualWorkQueueFactory.

Set work queue parameters.

3. Create the work queue by calling create work queue() on the
work queue factory.

4. Insert the work queue into an Any.
5. Add a work queue policy object to a POA’s pPolicylist.
Example 16 illustrates these steps:

N

Example 16: Creating a POA with a WorkQueue policy

1 // get an automatic work queue factory
CORBA: :Object_var obj =

resolve initial references ("IT AutomaticWorkQueueFacto
ryu)’.

IT WorkQueue: :AutomaticWorkQueueFactory var wgf =
AutomaticWorkQueueFactory:: narrow(obj);

2 // set work queue parameters
CORBA: :Long max size = 20;
CORBA: :Long init thread count = 1;
CORBA: :Long high water mark = 20;
CORBA: :Long low water mark = 2;

3 // create work queue
IT AutomaticWorkQueue var wg =
wgf->create work queue (max size, init thread count,
high water mark, low water mark) ;

4 // insert the work queue into an any
CORBA: :Any work queue policy val;
work queue policy val <<= wg;

// create PolicyList
CORBA: : PolicyList policies;
policies.length (1) ;

5 // add work queue policy object to POA’s PolicylList
policies [0] =orb->create policy(

IT PortableServer::DISPATCH WORKQUEUE POLICY ID,
work queue policy val) ;

206 Orbix CORBA Programmer’s Guide C++

Processing events in a manual work
gueue

When using a manual work queue, the developer must implement
the loop which removes requests from the queue.

Example 17 demonstrates one way to remove requests from a
manual work queue. The code loops indefinitely and continuously
polls the queue for requests. When there are requests on the
queue, they are removed from the queue using the dequeue ()
method and then they processed with the execute () method of the
WorkItem Object returned from dequeue ().

Example 17: Removing requests from a work queue.
WorkQueue: :WorkItem work item;

while (1)
{
if (wg->is_empty())
{
// Since there are no requests to process
// the object can sleep, or do whatever other work
// the developer needs done.

else
{
manual work queue->dequeue(work item, 5000) ;
work item->execute() ;
// no need to explicitly destroy as execute deletes
the
// work item once completed.
1

}

Alternatively, you remove requests from the queue using the
do_work () method. The difference is that using do_work () you can
process several requests at one time.

Processing events in an automatic work
gueue

Automatic work queues handle request processing under the
covers. Therefore, the developer does not need to implement any
request handling logic.

Controlling POA Proxification

The default behavior of the firewall proxy service, if it is activated,
is to proxify all POAs. This can consume resources and degrade
performance of a system if a large number of POAs are placed
behind the firewall proxy service. In many instances only specific
POAs will need to face outside the firewall. Using the
InterdictionPoilcy you can control if a specific POA is proxified.

Orbix CORBA Programmer’s Guide C++ 207

Policy

The InterdictionPolicy controls the behavior of the firewall proxy
service plug-in, if it is loaded. The policy has two settings:

ENABLE This is the default behavior of the firewall
proxy service plug-in. A POA with its
InterdictionPolicy set to ENABLE will be
proxified.

DISABLE This setting tells the firewall proxy service
plug-in to not proxify the POA. A POA with its
InterdictionPolicy set to DISABLE will not use
the firewall proxy service and requests made
on objects under its control will come directly
from the requesting clients.

Example

The following code samples demonstrate how to set the
InterdictionPolicy on a POA. In the examples, the policy is set to
DISABLE.

C++
#include <orbix/fps.hh>

// Create a PREVENT interdiction policy.
CORBA: :Any interdiction;
interdiction <<= IT FPS::DISABLE;

CORBA: :PolicyList policies (1) ;

policies.length (1) ;

policies[0] =
m_orb->create policy (IT FPS::INTERDICTION POLICY ID,
interdiction) ;

// Create and return new POA.
return m poa->create POA("no fps poa", 0, policies);

208 Orbix CORBA Programmer’s Guide C++

Managing Servants

A POA that needsto manage alarge number of objects can be configured
to incarnate servants only as they are needed. Alternatively, a POA can
use a single servant to service all requests.

A POA’s default request processing policy is
USE_ACTIVE OBJECT MAP ONLY. During POA initialization, the active
object map must be populated with all object-servant mappings
that are required during the POA'’s lifetime. The active object map
maintains object-servant mappings until the POA shuts down, or
an object is explicitly deactivated.

For example, you might implement the BankDemo: : Account interface
so that at startup, a server instantiates a servant for each account
and activates all the account objects. Thus, a servant is always
available for any client invocation on that account—for example,
balance () Or withdraw ().

Drawbacks of active object map usage

Given the potential for many thousands of accounts, and the
likelihood that account information changes—accounts are closed
down, new accounts are created—the drawbacks of this static
approach become obvious:

. Code duplication: For each account, the same code for servant
creation and activation must be repeated, increasing the
potential for errors.

* Inflexibility: For each change in account information, you
must modify and recompile the server code, then stop and
restart server processes.

* Startup time: The time required to create and activate a large
number of servants prolongs server startup and delays its
readiness to process client requests.

* Memory usage: An excessive amount of memory might be
required to maintain all servants continuously.

This scenario makes it clear that you should usually configure a
POA to rely exclusively on an active object map only when it
maintains a small number of objects.

Policies for managing many objects

If a POA is required to maintain a large number of objects, you
should set its request processing policy to one of the following:

®* USE SERVANT MANAGER specifies that servants are instantiated on
demand.

®* USE DEFAULT SERVANT specifies a default servant that handles
requests for any objects that are not registered in the active
object map, or for all requests in general.

This chapter shows how to implement both policies.

Orbix CORBA Programmer’s Guide C++ 209

Using Servant Managers

Servant manager types

A POA whose request processing policy is set to

USE_SERVANT MANAGER supplies servants on demand for object
requests. The POA depends on a servant manager to map objects
to servants. Depending on its servant retention policy, the POA
can implement one of two servant manager types, either a servant
activator or servant locator :

* A servant activator is registered with a POA that has a RETAIN
policy. The servant activator supplies a servant for an inactive
object on receiving an initial request for it. The active object
map retains the mapping between the object and its servant
until the object is deactivated.

* A servant locator is registered with a POA that has a policy of
NON RETAIN. The servant locator supplies a servant for an
inactive object each time the object is requested. In the
absence of an active object map, the servant locator must
deactivate the object and delete the servant from memory
after the request returns.

Because a servant activator depends on the active object map to
maintain the servants that it supplies, its usefulness is generally
limited to minimizing an application’s startup time. In almost all
cases, you should use a servant locator for applications that must
dynamically manage large numbers of objects.

Registering a servant manager

An application registers its servant manager —whether activator
or locator— with the POA by calling set_servant manager () on it;

otherwise, an OBJ_ADAPTER exception is returned to the client on

attempts to invoke on one of its objects.

The following sections show how to implement the

BankDemo: : Account interface with a servant activator and a servant
locator. Both servant manager types activate account objects with
instantiations of servant class singleAccountImpl, which inherits
from skeleton class POA BankDemo: : Account:

class SingleAccountImpl :
public POA BankDemo: :Account
{

public:
SingleAccount Impl (
const char* account id,
AccountDatabase& account db

) 5

~SingleAccountImpl () ;

210 Orbix CORBA Programmer’s Guide C++

void withdraw (BankDemo: : CashAmount amount) throw (
CORBA: : SystemException,
BankDemo: :Account : : InsufficientFunds) ;

void deposit (BankDemo: : CashAmount amount) throw (
CORBA: : SystemException) ;

char* account id() throw (CORBA: :SystemException) ;

BankDemo: : CashAmount balance ()
throw (CORBA: : SystemException) ;

private:
CORBA: : String var m_account id;
BankDemo: : CashAmount m_balance;
AccountDatabase& m_account db;

bi

Orbix CORBA Programmer’s Guide C++ 211

Servant Activators

A POA with policies of USE_SERVANT MANAGER and RETAIN uses a
servant activator as its servant manager. The POA directs the first
request for an inactive object to the servant activator. If the
servant activator returns a servant, the POA associates it with the
requested object in the active object map and thereby activates
the object. Subsequent requests for the object are routed directly
to its servant.

@ Servant activator activates

servants on
demand
servants
@ \‘
LN

servant

Initial object requests are activator
directed to servant activator T
servant-object ID

mappings
®

Subsequent requests on

: A/ :
activated objects . A /

are routed through A

the active . :
active object

object map Q/ map)

Figure 24: On the first request on an object, the servant activator returns a servant to
the POA, which establishes the mapping in its active object map.

Servant activators are generally useful when a server can hold all
its servants in memory at once, but the servants are slow to
initialize, or they are not all needed each time the server runs. In
both cases, you can expedite server startup by deferring servant
activation until it is actually needed.

212 Orbix CORBA Programmer’s Guide C++

ServantActivator interface

The PortableServer: :ServantActivator interface is defined as
follows:

interface ServantActivator : ServantManager

{

Servant
incarnate (
in ObjectId oid,
in POA adapter

raises (ForwardRequest) ;

void
etherealize (
in ObjectId oid,
in POA adapter,

in Servant serv,
in boolean cleanup in progress,
in boolean remaining activations

Ji 5

A POA can call two methods on its servant activator:

®* incarnate() is called by the POA when it receives a request for
an inactive object, and should return an appropriate servant
for the requested object.

®* etherealize() is called by the POA when an object is
deactivated or the POA shuts down. In either case, it allows
the application to clean up resources that the servant uses.

Implementing a servant activator

You can define a servant activator as follows:
Example 18: Servant activator class definition

#include <omg/PortableServerS.hh>
#include "account db.h"

class AccountServantActivatorImpl
public PortableServer::ServantActivator,
public CORBA::LocalObject
{
public:
AccountServantActivatorImpl (AccountDatabase&
account db) ;

PortableServer: :Servant incarnate (

const PortableServer: :0bjectId & oid,

PortableServer: :POA ptr adapter

) throw (CORBA: : SystemException,
PortableServer: : ForwardRequest) ;

Orbix CORBA Programmer’s Guide C++ 213

Example 18: Servant activator class definition

void etherealize (

const PortableServer: :0bjectId & oid,
PortableServer: :POA ptr adapter,
PortableServer: :Servant serv,

CORBA: :Boolean cleanup in progress,
CORBA: :Boolean remaining activations
) throw (CORBA: : SystemException) ;

In this example, the servant activator’s constructor takes a single
argument, an AccountDatabase object, to enable interaction
between Account objects and persistent account data.

Activating objects

incarnate () instantiates a servant for a requested object and
returns the servant to the POA. The POA registers the servant with
the object’s ID, thereby activating the object and making it
available to process requests on it.

In the implementation shown in Example 19 , incarnate()
performs these tasks:

1. Takes the object ID of a request for a BankDemo: : Account
object, and the POA that relayed the request.

2. Instantiates an singleAccountImpl servant, passing account
information to the servant’s constructor, and returns the
servant to the POA.

Example 19: Servant activator implementation

// servant activator constructor
AccountServantActivatorImpl: : AccountServantActivatorImpl (
AccountDatabase& account db)
m_account db (account db)

{// ...}
PortableServer: : Servant

1 AccountServantActivatorImpl: :incarnate (
const PortableServer: :0ObjectId & oid,
PortableServer: :POA ptr adapter

) throw (CORBA: : SystemException,
PortableServer: : ForwardRequest)
{

CORBA: :String var account id =
PortableServer: :ObjectId to string(oid) ;

2 return new SingleAccountImpl (account id,
m_account db) ;

}

214 Orbix CORBA Programmer’s Guide C++

Deactivating objects

The POA calls etherealize () when an object deactivates, either
because the object is destroyed or as part of general cleanup
when the POA itself deactivates or is destroyed.

The following implementation of etherealize () checks the
remaining activations parameter to ensure that the servant does
not incarnate another object before it deletes the servant.
Implementations can also check the cleanup in progress
parameter to determine whether etherealization results from POA
deactivation or destruction; this lets you differentiate between this
and other reasons to etherealize a servant.

Example 20: Implementation of etherealize() method

void

AccountServantActivatorImpl: :etherealize (
const PortableServer: :0bjectId & oid,
PortableServer: :POA ptr poa,
PortableServer: :Servant servant,
CORBA: :Boolean cleanup in progress,
CORBA: :Boolean remaining activations

) throw ((CORBA: : SystemException))

{

if (remaining activations == 0)
delete serv;

Setting deactivation policies

By default, a POA that uses a servant activator lets an object
deactivate (and its servant to etherealize) only after all pending
requests on that object return. You can modify the way the POA
handles incoming requests for a deactivating object by creating an
Orbix-proprietary objectDeactivationPolicy Object and attaching it
to the POA’s policyList (see “Setting proprietary policies for a
POA” on page 189).

Three settings are valid for this Policy object:

DELIVER: (default) The object deactivates only after processing
all pending requests, including any requests that arrive while the
object is deactivating. This behavior complies with CORBA
specifications.

DISCARD: The POA rejects incoming requests with an exception
of TRaNSIENT. Clients should be able to reissue discarded requests.

HOLD: Requests block until the object deactivates. A POA with a
HOLD policy maintains all requests until the object reactivates.
However, this policy can cause deadlock if the object calls back
into itself.

Orbix CORBA Programmer’s Guide C++ 215

Setting a POA’s servant activator

The following example shows how you can establish a POA’s
servant activator in two steps:

Example 21: C++ Setting the POA’s Servant Activator

AccountDatabase account database = new AccountDatabase () ;

1 // instantiate servant activator
AccountServantActivatorImpl
activator impl (account database) ;

2 // BAssociate the activator with the accounts POA
acct poa->set servant manager (&activator impl) ;

1. Instantiate the servant activator.

2. Call set_servant manager () on the target POA and supply the
servant activator.

Servant Locators

A server that needs to manage a large number of objects might
only require short-term access to them. For example, the
operations that are likely to be invoked on most customer bank
accounts—such as withdrawals and deposits—are usually
infrequent and of short duration. Thus, it is unnecessary to keep
account objects active beyond the lifetime of any given request. A
POA that services requests like this can use a servant locator,
which activates an object for each request, and deactivates it after
the request returns.

Required policies

A POA with policies of USE_SERVANT MANAGER and NON RETAIN USeS a
servant locator as its servant manager. Because the POA lacks an
active object map, it directs each object request to the servant
locator, which returns a servant to the POA in order to process the
request. The POA calls the request operation on the servant; when

216 Orbix CORBA Programmer’s Guide C++

the operation returns, the POA deactivates the object and returns
control to the servant locator. From the POA’s perspective, the
servant is active only while the request is being processed.

) servant
object POA locator

request — preinvoke() ———p
\ 4|» operation() —‘>‘
— postinvoke() ——p» servant

object — preinvoke() ——p servant
request P - 4|» operation() —

— postinvoke() —p

e 7

Figure 25: The POA directs each object request to the servant locator, which returns a
servant to the POA to process the request.

Controlling servant lifespan

An application that uses a servant locator has full control over
servant creation and deletion, independently of object activation
and deactivation. Your application can assert this control in a
number of ways. For example:

Servant caching: A servant locator can manage a cache of
servants for applications that have a large number of objects.
Because the locator is called for each operation, it can
determine which objects are requested most recently or
frequently and retain and remove servants accordingly.

Application-specific object map: A servant locator can
implement its own object-servant mapping algorithm. For
example, a POA’s active object map requires a unique servant
for each interface. With a servant locator, an application can
implement an object map as a simple fixed table that maps
multiple objects with different interfaces to the same servant.
Objects can be directed to the appropriate servant through an
identifier that is embedded in their object IDs. For each
incoming request, the servant locator extracts the identifier
from the object ID and directs the request to the appropriate
servant.

Orbix CORBA Programmer’s Guide C++ 217

ServantLocator interface

The

PortableServer:ServantLocator interface is defined as follows:

interface ServantLocator : ServantManager

{

b

native Cookie;

Servant

preinvoke (
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the cookie

raises (ForwardRequest) ;

void
postinvoke (
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the cockie,
in Servant the servant

A servant locator processes each object request with a pair of
methods, preinvoke () and postinvoke () :

218 Orbix CORBA Programmer’s Guide C++

preinvoke () is called on a POA’s servant locator when the POA
receives a request for an object. preinvoke () returns an
appropriate servant for the requested object.

postinvoke () is called on a POA’s servant locator to dispose of
the servant when processing of the object request is
complete. The postinvoke () implementation can either delete
the servant, or cache it for later reuse.

Implementing a servant locator

The following code defines a servant locator that handles account
objects:

Example 22: Servant locator class definition

class AccountServantLocatorImpl
public PortableServer: :ServantLocator,
public CORBA::LocalObject
{
public:
AccountServantLocatorImpl (AccountDatabase&
account db) ;

public:

PortableServer: :Servant preinvoke (
const PortableServer: :0ObjectId &id,
PortableServer: :POA ptr poa,
const char *operation,
PortableServer: :Cookie &cookie)
throw (CORBA: :SystemException) ;

void postinvoke (
const PortableServer: :0bjectId &id,
PortableServer: :POA ptr poa,
const char *operation,
PortableServer: :Cookie &cookie,
PortableServer: :Servant the servant)
throw (CORBA: : SystemException) ;

Each request is guaranteed a pair of preinvoke () and postinvoke ()
calls. This can be especially useful for applications with database
transactions. For example, a database server can use a servant
locator to direct concurrent operations to the same servant; each
database transaction is opened and closed within the preinvoke ()
and postinvoke () operations.

The signatures of preinvoke () and postinvoke () are differentiated
from those of invoke () and incarnate () by two parameters,

the cookie and operation:

the_cookie lets you explicitly map data between preinvoke () and
its corresponding postinvoke () call. This can be useful in a
multi-threaded environment and in transactions where it is
important to ensure that a pair of preinvoke () and postinvoke ()
calls operate on the same servant. For example, each preinvoke ()
call can set its the cookie parameter to data that identifies its
servant; the postinvoke () code can then compare that data to its
the servant parameter.

operation contains the name of the operation that is invoked on
the CORBA object, and thus provides the context of the servant’s
instantiation. The servant can use this to differentiate between
different operations and execute the appropriate code.

Orbix CORBA Programmer’s Guide C++ 219

Incarnating objects with a servant
locator

The following implementation of preinvoke () is functionally
identical to the incarnate () implementation shown in Example 19.

Example 23: Implementation of preinvoke() method

PortableServer: : Servant
MyAcctLocator: :preinvoke (
const PortableServer: :0bjectID &id,
PortableServer: :POA ptr poa
const char *operation
PortableServer: :Cookie &cookie)
throw (CORBA: :SystemException)
{
CORBA: :String var str =
PortableServer: :ObjectId to string(id) ;

// look up account ID in accounts database,
// make sure it it exists
CORBA: :Long acctId = acct lookup (str) ;

if (acctId == -1)
throw CORBA: :0BJECT NOT EXIST () ;

return new SingleAccountImpl (str) ;

Etherealizing objects with a servant
locator

The following implementation of postinvoke () is similar to the
etherealize () implementation shown in Example 20, with one
significant difference: because each servant is bound to a single
request, postinvoke () has no remaining activations to check.

Example 24: Implementation of postinvoke() method

PortableServer: : Servant
MyAcctLocator: : postinvoke (
const PortableServer: :0bjectID &id,
PortableServer: :POA ptr poa,
const char *operation,
PortableServer: :Cookie &cookie,
PortableServer: :Servant the servant)
throw (CORBA: :SystemException)

{
}

delete servant;

220 Orbix CORBA Programmer’s Guide C++

Setting a POA’s servant locator

You establish a POA’s servant locator in two steps, as shown in the
following example:

Example 25: C++ Setting a POA's Servant Locator
1 AccountServantLocatorImpl locator impl (account database) ;

2 // Associate the locator with the accounts POA
acct poa->set servant manager (&locator impl) ;

1. Instantiate the servant locator.

2. Call set_servant manager () on the target POA and supply the
servant locator.

Using a Default Servant

If a number of objects share the same interface, a server can
most efficiently handle requests on them through a POA that
provides a single default servant. This servant processes all
requests on a set of objects. A POA with a request processing
policy of USE DEFAULT SERVANT dispatches requests to the default
servant when it cannot otherwise find a servant for the requested
object. This can occur because the object’s ID is not in the active
object map, or the POA’s servant retention policy is set to

NON_ RETAIN.

For example, all customer account objects in the bank server
share the same BankDemo: :Account interface. Instead of
instantiating a new servant for each customer account object as in
previous examples, it might be more efficient to create a single
servant that processes requests on all accounts.

Obtaining the current object

A default servant must be able to differentiate the objects that it is
serving. The PortableServer: :Current interface offers this
capability:

module PortableServer

{

interface Current : CORBA::Current

{

exception NoContext({};
POA get POA () raises (NoContext) ;
ObjectID get object id() raises (NoContext) ;

}i
}

You can call a portableServer: :Current operation only in the
context of request processing. Thus, each Bank: :Account operation
such as deposit () Or balance() can call

PortableServer: :Current: :get_object id() to obtain the current
object’s account ID number.

Orbix CORBA Programmer’s Guide C++ 221

Implementing a default servant

To implement a default servant for account objects, modify the
code as follows:

®* The singleAccountImpl constructor identifies the ORB instead
of an object’s account ID.

®* Each Account operation calls resolve initial references() On
the ORB to obtain a reference to the portableServer: :Current
object, and uses this reference to identify the current account
object.

So, you might use the following servant code to implement an
account object:

Example 26: Implementation of a default servant

class SingleAccountImpl : public virtual
POA BankDemo: : Account {

public:
// constructor
SingleAccountImpl (CORBA::ORB ptr orb) : orb (orb) {}

// get account holder’s name
char * name() throw(CORBA::SystemException) {

CORBA: :String var acct = get acct id();
// rest of function not shown

}

// get account balance
CORBA: :Float balance() throw(CORBA: :SystemException) {

CORBA: :String var acct = get acct id();
// rest of function not shown

}

// similar processing for other operations

private:
char *get acct id(void) {
CORBA: :Object var obj =

orb ->resolve initial references ("POACurrent") ;
PortableServer: :Current var cur =
PortableServer: :Current:: narrow(obj) ;
try {
PortableServer: :0bjectID var id =
cur->get object id();
return PortableServer::0bjectID to string(id) ;
} catch (const PortableServer: :Current: :NoContext
&) |
cerr << "NoContext error" << endl;

}

222 Orbix CORBA Programmer’s Guide C++

In this implementation, the servant constructor takes a single
argument, a pointer to the ORB. Each method such as balance ()
calls the private helper method get account id(), which obtains a
reference to the current object (PortableServer: :Current) and gets
its object ID. The method converts the object ID to a string
(PortableServer: :ObjectID to string), and returns with this string.

This implementation assumes that account object IDs are
generated from account ID strings. See “Creating Inactive
Objects” on page 223 to see how you can create object IDs from a
string and use them to generate object references.

Setting a Default Servant

You can establish a POA’s default servant by instantiating the
desired servant class and supplying it as an argument to
set_servant (), which you invoke on that POA. The following code
fragment from the server’s main() instantiates servant def serv
from servant class singleAccountImpl, and sets this as the default
servant for POA acct_poa:

// Initialize the ORB
CORBA: :ORB var orb = CORBA::ORB init(argc, argv);

// Instantiate default account object servant
SingleAccountImpl def serv(orb);

// Set default servant for POA
acct poa->set servant (&def serv);

Creating Inactive Objects

An application that uses a servant manager or default servant
typically creates objects independently of the servants that
incarnate them. The various implementations shown earlier in this
chapter assume that all account objects are available before they
are associated with servants in the POA. Thus, the account objects
are initially inactive—that is, servants are unavailable to process
any requests that are invoked on them.

You can create inactive objects by calling either

create reference () OF create reference with id() on a POA. In the
next example, the POA that is to maintain these objects has an ID
assignment policy of USER_ID; therefore, the server code calls
create reference with id() to create objects in that POA:

Note: The repetitive mechanism used in this example to
create objects is used only for illustrative purposes. A real
application would probably use a factory object to create
account objects from persistent data.

Orbix CORBA Programmer’s Guide C++ 223

int main(int argc, char **argv) ({
// initialize ORB
CORBA: :ORB var orb = CORBA::ORB init(argec, argv);

// get object reference to the root POA

CORBA: :Object var obj =
orb->resolve initial references("RootPOA") ;

PortableServer: :POA var poa = POA:: narrow(obj);

// set policies for persistent POA that uses servant
locator
CORBA: :PolicyList policies;
policies.length (2);
policies[0] = poa->create lifespan policy
(PortableServer: : PERSISTENT)
policies[1l] = poa->create id assignment policy
(PortableServer::USER ID)

policies[2] = poa->create servant retention policy
(PortableServer::NON RETAIN)
policies[3] = poa->create request processing policy

(PortableServer::USE SERVANT MANAGER)

// create the POA
poa = poa->create POA("acct poa", NULL, policies);

AccountDatabase account database = new
AccountDatabase () ;

AccountServantLocatorImpl
locator impl (account database) ;

// Associate the locator with the accounts POA
acct _poa->set servant manager (&locator impl) ;

// Set Bank Account interface repository ID
const char *repository id =
"IDL:BankDemo/Account:1.0";

// create account object
PortableServer: :ObjectId var acct id =
PortableServer: :string to ObjectId(
"112-1110001") ;
CORBA: :Object var acctObj =
acct _poa->create reference with id(
acct_id, repository id) ;

// Export object reference to Naming Service (not
shown)

// create another account object
PortableServer: :ObjectId var acct id =
PortableServer: :string to ObjectId(
"112-1110002") ;
CORBA: :Object var acctObj =
acct _poa->create reference with id(
acct _id, repository id);

224 Orbix CORBA Programmer’s Guide C++

}

// Export object reference to Naming Service (not
shown)

// Repeat for each account object...
// Start ORB

orb->run() ;
return 0;

As shown, main() executes as follows:

1.

2.

Creates all account objects in acct_poa without incarnating
them.

Calls run() on the ORB so it starts listening to requests.

As the POA receives requests for objects, it passes them on to
the servant locator. The servant locator instantiates a servant
to process each request.

After the request returns from processing, the servant locator
destroys its servant.

Orbix CORBA Programmer’s Guide C++ 225

226 Orbix CORBA Programmer’s Guide C++

Asynchronous Method
Invocations

Orbix support for asynchronous method invocations allows a client to
continue other work while it awaits responses from previous requests.

Examples of client implementations in earlier chapters show client
invocations that follow a synchronous two-way model—that is,
after a client sends a request, it blocks on that thread until it
receives a reply. If single-threaded, the client is generally unable
to perform any other work while it awaits a response. This can be
unacceptable in an application that requires clients to issue
requests in rapid succession and needs to process replies as soon
as they become available.

Callbacks to reply handlers

To avoid this problem, Orbix supports asynchronous method
invocations (AMI) through callbacks to reply handlers. In its
invocation, the client supplies an object reference to the
appropriate reply handler. When it is ready to reply, the server
invokes on this object reference. The client ORB dispatches the
invocation to the reply handler servant.

In most cases, AMI usage affects only client implementations;
servers are unaware that an invocation is synchronous or
asynchronous. Client asynchrony matters only to transactional
servers, and in this case can require changes to the server.

Example IDL

The examples in this chapter use the following IDL, which queries
banking institutions for current lending rates:

module LoanSearch

{
// nonexistent Bank
exception InvalidBank({};
// invalid loan type
exception InvalidLoanType(};

interface LoanRates(
float get loan rate(
in string bank name,
in string loan type
) raises (InvalidBank, InvalidLoanType) ;
b5
/] ...

Orbix CORBA Programmer’s Guide C++ 227

Implied IDL

Client implementations must be able to invoke the

get loan rate() operation asynchronously on multiple lenders, so
that information from each one can be reviewed as soon as it is
available, without waiting for previous queries to return. Each
implementation uses the following global variables:

static const char *banks/[]
{
"Fleet",
"Citizens",
"BkBoston",
"USTrust",
//...
!

static const int MAX BANKS = (sizeof (banks)/sizeof (const
char *);
static const int replies left = MAX BANKS;

static const char *loan types[] =

{

"AUTO",
"MORTGAGE" ,
"EQUITY",
"PERSONAL",
"BUSINESS",
7 oo

In order to support AMI, the IDL compiler provides the
-xAMICallbacks option. This generates an implied IDL sendc
operation for each interface operation and attribute, which
supports AMI callbacks. You must supply the -xamICallbacks
modifier with both -base and -poa switches, as in the following
example:

IDL -poa:-xAMICallbacks -base:-xAMICAllbacks LoanSearch.idl
For example, given the get loan rate() operation, the IDL
compiler generates an implied IDL sendc_get loan rate()
operation that it adds to the Loanrates interface. The compiler
then generates stub and skeleton code from the entire set of
explicit and implicit IDL.

Mapping operations to implied 1DL

In general, each in and inout parameter in an IDL operation is
mapped to an argument of the same name and type in the
corresponding sendc_ operation. sendc_ operations return void and
supply as their first argument an object reference to the
client-implemented reply handler. They have the following syntax

void sendc_op-name (
reply-hdlr-ref,
[type argument[,type argument]...);

228 Orbix CORBA Programmer’s Guide C++

Mapping attributes to implied IDL

Each IDL attribute is mapped to a sendc_get operation which
takes an object reference to its reply handler. If the attribute is
not read-only, the IDL compiler also generates a sendc_set
operation, which takes an addition argument of the same name
and type as the attribute.

sendc_get and sendc_set operations return void and supply as
their first argument an object reference to the client-implemented
reply handler. They have the following syntax:

void sendc get attribute-name(reply-hdlr-ref) ;
void sendc set attribute-name (

reply-hdlr-ref,

type attribute-name) ;

Calling Back to Reply Handlers
For each IDL operation and attribute, the IDL compiler generates:
* A sendc_operation that supports AMI callbacks.

* Areply handler class for each interface, derived from
Messaging: :ReplyHandler.

The generated reply handler class name uses the following
convention:

AMI interface-nameHandler

For example, all send c invocations on interface LoanRates take a
reference to an instance of AMI_LoanRatesHandler as their first
argument.

The client instantiates reply handlers like any servant, and
registers them with a client-side POA. If a reply handler serves
time-independent invocations, its object reference must be
persistent.

For each sendc_invocation on the interface, the following events
occur:

1. The client supplies an object reference to the invocation’s
reply handler.

2. The invocation returns immediately to the client, which can
continue processing other tasks while it awaits a reply.

3. The reply handler is invoked when a reply is ready.

Note:A client-side POA has the same requirements as a
POA that is implemented on a server—for example, the
POAManager must be in an active state before the client
can process reply handler callbacks.

Interface-to-Reply Handler Mapping

The client can implement a reply handler for each interface. For
each interface operation and attribute, a reply handler provides
two types of operations: one to handle normal replies and another
to handle exceptions.

Orbix CORBA Programmer’s Guide C++ 229

For example, when you run the IDL compiler on interface

LoanSearch: :LoanRates (shown earlier), it generates skeleton class

LoanSearch: :AMI_LoanRatesHandler:

namespace POA LoanSearch{
class AMI LoanRatesHandler
: public POA Messaging: :ReplyHandler{

public:

I oo

virtual void get loan rate complete (

CORBA: :Float ami return val)

IT THROW DECL ((CORBA: :SystemException)) = 0;

/] ...

virtual void get loan rate excep (

Messaging: : ExceptionHolder* ami holder)

IT THROW DECL ((CORBA: :SystemException)) = 0;

}i
}

LoanRates contains only one operation, get loan rate(), which
maps to AMI operation sendc_get loan rate(). The reply handler

AMI LoanRatesHandler therefore has two operations:

® get loan rate complete() handles normal replies to
sendc_get loan rate().

®* get loan rate excep() handles exceptions that might be raised

by sendc get loan rate().

So, if the client invokes sendc get loan rate() and supplies a valid

bank name and loan type, the client ORB invokes an

implementation of AMI LoanRatesHandler::get loan rate complete ()
to handle the reply. However, if either argument is invalid, the
client ORB invokes AMI LoanRatesHandler::get loan rate excep().

Normal replies

A reply handler can contain up to three types of operations to
handle normal replies—that is, replies on invocations that raise no

exceptions:

Table 14: Reply Handler Operation Types for Normal Replies

on...

For invocations

Thereply handler uses...

Operations

An operation with the same name:

void op-name complete (
[type ami return val
[, type argument] . ..

)i

Read-only
attributes

A get operation:

void get_ attr-name (type
ami_return val) ;

Read/write
attributes

A set_operation:

void set attr-name(type attr-name) ;

230 Orbix CORBA Programmer’s Guide C++

If the operation has a return value, it is the first argument of
op-name_complete. In addition, an argument is included for each out
or inout parameter in the IDL definition. All arguments have the
same type as the original IDL. Arguments have the same order as
in the original IDL.

Exceptional replies

A reply handler can contain up to three types of operations to
handle exceptional replies:

Table 15: Reply Handler Operation Types for Exceptional Replies

For The reply handler uses...
invocations
on...
Operation void op-name excep (

Messaging: : ExceptionHolder*
ami_holder) ;

Read-only void get attr-name excep (
attribute Messaging: : ExceptionHolder*
ami_holder) ;

Read/write void set attr-name excep (
attribute Messaging: : ExceptionHolder*
ami_holder) ;

All three operations has a single argument of type

Messaging: : ExceptionHolder*, which contains the exception raised
by the original client invocation. You access this exception using
get_exception(). The call returns an any* from which the exception
can be extracted.

Implementing a Client with Reply Handlers

As shown earlier, the reply handler 2AMI_LoanRatesHandler for
interface LoanRates contains two operations to handle normal and
exceptional replies to sendc_get loan rate(). The client
implementation of this reply handler might look like this:

Figure 26: Reply handler implementation

class MyLoanRatesHandler :
public POA LoanSearch::AMI LoanRatesHandler({
public:
// handler constructor
MyLoanRatesHandler (const char *bank name,
const char *loan type)
bank name (CORBA::string dup (bank name)),
loan type (CORBA::string dup(loan type))
{1}

~MyLoanRatesHandler (void)

{1

Orbix CORBA Programmer’s Guide C++ 231

Figure 26: Reply handler implementation

// process normal replies
virtual void get loan rate complete (CORBA::Float

reply val)

{

cout << loan type
<< "loan: from "
<< bank name
<< " Current rate is "
<< reply val
<< endl;

// Decrement the number of replies still pending
replies left--;

}

// process exceptional replies
virtual void

get loan rate excep (Messaging: :ExceptionHolder*
ami holder)

}

{
CORBA: :Any* tmp = ami_ holder->get exception() ;
LoanSearch: : InvalidBank* ex invalid bank;
if ((*tmp) >>= ex invalid bank)
{
cerr << bank name
<< " is not a valid bank name."
<< endl;

}

else
{
LoanSearch: : InvalidLoan* ex invalid loan;
if ((*tmp) >>= ex invalid loan)
{
cerr << loan type
<< " ig not a valid loan type."
<< endl;

else

cerr << "get_loan rate() raised exception "
<< tmp
<< " for "
<< bank name
<< " and "
<< loan type
<< endl;

}

// Decrement the number of replies still pending
replies left--;

private:

¥

232 Orbix CORBA Programmer’s Guide C++

CORBA: :String var bank name , loan type ;

1

Given this reply handler, a client can call get_latest rates(),
which is implemented as follows:

1. The client call to get latest rates() supplies it with three
arguments: a pointer to the client ORB, an object reference to
the Loansearch object, and the desired loan type.

2. The method calls the callback operation
sendc_get loan rates() repeatedly, once for each bank. Each
call to sendc _get loan rates() supplies an
AMI LoanRatesHandler reply handler argument.

Example 27:

void get latest rates(
CORBA: :ORB_ptr,
LoanSearch: :LoanRates_ref,
CORBA: :String loan type)

// array of pointers to bank reply handlers
MyLoanRatesHandler *handlers [MAX BANKS] ;

// create object references for each reply handler
LoanSearch: :AMI_LoanRatesHandler ptr
*handler refs[MAX BANKS] ;

int 1i;

// instantiate reply handler servants
for(i = 0; i < MAX BANKS; i++)
handlers[i] = new MyLoanRatesHandler (
banks[i], loan types[i]) ;

// get object references to reply handlers
for(i = 0; i < MAX BANKS; i++)
handler refs[i] = handlers[i]-> this();

// Issue asynchronous calls via callbacks
for(i = 0; i < MAX BANKS; i++)
LoanRates ref->sendc get loan rate(
handler refs[i], banks[i], loan type) ;

Orbix CORBA Programmer’s Guide C++ 233

234 Orbix CORBA Programmer’s Guide C++

Exceptions

I mplementations of IDL operations and attributes throw exceptions to
indicate when a processing error occurs.

An IDL operation can throw two types of exceptions:

® User-defined exceptions are defined explicitly in your IDL
definitions.

* Systemexceptions are predefined exceptions that all operations
can throw.

While IDL operations can throw user-defined and system
exceptions, accessor methods for IDL attributes can only throw
system-defined exceptions.

Example IDL

This chapter shows how to throw and catch both types of
exceptions. The Bank interface is modified to include two
user-defined exceptions:

AccountNotFound is defined by find account ().

AccountAlreadyExists is defined by create _account ().

The account_id member in both exceptions indicates an invalid
account ID:

module BankDemo

{

interface Bank {
exception AccountAlreadyExists { AccountId
account id; };
exception AccountNotFound { Accountid
account id; };

Account find account (in AccountId account id)
raises (AccountNotFound) ;

Account create account (

in AccountId account id,

in CashAmount initial balance
) raises (AccountAlreadyExists) ;

}i

Orbix CORBA Programmer’s Guide C++ 235

Exception Code Mapping

The C++ mapping arranges CORBA exceptions into the hierarchy
shown in Figure 27. Abstract base class CORBA: :Exception is the
root of the hierarchy tree. Base abstract classes SystemException
and UserException derive from CORBA: :Exception and provide the
base for all concrete system and user exceptions:

CORBA::Exception

al ™

CORBA::SystemException CORBA::UserException
CORBA:: TRANSIENT Bank::AccountAlreadyExists
CORBA::OBJ ADAPTER Bank::AccountNotFound

CORBA::BAD_PARAM

Figure 27: The C++ mapping arranges exceptionsinto a hierarchy

Given this hierarchy, you can catch all CORBA exceptions in a
single catch handler. Alternatively, you can catch system and user
exceptions separately, or handle specific exceptions individually.

User-Defined Exceptions

Operations are defined to raise one or more user exceptions to
indicate application-specific error conditions. An exception
definition can contain multiple data members to convey specific
information about the error, if desired. For example, you might
include a graphic image in the exception data in order to display
an error icon.

Exception design guidelines
When you define exceptions, be sure to follow these guidelines:

Exceptions are thrown only for exceptional conditions. Do
not throw exceptions for expected outcomes. For example, a
database lookup operation should not throw an exception if a
lookup does not locate anything; it is normal for clients to
occasionally look for things that are not there. It is harder for the
caller to deal with exceptions than return values, because
exceptions break the normal flow of control. Do not force the
caller to handle an exception when a return value is sufficient.

236 Orbix CORBA Programmer’s Guide C++

Exceptions carry complete information. Ensure that
exceptions carry all the data the caller requires to handle an error.
If an exception carries insufficient information, the caller must
make a second call to retrieve the missing information. However,
if the first call fails, it is likely that subsequent calls will also fail.

Exceptions only carry useful information. Do not add
exception members that are irrelevant to the caller.

Exceptions carry precise information Do not lump multiple
error conditions into a single exception type. Instead, use a
different exception for each semantic error condition; otherwise,
the caller cannot distinguish between different causes for an error.

C++ mapping for user exceptions

When you run the IDL compiler on IDL interface Bank, it translates
user exceptions into C++ classes. For example, the compiler
translates Bank: :AccountAlreadyExists into a C++ class of the
same name:

class Bank : public virtual CORBA::Object

{

public:

class AccountAlreadyExists: public
CORBA: :UserException

{

public:

AccountAlreadyExists () ;
AccountAlreadyExists (const char*
_itfld account id);

// string manager
ITGenAccountId mgr account id;

static AccountAlreadyExists* downcast (
CORBA: : Exception* exc
)i

static const AccountAlreadyExists* downcast (
const CORBA: :Exception* exc
) 8

virtual void raise() const;

hs
The AccountAlreadyExists class is nested within class Bank. Each

C++ class that corresponds to a IDL exception has a constructor
that takes a parameter for each exception member. Because the

Orbix CORBA Programmer’s Guide C++ 237

AccountAlreadyExists exception has one AccountIid member, class
Bank: :AccountAlreadyExists has a constructor that allows it to be
initialized.

Handling Exceptions

Client code uses standard try and catch blocks to isolate
processing logic from exception handling code. You can associate
multiple catch blocks with each try block. You should write the
code so that handling for specific exceptions takes precedence
over handling for other unspecified exceptions.

This section contains the following subsections:

Handling User Exceptions page 238
Handling System Exceptions page 239
Evaluating System Exceptions page 240

Handling User Exceptions

If an operation might throw a user exception, its caller should be
prepared to handle that exception with an appropriate catch
clause.

Example 28 shows how you might program a client to catch
exceptions. In it, the handler for the AccountAlreadyExists
exception outputs an error message and exits the program. The
code follows standard C++ practice by passing the parameter to
the catch clause by reference. The operator<<() that is defined on
class systemException outputs a text description of the individual
system exception that was thrown.

Example 28: Programming a client to catch user exceptions

void
BankMenu: :do_create ()

throw (CORBA: : SystemException)
{

cout << "Enter account name: " << flush;
char name [1024] ;

cin >> name;

cout << "Enter starting balance: " << flush;
BankDemo: : CashAmount amount ;

cin >> amount;

238 Orbix CORBA Programmer’s Guide C++

Example 28: Programming a client to catch user exceptions

// try/catch to handle user exception, system
exceptions are
// handled in the main menu loop
try
{
BankDemo: :Account var account =
m_bank->create account (name, amount) ;

// start a sub-menu with the returned account
reference

AccountMenu sub menu (account) ;

sub _menu.run() ;

// _var types automatically clean up on return
// or exception

}

catch (
const BankDemo: :Bank: :AccountAlreadyExistsé&
already exists)

{

cout << "Account already exists: "
<< already exists.account_id << endl;

Handling System Exceptions

A client often provides a handler for a limited set of anticipated
system exceptions. It also must provide a way to handle all other
unanticipated system exceptions that might occur.

Precedence of exception handlers

The handler for a specific system exception must appear before
the handler for CORBA: : SystemException. C++ catch clauses are
attempted in the order specified, and the first matching handler is
called. Because of implicit casting, a handler for

CORBA: : SystemException matches all system exceptions (all system
exception classes are derived from class CORBA: : SystemException),
so it should appear after all handlers for specific system
exceptions.

If you want to know the type of system exception that occurred,
use the message output by the proprietary operator<< () function
on class CORBA: : SystemException. Handlers for individual system
exceptions are necessary only when they require a specific action.

Orbix CORBA Programmer’s Guide C++ 239

The following client code specifically tests for a CoMM FAILURE
exception; it can also handle any other system exceptions:

Example 29: Handling system exception COMM_FAILURE

void
BankMenu: :run () {
// make sure bank reference is valid
if (CORBA::is nil (m bank)) {
cout << "Cannot proceed - bank reference is nil";
1

else {
// loop printing the menu and executing selections
for (; ;) {
cout << endl;
cout << "0 - quit" << endl;
cout << "1 - create account" << endl;
cout << "2 - find account" << endl;
cout << "Selection [0-2]: " << flush;
int selection;
cin >> selection;
try {
switch (selection) ({
case 0: return;
case 1: do create(); break;
case 2: do find(); break;
}
}
catch (CORBA::COMM FAILURE& e) {
cout << "Communication failure exception: "
<< e << endl;
return;
}
catch (const CORBA::SystemException& e) {
cout << "Unexpected exception: " << e <<
endl ;
return;
}
}
}

Evaluating System Exceptions
System exceptions have two member methods, completed() and
minor (), that let a client evaluate the status of an invocation:

* completed() returns an enumerator that indicates how far the
operation or attribute call progressed.

®* minor() returns an IDL unsigned long that offers more detail
about the particular system exception that was thrown.

240 Orbix CORBA Programmer’s Guide C++

Obtaining invocation completion status

Each standard exception includes a completion status code that
takes one of the following integer values:

COMPLETED_NO: The system exception was thrown before the
operation or attribute call began to execute.

COMPLETED_YES: The system exception was thrown after the
operation or attribute call completed execution.

COMPLETED_MAYBE: It is uncertain whether or not the
operation or attribute call started to execute, and if so, whether
execution completed. For example, the status is COMPLETED MAVBE if
a client’s host receives no indication of success or failure after
transmitting a request to a target object on another host.

Evaluating minor codes

minor () returns an IDL unsigned long that offers more detail about
the particular system exception thrown. For example, if a client
catches a coMM FAILURE system exception, it can access the system
exception’s minor field to determine why this occurred

All standard exceptions have an associated minor code that
provides more specific information about the exception in
question. Given these minor codes, the ORB is not required to
maintain an exhaustive list of all possible exceptions that might
arise at runtime.

Minor exception codes are defined as an unsigned long that
contains two components:

®* 20-bit vendor minor code ID (VMCID)
* Minor code that occupies the 12 low order bits

All minor codes are based on the vendor minor code ID
(zona vMCID), which is 0x49540000. The space reserved to IONA
ends at 0x49540FFF.

The VMCID assigned to OMG standard exceptions is 0x4£4d000. You
can obtain the minor code value for any exception by OR'ing the
VMCID with the minor code for the exception in question. All minor
code definitions are associated with readable strings.

Orbix CORBA Programmer’s Guide C++ 241

Subsystem minor codes

Orbix defines minor codes within each subsystem. When an
exception is thrown, the current subsystem associates the
exception with a valid minor code that maps to a unique error
condition. Table 16 lists Orbix subsystems and base values for
their minor codes:

Table 16: Base minor code values for Orbix subsystems

Subsystem

Logging ID

Minor Code 1D

IT ACTIVATOR

IT ACTIVATOR

IONA VMCID + 0xDO0O

IT ARM

IT ARM

IONA VMCID + OxE80

IT ATLI_IOP

None

IONA VMCID + 0x440

IT ATLI MULTICAST

IT ATLI MULTICAST

IONA VMCID + 0x980

IT ATLI_SHM

IT ATLI_SHM

IONA VMCID + 0x880

IT ATLI TCP

IT ATLI TCP

IONA VMCID + 0x480

IT ATLI2 HTTP

IT ATLI2 HTTP

IONA VMCID + 0x7CO

IT ATLI2 IOP

IT ATLI2 IOP

IONA VMCID + 0x4CO0

IT ATLI2_ IP

IT ATLI2_IP

IONA VMCID + 0x3CO

IT ATLI2_ SHM

IT ATLI2 SHM

IONA VMCID + 0x5CO

IT ATLI2_ ITRP

IT ATLI2 ITRP

IONA VMCID + 0x6CO

IT ATLI2 SOAP

IT ATLI2 SOAP

IONA VMCID + OxACO

IT ATLI2 TLS

IT ATLI2 TLS

IONA VMCID + 0x7CO

IT CODESET

IT CODESET

IONA VMCID + 0x280

IT _CONFIG REP

IT _CONFIG REP

IONA VMCID + 0x140

IT Core IT CORE IONA VMCID + 0x100
IT CPLM IT CPLM IONA VMCID + 0xF40
IT CSI IT CSI IONA VMCID + 0xD80
IT Daemon IT DAEMON IONA VMCID + O0xE00
IT EGMIOP IT EGMIOP IONA VMCID + 0xC80

IT EGMIOP_ Component

IT EGMIOP COMPONENT

IONA VMCID + 0xB80

IT EVENT IT EVENT IONA VMCID + 0x2CO0
IT FPS IT FPS IONA VMCID + 0xD40
IT GIOP IT GIOP IONA VMCID + 0x200
IT GSP IT GSP IONA VMCID + 0x1CO
IT IFR IT IFR

IT IIOP IT IIOP IONA VMCID + 0x300

242 Orbix CORBA Programmer’s Guide C++

Table 16

Base minor code values for Orbix subsystems

Subsystem

Logging 1D

Minor Code 1D

IT IIOP PROFILE

IT IIOP_PROFILE

IONA VMCID + 0x400

IT IIOP TLS

IT ITIOP TLS

IONA VMCID + O0xA40

iPAS subsystems

IT iPAS *

IONA VMCID + 0x740

IT JAVA SERVER

IT JAVA SERVER

None

IT JTA IT JTA IONA VMCID + OXE40
IT _KDM IT KDM IONA VMCID + 0xC40
IT LEASE IT LEASE None

IT LOCATOR IT_TLOCATOR TONA VMCID + OxBOO

IT ManagementLogging

IT MANAGEMENT LOGGING

IONA VMCID + 0x8CO

IT MANAGEMENT MBEAN MONITOR

IT MANAGEMENT MBEAN MONITOR

IONA VMCID + 0xDCO

ING ING
IT MGMT IT_MGMT None
IT MGMT_SVC IT MGMT_SVC None
IT MVS IT MVS IONA VMCID + OxF80
IT NAMING IT NAMING IONA VMCID + OxF00

IT NodeDaemon

IT NODE_DAEMON

IONA VMCID + 0xB40

IT NOTIFICATION

IT NOTIFICATION

IONA VMCID + 0x840

IT OTS

IT OTS

IONA VMCID + 0x900

IT OTS Encina

IT OTS_ENCINA

IONA VMCID + 0x680

IT OTS Lite IT OTS_LITE IONA VMCID + OxA00
IT OTS_RRS IT OTS_RRS IONA VMCID + OxBCO
IT _OTS ™ IT OTS TM IONA VMCID + 0x580
IT POA IT POA IONA VMCID + 0x500

IT POA LOCATOR

IT POA LOCATOR

IONA VMCID + 0xCO00

IT PortableInterceptor

IT PORTABLE INTERCEPTOR

IONA VMCID + 0x540

IT PSS IT PSS IONA VMCID + 0x800
IT PSS DB IT PSS DB IONA VMCID + 0x700
IT PSS R IT PSS R IONA VMCID + 0x600
IT Rmi IT RMI IONA VMCID + OxFCO
IT SCHANNEL IT SCHANNEL None

IT SHMIOP IT SHM IOP IONA VMCID + 0x780
IT SOAP IT SOAP IONA VMCID + 0x080

IT SOAP Profile

IT SOAP_PROFILE

IONA VMCID + 0x180

Orbix CORBA Programmer’s Guide C++ 243

Table 16: Base minor code values for Orbix subsystems

Subsystem Logging ID Minor Code ID
IT TLS IT TLS IONA VMCID + 0x940
Thread/Synch Package IT TS IONA VMCID + 0x240
IT WSDL IT WSDL IONA VMCID + 0x380
IT XA IT XA IONA VMCID + 0x640
IT ZIOP IT ZIOP IONA VMCID + 0xCCO

For example, the locator subsystem defines a number of minor
codes for the BaD pArRAM standard exception. These distinguish
among the various conditions under which the locator might throw
the BAD PARAM exception.

Definitions for all subsystem minor codes can be found in the
following directory:

OrbixInstallDir/asp/Version/doc/minor codes

Note:OMG minor code constants are Orbix-specific
mappings to minor codes that are set by the OMG. If you
define minor codes for your own application, make sure
that they do not overlap the ranges that are reserved for
Orbix-defined minor codes.

Throwing Exceptions

Client code uses standard C++ syntax to initialize and throw both
user-defined and system exceptions.

This section modifies BankImpl::create account () to throw an
exception. You can implement create account () as follows:

Example 30: Throwing an exception

// create a new account given an id and initial balance
// throw AccountAlreadyExists if account already in
database

BankDemo: :Account ptr BankImpl::create account (
const char* account id,
CashAmount initial balance) throw(
CORBA: : SystemException,
BankDemo: :Bank : :AccountAlreadyExists)

// create new account in database, then return a new
// reference to that account
if (!m account db.create account (account id,

initial balance))

throw
BankDemo: :Bank: : AccountAlreadyExists (account id) ;

}

return create account ref (account id) ;

244 Orbix CORBA Programmer’s Guide C++

Exception Safety

You should be careful that your code does not throw user
exceptions that are not part of the operation’s raises expression.
Doing so can throw an UNKNOWN exception, or cause the program to
terminate abruptly.

Throwing illegal exceptions

For example, the following IDL defines operations
some_operation() and some helper () :

exception Failed {};
interface Example {
void some operation() raises(Failed) ;

exception DidntWork {};
interface Helper {

void some helper () raises(Failed, DidntWork) ;
he

The following implementation of some operation() incorrectly calls
some _helper():

void ExampleImpl::some operation ()
throw (CORBA: : SystemException, Failed) {
// do some work...
// call helper operatiomn.
Helper var help = ...;
help->some helper(); // BAD!
// do remainder of work. ..

}

At some point during runtime, some helper () is liable to throw an
exception of DidntWork back to some operation(), which is unable to
handle it, and causing the server process to die.

Catching illegal exceptions

If an operation calls helper operations on other objects, make sure
that it can handle illegal exceptions. For example, the following
example modifies some operation() so that it can translate
DidntWork into a legal exception:

void ExampleImpl::some operation ()
throw (CORBA: : SystemException, Failed) {
// do some work. ..
// call helper operation.
Helper var help = ...;
try {
help->some helper() ;
}

Orbix CORBA Programmer’s Guide C++ 245

catch (const DidntWork &) {
throw Failed; // translate into legal exception

// do remainder of work...
return;

Avoiding resource leaks

Be careful also to avoid resource leaks in the presence of
exceptions. For example, the IDL for some operation() is modified
here to return a string as an out parameter:

exception Failed {};

interface Example {
void some operation(out string s) raises(Failed) ;

The following implementation incorrectly leaks the string that is
allocated to the out parameter:

void ExampleImpl::some operation (CORBA::String out s)
throw (CORBA: : SystemException, Failed) {

// do some work to get the string value to be

returned. ..
char * str = some function();
s = CORBA::string dup(str) ; // assign out param

// call helper operation to do something else
Helper var help = ...;
try {

help->some helper() ; // memory leak!
}

catch (const DidntWork &) {
throw Failed; // memory leak!
1

// do remainder of work. ..

246 Orbix CORBA Programmer’s Guide C++

You can correct this problem by explicitly deallocating the
parameter again, as in the following example:

void ExampleImpl::some operation (CORBA::String out s)
throw (CORBA: : SystemException, Failed) {

// do some work to get the string value to be
returned. ..

char * str = some function() ;

s = CORBA::string dup(str); // assign out param

// call helper operation to do something else
Helper var help = ...;
try {
help->some helper () ;
}

catch (const DidntWork &) {
CORBA: :string free(s.ptr()); // clean up
throw Failed; // translate

}

catch (const CORBA::Exception & e) {
CORBA: :string free(s.ptr()); // clean up
throw; // rethrow

}

// do remainder of work...

)
Throwing System Exceptions

Occasionally, a server program might need to throw a system
exception. Specific system exceptions such as coMM FAILURE inherit
the systemException constructor:

class SystemException : public Exception {
public:
SystemException () ;
SystemException (const SystemException &) ;
SystemException (
ULong minor id, CompletionStatus
completed status) ;

class COMM FAILURE : public SystemException { ... };
The following code uses this constructor to throw a COMM FAILURE
exception with minor code SOCKET WRITE FAILED and completion

status COMPLETED NO:

throw CORBA::COMM FAILURE (HOST LOOKUP FAILED,
COMPLETED NO) ;

Orbix CORBA Programmer’s Guide C++ 247

248 Orbix CORBA Programmer’s Guide C++

Using Type Codes

Orbix uses type codes to describe IDL types. The IDL pseudo interface
CORBA: : TypeCode |€ts you describe and manipulate type code values.

Type codes are essential for the DIl and DSI, to specify argument
types. The interface repository also relies on type codes to
describe types in IDL declarations. In general, type codes figure
importantly in any application that handles CorBa: :Any data types.

Type Code Components

Type codes are encapsulated in CORBA: : TypeCode pseudo objects.
Each TypeCode has two components:

kind: A CORBA: :TCKind enumerator that associates the type code
with an IDL type. For example, enumerators tk_short, tk boolean,
and tk_sequence correspond to IDL types short, boolean, and
sequence, respectively.

description: One or more parameters that supply information
related to the type code’s kind. The number and contents of
parameters varies according to the type code.

* The type code description for IDL type fixed<5, 3> contains two
parameters, which specify the number of digits and the scale.

* The type code description for a string Or wstring contains a
single parameter that specifies the string’s bound, if any.

* Type codes for primitive types require no description, and so
have no parameters associated with them—for example,
tk_short and tk_long.

TCKind enumerators
The corBa: : TCkind enumeration defines all built-in IDL types:
// In module CORBA

enum TCKind {
tk_null, tk void, tk short, tk long, tk ushort,

tk ulong,

tk float, tk double, tk boolean, tk char, tk octet,
tk any,

tk TypeCode, tk Principal, tk objref, tk struct,
tk_union,

tk enum, tk string, tk sequence, tk array, tk alias,
tk except, tk longlong, tk ulonglong, tk longdouble,
tk wchar,
tk wstring, tk fixed, tk value, tk value box,
tk native,
tk_abstract interface

s
Most of these are self-explanatory—for example, a type code with

a TCKind of tk boolean describes the IDL type boolean. Some,
however, have no direct association with an IDL type:

Orbix CORBA Programmer’s Guide C++ 249

tk_alias describes an IDL type definition such as typedef string.

tk__null describes an empty value condition. For example, if you
construct an any with the default constructor, the any’'s type code
is initially set to tk null.

tk_Principal is deprecated for applications that are compliant
with CORBA 2.3 and later; retained for backward compatibility
with earlier applications that use the BOA.

tk_TypeCode describes another type code value.
tk_value describes a value type.
tk_value_box describes a value box type.

tk_void is used by the interface repository to describe an
operation that returns no value.

Table 17 shows type code parameters. The table omits type codes
with an empty parameter list.

Table 17: Type Codes and Parameters

TCKind

Parameters

tk abstract interface | repository-id, name

tk alias repository-id, name, type-code
tk array type-code, length...
tk_enum repository-id, name, { member-name }...
tk except repository-id, name,

{ member-name, member-type-code }...
tk fixed digits, scale

tk native

repository-id, name

tk objref

repository-id, name

tk sequence

element-type-code, max-length®

tk_string max-length®
tk wstring
tk struct repository-id, name,
{ member-name, member-type-code }
tk_union repository-id, name, switch-type-code, default-index,
{ member-label, member-name, member-type-code }...
tk value repository-id, name, type-modifier, type-code,

{ member-name, member-type-code, visibility }...

tk value box

repository-id, name,
{ member-name, member-type-code} ...

a. For unbounded sequences, strings, and wstrings, thisvalueis0

250 Orbix CORBA Programmer’s Guide C++

Type Code Operations

The CORBA: : TypeCode interface provides a number of operations
that you can use to evaluate and compare TypeCode Objects. These
operations can be divided into two categories:

* Genera type code operations that can be invoked on all TypeCode
objects.

* Type-specificoperations that are associated with TypeCode objects of
a specific TCKind, and raise a Badkind exception if invoked on
the wrong type code.

General Type Code Operations

The following operations are valid for all TypeCode oObjects:
* equal(), equivalent()

* get_compact_typecode()

e kind()

equal(), equivalent()

boolean equal(in TypeCode tc);

boolean equivalent (in TypeCode tc);

equal () and equivalent () let you evaluate a type code for equality
with the specified type code, returning true if they are the same:

equal () requires that the two type codes be identical in their
TCKind and all parameters—member names, type names,
repository IDs, and aliases.

equivalent() resolves an aliased type code (TCKind = tk_alias) to
its base, or unaliased type code before it compares the two type
codes’ TCKind parameters. This also applies to aliased type codes
of members that are defined for type codes such as tk struct.

For both operations, the following parameters are always
significant and must be the same to return true:

* Number of members for TCKinds of tk_enum, tk excep,
tk_struct, and tk union.

* Digits and scale for tk_fixed type codes.

* The value of the bound for type codes that have a bound
parameter—tk_array, tk_sequence, tk string and tk wstring.

* Default index for tk_union type codes.

* Member labels for tk union type codes. Union members must
also be defined in the same order.

Both equal () and equivalent () can take a type code constant as an
argument—for example, tc short or tc float for IDL types short
or float respectively. For more information about type code
constants, see page 255.

Orbix CORBA Programmer’s Guide C++ 251

You must use equal () and equivalent () to evaluate a type code.
For example, the following code is illegal:

CORBA: :Any another any;
another any <<= "Hello world";
CORBA: : TypeCode ptr t = another any.type();

if (t == CORBA:: tc string) { ... } // Bad code!!
You can correct this code as follows:

CORBA: :Any another any;

another any <<= "Hello world";
CORBA: : TypeCode ptr t = another any.type();

// use equal or equivalent to evaluate type code

if (t->equivalent (CORBA:: tc string)) { ... }
if (t->equal (CORBA:: tc string)) { ... }

get_compact_typecode()

kind()

TypeCode get compact typecode () ;

get_compact_typecode () removes type and member names from a
type code. This operation is generally useful only to applications
that must minimize the size of type codes that are sent over the
wire.

TCKind kind() ;

kind () returns the TCKind of the target type code. You can call
kind () on a TypeCode to determine what other operations can be
called for further processing—for example, use the TCKind return
as a switch discriminator:

CORBA: :Any another any = ...;
CORBA: : TypeCode var t = another any.type();

switch (t->kind()) {
case CORBA::tk short:

case CORBA::tk long:

// continue for all tk values
default:

252 Orbix CORBA Programmer’s Guide C++

Type-Specific Operations

Table 18 shows operations that can be invoked only on certain
type codes. In general, each operation gets information about a
specific type-code parameter. If invoked on the wrong type code,
these operations raise an exception of Badkind.

Table 18: Type-Specific Operations

TCKind Operations

tk alias id()
name ()
content type ()

tk array length ()
content type ()

tk enum id()

name ()

member count ()
member name ()

tk except id ()

name ()

member count ()
member name ()
member type ()

tk fixed fixed digits()
fixed scale()

tk native id()
name ()

tk objref id()
name ()

tk sequence length()

content type ()

tk string length ()

tk wstring

tk struct id()
name ()

member count ()
member name ()
member_type ()

tk union id ()

name ()

member count ()
member name ()
member label ()
discriminator type ()
default index()

Orbix CORBA Programmer’s Guide C++ 253

Table 18: Type-Specific Operations

TCKind

Operations

tk value

id()

name ()

member count ()
member name ()

member type ()

type modifier ()
concerte base type ()
member visibility ()

tk value box

id ()
name ()
member name ()

Table 19 briefly describes the information that you can access
through type code-specific operations. For detailed information
about these operations, see the CORBA Programmer’s Reference.

Table 19: Information Obtained by Type-Specific Operations

Operation

Returns:

concrete base type ()

Type code of the concrete base for
the target type code; applies only to
value types.

content type ()

For aliases, the original type. For
sequences and arrays, the specified
member’s type.

default index()

Index to a union’s default member. If
no default is specified, the operation
returns -1.

discriminator type ()

Type code of the union’s
discriminator.

fixed digits()

Number of digits in a fixed-point type
code.

fixed scale()

Scale of a fixed-point type code.

id()

Type code’s repository ID.

length()

Value of the bound for a type code
with TCKind of tk string, tk wstring,
tk sequence, Or tk array.

member count ()

Number of members in the type
code.

member label ()

An any value that contains the value
of the union case label for the
specified member.

254 Orbix CORBA Programmer’s Guide C++

Table 19: Information Obtained by Type-Specific Operations

Operation

Returns:

member name ()

Name of the specified member. If the
supplied index is out of bounds
(greater than the number of
members), the function raises the
TypeCode: :Bounds exception.

member type ()

Type code of the specified member.
If the supplied index is out of bounds
(greater than the number of
members), the function raises the
TypeCode: :Bounds exception.

member visibility ()

The visibility (PRIVATE MEMBER OF
PUBLIC MEMBER) Of the specified
member.

name ()

Type code’s user-assigned unscoped
name.

type modifier ()

Value modifier that applies to the
value type that the target type code
represents.

Type Code Constants

Orbix provides type code constants that you can use to evaluate
and compare type code objects:

* Built-in type code constants are provided for each TCKind
enumerator (see page 249).

* User-defined type code constants are generated by the IDL
compiler for IDL types that you declare in your application

code.

Built-in type code constants

Orbix provides predefined CORBA: : TypeCode oObject reference
constants that let you access type codes for standard types.

CORBA:: tc_any
CORBA:: tc boolean
CORBA:: tc_char
CORBA:: tc double
CORBA:: tc float
CORBA:: tc_long
CORBA:: tc longdouble
CORBA:: tc longlong
CORBA:: tc null
CORBA::_ tc_octet
CORBA:: tc_short

CORBA::_tc_string
CORBA:: tc ulong
CORBA:: tc ulongl
ong
CORBA:: tc_ushort
CORBA::_tc void
CORBA: :_tc_wchar
CORBA:: tc wstrin
g
CORBA::_tc_Object
CORBA::_ tc TypeCo
de
CORBA: :_tc_ValueB
ase

Orbix CORBA Programmer’s Guide C++ 255

User-defined type code constants

The IDL compiler generates type code constants for declarations
of these types:

interface

typedef

struct

union

enum

valuetype

valuebox

For each user-defined type that is declared in an IDL file, the IDL
compiler generates a CORBA: : TypeCode ptr that points to a type
code constant. These constants have the format _tc type wWhere
type IS the user-defined type. For example, given the following
IDL:

interface Interesting {
typedef long longType;
struct Useful

{
}i

longType 1;
s

the IDL compiler generates the following CORBA: : TypeCode ptr
constants:

® tc Interesting
o Interesting:: tc longType
® Interesting:: tc Useful

256 Orbix CORBA Programmer’s Guide C++

Using the Any Data
Type

IDL’s any type lets you specify values that can express any IDL type.

This allows a program to handle values whose types are not
known at compile time. The any type is most often used in code
that uses the interface repository or the dynamic invocation
interface (DII).

IDL-C++ mapping

The IDL any type maps to the C++ CORBA: :Any class. Conceptually,
this class contains the following two instance variables:

type is a TypeCode object that provides full type information for the
value contained in the any. The any class provides a type () method
to return the TypeCode object.

value is the internal representation used to store any values and
is accessible via standard insertion and extraction methods.

For example, the following interface, anyDemo, contains an
operation that defines an any parameter:

// IDL

interface AnyDemo {
// Takes in any type that can be specified in IDL
void passSomethingIn (in any any type parameter) ;

// Passes out any type specified in IDL
any getSomethingBack () ;

}i

Given this interface, a client that calls passSomethingIn () constructs
an any that specifies the desired IDL type and value, and supplies
this as an argument to the call. On the server side, the AnyDemo
implementation that processes this call can determine the type of
value the any stores and extract its value.

Inserting Typed Values Into Any

The insertion operator <<= lets you set an any’s value and data
type. The insertion operator sets a CORBA: :Any value and its data
type property (CORBA: : TypeCode). Thus set, you can extract an any’s
value and data type through the corresponding extraction
operator (see page 259).

Orbix CORBA Programmer’s Guide C++ 257

Type-specific insertion operator
functions

The C++ class COrBA: :Any contains predefined overloaded versions
of the insertion operator function operator<<=(). Orbix provides
insertion operator functions for all IDL types that map
unambiguously to C++ types, such as long, float, or unbounded
string. For a full listing of these functions and their data types,
refer to CORBA: :Any: :operator<<=(). The IDL compiler also
generates an insertion operator for each user-defined type.

For example, CORBA: :Any contains the following insertion operator
function for short data types:
void operator<<=(CORBA: :Short s);

Given this function, you can use the insertion operator to supply a
short data type to passSomethingIn() as follows:

void AnyDemo: :do_send short () {
try {

AnyDemo var X = ...;
CORBA: :Any a;
CORBA: : Short toPass;
toPass = 26;
a <<= toPass;
X->passSomethingIn (a) ;

}

catch (CORBA::SystemException &sysEx) {

Type safety

Insertion operators provide a type-safe mechanism for inserting
data into an any. The type of value to insert determines which
insertion operator is used. Attempts to insert a value that has no
corresponding IDL type yield compile-time errors.

Memory management of inserted data

Depending on the type of the data, insertion using an
operator<<=() has one of the following effects:

®* duplicate() is called on an object reference.
®* add ref() is called on a valuetype.
* adeep copy is made for all other data types.

When the any is subsequently destroyed, the any destructor
performs one of the following actions, depending on the
Any.type () field:

®* CORBA::release() is called on an object reference.
* remove ref () is called on a valuetype.
®* delete is called on all other data types.

258 Orbix CORBA Programmer’s Guide C++

Inserting user-defined types

The IDL shown earlier can be modified to include this typedef
declaration:

// IDL

typedef sequence<long> LongSequence;

Given this statement, the IDL compiler generates the following
insertion operator function for LongSequence data types:

void operator<<=(CORBA::Any& a, const LongSequence& t) ;

Clients that call passSomethingIn() can use the insertion operator
to insert LongSequence data into the function’s any parameter:

Example 31: Inserting user-defined type

void AnyDemo::do send sequence () {

try {
CORBA: :Any a;

// Build a sequence of length 2
LongSequence sequence to insert(2);
sequence to insert.length(2) ;

// Initialize the sequence values
sequence to insert[0] = 1;
sequence to insert[1l] = 2;

// Insert sequence into the any
a <<= sequence to insert;

// Call passSomethingIn and supply any data as
argument
m_any demo->passSomethingIn (a);
}

catch (CORBA::SystemException &sysEx) {

3
}

Extracting Typed Values From Any

The extraction operator >>= lets you get the value that a

CORBA: :Any contains and returns a CORBA: :Boolean: true (1) if the
any’s TypeCode matches the extraction operation’s target
operand, or false (0) if a mismatch occurs.

Type-specific extraction operator
functions

The C++ class COrBA: :Any contains predefined overloaded versions
of the extraction operator function cperators>>=(). Orbix provides
extraction operator functions for all IDL types that map
unambiguously to C++ types, such as long, float, or unbounded
string. For a full listing of these functions and their data types,
refer to CORBA: :Any: :operator>>=(). The IDL compiler also
generates an extraction operator for each user-defined type.

Orbix CORBA Programmer’s Guide C++ 259

For example, CORBA: :Any contains the following extraction operator
function for short data types:

CORBA: :Boolean operators>>=(CORBA::Shorté& s) const;

Given this function, a server implementation of passSomethingIn ()
can use the extraction operator to extract a short from the
function’s parameter anyIn:

void AnyDemo i::passSomethingIn(const CORBA::Any& anyIn)

{

CORBA: :Short toExtract = 0;

if (anyIn >>= toExtract) {
// Print the value
cout << "passSomethingIn() returned a string:"
<< toExtract << endl << endl;

}

else {
cerr << "Unexpected value contained in any" <<
endl ;

}

Memory management of extracted data

When a user-defined type is extracted from an any, the data is not
copied or duplicated in any way. The extracted data is, therefore,
subject to the following restrictions:

. No modifications to the extracted data are allowed. The
extracted data is read-only.

¢ Deallocation of the extracted data is not allowed. The any
retains ownership of the data.

To overcome the restrictions on extracted data, you must
explicitly make a copy of the data and modify the new copy
instead.

Extracting user-defined types

More complex, user-defined types can be extracted with the
extraction operators generated by the IDL compiler. For example,
the IDL shown earlier can be modified to include this typedef
declaration:

// IDL
typedef sequence<long> LongSequence;

Given this statement, the IDL compiler generates the following
extraction operator function for LongSequence data types:

CORBA: :Boolean operator >>= (CORBA::Any& a,
LongSequence*& t) const;

260 Orbix CORBA Programmer’s Guide C++

The generated extraction operator for user-defined types takes a
pointer to the generated type as the second parameter. If the call
to the operator succeeds, this pointer points to the memory
managed by the CORBA: :Any. Because a CORBA: :Any manages this
memory, it is not appropriate to extract its value into a _var
variable—attempting to do so results in a compile-time error.

You can extract a LongSequence from a CORBA: :Any as follows:
Example 32: Extracting a LongSequence

void AnyDemo::do get any() {
CORBA: :Any var a;
cout << "Call getSomethingBack" << endl;
a = m_any demo->getSomethingBack() ;

LongSequence* extracted sequence = 0;

if (a >>= extracted sequence) ({
cout << "returned any contains sequence with value

<< endl;
print sequence (extracted sequence) ;

}

else {
cout << "unexpected value contained in any" <<
endl ;

}

Note:It is an error to attempt to access the storage
associated with a COrReA: :Any after the CORBA: : Any variable
has been deallocated.

Inserting and Extracting Booleans, Octets, Chars

and WChars

Orbix’s IDL to C++ mapping for IDL types char, wchar, boolean and
octet prevents the overloaded insertion and extraction operators

from distinguishing between these four data types. Consequently,
you cannot use these operators directly to insert and extract data
for these three IDL types.

The CORBA: :Any class contains a set of insertion and extraction
operator functions that use helper types for char, wchar, boolean,
and octet types:

void operator<<=(CORBA::Any::from char c);
void operator<<=(CORBA::Any::from wchar wc) ;
void operator<<=(CORBA::Any::from boolean b) ;
void operator<<=(CORBA::Any::from octet o) ;

Boolean operator>>=(CORBA::Any::to char c) const;
Boolean operator>>=(CORBA: :Any::to wchar wc) const;
Boolean operator>>=(CORBA::Any::to boolean b) const;
Boolean operator>>=(CORBA::Any::to octet o) const;

Orbix CORBA Programmer’s Guide C++ 261

You can use these helper types as in the following example:
Example 33: Inserting and extracting boolean types
CORBA: :Any a;

// Insert a boolean into CORBA::Any a
CORBA: :Boolean b = 1;
a <<= CORBA::Any: :from boolean (b) ;

// Extract the boolean

CORBA: :Boolean extractedValue;

if (a >>= CORBA::Any::to boolean (extractedvalue)) {
cout << "Success!" << endl;

}

Inserting and Extracting Array Data

IDL arrays map to regular C++ arrays. Because arrays can have
different lengths and an array variable points only to the array’s
first element, the IDL compiler generates a distinct C++ type for
each IDL array. The type name is concatenated from the array
name and the suffix forany.

For example, the IDL shown earlier can be modified to include this
two-dimensional array definition:

// IDL

typedef long longArray[2] [2];

Given this typedef statement, the IDL compiler generates a
longArray forany type. The following example shows how to use
insertion and extraction operators to move data between this type
and a CORBA: :Any:

Example 34: Inserting and extracting array data
longArray m array = { {14, 15}, {24, 25} };

// Insertion
CORBA: :Any a;
a <<= longArray forany(m array) ;

// Extraction
longArray forany extractedvalue;
if (a >>= extractedvalue)
cout << "Element [1]([2] is "
<< extractedvalue[1] [2] << endl;

}

Like array var types, forany types provide an operator(] ()
function to access array members. However, when a _forany type
is destroyed, the storage that is associated with the array remains
intact. This is consistent with the behavior of the extraction
operator >>=, where the COrBA: :Any retains ownership of the
memory that the operator returns. Thus, the previous code is safe
from memory leaks.

262 Orbix CORBA Programmer’s Guide C++

Inserting and Extracting String Data

Helper types are also provided for insertion and extraction of
string and wstring types.

Inserting strings

The from string and from wstring struct types are used in
combination with the insertion operator >>= to insert strings and
wide strings. Two constructors are provided for the from string

type:

CORBA: :Any: : from string(
char* s,
CORBA: :ULong b,
CORBA: :Boolean nocopy = 0

)
CORBA: :Any: : from string(const char* s, CORBA::ULong b)

The constructor parameters can be explained as follows:
s IS a pointer to the string to be inserted.
b specifies the bound of a bounded string (0 implies unbounded).

nocopy specifies whether the string is copied before insertion (0
implies copying, 1 implies no copying and adoption).
Analogous constructors are provided for the from wstring type:

CORBA: :Any: : from wstring(
CORBA: :WChar* s,
CORBA: :ULong b,
CORBA: :Boolean nocopy = 0

)
CORBA: :Any: : from wstring(const CORBA::WChar* s,

CORBA: :ULong b)

Examples of inserting bounded and unbounded string types are
shown in the following code:

Example 35: Inserting bounded and unbounded strings

// Insert a copy of an unbounded string, ’string’.
CORBA: :Any al;

al <<= CORBA::Any::from string ("Unbounded string", O0);
// Insert a copy of a bounded string, ’string<l100>’.

CORBA: :Any a2;
a2 <<= CORBA::Any::from string("Bounded string", 100);

Orbix CORBA Programmer’s Guide C++ 263

Example 35: Inserting bounded and unbounded strings

// Insert an unbounded string, ‘string’, passing

// ownership to the ’CORBA::Any’ .

CORBA: :Any a3;

char * unbounded = CORBA::string dup ("Unbounded string") ;
a3 <<= CORBA::Any::from string(unbounded, 0, 1);

// Insert a bounded string, ‘string<l00>’, passing

// ownership to the ’CORBA::Any’ .

CORBA: :Any a4;

char * bounded = CORBA::string dup ("Bounded string") ;

a3 <<= CORBA::Any::from string(bounded, 100, 1);

Insertion of wide strings is performed in an analogous manner
using the CORBA: :Any: : from wstring type.

Extracting strings

The to_string and to _wstring struct types are used in combination
with the extraction operator >>= to extract strings and wide
strings. One constructor is provided for the to_string type:

CORBA: :Any: :to string(const char*& s, CORBA::ULong b);
The constructor parameters can be explained as follows:

s is a place holder that will point to the extracted string after a
successful extraction is made.

b specifies the bound of a bounded string (0 implies unbounded).
An analogous constructor is provided for the to wstring type:

CORBA: :Any: :to wstring(const CORBA::WChar*& s,
CORBA: :ULong b) ;

Examples of extracting bounded and unbounded string types are
shown in the following code:

Example 36: Extracting bounded and unbounded strings

// Extract an unbounded string, ‘string’.

CORBA: :Any al;

const char * readonly s;

if (al >>= CORBA::Any::to string(readonly s, 0)) {
// process string, ’‘readonly s’

}

// Extract a bounded string, ’string<l00>’.

CORBA: :Any az2;

const char * readonly bs;

if (a2 >>= CORBA::Any::to string(readonly bs, 100)) {
// process bounded string, ‘readonly bs’

}

264 Orbix CORBA Programmer’s Guide C++

Extraction of wide strings is performed in an analogous manner
using the CORBA: :Any: :to wstring type.

Inserting and Extracting Alias Types

The insertion and extraction operators <<= and >>= are invalid for
alias types. An alias type is a type defined using a typedef.

For example, a bounded string alias is a type defined by making a
typedef of a bounded string:

//IDL
typedef string<100> BoundedString;

This is mapped by the IDL compiler to a C++ typedef as follows:

// Stub code generated by the IDL compiler.
typedef char* BoundedString;

A C++ alias, such as Boundedstring, cannot be used to distinguish
an overloaded operator because it is not a distinct C++ type. This
is the reason why the <<= and >>= operators cannot be used with
alias types.

Inserting alias types

The Boundedstring alias type can be inserted into an any as follows:
Example 37: Inserting an alias type

CORBA: :Any a;
BoundedString bs = "Less than 100 characters.";

1 a <<= CORBA::Any::from string(bs, 100);
2 a.type(_tc BoundedString); // Correct the type code!

The code executes as follows:

1. The data is inserted using the <<= operator and the
from string helper type. Initially, the Any’s type code is set
equal to that of a bounded string with bound 100 (the type
code for string<100>). There is no type code constant available
for the string<100> type—the <<= operator creates one on the
fly and uses it.

2. CORBA::Any::type () corrects the Any’s type code, setting it
equal to the tc BoundedString type code.

It is not permissible to use type () to reset the type code to
arbitrary values—the new type code must be equivalent to the
old one. Attempting to reset the type code to a non-equivalent
value raises the BAD TYPECODE System exception.

For example, calling type () with the tc BoundedString
argument succeeds because the BoundedString type is
equivalent to the string<100> type.

Orbix CORBA Programmer’s Guide C++ 265

2

Extracting alias types

The BoundedString alias type can be extracted from an any as
follows:

Example 38: Extracting an alias type

CORBA: :Any a;
// The any ’‘a’ is initialized with a ’BoundedString’ alias
// (as shown previously)

// Extract the ’'BoundedString’ type
const char * bs;
if (a >>= CORBA::Any::to string(bs, 100)) {
cout << "Bounded string is: \"" << bs << "\"" << endl;
}

1. The pointer to receive the extracted value, bs, is declared as

const char*. You cannot declare bs as const BoundedString
because that means a const pointer to char, or char* const

which is not the same as const char* (pointer to const char).

2. The to_string constructor manufactures a type code for a

string<100> bounded string and compares this type with the

Any’s type code. If the type codes are equivalent, the
extraction succeeds.

Querying a CORBA::Any’s Type Code

Type code operations are commonly used to query a CORBA: :Any
for its type at runtime. For example, given this interface
definition:

// IDL
struct Example {
long 1;

Vi

the IDL compiler generates the CORBA: : TypeCode ptr constant
_tc Example.

Assuming this interface definition:
// IDL
interface Bar {
void op(in any a);
T
a client might invoke operation op () as follows:
// Client code
Bar var bvVar;

CORBA::Any a = ... ; // somehow initialize

bvar-s>op(a) ;

266 Orbix CORBA Programmer’s Guide C++

The server can then query the actual type of the parameter to op ()
as follows:

Example 39: Querying a Any's type code

// Server code
void Bar i::op(const CORBA::Any& a) {
CORBA: : TypeCode var t (a->type());
if (t->equivalent (_tc Example))
cerr << "Don’t like struct Example!" << endl;
1

else... // Continue processing here.

Using DynAny Objects
The pynany interface allows applications to compose and
decompose any type values dynamically. With bynany, you can
compose a value at runtime whose type was unknown when the
application was compiled, and transmit that value as an any.
Conversely, an application can receive a value of type any from an
operation, and interpret its type and extract its value without
compile-time knowledge of its IDL type.

Interface hierarchy

The Dynany API consists of nine interfaces. One of these, interface
DynAnyFactory, lets you create Dynany objects. The rest of the
DynAny API consists of the Dynany interface itself and derived
interfaces, as shown in Figure 28.

DynFixed
DynStruct
DynSequence
DynArray
DynUnion
DynEnum
DynValue
DynValueBox

DynAny: :

Figure 28: Interfaces that derive from the DynAny interface

The derived interfaces correspond to complex, or constructed IDL
types such as array and struct. Each of these interfaces contains
operations that are specific to the applicable type.

The Dynany interface contains a number of operations that apply to
all bynany objects; it also contains operations that apply to basic
IDL types such as long and string.

The DynStruct interface is used for both IDL struct and exception
types.

Orbix CORBA Programmer’s Guide C++ 267

Generic operations

The DynaAny interface contains a number of operations that can be
invoked on any basic or constructed Dynany object:

interface DynAny {
exception Invalidvalue({}

exception TypeMisMatch {};
/] ...

void assign(in DynAny dyn any) raises (TypeMismatch) ;

DynAny copy () ;
void destroy () ;

boolean equal (in DynAny da) ;

void from any(
in any value) raises (TypeMismatch, Invalidvalue) ;
any to any() ;

CORBA: : TypeCode type () ;
/] ...
Vi

assign() initializes one Dynany object’s value from another. The
value must be compatible with the target pynany’s type code;
otherwise, the operation raises an exception of TypeMismatch.

copy() creates a Dynany whose value is a deep copy of the source
DynAny’s value.

destroy() destroys a DynaAny and its components.

equal() returns true if the type codes of the two pynany objects
are equivalent and if (recursively) all component Dynany objects
have identical values.

from_any() initializes a bynany object from an existing any object.
The source any must contain a value and its type code must be
compatible with that of the target Dynany; otherwise, the operation
raises an exception of TypeMismatch.

to_any() initializes an any with the pynany’s value and type code.
type() obtains the type code associated with the bynany object. A

DynAny Object’s type code is set at the time of creation and remains
constant during the object’s lifetime.

268 Orbix CORBA Programmer’s Guide C++

Creating a DynAny

The DynAnyFactory interface provides two creation operations for
DynAny objects:

module DynamicAny {
interface DynAny; // Forward declaration

/...
interface DynAnyFactory

{

exception InconsistentTypeCode {};

DynAny create dyn any(in any value)
raises (InconsistentTypeCode) ;
DynAny create dyn any from type code (in
CORBA: : TypeCode type)
raises (InconsistentTypeCode) ;
s

hs

Create operations

The create operations return a DynAny object that can be used to
manipulate any objects:

create_dyn_any() is a generic create operation that creates a
DynAny from an existing any and initializes it from the any’s type
code and value.

The type of the returned bynany object depends on the any’s type
code. For example: if the any contains a struct, create dyn any ()
returns a DynStruct object.

create_dyn_any_from_type_ code() creates a bynany from a
type code. The value of the bDynany is initialized to an appropriate
default value for the given type code. For example, if the bynany is
initialized from a string type code, the value of the Dynany is
initialized to " (empty string).

Returned types

The type of the returned bynany object depends on the type code
used to initialize it. For example: if a struct type code is passed to
create dyn any from type code (), a DynStruct object is returned.

If the returned Dynany type is one of the constructed types, such
as a DynStruct, you can narrow the returned pynany before
processing it further.

Orbix CORBA Programmer’s Guide C++ 269

create_dyn_any()

create dyn any() is typically used when you need to parse an any
to analyze its contents. For example, given an any that contains an
enum type, you can extract its contents as follows:

Example 40: Creating a DynAny

//C++
#include <omg/DynamicAny.hh>

/] ..
void get any val (const CORBA::Any& a) {

// Get a reference to a ’‘DynamicAny::DynAnyFactory’
object
CORBA: :Object var obj =

global orb->resolve initial references ("DynAnyFactory"
)
DynamicAny: :DynAnyFactory var dyn fact =
DynamicAny: :DynAnyFactory: : narrow (obj) ;
if (CORBA::is nil(dyn fact)) ({
// error: throw exception
}

// Get the Any’s type code
CORBA: : TypeCode var tc = a.type();
switch (tc->kind()) {
/] ...
case CORBA::tk enum: {
DynamicAny: :DynAny var da =
dyn fact->create dyn any(a) ;
DynamicAny: :DynEnum var de =
DynamicAny: :DynEnum: : narrow (da) ;
//

de->destroy () ;

}

break;

}

The code executes as follows:

1.

Call resolve initial references ("DynAnyFactory") to obtain an
initial reference to the DynanyFactory object.

It is assumed that global orb refers to an existing CORBA: :ORB
object that has been initialized prior to this code fragment.
Narrow the CORBA: :Object ptr object reference to the
DynamicAny: :DynAnyFactory ptr type before it is used.

Analysis of a type code is begun by branching according to the
value of its kind field. A general purpose subroutine for
processing Dynanys would require case statements for every
possible IDL construct. Only the case statement for an enum is
shown here.

The Dynany created in this step is initialized with the same type
and value as the given CORBA: :Any data type.

270 Orbix CORBA Programmer’s Guide C++

Because the any argument of create dyn any() contains an
enum, the return type of create dyn any() is

DynamicAny: :DynEnum ptr. The return value can therefore be
narrowed to this type.

4. destroy() must be invoked on the bynany object when you are
finished with it.

create_dyn_any from_type_ code()

create dyn any from type code () is typically used to create an any
when stub code is not available for the particular type.

For example, consider the IDL string<128> bounded string type. In
C++ you can insert this anonymous bounded string using the
CORBA: :Any: : from string helper type. Alternatively, you can use
the DynamicaAny programming interface as follows:

Example 41: Inserting an anonymous bounded string.

//C++
#include <omg/DynamicAny.hh>
/...
// Get a reference to a ’‘DynamicAny::DynAnyFactory’
object
1 CORBA::Object var obj

global orb->resolve initial references ("DynAnyFactory"
¥
DynamicAny: :DynAnyFactory var dyn fact
= DynamicAny: :DynAnyFactory:: narrow (obj) ;
if (CORBA::is nil (dyn fact)) {
// error: throw exception
}

// Create type code for an anonymous bounded string type
CORBA: :ULong bound = 128;
2 CORBA::TypeCode var tc v =
global orb->create string tc (bound) ;

// Initialize a ’'DynAny’ containing a bounded string
3 DynamicAny::DynAny var dyn bounded str
= dyn fact->create dyn any from type code(tc v);
4 dyn bounded str->insert string("Less than 128
characters.") ;

// Convert ’'DynAny’ to a plain ’any’
5 CORBA::Any var a = dyn bounded str->to any();
Moo

// Cleanup ’DynAny’
6 dyn bounded str->destroy() ;

The code executes as follows:

1. The initialization service gets an initial reference to the
DynAnyFactory object by calling
resolve initial references ("DynAnyFactory")
It is assumed that global orb refers to an existing CORBA: :ORB
object that has been initialized prior to this code fragment.

Orbix CORBA Programmer’s Guide C++ 271

6.

7.

The plain CorBA: :Object ptr object reference must be
narrowed to the DynamicAny: :DynAnyFactory ptr type before it
is used.

The CORBA: :ORB class supports a complete set of functions for
the dynamic creation of type codes. For example,

create string tc() creates bounded or unbounded string type
codes. The argument of create string tc() can be non-zero,
to specify the bound of a bounded string, or zero, for
unbounded strings.

A DynaAny object, called dyn bounded str, is created using
create dyn any from type code (). The dyn bounded str is
initialized with its type equal to the given bounded string type
code, and its value equal to a blank string.

The value of dyn bounded str is set equal to the given
argument of the insert string() operation. Insertion
operations, of the form insert BasicType, are defined for all
basic types as described in “Accessing basic DynAny values”
on page 272.

The dyn bounded str object is converted to a plain any that is
initialized with the same type and value as the Dynany.

destroy () must be invoked on the bynany object when you are
finished with it.

Note:A pynany object’s type code is established at its
creation and cannot be changed thereafter.

Inserting and Extracting DynAny Values

The

interfaces that derive from Dynany such as DynaArray and

DynStruct handle insertion and extraction of any values for the
corresponding IDL types. The pynany interface contains insertion

and

extraction operations for all other basic IDL types such as

string and long.

Ac

The

cessing basic DynAny values

DynAny interface contains two operations for each basic type

code, to insert and extract basic Dynany values:+

272 Orbix CORBA Programmer’s Guide C++

An insert operation is used to set the value of the pynany. The
data being inserted must match the bynany’s type code.

The TypeMismatch exception is raised if the value to insert does
not match the pynany’'s type code.

The Invalidvalue exception is raised if the value to insert is
unacceptable—for example, attempting to insert a bounded
string that is longer than the acceptable bound. The
Invalidvalue exception is also raised if you attempt to insert a
value into a bynany that has components when the current
position is equal to -1. See “Iterating Over DynAny
Components” on page 276.

Each extraction operation returns the corresponding IDL type.

The DynamicAny: :DynAny: : TypeMismatch exception is raised if the
value to extract does not match the bynany’s type code.

The DynamicAny: :DynAny: : Invalidvalue exception is raised if
you attempt to extract a value from a Dynany that has
components when the current position is equal to -1. See
“Iterating Over DynAny Components” on page 276.

It is generally unnecessary to use a DynAny object in order to
access any values, as it is always possible to access these values
directly (see page 257 and see page 259). Insertion and
extraction operations for basic bynany types are typically used in
code that iterates over components of a constructed Dynany, in
order to compose and decompose its values in a uniform way
(“Accessing Constructed DynAny Values”).

The IDL for insertion and extraction operations is shown in the
following sections.

Insertion Operations

The pynany interface supports the following insertion operations:

void insert boolean (in boolean value)

raises (TypeMismatch, Invalidvalue) ;
void insert octet (in octet value)

raises (TypeMismatch, Invalidvalue) ;
void insert char(in char value)

raises (TypeMismatch, InvalidValue) ;
void insert_short (in short value)

raises (TypeMismatch, Invalidvalue) ;
void insert ushort (in unsigned short value)

raises (TypeMismatch, Invalidvalue) ;
void insert long(in long value)

raises (TypeMismatch, InvalidValue) ;
void insert ulong(in unsigned long value)

raises (TypeMismatch, Invalidvalue) ;
void insert float (in float value)

raises (TypeMismatch, Invalidvalue) ;
void insert double (in double value)

raises (TypeMismatch, InvalidValue) ;
void insert string(in string value)

raises (TypeMismatch, Invalidvalue) ;
void insert reference (in Object value)

raises (TypeMismatch, Invalidvalue) ;
void insert typecode (in CORBA::TypeCode value)

raises (TypeMismatch, InvalidValue) ;
void insert longlong(in long long value)

raises (TypeMismatch, Invalidvalue) ;
void insert ulonglong(in unsigned long long value)

raises (TypeMismatch, Invalidvalue) ;
void insert longdouble (in long double value)

raises (TypeMismatch, InvalidvValue) ;
void insert wchar (in wchar value)

raises (TypeMismatch, InvalidValue) ;
void insert wstring(in wstring value)

raises (TypeMismatch, Invalidvalue) ;
void insert any(in any value)

raises (TypeMismatch, InvalidValue) ;
void insert dyn any(in DynAny value)

raises (TypeMismatch, InvalidvValue) ;
void insert val (in ValueBase value)

raises (TypeMismatch, Invalidvalue) ;

Orbix CORBA Programmer’s Guide C++ 273

For example, the following code fragment invokes insert string()
on a DynAny to create an any value that contains a string:

Example 42: Creating an any with insert_string()

#include <omg/DynamicAny.hh>

/...

// Get a reference to a ’‘DynamicAny: :DynAnyFactory’
object

CORBA: :Object var obj

global orb->resolve initial references ("DynAnyFactory"
)i
DynamicAny: :DynAnyFactory var dyn fact
= DynamicAny: :DynAnyFactory:: narrow (obj) ;
if (CORBA::is nil(dyn fact)) {
// error: throw exception
}

// create DynAny with a string value
DynamicAny: :DynAny var dyn a;
dyn a = dyn fact->create dyn any from type code (
CORBA:: tc string
)i
dyn a->insert string("not to worry!");

// convert DynAny to any
CORBA: :Any var a;

a = dyn a->to any() ;

// ...

// destroy the DynAny
dyn a->destroy () ;

Extraction Operations

The IDL extraction operations supported by the DynAny interface

are:
boolean get boolean ()

raises (TypeMismatch, InvalidvValue) ;
octet get octet ()

raises (TypeMismatch, InvalidValue) ;
char get char()

raises (TypeMismatch, Invalidvalue) ;
short get_short ()

raises (TypeMismatch, InvalidvValue) ;
unsigned short get ushort ()

raises (TypeMismatch, InvalidValue) ;
long get long()

raises (TypeMismatch, Invalidvalue) ;
unsigned long get _ulong()

raises (TypeMismatch, Invalidvalue) ;
float get float ()

raises (TypeMismatch, InvalidValue) ;

274 Orbix CORBA Programmer’s Guide C++

double get double ()
raises (TypeMismatch, Invalidvalue) ;

string get string()
raises (TypeMismatch, Invalidvalue) ;
Object get reference ()

raises (TypeMismatch, InvalidvValue) ;
CORBA: : TypeCode get typecode ()

raises (TypeMismatch, Invalidvalue) ;
long long get longlong ()

raises (TypeMismatch, Invalidvalue) ;
unsigned long long get ulonglong ()

raises (InvalidvValue, TypeMismatch) ;

long double get longdouble ()

raises (TypeMismatch, Invalidvalue) ;
wchar get wchar ()

raises (TypeMismatch, Invalidvalue) ;
wstring get wstring()

raises (TypeMismatch, InvalidvValue) ;
any get_any ()

raises (TypeMismatch, Invalidvalue) ;
DynAny get_dyn any ()

raises (TypeMismatch, Invalidvalue) ;
ValueBase get val ()

raises (TypeMismatch, InvalidValue) ;

For example, the following code converts a basic any to a Dynany. It
then evaluates the Dynany’s type code in a switch statement and

calls the appropriate get operation to obtain its value:
Example 43: Converting a basic any to a DynAny.

#include <omg/DynamicAny.hh>

/...

// Get a reference to a ’DynamicAny: :DynAnyFactory’
object

CORBA: :Object var obj

global orb->resolve initial references ("DynAnyFactory"
);
DynamicAny: :DynAnyFactory var dyn fact
= DynamicAny: :DynAnyFactory:: narrow (obj) ;
if (CORBA::is nil(dyn fact)) {
// error: throw exception
}

CORBA::Any a = ...; // get Any from somewhere
// create DynAny from Any
DynamicAny: :DynAny var dyn a =

dyn fact->create dyn any(a);

// get DynAny’s type code
CORBA: : TypeCode var tcode = dyn a->type();

Orbix CORBA Programmer’s Guide C++ 275

Example 43: Converting a basic any to a DynAny.

// evaluate type code
switch (tcode->kind ()) {
case CORBA::tk short:

{

CORBA: :Short s = dyn a->get short () ;
cout << "any contains short value of " << s <<
endl ;
break;
}

case CORBA::tk long:
{
CORBA: :ILong 1 = dyn a->get long() ;
cout << "any contains long value of " << 1 << endl;
break;

}

// other cases follow
} // end of switch statement

dyn a->destroy(); // cleanup

Iterating Over DynAny Components

Five types of Dynany objects contain components that must be
accessed to insert or extract values: DynStruct, DynSequence,
DynArray, DynUnion, and Dynvalue. On creation, a Dynany object
holds a current position equal to the offset of its first component.
The pynany interface has five operations that let you manipulate
the current position to iterate over the components of a complex

DynAny object:
module DynamicAny {
//. ..
interface DynAny{
//
// Iteration operations
unsigned long component count () ;
DynAny current component () raises
(TypeMismatch) ;
boolean seek (in long index) ;
boolean next () ;
void rewind() ;

I
}i

component_count() returns the number of components of a
DynAny. For simple types such as long, and for enumerated and
fixed-point types, this operation returns o. For other types, it
returns as follows:

* sequence: number of elements in the sequence.

®* struct, exception and valuetype: number of members.
®* array: number of elements.

* union: 2 if a member is active; otherwise 1.

276 Orbix CORBA Programmer’s Guide C++

current_component() returns the Dynany for the current
component:
DynAny current component ()

You can access each of the pynany’s components by invoking this
operation in alternation with the next () operation. An invocation of
current component () alone does not advance the current position.

If an invocation of current component () returns a derived type of
DynAny, for example, bynStruct, you can narrow the Dynany to this

type.

If you call current component () on a type that has no components,
such as a long, it raises the TypeMismatch exception.

If you call current component () when the current position of the
DynAny IS -1, it returns a nil object reference.

next() advances the Dynany’s current position to the next
component, if there is one:

boolean next () ;

The operation returns true if another component is available;
otherwise, it returns false. Thus, invoking next () on a DynAny that
represents a basic type always returns false.

seek() advances the current position to the specified component:
boolean seek (in long index) ;

Like next (), this operation returns true if the specified component
is available; otherwise, it returns false.

rewind() resets the current position to the bynany object’s first
component:

void rewind() ;

It is equivalent to calling seek () with a zero argument.

Undefined current position

In some circumstances the current position can be undefined. For
example, if a Dynsequence object contains a zero length sequence,
both the current component and the value of the Dynany’s current
position are undefined.

The special value -1 is used to represent an undefined current
position.

When the current position is -1, an invocation of
current component () yields a nil object reference.

The current position becomes undefined (equal to -1) under the
following circumstances:

* When the pynany object has no components.

For example, a Dynany containing a zero-length sequence or
array would have no components.

* Immediately after next () returns false.

Orbix CORBA Programmer’s Guide C++ 277

* If seek() is called with a negative integer argument, or with a
positive integer argument greater than the largest valid index.

Implicit Iteration

If invoked on a complex Dynany object such as a DynStruct or
DynEnum, the basic insert and get operations get the current
component in the target pynany and implicitly advance the pointer
to the next component. For example, given that dyn s points to a
DynStruct object, the following statement extracts the boolean
value from ds’s current component, and advances the pointer to
the next component:

boolean result = dyn s->get boolean() ;
This is equivalent to the following code:

DynamicAny: :DynAny var cur component =

dyn s->current component () ;
boolean result = cur component->get boolean() ;
dyn s->next () ;

Accessing Constructed DynAny Values

Each interface that derives from Dynany, such as DynArray and
DynStruct, contains its own operations which enable access to
values of the following Dynany types:

. DynEnum

* DynStruct

* DynUnion

* DynSequence and DynArray
* DynFixed

* DynValue

* DynValueBox

DynEnum
The DynEnum interface enables access to enumerated any values:

module DynamicAny {

/...

interface DynEnum : DynAny {
string get as string() ;
void set as string(in string val)

raises (Invalidvalue) ;
unsigned long get as ulong() ;
void set as ulong(in unsigned long val)
raises (Invalidvalue) ;

278 Orbix CORBA Programmer’s Guide C++

The DynEnum interface defines the following operations:

get_as_string() and set_as_string() let you access an
enumerated value by its IDL string identifier or its ordinal value.
For example, given this enumeration:

enum Exchange{ NYSE, NASD, AMEX, CHGO, DAX, FTSE };

set_as string("NASD") sets the enum’s value as NasD, while you can
get its current string value by calling get_as string().

get_as_ulong() and set_as_ulong() provide access to an
enumerated value by its ordinal value.

The following code uses a DynkEnum to decompose an any value that
contains an enumeration:

Example 44: Using DynEnum

void extract any(const CORBA::Any * a){
/...
// Get a reference to a ’'DynamicAny: :DynAnyFactory’
object
CORBA: :Object var obj

global orb->resolve initial references ("DynAnyFactory"
)i
DynamicAny: :DynAnyFactory var dyn fact
= DynamicAny: :DynAnyFactory:: narrow(obj) ;
if (CORBA::is nil(dyn fact)) ({
// error: throw exception
}

DynamicAny: :DynAny var dyn a =
dyn fact->create dyn any(*a);
CORBA: : TypeCode var tcode = dyn a->type();
switch (tcode->kind ()) {
case CORBA::tk enum:
{
DynamicAny: :DynEnum var dyn e =
DynamicAny: :DynEnum: : narrow (dyn a) ;
CORBA: :String var s = dyn e->get as string();
cout << s << endl;
dyn e->destroy () ;

}

// other cases follow

/] ...

Orbix CORBA Programmer’s Guide C++ 279

Dy

NnStruct

The Dynstruct interface is used for struct and exception types. The
interface is defined as follows:

module DynamicAny {

//

Vi

The

280 Orbix CORBA Programmer’s Guide C++

typedef string FieldName;

struct NameValuePair{
FieldName id;
any value;

typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

interface DynStruct : DynAny{
FieldName current member name ()
raises (TypeMismatch, Invalidvalue) ;
CORBA: : TCKind current member kind()
raises (TypeMismatch, Invalidvalue) ;
NameValuePairSeq get members () ;
void set members (in NameValuePairSeq value)
raises (TypeMismatch, InvalidvValue) ;
NameDynAnyPairSeq get members as dyn any() ;
void set members as dyn any (
in NameDynAnyPairSeq value
) raises (TypeMismatch, InvalidValue) ;

s

DynStruct interface defines the following operations:

set_members () and get members () are used to get and set
member values in a pynstruct. Members are defined as a
NameValuePairSeq sequence of name-value pairs, where each
name-value pair consists of the member’s name as a
string, and an any that contains its value.

current member name () returns the name of the member at
the current position, as established by pynany base
interface operations. Because member names are optional
in type codes, current member name() might return an empty
string.

current member kind() returns the TcKind value of the current
DynStruct member’s type code.

get members as dyn any() and set members as dyn any() are
functionally equivalent to get members() and set members (),
respectively. They operate on sequences of name-DynAny
pairs. Use these operations if you work extensively with
DynStruct objects; doing so allows you to avoid converting a
constructed Dynany into an any before using the operations to
get or set struct members.

The following code iterates over members in a DynStruct and
passes each member over to eval member () for further
decomposition:

Example 45: Using a DynStruct

DynamicAny: :DynStruct var dyn s = ...;
CORBA: : TypeCode var tcode = dyn s->type() ;
int counter = tcode->member count () ;

for (int i = 0; i < counter; i++) {
DynamicAny: :DynAny var member =
dyn s->current component () ;
eval member (member) ;
dyn s->next () ;

DynUnion
The DynUnion interface enables access to any values of union type:

module DynamicAny {

/...
typedef string FieldName;

interface DynUnion : DynAny {
DynAny get discriminator();
void set discriminator (in DynAny d)
raises (TypeMismatch) ;
void set to default member () raises (TypeMismatch) ;
void set to no active member ()
raises (TypeMismatch) ;
boolean has no active member ()
raises (Invalidvalue) ;
CORBA: : TCKind discriminator kind() ;
DynAny member () raises (InvalidvValue) ;
FieldName member name () raises(InvalidvValue) ;
CORBA: : TCKind member kind() raises (InvalidValue) ;
b
e

The DynUnion interface defines the following operations:

get_discriminator() returns the current discriminator value of
the DynUnion.

set_discriminator() sets the discriminator of the DynUnion to the
specified value. If the type code of the parameter is not equivalent
to the type code of the union’s discriminator, the operation raises
TypeMismatch.

set_to_default_member() sets the discriminator to a value that
is consistent with the value of the default case of a union; it sets
the current position to zero and causes component count to return
2. Calling set_to default member () Oon a union that does not have
an explicit default case raises TypeMismatch.

Orbix CORBA Programmer’s Guide C++ 281

set_to_no_active_member() sets the discriminator to a value
that does not correspond to any of the union’s case labels; it sets
the current position to zero and causes component count to return
1. Calling set_to no active member () Oon a union that has an explicit
default case or on a union that uses the entire range of
discriminator values for explicit case labels raises TypeMismatch.

has_no_active_member() returns true if the union has no
active member (that is, the union’s value consists solely of its
discriminator, because the discriminator has a value that is not
listed as an explicit case label). Calling this operation on a union
that has a default case returns false. Calling this operation on a
union that uses the entire range of discriminator values for explicit
case labels returns false.

discriminator_kind() returns the TCKind value of the
discriminator’s TypeCode.

member() returns the currently active member. If the union has
no active member, the operation raises Invalidvalue. Note that
the returned reference remains valid only as long as the currently
active member does not change. Using the returned reference
beyond the life time of the currently active member raises
OBJECT NOT EXIST.

member_name() returns the name of the currently active
member. If the union’s type code does not contain a member
name for the currently active member, the operation returns an
empty string. Calling member name () on a union that does not have
an active member raises Invalidvalue.

member_kind() returns the TCKind value of the currently active
member’s TypeCode. Calling this operation on a union that does not
have a currently active member raises Invalidvalue.

DynSequence and DynArray
The interfaces for DynSequence and DynArray are virtually identical:

module DynamicAny {
/...
typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySedq;

interface DynArray : DynAny {
AnySeq get elements() ;
void set elements (in AnySeq value)
raises (TypeMismatch, InvalidvValue) ;
DynAnySeq get elements as dyn any () ;
void set elements as dyn any (in DynAnySeq value)
raises (TypeMismatch, Invalidvalue) ;

282 Orbix CORBA Programmer’s Guide C++

interface DynSequence : DynAny {
unsigned long get length() ;
void set length(in unsigned long len)
raises (Invalidvalue) ;

// remaining operations same as for DynArray
/] ...
b
b s

You can get and set element values in a DynSequence Or DynArray
with operations get elements() and set elements(), respectively.
Members are defined as an anySeq sequence of any objects.

Operations get_elements as _dyn any() and
set_elements as dyn any() are functionally equivalent to
get_elements () and set_elements () ; unlike their counterparts, they
return and accept sequences of Dynany elements.

DynSequence has two of its own operations:
get_length() returns the number of elements in the sequence.

set_length() sets the number of elements in the sequence.

If you increase the length of a sequence, new elements are
appended to the sequence and default-initialized. If the
sequence’s current position is undefined (equal to -1), increasing
the sequence length sets the current position to the first of the
new elements. Otherwise, the current position is not affected.

If you decrease the length of a sequence, set_length() removes
the elements from its end.

You can access elements with the iteration operations described in
“Iterating Over DynAny Components” on page 276. For example,
the following code iterates over elements in a bynArray:

DynamicAny: :DynArray var dyn array = ...;
CORBA: : TypeCode var tcode = dyn array->type() ;
int counter = tcode->length() ;

for (int i = 0; i < counter; i++){
DynamicAny: :DynAny var elem =
dyn array->current component () ;
eval member (member) ;
dyn array->next () ;

Orbix CORBA Programmer’s Guide C++ 283

DynFixed

The DynFixed interface lets you manipulate an any that contains
fixed-point values.

interface DynAny{

interface DynFixed : DynAny({
string get value() ;
void set value(in string val)
raises (TypeMismatch, InvalidValue) ;
b
b s

The DynFixed interface defines the following operations:

get_value() returns the value of a DynFixed as a string.

set_value() sets the value of a DynFixed. If val is an uninitialized
string or contains a fixed point literal that exceeds the scale of
DynFixed, the Invalidvalue exception is raised. If val is not a valid
fixed point literal, the TypeMismatch exception is raised.

DynValue

The Dynvalue interface lets you manipulate an any that contains a
value type (excluding boxed value types):

module DynamicAny {

/...
typedef string FieldName;

struct NameValuePair

{

FieldName id;
any value;

¥

typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair

{

FieldName id;
DynAny value;
%

typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

284 Orbix CORBA Programmer’s Guide C++

interface DynValue : DynAny

{

FieldName current member name ()
raises (TypeMismatch, Invalidvalue) ;
CORBA: : TCKind current member kind()
raises (TypeMismatch, Invalidvalue) ;
NameValuePairSeq get members() ;
void set members (in NameValuePairSeqg values)
raises (TypeMismatch, Invalidvalue) ;
NameDynAnyPairSeq get members as dyn any() ;
void set members as dyn any (in NameDynAnyPairSeq value)
raises (TypeMismatch, InvalidvValue) ;

¥
Vi

The bpynvalue interface defines the following operations:

current_member_name() returns the name of the value type
member indexed by the current position.

current_member_kind() returns the type code kind for the
value type member indexed by the current position.

get_members() returns the complete list of value type members
in the form of a NamevaluePairSeq.

set_members() sets the contents of the value type members
using a NameValuePairSeq.

get_members_as_dyn_any() is similar to get members (),
except that the result is returned in the form of a

NameDynAnyPairSed.

set_members_as_dyn_any() is similar to set_members (), except
that the contents are set using a NameDynAnyPairSeq.

DynValueBox

The DynvalueBox interface lets you manipulate an any that contains
a boxed value type:

module DynamicAny f
// ...
interface DynValueBox : DynAny
{
any get boxed value() ;
void set boxed value (in any val)
raises (TypeMismatch) ;
DynAny get boxed value as dyn any() ;
void set boxed value as dyn any(in DynAny val)
raises (TypeMismatch) ;

Orbix CORBA Programmer’s Guide C++ 285

The pynvalue interface defines the following operations:
get_boxed_value() returns the boxed value as an any.
set_boxed_value() sets the boxed value as an any.

get_boxed_value_as_dyn_any() returns the boxed value as a
DynAny.

set_boxed_value_as_dyn_any() sets the boxed value as a
DynAny.

286 Orbix CORBA Programmer’s Guide C++

Using the DI

Generating Interfaces
at Runtime

The dynamic invocation interface lets a client invoke on objects whose
interfaces are known only at runtime; similarly, the dynamic skeleton
interface lets a server process requests on objects whose interfaces are
known only at runtime.

An application’s IDL usually describes interfaces to all the CORBA
objects that it requires at runtime. Accordingly, the IDL compiler
generates the stub and skeleton code that clients and servers
need in order to issue and process requests. The client can issue
requests only on those objects whose interfaces are known when
the client program is compiled; similarly, the server can process
requests only on those objects that are known when the server
program is compiled.

Some applications cannot know ahead of time which objects might
be required at runtime. In this case, Orbix provides two interfaces
that let you construct stub and skeleton code at runtime, so
clients and servers can issue and process requests on those
objects:

®* The dynamicinvocation interface (DI1) builds stub code for a client
so it can call operations on IDL interfaces that were unknown
at compile time.

* The dynamic skeleton interface (DSI) builds skeleton code for a
server, so it can receive operation or attribute invocations on
an object whose IDL interface is unknown at compile time.

Some application programs and tools must be able to invoke on
objects whose interfaces cannot be determined ahead of time—for
example, browsers, gateways, management support tools, and
distributed debuggers.

With DII, invocations can be constructed at runtime by specifying
the target object reference, the operation or attribute name, and
the parameters to pass. A server that receives a dynamically
constructed invocation request does not differentiate between it
and static requests.

Clients that use DI1

Two types of client programs commonly use the DII:

* A client interacts with the interface repository to determine a
target object’s interface, including the name and parameters
of one or all of its operations, then uses this information to
construct DIl requests.

* Aclient, such as a gateway, receives the details of a request.
In the case of a gateway, the request details might arrive as
part of a network package. The gateway can then translate
this into a DIl call without checking the details with the

Orbix CORBA Programmer’s Guide C++ 287

interface repository. If a mismatch occurs, an exception is
raised to the gateway, which in turn can report an error to the
caller.

Steps

To invoke on an object with DII, follow these steps:

1. Construct a Request object with the operation’s signature.
2. Invoke the request.
3. Retrieve results of the operation.

Example IDL

The bank example is modified here to show how to use the DII.
The Bank: :newAccount () operation now takes an inout parameter
that sets a new account’s initial balance:

// IDL
interface Account
readonly attribute float balance;

void makeDeposit (in float £f);
void makeWithdrawal (in float f);

b

interface Bank {
exception Reject {string reason;};

// Create an account
Account newAccount (
in string owner,
inout float initialBalance,
out long status)
raises (Reject) ;

// Delete an account
void deleteAccount (in Account a) ;

¥

The following section shows how to construct a Request object that
can deliver client requests for newAccount () operations such as this
one:

bankVar->newAccount (ownerName, initialBalance, status);

This section discusses the following topics:

Constructing a Request Object page 289
Invoking a Request page 293
Retrieving Request Results page 294
Invoking Deferred Synchronous Requests page 294

288 Orbix CORBA Programmer’s Guide C++

Constructing a Request Object

__request()

To construct a Request object and set its data, you must first
obtain a reference to the target object. You then create a request
object by invoking one of these methods on the object reference:

* request() returns an empty request object whose signature—
return type and parameters—must be set.

e _create_request() returns with a request object that can
contain all the data required to invoke the desired request.

In this section

This section discusses the following topics:

_request() page 289

_create_request() page 291

You can use request () to create a Request object in these steps:

1. Create a request object and set the name of its operation.
2. Set the operation’s return type.

3. Set operation parameters and supply the corresponding
arguments.

4. Set exception type codes.
5. Set the operation’s context clause, if necessary.

Create a request object

Call _request () on the target object and specify the name of the
operation to invoke:

// Get object reference
CORBA: :Object var target = ... ;

// Create Request object for operation newAccount ()
CORBA: :Request var newAcctRequest =
target-> request ("newAccount") ;

Set the operation’s return type

After you create a Request Object, set the TypeCode of the
operation’s return value by calling set return type () on the
Request Object. set return type() takes a single argument, the
TypeCode constant of the return type. For example, given the
Request Object newAcctRequest, set the return type of its
newAccount () operation to Account as follows:

newAcctRequest->set return type(tc Account) ;

Orbix CORBA Programmer’s Guide C++ 289

For information about supported TypeCode constants, refer to
“Type Code Constants” on page 255.

For information about supported TypeCodes, see “Using Type
Codes”.

Set operation parameters

A request object uses an NvList to store the data for an
operation’s parameters. To set the parameters in the NvList you
need to know the operations parameters and insert the proper
values in the exact order the parameters are specified in the
operation’s IDL. The _request () operation creates an empty NVList
into which you insert the values needed by the operation.

To fill in the nvList you can use the following operations on the
Request Object:

add in arg()
add_inout arg()
add out arg()

These operations return a reference to an aAny. For more
information on inserting values into an aAny see “Using the Any
Data Type” on page 257.

Example 46 on page 290 sets the parameter list for the newAccount
operation.The values for the out parameters of an operation do

Example 46: Setting the parameter list

// C++

newAcctRequest->add in arg() <<= "Norman Fellows';
CORBA: :Float initBal = 1000.00;
newAcctRequest->add inout arg() <<= initBal;
CORBA: :Long status;

newAcctRequest->add out arg() <<= status;

not need to be set because they will be changed when the
operation returns. However, the values for all in and inout
parameters must be specified.

You can also fill the NnvList object using NVList::add value(). This
operation has the following signature:

NamedValue NVList::add value(String item name, Any val,
int flags) ;

The flags parameter is set to one of the following values:

* CORBA::ARG IN
®* CORBA::ARG INOUT
®* CORBA::ARG OUT

Set exception type codes

You must set the type codes for any exceptions defined for the
Request Object’s operation. To do this use the add () operation
defined for the Request Object’s exceptions () list.

290 Orbix CORBA Programmer’s Guide C++

add () takes the exceptions type codes as its only argument. To
add the rReject exception to newAcctRequest use the following
operation:

newAcctRequest->exceptions () ->add (Bank: : tc Reject) ;

If the type code for the exception was not available in the stub
code, you would need to dynamically generate the exceptions type
code.

Set the operation’s context clause

If the IDL operation has a context clause, you can add a Context
object to its Request Object with CORBA: :Request::ctx().

_create_request()

You can also create a Request object by calling create request ()
on an object reference and passing the request details as
arguments. The advantage of using create request () is that you
can create a Request oObject that contains all of the information
needed to invoke a request. create request () has the following
signature:

void create request (Context ptr ctx,
const char *operation,
NVList ptr arg list,
NamedValue ptr result,
ExceptionlList ptr exceptions,
ContextList ptr contexts,
Request out request,
Flags req flags);

At a minimum, you must provide two arguments when using
_create request():

* The name of the operation

* A pointer to a Namedvalue that holds the operation’s return
value

You can also supply a populated parameter list and a populated
exception list to _create request (). If you supply null for either
list, create request() creates an empty list for the returned
Request object. In this case you must populate the list as described
above in “_request()” on page 289.

Creating the parameter list

There are two operations provided by CORBA: :ORB to create the
NVList passed to create object () to specify the Request object’s
parameter list:

e create_list()
* create_operation_list()

Orbix CORBA Programmer’s Guide C++ 291

create_list()
create list() has the fololwing signiture:

void create list (Long count, NVList ptr list);

The operation allocates the space for an nvList of the specified
number of elements and returns a pointer to the empty NVList.
You then add the required parameters using the following
operation on the NVList:

add ()

add_item()

add_item consume ()
add_value ()
add_value consume ()

create_operation_list()

create operation list () extends the functionality of create list ()
by creating a prefilled parameter list based on informaiton stored
in the interface repository. It has the following signature:

void create operation list (OperationDef ptr operation,
NVList out list);

Using the operationDef Object passed as a parameter,

create operation list() retrieves the parameter list for the
specified operation from the interface repository. When

create operation list() returns, the NVList contains one
NamedValue Object for each operation parameter. Each Namedvalue
object contains the parameter’s passing mode, name, and initial
value of type Any.

Once you have the prefilled parameter list, you can modify the
parameters by iterating over the NvList elements with
NVList::item(). Use the insertion operator <<= to set each
Namedvalue’'s value member.

292 Orbix CORBA Programmer’s Guide C++

Example

The code in Example 47 constructs a parameter list using
create operation list (). It then uses the parameter list to
construct a Request oObject for invoking operation newAccount () :

Example 47: Create a Request object using _create request()

// get an object reference
CORBA: :Object var target = ... ;

CORBA: :Request ptr newAcctRequest;
CORBA: :NamedValue ptr result;

// Get OperationDef object from IFR
// reference to the IFR, ifr, obtained previously
CORBA: :Contained ptr cont =
ifr->lookup ("Bank: :newAccount") ;
CORBA: :OperationDef ptr opDef =
CORBA: :OperationDef:: narrow(cont.in()) ;

// Initialize the parameter list

CORBA: :NVList out paramList;

CORBA: :ORB: :create operation list (opDef, paramList) ;
paramList->item(0) ->value <<= "Norman Fellows";
CORBA: :Float initBal = 1000.00;

paramList->item(1l) ->value <<= initBal;

CORBA: :Long status;

paramList->item(2) ->value <<= status;

// Construct the Request object
target-> create request (CORBA::Context:: nil(),
"newAccount", paramList, result, newAcctRequest, O0);

Invoking a Request

After you set a rRequest Object’s data, you can use one of several
methods to invoke the request on the target object. The following
methods are invoked on a Request object:

invoke () blocks the client until the operation returns with a reply.
Exceptions are handled the same as static function invocations.

send_deferred() sends the request to the target object and
allows the client to continue processing while it awaits a reply. The
client must poll for the request’s reply (see “Invoking Deferred
Synchronous Requests” on page 294).

send_oneway() invokes one-way operations. Because no reply
is expected, the client resumes processing immediately after the
invocation.

The following methods are invoked on the ORB, and take a
sequence of requests:

send_multiple_requests_deferred() calls multiple deferred
synchronous operations.

Orbix CORBA Programmer’s Guide C++ 293

send__multiple_requests_oneway() calls multiple oneway
operations simultaneously.

For

example:

Example 48: Invoking on a request

try {

}

request->invoke () ;

catch (CORBA::SystemException& se) {

}

cout << "Unexpected exception" << &se << endl;

Retrieving Request Results

When a request returns, Orbix updates out and inout parameters
in the rRequest Object’s NvList. To get an operation’s output values:

1.

2.

3.

4.

Call arguments () on the Request object to get a reference to its
NVList.

Iterate over the Namedvalue items in the Request Object’s NVList
by successively calling item() on the NvList. Each call to this
methods returns a Namedvalue reference.

Call value () on the Namedvalue to get a pointer to the any value
for each parameter.

Extract the parameter values from the any.

To get an operation’s return value, call return value() on the
request object. This operation returns the request’s return value
as an any.

For

example, the following code gets an object reference to the

new account returned by the newAccount () operation:

Example 49: Obtaining the return value from a request object

CORBA: :Object var newAccount;
request->return value() >>= newAccount;

Invoking Deferred Synchronous Requests

You

can use the DIl to make deferred synchronous operation calls.

A client can call an operation, continue processing in parallel with

the operation, then retrieve the operation results when required.

You can invoke a request as a deferred synchronous operation as

follows:

1. Construct a Request object and call send_deferred() on it.

2. Continue processing in parallel with the operation.

3. Check whether the operation has returned by calling
poll response() on the Request object. This methods returns a
non-zero value if a response has been received.

4. To get the result of the operation, call get _response () on the
Request object.

You can also invoke methods asynchronously. For more

information, see “Asynchronous Method Invocations”.

294 Orbix CORBA Programmer’s Guide C++

Using the DSI

DSI Applications

A server uses the dynamic skeleton interface (DSI) to receive
operations or attribute invocations on an object whose IDL
interface is unknown to it at compile time. With DSI, a server can
build the skeleton code that it needs to accept these invocations.

The server defines a function that determines the identity of the
requested object; the name of the operation and the types and
values of each argument are provided by the user. The function
carries out the task that is being requested by the client, and
constructs and returns the result. Clients are unaware that a
server is implemented with the DSI.

This section discusses the following topics:

DSI Applications page 295

Programming a Server to Use DSI page 296

The DSI is designed to help write gateways that accept operation
or attribute invocations on any specified set of interfaces and pass
them to another system. A gateway can be written to interface
between CORBA and some non-CORBA system. This gateway is
the only part of the CORBA system that must know the
non-CORBA system’s protocol; the rest of the CORBA system
simply issues IDL calls as usual.

Invoking on a gateway

The 11OP protocol lets an object invoke on objects in another ORB.
If a non-CORBA system does not support I10OP, you can use DSI to
provide a gateway between the CORBA and non-CORBA systems.
To the CORBA system, this gateway appears as a
CORBA-compliant server that contains CORBA objects. In reality,
the server uses DSI to trap incoming invocations and translate
them into calls that the non-CORBA system can understand.

Bidirectional gateways

You can use DSI and DIl together to construct a bidirectional
gateway. This gateway receives messages from the non-CORBA
system and uses the DIl to make CORBA client calls. It uses DSI
to receive requests from clients on a CORBA system and translate
these into messages in the non-CORBA system.

DSI has other uses. For example, a server might contain many
non-CORBA objects that it wants to make available to its clients.
In an application that uses DSI, clients invoke on only one CORBA
object for each non-CORBA object. The server indicates that it
uses DSI to accept invocations on the IDL interface. When it
receives an invocation, it identifies the target object, the operation

Orbix CORBA Programmer’s Guide C++ 295

or attribute to call, and its parameters. It then makes the call on
the non-CORBA object. When it receives the result, it returns it to
the client.

Programming a Server to Use DSI

The DSI is implemented by servants that instantiate dynamic
skeleton classes. All dynamic skeleton classes are derived from
PortableServer: :DynamicImplementation:

namespace Portable Server(
class DynamicImplementation : public virtual
ServantBase{
public:
Object ptr this();
virtual void invoke (ServerRequest ptr request
) = 0;
virtual RepositoryId primary interface (
const ObjectId& oid, POA ptr poa) = 0;
s
}

A server program uses DSI as follows:

1. Instantiates one or more DSI servants and obtains object
references to them, which it makes available to clients.

2. Associates each DSI servant with a POA—for example,
through a servant manager, or by registering it as the default
servant.

Dynamic implementation routine

When a client invokes on a DSI-generated object reference, the
POA delivers the client request as an argument to the DSI
servant’s invoke () method—also known as the dynamic implementation
routine (DIR). invoke () takes a single argument, a

CORBA: : ServerRequest pseudo-object, which encapsulates all data
that pertains to the client request—the operation’s signature and
arguments. CORBA: :ServerRequest maps to the following C++ class:

class ServerRequest {
public:
const char* operation() cont;
void arguments(NVList ptr& parameters) ;
Context ptr ctx();
void set result (const Any& value) ;
void set exception(const Any& value) ;

296 Orbix CORBA Programmer’s Guide C++

invoke() processing

invoke () processing varies across different implementations, but it
always includes the following steps:

1. Obtains the operation’s name by calling operation() on the
ServerRequest Object.

2. Builds an nvList that contains definitions for the operation’s
parameters—often, from an interface definition obtained from
the interface repository. Then, invoke () populates the NVList
with the operation’s input arguments by calling arguments () on
the serverRequest object.

3. Reconstructs the client invocation and processes it.

4. If required, sets the operation’s output in one of two ways:

+ If the operation’s signhature defines output parameters,
invoke () sets the NvList as needed. If the operation’s
signature defines a return value, invoke () calls
set_result () on the ServerRequest object.

+ If the operation’s signature defines an exception, invoke ()
calls set_exception() on the ServerRequest object.

Note:invoke () can either set the operation’s output by
initializing its output parameters and setting its return
value, or by setting an exception; however, it cannot do
both.

Orbix CORBA Programmer’s Guide C++ 297

298 Orbix CORBA Programmer’s Guide C++

Using the Interface
Repository

An Orbix application uses the interface repository for persistent storage
of IDL interfaces and types. The runtime ORB and Orbix applications
guery thisrepository at runtime to obtain IDL definitions.

The interface repository maintains full information about the IDL
definitions that have been passed to it. The interface repository
provides a set of IDL interfaces to browse and list its contents, and
to determine the type information for a given object. For example,
given an object reference, you can use the interface repository to
obtain all aspects of the object’s interface: its enclosing module,
interface name, attribute and operation definitions, and so on.

Benefits

These capabilities are important for a number of tools:

* Browsers that allow designers and code writers to determine
what types have been defined in the system, and to list the
details of chosen types.

* CASE tools that aid software design, writing, and debugging.

* Application level code that uses the dynamic invocation
interface (DII) to invoke on objects whose types were not
known to it at compile time. This code might need to
determine the details of the object being invoked in order to
construct the request using the DII.

* A gateway that requires runtime information about the type of
an object being invoked.

In order to populate the interface repository with IDL definitions,
run the IDL compiler with the -r option. For example, the following
command populates the interface repository with the IDL
definitions in bank.idl:

idl -R bank.idl

Orbix CORBA Programmer’s Guide C++ 299

Interface Repository Data

Interface repository data can be viewed as a set of CORBA
objects, where the repository stores one object for each IDL type
definition. All interface repository objects are derived from the
abstract base interface IRObject., which is defined as follows:

// In module CORBA
enum DefinitionKind

{
dk none, dk all,
dk Attribute, dk Constant, dk Exception,
dk Interface,
dk Module, dk Operation, dk Typedef,
dk Alias, dk Struct, dk Union, dk Enum,
dk Primitive, dk String, dk Sequence, dk Array,
dk Repository, dk Wstring, dk Fixed,
dk Value, dk ValueBox, dk ValueMember, dk Native

b

interface IRObject

{

// read interface
readonly attribute DefinitionKind def kind;

// write interface
void
destroy () ;

Vi

Attribute def kind identifies a repository object’s type. For
example, the def kind attribute of an interfaceDef oObject is
dk_interface. The enumerate constants dk none and dk_all are
used to search for objects in a repository. All other enumerate
constants identify one of the repository object types in Table 20,
and correspond to an IDL type or group of types.

destroy () deletes an interface repository object and any objects
contained within it. You cannot call destroy () on the interface
repository object itself or any primitiveDef object.

Abstract Base Interfaces

Besides 1rRObject, the interface repository defines four other
abstract base interfaces, all of which inherit directly or indirectly
from IRObject:

Container: The interface for container objects. This interface is
inherited by all interface objects that can contain other objects,
such as Repository, ModuleDef and InterfaceDef. These interfaces
inherit from Container. See “Container Interface” on page 309.

Contained: The interface for contained objects. This interface is
inherited by all objects that can be contained by other objects—for
example, attribute definition (attributeDef) objects within
operation definition (OperationDef) objects. See “Contained
Interface” on page 307.

300 Orbix CORBA Programmer’s Guide C++

IDLType: All interface repository interfaces that hold the
definition of a type inherit directly or indirectly from this interface.
See “IDL-type objects” on page 303.

TypedefDef: The base interface for the following interface
repository types that have names: StructDef, UnionDef, EnumDef,
and AliasDef, which represents IDL typedef definitions.

Repository Object Types

Objects in the interface repository support one of the IDL types in
Table 20:

Table 20: Interface Repository Olbject Types

Object type Description

Repository The repository itself, in which all other
objects are nested. A repository
definition can contain definitions of other
types such as module and interface.
Table 21 lists all possible container
components.

ModuleDef A module definition is logical grouping of
interfaces and value types. The
definition has a name and can contain
definitions of all types except Repository.
Table 21 on page 306 lists all possible
container components.

InterfaceDef An interface definition has a name, a
possible inheritance declaration, and can
contain definitions of other types such as
attribute, operation, and exception.
Table 21 lists all possible container
components.

ValueDef A value type definition has a name, a
possible inheritance declaration, and can
contain definitions of other types such as
attribute, operation, and exception.
Table 21 lists all possible container
components.

ValueBoxDef A value box definition defines a value
box type.

ValueMemberDef | A value member definition defines a
member of a value.

AttributeDef An attribute definition has a name, a
type, and a mode to indicate whether it
is readonly.

OperationDef An operation definition has a name,

return value, set of parameters and,
optionally, raises and context clauses.

Orbix CORBA Programmer’s Guide C++ 301

Table 20: Interface Repository Olbject Types

Object type Description

ConstantDef A constant definition has a name, type,
and value.

ExceptionDef An exception definition has a name and

a set of member definitions.

StructDef A struct definition has a name, and holds
the definition of each of its members.

UnionDef A union definition has a name, and holds
a discriminator type and the definition of
each of its members.

EmumDef An enum definition has a name and a list
of member identifiers.

AliasDef An aliased definition defines a typedef
definition, which has a name and a type
that it maps to.

PrimitiveDef A primitive definition defines primitive
IDL types such as short and long, which
are predefined in the interface
repository.

StringDef A string definition records its bound.
Objects of this type are unnamed. If
they are defined with a typedef
statement, they are associated with an
AliasDef object. Objects of this type
correspond to bounded strings.

SequenceDef Each sequence type definition records its
element type and its bound, where a
value of zero indicates an unbounded
sequence type. Objects of this type are
unnamed. If they are defined with a
typedef statement, they have an
associated AliasDef oObject.

ArrayDef Each array definition records its length
and its element type. Objects of this
type are unnamed. If they are defined
with a typedef statement, they are
associated with an AliasDef object. Each
ArrayDef object represents one
dimension; multiple ArrayDef objects can
represent a multi-dimensional array

type.

Given an object of any interface repository type, you can obtain its
full interface definition. For example, InterfacebDef defines
operations or attributes to determine an interface’s name, its
inheritance hierarchy, and the description of each operation and
each attribute.

302 Orbix CORBA Programmer’s Guide C++

Figure 29 shows the hierarchy for all interface repository objects.

IRObject
Contained IDLType Container
TypedefDef
Repository
ExceptionDef
ModuleDef
Named types Unnamed types
AttributeDef | AliasDef InterfaceDef . . " ArrayDef .
ConstantDef ' EnumDef ValueDef ! ! FixedDef !
OperationDef + NativeDef ! + PrmitiveDef .
. StructbDef ! . SequenceDef !
i+ UnionDef ' + StringDef '
. ValueBoxDef X . WStringDef X

Figure 29: Hierarchy of interface repository objects

IDL-type objects

Most repository objects represent IDL types—for example,
InterfaceDef objects represent IDL interfaces, structDef interfaces
represent struct definitions, and so on. These objects all inherit,
directly or indirectly, from the abstract base interface IDLType:

// In module CORBA

interface IDLType : IRObject {
readonly attribute TypeCode type;

bs

This base interface defines a single attribute that contains the
TypeCode Of the defined type.

IDL-type objects are themselves subdivided into two groups:
* Named types
* Unnamed types

Named types
The interface repository can contain these named IDL types:

AliasDef StructDef
EnumDef UnionDef
InterfaceDef ValueBoxDef
NativeDef ValueDef

Orbix CORBA Programmer’s Guide C++ 303

For example, the following IDL defines enum type UD and typedef
type AccountName, which the interface repository represents as
named object types Enumbef and AliasDef objects, respectively:

// IDL
enum UD {UP, DOWN};
typedef string AccountName;

The following named object types inherit from the abstract base
interface TypedefDef:

AliasDef StructDef
EnumDef ValueBoxDef
NativeDef UnionDef

TypedefDef is defined as follows:

// IDL
// In module CORBA
interface TypedefDef : Contained, IDLType {

b

TypedefDef serves the sole purpose of enabling its derived object
types to inherit contained and IDLType attributes and operations:

* Attribute contained: :name enables access to the object’s name.
For example, the IDL enum definition ub shown earlier is
represented by the repository object EnunDef, whose inherited
name attribute is set to uD.

®* Operation Contained: :describe () gets a detailed description of
the object. For more information about this operation, see
“Repository Object Descriptions” on page 310.

Interfaces InterfaceDef and valueDef are also named object types
that inherit from three base interfaces: Contained, Container, and
IDLType.

Because IDL object and value references can be used like other
types, IntefaceDef and valueDef inherit from the base interface
IDLType. For example, given the IDL definition of interface
Account, the interface repository creates an InterfaceDef Object
whose name attribute is set to Account. This name can be reused as
a type.

Unnamed types
The interface repository can contain the following unnamed object

types:

ArrayDef SequenceDef
FixedDef StringDef
PrimitiveDef WStringDef

Getting an object’s idl type

Repository objects that inherit the 1DLType interface have their
own operations for identifying their type; you can also get an
object’s type through the TypeCode interface. Repository objects
such as AttributeDef that do not inherit from IDLType have their
own TypeCode Or IDLType attributes that enable access to their

types.

304 Orbix CORBA Programmer’s Guide C++

Containment in

For example the following IDL interface definition defines the
return type of operation getLongAddress as a string sequence:

// IDL
interface Mailer {

string getLongAddress () ;
bs

getLongAddress () maps to an object of type OperationDef in the

repository. You can query this object for its return type’s

definition—string—in two ways:

Method 1:

1. Get the object’s OperationDef::result def attribute, which is
an object reference of type IDLType.

2. Get the 1DLType's def kind attribute, which is inherited from
IRObject. In this example, def kind resolves to dk primitive.

3. Narrow the IDLType tO PrimtiveDef.
4. Get the primtiveDef’s kind attribute, which is a primtiveKind of

pk_string.

Method 2:

1. Get the object’s OperationDef: :result attribute, which is a
TypeCode.

2. Obtain the TypeCode’s TCKind through its kind () operation. In
this example, the TCKind is tk_string.

the Interface Repository

Most IDL definitions contain or are contained by other definitions,
and the interface repository defines its objects to reflect these
relationships. For example, a module typically contains interface
definitions, while interfaces themselves usually contain attributes,
operations, and other definition types.

Containment interfaces

The interface repository abstracts the properties of containment
into two abstract base interfaces:

Contained
® Container
These interfaces provide operations and attributes that let you
traverse the hierarchy of relationships in an interface repository in
order to list its contents, or ascertain a given object’s container.
Most repository objects are derived from one or both of container
Or Contained; the exceptions are instances of primitiveDef,
StringDef, SequenceDef, and ArrayDef.

Orbix CORBA Programmer’s Guide C++ 305

Example

In the following IDL, module Finance is defined with two interface
definitions, Bank and Account. In turn, interface Account contains
attribute and operation definitions:

// IDL
module Finance {
interface Account
readonly attribute float balance;
void makeDeposit (in float amount) ;
void makeWithdrawal (in float amount) ;
I s
interface Bank {
Account newAccount () ;
Ja
b

The corresponding interface repository objects for these
definitions are each described as Container Or Contained oObjects.
Thus, the interface repository represents module Finance as a
ModuleDef container for InterfaceDef objects Account and Bank;
these, in turn, serve as containers for their respective attributes
and operations. ModuleDef object Finance is also viewed as a
contained object within the container object RepositoryDef.

Containment properties of interface
repository objects

Table 21 shows the relationship between Container and Contained
objects in the interface repository.

Table21: Container and Contained Objectsin the Interface Repository

Container Contained Objects
object type

Repository ConstantDef
TypedefDef
ExceptionDef
InterfaceDef*
ModuleDef*
ValueDef*

ModuleDef ConstantDef
TypedefDef
ExceptionDef
ModuleDef*
InterfaceDef*
ValueDef*

InterfaceDef ConstantDef
TypedefDef

ExceptionDef
AttributeDef
OperationDef

306 Orbix CORBA Programmer’s Guide C++

Table21: Container and Contained Objectsin the Interface Repository

Container Contained Objects
object type

ValueDef ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef
ValueMemberDef

* Also a Container object
Only a Repository is a pure Container. An interface repository
server has only one Repository object, and it contains all other
definitions.

Objects of type ModuleDef, InterfaceDef, and ValueDef are always
contained within a Repository, while InterfaceDef, and valueDef
can also be within a ModuleDef; these objects usually contain other
objects, so they inherit from both Container and Contained.

All other repository object types inherit only from Contained.

Contained Interface

The contained interface is defined as follows:

//IDL
typedef string VersionSpec;

interface Contained : IRObject
// read/write interface
attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute Container defined in;

readonly attribute ScopedName absolute name;
readonly attribute Repository containing repository;

struct Description

{

DefinitionKind kind;
any value;

¥

Description
describe() ;

Orbix CORBA Programmer’s Guide C++ 307

// write interface

void

move (
in Container new container,
in Identifier new name,
in VersionSpec new version

)i

Iz

Name attribute

Attribute Contained: :name is Of type Identifier, a typedef for a
string, and contains the IDL object’s name. For example, module
Finance is represented in the repository by a ModuleDef object. Its
inherited ModuleDef : :name attribute resolves to the string Finance.
Similarly the makewWithdrawal operation is represented by an
OperationDef Oobject whose OperationDef: :name attribute resolves to
makeWithdrawal.

defined_in attribute

Contained also defines the attribute defined in, which stores a
reference to an object’s container. Because IDL definitions within
a repository must be unique, defined in Stores a unique Container
reference. However, given inheritance among interfaces, an object
can be contained in multiple interfaces. For example, the following
IDL defines interface CurrentAccount to inherit from interface
Account:

//IDL

// in module Finance

interface CurrentAccount : Account {
readonly attribute overDraftLimit;

b

balance attribute

Given this definition, attribute balance is contained in interfaces
Account and CurrentAccount; however, attribute balance is defined
only in the base interface Account. Thus, if you invoke
AttributeDef::defined in() on either Account: :balance oOr
CurrentAccount: :balance, it always returns Account as the
Container object.

A Contained object can include more than containment
information. For example, an OperationbDef object has a list of
parameters associated with it and details of the return type. The
operation Contained: :describe () provides access to these details
by returning a generic Description structure (see “Repository
Object Descriptions” on page 310).

308 Orbix CORBA Programmer’s Guide C++

Container Interface

Interface Container is defined as follows:

//IDL
enum DefinitionKind
{
dk none, dk all,
dk Attribute, dk Constant, dk Exception,
dk Interface,
dk Module, dk Operation, dk Typedef,
dk Alias, dk Struct, dk Union, dk Enum,
dk Primitive, dk String, dk Sequence, dk Array,
dk Repository, dk Wstring, dk Fixed,
dk Value, dk ValueBox, dk ValueMember, dk Native

hs

typedef sequence<Contained> ContainedSeq;

interface Container : IRObject

{

// read interface

Contained
lookup (
in ScopedName search name

) 8

ContainedSeq

contents (
in DefinitionKind limit type,
in boolean exclude inherited

) 8

ContainedSeq
lookup name (
in Identifier search name,
in long levels to search,
in DefinitionKind limit type,
in boolean exclude inherited

) 5

struct Description
Contained contained object;
DefinitionKind kind;
any value;

typedef sequence<Description> DescriptionSeq;

DescriptionSeq

describe contents (
in DefinitionKind limit type,
in boolean exclude inherited,
in long max returned objs

) 5

Orbix CORBA Programmer’s Guide C++ 309

// write interface

... // operations to create container objects

}i

lookup operations

The container interface provides four lookup operations that let
you browse a given container for its contents: lookup(),

lookup name (), contents(), and describe contents (). For more
information about these operations, see “Browsing and listing
repository contents” on page 312.

Repository Object Descriptions

Each repository object, in addition to identifying itself as a
Contained Or Container object, also maintains the details of its IDL
definition. For each contained object type, the repository defines a
structure that stores these details. Thus, a ModuleDef object stores
the details of its description in a ModuleDescription structure, an
InterfaceDef Object stores its description in an
InterfaceDescription Structure, and so on.

How to obtain object descriptions

You can generally get an object’s description in two ways:

* The interface for each contained object type often defines
attributes that get specific aspects of an object’s description.
For example, attribute OperationDef: :result gets an
operation’s return type.

®* You can obtain all the information stored for a given object
through the inherited operation Contained: :describe (), which
returns the general purpose structure Contained: :Description.
This structure’s value member is of type any, whose value
stores the object type’s structure.

For example, interface operationbDef has the following definition:

interface OperationDef : Contained

{

readonly attribute TypeCode result;
attribute IDLType result def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

b
Accessing attributes
Interface operationDef defines a number of attributes that allow

direct access to specific aspects of an operation, such as its
parameters (params) and return type (result def).

310 Orbix CORBA Programmer’s Guide C++

Invoking describe()

In a distributed environment, it is often desirable to obtain all
information about an operation in a single step by invoking
describe () on the OperationDef Object. This operation returns a
Contained: :Description whose two members, kind and value, are
set as follows:

kind is set to dk Operation.

value is an any whose TypeCode is set to _tc OperationDescription.
The any’s value is an OperationDescription Structure, which
contains all the required information about an operation:

// IDL
struct OperationDescription

{

Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;

TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

hs

OperationDescription structure
OperationDescription members store the following information:

name The operation’s name. For example, for
operation Account : :makeWithdrawal (), name
contains makeWithdrawal.

id RepositoryId for the OperationDef object.

defined in The RepositoryId for the parent container of the
OperationDef object.

version Currently not supported. When implemented,
this member allows the interface repository to
distinguish between multiple versions of a
definition with the same name.

result The TypeCode of the result returned by the
defined operation.

mode Specifies whether the operation returns
(OP_NORMAL) Or is oneway (OP_ONEWAY).

contexts Lists the context identifiers specified in the
operation’s context clause.

parameters A sequence of ParameterDescription Structures
that contain details of each operation
parameter.

exceptions A sequence of ExceptionDescription Structures
that contain details of the exceptions specified
in the operation’s raises clause.

Orbix CORBA Programmer’s Guide C++ 311

TypeDescription structure

Several repository object types use the TypeDescription structure
to store their information: EnumbDef, UnionDef, AliasDef, and
StructDef.

FulllnterfaceDescription and FullValueDescription
structures

Interfaces InterfaceDef and ValueDef contain extra description
structures, FullInterfaceDescription and FullValueDescription,
respectively. These structures let you obtain a full description of
the interface or value and all its contents in one step. These
structures are returned by operations

InterfaceDef: :describe interface() and

ValueDef: :describe value().

Retrieving Repository Information

You can retrieve information from the interface repository in three
ways:

®* Given an object reference, find its corresponding InterfaceDef
object and query its details.

* Given an object reference to a Repository, browse its
contents.

* Given a RepositoryId, obtain a reference to the corresponding
object in the interface repository and query its details.

Getting a CORBA object’s interface

Given a reference to a CORBA object, you can obtain its interface
from the interface repository by invoking get interface() on it.
For example, given CORBA object objvar, you can get a reference
to its corresponding InterfaceDef Object as follows:
CORBA: : InterfaceDef var ifvar =

objVar-> get interface();
The member function get interface() returns a reference to an
object within the interface repository. You can then use this
reference to browse the repository, and to obtain the details of an
interface definition.

Browsing and listing repository contents

After you obtain a reference to a Repository object, you can
browse or list its contents. To obtain a Repository’s object
reference, invoke

resolve initial references ("InterfaceRepository") on the ORB.
This returns an object reference of type CORBA: :0bject, which you
narrow to a CORBA: :Repository reference.

The abstract interface container has four operations that enable
repository browsing:

o lookup ()
° lookup name ()

o contents ()

312 Orbix CORBA Programmer’s Guide C++

b describe contents ()

Finding repository objects
Container operations lookup () and lookup name () are useful for
searching the contents of a repository for one or more objects.

lookup() conducts a search for a single object based on the
supplied scopedName argument, which contains the entity’s name
relative to other repository objects. A ScopedName that begins with
:: is an absolute scoped name—that is, it uniquely identifies an
entity within a repository—for example,

: :Finance: :Account : :makeWithdrawal. A ScopedName that does not
begin with :: identifies an entity relative to the current one.

For example, if module Finance contains attribute

Account: :balance, you can get a reference to the operation’s
corresponding AttributeDef object by invoking the module’s
lookup () operation:

CORBA: :Contained var cVar;
cVar = moduleVar->lookup ("Account: :balance") ;

The scopedName argument that you supply can specify to search
outside the cope of the actual container on which you invoke
lookup (). For example, the following statement invokes lookup ()
on an InterfaceDef in order to start searching for the newAccount
operation from the Repository container:

CORBA: :Contained var cVar;
cVar = ifVar->lookup ("::Finance: :Bank: :newAccount") ;

lookup_name() searches the target container for objects that
match a simple unscoped name. Because the name might yield
multiple matches, lookup() returns a sequence of Contained
objects. lockup name () takes the following arguments:

search name A string that specifies the name of the
objects to find. You can use asterisks (*) to
construct wildcard searches.

levels to searcSpecifies the number of levels of nested
h containers to include in the search. 1
restricts searching to the current object. -1
specifies an unrestricted search.

limit type Supply a DefinitionKind enumerator to
include a specific type of repository object in
the returned sequence. For example, set
limit type to dk operation to find only
operations. To return all objects, supply
dk_all. You can also supply dk none to match
no repository objects, and dk_Typedef, which
encompasses dk Alias, dk Struct, dk Union,
and dk_Enum.

exclude inheritValid only for InterfaceDef and vValueDef
ed objects. Supply TRUE to exclude inherited
definitions, FALSE to include.

Orbix CORBA Programmer’s Guide C++ 313

Unlike lookup (), lookup name () searches are confined to the target
container.

Getting object descriptions

Container operations contents () and describe contents() let you
obtain object descriptions:

contents() returns a sequence of Contained objects that belong to
the container. You can use this operation to search a given
container for a specific object. When it is found, you can call
Contained: :describe (), which returns a Contained: :Description for
the contained object (see “Repository Object Descriptions” on
page 310).

describe__contents() combines operations Container: :contents ()
and Contained: :describe (), and returns a sequence of

Contained: :Description structures, one for each of the contained
objects found.

You can limit the scope of the search by contents () and
describe contents() by setting one or more of the following
arguments:

limit type Supply a DefinitionKind enumerator to limit
the contents list to a specific type of
repository object. To return all objects,
supply dk_all. You can also supply dk_none to
match no repository objects, and dk_Typedef,
which encompasses dk_Alias, dk_Struct,
dk_Union, and dk_Enum.

exclude inherited Valid only for InterfaceDef and ValueDef
objects. Supply TRUE to exclude inherited
definitions from the contents listing, FALSE to
include.

max returned objs Available only for describe contents(), this
argument specifies the maximum length of
the sequence returned.

Finding an object using its repository id

You can use a repository ID to find any object in a repository by
invoking Container: :lookup id() on that repository. lookup id()
returns a reference to a Contained object, which can be narrowed
to the appropriate object reference type.

314 Orbix CORBA Programmer’s Guide C++

Sample Usage

This section contains code that uses the interface repository; it
prints the list of operation names and attribute names that are
defined in a given object’s interface.

int i;

Repository var rVar;

Contained var cVar;

InterfaceDef var interfaceVar;

InterfaceDef: :FullInterfaceDescription var full;
CORBA: :Object var obj;

try {
// get an object reference to the IFR:

obj =
orb->resolve initial references ("InterfaceRepository")

rVar = Repository:: narrow (obj) ;

// Get the interface definition:
cVar = rVar->lookup ("grid") ;
interfaceVar = InterfaceDef:: narrow(cVar) ;

// Get a full interface description:
full = interfaceVar->describe interface() ;

// Now print out the operation names:

cout << "The operation names are:" << endl;

for (i=0; i < full->operations.length(); i++)
cout << full->operations[i] .name << endl;

// Now print out the attribute names:

cout << "The attribute names are:" << endl;

for (i=0; i < full-sattributes.length(); i++)
cout << full->attributes[i] .name << endl;

catch (...) {

}

The example can be extended by finding the OperationDef object
for an operation called doit (). Operation Container: :lookup name ()
can be used as follows:

ContainedSeq var opSeq;
OperationDef var doitOpVar;

try {
cout << "Looking up operation doit ()"
<< endl;
opSeq = interfaceVar->lookup name (
"doit", 1, dk Operation, 0);

if (opSeg->length() != 1) {
cout << "Incorrect result for lookup name()";
exit (1) ;

Orbix CORBA Programmer’s Guide C++ 315

} else {
// Narrow the result to be an OperationDef.
doitOpVar =
OperationDef:: narrow(opSeq[0]))

}

catch (...) {

}
Repository IDs and Formats

Each interface repository object that describes an IDL definition
has a repository ID. A repository ID globally identifies an IDL
module, interface, constant, typedef, exception, attribute, or
operation definition. A repository ID is simply a string that
identifies the IDL definition.

Three formats for repository IDs are defined by CORBA. However,
repository IDs are not, in general, required to be in one of these
formats:

e OMG IDL
e DCE UUID
e LOCAL

OMG IDL

The default format used by Orbix, the OMG IDL format is derived
from the IDL definition’s scoped name:
IDL:identifier[/identifier] ... :version-number

This format contains three colon-delimited components:

* The first component identifies the repository ID format as the
OMG IDL format.

* Alist of identifiers specifies the scoped name, substituting
backslash (/) for double colon (::).

®* version-number cONtains a version number with the following
format:

major.minor
For example, given the following IDL definitions:

// IDL

interface Account {
readonly attribute float balance;
void makeDeposit (in float amount) ;

Vi

The IDL format repository ID for attribute Account: :balance looks
like this:

IDL:Account/balance:1.0

316 Orbix CORBA Programmer’s Guide C++

DCE UUID

The DCE UUID has the following format:

DCE: UUID: minor-version-number

LOCAL

Local format IDs are for local use within an interface repository
and are not intended to be known outside that repository. They
have the following format:

LOCAL: ID

Local format repository IDs can be useful in a development
environment as a way to avoid conflicts with repository IDs that
use other formats.

Controlling Repository IDs with Pragma Directives

You can control repository ID formats with pragma directives in an
IDL source file. Specifically, you can use pragmas to set the
repository ID for a specific IDL definition, and to set prefixes and
version numbers on repository IDs.

You can insert prefix and version pragma statements at any IDL
scope; the IDL compiler assigns the prefix or version only to
objects that are defined within that scope. Prefixes and version
numbers are not applied to definitions in files that are included at
that scope. Typically, prefixes and version numbers are set at
global scope, and are applied to all repository IDs.

ID pragma

You can explicitly associate an interface repository ID with an IDL
definition, such as an interface name or typedef. The definition
can be fully or partially scoped and must conform with one of the
IDL formats approved by the OMG (see “Repository IDs and
Formats” on page 316).

For example, the following IDL assigns repository ID idl:test:1.1
to interface test:

module Y {
interface test {

/] ...
s

#pragma ID test "idl:test:1.1"

}i

Orbix CORBA Programmer’s Guide C++ 317

Prefix pragma

The IDL prefix pragma lets you prepend a unique identifier to
repository IDs. This is especially useful in ensuring against the
chance of name conflicts among different applications. For
example, you can modify the IDL for the Finance module to include
a prefix pragma as follows:

// IDL
pragma prefix "USB"
module Finance {
interface Account {
readonly attribute float balance;

interface Bank {
Account newAccount () ;

Vi

These definitions yield the following repository IDs:

IDL:USB/Finance:1.0
IDL:USB/Finance/Account:1.0
IDL:USB/Finance/Account /balance:1.0
IDL:USB/Finance/Bank:1.0
IDL:USB/Finance/Bank/newAccount:1.0

Version pragma

A version number for an IDL definition’s repository ID can be
specified with a version pragma. The version pragma directive
uses the following format:

#pragma version name major.minor

name can be a fully scoped name or an identifier whose scope is
interpreted relative to the scope in which the pragma directive is
included. If no version pragma is specified for an IDL definition,
the default version number is 1.0. For example:

// IDL

module Finance {
#pragma version Account 2.5
interface Account {

//
}i
Vi

These definitions yield the following repository IDs:

IDL:Finance:1.0
IDL:Finance/Account:2.5

318 Orbix CORBA Programmer’s Guide C++

Version numbers are embedded in the string format of an object
reference. A client can invoke on the corresponding server object
only if its interface has a matching version number, or has no
version associated with it.

Note:You cannot populate the interface repository with
two IDL interfaces that share the same name but have
different version numbers.

Orbix CORBA Programmer’s Guide C++ 319

320 Orbix CORBA Programmer’s Guide C++

Naming Service

The Orbix naming service lets you associate names with objects. Servers
can register object references by name with the naming service
repository, and advertise those names to clients. Clients, in turn, can
resolve the desired objects in the naming service by supplying the
appropriate name.

The Orbix naming service implements the OMG COS Interoperable
Naming Service, which describes how applications can map object
references to names.

Benefits

Using the naming service can offer the following benefits:

* Clients can locate objects through standard names that are
independent of the corresponding object references. This
affords greater flexibility to developers and administrators,
who can direct client requests to the most appropriate
implementation. For example, you can make changes to an
object’s implementation or its location that are transparent to
the client.

* The naming service provides a single repository for object
references. Thus, application components can rely on it to
obtain an application’s initial references.

Many operations that are discussed here can also be executed
administratively with Orbix tools. For more information about
these and related configuration options, refer to the Application
Server Platform Administrator’s Guide.

Naming Service Design

Naming graph organization

The naming service is organized into a naming graph, which is
equivalent to a directory system. A naming graph consists of one
or more naming contexts, which correspond to directories. Each
naming context contains zero or more name-reference
associations, or name bindings, each of which refers to another node
within the naming graph. A name binding can refer either to
another naming context or to an object reference. Thus, any path
within a naming graph finally resolves to either a naming context
or an object reference. All bindings in a naming graph can usually
be resolved via an initial naming context.

Example

Figure 30 shows how the aAccount interface described in earlier
chapters might be extended (through inheritance) into multiple
objects, and organized into a hierarchy of naming contexts. In this

Orbix CORBA Programmer’s Guide C++ 321

graph, hollow nodes are naming contexts and solid nodes are
application objects. Naming contexts are typically intermediate
nodes, although they can also be leaf nodes; application objects
can only be leaf nodes.

Initial naming context

Checking

Mortgage

Personal
@

Figure 30: A naming graph isa hierarchy of naming contexts

Each leaf node in this naming graph associates a name with a
reference to an account object such as a basic checking account or
a personal loan account. Given the full path from the initial
naming context—for example, Savings/Regular—a client can obtain
the associated reference and invoke requests on it.

The operations and types that the naming service requires are
defined in the IDL file cosNaming.idl. This file contains a single
module, CosNaming, which in turn contains three interfaces:
NamingContext, NamingContextExt, and BindingIterator.

Defining Names

Name sequence

A naming graph is composed of Name sequences of NameComponent
structures, defined in the CosNaming module:

module CosNaming{
typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;

}

typedef sequence<NameComponent> Name;

I

A Name sequence specifies the path from a naming context to
another naming context or application object. Each name
component specifies a single node along that path.

322 Orbix CORBA Programmer’s Guide C++

Name components

Each name component has two string members:

* The id field acts as a name component’s principle identifier.
This field must be set.

* The kind member is optional; use it to further differentiate
name components, if necessary.

Both id and kind members of a name component are used in
name resolution. So, the naming service differentiates between
two name components that have the same ids but different kinds.

For example, in the naming graph shown in Figure 30 on
page 322, the path to a Personal loan account object is specified
by a Name sequence in which only the id fields are set:

Index id kind

0 Loans

1 Personal

In order to bind another Personal account object to the same Loan
naming context, you must differentiate it from the existing one.
You might do so by setting their kind fields as follows:

Index id kind
0 Loans
1 Personal unsecured
1 Personal secured

Note: If the kind field is unused, it must be set to an
empty string.

Representing Names as Strings

The CosNaming: :NamingContextExt interface defines a StringName
type, which can represent a Name as a string with the following
syntax:

id[.kind] [/id[.kind]] ...

Name components are delimited by a forward slash (/); id and
kind members are delimited by a period (.). If the name
component contains only the id string, the kind member is
assumed to be an empty string.

StringName syntax reserves the use of three characters: forward
slash (/), period (.), and backslash (\). If a name component
includes these characters, you can use them in a StringFormat by
prefixing them with a backslash (\) character.

The CosNaming: :NamingContextExt interface provides several
operations that allow conversion between StringName and Name
data:

® to name() converts a StringName tO a Name (See page 324).

Orbix CORBA Programmer’s Guide C++ 323

®* to string() converts a Name tO a StringName (See page 325).

® resolve str() USes a StringName to find a Name in a naming
graph and returns an object reference (see page 331).

Note: You can invoke these and other

CosNaming: :NamingContextExt operations only on an initial
naming context that is narrowed to

CosNaming: :NamingContextExt.

Initializing a Name
You can initialize a CosNaming: :Name Sequence in one of two ways:

* Set the members of each name component.

®* Call to name() on the initial naming context and supply a
StringName argument. This operation converts the supplied
string to a Name sequence.

Setting name component members

Given the loan account objects shown earlier, you can set the
name for an unsecured personal loan as follows:

Example 50: Initializing Name components

CosNaming: :Name name (2) ;

name. length (2) ;

name [0] .id = CORBA::string dup ("Loans") ;
name [0] .kind = CORBA::string dup("");
name [1] .id = CORBA::string dup ("Personal") ;
name [1] .kind = CORBA::string dup("unsecured") ;

Converting a stringname to a name

The name shown in the previous example can also be set in a
more straightforward way by calling to name () on the initial
naming context (see “Obtaining the Initial Naming Context” on
page 325):

Example 51: Using to_name() to initialize a Name

// get initial naming context
CosNaming: :NamingContextExt var root cxt = ...;

CosNaming: :Name var name;
name = root cxt->to name ("Loans/Personal .unsecured") ;

The to name () operation takes a string argument and returns a
CosNaming: :Name, which the previous example sets as follows:

Index id kind

0 Loans

1 Personal unsecured

324 Orbix CORBA Programmer’s Guide C++

Converting a Name to a StringName

You can convert a CosNaming: :Name t0 & CosNamingExt : : StringName
by calling to_string() on the initial naming context. This lets
server programs to advertise human-readable object names to
clients.

For example, the following code converts Name sequence name to a
StringName:

Example 52: Converting a Name to a SringName

// get initial naming context
CosNaming: :NamingContextExt var root cxt = ...;
CosNaming: :NamingContextExt : :StringName str n;

// initialize name
CosNaming: :Name var name = ...;

str n = root cxt->to string(name) ;

Obtaining the Initial Naming Context

Clients and servers access a haming service through its initial
naming context, which provides the standard entry point for
building, modifying, and traversing a naming graph. To obtain the
naming service’s initial naming context, call

resolve initial references() on the ORB. For example:

Example 53: Obtaining theinitial naming context

// Initialize the ORB
CORBA: :ORB var orb = CORBA::ORB init (argc, argv);

// Get reference to initial naming context
CORBA: :Object obj =
orb var->resolve initial references ("NameService") ;

To obtain a reference to the naming context, narrow the result
with CosNaming: :NamingContextExt:: narrow():

CosNaming: :NamingContextExt var root cxt;
if (root cxt =
CosNaming: :NamingContextExt:: narrow (obj)) {

} else {...} // Deal with failure to narrow()

A naming graph’s initial naming context is equivalent to the root
directory. Later sections show how you use the initial naming
context to build and modify a naming graph, and to resolve names
to object references.

Note: The NamingContextExt interface provides extra
functionality over the NamingContext interface; therefore,
the code in this chapter assumes that an initial naming
context is narrowed to the NamingContextExt interface

Orbix CORBA Programmer’s Guide C++ 325

Building a Naming Graph

A name binding can reference either an object reference or
another naming context. By binding one naming context to
another, you can organize application objects into logical
categories. However complex the hierarchy, almost all paths
within a naming graph hierarchy typically resolve to object
references.

In an application that uses a naming service, a server program
often builds a multi-tiered naming graph on startup. This process
consists of two repetitive operations:

. Bind naming contexts into the desired hierarchy.

. Bind objects into the appropriate naming contexts.

Binding Naming Contexts

A server that builds a hierarchy of naming contexts contains the
following steps:
1. Gets the initial naming context (see page 325).

2. Creates the first tier of naming contexts from the initial
naming context.

3. Binds the new naming contexts to the initial naming context.
4. Adds naming contexts that are subordinate to the first tier:

+ Creates a naming context from any existing one.

+ Binds the new naming context to its designated parent.

The naming graph shown in Figure 30 on page 322 contains three
naming contexts that are directly subordinate to the initial naming
context: Checking, Loans, and Savings. The following code binds
the Checking naming context to the initial naming context, as
shown in Figure 31:

Example 54: Binding a haming context to the initial naming context

//get initial naming context
CosNaming: :NamingContextExt var root cxt = ...

CosNaming: :NamingContext var checking cxt;

// create naming context
checking cxt = root cxt->new context () ;

// initialize name

CosNaming: :Name var name;

name.length (1) ;

name [0] .id = CORBA::string dup ("Checking") ;
name [0] .kind = CORBA::string dup("");

// bind new context
root cxt->bind context (name, checking cxt) ;

326 Orbix CORBA Programmer’s Guide C++

Initial naming context

Checking

O
Figure 31: Checking context bound to initial naming context

Similarly, you can bind the Savings and Loans naming contexts to
the initial naming context. The following code uses the shortcut
operation bind new context (), which combines new context () and
bind (). It also uses the to name () operation to set the Name
variable.

Example 55: Binding a haming context with bind_new_context()
CosNaming: :NamingContext var savings cxt, loan cxt;

// create naming contexts
name = root cxt->to name ("Savings") ;
savings cxt = root cxt->bind new context (name) ;

name = root cxt->to name ("Loan") ;
loan cxt = root cxt->bind new context (name) ;

Initial naming context

Checking Loans
Savings

(@)

Figure 32: Savings and Loans naming contexts bound to initial naming context

Orphaned naming contexts

The naming service can contain naming contexts that are unbound
to any other context. Because these naming contexts have no
parent context, they are regarded as orphaned. Any naming context
that you create with new context () is orphaned until you bind it to
another context. Although it has no parent context, the initial
naming context is not orphaned inasmuch as it is always
accessible through resolve initial references(), while orphan
naming contexts have no reliable means of access.

You might deliberately leave a naming context unbound—for
example, you are in the process of constructing a new branch of
naming contexts but wish to test it before binding it into the
naming graph. Other naming contexts might appear to be
orphaned within the context of the current naming service;
however, they might actually be bound to a federated naming
graph in another naming service (see “Federating Naming Graphs”

Orbix CORBA Programmer’s Guide C++ 327

on page 337).

Erroneous usage of orphaned naming
contexts

Orphaned contexts can also occur inadvertently, often as a result
of carelessly written code. For example, you can create orphaned
contexts as a result of calling rebind() or rebind context () to
replace one name binding with another (see “Rebinding” on

page 329). The following code shows how you might orphan the
Savings naming context:

Example 56: Orphaned naming contexts

//get initial naming context
CosNaming: :NamingContextExt var root cxt = ...;

CosNaming: :NamingContext var savings cxt;

// initialize name

CosNaming: :Name var name;

name. length (1) ;

name [0] .id = CORBA::string dup ("Savings") ;
name [0] .kind = CORBA::string dup("");

// create and bind checking cxt
savings cxt = root cxt->bind new context (name) ;

// make another context
CosNaming: :NamingContext var savings cxt2;
savings cxt2 = root cxt->new context () ;

// bind savings cxt2 to root context, savings cxt now
orphaned!
root cxt->rebind context (name, savings cxt2) ;

An application can also create an orphan context by calling
unbind () on a context without calling destroy () on the same
context object (see “Maintaining the Naming Service” on
page 335).

In both cases, if the application exits without destroying the
context objects, they remain in the naming service but are
inaccessible and cannot be deleted.

328 Orbix CORBA Programmer’s Guide C++

Binding Object References

After you construct the desired hierarchy of naming contexts, you
can bind object references to them with the bind () operation. The
following example builds on earlier code to bind a Basic checking
account object to the Checking naming context:

Example 57: Binding an object reference

// object reference "basic check" obtained earlier

name->length (1) ;

name [0] .id = CORBA::string dup ("Basic");
name [0] .kind = CORBA::string dup("");
checking cxt->bind(name, basic check) ;

Initial naming context

Checking Loans

Basic

Figure 33: Binding an object reference to a naming context

Rebinding

The previous code assumes the existence of a NamingContext
variable for the checking naming context on which you can invoke
bind (). Alternatively, you can invoke bind () on the initial naming
context in order to bind Basic into the naming graph:

name = root cxt->to name ("Checking/Basic") ;
root cxt->bind(name, basic check) ;

If you call bind () or bind context () on a naming context that
already contains the specified binding, the naming service throws
an exception of AlreadyBound. To ensure the success of a binding
operation whether or not the desired binding already exists, call
one of the following naming context operations:

* rebind() rebinds an application object.
®* rebind context () rebinds a naming context.

Orbix CORBA Programmer’s Guide C++ 329

Either operation replaces an existing binding of the same name
with the new binding. Calls to rebind() in particular can be useful
on server startup, to ensure that the naming service has the latest
object references.

Note: Calls to rebind context () Or rebind() can have the
undesired effect of creating orphaned naming contexts
(see page 327). In general, exercise caution when calling
either function.

Using Names to Access Objects

A client application can use the naming service to obtain object

references in three steps:

1. Obtain a reference to the initial naming context (see
“Obtaining the Initial Naming Context”).

2. Set aCosNaming::Name structure with the full path of the name associated with
the desired object.

3. Resolvethe name to the desired object reference.

Setting object names

You specify the path to the desired object reference in a
CosNaming: :Name. YOu can set this name in one of two ways:

Explicitly set the id and kind members of each Name element.

For example, the following code sets the name of a Basic checking
account object:

Example 58: Setting object name components

CosNaming: :Name var name;

name.length(2) ;

name [0] .id = CORBA::string dup ("Checking") ;
name [0] .kind = CORBA::string dup("");

name [1] .id = CORBA::string dup ("Basic") ;
name [1] .kind = CORBA::string dup("");

Call to name () on the initial naming context. This option is
available if the client code narrows the initial naming context to
the NamingContextExt interface. to name () takes a

CosNaming: : CosNamingExt : : StringName argument and returns a
CosNaming: :Name as follows:

Example 59: Setting an object name with to_name()

CosNaming: :Name var name;
name = root cxt->to name ("Checking/Basic") ;

For more about using a StringName with to name (), see “Converting
a stringname to a name” on page 324.

330 Orbix CORBA Programmer’s Guide C++

Resolving names

Clients call resolve () on the initial naming context to obtain the
object associated with the supplied name:

Example 60: Calling resolve()
CORBA: :Object var obj;
obj = root cxt->resolve (name) ;

Alternatively, the client can call resolve str() on the initial naming
context to resolve the same name using its StringName equivalent:

Example 61: Calling resolve_str()
CORBA: :Object var obj;
obj = root cxt-sresolve str ("Checking/Basic") ;

In both cases, the object returned in obj is an application object
that implements the IDL interface BasicChecking, so the client
narrows the returned object accordingly:

BasicChecking var checking var;
try {
checking var = BasicChecking:: narrow(obj))
// perform some operation on basic checking object

} // end of try clause, catch clauses not shown

Resolving names with corbaname

You can resolve names with a corbaname URL, which is similar to a
corbaloc URL (see “Using corbaloc URL strings” on page 136).
However, a corbaname URL also contains a stringified name that
identifies a binding in a naming context. For example, the
following code uses a corbaname URL to obtain a reference to a
BasicChecking object:

Example 62: Resolving a name with corbaname

CORBA: :Object var obj;
obj = orb->string to object (
"corbaname:rir:/NameService#Checking/Basic"

) 5

A corbaname URL has the following syntax:

corbaname:rir: [/NameService]#string-name

string-name IS a string that conforms to the format allowed by a
CosNaming: : CosNamingExt : : StringName (See “Representing Names as
Strings” on page 323). A corbaname can omit the NameService
specifier. For example, the following call to string to cobject() is
equivalent to the call shown earlier:

obj = orb->string to object ("corbaname:rir:#Checking/Basic") ;

Orbix CORBA Programmer’s Guide C++ 331

Exceptions Returned to Clients

Listing Naming

Invocations on the naming service can result in the following
exceptions:

NotFound The specified name does not resolve to an existing
binding. This exception contains two data members:

why Explains why a lookup failed with one of the
following values:

®* missing node: one of the name components
specifies a non-existent binding.

®* not context: one of the intermediate name
components specifies a binding to an
application object instead of a naming
context.

®* not object: one of the name components
points to a non-existent object.

rest_of_na Contains the trailing part of the name that could
me not be resolved.

InvalidName The specified name is empty or contains invalid
characters.

CannotProceed The operation fails for reasons not described by
other exceptions. For example, the naming service’s internal
repository might be in an inconsistent state.

AlreadyBound Attempts to create a binding in a context throw
this exception if the context already contains a binding of the
same name.

Not Empty Attempts to delete a context that contains bindings
throw this exception. Contexts must be empty before you delete
them.

Context Bindings

In order to find an object reference, a client might need to iterate
over the bindings in one or more naming contexts. You can invoke
the 1ist () operation on a naming context to obtain a list of its
name bindings. This operation has the following signature:

void list(
in unsigned long how many,
out BindingList bl,
out BindingIterator it);

332 Orbix CORBA Programmer’s Guide C++

list () returns with a BindingList, which is a sequence of Binding
structures:

enum BindingType{ nobject, ncontext };

struct Binding{
Name binding name
BindingType binding type;

}

typedef sequence<Binding> Bindinglist

Iterating over binding list elements

Given a binding list, the client can iterate over its elements to
obtain their binding name and type. Given a Binding element’s
name, the client application can call resolve() to obtain an object
reference; it can use the binding type information to determine
whether the object is a naming context or an application object.

For example, given the naming graph in Figure 30, a client
application can invoke 1ist () on the initial naming context and
return a binding list with three Binding elements:

Index Name BindingTy
pe
0 Checking ncontext
1 Savings ncontext
2 Loan ncontext

Using a Binding lterator

Limiting number of bindings returned by

list()

In the previous example, list () returns a small binding list.
However, an enterprise application is likely to require naming
contexts with a large number of bindings. 1ist () therefore
provides two parameters that let a client obtain all bindings from a
naming context without overrunning available memory:

how_many sets the maximum number of elements to return in
the binding list. If the number of bindings in a naming context is
greater than how many, list () returns with its BindingIterator
parameter set.

it is a BindingIterator object that can be used to retrieve the
remaining bindings in a naming context. If 1ist () returns with all
bindings in its Bindinglist, this parameter is set to nil.

Orbix CORBA Programmer’s Guide C++ 333

A BindingIterator object has the following IDL interface definition:

interface BindingIterator{
boolean next one (out Binding b) ;
boolean next n(in unsigned long how many, out
BindingList bl) ;
void destroy () ;

Obtaining remainder of bindings

If 1ist () returns with a BindingIterator object, the client can
invoke on it either next n() to retrieve the next specified number
of remaining bindings, or next one() to retrieve one remaining
binding at a time. Both functions return true if the naming context
contains more bindings to fetch. Together, these BindingIterator
operations and list () let a client safely obtain all bindings in a
context.

Note: The client is responsible for destroying an iterator.
It also must be able to handle exceptions that might return
when it calls an iterator operation, inasmuch as the naming
service can destroy an iterator at any time before the client
retrieves all naming context bindings.

The following client code gets a binding list from a naming context
and prints each element’s binding name and type:

Example 63: Obtaining a binding list

// printing function
void
print binding list (const CosNaming::BindingList &bl)
{
for(CORBA::Ulong i = 0; i < bl.length(); i++){
cout << bl[i] .binding name[0] .id;
if (bl[i] .binding name[0] .kind != ’\0’)
cout << "(" << bl[i] .binding name [0] .kind <<
)
if (bl[i] .binding type == CosNaming: :ncontext)
cout << ": naming context" << endl;
else
cout << ": object reference" << endl;

}

void

get context bindings (CosNaming: :NamingContext ptr cxt)
CosNaming: :BindingList var b list;
CosNaming: :BindingIterator var b_iter;
const CORBA::ULong MAX BINDINGS = 50;

if (!CORBA::is nil(cxt)) {

334 Orbix CORBA Programmer’s Guide C++

Example 63: Obtaining a binding list

// get first set of bindings from cxt
root cxt->list (MAX BINDINGS, b list, b iter);

//print first set of bindings
print binding list (b list);

// look for remaining bindings
if (!CORBA::is nil(b iter)) {
CORBA: :Boolean more;
do {
is nil (b iter)) {
more = b _iter-snext n(MAX BINDINGS,
b list);
// print next set of bindings
print binding list (b list);
} while (more) ;

}

// get rid of iterator
b iter->destroy() ;

}

When you run this code on the initial naming context shown
earlier, it yields the following output:

Checking: naming context
Savings: naming context
Loan: naming context

Maintaining the Naming Service

Destruction of a context and its bindings is a two-step procedure:

* Remove bindings to the target context from its parent
contexts by calling unbind () on them.

* Destroy the context by calling the destroy () operation on it. If
the context contains bindings, these must be destroyed first;
otherwise, destroy() returns with a NotEmpty exception.

These operations can be called in any order; but it is important to
call both. If you remove the bindings to a context without
destroying it, you leave an orphaned context within the naming
graph that might be impossible to access and destroy later (see
“Orphaned naming contexts” on page 327). If you destroy a
context but do not remove its bindings to other contexts, you
leave behind bindings that point nowhere, or dangling bindings.

Orbix CORBA Programmer’s Guide C++ 335

For example, given the partial naming graph in Figure 34, you can
destroy the Loans context and its bindings to the loan account
objects as follows:

Example 64: Destroying a naming context
CosNaming: :Name var name;

// get initial naming context
CosNaming: :NamingContextExt var root cxt = ...;

// assume availability of Loans naming context variable
CosNaming: :NamingContext var loans cxt = ... ;

// remove bindings to Loans context

name = root cxt->to name ("Loans/Mortgage") ;
root cxt->unbind (name) ;

name = root cxt->to name ("Loans/Auto") ;
root cxt->unbind(name) ;

name = root cxt->to name ("Loans/Personal) ;
root cxt->unbind (name) ;

// remove binding from Loans context to initial naming
context

name = root cxt->to name ("Loans") ;

root cxt->unbind (name) ;

// destroy orphaned Loans context
loans cxt->destroy() ;

Before i After
Initial naming | Initial naming
context | O context
|
Loans |
|
Mortgage |
Personal |
) | ()
Auto
° | °
° | °
I

Figure 34: Destroying a naming context and removing related bindings
Note: Orbix provides administrative tools to destroy

contexts and remove bindings. These are described in the
Application Server Platform Administrator’s Guide.

336 Orbix CORBA Programmer’s Guide C++

Federating Naming Graphs

A naming graph can span multiple naming services, which can
themselves reside on different hosts. Given the initial naming
context of an external naming service, a naming context can
transparently bind itself to that naming service’s naming graph. A
naming graph that spans multiple naming services is said to be
federated.

Benefits

A federated naming graph offers the following benefits:

* Reliability: By spanning a naming graph across multiple
servers, you can minimize the impact of a single server’s
failure.

* Load balancing: You can distribute processing according to
logical groups. Multiple servers can share the work load of
resolving bindings for different clients.

* Scalability: Persistent storage for a naming graph is spread
across multiple servers.

* Decentralized administration: Logical groups within a naming
graph can be maintained separately through different
administrative domains, while they are collectively visible to
all clients across the network.

Federation models

Each naming graph in a federation must obtain the initial naming
context of other members in order to bind itself to them. The
binding possibilities are virtually infinite; however, two federation
models are widely used:

* Hierarchal federation — All naming graphs are bound to a root
server’'s naming graph. Clients access objects via the initial
naming context of the root server.

* Fully-connected federation — Each naming graph directly
binds itself to all other naming graphs. Typically, each naming
graph binds the initial naming contexts of all other naming
graphs into its own initial naming context. Clients can access
all objects via the initial naming context of their local naming
service.

Orbix CORBA Programmer’s Guide C++ 337

Hierarchal federation

Figure 35 shows a hierarchal naming service federation that
comprises three servers. The Deposits server maintains naming
contexts for checking and savings accounts, while the Loans
server maintains naming contexts for loan accounts. A single root
server serves as the logical starting point for all naming contexts.

Root server

Initial naming context

N

Deposits server Deposits Loak\ Loans server

Initial naming context / \ Initial naming context

Mortgage

Personal

Checking

]
NOW Auto

Pension

Figure 35: A naming graph that spans multiple servers

In this hierarchical structure, the naming graphs in the Deposits
and Loans servers are federated through an intermediary root
server. The initial naming contexts of the Deposits and Loans
servers are bound to the root server’s initial naming context.
Thus, clients gain access to either naming graph through the root
server’s initial naming context.

The following code binds the initial naming contexts of the
Deposits and Loans servers to the root server’s initial naming
context:

Example 65: Federating naming graphsto a root server’sinitial naming context

// Root server
#include <omg/CosNaming.hh>

int main (int argc, char** argv) ({
CosNaming: :NamingContextExt var
root inc, deposits inc, loans, inc;
CosNaming: :Name var name;
CORBA: :Object var obj;
CORBA: :ORB var orb var;
char *loans inc ior, deposits_inc_ ior

338 Orbix CORBA Programmer’s Guide C++

Example 65: Federating naming graphsto a root server’sinitial naming context

try {
orb var = CORBA::ORB init (argc, argv, "Orbix");

// code to obtain stringified IORs of initial

naming

// contexts for Loans and Deposits servers (not
shown)

obj = orb var-s>string to object (loans inc ior) ;

loans inc ==
CosNaming: :NamingContextExt:: narrow (obj) ;
obj = orb var->string to object
(deposits inc ior) ;
deposits inc ==
CosNaming: :NamingContextExt:: narrow (obj) ;

// get initial naming context for Root server
root inc = ... ;

// bind Deposits initial naming context to root
server

// initial naming context

name = root inc->to name ("Deposits") ;

root inc->bind context (name, deposits inc) ;

// bind Loans initial naming context to root
server’s

// initial naming context

name = root inc->to name ("Loans") ;

root inc->bind context (name, deposits inc) ;

}

This yields the following bindings between the three naming
graphs:

Root server

Initial naming context

AN

Deposits Loans

Deposits server Loans server

Initial naming context ’ \ Initial naming context

\ R

Figure 36: Multiple naming graphs are linked by binding initial naming contexts of
several serversto aroot server.

Orbix CORBA Programmer’s Guide C++ 339

Fully-connected federation

In a purely hierarchical model like the naming graph just shown,
clients obtain their initial naming context from the root server, and
the root server acts as the sole gateway into all federated naming
services. To avoid bottlenecks, it is possible to modify this model
so that clients can gain access to a federated naming graph via
the initial naming context of any member naming service.

The next code example shows how the Deposits and Loans servers
can bind the root server’s initial naming context into their
respective initial naming contexts. Clients can use this binding to
locate the root server’s initial naming context, and then use
root-relative names to locate objects.

Figure 37 shows how this federates the three naming graphs:

Root server

Initial naming context

wer AN e

Deposits server Deposits ~ Loans Loans server

Initial naming context { , \ \ Initial naming context

1 R

Figure 37: Theroot server’sinitial naming context is bound to the initial naming
contexts of other servers, allowing clients to locate the root naming context.

The code for both Deposits and Loans server processes is virtually
identical:

Example 66: Federating naming graphs through theinitial naming contexts of multiple
servers

#include <omg/CosNaming.hh>

int main (int argc, char** argv) ({
CosNaming: :NamingContextEXt var
root inc, this inc;
CosNaming: :Name var name;
CORBA: :Object var obj;
CORBA: :ORB var orb var;
char *root inc ior;

340 Orbix CORBA Programmer’s Guide C++

Sample Code

Example 66: Federating naming graphs through the initial naming contexts of multiple
servers

try {
orb var = CORBA::ORB init (argc, argv, "Orbix");

// code to obtain stringified IORs of root
server'’s
// initial naming context (not shown)

obj = orb var-s>string to object (root inc ior);
root inc ==
CosNaming: :NamingContextExt:: narrow (obj) ;

// get initial naming context for this server
this inc = ... ;

name = this inc->to name ("parent") ;

// bind root server’s initial naming context to
// this server’s initial naming context
this inc->bind context (name, root inc) ;

The following sections show the server and client code that is
discussed in previous sections of this chapter.

Server code

Example 67: Server naming service code
#include <omg/CosNaming.hh>

int main (int argc, char** argv) {
CosNaming: :NamingContextExt var root cxt;
CosNaming: :NamingContext var
checking cxt, savings cxt, loan cxt;
CosNaming: :Name var name;
CORBA: :ORB _var orb;
CORBA: :Object var obj;
Checking var basic check, now check, premium check;
// Checking var objects initialized from
// persistent data (not shown)

try {
// Initialize the ORB
orb = CORBA::ORB init (argc, argv, "Orbix");

Orbix CORBA Programmer’s Guide C++ 341

Example 67: Server namin