ORBIX

Security Guide

Version 6.3.5, July 2011

PROGRESS

software
BUSINESS MAKING PROGRESSw

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.

These materials and all Progress® software products are copyrighted and al rights are
reserved by Progress Soft ware Corporation. The information in these materials is subject
to change without notice, and Progress Software Corporation assumes no responsihility for
any errorsthat may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, DataDirect
(and design), DataDi rect Connect, DataDirect Connect64, DataDirect Technologies,
DataDirect XML Converters, DataDirect X Query, DataXtend, Dynamic Routing
Architecture, EdgeXtend, Empowerment Center, Fathom, Fuse Mediation Router, Fuse
Message Broker, Fuse Services Framework, IntelliStream, IONA, Making Software Work
Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by
Progress, Pow erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business
Empowerment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Devel opers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment,
WebSpeed, Xcalia (and design), and Your Software, Our Technology-Experience the
Connection are registered trademarks of Progress Software Corporation or one of its
affiliates or subsidiariesin the U.S. and/or other countries. Accel Event, Apama Dashboard
Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk
Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward,
CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof,
GVAC, High Performance Integration, Object Store Inspector, ObjectStore Performance
Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade, Progress
CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP Event
Modeler, Progress Event Engine, Progress RFID, Progress RPM, PSE Pro, SectorAlliance,
SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/
Presentation, Shadow Studio, SmartBrowser, SmartComponent, SmartDataBrowser,
SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, Smart Frame,
SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business
Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Continuous
Availahility Architecture, Sonic Database Service, Sonic Workbench, Sonic XML Server,
The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service
marks of Progress Software Corporation and/or its subsidiaries or affiliatesin the U.S. and
other countries. Javaisaregistered trademark of Oracle and/or its affiliates. Any other
marks con tained herein may be trademarks of their respective owners.

Third Party Acknowledgements:

Progress Orbix v6.3.5 incorporates Jakarata-struts 1.0.2 from the Apache Software
Foundation (http://www.apache.org). Such Apache Technology is subject to the following
terms and conditions: The Apache Soft ware License, Version 1.1 Copyright (c) 1999-2001
The Apache Software Foundation. All rights reserved. Redistribution and usein source

and binary forms, with or without modification, are permitted provided that the following conditions are
met: 1. Redistributions of source code must retain the above copyright notice, thislist of conditions and the
following disclaimer. 2. Redistributionsin binary form must reproduce the above copy right notice, thislist
of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache Software
Foundation (http://www.apache.org/).” Alternately, this acknowledgment may appear in the software itself,
if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta Project”,
"Struts”, and " Apache Software Foundation" must not be used to endorse or promote products derived from
this software without prior written permission. For written permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
“ASIS'AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
ORITSCONTRIBU TORSBE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUEN TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUB STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIA BILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Soft ware Foun dation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orhix v6.3.5 incorporates Jakarta-bcel 5.0 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions. The Apache
Software License, Version 1.1 Copy right (c) 2001 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
thislist of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright natice, thislist of conditions and the following disclaimer in the docu mentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names"Apache" and "Apache Software Foundation" and "Apache BCEL" must
not be used to endorse or promote products derived from this software with out prior written permission.
For written permission, please contact apache@apache.org. 5. Products derived from this software may not
be called "Apache", "Apache BCEL", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation. THIS SOFTWARE ISPROVIDED “ASIS' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION ORITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

Security Guide

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSI NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarat-regexp 1.2 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
thislist of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, thislist of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the

redistri bution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names"The Jakarta Project”, "Jakarta -Regexp", and "Apache Software
Foundation" and "Apache BCEL" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact apache@apache.org. 5.
Products derived from this software may not be called "Apache", nor may "Apache” appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
TASIS' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
ORITSCONTRIBUTORSBE LIA BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Jakarta-log4j 1.2.6 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
thislist of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, thislist of conditions and the following dis claimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software

developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "logdj" and "Apache Software Foundation" and "Apache BCEL" must not
be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written per mission of the Apache
Software Foundation. THIS SOFTWARE ISPROVIDED “ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABIL ITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUD ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foun dation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates Ant 1.5 from the Apache Software Foundation (http://www.apache.org).
Such technology is subject to the following terms and conditions. The Apache Software License, Version
1.1 Copyright (c) 2000-2002 The Apache Software Foundation. All rightsreserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the fol lowing disclaimer. 2. Redistributionsin binary form must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. 3. The end-user documentation included with the redistribution, if
any, must include the following acknowledgment: "This product includes software devel oped by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names"Ant"
and " Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote products
derived from this software without prior writ ten permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache”, nor may
"Apache" appear in their name, without prior written permission of the Apache Software Foundation. THIS
SOFTWARE ISPROVIDED “"ASIS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists

Security Guide

of voluntary contri butions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Xalan-j 2.3.1 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Soft ware License, Version 1.1. Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
thislist of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, thislist of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/).” Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names"Xalan" and "Apache Software Foundation" and "Apache BCEL" must not
be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written permission of the Apache
Software Foundation. THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MER CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contri butions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foundation, please see <http://www.apache.org/
>,

Progress Orbix v6.3.5 incorporates the Xerces-c++ 2.4 from the A pache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999-2001 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, thislist of conditions and the following disclaimer. 2. Redis tributionsin binary form must
reproduce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation
included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately,
this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names"Xerces' and "Apache Software Foundation™ and "Apache BCEL" must not
be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be

Vi

called "Apache”, nor may "Apache" appear in their name, without prior written permission of the Apache
Software Foundation. THIS SOFTWARE ISPROVIDED T“ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For moreinformation on the Apache Software Foundation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates xerces-j 2.5 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copy right (c) 1999-2002 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary form must
reproduce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation
included with the redistribution, if any, must include the following acknowledgment: "This product
includes software devel oped by the Apache Software Foundation (http://www.apache.org/).” Alternately,
this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names"Xerces' and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTIC ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists
of voluntary contributions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Tomcat 4.0.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999, 2000 The Apache Software Foundation. All rights

Vii

Security Guide

reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary form must
reproduce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation
included with the redistribution, if any, must include the following acknowledgment: "This product
includes software devel oped by the Apache Software Foundation (http://www.apache.org/).” Alternately,
this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names"The Jakarta Project”, "Tomcat" and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written permission of the Apache
Software Foundation. THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foun dation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates MCPP 2.6.4 from the MCPP Project. Such technology is subject to the
following terms and conditions: Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui @t3.rim.or.jp All
rights reserved. This software including the filesin this directory is provided under the following license.
Redistribu tion and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met: 1. Redistributions of source code must retain the above copyright
notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary form must reproduce
the above copyright notice, thislist of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. THIS SOFTWARE ISPROVIDED BY THE AUTHOR “AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CON TRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates Xalan c++ v1.7 from The Apache Software Foundation. Such
technology is subject to the following terms and conditions: The Apache Software License, Version 1.1

viii

Copyright (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions
are met: 1. Redistributions of source code must retain the above copyright notice, thislist of conditions and
the following disclaimer. 2. Redis tributions in binary form must reproduce the above copyright notice, this
list of conditions and the follow ing disclaimer in the documentation and/or other materials provided with
the distribution. 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: " This product includes software developed by the Apache Software Foundation
(http:/lwww.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear. 4. The names"Xalan" and " Apache Software
Foundation" must not be used to endorse or promote prod ucts derived from this software without prior
written permission. For written permission, please contact apache@apache.org. 5. Products derived from
this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED “ASIS' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU LAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION ORITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation and was originally based on software copyright (c) 1999, L otus Devel opment
Corporation., http://www.lotus.com. For more information on the Apache Software Foundation, please see
<http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Tcl 8.4.15 from Regents of the University of California, Sun
Microsystems, Inc., Scriptics Corporation, and other parties. Such technology is subject to the following
terms and conditions: This software is copyrighted by the Regents of the University of California, Sun
Microsystems, Inc., Scriptics Corporation, and other parties. The following terms apply to all files
associated with the software unless explicitly disclaimed in individual files. The authors hereby grant
permission to use, copy, modify, distribute, and license this software and its documentation for any purpose,
provided that existing copyright notices are retained in all copies and that this noticeisincluded verbatimin
any distributions. No written agreement, license, or royalty feeis required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and need not follow the licensing terms
described here, provided that the new terms are clearly indicated on the first page of each file where they
apply. IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE, ITSDOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. THE AUTHORS AND DISTRIBUTORS SPE CIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR RANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.

Security Guide

THIS SOFTWARE IS PROVIDED ON AN "ASIS' BASIS, AND THE AUTHORS AND
DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFI CATIONS. GOVERNMENT USE: If you are acquiring this software on
behalf of the U.S. government, the Government shall have only "Restricted Rights" in the software and
related documentation as defined in the Federal Acquisition Regulations (FARS) in Clause 52.227.19 (c) (2).
If you are acquiring the software on behalf of the Department of Defense, the software shall be classified as
"Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined in
Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing, the authors grant the U.S.
Government and others acting in its behalf permission to use and distribute the software in accordance with
the terms specified in thislicense.

Progress Orbix v6.3.5 incorporates bzip2 1.0.2 from Julian Seward. Such Technology is subject to the
following terms and conditions: This program, "bzip2" and associated library "libbzip2", are copyright (C)
1996-2002 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of
source code must retain the above copyright notice, thislist of conditions and the following disclaimer. 2.

The origin of this software must not be misrepresented; you must not claim that you wrote the original
software. If you use this software in a product, an acknowledgment in the product documentation would be
appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software. 4. The name of the author may not be used to endorse or
promote products derived from this software without specific prior written permission. THIS SOFTWARE
ISPROVIDED BY THE AUTHOR"ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK .jseward@acm.org bzip2/libbzip2
version 1.0.2 of 30 December 2001.

Progress Orbix v6.3.5 incorporates zlib 1.2.3 from Jean-loup Gailly and Mark Adler. Such Technology is
subject to the following terms and conditions: License /* zlib.h -- interface of the 'zlib' general purpose
compression library version 1.2.3, July 18th, 2005 Copyright (C) 1995-2000 Jean-loup Gailly and Mark
Adler. Thissoftwareis provided 'as-is, without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software. Permission is granted to anyone
to use this software for any purpose, including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions: 1. The origin of this software must not be mis represented; you
must not claim that you wrote the original software. If you use this software in a product, an
acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source
versions must be plainly marked as such, and must not be misrepresented as being the original software. 3.
This notice may not be removed or altered from any source distribution. Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu */

Progress Orbix v6.3.5 incorporates the MinML 1.7 from John Wilson. Such Technology is subject to the
following terms and conditions. Copyright (c) 1999, John Wilson (tug@uwilson.co.uk). All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice,,
thislist of conditions and the following disclaimer. Redistributionsin binary form must reproduce the above
copyright notice, thislist of conditions and the following dis claimer in the documentation and/or other
materials provided with the distribution. All advertising materials mention ing features or use of this
software must display the following acknowledgement: This product includes software devel oped by John

Wilson. The name of John Wilson may not be used to endorse or promote products derived from this
software without specific prior written permission. THIS SOFTWARE ISPROVIDED BY JOHN WILSON
"ASIS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOHN WILSON BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates JDOM vbetad from JDOM. Such Technology is subject to the following
terms and conditions: LICENSE.txt, v 1.10 2003/04/10 08:36:05 jhunter Exp $ Copyright (C) 2000-2003
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and binary forms,
with or with out modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions, and the
following disclaimer. 2. Redistribu tions in binary form must reproduce the above copyright notice, thislist
of conditions, and the dis claimer that follows these conditionsin the documentation and/or other materials
provided with the distribu tion. 3. The name"JDOM" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact <license
AT jdom DOT org>. 4. Prod ucts derived from this soft ware may not be called "JDOM", nor may "JDOM"
appear in their name, without prior written permission from the JDOM Project Management <pm AT jdom
DOT org>. In addition, we request (but do not require) that you include in the end-user documentation
provided with the redistribution and/or in the soft ware itself an acknowledgement equivalent to the
following: "This product includes software devel oped by the JIDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/
images/logos. THIS SOFTWARE ISPROVIDED “ASIS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR RANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS CLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORSBE LIA BLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists

Xi

Security Guide

of voluntary contributions made by many individuals on behalf of the JIDOM Project and was originally
created by Jason Hunter <jhunter AT jdom DOT org> and Brett McLaughlin <brett AT jdom DOT org>.
For more information on the JIDOM Project, please see <http://www.jdom.org/>.

Progress Orbix v6.3.5 incorporates OpenSSL 0.9.8i Copyright (c) 1998-2008 The OpenSSL Project
Copyright (c) 1995-1998 Eric A. Young, Tim J. Hudson All rights reserved. Such Technology is subject to
the following terms and conditions: The OpenSSL toolkit stays under adual license, i.e. both the conditions
of the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues
related to OpenSSL please contact openssl-core@openssl.org. OpenSSL License - Copyright (c) 1998-2008
The OpenSSL Project. All rightsreserved. Redistribution and use in source and binary forms, with or
without modification, are permitted pro vided that the following conditions are met: 1. Redistributions of
source code must retain the above copy right notice, thislist of conditions and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution. 3. All
advertising materials mentioning features or use of this software must display the following
acknowledgment: "This product includes software devel oped by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openss.org/)" 4. The names "OpenSSL Toolkit" and "OpenSSL Project"
must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact openssl-core@openssl.org. 5. Products derived from this
software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project. 6. Redistributions of any form whatsoever must retain the following
acknowledgment: "This product includes software devel oped by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/)" THIS SOFTWARE IS PROVIDED BY THE OpenSSL
PROJECT "ASIS' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAM AGES (INCLUDING BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERV ICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This product includes cryp tographic software written by
Eric Young (eay @cryptsoft.com). This product includes software written by Tim Hudson
(tih@cryptsoft.com). - Original SSLeay License - Copyright (C) 1995-1998 Eric Young

(eay@crypt soft.com) All rights reserved. This package is an SSL implementation written by Eric Young
(eay@crypt soft.com). The implementation was written so as to conform with Netscapes SSL. Thislibrary
isfree for commercial and non-commer cial use as long as the following conditions are aheared to. The
following conditions apply to al code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code;
not just the SSL code. The SSL documentation included with this distribution is covered by the same
copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copy right remains Eric
Young's, and as such any Copyright notices in the code are not to be removed. If this packageisusedina
product, Eric Young should be given attribution as the author of the parts of the library used. Thiscan bein
the form of atextual message at program startup or in documentation (online or textual) provided with the
package. Redistri bution and use in source and binary forms, with or with out modification, are permitted

Xii

provided that the follow ing conditions are met: 1. Redistributions of source code must retain the copyright
notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary form must reproduce
the above copyright notice, thislist of con ditions and the following dis claimer in the documentation and/or
other materials provided with the distribution. 3. All advertising materials mention ing features or use of this
software must display the following acknowledge ment: "This product includes crypto graphic software
written by Eric Young (eay@cryptsoft.com)" The word ‘cryptographic’ can be left out if the rou tines from
the library being used are not crypto graphic related :-). 4. If you include any Windows specific code (or a
deriv ative thereof) from the apps directory (application code) you must include an acknowledgement: "This
product includes software written by Tim Hudson (tjh@cryptsoft.com)" THIS SOFTWARE |S PROVIDED
BY ERIC YOUNG "ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THEAUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE CIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSI BILITY OF SUCH DAMAGE. The licence and distribution terms for any publically
available version or derivative of this code cannot be changed. i.e. this code cannot simply be copied and
put under another distribution licence [including the GNU Public Licence.]

Progress Orhix v6.3.5 incorporates PCRE v7.8 from the PCRE Project. Such Technology is subject to the
following terms and conditions:

PCRE LICENCE

PCRE isalibrary of functions to support regular expressions whose syntax and semantics are as close as
possible to those of the Perl 5 language. Release 7 of PCRE is distributed under the terms of the
"BSD"licence, as specified below. The documentation for PCRE, supplied in the "doc" directory, is
distributed under the same terms as the software itself. The basic library functions are written in C and are
freestanding. Also included in the distribution is a set of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel

Email local part: ph10

Email domain: cam.ac.uk

University of Cambridge Computing Service,
Cambridge, England.

Copyright (c) 1997-2008 University of Cambridge
All rights reserved.

THE C++ WRAPPER FUNCTIONS

Xiii

Security Guide

Contributed by: Google Inc.
Copyright (c) 2007-2008, Google Inc.
All rights reserved.

THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. Neither the name of the University of Cambridge nor the name of
Google Inc. nor the names of their contributors may be used to endorse or promote products derived from
this software without specific prior written permission. THIS SOFT WARE IS PRO VIDED BY THE
COPYRIGHT HOLDERS AND CONTRIBUTORS "ASIS' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAN TIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDI RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates IDL Compiler Front End 1 from Sun Microsystems, Inc. Copyright
1992, 1993, 1994 Sun Microsystems, Inc. Printed in the United States of America. All Rights Reserved.
Such tech nology is subject to the following terms and conditions: This product is protected by copyright
and distrib uted under the following license restricting its use. The Interface Definition Language Compiler
Front End (CFE) is made available for your use provided that you include this license and copyright notice
on al media and documentation and the software program in which this product isincorporated in whole or
part. You may copy and extend functionality (but may not remove functionality) of the Interface Definition
Language CFE without charge, but you are not authorized to license or distribute it to anyone el se except as
part of a product or program devel oped by you or with the express written consent of Sun Microsystems,
Inc. ("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used
in advertising or publicity per taining to distribution of Interface Definition Language CFE as permitted
herein. Thislicenseis effective until termi nated by Sun for failure to comply with thislicense. Upon
termination, you shall destroy or return all code and documentation for the Interface Definition Language
CFE. INTERFACE DEFINITION LANGUAGE CFE ISPROVIDED ASISWITH NO WARRANTIES
OF ANY KIND INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A COURSE OF
DEALING USAGE OR TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS
PROVIDED WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR
ANY OF ITSSUBSIDIARIES OR AFFILIATESTO ASSIST IN ITSUSE, CORREC TION,
MODIFICATION OR ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES
SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS,
TRADE SECRETS OR ANY PATENTSBY INTERFACE DEFINITION LANGUAGE CFE OR ANY

Xiv

PART THEREOF. IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE
LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND

CONSE QUENTIAL DAMAGES, EVEN IF SUN HASBEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. Use, duplication, or disclosure by the government is subject to restrictions as set forth
in subpara graph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS
252.227-7013 and FAR 52.227-19. Sun, Sun Microsystems and the Sun logo are trademarks or registered
trademarks of Sun Microsys tems, Inc. SunSoft, Inc. 2550 Garcia Avenue, Mountain View, Caifornia
94043 NOTE: SunOS, Sun Soft, Sun, Solaris, Sun Microsystems or the Sun logo are trademarks or
registered trademarks of Sun Micro systems, Inc.

Progress Orhix v6.3.5 incorporates LibXML2 2.4.24 from Daniel Veillard. Such Technology is subject to
the following terms and conditions: Except where otherwise noted in the source code (trio files, hash.c and
list.c) covered by asimilar license but with different Copyright notices: Copyright (C) 1998-2002 Daniel
Veillard. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the " Software"), to deal in the Software without
restriction, including with out limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Soft ware, and to permit persons to whom the Software is furnished to
do s0, subject to the following conditions. The above copyright notice and this permission notice shall be
included in al copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "ASI1S",
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTA BILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE LIABLE FOR ANY
CLAIM, DAMAGESOR OTHERLIA BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGSIN THE SOFTWARE. Except as contained in this notice, the name of Daniel
Veillard shall not be used in advertising or otherwise to promote the sale, use or other dealingsin this
Software without prior written authorization from him.

===trio.c, trio.h: Copyright (C) 1998 Bjorn Reese and Daniel Stenberg. Permission to use, copy, modify,
and distribute this software for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies. THIS SOFTWARE ISPROVIDED "ASIS"
AND WITH OUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESSFOR A
PARTICULAR PURPOSE. THE AUTHORS AND CONTRIB UTORS ACCEPT NO RESPONSIBILITY
IN ANY CONCEIVABLE MANNER. ====triop.h: Copyright (C) 2000 Bjorn Reese and Daniel Stenberg.
Permission to use, copy, modify, and dis tribute this software for any purpose with or without

feeis hereby granted, provided that the above copyright notice and this permission notice appear in all
copies. THIS SOFTWARE ISPROVIDED "ASIS"AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTIC ULAR PURPOSE. THE AUTHORS AND
CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

==== hash.c: Copyright (C) 2000 Bjorn Reese and Daniel Veillard. Permission to use, copy, modify, and
distribute this software for any purpose with or without feeis hereby granted, provided that the above
copyright notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED “AS
IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHAN TIBILITY AND FITNESS FOR A

XV

Security Guide

PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY
IN ANY CONCEIVABLE MANNER.

=====ist.c: Copyright (C) 2000 Gary Pennington and Daniel Veillard. Permission

to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in al copies. THIS SOFTWARE
ISPROVIDED "ASIS' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO
RESPONSIBILITY IN ANY CONCEIVABLE MANNER. ===

triodef.h, trionan.c, trionan.h: Copyright (C) 2001 Bjorn Reese Permission to use, copy, modify, and
distribute this soft ware for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permis sion notice appear in al copies. THIS SOFTWARE ISPROVIDED “AS
IS AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MER CHANTIBILITY AND FITNESSFOR A
PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY
IN ANY CONCEIVABLE MANNER.

====triogtr.c, triostr.h: Copyright (C) 2001 Bjorn Reese and Daniel Stenberg.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby
granted, pro vided that the above copyright notice and this permission notice appear in all copies. THIS
SOFTWARE ISPRO VIDED “ASIS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY
AND FITNESS FOR A PARTICULAR PUR POSE. THE AUTHORS AND CONTRIBUTORS ACCEPT
NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

Progress Orhix v6.3.5 incorporates |CU library 2.6 from IBM. Such Technology is subject to the following
terms and conditions: Copyright (c) 1995-2009 International Business Machines Corporation and others.
All rights reserved. Per mission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documenta tion files (the " Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of
the Software, and to permit persons to whom the Soft wareis fur nished to do so, provided that the above
copyright notice(s) and this permission notice appear in al copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation. THE SOFTWARE IS
PROVIDED "ASIS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICU LAR PUR POSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THISNOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDI RECT OR CONSEQUENTIAL DAMAGES, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR TIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as
contained in this notice, the name of a copyright holder shall not be used in advertising or other wiseto
promote the sale, use or other dealings in this Software without prior written authorization of the copyright
holder. All trademarks and registered trademarks mentioned herein are the property of their respective
owners.

Updated: July 13, 2011

XVi

Contents

List of Tables
List of Figures

Preface
What is Covered in this Book
Who Should Read this Book
Organization of thisguide
Related Documentation
Additional Resourcesfor Information
Typographical Conventions
Keying Conventions

Part | Introducing Security

Chapter 1 Getting Started with Security
Creating a Secure Domain
Running a Secure CORBA Demonstration
Debugging with the opensdl Utility
Wheredo | go from here?

Chapter 2 Orbix Security Framework
Introduction to theiSF
iSF Features
Example of an iSF System
Security Standards
Orbix Security Service
Orbix Security Service Architecture
i SF Server Development Kit
Secure Applications
ART Security Plug-Ins

XXVil

XXiX

XXXili
XXXiii
XXXl
XXXiii
XXXIV
XXXV
XXXV
XXXVi

13
17
22

25
26
27
28
30
31
32
34
35
36

XVii

CONTENTS

Secure CORBA Applications
Administering the iSF

Overview of iSF Administration

Secure ASP Services

Chapter 3 Transport Layer Security

What does Orbix Provide?

How TL S Provides Security
Authenticationin TLS
Certificatesin TLS Authentication
Privacy of TLS Communications
Integrity of TLS Communications

Obtaining Credentials from X.509 Certificates
Obtaining Certificate Credentialsfrom aFile
Obtaining Certificate Credentials from a Smart Card

Chapter 4 Securing CORBA Applications
Overview of CORBA Security
Securing Communicationswith SSL/TLS
Specifying Fixed Portsfor SSL/TL S Connections
Securing Two-Tier CORBA Systemswith CS|
Securing Three-Tier CORBA Systemswith CS|
X.509 Certificate-Based Authentication
Caching of Credentials

Chapter 5 Single Sign-On for CORBA Applications
SSO and the L ogin Service
Username/Passwor d-Based SSO
Three Tier Example with Identity Assertion
X.509 Certificate-Based SSO
Enabling Re-Authentication at Each Tier
Optimising Retrieval of Realm Data
SSO Sample Configurations

Xviii

38
39

42

43

46
47
49
50
51
52
53
56

61
62

74
76
82
88

95
96
99
107
110
118
122
128

CONTENTS

Part Il Orbix Security Framework Administration

Chapter 6 Configuring the Orbix Security Service 137
Configuring the File Adapter 138
Configuring the LDAP Adapter 140
Clustering and Federation 145

Federating the Orbix Security Service 146
Failover and Replication 151
Client Load Balancing 160
Additional Security Configuration 162
Configuring Single Sign-On Properties 163
Configuring the Log4J Logging 165
Chapter 7 Managing Users, Rolesand Domains 167
Introduction to Domains and Realms 168
i SF Security Domains 169
i SF Authorization Realms 171
Example Domain and Realms 175
Domain and Realm Terminology 179
Managing a File Security Domain 181
Managing an L DAP Security Domain 184

Chapter 8 Managing Access Control Lists 185

CORBA ACLs 186
Overview of CORBA ACL Files 187
CORBA Action-Role Mapping ACL 188

Centralized ACL 192
Local ACL Scenario 193
Centralized ACL Scenario 195
Customizing Access Control Locally 201

Chapter 9 Securing Orbix Services 203
Introduction to Securing Services 204
Secure File-Based Domain 205
Secure CFR Domain 207
Customizing a Secure Domain 215

Creating a Customized Secure Domain 216

XiX

CONTENTS

Part 111 SSL/TLS Administration

Configuring an iSF Adapter for the Security Service

Configuring a Typical Orbix Service

Configuring the Security Service
Default Access Control Lists

Configuration Repository ACL

Locator ACL

Node Daemon ACL

Naming Service ACL

Trader Service ACL

Event Service ACL

Notification Service ACL

Basic Log Service ACL

Event Log Service ACL

Notify Log Service ACL

Chapter 10 Choosing an SSL/TL S Toolkit

Toolkit Replaceability

Baltimore Toolkit for C++ and Java
OpenSSL Toolkit for C++

Schannel Toolkit for C++
JSSE/JCE Architecture

Chapter 11 Managing Certificates

XX

What are X.509 Certificates?
Certification Authorities

Commercial Certification Authorities

Private Certification Authorities
Certificate Chaining
PKCS#12 Files
Using the Demonstration Certificates
Creating Your Own Certificates

Set Up Your Own CA

Use the CA to Create Signed Certificates
Deploying Certificates

Overview of Certificate Deployment

223
224
233
237
238
243
245
247
248
251
254
262
264
267

277
278
279
280
281
283

289
290
292
293
294
295
297
298
300
301
304
307
308

CONTENTS

Providing aList of Trusted Certificate Authorities 309
Deploying Application Certificates 311
Deploying Certificatesin Smart Cards 313
Deploying Orbix Service Certificates 315
Deploying itadmin Certificates 318
Configuring Certificate Warnings 320
Deploying Certificates with Schannel 321
Schannel Certificate Store 322
Deploying Trusted Certificate Authorities 327
Deploying Application Certificates 328
Deploying Certificatesin Smart Cards 331
Chapter 12 Configuring SSL/TL S Secure Associations 333
Overview of Secure Associations 334
Setting Association Options 336
Secure Invocation Policies 337
Association Options 338
Choosing Client Behavior 340
Choosing Target Behavior 342

Hints for Setting Association Options 344
Specifying Cipher Suites 349
Supported Cipher Suites 350
Setting the Mechanism Policy 352
Constraints Imposed on Cipher Suites 355
Caching TL S Sessions 358
Chapter 13 Configuring SSL/TL S Authentication 361
Requiring Authentication 362
Target Authentication Only 363
Target and Client Authentication 366
Specifying Trusted CA Certificates 369
Specifying an Application’s Own Certificate 371
Providing a Pass Phrase or PIN 375
Providing a Certificate Pass Phrase 376
Providing a Smart Card PIN 380
Advanced Configuration Options 382
Setting a Maximum Certificate Chain Length 383

Applying Constraints to Certificates 384

XXi

CONTENTS

Delaying Credential Gathering 386

Chapter 14 Automatic Activation of Secure Servers 389
Managing Server Pass Phrases 390
Protecting against Server Imposters 393

How the KDM Activates a Secure Server 395

KDM Administration 397
Setting Up the KDM 400
Registering a Secur e Server 402

Part IV CSlIv2 Administration

Chapter 15 Introduction to CSlv2 407
CSIv2 Features 408

Basic CSIv2 Scenarios 410
CSlv2 Authentication over Transport Scenario 411

CSlv2 Identity Assertion Scenario 412

I ntegration with the Orbix Security Framework 414
Chapter 16 Configuring CSlv2 Authentication over Transport 417
CSlv2 Authentication Scenario 418
SSL/TL S Prerequisites 422
Requiring CSIv2 Authentication 424
Providing an Authentication Service 427
Providing a Username and Passwor d 428
Sample Configuration 432
Sample Client Configuration 433

Sample Server Configuration 435

Chapter 17 Configuring CSIv2 Identity Assertion 437
CSlv2 I dentity Assertion Scenario 438
SSL/TL S Prerequisites 442
Enabling CSIv2 I dentity Assertion 444
Sample Configuration 446
Sample Client Configuration 447

Sample Intermediate Server Configuration 449

XXii

Sample Target Server Configuration

Part V CORBA Security Programming

Chapter 18 Programming Policies
Setting Policies
Programmable SSL/TL S Policies
Introduction to SSL/TLS Policies
The QOPPolicy
The EstablishTrustPolicy
The InvocationCredential sPolicy
Interaction between Policies
Programmable CSIv2 Policies

Chapter 19 Authentication

Using the Principal Authenticator
Introduction to the Principal Authenticator
Creating SSL/TLS Credentials
Creating CSlv2 Credentials

Using a Credentials Object

Retrieving Own Credentials
Retrieving Own Credentials from the Security Manager
Parsing SSL/TLS Own Credentials
Parsing CSlv2 Own Credentials

Retrieving Target Credentials
Retrieving Target Credentials from an Object Reference
Parsing SSL/TLS Target Credentials

Retrieving Received Credentials
Retrieving Received Credentials from the Current Object
Parsing SSL/TL S Received Credentials
Parsing CSlv2 Received Credentials

Copying CSI Credentials between Threads

Chapter 20 Validating Certificates
Overview of Certificate Validation
The Contents of an X.509 Certificate

CONTENTS

451

455
456
459
460
462
463
464
465
466

469
470
471
474
478
483
485
486
488
490
491
492
495
497
498
500
502
506

511
512
515

XXili

CONTENTS

Parsing an X.509 Certificate

Controlling Certificate Validation
Certificate Constraints Policy
Certificate Validation Policy

Obtaining an X.509 Certificate

Part VI 1SF Programming

Chapter 21 Developing an iSF Adapter
iSF Security Architecture
iSF Server Module Deployment Options
iSF Adapter Overview
Implementing the | S2Adapter Interface
Deploying the Adapter
Configuring iSF to Load the Adapter
Setting the Adapter Properties
Loading the Adapter Class and Associated Resource Files

Appendix A Security
Applying Constraintsto Certificates
Root Namespace
initial_references
password_retrieval_mechanism
plugins.atli2 tls
plugins.csi
plugins:.gsp
plugins:https
plugins.iiop_tls
plugins.kdm
plugins.kdm_adm
plugins:locator
plugins:schannel
plugins:security
policies
policies.csi
policies: https
policies:iiop_tls

XXIV

516
518
519
523
527

531
532
536
538
539
548
549
550
551

553
555
557
558
559
560
562
564
570
571
576
578
579
580
581
582
588
591
596

CONTENTS

policies:security_server 606
policies:tls 608
principal_sponsor 609
principal_sponsor :csi 614
principal_sponsor :https 617
principal_sponsor:iiop_tls 619
Appendix B iSF Configuration 621
Properties File Syntax 622

iSF Properties File 623
Cluster PropertiesFile 639

log4j PropertiesFile 641
Appendix C ASN.1 and Distinguished Names 645
ASN.1 646
Distinguished Names 647
Appendix D Association Options 651
Association Option Semantics 652
Appendix E Action-Role Mapping DTD 655
Appendix F OpenSSL Utilities 661
Using OpenSSL Utilities 662

The x509 Utility 663

The reg Utility 665

The rsa Utility 667

The ca Utility 669

The OpenSSL Configuration File 671

[req] Variables 672

[ca] Variables 673

[policy] Variables 674

Example openssl.cnf File 675

Appendix G Security Recommendations 677

General Recommendations 678

XXV

CONTENTS

Appendix H Sample TL S Configurations
Demonstration TL S Scopes

Appendix | Licenselssues
OpenSSL License

I ndex

XXVi

679
680

687
6388

691

List of Tables

Table 1: Terminology Describing Secure Client Sample Configurations 65
Table 2: Terminology Describing Secure Server Sample Configurations 66
Table 3: LDAP Propertiesin the com.iona.isp.adapter.L DAP.param Scope 143
Table 4: Domain and Realm Terminology Comparison 179
Table 5: Locator Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 243
Table 6;: Node Daemon Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 245
Table 7: Naming Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 247
Table 8: Trader Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 249
Table 9: Event Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 252
Table 10: Notification Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 256
Table 11: Basic Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 263
Table 12: Event Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 265
Table 13: Notify Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 270
Table 14: Demonstration Certificates and Passwords 298
Table 15: Demonstration Certificate for the Orbix Services 299
Table 16: Description of Different Types of Association Option 345
Table 17: Setting EstablishTrustinTarget and EstablishTrustInClient Association Options 346
Table 18: Setting Quality of Protection Association Options 346

Table 19: Setting the NoProtection Association Option 348

XXVii

LIST OF TABLES

Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:

XXViii

Cipher Suite Definitions

Association Options Supported by Cipher Suites
The kdm_adm Administration Command
The checksum Administration Command
Prefixes for KDM Configuration Variables
Policy Management Objects

Mechanism Policy Cipher Suites
Mechanism Policy Cipher Suites
Mechanism Policy Cipher Suites
Commonly Used Attribute Types
AssociationOptions for Client and Target

351
356
398
398
399
456
584
593
600
648
652

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:

The Orbix Configuration Welcome Dialog Box

The Domain Type Window

The Service Startup Window

The Security Window

The Fault Tolerance Window

The Select Services Window

The Confirm Choices Window

Configuration Summary

CORBA Secure Demonstration Overview

Example System with a Standalone Orbix Security Service
Security Plug-Insin a CORBA Application

Creating Credentials for a Client Application Using PKCS#12
Using PKCS#12 Credentials to Authenticate a Client to a Server
Creating Credentials for a Client Application Using PKCS#11
Using PKCS#11 Credentials to Authenticate a Client to a Server
A Secure CORBA Application within the iSF

Two-Tier CORBA System in theiSF

Three-Tier CORBA Systemin theiSF

Overview of iSF Certificate-Based Authentication

Client Requesting an SSO Token from the Login Service
Overview of GSSUP Authentication without SSO

Overview of GSSUP Authentication with SSO

Single Sign-On Scenario with Piggybacking Roles and Realms
Overview of Certificate-Based Authentication without SSO
Overview of Certificate-Based Authentication with SSO

Single Sign-On Scenario without Piggybacking Roles and Realms

© 00 N o O

10
11
12
13
28
38
53
55
56
58
62
76
82
88
96
99
100
107
110
111
119

XXIX

LIST OF FIGURES

Figure 27
Figure 28
Figure 29

Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:

Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55

XXX

. Intermediate and Target Belong to Same Realm

. Intermediate and Target Belong to Different Realms

: An iSF Federation Scenario

Failover Scenario for a Cluster of Three Security Services
Replication of Data Cachesin a Security Service Cluster
Architecture of an iSF Security Domain

Server View of iSF Authorization Realms

Role View of iSF Authorization Realms

Assignment of Realms and Roles to Users Janet and John
Local ACL Scenario

Centralized ACL scenario

Custom ClientAccessDecision in an Orbix Application
Overview of a Secure File-Based Domain

Overview of a Secure CFR Domain

The Orbix Configuration Welcome Dialog Box

Selecting File|New|Expert from the Main Window
Specifying Domain Details

: Specifying a Substitutions File

: A Certificate Chain of Depth 2

. A Certificate Chain of Depth 3

: Overview of Certificatesin a Typical Deployed System

: The Microsoft Management Console

: The Add/Remove Snap-In Dialog Box

: The Add Standalone Snap-1n Dialog Box

: Microsoft Management Console with Certificates Snap-In
. Certificate Dialog Showing the Certificate’ s Subject DN.
: Configuration of a Secure Association

: Constraining the List of Cipher Suites

: Target Authentication Only

123
125
147
152
158
169
172
173
174
193
195
201
205
207
219
219
220
221
295
296
308
323
324
325
326
329
335
355
363

Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73
Figure 74:

Target and Client Authentication

Elementsin aPKCS#12 File

Java Dialog Window for Certificate Pass Phrase

Java Dialog Window for Certificate PIN

Schannel Dialog Window for Certificate PIN

The KDM Architecture

Automatic Activation of a Secure Server

Using itadmin to Manage the KDM Server

Basic CSlv2 Authentication over Transport Scenario
Basic CSIv2 Identity Assertion Scenario

CSlv2 in the Orbix Security Framework

CSlv2 Authentication Over Transport Scenario

Java Dialog Window for GSSUP Username and Password
CSlv2 Identity Assertion Scenario

Three-Tier CSl Scenario with Copying of CSI Credentias
Validating a Certificate

Using a CertValidator Callback

Overview of the Orbix Security Service

iSF Server Module Deployed asa CORBA Service

LIST OF FIGURES

366
372
377
380
381
391
395
397
411
412
415
419
429
439
506
512
514
533
536

XXXi

LIST OF FIGURES

XXXii

Preface

What is Covered in this Book

This book is a guide to administering and programming secure applicationsin
Orbix, covering both secure CORBA applications.

The Orbix security framework provides the underlying security infrastructure
for performing authentication and authorization.

Who Should Read this Book

This guideisintended for the following audience:
® Security administrators.

® CORBA C++ developers.

®* CORBA Javadevelopers.

A prior knowledge of CORBA is assumed.
Organization of thisguide
This guideis divided into the following parts:

Part | “Introducing Security”
This part describes how TLS provides security, and how Orbix works.

Part I “Orbix Security Framework Administration”
This part describes how to administer the Orbix Security Framework.

Part 111 “SSL/TLS Administration”
This part explains how to configure and manage Orbix in detail.

Part IV “CSlv2 Administration”
This part explains how to configure and manage CSIv2 in detail.

XXXili

PREFACE

XXXiV

Part V “CORBA Security Programming”

This part explains how to program the SSL/TLS and CSlv2 APIsin your
security-aware CORBA applications.

Appendices

The appendices list further technical details.

Related Documentation

The CORBA Programmer’s Guide and CORBA Programmer’s Reference
provide details about developing Orbix applicationsin C++ and Java.

The complete set of documentation for Orbix is available online at:
http://www.iona.com/support/docs/orbix/6.3/index.xml

The latest updates to the Orbix documentation can be found at http://
www.iona.com/support/docs/index.xml.

http://www.iona.com/support/docs/index.xml
http://www.iona.com/support/docs/index.xml
http://www.iona.com/support/docs/orbix/6.3/index.xml

PREFACE

Additional Resourcesfor Information

The Orbix knowledge base (http://www.iona.com/support/kb/index.jspa)
contains helpful articles, written by Orbix experts, about Orbix and other
products.

The Progress download center (http://www.progress.com/iona-product-updates/
index.ssp) contains the latest releases and patches for IONA products.

Typographical Conventions
This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the corea: : Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For
example:
#include <stdio.h>

Italic Italic words in normal text represent emphasis and new
terms.
Italic words or characters in code and commands
represent variable values you must supply, such as

arguments to commands or path names for your
particular system. For example:

% cd /users/Yyour_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
Thisisan older convention that is replaced with italic
words or characters.

XXXV

http://www.iona.com/support/kb/index.jspa
http://www.progress.com/iona-product-updates/index.ssp

PREFACE

XXXVi

Keying Conventions
This book uses the following keying conventions:

No prompt

[l

{}

When acommand’ s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for acommand that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for acommand that requires root privileges.

The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipsesin format and syntax
descriptions indicate that material has been eliminated to
simplify adiscussion.

Brackets enclose optional itemsin format and syntax

descriptions.

Braces enclose alist from which you must choose an item
in format and syntax descriptions.

A vertical bar separatesitemsin alist of choices enclosed
in{} (braces) informat and syntax descriptions.

Part |
Introducing Security

Inthispart This part contains the following chapters:
Getting Started with Security page 3
Orbix Security Framework page 25
Transport Layer Security page 43
Securing CORBA Applications page 61
Single Sign-On for CORBA Applications page 95

In this chapter

CHAPTER 1

Getting Started
with Security

This chapter focuses on getting some security demonstrations up
and running quickly. The details and background of the various
security features are not discussed at this stage.

This chapter discusses the following topics:

Creating a Secure Domain page 4

Running a Secure CORBA Demonstration page 13
Debugging with the opensd Utility page 17
Where do | go from here? page 22

CHAPTER 1 | Getting Started with Security

Creating a Secure Domain

Overview

Prereguisites

Licensing

Steps

This section describes how to create a secure configuration domain, secure,
which isrequired for the security demonstrations. This domain deploys a
minimal set of Orbix services.

WARNING: The secure domain created using this procedure is not fully
secure, because the X.509 certificates used in this domain are insecure
demonstration certificates. This secure domain must be properly customized
before deploying in a production environment.

Before creating a secure domain, the following prerequisites must be satisfied:
® Your license alows you to use the security features of Orbix.

® Somebasic system variables are set up (in particular, the IT_pRODUCT_DIR,
IT_LICENSE_FILE, and PATH variables).

Fore more details, please consult the Installation Guide.

The location of the licensefile, 1icenses. txt, is specified by the
IT_LICENSE FILE System variable. If this system variableisnot already setin
your environment, you can set it now.

To create a secure configuration domain, secure, perform the following steps:
Run itconfigure.

Choose the domain type.

Specify service startup options.

Specify security settings.

Specify fault tolerance settings.

Select services.

Confirm choices.

© N O 00k~ WD

Finish configuration.

Run itconfigure

Creating a Secure Domain

To begin creating a new configuration domain, enter itconfigure at a
command prompt. An Orbix Configuration Welcome dialog box appears, as
shown in Figure 1.

Select Create a new domain and click OK.

Figure1: The Orbix Configuration Welcome Dialog Box

{27 orbix Configuration Welcome x|
Welcome to the Orhix Configuration toal. Please select an option:

(@ Create a new domain|
(0 Open an existing domain

(0 Go straight into itconfigure

" 0K |] | Cancel

CHAPTER 1 | Getting Started with Security

Choose the domain type

A Domain Type window appears, as shown in Figure 2.

In the Configuration Domain Name text field, type secure. Under
Configuration Domain Type, click the Select Services radiobutton.

Click Next> to continue.

Figure2: The Domain Type Window

{31 Create a Configuration Domain - Standard Mode

Steps

1. Domain Type
2. Service Startup
3. Security

4, Fault Tolerance

o

. Confirm Choices

-

. Deployving ...

8. Summary

Domain Type
Configuration Identification

Y¥ou can create many different configuration domains and
access thern by their unigue narme.
What name doyou wish to give this configuration damain®

Configuration Domain Name: |secure

Configuration Domain Type

The configuration toal can create configuration domains with
different combinations of Orhix services.
Which Crbix senices dowou want ta include in this damain®

O Al Licensed Services

@ |5elect Services

Storage Location

Configuration Directory: |c:10rbi}{_6 2_Alete

Data Directory: |c:‘tOrbi}{_B 2_Alwar

| bext-

|| Emisn H Cancel

Creating a Secure Domain

Specify service startup options A Service Startup window appears, as shown in Figure 3.
Y ou can leave the settings in this Window at their defaults.
Click Next> to continue.

Figure3: The Service Startup Window

{3} Create a Configuration Domain - Standard Mode : E x|
Steps Service Startup
1. Damain Type Startup
2. Service Startup The serices you are configuring can be programmed to run
3. Security when your computer starts up or manually, All, except for a
4 FeulfTalEmEmes minimal set, can start on demand. Do you want...
A, Select Services @ A minimal set of services launched by a script | can run.
. Confirm Choices O &)l selected services launched on machine startup (as system services),
7. Deploying ... @ All selected services launched by a script| can run.
8. Summary
Port

The services need ports ta listen far conhections.
The easiestway to setthese portvalues is to set a base value.

Base Port

<gack || New- || Finish || cancel

CHAPTER 1 | Getting Started with Security

Specify security settings

A Security window appears, as shown in Figure 4.

Under Transports, click the Secure Communication (TLS/HTTPS)
radiobutton. Under Security Features, select the |IONA Security Service
option and the Enable Access Control for Core Services option.

Click Next> to continue.

Figure4: The Security Window

fﬁ Create a Configuration Domain - Standard Mode

Steps

1. Domain Type

2, Senice Startup
3. Security

4. Fault Tolerance
5. Select Services
6. Confirm Choices
7. Deploying ...

8. Summary

Security

Transports

Wihat communication protocols do you want enabled in the damain?

O Insecure Communication (IOPIHTTR)
O Secure and Insecure Comrmunication

@ Secure Communication (TLS/HTTPES)

Security Features

What security features do you want enabled in the domain®?

[|OMA Security Service

[¥] Enable Access Caontral for Core Services

<Back || Next-

H Einish H Cancel

Creating a Secure Domain

Specify fault tolerance settings A Fault Tolerance window appears, as shown in Figure 5.
Y ou can leave the settings in this Window at their defaults.

Click Next> to continue.

Figure5: The Fault Tolerance Window

{3} Create a Configuration Domain - Standard Mode x|
Steps Fault Tolerance
1. Damain Type Replication
2. 3erdce Startup YU can run multiple replicas of the core Orbix services to
3. Security make your system faulttolerant. The service instances an
4. Fault Tolerance the replica hosts act as backups.
4. Select Bervices Replication Hosts:
B. Confirm Choices Host | Add
7. Deploying ... |R—|
2Imove
8. Summary _
e
<gack || New || Finish || cancel

CHAPTER 1 | Getting Started with Security

Select services

A Select Serviceswindow appears, as shown in Figure 6.

In the Select Services window, select the following services and components for
inclusion in the configuration domain: L ocation, Node daemon, M anagement,
CORBA Interface Repository, CORBA Naming, IONA Security, and

demos.
Click Next> to continue.

Figure6: The Select Services Window

{21 Create a Configuration Domain - Standard Mode

Steps

—

. Domain Type

. Bermice Startup

. Security

.Fault Tolerance

. Select Services
Confirm Choices

Deploying ...

= R L T S

Summary

Select Services

Infrastructure

[Management
O |Distributed Transaction
[configuration

Directary

[¥] CORBA Interface Repasitory
[¥] CORBA Maming

[CORBA Trader

CORBA Telco Logging
[Basic Logaing
[] Event Logging
[Motify Lagging

| Selectall || Clearan |

Messaging

[J CORBA Motification

[cORBA Events

] IMS (Java Messaging
[] JMEiMatification Bridge

Security
Companents
[#] Demos
| =Back ‘" Mext= || | Cancel

10

Confirm choices

{31 Create a Configuration Domain - Standard Mode . x|

Steps

1

.Domain Type
Service Startup
Security

Fault Tolerance
Select Senices
Confirm Choices

Deploying ...

e L

Surmmary

Creating a Secure Domain

Y ou now have the opportunity to review the configuration settingsin the
Confirm Choiceswindow, Figure 7. If necessary, you can use the <Back button
to make corrections.

Click Next> to create the secure configuration domain and progress to the next
window.

Figure 7: The Confirm Choices Window

Confirmation

Thisg is wour chance to review the chaoices you have made.

To deploy the services on the local host, press Mext. To modify any of your choices, press Back.
Ifyou don'twant to deploy now hut wish to save your choices for future use,

press Save to store therm in a deployment descriptor, then press Cancel.

management Service B
Manual Activation
TLS Port= 53086
HTTFS Part= 53186

Location Service
Manual Activation]
TLS Port= 3077

Mode Daemon Service
Manual Activation
TLS Port= 53080

CORBA Interface Repaositary Service
Automatic Activation
TLS Fort= Enabled

CORBA Maming Service

Autornatic Activation

TLS Fort= Enabled

| Save

<Back || Newt-] | Cancel

11

CHAPTER 1 | Getting Started with Security

Finish configuration

12

{i7) Create a Configuration Domain - Standard Mode ; E x|

Steps

1. Damain Type
. Service Starup
. Security

.Fault Tolerance

. Confirm Choices

2

3

4

5. Select Services
B

7. Deploying ...

]

. Summary

The itconfigure utility now creates and deploys the secure configuration
domain, writing files into the OrbixInstalIDir /etc/bin,

OrbixInstallDir /etc/domain, OrbixInstallDir /etc/1log, and
OrbixInstalIDir /var directories.

If the configuration domain is created successfully, you should see a Summary
window with a message similar to that shown in Figure 8.

Click Finish to quit the itconfigure utility.

Figure8: Configuration Summary

Summary

Configuration is now complete, see details below,

Configuration completed successfully.
ou can view the log in 'c0rhix_62_Awansecurellogsisecure_2004_Dec_8_11_3_41.log"

To setyour erviranment for this configuration damain run:
cAOrhix_B2_Aletoibinsecure_env bat

To start the services in this configuration domain run:
cAQrhix_B2_Aletcibinmstant_secure_senices.bat

To stop the services in this configuration domain run:
cA0rbix_E2_Aletclhinistop_secure_services hat

| <Back Finish

Running a Secure CORBA Demonstration

Running a Secure CORBA Demonstration

Overview This section describes how to run the secure CORBA demonstration, whichisa
three-tier application that illustrates the SSL/TLS, username/password
authentication, and identity assertion features.

Prerequisites Before running this demonstration, you must have created a secure
configuration domain—see “Creating a Secure Domain” on page 4.

Demonstration location The secure CORBA demonstration is located in the following directory:
ASPInstallDir /asp/Version/demos /common/is2
Where ASPInstalIDir is the directory where Orbix isinstalled.

Demonstration overview Figure 9 gives an overview of the secure CORBA demonstration.

Figure9: CORBA Secure Demonstration Overview

propagate username/password propagate user identity
N
Login \ \

Client .| Intermediate | Target
I1OP/TLS ‘ Server ‘ IIOP/TLS Server

A

authenticate retrieve realms
user and roles
A
Orbix Security
Service
Steps To build and run the secure CORBA demonstration, perform the following
steps:

1. Build the demonstration.
2. Start the Orbix services.

13

CHAPTER 1 | Getting Started with Security

Build the demonstration

Start the Orbix services

Run thetarget server

14

3. Runthetarget server.
4, Runtheintermediate server.
5. Runtheclient.

To build the demonstration, open a new command prompt and enter the
following commands:

Windows

> ASPInstallDir\etc\bin\secure_env.bat
> cd ASPInstallDir\asp\Version\demos\common\ is2
> itant

UNIX

% . ASPInstallDir /etc/bin/secure_env.sh
% cd ASPInstallDir /asp/Version/demos/common/is2
$ itant

To start the Orbix services, enter the following command at the command
prompt:

Windows
> ASPInstallDir\etc\bin\start_secure_services.bat

UNI X
% ASPInstallDir /etc/bin/start_secure_services

To run the target server, open a new command prompt and enter the following
commands:

Windows and J2SE (JDK) 1.3.x

> ASPInstallDir\etc\bin\secure_env.bat
> cd ASPInstallDir\asp\Version\demos\common\is2
> java -classpath .\java\classes; "%CLASSPATH%" is2.Server

Windows and J2SE (JDK) 1.4.x

> ASPInstallDir\etc\bin\secure_env.bat

> cd ASPInstallDir\asp\Version\demos\common\ is2

> java -Djava_endorsed.dirs="ASPInstallDir\\1ib\\art\\omg\\5"
-classpath .\java\classes; "$CLASSPATH%" is2.Server

UNIX and J2SE (JDK) 1.3.x

% . ASPInstallDir /etc/bin/secure_env.sh
% cd ASPInstallDir /asp/Version/demos/common/is2

Run theintermediate server

Run theclient

Running a Secure CORBA Demonstration

% java -classpath ./java/classes:SCLASSPATH is2.Server

UNIX and J2SE (JDK) 1.4.x

% . ASPIngtallDir/etc/bin/secure_env.sh

% cd ASPInstallDir /asp/Version/demos/common/is2

% java -Djava_endorsed.dirs=ASPInstallDir/lib/art/omg/5 -classpath
./java/classes: $CLASSPATH is2.Server

To run the intermediate server, open anew command prompt and enter the
following commands:

Windows and J2SE (JDK) 1.3.x

> ASPInstallDir\etc\bin\secure_env.bat

> cd ASPInstallDir\asp\Version\demos\common\is2

> java -classpath .\java\classes;"%CLASSPATH%"
is2.IntermediateServer

Windows and J2SE (JDK) 1.4.x

> ASPInstallDir\etc\bin\secure_env.bat

> cd ASPInstallDir\asp\Version\demos\common\is2

> java -Djava_endorsed.dirs="ASPInstallDir\\1ib\\art\\omg\\5"
—-classpath .\java\classes; "$CLASSPATH%" is2.IntermediateServer

UNIX and J2SE (JDK) 1.3.x
. ASPIngtallDir /etc/bin/secure_env.sh

% cd ASPInstallDir /asp/Version/demos/common/is2
java -classpath ./java/classes:$CLASSPATH is2.IntermediateServer

UNIX and J2SE (JDK) 1.4.x

. ASPIngtallDir /etc/bin/secure_env.sh

% cd ASPInstallDir /asp/Version/demos/common/is2

java -Djava_endorsed.dirs=ASPIngtallDir/1ib/art/omg/5 -classpath
./java/classes:SCLASSPATH is2.IntermediateServer

o°

o0

o0

oe

Note: Theintermediate server must run in the same directory as the target
server.

To run the client, open a new command prompt and enter the following
commands:

Windows and J2SE (JDK) 1.3.x

> ASPInstallDir\etc\bin\secure_env.bat
> cd ASPInstallDir\asp\Version\demos\common\is2

15

CHAPTER 1 | Getting Started with Security

16

> java -classpath .\java\classes;"$CLASSPATH%" is2.Client -user
alice

Windows and J2SE (JDK) 1.4.x

> ASPInstallDir\etc\bin\secure_env.bat

> cd ASPInstallDir\asp\Version\demos\common\ is2

> java -Djava_endorsed.dirs="ASPInstallDir\\1ib\\art\\omg\\5"
-classpath .\java\classes; "$CLASSPATH%" is2.Client -user alice

UNIX and J2SE (JDK) 1.3.x

% . ASPInstallDir /etc/bin/secure_env.sh
% cd ASPInstallDir/asp/Version/demos/common/is2
java -classpath ./java/classes:SCLASSPATH is2.Client -user alice

UNIX and J2SE (JDK) 1.4.x

% . ASPIngtallDir /etc/bin/secure_env.sh

% cd ASPInstallDir /asp/Version/demos/common/is2

% java -Djava_endorsed.dirs=ASPInstallDir/lib/art/omg/5 -classpath
./java/classes:SCLASSPATH is2.Client -user alice

oe

Note: The client must run in the same directory asthe target and intermediate
SErvers.

Debugging with the openssl Utility

Debugging with the openssl Utility

Overview

References

Debugging example

Debugging steps

The openss1 utility included with Orbix provides two powerful tools for

debugging SSL/TLS client and server applications, as follows:

° openssl s_client—an SSL/TLStest client, which can be used to test
secure Orbix servers. Thetest client can connect to a secure port, while
providing a detailed log of the steps performed during the SSL/TLS
handshake.

i openssl s_server—an SSL/TLStest server, which can be used to test
secure Orbix clients. The test server can simulate a bare bones SSL/TLS
server (handshake only). Additionally, by supplying the -www switch, the
test server can also simulate a simple secure Web server.

For complete details of the openssl s_client and the openssl s_server
commands, see the following OpenSSL documentation pages:

® http://www.openssl.org/docs/apps/s_client.html
® http://www.openssl.org/docs/apps/s_server.html

Consider the is2 demonstration discussed in the previous section, “Running a
Secure CORBA Demonstration” on page 13. This demonstration consists of a
client, an intermediate server and atarget server.

To demonstrate SSL debugging, you can use the openss1 test client to connect
directly to the target server.

The following table shows the steps required to debug a secure server by
connecting to that server using the openss1 test client:

Step Action

1 | Convert the client certificate to PEM format.

2 | Runthetarget server.

3 | Obtain the target server’s P port.

17

http://www.openssl.org/docs/apps/s_client.html
http://www.openssl.org/docs/apps/s_server.html

CHAPTER 1 | Getting Started with Security

Convert theclient certificateto
PEM format

18

Step Action

4 | Runthetest client.

Certificates for Orbix applications are deployed in PK CS#12 format, whereas
the openss1 test client requires the certificate to be in PEM format (aformat that
is proprietary to OpenSSL). It is, therefore, necessary to convert the client
certificate to the PEM format.

For example, given the certificate admin.p12 (located in the
OrbixInstallDir /asp/version/etc/tls/x509/certs/demos directory), you can
convert the certificate to PEM format as follows.

1. Runtheopenssl pkesl12 command, asfollows:
openssl pkcsl2 -in admin.pl2 -out admin.pem
When you run this command you are prompted to enter, first of al, the
pass phrase for the admin.p12 file and then to enter a pass phrase for the
newly created admin.pem file.

2. Theadmin.pem file generated in the previous step contains a CA
certificate, an application certificate, and the application certificate’s
private key. Before you can use the admin . pem file with the openss1 test
client, however, you must remove the CA certificate from thefile. That is,
the file should contain only the application certificate and its private key.

For example, after deleting the CA certificate from the admin. pem file, the
contents of the file should look something like the following:

Bag Attributes
localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91
Cl El1 FF 4A
friendlyName: Administrator
subject=/C=US/ST=Massachusetts/O=ABigBank -- no warranty -- demo
purposes/OU=Administration/CN=Administrator/emailAddress=admi
nistrator@abigbank.com
issuer=/C=US/ST=Massachusetts/L=Boston/0=ABigBank -- no warranty
-- demo purposes/OU=Demonstration Section -- no warranty
--/CN=ABigBank Certificate
Authority/emailAddress=info@abigbank.com

MIIEiTCCA/KgAwIBAgIBATANBgkghkiGOwOBAQQFADCRESELMAKGATUEBhMCVVMx
FjAUBgNVBAgGTDU1hc3NhY2h1c2VOdHMxDzANBgNVBACTBkIvc3Rvb] EXMC8GALIUE
ChMoQUJIpZ0JhbmsgLS0gbm8gd2FycmFudHkgLS0gZGVtbyBwdXJwb3N1czEwMCAG

Debugging with the openssl Utility

ALlUECXMNRGVtb25zdHThdG1lvbiBTZWNOaW9uIC0t IG5vIHdhcnIhbnR5ICOtMScw
JQYDVQQDEx5BOm1 nQmFuayBDZXJ0aWzZpY2F0ZSBBAXRob3JpdHkxIDAeBgkghkiG
IwOBCQEWEW1uZm9AYWIPZ2JThbmsuY2 9 tMB4XDTAOMTEXODEWNTE1NVOoXDTEOMDgw
NzEWNTE1NVowghbQxCzAJBgNVBAYTA1VTMRYWFAYDVQQTEw1NYXNz YWNodXN1dHRZ
MTEwWLwYDVQOKEyhBOm1nQmFuayAtLSBubyB3YXJyYW50eSAtLSBkZW1vIHBlcnBv
c2VzMRcwFQYDVQQLEwW5BZG1pbml zdHThdG1 vbj EWMBQGA 1 UEAXMNQWR taWspc 3Ry
YXRvc]jEpMCcGCSAGSTIb3DOEJARYaYWRtaWspc 3Ry YXRvekBhYml nYmFuay5jb2 0w
gZ8wDQYJK0ZIThvcNAQEBBQADGY0AMIGJIAOGBANK 7503 YBkkjCvgy 0pOPXAU+M6RE
00zaQ8/Y1ciWlQ/oCT/17+3P/ZhHAJaT+QxmahQHAY5ePixGyaE7raut2MdjHOUO
wCKtZglhuNa8juJdSvsN5iTUupzp/mRQ/ j4rOxr8gWI5dh5d/kF4+H5s8yrxNjrDg
tY7£dxPI9Kt 0x9sYPAGMBAAG]ggF1MI IBcTATJBgNVHRMEA j AAMCWGCWCGSAGG+EIR
DOQfFh1PcGVUULINMIEdlbmVyYXR1ZCBDZXJ0aWZpY2F 0ZTAJBgGNVHQAEFgQUJIBAK
9LPZPsaE9+a/FWbCz2LOxWkwggEVBgNVHSMEgGgEMMI IBCIAUhJ z90oNb6 Yg8d1lnbH
BPj tS7ulWyhgeykgekwgeYxCzATBGNVBAYTALVTMRYWFAYDVQQT EwlNYXNZYWNO
AXN1dHRZzZMQ8WDQYDVQOHEWZCh3N0b2 4XxMTAVBgNVBAOTKEFCaWACYW5r ICOt IG5V
THdhcndhbnR5IC0tIGR1bWSgCcHVYCcG9 zZXMXMDAUBGNVBASTJI OR1bWIuc3RyYXRp
124gU2VidGlvbiAtLSBubyB3YXJyYW50eSAtLTENMCUGA1UEAXMeQUIpZ0Jhbmsg
Q2VydGlmaWNhdGUgQXV0aG9yaXRE5MSAWHGYJIKOZ ThveNAQKBFhFpbmZvQGF iawdi
YW5rLNvbY IBADANBgkghkiGOwOBAQQFAAOBgGQC7S5R1DsK3ZChIVPHPQrpQj 5BA
J5DYTAmgzac 7pkxy8rQzYvG5FjHL 7beuzT3 jdM2 £vQJI 8M7 t SEMKHKPgeguArnY+x
3VNGWiNv1kr5jQTDe0d7d9T102 fknQA14j /wPFEDUwdz4n9TThjE71pj62zG27ELiVFE
cm/h2L/DpWgZK0TQ9Q==

Bag Attributes
localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91
Cl E1 FF 4A
friendlyName: Administrator

Key Attributes: <No Attributes>

Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,AD8F864A0E97FB4E

e3cexhY+kAujb6cOs9skerbP2gZsauc3l3yypdcdZirkAilcmfA/mLv2pfgao8gfud
yroNvYyDADEZzagEyzF/4FGUInScZjAiy9Imi9mA/1SHD5g1HH/wl2bgXcl1BgtC3
Gr £iHzGMbWyzDUJ 0PHjw/EkbyxQBJsCe4 fPuCGVH7 frgCPeE1g2EQRKBHCa3vkHr
6hrwuS18TXn8Dt cCFFtugouHXwKeGjIJXESPY fKakl 8BOwKgiZgt j1DHY6G20ERL
ZgNtAB+XFIVrA5XZHNSU6RBeXMVSrUl0GzdVrCnojd6d8Be7Q7KBSHDVIXzZ1 PKp
7DYVNn5DyFSEQ7kYs9dsaz5Id5iNkMIiscPp7AL2 STAWPY1ULENSgFnIYiwXP1lckE
STTiq+BG8UPPM6G3KGYRZMZ0Th7DySZufbE2ANIrN74kXVIVE /RpxzNiMz / PbLAG
6wiypd7We/40gxLv8YIjGGEdYyaB/Y7XEyE9ZL74Dc3CcuSvtA2fC8hU3cXjKBu7
YsVz/Dg8G0w2230owpZ00Qz2KU19CLg/hmYLOJ t1yLVoaGZud 1CWXdgX0dComDOR8K
alalUagy/Gz2zys20NSWRK+s+HzgoB0vneOy47Z1Ss71HfGAUemi RTATI8DX1zgyHYK
5m61SSB961x0M7YI58JYOGNLMXz1LmCUAYCQhk1WGIFEN4cZBrkh506r+U4FcwhF
dvDoBu39Xie5gHFrJU86ghzxi202h0s02vexvujSGyNy009PJIGKEAhIGEOG+a2Qg
VBwuUZgo0zIJ6gUrMV1LOAWWL 7 zFxyKaF511jF1C9KxtEKM0393 zag==

19

CHAPTER 1 | Getting Started with Security

Run thetarget server

Obtain thetarget server’s|P port

Run thetest client

20

Run the target server, as described in “ Running a Secure CORBA
Demonstration” on page 13.

In this demonstration, the server writes an IOR file, target_server. ior, to the
OrbixInstalIDir /asp/Version/demos/common/is2 directory asit startsup. You
can extract the target server’s IP port from this IOR file using the iordump
utility.

From a command prompt, use the iordump utility to parse the
target_server.ior fileasfollows:

iordump target_server.ior

This dumps the parsed contents of the |OR to the console window. The relevant
portion of the output isthe ss1,_sec_Trans tagged component, which looks
something like the following:

Component 1:
>> +108 [00] [00] [00] [14]
Tag: (20) SSL_SEC_TRANS
>> +112 [00][00] [00] [08]
Component length: 8 bytes
>> +116 [00]
Component Byte Order: (0) Big Endian
>> +117 [00]
(padding)
>> +118 [00] [7e]
Target supports: Integrity Confidentiality
DetectReplay DetectMisordering EstablishTrustInTarget
EstablishTrustInClient
>> +120 [00] [5e]
Target requires: Integrity Confidentiality
DetectReplay DetectMisordering EstablishTrustInClient
>> +122 [0b] [8b]
SSL port: 2955

In this example, the target server’s 1P port is 2955.

To run the openss1 test client, open acommand prompt, change directory to the
directory containing the admin.pem file, and enter the following command:

openssl s_client -connect localhost:2955 -ssl3 -cert admin.pem

Debugging with the openssl Utility

When you enter the command, you are prompted to enter the pass phrase for the

admin.pemfile.

The openssl s_client command switches can be explained as follows:

-connect host:port
Open a secure connection to the specified host and port.

-ss13
This option configures the client to initiate the handshake using SSL v3
(the default is SSL v2). To see which SSL version (or versions) the target
server is configured to use, check the value of the
policies:mechanism policy:protocol_version Variablein the Orbix
configuration file. Orbix servers can also be configured to use TLSv1, for
which the corresponding openss1 command switchis -t1s1.

-cert admin.pem
Specifies admin.pem as the test client’s own certificate. The PEM file
should contain only application certificate and the application certificate’'s
private key. The PEM file should not contain a complete certificate chain.
If your server is not configured to require a client certificate, you can omit
the -cert switch.

Other command switches

The openssl s_client command supports numerous other command
switches, details of which can be found on the OpenSSL document pages
(see “References’ on page 17). Two of the more interesting switches are
-state and -debug, Which log extra details to the command console
during the handshake.

21

CHAPTER 1 | Getting Started with Security

Wheredo | go from here?

Overview

| want to customize the sample
domain to makeit fully secure

| want to security-enable a
CORBA application

| want towrite a security-aware
CORBA application

| want tointegrate a third-party
enterprise security system

22

To help you get started in the wide-ranging field of security, you might find it
helpful to focus on one of the following fundamental tasks:

. | want to customize the sample domain to make it fully secure.
i | want to security-enable a CORBA application.

. | want to write a security-aware CORBA application.

. | want to integrate a third-party enterprise security system.

® | wanttoreplacethe default SSL/TL S toolkit.

The sample configuration domains generated by the itconfigure utility are not
fully secure, because the X.509 certificates used by the Orbix services are
insecure demonstration certificates. To perform basic customization of a secure
configuration domain, see the following reference:

® “Securing Orbix Services’ on page 203.

To security-enable a CORBA application, see the following reference:
® “Securing CORBA Applications’ on page 61.

To write a security-aware CORBA application, see the following references:
® “Programming Policies’ on page 455.

* “Authentication” on page 4609.

* “Vdlidating Certificates’ on page 511.

The Orbix Security Framework provides afecility for integrating with third-part
enterprise security systems, such as LDAP, through a pluggable system of
security adapters. For details of how this works, see the following reference:

® “Configuring the Orbix Security Service” on page 137.

For details of how to write your own custom adapter, see the following
reference:

®* “Developing aniSF Adapter” on page 531.

| want to replace the default
SSL/TL Stoolkit

Wheredo | go from here?

By default, Orbix uses the SSL/TL S toolkit from Baltimore Technologies.
Orbix’s SSL/TL S toolkit replaceability feature enables you to replace the
underlying SSL/TL S toolkit used by an Orbix application.

Note: The Baltimore toolkit is deprecated from Orbix 6.3 SP4 onwards and
will be removed from later rel eases of Orbix. It isrecommended that you
migrate C++ applications to the OpenSSL toolkit and that you migrate Java
applications to the JSSE tool kit

For details, see the following chapter:
® “Choosing an SSL/TLS Toolkit” on page 277.

23

CHAPTER 1 | Getting Started with Security

24

In this chapter

CHAPTER 2

Orbix Security
Framework

The Orbix Security Framework provides the common underlying
security framework for all typesof applicationsin Orbix, including
CORBA and Web services applications. This chapter provides an
introduction to the main features of the iSF.

This chapter discusses the following topics:

Introduction to the iSF page 26
Orbix Security Service page 31
Secure Applications page 35
Administering the iSF page 39

25

CHAPTER 2| Orbix Security Framework

| ntr oduction to the iSF

Overview

In this section

This section provides a brief overview of and introduction to the Orbix Security
Framework, which provides a common security framework for all components
of Orbix.

This section contains the following subsections:

iSF Features page 27
Example of an iSF System page 28
Security Standards page 30

26

Introduction to the iSF

ISF Features

Overview

The Orbix Security Framework is a scalable, standards-based security
framework with the following features:

Pluggable integration with third-party enterprise security systems.
Out-of-the-box integration with flat file, or LDAP security systems.
Centralized management of user accounts.

Role-Based Access Control.

Role-to-permission mapping supported by access control lists.
Unified security platform works across CORBA and Web services.
Security platform is ART-based.

Logging.

27

CHAPTER 2| Orbix Security Framework

Example of an iSF System

Overview

Figure 10 shows an example of an iSF system that features a standalone Orbix
security service, which can service remote requests for security-related
functions.

Figure 10: Example System with a Sandalone Orbix Security Service

IIOP/TLS
-

HTTPS Web

1
1
1
1
|
1
1
1
1
Services

1

Container ! Server | ______ 05/390
1
1
1
1
1
1
|
1
1

CORBA IIOP/TLS CORBA on

= ———————

V W

Orbix Security Service

Y

Enterprise Security Service

Orbix security service

28

The Orbix security serviceisthe central component of the Orbix Security
Framework, providing an authentication service, an authorization service and a
repository of user information and credentials. When the Orbix security service
is deployed in standalone mode, al kinds of application, including CORBA
applications and Web services, can call it remotely.

Enterprise security service

Propagating security credentials

Transport layer

Application layer

Introduction to the iSF

The Orbix security service is designed to integrate with a third-party enterprise
security service (ESS), which acts asthe primary repository for user information
and credentials. Integration with an ESS is supported by a variety of iSF
adapters. The following adapters are currently supported by iSF:

* LDAP adapter.

The following adapter is provided for use in simple demonstrations (but is not
supported in production environments):

. File adapter.

In addition, it is possible to build your own adapters using the iSF Adapter
SDK—see “iSF Server Development Kit” on page 34.

The example in Figure 10 on page 28 assumes that a user’ s credentials can be
propagated from one application to another. There are fundamentally two
different layers that can propagate security credentials between processesin an
i SF distributed system:

® Transport layer.

* Application layer.

Security at the transport layer enables security information to be exchanged
during the security handshake, which happens while the connection is being
established. For example, the SSL/TL S standard enables X.509 certificatesto be
exchanged between a client and a server during a security handshake.

Security at the application layer enables security information to be propagated
after connection establishment, using a protocol layered above the transport. For
example, the CORBA common secure interoperability v2.0 (CSIv2) protocol
propagates security information by embedding security datain 11OP messages,
which are layered above TCP/IP.

The CSlv2 protocol can be used to propagate any of the following kinds of
credential:

* Username/password/domain.
® Usernameonly.
® Singlesign-on (SSO) token.

29

CHAPTER 2| Orbix Security Framework

Security Standards

Overview One of the goals of the iSF is to base the security framework on established
security standards, thereby maximizing the ability of iSF to integrate and
interoperate with other secure systems. This section lists the security standards
currently supported by the i SF.

Standards supported by iSF The following security standards are supported by iSF:

° HTTP login mechanisms—that is, HTTP basic authentication and HTTP
form-based authentication.

® Secure Sockets Layer / Transport Layer Security (SSL/TLS), from the
Internet Engineering Task Force, which provides data security for
applications that communicate across networks.

® CCITT X.509, which governs the form of security certificates based on
public (asymmetric) key systems)

® OMG Common Secure Interoperability specification (CSIv2)

® WS-Security, which a proposed standard from Microsoft, IBM, and
VeriSign. It defines a standard set of SOAP extensions, or message
headers, that can be used to implement integrity and confidentiality in Web
services applications.

* JavaAuthentication and Authorization Service (JAAS)

30

Orbix Security Service

Orbix Security Service

Overview The Orhix security service isthe central component of the Orbix Security

Framework. This section provides an overview of the main Orbix security
service features.

In this section This section contains the following subsections:
Orbix Security Service Architecture page 32
iSF Server Development Kit page 34

31

CHAPTER 2| Orbix Security Framework

Orbix Security Service Architecture

iSF client API The GSP plug-in accesses the Orbix security service through theiSF client API,
which is aprivate Orbix-proprietary API. This APl exposes general security
operations, such as authenticating a username and password, retrieving auser’s
roles, and so on. Two language versions of the iSF client APl are used internally

by Orbix:
L C++.
* Java

Remote connectionsto the Orbix Orbix plug-ins can communicate with the Orbix security service through an

security service IIOP/TLS connection.
Standalone or embedded The iSF server module can be packaged in the following different ways:
deployment * Standalone deployment (default)—the i SF server moduleis packaged as a

standal one server process, the Orbix security service, that services requests
through a CORBA interface (IIOP or IIOP/TLYS).

° Embedded deployment—the i SF server module is packaged as a JAR
library that can be loaded directly into a Java application. In this case,
service requests are made as local calls.

iSF adapter API Integration with third-party enterprise security systemsisfacilitated by the iSF
adapter API that enables the Orbix security service to delegate security
operations to other security systems.

iSF adapters Orbix provides several ready-made adapters that are implemented with the i SF
adapter API. The following adapters are available:

. LDAP adapter.

° File adapter (demonstration only—not supported in production
environments).

32

Optional iSF components

Single sign-on

Orbix Security Service

The Orbix security service includes the following optional components that can
be enabled to provide additional security features:

. Single sign-on.

Single sign-on means that once an application has authenticated a particul ar
user, it isrelatively easy for other secure applicationsto accessthat user's
security data.

When single sign-on is enabled, the Orbix security service creates an association
between an SSO token and a user session. Any application that has the user’s
SSO token can then use it to access the user’ s session data.

33

CHAPTER 2| Orbix Security Framework

ISF Server Development Kit

Overview

iSF adapter SDK

iSF client SDK

34

The iSF server development kit (SDK) enables you to implement custom
extensions to the iSF. The iSF SDK is divided into the following parts:

® Sk adapter SDK.
. iSF client SDK.

TheiSF adapter SDK provides an APl implementing custom i SF adapters. Using
this API, you can integrate any enterprise security system with the iSF.

This API isavailable in both C++ and Java.

TheiSF client SDK provides an API for Orbix to accesstheiSF server module’s
core functionality directly (usually through remote calls).

Thisisa private API intended only for internal use by Orbix.

Secure Applications

Secure Applications

Overview This section explains how applications from various technology domains are
integrated into the Orbix Security Framework.

In this section This section contains the following subsections:
ART Security Plug-Ins page 36
Secure CORBA Applications page 38

35

CHAPTER 2| Orbix Security Framework

ART Security Plug-I

Overview

What isART?

Security plug-ins

[IOP/TLS

HTTPS

CSlv2

36

ns

To participate in the Orbix Security Framework, applications |oad one or more
of the ART security plug-ins. Because Orbix is built using acommon ART
platform, an identical set of security plug-ins are used across the different
technology domains of CORBA and Web services. This has the advantage of
ensuring maximum security compatibility between these different technology
domains.

Orbix’s Adaptive Runtime Technology (ART) is amodular framework for
constructing distributed systems, based on alightweight core and an open-ended
set of plug-ins. ART isthe underlying technology in Orbix.

An application can load any of the following security plug-insto enable
particular security features and participate in the Orbix Security Framework:

° IIOP/TLS.

* HTTPS.
. CSlv2.
o GSP.

The IIOP/TLS plug-in provides applications with the capability to establish
secure connections using 11OP over a TLS transport. Authentication is also
performed using X.509 certificates. For example, this plug-in is used by
CORBA applications.

The HTTPS plug-in providesthe capability to establish secure connections using
HTTP over aTLS transport. Authentication is also performed using X.509
certificates. For example, this plug-in is used by the Web container to enable
secure communications with Web clients.

The Common Secure Interoperability (CSIv2) plug-in provides support for
authentication based on a username and password. The CSIv2 plug-in also
enables applications to forward usernames or security tokens to other
applications over an 11OP or IIOP/TLS connection.

GSP

Secure Applications

The GSP plug-in provides an authorization capability for the iSF—that is, the
capability to restrict accessto certain methods, operations, or attributes, based on
the configuration values stored in an external action-role mapping XML file.
The GSP plug-in works in tandem with the Orbix security serviceto redlize a
complete system of role-based access control.

Note: The GSP plug-in depends on the CSIv2 plug-in. Whenever you include

the GSP plug-in, gsp, in your ORB plug-ins list, it automatically loads the
CSIv2 plug-in, csi.

37

CHAPTER 2| Orbix Security Framework

Secure CORBA Applications

Overview Figure 11 shows how the security plug-insin a CORBA application cooperate to
provide security for the application.

CORBA Application

Action-role

1IOP/ mapping file
TLS CSIv2 and GSP

IIOP/TLS |

>
)
[=]

I— Authorization —>

Authentication

Orbix Secure Service

Figure 11: Security Plug-Insin a CORBA Application

ITOP/TLSplug-inin CORBA a The IIOP/TLS plug-in enables the CORBA application to establish connections

application secured by SSL/TLS. Thislayer of security is essential for providing data
encryption.

CSIv2 plug-in in a CORBA The CSIv2 plug-in provides CORBA applications with the following features:

application * The capability to log in with a username and password.

® Screening incoming I1OP invocations by making sure that the
username/password combination is correct.

®* Transmission of ausername/password/domain combination to other
applications.

® Transmission of ausername or security token to other applications.

GSP plug-inin a CORBA The GSP plug-in restricts access to a CORBA server’s operations and attributes,
application only allowing user’s with certain specified roles to proceed with an invocation.

38

Administering theiSF

Administering theiSF

Overview

In thissection

This section provides an overview of the main aspects of configuring and
administering the iSF.

This section contains the following subsections:

Overview of iSF Administration page 40

Secure ASP Services page 42

39

CHAPTER 2| Orbix Security Framework

Overview of iISF Administration

Overview

Orbix configuration file

iSF propertiesfile

Enterprise security service

administration

Access control lists

40

There are several different aspects of iSF administration to consider, as follows:
® Orbix configuration file.

. i SF propertiesfile.

. Enterprise security service administration.

® Accesscontrol lists.

The Orbix configuration file, DomainName. c£g (or, aternatively, the CFR

service), is used to configure the security policiesfor all of the applications and

servicesin a particular location domain. For example, the following kinds of

security policy are specified in the Orbix configuration file:

®* Thelist of security plug-insto be loaded by an application.

®* Whether an application accepts both secure and insecure connections, or
secure connections only.

®* Thename of the i SF authorization realm to which an application belongs.

These are just some of the security policies that can be configured—see
“Security” on page 553.

The iSF propertiesfile is used to configure the core properties of the Orbix
security service. Thisfile primarily configures the properties of an iSF adapter
that connects to an enterprise security backend. This file also configures the
optional single sign-on and authorization manager features.

See “iS2 Configuration” on page 513 for details.

Because the Orbix security serviceis capable of integrating with a third-party
enterprise security service, you can continue to use the native third-party
administration tools for your chosen enterprise security service. These tools
would be used to administer user accounts, including such data as usernames,
passwords, user groups, and roles.

To complete a system of role-based access control, it is necessary to provide
individual applications with an access control list (ACL) file that is responsible
for mapping user roles to particular permissions.

Administering theiSF

For example, the ACL associated with a CORBA server could specify that only
a specified set of roles are allowed to invoke a particular IDL operation.

Thereisone type of ACL file used within the iSF, as follows:
® Action-role mapping (proprietary format).

41

CHAPTER 2| Orbix Security Framework

Secure ASP Services

Overview

When you create a secure location domain, all of the standard ASP services are
secure by default. The default configuration can be used to test sample
applications, but is not genuinely secure. Before the ASP services can beused in
areal deployment, it is necessary to customize the security configuration.

Customizing the security
configuration

42

For areal deployment, certain aspects of the security configuration for ASP

services would be customized, as follows:

® X.509 certificates associated with ASP services—the sample certificates
initially associated with the ASP services must all be replaced, because
they are not secure.

® Default security policies—for the ASP services might need to be changed
before deployment.

In this chapter

CHAPTER 3

Transport Layer
Security

Transport Layer Security provides encryption and authentication
mechanisms for your Orbix system.

This chapter discusses the following topics:

What does Orbix Provide? page 44
How TLS Provides Security page 46
Obtaining Credentials from X.509 Certificates page 52

43

CHAPTER 3| Transport Layer Security

What does Orbix Provide?

Security plug-ins Orhix provides the core security infrastructure to a distributed system based on
Orbix’s Adaptive Runtime Technology (ART). It isimplemented asa symmetric
set of plug-ins for Orbix (C++ and Java). When the security plug-ins are
installed in an application, the communication layers consist of the CORBA
standard Internet Inter-ORB Protocol (110P), layered above TLS and TCP/IP.

Transport Layer Security Transport Layer Security (TLS) isan IETF Open Standard. It isbased on, and is
the successor to, Secure Sockets Layer (SSL), long the standard for secure
communications.

The TLS Protocol provides the most critical security features to help you

preserve the privacy and integrity of your system:

® Authentication (based on RSA with X.509v3 certificates).

. Encryption (based on DES, Triple DES, RC4, IDEA).

° Message integrity (based on SHA1, MD5).

* A framework that allows new cryptographic algorithms to be incorporated
into the TL'S specification.

CORBA Security Level 2 Orbix is based on the CORBA Security Level 2 policiesand API's (RTF 1.7). It
implements a set of policies from the CORBA specification that enable you to
control encryption and authentication at afine level.

Added-value policiesand APIs Orbix also has added-value policies and APIs that provide more control for
SSL/TLS applications than provided by CORBA Security.

SSL/TL Stoolkit replaceability Orbix has an SSL/TL S toolkit replaceability feature that enables you to replace
completely the underlying toolkit that implements SSL/TLS in Orbix.

Note: The Baltimore toolkit is deprecated from Orbix 6.3 SP4 onwards and
will be removed from later releases of Orbix. It is recommended that you
migrate C++ applications to the OpenSSL toolkit and that you migrate Java
applications to the JSSE tool kit

a4

Security-unawar e and
security-awar e applications

What does Orbix Provide?

There are two basic approaches to using security in your applications:

Security-unawar e applications—M odify the Orbix configuration to enable
and configure security for your application. This approach to security is
completely transparent to the application, requiring no code changes or
recompilation.

Security-awar e applications—In addition to modifying the Orbix
configuration to enable security, you can customize application security
using both the standard CORBA security API and the Orbix added-value
APIs.

45

CHAPTER 3| Transport Layer Security

How TL S Provides Security

Basic TL S security features TLS provides the following security for communications across TCP/IP
connections:
Authentication This alows an application to verify the identity of another

application with which it communicates.

Privacy This ensures that data transmitted between applications
can not be eavesdropped on or understood by athird party.

Integrity This allows applications to detect if data was modified
during transmission.

In this section This section contains the following subsections:
Authenticationin TLS page 47
Certificatesin TLS Authentication page 49
Privacy of TLS Communications page 50
Integrity of TLS Communications page 51

46

How TL S Provides Security

Authentication in TLS

Public key cryptography

The TL S Handshake Protocol

TLS uses Rivest Shamir Adleman (RSA) public key cryptography for
authentication. In public key cryptography, each application has an associated
public key and private key. Data encrypted with the public key can be decrypted
only with the private key. Data encrypted with the private key can be decrypted
only with the public key.

Public key cryptography allows an application to prove its identity by encoding
datawith its private key. As no other application has access to this key, the
encoded data must derive from the true application. Any application can check
the content of the encoded data by decoding it with the application’s public key.

Consider the example of two applications, a client and a server. The client
connectsto the server and wishesto send some confidential data. Before sending
application data, the client must ensure that it is connected to the required server
and not to an impostor.

When the client connects to the server, it confirms the server identity using the

TLS handshake protocol. A simplified explanation of how the client executes
this handshake in order to authenticate the server is as follows:

Stage Description

1 | Theclientinitiates the TLS handshake by sending theinitial TLS
handshake message to the server.

2 | The server responds by sending its certificate to the client. This
certificate verifies the server's identity and contains the
certificate’s public key.

3 | Theclient extracts the public key from the certificate and encrypts
asymmetric encryption algorithm session key with the extracted
public key.

4 | Theserver usesits private key to decrypt the encrypted session key
which it will useto encrypt and decrypt application data passing to
and from the client. The client will also use the shared session key
to encrypt and decrypt messages passing to and from the server.

47

CHAPTER 3| Transport Layer Security

Optimized handshake The TLS protocol permits a special optimized handshake in which a previously
established session can be resumed. This has the advantage of not needing
expensive private key computations. The TL S handshake al so facilitates the
negotiation of ciphersto be used in a connection.

Client authentication The TLS protocol also allows the server to authenticate the client. Client
authentication, which is supported by Orbix, isoptiona in TLS communications.

48

How TL S Provides Security

Certificatesin TLS Authentication

Purpose of certificates

Certification authority

X.509 certificate format

Accessto certificates

A public key istransmitted as part of a certificate. The certificate is used to
ensure that the submitted public key is, in fact, the public key that belongsto the
submitter. The client checks that the certificate has been digitally signed by a
certification authority (CA) that the client explicitly trusts.

A CA isatrusted authority that verifies the validity of the combination of entity
name and public key in a certificate. Y ou must specify trusted CAsin order to
use Orbix.

The International Telecommunications Union (ITU) recommendation, X.509,
defines a standard format for certificates. TL S authentication uses X.509
certificates to transfer information about an application’s public key.

An X.509 certificate includes the following data:

®* Thename of the entity identified by the certificate.

®* Thepublic key of the entity.

®* Thename of the certification authority that issued the certificate.

Therole of acertificate is to match an entity name to a public key.

According to the TLS protocol, it is unnecessary for applications to have access
to al certificates. Generally, each application only needs to accessits own
certificate and the corresponding issuing certificates. Clients and servers supply
their certificates to applications that they want to contact during the TLS
handshake. The nature of the TLS handshake is such that there is nothing
insecure in receiving the certificate from an asyet untrusted peer. The certificate
will be checked to make sure that it has been digitally signed by atrusted CA
and the peer will have to proveitsidentity during the handshake.

49

CHAPTER 3| Transport Layer Security

Privacy of TLS Communications

Establishing a symmetric key

Symmetric cryptography

50

Immediately after authentication, the client sends an encoded data value to the
server (using the server’s public key). This unique session encoded valueisa
key to a symmetric cryptographic algorithm. Only the server is able to decode
this data (using the corresponding private key).

A symmetric cryptographic algorithm is an algorithm in which asingle key is
used to encode and decode data. Once the server has received such akey from
the client, all subsequent communications between the applications can be
encoded using the agreed symmetric cryptographic algorithm. This feature
strengthens TL S security.

Examples of symmetric cryptographic agorithms used to maintain privacy in
TL S communications are the Data Encryption Standard (DES) and RCA4.

How TL S Provides Security

Integrity of TLS Communications

M essage authentication code

Guaranteeing message integrity

The authentication and privacy features of TLS ensure that applications can
exchange confidential data that cannot be understood by an intermediary.
However, these features do not protect against the modification of encrypted
messages transmitted between applications.

To detect if an application has received data modified by an intermediary, TLS
adds a message authentication code (MAC) to each message. This codeis
computed by applying afunction to the message content and the secret key used
in the symmetric cryptographic agorithm.

An intermediary cannot compute the MAC for a message without knowing the
secret key used to encrypt it. If the messageis corrupted or modified during
transmission, the message content will not match the MAC. TLS automatically
detects this error and rejects corrupted messages.

51

CHAPTER 3| Transport Layer Security

Obtaining Credentialsfrom X.509 Certificates

Obtaining own credentials This section discusses how an application’s own credentials are initially
obtained from an X.509 certificate. An application’s own credentials are the
credentials that the application normally uses to identify itself to other

applications.
Comparison of PKCS#12 and Two mechanisms for obtaining own credentials are described in this section:
PKCS#11 * PKCS#12—credentials obtained from a PK CS#12 file.

° PK CS#11—credentials obtained from a smart card. Orbix usesthe
PKCS#11 interface to communicate with the smart card.

In this section This section contains the following subsections:
Obtaining Certificate Credentials from aFile page 53
Obtaining Certificate Credentials from a Smart Card page 56

52

Obtaining Credentials from X.509 Certificates

Obtaining Certificate Credentialsfrom a File

Creating credentialsusing the The simplest way for aclient to obtain certificate credentialsis to configure an

principal sponsor SSL/TLSprincipal sponsor for the client application. This principal sponsor can
beinitialized by editing the Orbix configuration—see “ Specifying an
Application’s Own Certificate” on page 371.

Creating credentialsfrom a Figure 12 illustrates how the principal sponsor creates credentials from a
PKCS#12 file PKCS#12 file.

Figure 12: Creating Credentials for a Client Application Using PKCS#12

PKCS#12
File
OO
Client (&) | Load PKCs#12 file
ORB @ IOwn credentials list

{ .
Principal Authenticator | Creates) ©OWn credentials
[P i O-0-0

A
@ authelntlcate()

[Principal Sponsor j

private key cache

Prompt user for
pass phrase

®
®

Config
File

53

CHAPTER 3| Transport Layer Security

Stepsfor creating credentials

54

The principal sponsor automates the steps to create credentials, as follows:

1

The principal sponsor reads the client configuration file to discover which
authentication method to use.

If the authentication method is PK CS#12, the principal sponsor obtains the
pass phrase to decrypt the client’ s certificate chain and private key. The
pass phrase is obtained either by running alogin utility that prompts the
user for the pass phrase, or by reading the client configuration file—see
“Providing a Certificate Pass Phrase” on page 376.

The principal sponsor requests the principal authenticator to generate
credentials for the client by invoking the authenticate () operation,
passing the following data as parameters:

¢+ Passphrase,

¢+ PKCSH12file name.

The principal authenticator |oads the PK CS#12 file to obtain the client
identity. The PK CS#12 file contains an encrypted X.509 certificate chain
and an encrypted private key.

If the authentication step is successful, the principal authenticator creates
an own credentials object, of securitylevel2: :Credentials type. The
own credentials object is cached in memory along with its private key.

Obtaining Credentials from X.509 Certificates

How PKCS#12 credentialsare Figure 13 illustrates how PKCS#12 credentials are used during an SSL/TLS
used in an SSL/TL Shandshake handshake, showing only the portion of the handshake where the server verifies

the client’s identity.

Figure 13: Using PKCS#12 Credentials to Authenticate a Client to a Server

Client

®

Use private
key to
decrypt
challenge

Server

SSL/TLS Secure Handshake
Own credentials list

@ Send certificate chain OO0

own credentials

OO0

v

@ Challenge client

<

private key cache

PK CS#12 handshake steps

During an SSL/TL S handshake, the client authenticates itself to the server as

follows:

1. Atacertain point during the SSL/TL S handshake, the client sends an
X.509 certificate chain (which has been cached in an own credentials
object) to the server.

2. The server sends a challenge message, encrypted using the client’s public
key.

3. Theclient usesthe private key (cached in memory) to decrypt the
challenge message.

4. Having successfully answered the server challenge, the client proceeds to
the next stage of the handshake (not shown).

55

CHAPTER 3| Transport Layer Security

Obtaining Certificate Credentialsfrom a Smart Card

Creating credentialsusing the Figure 14 illustrates how the SSL/TLS principal sponsor creates certificate
PKCS#11 interface credentials using the PK CS#11 interface—see “ Specifying an Application’s
Own Certificate” on page 371.

Figure 14: Creating Credentials for a Client Application Using PKCS#11

PKCS#11 Interface
Smart Card
O--d
Client @ Load certificate chain
ORB @ IOwn credentials list

1
Principal Authenticator | Creates) ©OWn credentials
[P i == "x)

|
L

N
@ authelnticate ()

[Principal Sponsor j

Prompt user for
password/PIN

®
®

Config
File

56

Stepsfor creating credentials

Obtaining Credentials from X.509 Certificates

The principal sponsor automates the steps to create credentials, as follows:

1. Theprincipa sponsor reads the client configuration file to discover which
authentication method to use.

2. If the authentication method is PK CS#11, the principal sponsor obtainsthe
smart card’s PIN to gain access to the smart card. The PIN is obtained
either by running alogin utility that prompts the user for the PIN, or by
reading the client configuration file—see“ Providing a Smart Card PIN” on
page 380.

3. Theprincipal sponsor requests the principal authenticator to generate
credentials for the client by invoking the authenticate () operation,
passing the following data:

+ Provider name,
. Slot number,
¢+ PIN or pass phrase.

4. Theprincipa authenticator communicates with the smart card using the
PKCS#11 interface to obtain the client identity. The principal authenticator
uploads only the X.509 certificate chain. The private key is|eft on the
smart card.

5. If the authentication step is successful, the principal authenticator creates
an own credentials object, of securitylevel2: :Credentials type. The
own credentials object is cached in memory but its private key is not stored
in memory.

57

CHAPTER 3| Transport Layer Security

How PKCS#11 credentialsare Figure 15 illustrates how PK CS#11 credentials are used during an SSL/TLS
used in an SSL/TL S handshake handshake, showing only the portion of the handshake where the server verifies

the client’s identity.

Figure 15: Using PKCS#11 Credentials to Authenticate a Client to a Server

Client

Server

SSL/TLS S Handshak
Own credentials list / ecure Randshare

- @ Send certificate chain OO0
own credentials

000

A 4

P ——

@ Challenge client

<

Delegate private key
operations to smart card.

A 4

PKCS#11 Interface

Smart Card

OO0
O—m

PK CS#11 handshake steps During an SSL/TLS handshake, the client authenticates itself to the server as

58

follows:

1. Atacertain point during the SSL/TL S handshake, the client sends an
X.509 certificate chain (which has been cached in an own credentials
object) to the server.

2. Theserver sends a challenge message, encrypted using the client’s public
key.

3. Theclient delegates the challenge message to the smart card, using the
PKCS#11 interface. The smart card uses the appropriate private key to
decrypt the challenge message. Because the smart card has abuilt-in
processor, it is able to perform the private key calculationsin place. The
private key never leaves the smart card.

Obtaining Credentials from X.509 Certificates

Having successfully answered the server challenge, the client proceeds to
the next stage of the handshake (not shown).

Note: At no point during the handshake is the smart card’ s private key
loaded into memory.

59

CHAPTER 3| Transport Layer Security

60

In this chapter

CHAPTER 4

Securing CORBA
Applications

This chapter describes how to enable security in the context of the
Orbix Security Framework for CORBA applications and services.

This chapter discusses the following topics:

Overview of CORBA Security page 62
Securing Communications with SSL/TLS page 64
Specifying Fixed Ports for SSL/TLS Connections page 74
Securing Two-Tier CORBA Systems with CSI page 76
Securing Three-Tier CORBA Systems with CS| page 82
X.509 Certificate-Based Authentication page 88
Caching of Credentials page 94

61

CHAPTER 4 | Securing CORBA Applications

Overview of CORBA Security

Overview There are two main components of security for CORBA applications: [1OP over
SSL/TLS(IIOP/TLS), which provides secure communication between client and
server; and the i SF, which is concerned with higher-level security features such
as authentication and authorization.

The following combinations are recommended:

° ITOP/TLS only—for a pure SSL/TLS security solution.

. ITOP/TLS and iSF—for a highly scalable security solution, based on
username/password client authentication.

CORBA applicationsand iSF Figure 16 shows the main features of a secure CORBA application in the context
of theiSF.

CORBA Application

Action-role

1IoP/ mapping file
TLS CSIv2 and GSP

1IOP/TLS |

>
o
=

I— Authorization —>

Authentication

Orbix Secure Service

Figure 16: A Secure CORBA Application within the iSF

62

Security plug-ins

IIOP/TLS plug-in

CSIv2 plug-in

GSP plug-in

Overview of CORBA Security

Within the iSF, a CORBA application becomes fully secure by loading the
following plug-ins:

. IHTOPITLS plug-in

®* CSlv2plug-in

® GSPplug-in

The [IOP/TLSplug-in, iiop_t1s, enablesa CORBA application to transmit and
receive I1OP requests over a secure SSL/TLS connection. This plug-in can be
enabled independently of the other two plug-ins.

See " Securing Communicationswith SSL/TLS’ on page 64 for details on how to
enable IOP/TLSin a CORBA application.

The CSIv2 plug-in, csi, provides aclient authentication mechanism for CORBA
applications. The authentication mechanism is based on a username and a
password. When the CSIv2 plug-in is configured for use with the iSF, the
username and password are forwarded to a central Orbix security service to be
authenticated. This plug-in is needed to support the iSF.

Note: ThellOP/TLS plug-in also provides a client authentication mechanism
(based on SSL/TLS and X.509 certificates). The SSL/TLS and CSIv2
authentication mechanisms are independent of each other and can be used
simultaneously.

The GSP plug-in, gsp, provides authorization by checking a user’s roles against
the permissions stored in an action-role mapping file. This plug-in is needed to
support the i SF.

Note: The GSP plug-in depends on the CSIv2 plug-in. Whenever you include
the GSP plug-in, gsp, in your ORB plug-ins list, it automatically loads the
CSIv2 plug-in, csi.

63

CHAPTER 4 | Securing CORBA Applications

Securing Communicationswith SSL/TLS

Overview

Configuration samples

64

This section describes how to configure an application to use SSL/TLS security.
In this section, it is assumed that your initial configuration comes from a secure
location domain (generated by the itconfigure utility with security enabled—
see “Creating a Secure Domain” on page 4).

WARNING: The default certificates used in the CORBA configuration
samples are for demonstration purposes only and are completely insecure. Y ou
must generate your own custom certificates for use in your own CORBA
applications.

If alocation domain, DomainName, is generated with security enabled and
demonstration configurations enabled, the domain will include several sample
configurations that can be used as templates for configuring SSL/TLS. Within
the default domain configuration (either in the DomainName. cfg file or in the
CFR service), you can find the following sample SSL/TL S configuration scopes:

° demos.tls.secure_client_with_no_cert

b demos.tls.secure_client_with_cert

° demos.tls.semi_secure client_with_cert

° demos.tls.semi_secure client_with_no_cert

b demos.tls.secure_server no_client_auth

° demos.tls.secure_server_ request_client_auth

° demos .tls.secure_server_enforce_client_auth

b demos.tls.semi_secure_server no_client auth

° demos.tls.semi_secure server_ request_client_auth
° demos.tls.semi_secure_server_enforce client_auth

Secure client terminology

Securing Communicationswith SSL/TLS

The terminology used to describe the preceding client configuration scopesis
explainedin Table 1.

Tablel: Terminology Describing Secure Client Sample Configurations

Scope Name
Prefix/Suffix

Description

secure_client

The client opens only secure SSL/TL S connections to the server. If the server does not
support secure connections, the connection attempt will fail.

semi_secure_client

The type of connection opened by the client depends on the disposition of the server:

. If the server isinsecure (listening only on an insecure 11OP port), an insecure
connection is established.

i If the server is secure (listening only on a secure I|OP/TLS port), a secure
SSL/TLS connection is established.

. If the server is semi-secure (listening on both an I1OP port and on an IOP/TLS
port), the type of connection established depends on the client’s
binding:client_binding list.

. If, intheclient’Sbinding:client_binding list, abinding with the 1Top
interceptor appears before abinding with the 1Top_TLs interceptor, an
insecure connection is established.

+ Conversdly, if abinding with the 1ToP_TLS interceptor appears before a
binding with the TTop interceptor, a secure connection is established.

with no_cert

No X.509 certificate is associated with the client (at least, not through configuration).

with_cert

An X.509 certificate is associated with the client by setting the principal sponsor
configuration variables.

65

CHAPTER 4 | Securing CORBA Applications

Secure server terminology The terminology used to describe the preceding server configuration scopesis
explainedin Table 2.

Table2: Terminology Describing Secure Server Sample Configurations

Scope Name Description
Prefix/Suffix
secure_server The server accepts only secure SSL/TLS connection attempts. If aremote client does
not support secure connections, the connection attempt will fail.
semi_secure_server The server accepts both secure and insecure connection attempts by remote clients.
no_client_auth The server does not support client authentication over SSL/TLS. That is, during an

SSL/TLS handshake, the server will not request the client to send an X.509 certificate.

request_client_auth The server allows a connecting client the option of either authenticating itself or not
authenticating itself using an X.509 certificate.

enforce_client_auth The server requires a connecting client to authenticate itself using an X.509 certificate.

Outline of a sample configuration For example, the demos . t1s. secure_server_no_client_auth configuration
scope defines a server configuration that is secured by SSL/TL S but does not expect
clients to authenticate themselves. This configuration has the following outline:

Orbix Configuration File
#;.(.}eneral configuration at root scope.
c.lér;ws {
tls ¢
Common SSL/TLS configuration settings.

secure_server_no_client_auth {
Specific server configuration settings.

66

Sample client configuration

Securing Communicationswith SSL/TLS

Three significant groups of configuration variables contribute to the

secure_server _no_client_auth configuration, asfollows:

1. General configuration at root scope—these configuration settings are
common to all applications, whether secure or insecure.

2. Common SSL/TLS configuration settings—specify the basic settings for
SSL/TL S security. In particular, the orb_plugins list defined in this scope
includesthe iiop_tis plug-in.

3. Specific server configuration settings—define the settings specific to the

secure_server_no_client_auth configuration.

For example, consider asecure SSL/TL S client whose configuration is modelled
on the demos . t1s.secure_client_with no_cert configuration. Example 1
shows how to configure such a sample client.

Example 1: Sample SSL/TLSClient Configuration
Orbix Configuration File

#;.éeneral configuration at root scope.
r&isecure_apps {

Common SSL/TLS configuration settings.
(copied from ’‘demos.tls’)

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls"];
binding:client_binding list = ["OTS+POA_Coloc", "POA_Coloc",

"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+GIOP+IIOP", "GIOP+IIOP", "OTS+GIOP+IIOP_TLS",
"GIOP+IIOP_TLS"];

policies:trusted ca_list_policy =
"ASPInstallDir\asp\6.0\etc\tls\x509\trusted_ca_lists\ca_listl.

pem" ;

policies:mechanism policy:protocol_version = "SSL_V3";

policies:mechanism policy:ciphersuites =
["RSA_WITH_RC4_128_SHA", "RSA_WITH RC4_128_MD5"];

event_log:filters = ["IT_ATLI_TLS=*", "IT IIOP=*",
"IT ITOP_TLS=*", "IT TLS=*"];

my_client {

67

CHAPTER 4 | Securing CORBA Applications

Example 1: Sample SSL/TLSClient Configuration

Specific SSL/TLS client configuration settings
(copied from ’‘demos.tls.secure_client_with no_cert’)
6 principal_ sponsor:use_principal_ sponsor = "false";

7 policies:client_secure invocation policy:requires =
["Confidentiality", "EstablishTrustInTarget"];
policies:client_secure invocation policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];
b
i

The preceding client configuration can be described as follows:

1. Makesurethat the orb_plugins variable in this configuration scope
includesthe iiop_tl1s plug-in.

Note: For fully secure applications, you should exclude the iiop
plug-in (insecure I1OP) from the ORB plug-ins list. This renders the
application incapable of making insecure |1OP connections.

For semi-secure applications, however, you should include the iiop
plug-in beforethe iiop_t1s plug-inin the ORB plug-insist.

If you plan to use the full Orbix Security Framework, you should include
the gsp plug-inin the ORB plug-ins list as well—see “ Securing Two-Tier
CORBA Systems with CSI” on page 76.

2. Makesurethat thebinding:client_binding list variable includes
bindings with the 110P_TLs interceptor. Y ou can use the value of the
binding:client_binding list shown here.

If you plan to use the full Orbix Security Framework, you should use the
binding:client_binding list asshownin“Client configuration” on
page 77 instead.

3. AnSSL/TLSapplication needs alist of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from other
SSL/TLS applications. Y ou must, therefore, edit the

68

Sample server configuration

Securing Communicationswith SSL/TLS

policies:trusted_ca_list_policy variableto point at alist of trusted
certificate authority (CA) certificates. See “ Specifying Trusted CA
Certificates’ on page 369.

Note: If using Schannel as the underlying SSL/TL S toolkit (Windows
only), thepolicies:trusted ca_list_policy variableisignored.
Within Schannel, the trusted root CA certificates are obtained from the
Windows certificate store.

The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “ Specifying Cipher Suites’ on
page 349.

This line enables console logging for security-related events, which is

useful for debugging and testing. Because there is a performance penalty

associated with this option, you might want to comment out or delete this
linein aproduction system.

The SSL/TLS principal sponsor isamechanism that can be used to specify

an application’s own X.509 certificate. Because this client configuration

does not use a certificate, the principal sponsor is disabled by setting
principal_sponsor:use_principal_sponsor {0 false.

Thefollowing two lines set the required options and the supported options

for the client secure invocation policy. In this example, the policy is set as

follows:

+ Required options—the options shown here ensure that the client can
open only secure SSL/TLS connections.

+ Supported options—the options shown include al of the association
options, except for the EstablishTrustInClient option. The client
cannot support EstablishTrustInClient, because it has no X.509
certificate.

Generally speaking, it israrely necessary to configure such athing asapure
server (that is, a server that never makes any requests of its own). Most real
servers are applicationsthat act in both a server role and aclient role. Hence, the
sample server described hereis ahybrid of the following two demonstration
configurations:

demos.tls.secure_server_ request_client_auth

69

CHAPTER 4 | Securing CORBA Applications

b demos.tls.secure_client_with_cert

Example 2 shows how to configure such a sample server.
Example2: Sample SSL/TLS Server Configuration

Orbix Configuration File

#.éeneral configuration at root scope.

my_secure_apps {
1 # Common SSL/TLS configuration settings.
(copied from ’‘demos.tls’)
my_server {
Specific SSL/TLS server configuration settings
(from ’‘demos.tls.secure_server_ request_client_auth’)
2 policies:target_secure_ invocation_policy:requires =
["Confidentiality"];
policies:target_secure invocation policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
4 principal_sponsor:auth _method id = "pkcsl2_file";
5 principal_sponsor:auth _method data =

["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\demos\bank
_server.pl2"];

Specific SSL/TLS client configuration settings
(copied from ’‘demos.tls.secure_client_with_cert’)
6 policies:client_secure_ invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];

policies:client_secure invocation_policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];
b g

70

Securing Communicationswith SSL/TLS

The preceding server configuration can be described as follows:

1

Y ou can use the same common SSL/TL S settings here as described in the

preceding “ Sample client configuration” on page 67

The following two lines set the required options and the supported options

for the target secure invocation policy. In this example, the policy is set as

follows:

+ Required options—the options shown here ensure that the server
accepts only secure SSL/TL S connection attempts.

+ Supported options—all of the target association options are
supported.

A server must always be associated with an X.509 certificate. Hence, this

line enables the SSL/TL S principal sponsor, which specifies a certificate

for the application.

This line specifies that the X.509 certificate is contained in a PK CS#12

file. For alternative methods, see “ Specifying an Application’s Own

Certificate’ on page 371.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the principal_sponsor:auth_method_id value must be
security._label instead of pkcs12_file.

Replace the X.509 certificate, by editing the £ilename option in the
principal_sponsor:auth_method_data configuration variableto point at
acustom X.509 certificate. The £ilename value should beinitialized with
the location of a certificate file in PK CS#12 format—see “ Specifying an
Application’s Own Certificate” on page 371 for more details.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), you would set the 1abel option instead of the £ilename Option in
theprincipal sponsor:auth method data configuration variable. The
label specifiesthe common name (CN) from the application certificate's
subject DN.

For details of how to specify the certificate’ s pass phrase, see “Providing a
Pass Phrase or PIN” on page 375.

71

CHAPTER 4 | Securing CORBA Applications

Mixed security configurations

Customizing SSL/TL S security
policies

72

6. Thefollowing two lines set the required options and the supported options
for the client secure invocation policy. In this example, the policy is set as
follows:

+ Reqguired options—the options shown here ensure that the application
can open only secure SSL/TL S connections to other servers.

+ Supported options—all of the client association options are
supported. In particular, the EstablishTrustInClient option is
supported when the application isin a client role, because the
application has an X.509 certificate.

Most redlistic secure server configurations are mixed in the sense that they
include both server settings (for the server role), and client settings (for the client
role). When combining server and client security settings for an application, you
must ensure that the settings are consistent with each other.

For example, consider the case where the server settings are secure and the client
settings areinsecure. To configure this case, set up the server role asdescribed in
“Sample server configuration” on page 69. Then configure the client role by
adding (or modifying) the following linesto themy_secure_apps.my_server
configuration scope:

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop", "iiop_tls"];

policies:client_secure_invocation_policy:requires =
["NoProtection"];

policies:client_ secure invocation policy:supports =
["NoProtection"];

Thefirst line sets the ORB plug-ins list to make sure that the 1iop plug-in
(enabling insecure I1OP) isincluded. The Noprotection association option,
which appears in the required and supported client secure invocation palicy,
effectively disables security for the client role.

Y ou can, optionally, customize the SSL/TL S security policiesin various ways.
For details, see the following references:

® “Configuring SSL/TLS Secure Associations’ on page 333.
. “Configuring SSL/TLS Authentication” on page 361.

Key distribution management

Securing Communicationswith SSL/TLS

Itis possible to configure your CORBA server so that the certificate pass phrase
is supplied automatically by the key distribution management (KDM) service.
For details, see the following reference:

e “Automatic Activation of Secure Servers’ on page 389.

73

CHAPTER 4 | Securing CORBA Applications

Specifying Fixed Portsfor SSL/TLS

Connections

Overview

POA policiesrequired for setting
fixed ports

Programming therequired POA
policies

Fixed port configuration variables

74

Orbix allows you to specify afixed |P port on which a server listens for
SSL/TLS connections. This subsection provides an overview of the
programming and configuration requirements for setting IIOP/TLS fixed ports.

The main prerequisite for configuring fixed portsis that a CORBA developer

programs the application to create a POA instance with the following policies:

o PortableServer: : LifespanPolicy—the value of this POA policy should
be set to PERSTSTENT, indicating that the objects managed by this POA can
outlive the server process.

° IT_CORBA: :WellKnownAddressingPolicy—the value of this POA policy
isastring that defines awell-known addressing prefix, <wka_prefix>, for
host/port configuration variables that an administrator can edit in the Orbix
configuration.

i IT_PortableServer: : PersistenceModePolicy—the value of this POA
policy can be set to either of the following values:

¢ DIRECT_PERSISTENCE, indicating that the POA isconfigured to
receive connection attempts directly from clients. The server listens
on the fixed port (well-known address) and exports |ORs containing
its own host and fixed port.

¢ INDIRECT PERSISTENCE, indicating that connection attemptswill be
redirected to the server by the locator service. The server listens on
the fixed port (well-known address), but exports |ORs containing the
locator’ s host and port.

For details of how to program POA policies, see the CORBA Programmer’s
Guide.

The following [IOP/TLS configuration variables can be set for a POA that
supports the well-known addressing policy with the <wka_prefix> prefix:

Specifying Fixed Portsfor SSL/TL S Connections

<wka_prefix>:iiop_tls:host = "<host>";
Specifies the hostname, <host>, to publish in the IOP/TLS profile of
server-generated |ORs.

<wka_prefix>:iiop_tls:port = "<port>";
Specifies the fixed I P port, <port>, on which the server listens for
incoming IIOP/TLS messages. This port value is also published in the
IIOP/TLS profile of generated |ORs.

<wka _prefix>:iiop tls:listen_addr = "<host>";
Restricts the IOP/TLS listening point to listen only on the specified host,
<host>. It isgenerally used on multi-homed hosts to limit incoming
connections to a particular network interface.

<wka prefix>:iiop tls:addr list =

["<optional_plus sign><host>:<port>", ... 1;

In the context of server clustering, this configuration variable specifies a
list of host and port combinations, <host> : <port>, for the <wka_prefix>
persistent POA instance.
One of the host and port combinations, <host> :<port> (lacking a +
prefix), specifies the POA’s own listening point. The other host and port
combinations, +<host> :<port> (including a + prefix), specify the
listening points for other serversin the cluster.

Note: The *:addr_1ist variable takes precedence over the other
host/port configuration variables (* :host, *:port, and *:1isten_addr).

75

CHAPTER 4 | Securing CORBA Applications

Securing Two-Tier CORBA Systemswith CSl

Overview

Two-tier CORBA system

76

This section describes how to secure atwo-tier CORBA system using the iSF.
The client supplies username/password authentication data which is then
authenticated on the server side. The following configurations are described in
detail:

® Client configuration.

® Target configuration.

Figure 17 shows a basic two-tier CORBA system in the i SF, featuring a client
and atarget server.

Figure 17: Two-Tier CORBA Systemin theiSF

l" Propagate Apply access
- @ User login @ authentication @ s

control
token

Client

Request + m
Client / ‘

h

authentication

Retriev r'
token @ authenticate () @ etrieve user's

realms and roles

h 4
Orbix Secure
Service

Securing Two-Tier CORBA Systemswith CSl

Scenario description The scenario shown in Figure 17 can be described as follows:

Stage Description

1 | Theuser enters a username, password, and domain name on the
client side (user login).

Note: The domain name can either be an empty string (actsas a
wildcard) or must match the value of the

policies:csi:auth_over transport:server_ domain_name
configuration variable set on the server side.

2 | When the client makes a remote invocation on the server, the iSF
transmits the username/password/domain authentication data to
the target along with the invocation request.

3 | The server authenticates the received username and password by
calling out to the external Orbix security service.

4 | If authentication is successful, the Orbix security service returns
the user’ srealms and roles.

5 | TheiSF controlsaccessto thetarget’ sIDL interfaces by consulting
an action-role mapping file to determine what the user is allowed
to do.

Client configuration The CORBA client from Example 17 on page 76 can be configured as shown in
Example 3.

Example 3: Configuration of a CORBA client in theiSF
Orbix Configuration File
General configuration at root scope.

my_secure_apps {
1 # Common SSL/TLS configuration settings.

Common iSF configuration settings.

2 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiopftls" , "ots", ngspu] ;

77

CHAPTER 4 | Securing CORBA Applications

Example 3: Configuration of a CORBA client in the iSF

3 binding:client_binding list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA _Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",

"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

4 binding:server_binding list = ["CSI+GSP+0TS", "CSI+GSP",
"CSI+OTS", "CSI"];

my_client {
5 # Specific SSL/TLS configuration settings.

Specific iSF configuration settings.

6 plugins:csi:allow_csi_reply without_service context =
"false";
7 policies:csi:auth_over transport:client_supports =

["EstablishTrustInClient"];

8 principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:auth _method_id = "GSSUPMech";
principal_sponsor:csi:auth_method_data = [];

b
i

The preceding client configuration can be explained as follows:

1. TheSSL/TLS configuration variables common to all of your applications
can be placed here—see “ Securing Communications with SSL/TLS’ on
page 64 for details of the SSL/TL S configuration.

2. Makesurethat the orb_plugins variable in this configuration scope
includes both the iiop_t1s and the gsp plug-insin the order shown.

3. Makesurethat the binding:client_binding list variableincludes
bindings with the csT interceptor. Y our can use the value of the
binding:client_binding list shown here.

4, Make sure that the binding: server_binding_list variable includes
bindings with both the csT and Gsp interceptors. Y our can use the value of
the binding:server_binding_ list shown here.

5. The SSL/TLS configuration variables specific to the CORBA client can be
placed here—see “ Securing Communications with SSL/TLS’ on page 64.

78

Target configuration

Securing Two-Tier CORBA Systemswith CSl

6. Thissetting enforces strict checking of reply messages from the server, to

make sure the server actually supports CSIv2.

7. Thisconfiguration setting specifies that the client supports sending
username/password authentication datato a server.

8. Thenext threelines specify that the client usesthe CSl principal sponsor to

obtain the user’ s authentication data. With the configuration as shown, the
user would be prompted to enter the username and password when the
client application starts up.

For more details on the CS| principal sponsor, see “Providing a Username
and Password” on page 428.

The CORBA target server from Figure 17 on page 76 can be configured as
shown in Example 4.

Example 4: Configuration of a Second-Tier Target Server intheiSF

Orbix Configuration File
General configuration at root scope.

my_secure_apps {
Common SSL/TLS configuration settings.

Common iSF configuration settings.
orb_plugins = [..., "iiop_tls", "gsp", ... 1;
binding:client_binding list = [... 1;
binding:server_binding list = [...];

my_two_tier target {
Specific SSL/TLS configuration settings.

Specific iSF configuration settings.

policies:csi:auth_over transport:target_supports
["EstablishTrustInClient"];

policies:csi:auth_over transport:target_requires =
["EstablishTrustInClient"];

policies:csi:auth_over transport:server domain_name =
"DEFAULT" ;

plugins:gsp:authorization realm = "AuthzRealm-;
plugins:gsp:action role mapping file = "ActionRoleURL";

79

CHAPTER 4 | Securing CORBA Applications

80

Example 4: Configuration of a Second-Tier Target Server intheiSF

I8

iSF client configuration settings.
policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient"];

principal_sponsor:csi:use _principal_sponsor = "true";
principal_ sponsor:csi:auth method id = "GSSUPMech";
principal_sponsor:csi:auth _method data = [];

Y

The preceding target server configuration can be explained as follows:

1.

The SSL/TLS configuration variables specific to the CORBA target server
can be placed here—see “ Securing Communications with SSL/TLS’ on
page 64.

This configuration setting specifies that the target server supports
receiving username/password authentication data from the client.

This configuration setting specifies that the target server requiresthe client
to send username/password authentication data.

The server_domain_name configuration variable sets the server’'s CSlv2
authentication domain name. The domain name embedded in areceived
CSlIv2 credentia must match the value of the server_domain_name
variable on the server side or could be an empty string (acts as awildcard).

This configuration setting specifies the i SF authorization realm,
AuthzRealm, to which this server belongs. For more details about i SF
authorization realms, see “iSF Authorization Realms’ on page 171.

Theaction_role mapping configuration variable specifiesthe location of
an action-role mapping that controls accessto the IDL interfaces
implemented by the server. Thefilelocation is specified in an URL format,
for example: file:///security admin/action_role mapping.xml
(UNIX) or file:///c:/security admin/action_role mapping.xml
(Windows).

For more details about the action-role mapping file, see “CORBA
Action-Role Mapping ACL” on page 188.

Securing Two-Tier CORBA Systemswith CSl

7. Youshould also set iSF client configuration variables in the server
configuration scope, because a secure server application usually behaves as
asecure client of the core CORBA services. For example, ailmost all
CORBA servers need to contact both the locator service and the CORBA
naming service.

Related administration tasks After securing your CORBA applications with iSF, you might need to perform
related administration tasks, for example:

® See“Managing Users, Roles and Domains’ on page 167.
® See“CORBA Action-Role Mapping ACL” on page 188.

81

CHAPTER 4 | Securing CORBA Applications

Securing Three-Tier CORBA Systemswith
CSl

Overview This section describes how to secure athree-tier CORBA system using the iSF.
In this scenario thereis aclient, an intermediate server, and atarget server. The
intermediate server is configured to propagate the client identity when it invokes
on the target server in the third tier. The following configurations are described
in detail:

i Intermediate configuration.
® Target configuration.

Three-tier CORBA system Figure 18 shows a basic three-tier CORBA system in the iSF, featuring a client,
an intermediate server and atarget server.

Figure 18: Three-Tier CORBA Systemin the iSF

l', @ Set own identity @ @ Obtain user's
Z= -
— % e El - realms and roles

, \\V Propagate identity

Client Request+ | u/p/d .| Intermediate Request+ [u] .| Target

‘ Server ‘ i’ Server
A
Client

@ Apply access
authentication Identity token control
token v

Orbix Secure
Service

82

Scenario description

Client configuration

I nter mediate configuration

Securing Three-Tier CORBA Systemswith CSl

The second stage of the scenario shown in Figure 18 (intermediate server
invokes an operation on the target server) can be described as follows:

Stage Description

1 | Theintermediate server setsits own identity by extracting the user
identity from the received username/password credentials. Hence,
the intermediate server assumes the same identity asthe client.

2 | When the intermediate server makes a remote invocation on the
target server, the i SF also transmits the user identity data to the
target.

3 | Thetarget server then obtains the user’s realms and roles.

4 | TheiSF controlsaccessto thetarget’ sIDL interfaces by consulting
an action-role mapping file to determine what the user is allowed
to do.

The client configuration for the three-tier scenario isidentical to that of the
two-tier scenario, as shown in “Client configuration” on page 77.

The CORBA intermediate server from Figure 18 on page 82 can be configured
as shown in Example 5.

Example5: Configuration of a Second-Tier Intermediate Server in the iSF
Orbix Configuration File
General configuration at root scope.

my_secure_apps {
Common SSL/TLS configuration settings.

Common iSF configuration settings.
orb_plugins = [..., "iiop_tls", "gsp", ... 1;
binding:client_binding list = [... 1;
binding:server_binding_list = [...];

my_three tier intermediate ({
Specific SSL/TLS configuration settings.

83

CHAPTER 4 | Securing CORBA Applications

84

Example5: Configuration of a Second-Tier Intermediate Server in the iSF

Specific iSF configuration settings.

plugins:csi:allow_csi_reply without_service context =
"false";

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

policies:csi:auth_over transport:target_supports =
["EstablishTrustInClient"];

policies:csi:auth_over_transport:target_requires
["EstablishTrustInClient"];

policies:csi:auth_over transport:server domain_name =
"DEFAULT" ;

plugins:gsp:authorization realm = "AuthzRealm-;
plugins:gsp:action role mapping file = "ActionRoleURL";

1SF client configuration settings.
policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

principal_ sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:auth_method_id = "GSSUPMech";
principal_sponsor:csi:auth _method data = [];
}i
hg

The preceding intermediate server configuration can be explained as follows:

1. TheSSL/TLS configuration variables specific to the CORBA intermediate
server can be placed here—see “ Securing Communications with
SSL/TLS’ on page 64.

2. Thissetting enforces strict checking of reply messages from the target, to
make sure the target actually supports CSIv2.

3. Thisconfiguration setting specifies that the intermediate server is capable
of propagating the identity it receives from aclient. In other words, the
server is able to assume the identity of the client when invoking operations
on third-tier servers.

4. Thisconfiguration setting specifies that the intermediate server supports
receiving username/password authentication data from the client.

5. Thisconfiguration setting specifies that the intermediate server requires
the client to send username/password authentication data.

Target configuration

Securing Three-Tier CORBA Systemswith CSl

6. Theserver domain name configuration variable sets the server’s CSlv2
authentication domain name. The domain name embedded in areceived
CSlv2 credential must match the value of the server domain name
variable on the server side or could be an empty string (acts as awildcard).

7. Thisconfiguration setting specifies the i SF authorization realm,
AuthzRealm, to which this server belongs. For more details about i SF
authorization realms, see “iSF Authorization Realms” on page 171.

8. Thisconfiguration setting specifies the location of an action-role mapping
that controls access to the IDL interfaces implemented by the server. The
filelocation is specified in an URL format, for example:
file:///security_admin/action_role_mapping.xml (UNIX) or
file:///c:/security_admin/action_role_mapping.xml (Windows).
For more details about the action-role mapping file, see “CORBA
Action-Role Mapping ACL” on page 188.

9. You should also set iSF client configuration variables in the intermediate
server configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and the
CORBA naming service.

The CORBA target server from Figure 18 on page 82 can be configured as
shown in Example 6.

Example 6: Configuration of a Third-Tier Target Server intheiSF
Orbix Configuration File
General configuration at root scope.

my_secure_apps {
Common SSL/TLS configuration settings.

Common iSF configuration settings.

orb plugins = [..., "iiop_tls", "gsp", ... 1;
binding:client_binding_list = [... 1;
binding:server_binding list = [...];

85

CHAPTER 4 | Securing CORBA Applications

Example 6: Configuration of a Third-Tier Target Server inthe iSF

my_three_tier_target {
Specific SSL/TLS configuration settings.

policies:iiop_tls:target_secure_invocation policy:requires
= ["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity", "EstablishTrustInClient"];
3 policies:iiop_tls:certificate constraints policy =
[ConstraintStringl, ConstraintString2, ...1;

N

Specific iSF configuration settings.

4 policies:csi:attribute service:target_supports =
["IdentityAssertion"];

5 plugins:gsp:authorization realm = "AuthzRealm-;

6 plugins:gsp:action role mapping file = "ActionRoleURL";

7 # 1SF client configuration settings.

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

principal_ sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:auth_method_id = "GSSUPMech";
principal_sponsor:csi:auth _method data = [];
}i
hg

The preceding target server configuration can be explained as follows:

1. TheSSL/TLS configuration variables specific to the CORBA target server
can be placed here—see “ Securing Communications with SSL/TLS’ on
page 64.

2. Itisrecommended that the target server require its clients to authenticate
themselves using an X.509 certificate. For example, the intermediate
server (acting as aclient of the target) would then be required to send an
X.509 certificate to the target during the SSL/TL S handshake.

Y ou can specify this option by including the EstablishTrustInClient
association option in the target secure invocation policy, as shown here
(thereby overriding the policy value set in the outer configuration scope).

86

Related administration tasks

Securing Three-Tier CORBA Systemswith CSl

In addition to the preceding step, it isalso advisable to restrict accessto the
target server by setting a certificate constraints policy, which allows access
only to those clients whose X.509 certificates match one of the specified
constraints—see “Applying Constraints to Certificates” on page 384.

Note: The moativation for limiting access to the target server is that
clients of the target server obtain a special type of privilege: propagated
identities are granted access to the target server without the target server
performing authentication on the propagated identities. Hence, the target
server trusts the intermediate server to do the authentication on its behalf.

This configuration setting specifies that the target server supports receiving
propagated user identities from the client.

This configuration setting specifies the i SF authorization realm,
AuthzRealm, to which this server belongs. For more details about i SF
authorization realms, see “iSF Authorization Realms” on page 171.

This configuration setting specifies the location of an action-role mapping
that controls access to the IDL interfaces implemented by the server. The
filelocation is specified in an URL format, for example:
file:///security_admin/action_role mapping.xml.

For more details about the action-role mapping file, see“CORBA
Action-Role Mapping ACL" on page 188.

Y ou should also set i SF client configuration variables in the target server
configuration scope, because a secure server application usually behaves as
asecure client of the core CORBA services. For example, ailmost all
CORBA servers need to contact both the locator service and the CORBA
naming service.

After securing your CORBA applications with i SF, you might need to perform
related administration tasks, for example:

See “Managing Users, Roles and Domains’ on page 167.
See “CORBA Action-Role Mapping ACL” on page 188.

87

CHAPTER 4 | Securing CORBA Applications

X.509 Certificate-Based Authentication

Overview This section describes how to enable X.509 certificate authentication with the
i SF, based on asimple two-tier client/server scenario. In this scenario, the Orbix
security service authenticates the client’s certificate and retrieves roles and
realms based on the identity of the certificate subject. When iSF
certificate-based authentication is enabled, the X.509 certificate is effectively
authenticated twice, asfollows:

® SSL/TLSlevel authentication—this authentication step occurs during the
SSL/TLS handshake and is governed by Orbix configuration settings and
programmable SSL/TLS palicies.

® |SF-level authentication and authorization—this authentication step occurs
after the SSL/TL S handshake and is performed by the Orbix security
service working in tandem with the gsp plug-in.

Certificate-based authentication Figure 19 shows an example of atwo-tier system, where authentication of the
scenario client’s X.509 certificate is integrated with i SF.

Figure 19: Overview of iSF Certificate-Based Authentication

B ——
= \\/ User login @ S51/TLS-level @ Apply access

authentication control
Target
5
"

@ Retrieve user's
realms and roles

Client

X509 @ authenticate ()

A

Orbix Security Service

»
»

®

Check certificate

88

X.509 Certificate-Based Authentication

Scenario description The scenario shown in Figure 19 can be described as follows:
Stage Description
1 | When the client opens a connection to the server, the client sends

its X.509 certificate as part of the SSL/TL S handshake. The server

then performs SSL/TL S-level authentication, checking the

certificate as follows:

®* Thecertificateis checked against the server’ s trusted CA list
to ensure that it is signed by a trusted certification authority.

* |f acertificate constraints policy is set, the certificateis
checked to make sure it satisfies the specified constraints.

* |f acertificate validator policy is set (by programming), the
certificate is also checked by this policy.

The server then performs i SF-level authentication by calling
authenticate () onthe Orbix security service, passing theclient’s
X.509 certificate as the argument.

The Orbix security service authenticates the client’s X.509
certificate by checking it against a cached copy of the certificate.
The type of checking performed depends on the particul ar
third-party enterprise security service that is plugged into the
Orbix security service.

If authentication is successful, the Orbix security service returns
the user’ srealms and roles.

TheiSF controls accessto thetarget’sIDL interfaces by consulting
an action-role mapping file to determine what the user is allowed
to do.

89

CHAPTER 4 | Securing CORBA Applications

Client configuration Example 7 shows a sample client configuration that you can use for the iSF
certificate-based authentication scenario (Figure 19 on page 88).

Example 7: Client Configuration for iSF Certificate-Based Authentication

Orbix Configuration File
corba_cert_auth
{
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "gsp"];

event_log:filters = ["IT_GSP=*", "IT CSI=*", "IT_TLS=*",
"IT IIOP_TLS=*", "IT ATLI2 TLS=*"];

binding:client_binding list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

client_x509
{

policies:iiop_tls:client_secure_invocation policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation policy:requires
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"] ;

principal_sponsor:use principal sponsor = "true";
principal sponsor:auth method id = "pkcsl2_ file";
principal_ sponsor:auth method data =
["filename=W: \art\etc\tls\x509\certs\demos\bob.pl2",
"password=bobpass"];
Ve
i

The preceding client configuration isatypical SSL/TLS configuration. The only
noteworthy feature is that the client must have an associated X.509 certificate.
Hence, the principal_sponsor Settings are initialized with the location of an
X.509 certificate (provided in the form of a PKCS#12 file).

90

Target configuration

X.509 Certificate-Based Authentication

For adiscussion of these client SSL/TL S settings, see “ Sample client
configuration” on page 67 and “Deploying Application Certificates” on
page 311.

Example 8 shows a sample server configuration that you can use for the iSF
certificate-based authentication scenario (Figure 19 on page 88).

Example8: Server Configuration for iSF Certificate-Based Authentication

Orbix Configuration File
corba_cert_auth
{
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "gsp"];

event_log:filters = ["IT _GSP=*", "IT CSI=*", "IT TLS=*",
"IT ITOP_TLS=*", "IT ATLI2 TLS=*"];

binding:client_binding list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

server

policies:csi:auth_over transport:authentication service
= "com.iona.corba.security.csi.AuthenticationService";

principal_sponsor:use_principal_sponsor = "true";

principal_sponsor:auth method id = "pkcsl2_file";

principal_sponsor:auth _method data =
["filename=OrbixInstallDir\etc\tls\x509\certs\demos\bank_server
.pl2", "password=bankserverpass"];

binding:server_binding list = ["CSI+GSP", "CSI",
n GSPH] ;

initial_references:IS2Authorization:plugin =
"it_is2_authorization";

plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugIn

",
7

91

CHAPTER 4 | Securing CORBA Applications

Example 8: Server Configuration for iSF Certificate-Based Authentication

bg

plugins:gsp:action_role_mapping file =
"file://W:\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionro
lemapping with interfaces.xml";

auth_x509
{

plugins:gsp:enable security service cert_authentication =
ntrue;

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:target_secure_invocation policy:requires
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

}i

b8

The preceding server configuration can be explained as follows:

1

w

e

92

Asisnormal for an SSL/TLS server, you must provide the server with its
own certificate. The simplest way to do thisis to specify the location of a
PKCS#12 file using the principal sponsor.

This configuration setting specifies the location of an action-role mapping
file, which controls access to the server’ s interfaces and operations.
Theplugins:gsp:enable_security_service cert_authentication
variable is the key to enabling i SF certificate-based authentication. By
setting this variable to true, you cause the server to perform i SF-level
certificate authentication.

The IOP/TLStarget secure invocation policy must require
EstablishTrustInClient. Evidently, if the client does not provide a
certificate during the SSL/TL S handshake, there will be no certificate
available to perform the i SF-level authentication.

Related administration tasks

X.509 Certificate-Based Authentication

When using X.509 certificate-based authentication, it is necessary to add the

appropriate user datato your enter prise security system (which isintegrated with

the Orbix security service through an i SF adapter), as follows:

. File adapter (do not use in deployed systems)—see “ Certificate-based
authentication for the file adapter” on page 183

i LDAP adapter—see “ Certificate-based authentication for the LDAP
adapter” on page 184.

93

CHAPTER 4 | Securing CORBA Applications

Caching of Credentials

Overview

Cachetime-out

Cachesize

Configuration variables

94

To improve the performance of servers within the Orbix Security Framework,
the GSP plug-in implements caching of credentials (that is, the authentication
and authorization data received from the Orbix security service).

The GSP credentials cache reduces a server’ s response time by reducing the
number of remote calls to the Orbix security service. On thefirst call from a
given user, the server calls the Orbix security service and caches the received
credentials. On subsequent calls from the same user, the cached credentials are
used, thereby avoiding aremote call to the Orbix security service.

The cache can be configured to time-out credentials, forcing the server to call the
Orbix security service again after using cached credentials for a certain period.

The cache can also be configured to limit the number of stored credentials.

The following variables configure the credentials cache in the context of the
Orbix Security Framework:
plugins:gsp:authentication cache_ size
The maximum number of credentials stored in the authentication cache. If
this size is exceeded the oldest credential in the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

plugins:gsp:authentication_cache_timeout
Thetime (in seconds) after which a credential is considered stale. Stale
credentials are removed from the cache and the server must re-authenticate
with the Orbix security service on the next call from that user. The cache
timeout should be configured to be smaller than the timeout set in the
is2.properties file (by default, that setting is
is2.sso.session.timeout=600).
A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

In this chapter

Single Sign-On for

CORBA

Applications

CHAPTER 5

Snglesign-on (SSO) isan Orbix security feature which minimizes
the exposure of usernames and passwor ds to snooping. After
initially signing on, a client communicates with other applications

by passing an SSO token in place of the original username and

password.

This chapter discusses the following topics:

SSO and the Login Service page 96

Username/Password-Based SSO page 99

Three Tier Example with Identity Assertion page 107
X.509 Certificate-Based SSO page 110
Enabling Re-Authentication at Each Tier page 118
Optimising Retrieval of Realm Data page 122
SSO Sample Configurations page 128

95

CHAPTER 5| Single Sign-On for CORBA Applications

SSO and the Login Service

Overview The SSO feature is implemented by the following elements of Orbix:

Login service—a central service which can authenticate
username/password combinations and generate SSO tokens.

GSP plug-in—the generic security plug-in, which is embedded in aclient
application, isresponsible for contacting the login service to obtain an SSO
token.

Advantages of SSO SSO greatly increases the security of an application in the Orbix Security
Framework, offering the following advantages:

Password visibility is restricted to the Login Service.

Clients use SSO tokens to communicate with servers.

Clients can be configured to use SSO with no code changes.

SSO tokens are configured to expire after a specified length of time.
When an SSO token expires, the CORBA client automatically requests a
new token from the login service. No additional user code is required.

Embedded login service Figure 20 shows an overview of thelogin service which, by default, isembedded
in the same process as the Orbix security service. The client ORB automatically
requests an SSO token by sending a username and a password to the login
service. If the username and password are successfully authenticated, the login
service returns an SSO token.

LT <token>
&= \\7 User login y;

< 4 Orbix

Logi X
g.ln Security

» Service X
Service

Client

)

/
login (<username>, <password>)

Figure 20: Client Requesting an SSO Token from the Login Service

96

SSO token

SSO token expiry

Automatic token refresh

Connection to the login server

SSO and the Login Service

The SSO token is a compact key that the Orbix security service usesto accessa
user’s session details, which are stored in a cache.

The Orbix security service is configured to impose the following kinds of

timeout on an SSO token:

® SSO session timeout—this timeout places an absolute limit on the lifetime
of an SSO token. When the timeout is exceeded, the token expires.

® SO sessionidle timeout—this timeout places alimit on the amount of
timethat el apses between authentication requests involving the SSO token.
If the central Orbix security service receives no authentication requestsin
this time, the token expires.

For more details, see “ Configuring Single Sign-On Properties’ on page 163.

In theory, the expiry of SSO tokens could prove a nuisanceto client applications,
because serverswill raise a corBa: :NO_PERMISSION exception whenever an
SSO token expires. In practice, however, when SSO is enabled, the GSP plug-in
catches the No_pERMISSTON exception on the client side and contacts the login
service again to refresh the SSO token automatically. The GSP plug-in then
automatically retries the failed operation invocation.

It isimperative that a connection to the login service is strongly protected by

SSL/TLS, in order to avoid exposing usernames and passwords to snooping.

Hence, by default, the client-to-login service connection is protected by strong

SSL/TLS security policies and the IIOP/TLS client secure invocation policy

requires the following association options:

["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

This protection remains in force, irrespective of the association options set

explicitly by the SSL/TLS client secure invocation policy.

Note: Theonly way to reduce the level of protection on login service
connectionsisto set the
plugins:gsp:enforce_secure_comms_to_sso_server Variableto false.

97

CHAPTER 5| Single Sign-On for CORBA Applications

Standalone login service

98

Itispossible, in principle, to reconfigure the login service as a standal one server
(that is, a standal one process that runs independently of the Orbix security
service). Currently, however, the i tconfigure utility can only generate domains
with an embedded login service.

Please contact Progress Consulting for more details:

http://web.progress.com/consulting/index.html

http://web.progress.com/consulting/index.html

Username/Passwor d-Based SSO

User name/Passwor d-Based SSO

Overview This section describes how to configure aclient so that it transmits an SSO token
in place of a username and a password (that is, SSO is used in conjunction with
the CSI authentication over transport mechanism).

CSl layers The CSlv2 standard defines two layers for transmitting credentials:
® Cd authentication over transport (GSSUP authentication)—this layer is
used to transmit username, password, and domain data which can then be
authenticated on the server side.
® C9 identity assertion—this layer is used to transmit just a username
(asserted identity). It is not needed for the scenariosin this section.

GSSUP authentication without Figure 21 gives an overview of Generic Security Service Username/Password

SSO (GSSUP) based authentication without SSO. In this case, the username,
<username>, and password, <password>, are passed directly to the target
server, which then contacts the Orbix security service to authenticate the
username/password combination.

Figure 21: Overview of GSSUP Authentication without SSO

ﬂ’ username = <username>
User login password = <password>
\

CSI auth layer- Target
7'y

Authenticate username Retrieve user's
and password realms and roles

A 4

Orbix Secure
Service

99

CHAPTER 5| Single Sign-On for CORBA Applications

GSSUP authentication with SSO Figure 22 gives an overview of username/password-based (GSSUP)

authentication when SSO is enabled.

Figure 22: Overview of GSSUP Authentication with SSO

725> username = _SSO_TOKEN_
&= ~ NS User login password = <token>
.
N T
arget
CSI auth layer- g
A
<token> Authenticate username Retrieve user's
and password realms and roles
h 4

Orbix
Security
Service

Login

login (<username>, <password>)
T—a| Sservice

Prior to contacting the target server for thefirst time, the client ORB sends the
username, <username>, and password, <password>, to the login server, getting
an SSO token, <token> in return. The client ORB then includes aCSlv2 service
context in the next request to the target server, sending the special string,
_SSO_TOKEN_, instead of a username and the SSO token, <token>, instead of a
password. The target server’s ORB contacts the Orbix security service to
authenticate the username/password combination and to obtain the user’s
authorization data.

Note: Thetarget server isnot aware whether the client has used the login
service or not. It isthe Orbix security service that knows to treat the
_SSO_TOKEN_ Username in a specia way.

Username/Passwor d-Based SSO

Related configuration variables The following variables are relevant to username/password-based SSO:

plugins:gsp:enable_gssup_sso
Enables SSO with a username and a password (that is, GSSUP) when set to
true.

plugins:gsp:sso_server_ certificate_constraints
A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. Thispolicy isused
to ensure that sensitive password information is seen only by a specific
login server. For details on the syntax of certificate constraints, see
“Applying Constraints to Certificates’ on page 384.

Client configuration Example 9 shows atypical configuration for an SSO client that employs GSSUP
authentication.

Example 9: Client Configuration for Username/Password-Based SSO

Orbix Configuration File

corba_login_server_test_with tls

{
orb_plugins = ["local_log_stream", "iiop profile", "giop",
"iiop_tls", "gsp"l;

event_log:filters = ["IT _GSP=*", "IT CSI=*", "IT TLS=*",
"IT TTOP TLS=*", "IT ATLI2 TLS=*"];

binding:client_binding list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

1 plugins:gsp:sso_server certificate_constraints =
["C=US, ST=Massachusetts, O=ABigBank*, CN=Orbix2000 IONA
Services*"];

sso_client_gssup

{
2 principal_sponsor:use_principal_sponsor = "false";

101

CHAPTER 5| Single Sign-On for CORBA Applications

102

Example9: Client Configuration for Username/Password-Based SSO

bg

policies:iiop_tls:client_secure_invocation policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

plugins:csi:allow_csi_reply without_service context =
"false";

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

principal_ sponsor:csi:use_principal_sponsor = "true";

principal_sponsor:csi:auth_method_id = "GSSUPMech";

principal_sponsor:csi:auth _method data =
["username=paulh", "password=password", "domain=PCGROUP"];

plugins:gsp:enable gssup_sso = "true";
}i

The preceding client configuration can be described as follows:

1

The plugins:gsp:sso_server certificate_constraints variable
specifies certificate constraints that apply only to the X.509 certificate
from the login server. If the login server’ s certificate fails to match these
constraints, a CORBA : : NO_PERMISSION exception is thrown on the client
side.

In this example, the SSL/TLS principa sponsor is not used (the SSL/TLS
principal sponsor is used to specify an application’s own X.509 certificate
credentials).

Username/Passwor d-Based SSO

3. Inthisexample, the client requires a secure SSL/TLS connection and
requires the target server to authenticate itself with an X.509 certificate.

Note: Irrespective of the level of security required by the these
configuration settings, the SSO client always requires the login server
connection to be secure and authenticated by an X.509 certificate. The
only way you can reduce the level of security required by the login server
connection is by setting the

plugins:gsp:enforce secure_comms_to_sso_server Va iable to
false.

4. Thissetting enforces strict checking of reply messages from the server, to
make sure the server actually supports CSIv2.

5. The CSl authentication over transport policy must support
EstablishTrustInClient t0 enable the sending of usernamesand
passwords in CSIv2 service contexts.

6. TheCSl principa sponsor, which specifies an application’s own CS|
credentials, can be enabled as shown here (alternatively, you could specify
CSl credentials by programming; see “ Creating CSIv2 Credentials’ on
page 478).
In adeployed system, it is better to omit the password entry from the
principal_sponsor:csi:auth_method data Setting. When omitted, the
principal sponsor will prompt the user to enter a username and password as
the client application starts up. The domain must be set to match the value
of the policies:csi:auth_over_ transport:server_domain_name

variable on the server side.

Note: Alternatively, you can specify the domain as an empty string,
which would match any domain on the server side.

7. Theplugins:gsp:enable_gssup_sso variableis set to true to enable the
GSSUP single sign-on behavior.

103

CHAPTER 5| Single Sign-On for CORBA Applications

Target configuration Example 10 shows a typical configuration for atarget server that accepts
connections from clients that authenticate themselves using GSSUP.

Example 10: Target Configuration for Username/Password-Based SSO

Orbix Configuration File

corba_login_server_ test_with_tls

{
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "gsp"l;

event_log:filters = ["IT GSP=*", "IT CSI=*", "IT TLS=*",
"IT IIOP_TLS=*", "IT ATLI2 TLS=*"];

binding:client_binding list = ["GIOP+EGMIOP",

"OTS+POA _Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

plugins:gsp:sso_server certificate_constraints =
["C=US, ST=Massachusetts, O=ABigBank*,CN=0Orbix2000 IONA
Services*"];

server

policies:csi:auth_over transport:authentication service =
"com.iona.corba.security.csi.AuthenticationService";

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth _method id = "pkcsl2_file";
1 principal_sponsor:auth _method data =
["filename=W: \art\etc\tls\x509\certs\demos\bank_ server.pl2",
"password=bankserverpass"] ;

binding:server_binding list = ["CSI+GSP", "CSI", "GSP"];

initial_references:IS2Authorization:plugin =
"it_is2_authorization";

plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugIn

"
7

104

Username/Passwor d-Based SSO

Example 10: Target Configuration for Username/Password-Based SSO

bg

plugins:gsp:action_role mapping file =
"file://W:\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionro
lemapping with interfaces.xml";

plugins:gsp:authorization_realm = "AuthzRealm-;

policies:csi:auth_over transport:server domain_name =
"PCGROUP" ;

auth_csi

{

policies:iiop_tls:target_secure_invocation policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

policies:csi:auth_over transport:target_requires
["EstablishTrustInClient"];
policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];
17
iy

The preceding target configuration can be described as follows:

1

Asusual for an SSL/TLS server, the SSL/TLS principal sponsor is used to
specify the location of the server’s own X.509 certificate.
Theaction_role_mapping configuration variable specifies the location of
an action-role mapping that controls accessto the IDL interfaces
implemented by the server.

In this example, the server requires asecure SSL/TL'S connection, but does
not require the client to authenticate itself with an X.509 certificate.

It isessentia for the target server to require and support the
EstablishTrustInClient option for CS| authentication over transport.
This ensures that the server receives a username and a password from the
client in a CSIv2 service context.

105

CHAPTER 5| Single Sign-On for CORBA Applications

Related administration tasks For details of how to configure SSO token timeouts, see“ Configuring Single
Sign-On Properties’ on page 163.

106

Three Tier Example with Identity Assertion

Three Tier Examplewith Identity Assertion

Overview This section describes what happens when the two-tier
username/password-based SSO example is extended by athird tier, which uses
the CSI identity assertion mechanism.

This scenario has the following essential features:

® Client to second tier—the CSI authentication over transport mechanism
(GSSUP authentication) is enabled and the client is configured to use
single sign-on.

® Secondtier to third tier—the CSl identity assertion mechanism is enabled
between these tiers. SAML data (containing details of the client user’s
roles and realms) is propagated between these tiers.

Three-tier scenario with Figure 23 shows the outline of a single sign-on scenario where SAML role and
piggybacking realm datais piggybacked between the second and third tiers.

Figure 23: Sngle Sign-On Scenario with Piggybacking Roles and Realms

Pl

Received Effective
credentials credentials

a

©)
CS! auth layer: Lt—_l SAML

Received
credentials

®
CSl identity layer- +

Authenticate Retrieve user's
SSO token realms and roles

A

Log!n £ Orbix Security Service 1
Service

107

CHAPTER 5| Single Sign-On for CORBA Applications

Steps The operation invocations performed on behalf of the client shown in Figure 23
on page 107 can be described as follows:

Stage Description

1 | Whensingle sign-on is enabled, the client calls out to thelogin
service, passing in the client’s GSSUP credentials, u/p/d, in order
to obtain a single sign-on token, t.

2 | Whenthe client invokes an operation on the second-tier server, the
SSO token, t, is sent as the password in the GSSUP authentication
data. The GSSUP username has the reserved value _SSO_TOKEN_.

The client SSO token, t, is now accessible through the
IT CORBASEC: : ExtendedReceivedCredentials interface.

3 | When the SSO token isreceived by the middle-tier server, it calls
out to the Orbix security service to authenticate the client token
and retrieve the SAML authorization data containing the user’s
complete role and ream data.

4 | If the second tier now invokes an operation on the third tier, the
effective credentials for the invocation are constructed as follows:

®* Theclient usernameis used as the asserted identity (to be
propagated through the CSI identity assertion mechanism).

® Theclient SSO token, t, from the received credentiasis
inserted into an Orbix-proprietary service context.

5 | When the request message is sent to the third tier, the asserted
identity is sent through the CSI identity layer, and the single
sign-on token, t, is sent in an Orbix-proprietary service context,
accompanied by the SAML role and realm data.

In the third tier, no call-out to the Orbix Security Serviceis
required, because the SAML dataincludes all of the information
needed for an authorization check.

WARNING: It is essential that an adequate degree of trust is
established between the third-tier server and the second-tier server.
In this scenario, the third tier is completely dependent on the
second tier to perform authentication on its behalf.

108

Configuration notes

Three Tier Example with Identity Assertion

The most important policy settings for this three-tier scenario with SAML
piggybacking are briefly described here.

Client to Second Tier

The client is configured to support CSl authentication over transport and single
sign-on with the following configuration settings (the

sso_server certificate_constraints Setting would have to be customised
to match your login server’s X.509 certificate):

policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient];

plugins:gsp:enable gssup_sso = "true";

plugins:gsp:sso_server certificate_constraints =
["C=US, ST=Massachusetts, O=ABigBank*,CN=0rbix2000 IONA
Services*"];

The second tier is configured to support CSI authentication over transport from
incoming connections with the following settings:

policies:csi:auth_over transport:target_supports =
["EstablishTrustInClient] ;

policies:csi:auth_over transport:target_requires =
["EstablishTrustInClient];

Second Tier to Third Tier

The second tier is configured to support CSI identity assertion for outgoing
connections with the following configuration settings:

policies:csi:attribute service:client_ supports =
["IdentityAssertion"];

The third tier is configured to support CSl identity assertion from incoming
connections with the following settings:

policies:csi:attribute service:target_ supports =
["IdentityAssertion"];

109

CHAPTER 5| Single Sign-On for CORBA Applications

X.509 Certificate-Based SSO

Overview

Certificate-based authentication
without SSO

110

Normally, during certificate-based authentication, a client transmits its X.509
certificate during the SSL/TL S handshake. This certificate is then used for the
authentication step with the Orbix security service (see“ X.509 Certificate-Based
Authentication” on page 88).

In contrast to this, in the SSO case a client transmits an SSO token through the
CSl security layer (using CSI authentication over transport), having previously
obtained the SSO token by authenticating its own certificate with the login
server. The client’s certificate might a so be propagated directly to the target, in
addition to the SSO token, but this would not be the usual case.

Figure 24 gives an overview of ordinary certificate-based authentication without
SSO. In this case, the client’s X.509 certificate is passed directly to the target
server (during the SSL/TL S handshake). The target server then contacts the
Orbix security service to authenticate the certificate.

Figure 24: Overview of Certificate-Based Authentication without SSO

Target ‘
SSL/TLS layer-

A

Retrieve user's

authenticate (<X509Cert>)
realms and rol

Orbix Security Service

Certificate-based authentication

with SSO

Difference between
user name/passwor d-based SSO
and certificate-based SSO

X.509 Certificate-Based SSO

Figure 25 gives an overview of certificate-based authentication when SSO is
enabled.

Figure 25: Overview of Certificate-Based Authentication with SSO
username _SSO_TOKEN_

password = <token>
.

\
\

N
CSI auth /ayerﬂ Target
A
Authenticate Retrieve user's
S50 token realms and roles
v
Orbix

login ()

Login 5
\ Service Security

Service

Prior to contacting the target server for thefirst time, the client ORB invokesthe
login () operation on the login server. The login server retrievesthe client's
X.509 certificate from the SSL/TLS received credentials, authenticates the
certificate, and sends back an SSO token, <token> in return.

The client then sends a request to the target server, including the special
username, _sso_TOKEN_, and the password, <token>, in a CSIv2 service
context. The target server contacts the Orbix security service to authenticate the
username/password combination and to retrieve the user’ s authorization data
(realms and roles).

The key difference between username/password-based SSO (Figure 22 on

page 100) and certificate-based SSO (Figure 25) liesin the communication with
the login server. In the username/password-based case, the client sends GSSUP
data to be authenticated to the login service; whereas in the certificate-based
case, the client sends an X.509 certificate to be authenticated to thelogin service.

Thereisno difference in the nature of the communication between the client and
the target, however. In both cases, an SSO token is transmitted through the CSI
authentication over transport layer.

111

CHAPTER 5| Single Sign-On for CORBA Applications

Related configuration variables

Typical scenario

Client configuration

112

The following variables are relevant to certificate-based SSO:
plugins:gsp:enable_x509_sso
Enables certificate-based SSO when set to true.
plugins:gsp:sso_server certificate_constraints
A specidl certificate constraints policy that appliesonly to the SSL/TLS
connection between the client and the SSO login server. For details on the
syntax of certificate constraints, see“ Applying Constraintsto Certificates’
on page 384.

The most likely scenario where you might need certificate-based SSO is where
an existing server is configured to require username/password credentials, but
you want to connect to the server using clients that have only X.509 certificate
credentials. By enabling SSO on the client side, the clients acquire
username/password credentials which the target server can then use for the
purpose of authentication and authorization.

Example 11 shows atypical configuration for an SSO client that employs
certificate-based authentication.

Example 11: Client Configuration for Certificate-Based Authentication

Orbix Configuration File

corba_login_server_test_with tls

{
orb_plugins = ["local_log_stream", "iiop profile", "giop",
"iiop_tls", "gsp"];

event_log:filters = ["IT _GSP=*", "IT CSI=*", "IT TLS=*",
"IT IIOP_TLS=*", "IT ATLI2 TLS=*"];

binding:client_binding list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

plugins:gsp:sso_server_certificate_constraints =
["C=US, ST=Massachusetts, O=ABigBank*, CN=0Orbix2000 IONA
Services*"];

X.509 Certificate-Based SSO

Example 11: Client Configuration for Certificate-Based Authentication

sso_client_x509
{

policies:iiop_tls:client_secure_ invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

plugins:csi:allow_csi_reply without_service context =
"false";

principal_sponsor:use_principal_sponsor = "true";

principal_sponsor:auth method id = "pkcsl2_file";

principal_sponsor:auth _method data =
["filename=W:\art\etc\tls\x509\certs\demos\bob.pl2",
"password=bobpass"] ;

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

plugins:gsp:enable x509_sso = "true";

b
b g

113

CHAPTER 5| Single Sign-On for CORBA Applications

114

The preceding client configuration can be described as follows:

1

Theplugins:gsp:sso_server certificate_constraints variable
specifies certificate constraints that apply only to the X.509 certificate
from the login server. If the login server’s certificate fails to match these
congtraints, a CORBA : : NO_PERMISSION exception is thrown on the client
side.

In this example, the client requires a secure SSL/TL S connection and
requires the target server to authenticate itself with an X.509 certificate.
The client also supports the SSL/TLS EstablishTrustInClient option.

Note: Irrespective of the level of security required by the these
configuration settings, the SSO client always requires the login server
connection to be secure and authenticated by an X.509 certificate. The
only way you can reduce the level of security required by the login server
connection is by setting the
plugins:gsp:enforce_secure_comms_to_sso_server Variable to
false.

This setting enforces strict checking of reply messages from the server, to
make sure the server actually supports CSIv2.

The client must have its own X.509 certificate to authenticate itself to the
target. In this example, the SSL/TLS principa sponsor is used to specify
the location of a PKCS#12 file containing the client’s certificate.

The CSl authentication over transport policy must support
EstablishTrustInClient to enable the sending of usernames and
passwords in CSlv2 service contexts.

The plugins:gsp:enable _x509_sso variableis set to true to enable the
X.509 single sign-on behavior.

X.509 Certificate-Based SSO

Target configuration Example 12 shows the configuration for atarget server that requires GSSUP
username/password credential s, but can a so accept connections from clientsthat
use X.509 certificate-based SSO.

Example 12: Target Configuration for Certificate-Based Authentication

Orbix Configuration File

corba_login_server_ test with tls

{
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "gsp"l;

event_log:filters = ["IT GSP=*", "IT CSI=*", "IT TLS=*"
"IT ITOP_TLS=*", "IT ATLI2 TLS=*"];

binding:client_binding list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

plugins:gsp:sso_server certificate_constraints =
["C=US, ST=Massachusetts, O=ABigBank*,CN=0rbix2000 IONA
Services*"];

server

policies:csi:auth_over_ transport:authentication_service =
"com.iona.corba.security.csi.AuthenticationService";

1 principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth method _id = "pkcsl2_file";
principal_sponsor:auth method data =

["filename=W: \art\etc\tls\x509\certs\demos\bank_server.pl2",
"password=bankserverpass"] ;

binding:server binding list = ["CSI+GSP", "CSI", "GSP"];

initial_references:IS2Authorization:plugin =
"it_is2_authorization";

plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugIn

",
7

115

CHAPTER 5| Single Sign-On for CORBA Applications

Example 12: Target Configuration for Certificate-Based Authentication

i

plugins:gsp:action_role mapping file =
"file://W:\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionro
lemapping with interfaces.xml";

plugins:gsp:authorization_realm = "AuthzRealm-;

policies:csi:auth_over transport:server domain_name =
"PCGROUP" ;

require gssup_support_x509_with_sso

{

policies:iiop_tls:target_secure_invocation policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:target_secure_invocation policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

policies:csi:auth_over transport:target_requires =
["EstablishTrustInClient"];
policies:csi:auth_over transport:target_supports =
["EstablishTrustInClient"];
I8
b

The preceding target configuration can be described as follows:

1

116

Asusual for an SSL/TLS server, the SSL/TLS principal sponsor is used to
specify the location of the server’s own X.509 certificate.

Theaction_role mapping configuration variable specifiesthe location of
an action-role mapping that controls accessto the IDL interfaces
implemented by the server.

The server requires a secure SSL/TL S connection, but does not require the
client to authenticate itself with an X.509 certificate.

Because the target server requires the EstablishTrustInClient option
for CSl authentication over transport, clients must supply GSSUP
username/password credentials. This condition is also satisfied by clients
that use X.509 certificate-based SSO, because this results in the generation
of GSSUP username/password credentials.

X.509 Certificate-Based SSO

Related administration tasks For details of how to configure SSO token timeouts, see “ Configuring Single
Sign-On Properties’ on page 163.

117

CHAPTER 5| Single Sign-On for CORBA Applications

Enabling Re-Authentication at Each Tier

Overview

Advantages of enabling
re-authentication

Disabling SAML piggybacking

118

This section describes a three-tier SSO scenario where piggybacking of SAML
data (containing details of the client user’ sroles and realms) is disabled. This
forces an SSO token to be re-authenticated at each tier in amulti-tier system,
because the serversin each tier need to contact the Orbix security service to
obtain the SAML data.

Re-enabling authentication at each tier has the following potential advantages:

e If your distributed application crosses different security domains, it might
be necessary to re-authenticate credentials in anew domain.

® Sometimes, if the quantity of SAML datais very large, it might be more
efficient for serversto retrieve the SAML data directly from the Orbix
security service.

There are two configuration variables that control SAML piggybacking.
plugins:gsp:assert_authorization_info

If false, SAML dataisnot sent on outgoing connections. Default is true.
plugins:gsp:accept_asserted authorization_info

If false, SAML datais not read from incoming connections. Default is true.

Enabling Re-Authentication at Each Tier

Three-tier scenario without Figure 26 shows the outline of a single sign-on scenario where the propagation
piggybacking of SAML role and realm data is disabled.

Figure 26: Sngle Sgn-On Scenario without Piggybacking Roles and Realms

Received Effective Received
credentials credentials credentials
@ CSl identity layer-
Client /
CSI auth layer- ,_t—_l SAML
aln 7y

®

A

Log_ln J Orbix Security Service]
Service

Steps The operation invocations performed on behalf of the client shown in Figure 26
on page 119 can be described as follows:

Stage Description

1 | When single sign-on is enabled, the client calls out to the login
service, passing in the client’s GSSUP credentials, u/p/d, in order
to obtain asingle sign-on token, t.

2 | When the client invokes an operation on the second-tier server, the
SSO token, t, is sent as the password in the GSSUP
username/password credentials.

3 | The second tier re-authenticates the client’s SSO token, t, by
calling out to the Orbix Security Service. The return value contains
the SAML role and realm data for the token.

119

CHAPTER 5| Single Sign-On for CORBA Applications

Stage Description

4 | If the second tier now invokes an operation on the third tier, the

effective credentials for the invocation are constructed as follows:

®* Theclient usernameis used as the asserted identity (to be
propagated through the CSI identity assertion mechanism).

. The client SSO token, t, from the received credentialsis
inserted into an Orbix-proprietary service context.

5 | When therequest messageis sent to the third tier, only the asserted
identity and the single sign-on token, t, are included. Propagation
of the SAML authorization datais disabled.

6 | Thethird tier re-authenticates the client’s SSO token, t, by calling
out to the Orbix Security Service. The return value contains the
SAML role and realm data for the token.

Configuration notes The most important policy settings for this three-tier scenario without SAML
piggybacking are briefly described here.

Client to Second Tier

The client is configured to support CSI authentication over transport and single
sign-on without SAML piggybacking, with the following configuration settings
(the sso_server certificate constraints Setting would haveto be
customised to match your login server’s X.509 certificate):

policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient] ;

plugins:gsp:enable gssup_sso = "true";

plugins:gsp:sso_server certificate_constraints =
["C=US, ST=Massachusetts, O=ABigBank*, CN=0Orbix2000 IONA
Services*"];

plugins:gsp:assert_authorization info = "false";

The second tier is configured to support CSl authentication over transport from
incoming connections, but not to accept SAML data, with the following settings:

policies:csi:auth_over transport:target_supports =
["EstablishTrustInClient];

policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient];

plugins:gsp:accept_asserted_authorization info = "false";

120

Enabling Re-Authentication at Each Tier

Second Tier to Third Tier

The second tier is configured to support CSl identity assertion for outgoing
connections, but not to send SAML data, with the following configuration
settings:

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];
plugins:gsp:assert_authorization_info = "false";

The third tier is configured to support CS| identity assertion from incoming
connections, but not to accept SAML data, with the following settings:

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];
plugins:gsp:accept_asserted_authorization_info = "false";

121

CHAPTER 5| Single Sign-On for CORBA Applications

Optimising Retrieval of Realm Data

Overview

Enabling realm filtering

122

By default, when the GSP plug-in connectsto the security service to authenticate
auser’s security credentials, it retrieves al of the realm and role data for that
user. For example, if auser has security datafor reams, A, B, and C, the
authentication step would return realm and role data for each of thethreerealms,
A, B,and C.

In an enterprise system, the amount of realm data assocated with each user might
become very large. In such systems, it is desirable to optimize the authentication
step by returning only the realm data that is needed at a particular point in the
system, rather than retrieving all of the realm data at once. Orbix enables you to
restrict the amount of realm datareturned at the authentication step by enabling a
feature known as realmfiltering.

To enable realm filtering, set the following configuration variable to false:
plugins:gsp:retrieve_isf_auth principal_info_for_all_realms

By default, the GSP plug-in would retrieve a user’ s role and realm data for all
realms when contacting the security service. When realm filtering is enabled in
an Orbix server, however, the GSP plug-in checks to see whether the following
configuration variableis set:

plugins:gsp:authorization_realm

If the preceding variable is set to a specific realm, the GSP plug-in proceeds to
retrieve realm and role data for that realm only.

Optimising Retrieval of Realm Data

Same-realm scenario Figure 27 shows an example of realm filtering applied to athree-tier system,
where the intermediate server and the target server both belong to the same
realm, A. In this case, the realm filtering optimization works effectively, because
the target server can re-use the role and realm data (SAML-A data) obtained by
the intermediate server.

Figure 27: Intermediate and Target Belong to Same Realm

Realm A

@ Target Server

CSl identity layer- SAML-A

Client

Necemc————-——-—-—-

g g g ')

A 4

Log!n 1 Orbix Security Service ‘]
Service

Same-realm stages The same-realm scenario shown in Figure 27 can be described as follows:

Stage Description

1 | Theclient calls out to thelogin service, passing in the client’s
GSSUP credentials, u/p/d, in order to obtain asingle sign-on
token, t.

2 | When the client invokes an operation on the intermediate server,
the SSO token, t, isincluded with the request message (in the CSI
authentication layer).

123

CHAPTER 5| Single Sign-On for CORBA Applications

Stage Description

3 | Theintermediate server re-authenticates the client’s SSO token, t,
by calling out to the Orbix Security Service.

Because the intermediate server is configured to use ream
filtering, it requests SAML role and ream datafor realm A only.

4 | Theintermediate server invokes an operation on the target server.
The request message includes the client SSO token, t, and the
SAML datafor realm A, saMr.-a.

Because the target server also belongsto realm A, it can use the
SAML data received from the intermediate server to make an
access decision. It does not need to re-authenticate the token.

Same-realm configuration Example 13 shows an outline of the configuration required for the same-realm
scenario. The intermediate server is configured to use realm filtering by setting
the plugins:gsp:retrieve_isf auth_principal_info_for all_ realms
variableto false. Both the intermediate and the target are configured to belong
toreamA.

Example 13: Same-Realm Scenario Configuration

Orbix Configuration File
client {

I8

intermediate_server {
plugins:gsp:retrieve_isf_auth principal_info_for all_realms
= "false";
plugins:gsp:authorization_realm = "A";

bg

target_server {

plugins:gsp:authorization realm = "A";
}i

124

Optimising Retrieval of Realm Data

Different-realm scenario Figure 28 shows an example of realm filtering applied to athree-tier system,
where the intermediate server and the target server belong to different realms, A
and B. In this case, realm filtering does not provide an optimization and the
target server must be configured to re-authenticate any incoming tokens.

Figure 28: Intermediate and Target Belong to Different Realms

Realm A Realm B
ST T T T EEE T \| ST TEEEEEEEE T S \l
| Intermediate Server ! Target Server
: L © ;
1
i {cst identity layer— H
Client : 1 | 1
1 ! 1 |
@ i ! ! !
1
CSl auth layer ¢ Lt—_l SAML-A E ! H
i - | i
| ! 1 1
D T } U I ;
v
Log?n I Orbix Security Service]
Service
Different-realm stages The different-realm scenario shown in Figure 28 can be described as follows:
Stage Description

1 | Theclient calsout to thelogin service, passing in theclient’s
GSSUP credentials, u/p/d, in order to obtain a single sign-on
token, t.

2 | When the client invokes an operation on the intermediate server,
the SSO token, t, isincluded with the request message (in the CSI
authentication layer).

125

CHAPTER 5| Single Sign-On for CORBA Applications

Stage Description

3 | Theintermediate server re-authenticates the client’s SSO token, t,
by calling out to the Orbix Security Service.

Because the intermediate server is configured to use ream
filtering, it requests SAML role and ream datafor realm A only.

4 | Theintermediate server invokes an operation on the target server.
The request message includes the client SSO token, t, and the
SAML datafor realm A, saMr.-a.

The SAML datafor realm A is of no useto thetarget server, which
belongs to realm B. Therefore, the target server is configured to
reject the transmitted realm data (that is,
plugins:gsp:accept_asserted_authorization_info IS Set to
false).

5 | Thetarget server re-authenticates the client’s SSO token, t, to
obtain the SAML role and realm data for realm B.

Different-realm configuration Example 14 shows an outline of the configuration required for the
different-realm scenario. Both the intermediate server and the target server are
configured to use realm filtering by setting the
plugins:gsp:retrieve_isf_auth principal_info for_all_realms
variableto false. The intermediate and the target belong, however, to different
realms: while the intermediate belongsto realm A, the target belongsto realm B.
To force the target server to re-authenticate incoming tokens (and thus retrieve
the necessary SAML data for realm B), the target server configuration sets

plugins:gsp:accept_asserted_authorization_info tO false.
Example 14: Different-Realm Scenario Configuration

Orbix Configuration File
client {

hg
intermediate server ({
plugins:gsp:retrieve_isf_ auth principal_info_for_all_realms

= "false";
plugins:gsp:authorization_realm = "A";

126

Optimising Retrieval of Realm Data

Example 14: Different-Realm Scenario Configuration
hg
target_server ({

plugins:gsp:retrieve_isf_auth principal_info_for_all_realms

= "false";
plugins:gsp:authorization_realm = "B";
plugins:gsp:accept_asserted_authorization_info = "false";

hg

127

CHAPTER 5| Single Sign-On for CORBA Applications

SSO Sample Configurations

Overview This section provides SSO sampl e configurations that show how to configure the
client side and the server sidein avariety of different ways.

Client SSO configurations The following client configurations appear in Example 15:

® sso_client_x509—configuration for an SSO client that uses X.509
certificate-based SSO credentials to authenticate itself to the server.

i sso_client_gssup—configuration for an SSO client that provides
username and password (GSSUP)-based SSO credentials to authenticate
itself to the server.

. sso_client_gssup_x509—configuration for an SSO client that can
authenticate itself to a server using either username/password-based SSO
credentials or X.509 certificate-based SSO credentials, depending on the
requirements of the server.

Server SSO configurations The following server configurations appear in Example 15:

® auth _csi—configuration for a server that requires the client to provide
credentials over CSl. Three client scenarios are supported by this server
configuration, as follows:

+ Client with username/password credentials (SSO not enabled).

+ Client with username/password-based SSO credentials.

+ Client with X.509 certificate-based SSO credentials.

® auth csi_and x509—configuration for aserver that requires both X.509

certificate credentials (over SSL/TLS) and username/password credentials

(over CSIv2). The following client scenarios are supported by this server

configuration:

+ Client with both X.509 certificate credential s and username/password
credentials (SSO not enabled).

+ Client with X.509 certificate-based SSO credentials.

+ Client with both X.509 certificate credentials and
username/password-based SSO credentials.

128

SSO configuration examples

SSO Sample Configurations

+ Client with both X.509 certificate-based SSO credentials and
username/password-based SSO credentials (for example, the
sso_client_gssup_x509 configuration scope). In this case, the
client would store three different kinds of credentials: X.509
certificate credentials, X.509 certificate-based SSO credentia's, and
username/password-based SSO credentials. Only two of the stored
credentials would actually be used when communicating with the
server (X.509 certificate credentials over SSL/TLS, and one of the
SSO credentials over CSIv2).

Example 15 shows a series of sample configurations suitable for SSO clientsand
SSO servers, supporting either GSSUP authentication, or X.509 certificate
authentication, or both.

Example 15: SO Client and Server Configuration Examples

Orbix Configuration File
corba_login_server_ test with tls

principal_ sponsor:use_principal_ sponsor = "false";

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
" iiopftls ", "gsp" 1;

event_log:filters = ["IT GSP=*", "IT CSI=*", "IT TLS=*"
"IT ITOP_TLS=*", "IT ATLI2_TLS=*"];
binding:client_binding list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA Coloc",

"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

plugins:gsp:sso_server certificate constraints =
["C=US, ST=Massachusetts, O=ABigBank*,CN=0Orbix2000 IONA

Services*"];

sso_client_x509

{

129

CHAPTER 5| Single Sign-On for CORBA Applications

Example 15: SSO Client and Server Configuration Examples

policies:iiop_tls:client_secure_invocation policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

principal_sponsor:use_principal_sponsor = "true";

principal_ sponsor:auth _method id = "pkcsl2 file";

principal_sponsor:auth _method data =
["filename=W: \art\etc\tls\x509\certs\demos\bob.pl2",
"password=bobpass"] ;

plugins:csi:allow_csi_reply without_service context =
"false";

policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient"];

plugins:gsp:enable_x509_sso = "true";
Y

sso_client_gssup
{

policies:iiop_tls:client_secure_invocation_ policy:supports
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"] ;

plugins:csi:allow_csi_reply without_service_context =
"false";

policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient"];

principal_sponsor:csi:use _principal_sponsor = "true";

principal_sponsor:csi:auth_method_id = "GSSUPMech";

principal_sponsor:csi:auth_method_data =
["username=paulh", "password=password", "domain=PCGROUP"];

130

SSO Sample Configurations

Example 15: SSO Client and Server Configuration Examples

plugins:gsp:enable gssup_sso = "true";
Fi

sso_client_gssup_x509
{

policies:iiop_tls:client_secure_ invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"] ;

principal_sponsor:use_principal_sponsor = "true";

principal_sponsor:auth method id = "pkcsl2_file";

principal_ sponsor:auth _method data =
["filename=W:\art\etc\tls\x509\certs\demos\bob.pl2",
"password=bobpass"] ;

plugins:csi:allow_csi_reply without_service context =
"false";

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

principal_sponsor:csi:use_principal_sponsor = "true";

principal_sponsor:csi:auth_method_id = "GSSUPMech";

principal_sponsor:csi:auth method data =
["username=paulh", "password=password", "domain=PCGROUP"];

plugins:gsp:enable _gssup_sso = "true";
plugins:gsp:enable x509_sso = "true";
¥

server
{

policies:csi:auth_over_ transport:authentication_service =
"com.iona.corba.security.csi.AuthenticationService";

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth method _id = "pkcsl2_file";
principal_sponsor:auth method data =
["filename=W: \art\etc\tls\x509\certs\demos\bank_server.pl2",
"password=bankserverpass"] ;

131

CHAPTER 5| Single Sign-On for CORBA Applications

Example 15: SSO Client and Server Configuration Examples

binding:server_binding list = ["CSI+GSP", "CSI", "GSP"];

initial_references:IS2Authorization:plugin =
"it_is2_authorization";

plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugIn

"
7

plugins:gsp:action_role mapping file =
"file://W:\art\etc\tls\x509\..\..\..\..\art_svecs\etc\actionro
lemapping_with_interfaces.xml";

plugins:gsp:authorization realm = "AuthzRealm-;

policies:csi:auth_over_transport:server domain_name =
"PCGROUP" ;

auth_csi

{

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:target_secure_invocation policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

policies:csi:auth_over transport:target_requires =
["EstablishTrustInClient"];
policies:csi:auth_over transport:target_supports =
["EstablishTrustInClient"];
Iy

auth_csi_and %509
{

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

132

SSO Sample Configurations

Example 15: SSO Client and Server Configuration Examples

hg

policies:iiop_tls:target_secure_invocation policy:requires
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

policies:csi:auth_over_transport:target_requires

["EstablishTrustInClient"];

policies:csi:auth_over transport:target_supports

["EstablishTrustInClient"];

Fi

be

133

CHAPTER 5 | Single Sign-On for CORBA Applications

134

Part ||

Orbix Security Framework
Administration

Inthispart This part contains the following chapters:
Configuring the Orbix Security Service page 137
Managing Users, Roles and Domains page 167
Managing Access Control Lists page 185
Securing Orbix Services page 203

In this chapter

CHAPTER 6

Configuring the
Orbix Security
Service

Thischapter describeshowto configurethe propertiesof the Orbix
security service and, in particular, how to configure a variety of
adaptersthat can integrate the Orbix security service with
third-party enterprise security back-ends (for example, LDAP).

This chapter discusses the following topics:

Configuring the File Adapter page 138
Configuring the LDAP Adapter page 140
Clustering and Federation page 145
Additional Security Configuration page 162

137

CHAPTER 6 | Configuring the Orbix Security Service

Configuring the File Adapter

Overview

Filelocations

File adapter properties

138

1

The i SF file adapter enables you to store information about users, roles, and
realmsin aflat file, a security information file. The file adapter is easy to set up
and configure, but is appropriate for demonstration purposes only. This section
describes how to set up and configure the iSF file adapter.

WARNING: The file adapter is provided for demonstration purposes only.
Orbix does not support the use of the file adapter in a production environment.

The following files configure the i SF file adapter:

i is2.properties file—the default location of the iSF propertiesfileis as
follows:
ASPInstallDir /etc/domains/DomainName/is2 .properties
See “iS2 Properties File’ on page 515 for details of how to customize the
default i SF propertiesfile location.

® Security information file—thisfile'slocation is specified by the
com.iona.isp.adapter.file.param. filename property inthe

is2.properties file.

Example 16 shows the properties to set for afile adapter.
Example 16: Sample File Adapter Properties

com.iona.isp.adapters=file

A

##

Demo File Adapter Properties

##

R

com.iona.isp.adapter.file.class=com.iona.security.is2adapter.fil
e.FileAuthAdapter

com.iona.isp.adapter.file.param. filename=ASPInstallDir /etc/domain
s/DomainName/is2_user password role_file.txt

Configuring the File Adapter

Example 16: Sample File Adapter Properties

A
General Orbix Security Service Properties
B 5585 o

...

Generic properties not shown here ...

The necessary properties for afile adapter are described as follows:

1

Set com. iona.isp.adapters=£file toinstruct the Orbix security serviceto
load the file adapter.

The com.iona.isp.adapter.file.class property specifiesthe classthat
implements the i SF file adapter.

The com.iona.isp.adapter.file.param. filename property specifies
the location of the security information file, which contains information
about users and roles.

See “Managing a File Security Domain” on page 181 for details of how to
create or modify the security information file.

(Optionally) Y ou might also want to edit the general Orbix security service
properties.

See “Additional Security Configuration” on page 162 for details.

139

CHAPTER 6 | Configuring the Orbix Security Service

Configuring the LDAP Adapter

Overview The Orbix security platform integrates with the Lightweight Directory Access
Protocol (LDAP) enterprise security infrastructure by using an LDAP adapter.
The LDAP adapter is configured in an is2.properties file. This section
discusses the following topics:

Prerequisites

File location.

Minimal LDAP configuration.
Basic LDAP properties.
LDAP.param properties.
LDAP server replicas.

Logging on to an LDAP server.

Prerequisites Before configuring the LDAP adapter, you must have an LDAP security system
installed and running on your system. LDAP is not a standard part of Orbix, but
you can use the Orbix security service's LDAP adapter with any LDAPv.3
compatible system.

Filelocation The following file configures the LDAP adapter:

140

is2.properties file—the default location of the iSF propertiesfileis as
follows:

ASPInstalIDir /etc/domains/DomainName/is2 . properties

See “iS2 Properties File’ on page 515 for details of how to customize the
default i SF propertiesfile location.

Configuring the LDAP Adapter

Minimal LDAP configuration

configure an LDAP adapter.

Example 17 shows the minimum set of iSF properties that can be used to

Example 17: A Sample LDAP Adapter Configuration File

1 com.iona.isp.adapters=LDAP
B 8858 o

##

LDAP Adapter Properties

##

A
2 com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.lda

3 com.
com.

4 com.
com.
com.

com.

5 com.
com.

6 com.
com.

com.
com.

com.

7 com.

iona.
iona.

iona

iona.
iona.
rson

iona.

iona.
iona.

iona

iona.
mes

iona.
iona.
iona.

iona.

isp.
isp.

.isp.
isp.
.adapter.

isp

isp

isp.
isp.

.isp.
isp.

isp.
.adapter.
isp.

isp

isp.

p.LdapAdapter

adapter.
adapter.

adapter.
adapter.

.adapter.

adapter.
adapter.

adapter.
adapter.

adapter.

adapter.

adapter.

LDAP
LDAP

LDAP

LDAP

LDAP

LDAP

LDAP
LDAP

LDAP
LDAP

LDAP
LDAP
LDAP

LDAP

.param.
.param.

.param.

.param.

.param.

.param.

.param.
.param.

.param.
.param.

.param.
.param.

.param.

.param.

host.1=10.81.1.400
port.1=389

UserNameAttr=uid
UserBaseDN=dc=1iona, dc=com
UserObjectClass=organizationalPe

UserSearchScope=SUB

UserRoleDNAttr=nsroledn
RoleNameAttr=cn

GroupNameAttr=cn
GroupObjectClass=groupofuniquena

GroupSearchScope=SUB
GroupBaseDN=dc=iona, dc=com

MemberDNAt tr=unigqueMember

version=3

The necessary properties for an LDAP adapter are described as follows:

1

Set com. iona. isp.adapters=LDAP to instruct the Orbix Security Platform

to load the LDAP adapter.

The com. iona.isp.adapter.file.class property specifiesthe classthat
implements the LDAP adapter.

141

CHAPTER 6 | Configuring the Orbix Security Service

3. For each LDAP server replica, you must specify the host and port where

the LDAP server can be contacted. In this example, the host and port
parameters for the primary LDAP server, host .1 and port.1, are

specified.
4. These properties specify how the LDAP adapter finds a user name within

the LDAP directory schema. The properties are interpreted as follows:

UserNameAttr

UserBaseDN

UserObjectClass

UserSearchScope

The attribute type whose corresponding value
uniquely identifies the user.

The base DN of the tree in the LDAP directory
that stores user object class instances.

The attribute type for the object class that stores
USErs.

The user search scope specifies the search depth
relative to the user base DN inthe LDAP
directory tree. Possible values are: BASE, ONE, Or
SUB.

See “iS2 Properties File” on page 515 for more details.

5. Thefollowing properties specify how the adapter extracts a user’srole
from the LDAP directory schema:

UserRoleDNAttr

RoleNameAttr

6. These properties specify how the LDAP adapter finds agroup name within

The attribute type that stores a user’srole DN.

The attribute type that the LDAP server usesto
store the role name.

the LDAP directory schema. The properties are interpreted as follows:

GroupNameAttr

GroupBaseDN

GroupObjectClass

GroupSearchScope

142

The attribute type whose corresponding attribute
value gives the name of the user group.

The base DN of the tree in the LDAP directory
that stores user groups.

The object class that appliesto user group
entriesin the LDAP directory structure.

The group search scope specifies the search
depth relative to the group base DN inthe LDAP
directory tree. Possible values are: BASE, ONE, Or
SUB.

Basic LDAP properties

LDAP.param properties

Configuring the LDAP Adapter

MemberDNAttr The attribute type that is used to retrieve LDAP
group members.

See “iS2 Properties File” on page 515 for more details.

7. The LDAP version number can be either 2 or 3, corresponding to
LDAPV.2 or LDAP v.3 respectively.

The following properties must always be set as part of the LDAP adapter

configuration:

com.iona.isp.adapters=LDAP

com. iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.ldap
.LdapAdapter

In addition to these basic properties, you must also set a number of LDAP

parameters, which are prefixed by com. iona. isp.adapter.LDAP.param.

Table 3 shows all of the LDAP adapter properties from the
com.iona.isp.adapter.LDAP.param SCOpe. Required properties are shown in
bold:

Table3: LDAP Propertiesin the com.iona.isp.adapter.LDAP.param Scope

LDAP Server Properties LDAP User/Role Configuration
Properties

host.<Index> UserNameAttr
port.<|ndex> UserBaseDN
SSLEnabled.<|ndex> UserObjectClass
SSLCACertDir.<|ndex> UserSearchScope
SSLClientCertFile.<Index> UserSearchFilter
SSLClientCertPassword.<|ndex> UserRoleDNAttr
PrincipalUserDN.<|ndex> RoleNameAttr

PrincipalUserPassword.<|ndex> UserCertAttrName

LDAP Group/Member Other LDAP Properties

Configuration Properties
GroupNameAttr MaxConnectionPoolSize
GroupObjectClass version
GroupSearchScope UseGroupAsRole
GroupBaseDN RetrieveAuthInfo
MemberDNAttr CacheSize
MemberFilter CacheTimeToLive

143

CHAPTER 6 | Configuring the Orbix Security Service

LDAP server replicas

Logging on to an LDAP server

Secure connection to an LDAP
server

iSF propertiesreference

144

The LDAP adapter is capable of failing over to one or more backup replicas of
the LDAP server. Hence, properties such ashost .<Index> and port . <Index>
include areplicaindex as part of the parameter name.

For example, host .1 and port . 1 refer to the host and port of the primary LDAP
server, while host .2 and port .2 would refer to the host and port of an LDAP
backup server.

The following properties can be used to configure login parameters for the
<Index> LDAP server replica:

PrincipalUserDN.<|ndex>

PrincipalUserPassword.<|ndex>

The properties need only be set if the LDAP server is configured to require
username/password authentication.

The following properties can be used to configure SSL/TLS security for the
connection between the Orbix security service and the <Index> LDAP server
replica

SSLEnabled.<|ndex>

SSLCACertDir.<Index>

SSLClientCertFile.<Index>

SSIClientCertPassword.<|ndex>

The properties need only be set if the LDAP server requires SSL/TLS mutual
authentication.

For more details about the Orbix security service properties, see “iS2
Configuration” on page 513.

Clustering and Federation

Clustering and Federation

Overview

In thissection

Clustering and federation are two distinct, but related, features of the Orbix

security service. Briefly, these features can be described as follows:

® Clustering—involves running several instances of the Orbix security
serviceto provide what is effectively a single service. By running multiple
security serviceinstances as acluster, Orbix enables you to support fault
tolerance and replication features. Typically, in this case all of the security
servicesin acluster are integrated with a single authentication database
back-end.

®* Federation—enables SSO tokens to be recognized across multiple security
domains. Each security domain is served by a distinct security service
instance and each security service is integrated with a different database
back-end.

This section contains the following subsections:

Federating the Orbix Security Service page 146
Failover and Replication page 151
Client Load Balancing page 160

145

CHAPTER 6 | Configuring the Orbix Security Service

Federating the Orbix Security Service

Overview

Federation isnot clustering

Example federation scenario

146

Federation is meant to be used in deployment scenarios where thereis more than
one instance of an Orbix security service. By configuring the Orbix security
service instances as a federation, the security services can talk to each other and
access each other’ s session caches. Federation frequently becomes necessary
when single sign-on (SSO) is used, because an SSO token can be verified only
by the security service instance that originally generated it.

Federation is not the same thing as clustering. In afederated system, user datais
not replicated across different security service instances and there are no fault
tolerance features provided.

Consider a simple federation scenario consisting of two security domains, each

with their own Orbix security service instances, as follows:

. First LDAP security domain—consists of an Orbix security service (with
is2.current.server.id property equal to 1) configured to store user data
in an LDAP database. The domain includes any Orbix applicationsthat use
this Orbix security service (ID=1) to verify credentials.

In thisdomain, alogin server is deployed which enables clients to use
single sign-on.

® Second LDAP security domain—consists of an Orbix security service
(with is2.current.server.id property egual to 2) configured to store
user datain an LDAP database. The domain includes any Orbix
applications that use this Orbix security service (ID=2) to verify
credentials.

The two Orbix security service instances are federated, using the configuration
described later in this section. With federation enabled, it is possible for single
sign-on clients to make invocations that cross security domain boundaries.

Clustering and Federation

Federation scenario

used in the context of an Orbix system.

Figure 29: AniSF Federation Scenario

First LDAP Security Domain

®©

Figure 29 shows atypical scenario that illustrates how iSF federation might be

Second LDAP Security Domain

Client

Authenticate
SSO token

A 4

Target A

Login
Service

(Orbix Security Service

ID=1

l

Target B

[t]

®

Authenticate
SSO token

A 4

(—0

|~

©)

Yo

User data store

rbix Security Service
ID=2

User data store

147

CHAPTER 6 | Configuring the Orbix Security Service

Federation scenario steps The federation scenario in Figure 29 can be described as follows:

Stage Description

1 | With single sign-on (SSO) enabled, the client calls out to thelogin
service, passing in the client’s GSSUP credentials, u/p/d, in order
to obtain an SSO token, t.

2 | Thelogin service delegates authentication to the Orbix security
server (ID=1), which retrieves the user’ s account data from the
LDAP backend.

3 | Theclient invokes an operation on the Target A, belonging to the
first LDAP security domain. The SSO token, t, isincluded in the
message.

4 | Target A passes the SSO token to the Orbix security server (ID=1)
to be authenticated. If authentication is successful, the operation is
allowed to proceed.

5 | Subsequently, the client invokes an operation on the Target B,
belonging to the second L DAP security domain. The SSO token, t,
obtained in step 1 isincluded in the message.

6 | Target B passesthe SSO token to the second Orbix security server
(ID=2) to be authenticated.

7 | The second Orbix security server examines the SSO token.
Because the SSO token is tagged with the first Orbix security
server’sID (ID=1), verification of the token is delegated to the first
Orbix security server. The second Orbix security server opens an
ITOP/TLS connection to the first Orbix security serviceto verify
the token.

148

Configuring theis2.properties
files

Clustering and Federation

Each instance of the Orbix security service should have its own

is2.properties file. Within each is2.properties file, you should set the

following:

. is2.current.server.id—aunique ID (alphanumeric string) for this
Orbix security service instance,

b is2.cluster.properties. filename—ashared cluster file.

. is2.sso.remote. token.cached—a boolean property enables caching of
remote token credentialsin afederated system.

With caching enabled, the call from one federated security serviceto
another (step 7 of Figure 29 on page 147) is only necessary to authenticate
atoken for the first time. For subsequent authentications, the security
service (with ID=2) can obtain the token’ s security datafrom its own token
cache.

For example, thefirst Orbix security server instance from Figure 29 on page 147
could be configured as follows:

1S2 Properties File, for Server ID=1

A

iSF federation related properties

HFHFFFEE
is2.current.server.id=1
is2.cluster.properties.filename=C:/is2_config/cluster.properties
i1s2.sso.remote. token.cached=true

And the second Orbix security server instance from Figure 29 on page 147 could
be configured as follows:

1S2 Properties File, for Server ID=2

B 8585 o

1SF federation related properties

B 8
is2.current.server.id=2
is2.cluster.properties.filename=C:/is2_config/cluster.properties
is2.sso.remote. token.cached=true

149

CHAPTER 6 | Configuring the Orbix Security Service

Configuringthecluster properties
file

All the Orbix security server instances within afederation should share a cluster
propertiesfile. For example, the following extract from the
cluster.properties file shows how to configure the pair of embedded Orbix
security servers shown in Figure 29 on page 147.

Advertise the locations of the security services in the cluster.
com. iona.security.common.securityInstanceURL.1l=corbaloc:it_iiops:1.2@security 1dapl:5001/IT Secu

rityService

com. iona.security.common. securityInstanceURL.2=corbaloc:it_iiops:1.2@security_ldap2:5002/IT Secu

rityService

Sample cluster propertiesfile

150

Note: If your cluster additionally supports failover and replication, you will
also See some com. iona. security . common. replicaURL. * entriesin thisfile.
See “Failover and Replication” on page 151 for details.

This assumesthat the first security service (ID=1) runson host security_ldapl
and IP port 5001; the second security service (ID=2) runs on host
security_ldap2 and IP port 5002. To discover the appropriate host and port
settings for the security services, check the plugins:security:iiop_tls
settings in the relevant configuration scope in the relevant Orbix configuration
file for each federated security service.

The securityInstanceURL.Server|D variable advertises the location of a
security service in the cluster. Normally, the most convenient way to set these
values isto use the corbaloc URL format.

If you have generated a secure configuration domain, DomainName, on a host,
HostName, you can then find a sample cluster.properties filein the
following directory:

OrbixInstallDir /etc/domains/DomainName/ security_HostName/

Clustering and Federation

Failover and Replication

Overview To support high availability of the Orbix security service, Orbix implementsthe
following features:

i Failover—the security serviceis contacted using an |OR that contains the
address of every security servicein acluster. Hence, if one of the services
in the cluster crashes, or otherwise becomes unavailable, an application
can automatically try one of the alternative addresses listed in the IOR.

i Replication—the data cache associated with single sign-on (SSO) sessions
can be replicated to other security servicesin the cluster. This ensures that
SSO session datais not lost if one member of the cluster should become
unavailable.

This subsection describes how to configure failover and replication by hand.

151

CHAPTER 6 | Configuring the Orbix Security Service

Failover scenario Example 30 shows a scenario for a highly available Orbix security service that
consists of a cluster of three security services, each with an embedded login
service. The security and login services run on separate hosts, security01,
security02, and security03 respectively, and al of the servicesrely on the
same third-party LDAP database to store their user data.

Figure 30: Failover Scenario for a Cluster of Three Security Services

Initial Reference for Security Service

TOR: [security01:5001] [security02:5002] [security03:5003] ‘

Initial Reference for Login Service

TOR: [security01:5001] [security02:5002] [security03:5003] ‘

Client

Target A

Authenticate
S50 token

®

Security Service
Cluster

security01 Host

Logvm Security Service
Service
ID=1

security03 Host

Log!n Security Service
Service
D=3

security02 Host

Log!n Security Service
Service
D=2

In this scenario, it is assumed that both the client and the target application are
configured to perform random load balancing over the security servicesin the
cluster (see “Client Load Balancing” on page 160 for details). Each of the
security servicesin the cluster are configured for failover and replication.

152

Failover scenario steps

Configuring theis2.propertiesfile

Clustering and Federation

Theinteraction of the client and target with the security service cluster shownin
Example 30 on page 152 can be described as follows:

Stage Description

1 | Assuming the client is configured to use single sign-on (SSO), it
will automatically contact the login service (which is part of the
security service) to obtain an SSO token.

Because the client is configured to perform random load balancing,
it chooses one of the addresses from the 1T_r.ogin IOR at random
and opens a connection to that login service.

2 | Theclient invokes an operation on the target, sending the SSO
token obtained in the previous step with the request.

3 | Thetarget server checksthe SSO token received from the client by
sending an invocation to the security service cluster. If the target
server already has an existing connection with a servicein the
cluster, it re-uses that connection. Otherwise, the target randomly
picks an address from the list of addressesin the

IT SecurityService |IOR.

Each instance of the Orbix security service should have its own
is2.properties file. Within each is2.properties file, you should set the
following:

. is2.current.server.id—aunique ID (alphanumeric string) for this
Orbix security service instance,

i is2.cluster.properties. filename—a shared cluster file.

b is2.replication.required—must be set to true.

o is2.replica.selector.classname—YOU mMust set this variable as shown
in the example.

153

CHAPTER 6 | Configuring the Orbix Security Service

For example, the first Orbix security server instance from Figure 30 on page 152
could be configured as follows:

1S2 Properties File, for Serwver ID=1

A

1SF federation related properties

A R

is2.current.server.id=1

is2.cluster.properties.filename=C:/is2_config/cluster.properties

is2.replication.required=true

is2.replication.interval=20

is2.replica.selector.classname=com.iona.security.replicate.Stati
cReplicaSelector

The second and third Orbix security services from Figure 30 on page 152 should
be configured similarly, except that the is2.current.server.id property
should be set to 2 and 3 respectively.

Configuringthecluster properties For the three-service cluster shown in Figure 30 on page 152, you could
file configure the cluster.properties file asfollows:

Advertise the locations of the security services in the cluster.

com. iona.security.common.securityInstanceURL.l=corbaloc:it_iiops:1.2@security01:5001/IT Security
Service

com. iona.security.common.securityInstanceURL.2=corbaloc:it_iiops:1.2@security02:5002/IT Security
Service

com. iona.security.common.securityInstanceURL.3=corbaloc:it_iiops:1.2@security03:5003/IT Security
Service

Configure replication between security services.

com. iona.security.common.replicaURL.1l=corbaloc:it_iiops:1.2@security02:5002/IT SecurityService,c
orbaloc:it_iiops:1.2@security03:5003/IT SecurityService

com. iona.security.common.replicaURL.2=corbaloc:it_iiops:1.2@security03:5003/IT SecurityService,c
orbaloc:it_iiops:1.2@security01:5001/IT SecurityService

com. iona.security.common.replicalURL.3=corbaloc:it_iiops:1.2@security01:5001/IT SecurityService,c
orbaloc:it_iiops:1.2@security02:5002/IT SecurityService

There are two groups of settingsin thisfile:

® securityInstanceURL.ServerlD—advertisesthe location of asecurity
servicein the cluster. Normally, the most convenient way to set these
valuesisto use the corbaloc URL format.

154

Orbix configuration for thefirst
Security service

Clustering and Federation

i replicaURL.ServerlD—alist of URLs for the other security servicesto
which this service replicatesits data.
For example, the replicaurL. 1 setting lists URL s for the security service
with ID=2 and the security service with ID=3. Hence, thefirst servicein
the cluster is configured to replicate its data to the second and third
services. Normally, each security service should replicate to all of the other
servicesin the cluster.

Example 18 shows the details of the Orbix configuration for the first Orbix
security service in the cluster. To configure this security service to support
failover, you must ensure that the security service’ sSIOR contains alist addresses
for all of the servicesin the cluster.

Example 18: Orbix Security Service Configuration for Failover

Orbix Configuration File

initial references:IT SecurityService:reference =
"TOR:010000002400000049444c3a696f6e612e636£6d42£49545£53656375
726974792£5365727665723a312e300001000000000000009200000001010
2000800000066626£6c74616e0000000000220000003a3e02333109536563
7572697479001249545£53656375726974795365727669636500000400000
0140000000800000001007e005e0078c£000000000800000001000000415£
5449010000001c00000001000000010001000100000001000105090101000
1000000000101000600000006000000010000000€00" ;

initial references:IT Login:reference =
"IOR:010000002300000049444c3a696£6e612e636£6d2£49545£53656375
726974792£f4c6£67696e3a312e30000001000000000000008600000001010
2000800000066626£6c74616e0000000000180000003a3e02333109536563
7572697479000849545£4c6£67696e040000001400000008000000010070
01e0078c£000000000800000001000000415£5449010000001c0000000100
0000010001000100000001000105090101000100000000010100060000000
6000000010000000€00" ;

iona_services {

principal_ sponsor:use_principal_ sponsor = "true";

principal_sponsor:auth _method_id = "pkcsl2_file";
principal_ sponsor:auth method data = ["filename=PKCSI2File",

"password_file=CertPasswordFile"];
policies:client_secure invocation policy:requires =

["Confidentiality", "EstablishTrustInTarget",
"DetectMisordering", "DetectReplay", "Integrity"];

155

CHAPTER 6 | Configuring the Orbix Security Service

Example 18: Orbix Security Service Configuration for Failover

policies:client_secure_ invocation policy:supports =
["Confidentiality", "EstablishTrustInClient",
"EstablishTrustInTarget", "DetectMisordering",
"DetectReplay", "Integrity"];

security {

Hosthame {
3 plugins:security cluster:iiop tls:addr list =
["+security01:5001", "+security02:5002", "+security03:5003"];
4 plugins:security:iiop_tls:host = "5001";
plugins:security:iiop_tls:port = "security01l";

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

policies:iiop_tls:target_secure_invocation policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

The preceding Orbix configuration can be explained as follows:

1. TheIT securityserviceinitial referenceisread by Orbix applicationsto
locate the cluster of Orbix security services. Embedded inthisIOR isalist
of addresses for all of the security servicesin the cluster.

ThisIOR is generated by the Orbix security servicewhenitisrunin
prepare mode.

Note: You can parse the contents of the stringified |OR using the
iordump tool.

156

Orbix configuration for other
servicesin the cluster

Clustering and Federation

2. The Orbix security service picks up most of its SSL/TLS security settings
from the iona_services scope. In particular, the default configuration of
the security service uses the X.509 certificate specified by the
principal_sponsor Settingsin this scope.

3. Theplugins:security cluster:iiop_tls:addr_list variableliststhe
addresses for al of the security servicesin the cluster. Each address in the
list is preceded by a + sign, which indicates that the service embeds the
address in its generated |ORs.

Note: Theplugins:security cluster:iiop_tls:addr_list Setting
also configures the embedded login service.

4, Theplugins:security:iiop_tls:host and
plugins:security:iiop_tls:port Settings specify the addresswherethe
security service listens for incoming [1OP/TL S request messages.

The configuration for other servicesin the cluster is similar, except that the
plugins:security:iiop tls:host and plugins:security:iiop_tls:port
variables should be changed to the appropriate host and port for each of the
replicas.

157

CHAPTER 6 | Configuring the Orbix Security Service

Replication

158

Example 31 on page 158 shows how replication worksin acluster of three Orbix
security services. If replication is enabled (that is, is2.replication.required
isset to true inthe is2.properties fil€), asecurity service pushesits data
cache to the other servicesin the cluster every 30 seconds (default replication
interval).

Figure 31: Replication of Data Cachesin a Security Service Cluster

security01 Host

Security Service
Cluster

Log!n Security Service ’
Service
ID=1
security02 Host security03 Host
Login . . Login . .
q Security Service A Security Service
Service Service
ID=2 ID=3

Security service replication has the following characteristics:

The security service pushes the following data to the other services:
+ SSO tokensthat have been added since the last replication.
+ Realm and role data for each of the new SSO tokens.

Note, however, that the security service does not replicate username and
password data. Therefore, replication is only relevant to applications that

use the SSO feature.

M aodifying the replication interval

Clustering and Federation

Y ou can modify the replication interval by setting the
is2.replication.interval property inthe is.properties filefor the
relevant service. If thisvariable is not set, the default replication interval is 30
seconds.

For example, to configure the security service with ID=1 to replicate data once
every 10 seconds, its is2 . properties file would be configured as follows:

1S2 Properties File, for Server ID=1

A

iSF federation related properties

B 8585 o o

is2.current.server.id=1

is2.cluster.properties.filename=C:/is2_config/cluster.properties

is2.replication.required=true

is2.replication.interval=10

is2.replica.selector.classname=com.iona.security.replicate.Stati
cReplicaSelector

159

CHAPTER 6 | Configuring the Orbix Security Service

Client Load Balancing

Overview

Configuration for load balancing

160

When you use a clustered security service, it isimportant to configure all of the
other applicationsin the system (clients and servers) to perform client load
balancing (in this context, client means aclient of the Orbix security service and
thusincludes ordinary Orbix serversaswell). This ensuresthat the client load is
evenly spread over al of the security servicesin the cluster.

Client load balancing is enabled by default.

Example 19 shows an outline of the configuration for a client of a security
service cluster. Such clients must be configured to use random load balancing to
ensure that the load is spread evenly over the serversin the cluster. The settings
highlighted in bold should be added to the application’s configuration scope.

Example 19: Configuration for Client of a Security Service Cluster

Orbix Configuration File

igyédfbalancedfapp {
1.>i1:1.gins:gsp:use_client_load_balancing = "true";

policies:iiop_tls:load balancing mechanism = "random";
bg

Clustering and Federation

Client load balancing mechanism The client load balancing mechanism is selected by setting the
policies:iiop_tls:load_balancing mechanism variable. Two mechanisms
are supported, as follows:
® random—choose one of the addresses embedded in the IOR at random (this

isthe default).

Note: Thisisthe only mechanism suitable for use in adeployed system.

i sequential—choose the first address embedded in the IOR, moving on to
the next addressin the list only if the previous address could not be
reached.

In general, this mechanism is not recommended for deployed systems,
because it usually resultsin all of the client applications connecting to the
first cluster member.

161

CHAPTER 6 | Configuring the Orbix Security Service

Additional Security Configuration

Overview This section describes how to configure optional features of the Orbix security
service, such as single sign-on and the authorization manager. These features
can be combined with any i SF adapter type.

In this section This section contains the following subsections:
Configuring Single Sign-On Properties page 163
Configuring the Log4J Logging page 165

162

Additional Security Configuration

Configuring Single Sign-On Properties

Overview

SSO tokens

SSO properties

A OWN PR

The Orbix Security Framework provides an optional single sign-on (SSO)

feature. If you want to use SSO with your applications, you must configure the

Orbix security service as described in this section. SSO offers the following

advantages:

® User credentials can easily be propagated between applicationsin the form
of an SSO token.

. Performance is optimized, because the authentication step only needs to be
performed once within a distributed system.

i Because the user’ s session is tracked centrally by the Orbix security
service, it is possible to impose timeouts on the user sessions and these
timeouts are effective throughout the distributed system.

The login service generates an SSO token in response to an authentication
operation. The SSO token is a compact key that the Orbix security service uses
to access a user’ s session details, which are stored in a cache.

Example 20 shows the i SF properties needed for SSO:
Example 20: Sngle Sgn-On Properties

1iSF Properties File

A
Single Sign On Session Info

B 8885 o
is2.sso.enabled=yes
is2.sso.session.timeout=6000
is2.sso.session.idle.timeout=300
is2.sso.cache.size=10000

The SSO properties are described as follows:
1. Setting this property to yes enables single sign-on.

2. The SSO session timeout sets the lifespan of SSO tokens, in units of
seconds. Once the specified time interval elapses, the token expires.

163

CHAPTER 6 | Configuring the Orbix Security Service

3. The SSO session idle timeout sets the maximum length of time for which
an SSO session can remain idle, in units of seconds. If the Orbix security
service registers no activity against a particular session for this amount of
time, the session and its token expire.

4. Thesize of the SSO cache, in units of number of sessions.

Related administration tasks For details of how to configure CORBA applications to use SSO, see “Single
Sign-On for CORBA Applications’ on page 95.

164

Additional Security Configuration

Configuring the Log4J L ogging

Overview

log4j documentation

Enabling log4j logging

In the system_propertieslist

Inthe SECURITY_CLASSPATH

log4j is athird-party toolkit from the Jakarta project,
http://jakarta.apache.org/logdj, that provides aflexible and efficient system for
capturing logging messages from an application. Because the Orbix security
service' slogging is based on log4j, it is possible to configure the output of Orbix
security service logging using a standard log4j propertiesfile.

For complete log4j documentation, see the following Web page:
http://jakarta.apache.org/l og4j/docs/documentation.html

To enable log4j logging, you can specify the location of the log4j propertiesfile
in either of the following ways:

° In the system_propertieslist.
®* Inthe SECURITY_CLASSPATH.

Y ou can specify the location of the log4j propertiesfile by setting the
com.iona.common. log4j .Log4JUtils. filename property in the
plugins:java_server:system_properties list in the security service
configuration. For example, to usethe /is2_config/log4j.properties file,
modify the security service configuration by extending its system properties list
asfollows:

Orbix Configuration File

In the security service configuration scope:

plugins:java_server:system properties = [...,
"com.iona.common.log4j.Log4JUtils. filename=/is2_config/log4j.
properties"];

Y ou can specify the location of the log4j properties file by adding it to the
SECURITY_CLASSPATH variable in the Orbix configuration file (the separator
between itemsin the classpath is ; on Windows platformsand : on UNIX
platforms).

165

http://jakarta.apache.org/log4j/docs/documentation.html
http://jakarta.apache.org/log4j

CHAPTER 6 | Configuring the Orbix Security Service

Configuring thelog4j properties The following example shows how to configure the log4j properties to perform
file basic logging. In this example, the lowest level of logging is switched on
(pEBUG) and the output is sent to the console screen.

log4j Properties File
log4j .rootCategory=DEBUG, Al

Al is set to be a ConsoleAppender.
log4j .appender .Al=org.apache.log4j .ConsoleAppender

Al uses PatternLayout.

log4dj.appender.Al.layout=org.apache.logdj.PatternLayout

log4j.appender.Al.layout.ConversionPattern=%-4r [%t] %-5p %C %x
- m3¥n

166

CHAPTER 7

Managing Users,
Roles and Domains

The Orbix security service provides a variety of adapters that
enable you to integrate the Orbix Security Framework with
third-party enterprisesecurity products. Thisallowsyouto manage
users and roles using a third-party enterprise security product.

In this chapter This chapter discusses the following topics:
Introduction to Domains and Realms page 168
Managing a File Security Domain page 181
Managing an LDAP Security Domain page 184

167

CHAPTER 7 | Managing Users, Roles and Domains

| ntroduction to Domains and Realms

Overview This section introduces the concepts of an i SF security domain and an iSF
authorization realm, which are fundamental to the administration of the Orbix
Security Framework. Within an i SF security domain, you can create user
accounts and within an i SF authorization realm you can assign roles to users.

In this section This section contains the following subsections:
iSF Security Domains page 169
iSF Authorization Realms page 171
Example Domain and Realms page 175
Domain and Realm Terminology page 179

168

Introduction to Domains and Realms

ISF Security Domains

Overview This subsection introduces the concept of an i SF security domain.

iSF security domain AniSF security domain is a particular security system, or namespace within a
security system, designated to authenticate a user.

Here are some specific examples of i SF security domains:

. L DAP security domain—authentication provided by an LDAP security
backend, accessed through the Orbix security service.

Domain architecture Figure 32 shows the architecture of an iSF security domain. The i SF security
domain isidentified with an enterprise security service that plugs into the Orbix
security service through an i SF adapter. User data needed for authentication,
such as username and password, are stored within the enterprise security service.
The Orbix security service provides a central access point to enable
authentication within the i SF security domain.

Web CORBA CORBA on
Services _ Server 0S/390

authenticate authenticate authenticate

! 1
I : |
! I
| I

v % J

Orbix Security Service

iSF Security Domain

Y

(Enterprise Security Service
(]
i

Authentication data

Figure 32: Architecture of an iSF Security Domain

169

CHAPTER 7 | Managing Users, Roles and Domains

Creating an iSF security domain

Creating a user account

170

Effectively, you create an i SF security domain by configuring the Orbix security
serviceto link to an enterprise security service through an i SF adapter (such as
an LDAP adapter). The enterprise security service is the implementation of the
i SF security domain.

Because user account datais stored in athird-party enterprise security service,
you use the standard tools from the third-party enterprise security product to
create a user account.

For asimple example, see “Managing a File Security Domain” on page 181.

Introduction to Domains and Realms

ISF Authorization Realms

Overview

iSF authorization realm

Role-based access control

This subsection introduces the concept of an i SF authorization realm and
role-based access control, explaining how users, roles, realms, and servers are
interrelated.

AniSF authorization realmis acollection of secured resources that share a
common interpretation of role names. An authenticated user can have different
rolesin different realms. When using aresource in realm g, only the user's roles
in realm r are applied to authorization decisions.

The Orbix security framework supports a role-based access control (RBAC)
authorization scheme. Under RBAC, authorization is atwo step process, as
follows:

1

User-to-role mapping—every user is associated with a set of rolesin each
realm (for example, guest, administrator, and o on, in arealm,
Engineering). A user can belong to many different realms, having a
different set of rolesin each realm.

The user-to-role assignments are managed centrally by the Orbix security
service, which returns the set of realms and roles assigned to a user when
required.

Role-to-permission mapping (or action-role mapping)—in the RBAC
model, permissions are granted to roles, rather than directly to users. The
role-to-permission mapping is performed locally by a server, using data
stored in local access control list (ACL) files. For example, CORBA
serversin theiSF use an XML action-role mapping file to control accessto
IDL interfaces, operation, and attributes.

171

CHAPTER 7 | Managing Users, Roles and Domains

Serversand realms From a server’s perspective, an i SF authorization realm isaway of grouping
servers with similar authorization requirements. Figure 33 shows two i SF
authorization realms, Engineering and Finance, €ach containing a collection of
server applications.

IONAGlobalRealm

Engineering Finance

Figure 33: Server View of iSF Authorization Realms

Adding a server toarealm To add a server to aream, add or modify the
plugins:gsp:authorization_realm configuration variable within the server’s
configuration scope (either in the DomainName. c£g file or in the CFR server).

For example, if your server’'s configuration is defined in themy_server_scope
scope, you can set the i SF authorization realm to Engineering as follows:

Orbix configuration file

my_server_scope {
plugins:gsp:authorization realm = "Engineering";

172

Roles and realms

Creating realms and roles

Assigning realms and rolesto
users

Introduction to Domains and Realms

From the perspective of role-based authorization, an i SF authorization realm acts
as a namespace for roles. For example, Figure 34 shows two i SF authorization
realms, Engineering and Finance, each associated with a set of roles.

IONAGIlobalRealm
Engineering Finance
admin admin
CFO

Figure 34: Role View of iSF Authorization Realms

Realms and roles are usually administered from within the enterprise security
system that is plugged into the Orbix security service through an adapter. Not
every enterprise security system supports realms and roles, however.

For example, in the case of a security file connected to afile adapter (a
demonstration adapter provided by Orbix), arealm or roleisimplicitly created
whenever it islisted amongst a user’ srealms or roles. See also “ Assigning
realms and roles to the example users’ on page 175.

The assignment of realms and roles to users is administered from within the

enterprise security system that is plugged into the Orbix security service. For

example, Figure 35 shows how two users, Janet and John, are assigned roles

within the Engineering and Finance realms.

* Janet worksin the engineering department as a devel oper, but occasionally
logs on to the Finance realm with guest permissions.

173

CHAPTER 7 | Managing Users, Roles and Domains

Special realms and roles

174

John works as an accountant in finance, but also has guest permissions
with the Engineering ream.

iSF Security Domain (users)

Janet John
IONAGIlobalRealm
Engineering Finance
N
~_|
CFO

Figure 35: Assignment of Realms and Roles to Users Janet and John

The following special realms and roles are supported by the Orbix Security
Framework:

IONAGlobalRealm realm—aspecia realm that encompasses every iSF
authorization realm. Roles defined within the ToNAGlobalRealm are valid
within every i SF authorization realm.

UnauthenticatedUserRole—a special role that can be used to specify
actions accessible to an unauthenticated user (in an action-role mapping
file). An unauthenticated user is aremote user without credentials (that is,
where the client is not configured to send GSSUP credentials).

Actions mapped to the tnauthenticatedUserRole role are also accessible
to authenticated users.

The UnauthenticatedUserRole can be used only in action-role mapping
files.

Introduction to Domains and Realms

Example Domain and Realms

Overview This subsection presents an example of how to set up an iSF security domain
using afile domain. Sample i SF authorization realms, roles, and users are
created, and the authorization process is explained by example.

File domain In this example, the i SF security domain is configured to be afile domain. A file
domain isasimple file-based security domain that can be used for tests or
demonstrations. The user dataisthen stored in an XML security file.

For details of how to configure afile domain, see “Managing a File Security
Domain” on page 181.

Example users The following users are created in the file domain for this example:
® Janet—with username, Janet, and password, JanetPass.
i John—uwith username, John, and password, JohnPass.
® SuperUser—with username, superUser, and password, BigSecret.

Assigningrealmsand rolestothe Thefollowing realms and roles are assigned to the users, Janet, John, and
exampleusers SuperUser (Whererealmsand roles are notated in theformat RealmA { roleAl,
roleA2, ..., roleAn):

® Janet—isassigned the following realms and roles:
. Engineering {developer, admin}
. IONAGlobalRealm {guest}
®* John—isassigned the following realms and roles:
. Finance {accountant}
. IONAGlobalRealm {guest}
® SuperUser—is assigned the following realm and role:

3 IONAGlobalRealm {admin}

175

CHAPTER 7 | Managing Users, Roles and Domains

Sample security filefor thefile Within afile domain, you specify the user authentication data (username and
domain password) as well as the realm/role assignments within the same XML security
file. The preceding user data can be specified in a security file as follows:

<?xml version="1.0" encoding="utf-8" 2>
<ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
<users>
<user name="Janet" password="JanetPass"
description="Developer">
<realm name="Engineering">
<role name="developer"/>
<role name="admin"/>
</realm>
<realm name="IONAGlobalRealm" description="All realms">
<role name="guest"/>
</realm>
</user>
<user name="John" password="JohnPass"
description="Accountant">
<realm name="Finance">
<role name="accountant"/>
</realm>
<realm name="IONAGlobalRealm" description="All realms">
<role name="guest"/>
</realm>
</user>
<user name="SuperUser" password="BigSecret"
description="All powerful user!">
<realm name="IONAGlobalRealm" description="All realms">
<role name="admin" description="All actions"/>
</realm>
</user>
</users>
</ns:securityInfo>

176

Introduction to Domains and Realms

Sample server configuration Consider, for example, the CORBA naming service in the Engineering iSF
authorization realm. To configure this naming service, edit the variablesin the
iona_services.naming Scope in the DomainName. cfg configuration file. Set
the authorization realm to Engineering and specify the location of the
action-role mapping file, asfollows:

Orbix configuration file
iona_services {
naming {
plugins:gsp:authorization realm = "Engineering";

plugins:is2_authorization:action_role mapping =
"file:///security/eng_naming arm.xml";

Sample ACL file The eng_naming_arm.xm1l action-role mapping file, which specifies permissions
for the naming service in the Engineering domain, could be defined asfollows:

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE secure-system SYSTEM
"actionrolemapping with interfaces.dtd">
<secure-system>
<allow-unlisted-interfaces>true</allow-unlisted-interfaces>
<action-role-mapping>
<server-name>iona_services.naming</server-name>
<interface>
<name>IDL:omg.org/CosNaming/NamingContext:1.0</name>
<action-role>
<action-name>*</action-name>
<role-name>developer</role-name>
</action-role>
<action-role>
<action-name>resolve</action-name>
<action-name>list</action-name>
<role-name>guest</role-name>
</action-role>
</interface>
</action-role-mapping>
</secure-system>

177

CHAPTER 7 | Managing Users, Roles and Domains

Authorization process When user John attempts to invoke an operation on the CORBA naming service
in the Engineering domain, authorization proceeds as follows:

Stage Description

1 | Thenaming service contacts the Orbix security service remotely to
authenticate John’ s username and password.

2 | If authentication is successful, the Orbix security service returns
the complete list of realms and roles assigned to John. In the
current example, the following realms and roles would be returned:

° Finance {accountant}

° IONAGlobalRealm {guest}

3 | The naming service determines which roles are applicable to John
in the current i SF authorization realm. Because the naming service
belongs to the Engineering realm, only the guest role from the
IONAGlobalRealm iS applicable here.

4 | The naming service now checksthe eng_naming arm.xml
action-role mapping file and finds that only the resolve and 1ist
actions are permitted on the CosNaming: :NamingContext |DL
interface for the guest role.

On the other hand, if the user, John, attemptsto call an operation
(or attribute) on any other naming service interface, the call would
be permitted, because the <allow-unlisted-interfaces> oOption
is true in the action-role mapping file.

Note: Thespecial <allow-unlisted-interfaces>tagisa
useful shortcut, but you should use it carefully to avoid opening a
security hole.

178

Introduction to Domains and Realms

Domain and Realm Ter minology

Overview

Comparison of terminology

J2EE security technology domain

The terms domain and realm appear in severa security technology
specifications with different (and sometimes contradictory) meanings. This
subsection attempts to clarify some of the domain and realm terminology and
provides a comparison with the Orbix Security Framework terms.

To clarify the terminology used by different technology specifications (all of
which are embraced by the iSF) Table 4 lists the generic i SF terms against their
technol ogy-specific equivalents:

Table4: Domain and Realm Terminology Comparison

GenericiSF Term Technology-Specific Equivalents

i SF security domain J2EE security technology domain
J2EE security policy domain (1)
J2EE ream (2)

JAAS authentication realm
CSlIv2 authentication domain
HTTP login realm

i SF authorization realm J2EE security policy domain (1)
J2EE ream (2)

1. Theterm, J2EE security policy domain, appearsin both rows becauseit is
agenera term that embodies both an authentication domain and an
authorization domain.

2. J2EE ream means the same thing as J2EE security policy domain.

The J2EE specification defines a J2EE security technology domain as follows:

The scope over which a single security mechanismis used to enforce a security
policy. Multiple security policy domains can exist within a single technology
domain.

179

CHAPTER 7 | Managing Users, Roles and Domains

J2EE security policy domain

J2EE realm

JAAS authentication realm

CSlv2 authentication domain

HTTP login realm

180

The J2EE specification defines a J2EE security policy domain as follows:

A realm, also called a security policy domain or security domain in the J2EE
specification, is a scope over which a common security policy is defined and
enforced by the security administrator of the security service

A J2EE realmisthe same thing as J2EE security policy domain.

A Java Authentication and Authorization Service (JAAS) authentication realmis
anamespace for JAAS principals.

A CSv2 authentication domain is a named domain in which CSIv2
authentication data (for example, username and password) is authenticated.

When a user logs on to a Web client through a standard HT TP login mechanism
(for example, HTTP basic authentication or HT TP form-based authentication),
the user is prompted for a username, password, and login realm name. The login
realm name, along with the user’ s username and password, isthe sent to the Web
server.

Managing a File Security Domain

Managing a File Security Domain

Overview

L ocation of file

Example

1
2
3

4

The file security domain is active if the Orbix security service has been
configured to use the i SF file adapter (see “ Configuring the File Adapter” on
page 138). The main purpose of the iSF file adapter is to provide alightweight
security domain for demonstration purposes. A realistic deployed system,
however, would use one of the other adapters (LDAP or custom) instead.

WARNING: Thefile adapter is provided for demonstration purposes only.
Orbix does not support the use of the file adapter in a production environment.

The location of the security information fileis specified by the
com.iona.isp.adapter.file.param. filename property inthe Orbix security
Service's is2.properties file.

Example 21 is an extract from a sample security information file that shows you
how to define users, realms, and rolesin afile security domain.

Example 21: Sample Security Information File for an iSF File Domain
<?xml version="1.0" encoding="utf-8" ?>

<ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
<users>
<user name="IONAAdmin" password="admin"
description="Default IONA admin user">
<realm name="IONA" description="All IONA applications"/>
</user>
<user name="admin" password="admin" description="01ld admin
user; will not have the same default privileges as
IONAAdmin. ">
<realm name="Corporate">
<role name="Administrator"/>
</realm>
</user>
<user name="alice" password="dost1234">
<realm name="Financials"
description="Financial Department">
<role name="Manager" description="Department Manager" />

181

CHAPTER 7 | Managing Users, Roles and Domains

182

Example 21: Sample Security Information File for an iSF File Domain

<role name="Clerk"/>
</realm>
</user>
<user name="bob" password="dost1234">
<realm name="Financials">
<role name="Clerk"/>
</realm>
</user>
</users>
</ns:securityInfo>

The <ns: securityInfo> tag can contain anested <users> tag.

The <users> tag contains a sequence of <user> tags.

Each <user> tag defines asingle user. The <user> tag's name and
password attributes specify the user’s username and password. Within the
scope of the <user> tag, you can list the realms and roles with which the
user is associated.

4. When a<realm> tag appears within the scope of a<user> tag, it implicitly

definesarealm and specifies that the user belongsto thisrealm. A <realm>
must have a name and can optionally have adescription éttribute.

5. A realm can optionally be associated with one or more roles by including

<role> elements within the <realm> scope.

Certificate-based authentication
for thefile adapter

Managing a File Security Domain

When performing certificate-based authentication, the file adapter compares the
certificate to be authenticated with a cached copy of the user’s certificate.

To configure the file adapter to support X.509 certificate-based authentication,
perform the following steps:

1

Cache a copy of each user’s certificate, CertFile.pem, in alocation that is
accessible to the file adapter.

Make the following type of entry for each user with a certificate:

Example 22: File Adapter Entry for Certificate-Based Authentication

<user name="CNfromSubjectDN" certificate="CertFile.pem"
description="User certificate">
<realm name="RealmName">

</realm>
</user>
The user’ s name, CNfromSubjectDN, is derived from the certificate by
taking the Common Name (CN) from the subject DN of the X.509
certificate (for DN terminology, see“ASN.1 and Distinguished Names” on

page 645). The certificate attribute specifies the location of thisuser's
X.509 certificate, CertFile.pem.

183

CHAPTER 7 | Managing Users, Roles and Domains

Managing an L DAP Security Domain

Overview

Configuring the LDAP adapter

Certificate-based authentication
for the LDAP adapter

184

The Lightweight Directory Access Protocol (LDAP) can serve asthe basis of a
database that stores users, groups, and roles. There are many implementations of
LDAP and any of them can be integrated with the Orbix security service by
configuring the LDAP adapter.

Please consult documentation from your third-party LDAP implementation for
detailed instructions on how to administer users and roles within LDAP.

A prerequisite for using LDAP within the Orbix Security Framework is that the
Orbix security service be configured to use the LDAP adapter.

See “Configuring the LDAP Adapter” on page 140.

When performing certificate-based authentication, the LDAP adapter compares
the certificate to be authenticated with a cached copy of the user’s certificate.

To configure the LDAP adapter to support X.509 certificate-based

authentication, perform the following steps:

1. Cacheacopy of each user’'s certificate, CertFile.pem, in alocation that is
accessible to the LDAP adapter.

2. Theuser’'s name, CNfromSubjectDN, is derived from the certificate by
taking the Common Name (CN) from the subject DN of the X.509
certificate (for DN terminology, see“ASN.1 and Distinguished Names” on
page 645).

3. Make (or modify) an entry in your LDAP database with the username,
CNfromSubjectDN, and specify the location of the cached certificate.

In this chapter

CHAPTER 8

Managing
A ccess Control
Lists

The Orbix Security Framework defines access control lists (ACLS)
for mapping rolesto resources. The ACLsarespecificto particular
technology domains, such as CORBA. They can be deployed either
together with each secure server or centrally in the Orbix security
service.

This chapter discusses the following topics:

CORBA ACLs page 186

Centralized ACL page 192

185

CHAPTER 8 | Managing Access Control Lists

CORBA ACLs

Overview

In thissection

186

This section discusses the ACL files that control accessto IDL operations and
attributesin a CORBA server. The ACL filesfor CORBA servers provide
role-based access control with granularity down to the level of IDL operations,
and attributes.

This section contains the following subsections:

Overview of CORBA ACL Files page 187

CORBA Action-Role Mapping ACL page 188

CORBA ACLs

Overview of CORBA ACL Files

Action-role mapping file

GSP plug-in

The action-role mapping fileis an XML file that specifies which user roles have
permission to perform specific actions on the server (that is, invoking specific
IDL operations and attributes).

The GSP plug-in is a component of the i SF that provides support for action-role
mapping. This plug-in must be loaded in order to use the action-role mapping
ACL file (see “ Security Configuration” on page 485 for details of how to
configure the GSP plug-in).

187

CHAPTER 8 | Managing Access Control Lists

CORBA Action-Role Mapping ACL

Overview

Filelocation

Example IDL

188

This subsection explains how to configure the action-role mapping ACL file for
CORBA applications. Using an action-role mapping file, you can specify that
accessto IDL operations and attributes is restricted to specific roles.

Inyour Orbix configurationfile, theplugins:gsp:action_role mapping file
configuration variable specifies the location URL of the action-role mapping
file, action_role mapping.xml, for a CORBA server. For example:

Orbix Configuration File
my_server_scope {

plugins:gsp:action_role mapping file =
"file:///security_admin/action_role_mapping.xml";

For example, consider how to set the operation and attribute permissions for the
IDL interface shown in Example 23.

Example 23: Sample IDL for CORBA ACL Example

// IDL
module Simple
{
interface SimpleObject
{
void call_me();
attribute string foo;

bg

Example action-role mapping

N

o0k Ww

CORBA ACLs

Example 24 shows how you might configure an action-role mapping file for the
Simple: : SimpleObject interface given in the preceding Example 23 on
page 188.

Example 24: CORBA Action-Role Mapping Example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM
"|nstallDir /etc/domains/Domain/actionrolemapping.dtd">
<secure-system>
<allow-unlisted-interfaces>false</allow-unlisted-interfaces>

<action-role-mapping>
<server-name>gsp_basic_test.server</server-name>
<interface>
<name>IDL:Simple/SimpleObject:1.0</name>
<action-role>
<action-name>call_me</action-name>
<role-name>corba-developer</role-name>
<role-name>guest</role-name>
</action-role>
<action-role>
<action-name>_get_foo</action-name>
<role-name>corba-developer</role-name>
<role-name>guest</role-name>
</action-role>
</interface>

</action-role-mapping>
</secure-system>

The preceding action-role mapping example can be explained as follows:
1. If thedirectory containing the actionrolemapping.dtd file includes
spaces, the spaces should be replaced by 220 in the <: pocTyPE> tag.
2. The<allow-unlisted-interfaces> tag specifiesthe default access that
appliesto interfaces not explicitly listed in the action-role mapping file.
The tag contents can have the following values:
¢+ true—for any interfaces not listed, accessis allowed for al roles. If
the remote user is unauthenticated (in the sense that no GSSUP
credentials are sent by the client), accessis also allowed.

189

CHAPTER 8 | Managing Access Control Lists

190

. false—for any interfaces not listed, accessis denied for al roles.
Unauthenticated users are also denied access. Thisis the default.

The <action-role-mapping> tag contains all of the permissions that
apply to a particular server application.

The <server-name> tag specifies the ORB name that is used by the server
in question. The value of this tag must match the ORB name exactly.

Note: The ORB name also determines which configuration scopes are
read by the server. See the Administrator’s Guide for details.

The <interface> tag contains all of the access permissions for one
particular IDL interface.

The <name> tag identifies the IDL interface using the interface’ s OMG
repository ID. The repository ID normally consists of the characters 1pL:
followed by the fully scoped name of theinterface (using / instead of : : as
the scoping character), followed by the characters : 1. 0. Hence, the
Simple: :SimpleObject IDL interfaceisidentified by the
IDL:Simple/SimpleObject:1.0 repository ID.

Note: Theform of the repository ID can also be affected by various
#pragma directives appearing in the IDL file. A commonly used directive
IS #pragma prefix.

For example, the CosNaming: :NamingContext interface in the naming
service module, which uses the omg . org prefix, has the following
repository ID: IDL: omg . org/CosNaming/NamingContext : 1.0

The call_me action name corresponds to the call_me () operation in the
Simple: : SimpleObject interface. The action name corresponds to the
GIOP on-the-wire form of the operation name (usually the same as it
appearsin IDL).

The _get_foo action name corresponds to the foo attribute accessor. In
general, any read/write attribute, AttributeName, has the following action
names:

. _get_AttributeName—for the attribute accessor, and

+ _set_AttributeName—for the attribute modifier.

In general, the accessor or modifier action names correspond to the GIOP
on-the-wire form of the attribute accessor or modifier.

CORBA ACLs

Action-role mapping DTD The syntax of the action-role mapping file is defined by the action-role mapping
DTD. See “Action-Role Mapping DTD” on page 655 for details.

191

CHAPTER 8 | Managing Access Control Lists

Centralized ACL

Overview

In this section

192

By default, a secure Orbix application is configured to storeits ACL filelocally.
Hence, in alarge deployment, ACL files might be scattered over many hosts,
which could prove to be a nuisance for administrators.

An alternative approach, as described in this section, isto configure your secure

applicationsto use acentralized ACL repository. This allows you to administer
al of the ACL datain one place, making it easier to update and maintain.

This section contains the following subsections:

Local ACL Scenario page 193
Centralized ACL Scenario page 195
Customizing Access Control Locally page 201

Centralized ACL

Local ACL Scenario

Overview This section briefly describes the behavior of a secure server whose operations
are protected by alocal ACL file (see, for example, “Target configuration” on
page 79 for details of such a configuration).

Local ACL scenario Figure 36 shows an outline of the local ACL scenario, where the ACL fileis
stored on the same host as the target server. Y ou configure the server to load the
ACL filefromthelocal file system by setting the
plugins:gsp:action_role mapping file variablein thetarget server's
configuration scope.

Figure 36: Local ACL Scenario

(o =
Client

Target Host

Target A
+@

GSP ACL
Plug-In Cache

ClientAccessDecision
object

Access
Control

Scenario description The local ACL scenario shown in Figure 36 can be described as follows:

Stage

Description

1

The client invokes an operation on the secure target server,
requiring an access decision to be made on the server side.

The GSP plug-in calls afunction on the internal
ClientAccessDecision object to check whether the current user
has permission to invoke the current operation.

193

CHAPTER 8 | Managing Access Control Lists

194

Stage

Description

If thisisthe first access decision required by the target server, the
ClientAccessDecision Object readsthe contents of thelocal ACL
file (as specified by the
plugins:gsp:action_role mapping file variable) and stores
the ACL datain acache.

For all subsequent access decisions, the clientAccessDecision
object reads the cached ACL data for efficiency.

Centralized ACL

Centralized ACL Scenario

Overview From an administrative point of view, it is often more convenient to gather ACL
files onto a central host, rather than leaving them scattered on different hosts.
The centralized ACL feature enables you to create such a central repository of
ACL files. The ACL files are stored on the same host as the Orbix security
service, which serves up ACL datato remote Orbix servers on request.

Centralized ACL scenario Figure 37 shows an outline of a centralized ACL scenario, where the ACL files
are stored on the same host as the Orbix security service.

Figure 37: Centralized ACL scenario

Target Host

@ Target A
Client f @
GSP ACL
Plug-In Cache

®

A

Security Service @

ACL File Repository

ACL ACL ACL

User data store

195

CHAPTER 8 | Managing Access Control Lists

Scenario description The centralized ACL scenario shown in Figure 37 can be described as follows:

Stage Description

1 | Theclient invokes an operation on the secure target server,
requiring an access decision to be made on the server side.

2 | The GSP plug-in calls afunction on the internal
ClientAccessDecision object to check whether the current user
has permission to invoke the current operation.

3 | If thisisthefirst access decision required by the target server, the
ClientAccessDecision Object contactsthe Orbix security service
to obtain the ACL data.

For all subsequent access decisions, the clientAccessDecision
object reads the cached ACL datafor efficiency.

4 | When the security serviceis requested to provide ACL data, it
selects the appropriate ACL file from its repository of ACL files.

By default, the Orbix security service selectsthe ACL file whose
ORB name (as specified in the <server-name> tag) matches that
of the request.

5 | The security service returns the ACL datain the form of an XML
string, which is then cached by the clientaccessDecision Object.

M odify the Orbix configuration To configure an application (such as the target server shown in Figure 37 on

file page 195) to use a centralized ACL, you must modify its configuration scope as
shown in Example 25. In this example, it is assumed that the application’s ORB
nameis my_secure_apps.my_two_tier_target.

Example 25: Configuration of a Second-Tier Target Server in theiSF
Orbix Configuration File

#;.C.;eneral configuration at root scope.

r.ﬂ;./;secure_apps {

my_two_tier target {

196

Centralized ACL

Example 25: Configuration of a Second-Tier Target Server in theiSF

plugins:gsp:authorization_realm = "AuthzRealm-;

1 # plugins:gsp:action_role_mapping_file = "ActionRoleURL";

2 plugins:gsp:authorization policy store_type =
"centralized";

3 plugins:gsp:authorization policy enforcement point =
"local";

b
b g

The preceding Orbix configuration can be described as follows:

1. Theplugins:gsp:action_role_mapping_file Setting isignored when
you have centralized ACL enabled. Y ou can either comment out thisline,
as shown here, or deleteit.

2. Setting the plugins: gsp:authorization_policy_store_type Variable
to centralized configuresthe application to retrieve its ACL datafrom
the Orbix security service (which isthen stored in alocal cache).

3. Setting theplugins:gsp:authorization policy enforcement_point
variable to 1ocal specifies that the ACL logic isimplemented locally (in
the target server). Currently, thisis the only option that is supported.

Modify theis2.propertiesfile To configure the Orbix security service to support centralized ACL, you should
edit its is2.properties (normally located in the
OrbixlInstallDir /etc/domains/DomainName directory) to add or modify the
following settings:

is2.properties File for the Orbix Security Service
com.iona.isp.authz.adapters=file
com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzAda

pter.multifile.MultiFileAzAdapter
com.iona.isp.authz.adapter.file.param.filelist=ACLFileListFile;

The ACLFileListFileisthe name of afile (specified in the local file format)
which contains alist of the centrally stored ACL files.

197

CHAPTER 8 | Managing Access Control Lists

Createan ACL fileligt file

Selecting the ACL file

Selection by ORB name

198

The ACL filelist fileisalist of filenames, each line of which has the following
format:

[ACLKey=] ACLFileName

A file name can optionally be preceded by an ACL key and an equals sign,
ACLKey-=, if you want to select the file by ACL key (see“ Selection by ACL
key” on page 200). The ACL file, ACLFileName, is specified using an absolute
pathname in the local file format.

Note: On Windows, you should replace backslashes by forward slashesin the
pathname.

For example, on Windows you could specify alist of ACL filesasfollows:

U:/orbix_security/etc/acl_files/server_ A.xml
U:/orbix_security/etc/acl_files/server_ B.xml
U:/orbix_security/etc/acl_files/server_ C.xml

When the Orbix security service responds to a request to provide ACL data, it
chooses an ACL file using one of the following selection criteria:

® Selection by ORB name.

® Selection by override value.

® Selection by ACL key.

The default selection criterion is selection by ORB name. The target application
includesits ORB name in the request it sends to the security service. The
security service then selects the data from the ACL file which includes a
<server-name> tag with the specified ORB name.

Note: The security service reads and returns all of the data from the selected
ACL file. Evenif the ACL file contains multiple <server-name> tags labelled
by different ORB names, the datafrom the enclosing <action-role-mapping>
tags with non-matching ORB names are also returned.

Centralized ACL

For example, if the application’s ORB hameis
my_secure_apps.my_two_tier_target, the security service will select the data
from the ACL file containing the following <server-name> tag:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "DTDFileForOrbixACL ">
<secure-system>
<action-role-mapping>
<server-name>my_secure_apps.my two_tier target</server-name>

</action-role-mapping>

</secure-system>

Selection by override value Alternatively, you can use selection by override value to override the value of
the ORB name sent to the Orbix security service. The override value must be set
in the Orbix configuration using the plugins:gsp:acl_policy data_id
variable.

For example, suppose you want to select ACL data that has the ORB name,
my_secure_apps.my_two_tier_target.alt_acl.You would specify the
override value using the plugins:gsp:acl_policy data_id variable as
follows:

Orbix Configuration File
Add this line to the application’s configuration scope
plugins:gsp:acl_policy_data_id =

'my secure_apps.my two_tier target.alt_acl";

The security service would then select the data from the ACL file containing the
following <server-name> tag:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "DTDFileForOrbixACL">
<secure-system>

<action-role-mapping>

<server-name>my secure_apps.my two_tier target.alt_acl</serve
r-name>

</action-role-mapping>

</secure-system>

199

CHAPTER 8 | Managing Access Control Lists

Selection by ACL key

200

A more flexible system of selection is selection by ACL key. In this case, the
application specifiesan ACL key inits Orbix configuration and the security
service matches this key to an entry in the ACL filelist file.

For example, consider an application that definesan ACL key, bank_data, inits
configuration scope. Y ou would specify the key using the
plugins:gsp:acl_policy data_id variable asfollows:

Orbix Configuration File

Add this line to the application’s configuration scope
plugins:gsp:acl_policy data_id = "aclkey:bank data";

The security service then selects the entry from the ACL file list |abelled with
the bank_data key:

U:/orbix_security/etc/acl_files/server_ A.xml
U:/orbix_security/etc/acl_files/server_ B.xml
bank data=U:/orbix security/etc/acl_files/server_ C.xml

Centralized ACL

Customizing Access Control Locally

Overview Orbix allows you to customize access control locally by implementing a plug-in
that overrides the implementation of the clientAccessDecision Object. This
gives you complete control over the access decision logic in an Orbix
application.

Note: Detailed instructions on how to implement aclientAccessDecision
plug-in are not provided here. Because this task requires a detailed
understanding of Orbix plug-ins, we recommend that you contact Progress
Consulting for further assistance.

Custom ClientAccessDecision in Figure 38 shows an outline of an ACL scenario, where the default
an Orbix application ClientAccessDecision object isreplaced by a customized implementation.

Figure 38: Custom ClientAccessDecision in an Orbix Application

Target Host

. Target A
Client
‘ Custom

Plug-In i

!

[0}
%}
o

A

Custom ClientAccessDecision object

Security
Service

I »

ACL Repository

User data store

201

http://web.progress.com/consulting/index.html
http://web.progress.com/consulting/index.html

CHAPTER 8 | Managing Access Control Lists

Scenario variants

202

Replacing the c1ientAccessDecision object with acustomized implementation
effectively gives you complete control over the access decision logic in an Orbix
application. The system shown in Figure 38 can be adapted to a variety of
scenarios, as follows:

® Storing the ACL datalocally, but using a customized file format.

° Customizing both the clientAccessDecision object and the
ServerAccessDecision object to implement a centralized ACL with
custom features. In particular, this approach would enable you to store and
transmit ACL datain a custom format.

. Retrieving ACL data from a custom server. In this case, you could have a
centralized ACL repository that bypasses the Orbix security service.

In this chapter

CHAPTER 9

Securing Orbix
Services

This chapter describes how to enable security in the context of the
Orbix Security Framework for the Orbix services.

This chapter discusses the following topics:

Introduction to Securing Services page 204
Secure File-Based Domain page 205
Secure CFR Domain page 207
Customizing a Secure Domain page 215
Default Access Control Lists page 237

203

CHAPTER 9 | Securing Orbix Services

| ntroduction to Securing Services

Overview In a secure system, all Orhix services should be capable of servicing secure
connections. A typical secure system includes an Orbix security service and
enables SSL/TLS on dll of the Orbix services.

Configuring the Orbix services Before deploying the Orbix servicesin alive system, you must customize the
security configuration, replacing demonstration certificates by custom
certificates and so on. The procedure for securing Orbix servicesissimilar to the
procedure for securing regular CORBA applications (see “ Securing CORBA
Applications’ on page 61).

Configuring the Orbix security The Orbix security serviceisaspecial case because, in addition to setting
service configuration variablesin the Orbix configuration, you also need to perform the
following basic administration tasks:
® Edit the propertiesin the is2.properties file—see“ Configuring the
Orbix Security Service” on page 137.
® Change the secure user data (usernames, passwords, and so on) stored in
the Orbix security service's user database—see “Managing Users, Roles
and Domains’ on page 167.

Access control listsfor Orbix Fine-grained accessto the Orbix servicesis controlled by the access control lists

Services (ACLY9) in the Orbix action-role mapping files. Default ACLs are generated
automatically when you run itconfigure to create a secure domain. See
“Default Access Control Lists” on page 237 for adetailed discussion of the
default ACLsfor the Orbix services.

204

Secure File-Based Domain

Secure File-Based Domain

File-based domain overview

Domain.cfgin afile-based domain

Figure 39 shows an overview of asecure file-based domain. In this example, the
Orbix security service runs on a host, S1, and the other core Orbix services run
on adifferent host, S2.

Figure 39: Overview of a Secure File-Based Domain

Host S1 Host S2
Node .
iS2 { Locator } { Daemon } { Naming }
N
f
H
Config Config
Domain.cfg Domain.cfg
Host A Host B Host C
_ [o }_: :_{ e
| P
: : Pl
1 Vol
H . HE
Config Config Config
Domain.cfg Domain.cfg Domain.cfg

In a secure file-based domain, the Orbix configuration file, Domain. c£g,
contains al of the configuration data for the CORBA system. In particular, the
Domain.c£g file can contain security credentials for your applications and the
core Orbix services (for example, certificate locations and password file
locations).

205

CHAPTER 9 | Securing Orbix Services

When deploying a domain across multiple hosts (as, for example, in Figure 39),
it is advisable to customize the Domain. c£g file on each host. Each copy of

Domain. c£g should include security credentials only for the applications
running on that particular host.

WARNING: Any domain configuration files containing security-related data
must be stored securely by the operating system.

206

Secure CFR Domain

Secure CFR Domain

CFR domain overview

Figure 40 shows an overview of a secure CFR domain. In this example, the

Orbix security service runs on a host, S1, and the other core Orbix services run
on adifferent host, S2.

Note: Some aspects of secure CFR domains have changed significantly in

Orbix 6.3 Service Pack 4. If you are using an earlier version of Orbix, please
consult the original documentation for that Orbix version.

Figure 40: Overview of a Secure CFR Domain

Host S1 Host S2
iS2 [Locator J [Node ‘ [Naming
Daemon
i)
f f
i H
| H
Config Config Config

cfr-Domain.cfg ~ CFR Data

Access
Control

insecure-Domain.cfg secure-Domain.cfg

Host A

Host B

Host C

Server A

secure-Dbmain.cfg

Config

insecure-Domain.cfg

Config

secure-Dbmain.cfg

Config

insecure-Domain.cfg

[Client C1 }(— ' { Client C2 }

Config

secure-Dbmain.cfg

Config

insecure-Domain.cfg

207

CHAPTER 9 | Securing Orbix Services

Secure CFR domain files

insecur e-Domain.cfg

secure-Domain.cfg

cfr-Domain.cfg

208

A secure CFR domain can use the following different kinds of domain
configuration file:

. insecure-Domain.cfg.

® secure-Domain.cfg.

e cfr-Domain.cfg.

The insecure-Domain. c£g file contains boilerplate configuration and default
settings for the boot ORB (see “Boot ORB” on page 210). It is hot meant to be
used directly in a secure CFR domain, but it can be used in a semi-secure CFR
domain. It isincluded in the secure-Domain. ctg file.

In a secure CFR domain, the secure-Domain. cfg file isused by all services
and clients, except for the Orbix security service and the CFR, to bootstrap the
application’s ORB configuration.

The secure-Domain.cfg file contains all of the settings from
insecure-Domain.cfg (that is, it includes insecure-Domain.c£g) and
additionally specifies the credentials needed to connect to the CFR and
download the application’s configuration data.

WARNING: The secure-Domain. c£g file contains sensitive data and
therefore it must be stored securely by the operating system.

The cfr-Domain.cfg file is used only by the Orbix security service and the
CFR service (see Figure 40 on page 207) and it contains the complete
configuration details for these two services. It is necessary to leave the
configuration of these two services entirely file-based in order to avoid creating
acircular dependency.

In atypical deployment, you need to customize the credentials for the Orbix
security service and the CFR service, which are set in cfr-Domain. cfg,
because the default settings use demonstration certificates and demonstration
credentials. See “ Creating a Customized Secure Domain” on page 216 for
details.

WARNING: The cfr-Domain. c£g file contains sensitive data and therefore it
must be stored securely by the operating system.

Environment scripts

CFR action-role mapping

How does a serviceinitializein a
secure CFR domain?

Secure CFR Domain

When you create a secure or a semi-secure CFR domain, Domain, the following

pair of scripts are generated (where the suffix iseither .bat for Windows, or .sh

for UNIX):

® secure-Domain_env[.bat| .sh]—enables accessto secure services.

® insecure-Domain_env|.bat|.sh]—enables access to insecure services
only.

Like any of the other Orbix services, in a secure or semi-secure domain the CFR
has an associated action-role mapping file. It is usually necessary to customize
this action-role mapping in order to define which configuration scopes are
accessible to ordinary users and which configuration scopes are reserved for the
administrator.

For more details, see “ Configuration Repository ACL” on page 238.

In a secure CFR domain, ordinary services (that is, all services apart from the

security service and the CFR itself) initialize in two phases, as follows:

. Boot phase—during the boot phase, the service readsits boot settings from
the configuration file, secure-Domain. c£g, and uses these settings to
instantiate a boot ORB. The sole purpose of the boot ORB isto establish a
connection to the CFR and to download the relevant configuration settings
for the application.

Configuration settings are downloaded as follows:

i. Theboot ORB uses the credentias from the root scope of the
secure-Domain. cfg file to establish a secure connection to the CFR
(these are usually CSI credentials).

ii. Theboot ORB requests the CFR to send the relevant configuration
data for the application-level ORB (as determined by the application
ORB name).

iii. The CFR authenticates the credentials received from the boot ORB
and checks these credentials against the CFR’ s access control list, to
see whether this user has permission to download the requested
configuration data.

iv. If the boot ORB’s credentials have the requisite privileges, the CFR
returns the application ORB’s configuration data.

209

CHAPTER 9 | Securing Orbix Services

® Application phase—during the application phase, the service instantiates
an application ORB using the configuration data that was downloaded
during the boot phase. From this point on, application initialization
proceeds as normal.

Note: Generally, the application ORB settings are independent of the
boot ORB settings. The only exception is when you set

plugins:security:share_credentials_across_orbs tO true.

Boot ORB Boot ORBs have the following characteristics:

. Boot ORBs are used only for the purpose of making an initial connection
to the CFR and downloading the application ORB’s configuration data.

®* Theboot ORB reads settings exclusively from the root scope of the
domain configuration file. Nested scopes appearing in the domain
configuration file are completely ignored.

® You can decide whether or not to share the boot ORB’s credentials with
the application ORB using the boolean variable,

plugins:security:share credentials_across_orbs

Customizing the default domain The default CFR domainfile, secure-Domain. cfg, isinitially configured to use

files demonstration user accounts and X.509 certificates. It is therefore essential to
customize the security settings before attempting to deploy the CFR domain files
in a production system.

In particular, you must customize the following settingsin

secure-Domain. cfg:

. Enable SSL/TLS—if you require SSL/TL S security on the CFR connection,
check that the iiop_t1s plug-inisincluded in the orb_plugins list and
make sure that the client secure invocation policy is set as follows:

Orbix Configuration File
policies:iiop_tls:client_secure_invocation policy:requires
= ["Confidentiality", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation policy:supports

= ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

210

Secure CFR Domain

For more details, see “ Configuring SSL/TL S Secure Associations’ on
page 333.

WARNING: It can be convenient to disable SSL/TLS security on the CFR
connection (for example, it saves you having to deploy atrusted CA list fileto
every client host). However, this approach is potentially dangerous, because it
leaves clients vulnerable to a man-in-the middle attack by an imposter CFR,
which could serve up bogus configuration settings to the client and steal client
credentials.

® Configuretrusted CA list for SSL/TLS—if SSL/TLS s enabled, you must
specify atrusted CA list. Open secure-Domain.cfg in atext editor and
edit the value of ROOT_TRUSTED_CA LIST POLICY, Setting itsvalueto the
location of the trusted CA list file on the local machine. For example:

ROOT_TRUSTED_CA_LIST POLICY =
"c:\my_custom_ca_lists\ca_list.pem";
policies:trusted_ca_list_policy =
"% {ROOT_TRUSTED_CA LIST POLICY}";

For more details, see “ Specifying Trusted CA Certificates” on page 369.

® Configure CSVv2 credentials—the CSlv2 (GSSUP) credentials set in the
root scope of secure-Domain.cfg are used solely for the purpose of
downloading configuration settings from the CFR service. Hence, it is
sufficient to specify credentials with read-only access to the CFR.
For example, you could define a special user, bootORB, and an associated
user role, bootORBRole, that provide read-only accessto the CFR, but do
not allow you to access any other services. The advantage of this set-up is
that the bootoRB credential's do not present much of a security risk, so you
do not need to take any great precautions to keep the credentials a secret.
Y ou could configure the CSIv2 credentials as follows:

BOOT_ORB_GSSUP_CREDENTIALS = ["username=bootORB",
"password=bootORBPass", "domain=IONA"];

principal_sponsor:csi:use principal_sponsor = "true";
principal_sponsor:csi:auth_method_id = "GSSUPMech";
principal_sponsor:csi:auth_method data =
"% {BOOT_ORB_GSSUP_CREDENTIALS}";
policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient"];

211

CHAPTER 9 | Securing Orbix Services

Administering the secure CFR

CFR administration roles

212

Where BOOT_ORB_GSSUP_CREDENTIALS iS anew substitution variable. Y ou
must also remove the other GSSUP credentials, *_GSSUP_CREDENTIALS,
from the CFR domain file.

It isimportant to understand that, when administering the secure CFR using the
itadmin utility, login occurs at two different levels, asfollows:

Boot ORB login—at thislevel, you can supply CSIv2 credentia s that have
read-only access to the CFR. This step downloads the configuration that is
used to instantiate the application ORB.

These login credentials are stored in the secure-Domain. cfg file.
Application ORB login—at this level, if you want to make any changes to
the CFR contents, you must supply CSIv2 credentials that give you
sufficient access to modify the contents of the secure CFR.

Asaresult of this two-phase bootstrap process, the itadmin utility has two
bindings connecting it to the secure CFR (which might actually result in two
separate TCP/IP connections being opened to the CFR, depending how each
ORB is configured).

In general, when setting up the configuration for the i tadmin utility, you need to
distinguish between two levels of administration:

User-level administration—covers the routine use of the standard Orbix
services, except for the CFR. Y ou can grant this level of access with the
IONAUserRole role.

For example, ordinary userstypically need to be able to create and remove
name bindings in the CORBA naming service.

Sysadmin-level administration—covers the more sensitive operations,
which includes making any modificationsto the CFR. Y ou can grant this
level of access with the ToNAServiceRole role.

User-level administration

Sysadmin-level administration

Secure CFR Domain

To configure the application ORB for user-level administration, Orbix defines
the following configuration scopes in the CFR by default:

iona_utilities {
admin {
secure {
Configure user-level administration

in a secure environment.
}

insecure {
Configure user-level administration

in an insecure environment.

By default, there is no scope provided specifically for sysadmin-level
administration. Y ou must define anew scopein the CFR for sysadmin tasks. The
simplest approach is to configure the CSl principal sponsor to prompt the user
for login credentials, so that system administrators can log in using their
sysadmin username and password. For example, you could define the
iona_utilities.admin.sysadmin Scope asfollows:

iona_utilities {

admin {
sysadmin {
CSI principal sponsor prompts for password
principal_sponsor:csi:use _principal_sponsor = "true";
principal_sponsor:csi:auth_method_id = "GSSUPMech";
principal_sponsor:csi:auth_method data = "["username=IONAAdmin",

"domain=IONA"]";
policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

Other config, including SSL/TLS settings, etc.

In this example, because the password setting is omitted from
principal_sponsor:csi:auth_method_data, the user will be prompted to

enter the sysadmin password after starting the itadmin utility.

213

CHAPTER 9 | Securing Orbix Services

IT ADMIN_UTILITIES_ORB_NAME
environment variable

214

In order to select the correct application ORB configuration scope, it is always
necessary to specify the relevant ORB name when you run the itadmin utility.
For example:

itadmin -ORBname iona_utilities.admin.secure

In practice, it would be tedious to have to type the ORB name on the command
line every time you run itadmin. To simplify running the utility, therefore, a
new environment variable, IT_ADMIN_UTILITIES_ORB_NAME, iSintroduced in
Orbix 6.3 SP4. This environment variable specifies the application-level ORB
name used by the itadmin utility, making it unnecessary to supply the -orBname
switch at the command line.

For exampl e, the environment scripts generated for a secure CFR domain set the
IT_ADMIN_UTILITIES_ORB_NAME environment variable asfollows:

® secure-Domain_env.bat|.sh] setsthe application ORB name to
iona_utilities.admin.secure.
° insecure-Domain_env|.bat| .sh] setsthe application ORB name to

iona_utilities.admin.insecure.

Customizing a Secure Domain

Customizing a Secure Domain

Overview

In thissection

This section describes how to customize the configuration of secure domains
generated using the itconfigure utility. When generating a domain, the
itconfigure utility allows you to choose between two different levels of
security:

® Secure—only secure connections are accepted.

® Semi-secure—both secure and insecure connections are accepted.

In the subsections that follow, the differences between a secure domain and a
semi-secure domain are described in detail.

The itconfigure utility also allows you to choose between afile-based domain
and a CFR-based domain. The examplesin this section are all based on afile
domain. Similar comments apply, though, to the analogous settingsin a CFR
domain.

WARNING: It is essential to customize a secure domain generated by the
itconfigure utility. The default secure domain created using itconfigure is
not fully secure, because the X.509 certificates used by the domain are
demonstration certificates, which are identical for all installations of Orbix.

This section contains the following subsections:

Creating a Customized Secure Domain page 216
Configuring an iSF Adapter for the Security Service page 223
Configuring a Typical Orbix Service page 224
Configuring the Security Service page 233

215

CHAPTER 9 | Securing Orbix Services

Creating a Customized Secure Domain

Overview

Substitution variables

216

If you follow the default steps for creating a secure domain using itconfigure,
the standard Orbix services will be configured with default X.509 certificates,
which are essentially insecure. This section describes how to create a security
domain, such that the default X.509 certificates are replaced by secure custom
certificates.

Withn aconfiguration file, Orbix uses substitution variables to specify the X.509
certificate credentials and the CSI credentials used by the standard Orbix
services. Normally, these substitution variables are initialized with certain
default values.

Orbix provides a mechanism, however, that allows you to override the default
values of the substitution variables. First, you create a substitutions file, which
contains alist of property settings, and then you provide thisfile to the
itconfigure utility in the course of creating anew domain.

Example 26 shows the sample contents of a substitutions file that sets
security-related substitution variables.

Example 26: Substitution Variablesin Property File Format

ROOT_TRUSTED_CA LIST POLICY="C:\\orbix6\\custom certs\\calist.pe
_—

SERVICES_AUTH_METHOD_ DATA=["filename=C:\\orbix6\\custom_certs\\a
dministrator.pl2", "password file=C:\\orbix6\\custom certs\\ad
ministrator.pwf"]

UTILITIES_AUTH METHOD_DATA=["filename=C:\\orbix6\\custom certs\\
utilities.pl2", "password_file=C:\\orbix6\\custom certs\\utili
ties.pwf"]

ADMINISTRATOR_GSSUP_CREDENTIALS=["username=IONAServiceAdmin", "do
main=IONA"]

ITADMIN_ADMIN CERT ROOT_DIR="C:\\orbix6\\custom certs"

KDM_AUTH_METHOD_DATA=["filename=C: \\orbix6\\custom certs\\kdmadm
inistrator.pl2", "password_file=C:\\orbix6\\custom certs\\kdma
dministrator.pwf"]

KDM_CERT CONSTRAINTS=["C=US, O=ABigBank*,CN=abc*", "C=US, O=ABigBan
k*,CN=xyz*"]

KDM_ADM_CERT_CONSTRAINTS=["C=US, O=ABigBank*, CN=abc*"]

Customizing a Secure Domain

The substitutions file has the format of a Java propertiesfile (it isread by
itconfigure, Which isaJava-based tool). In particular, thereis no semicolon, ;,
required at the end of aline and adouble backslash, \\, must be used in place of
asingle backslash, \, in Windows-style path names (the Java properties file uses
backdlash as an escape character).

The substitution variables shown in Example 26 on page 216 have the following
meaning:

ROOT_TRUSTED_CA LIST poLICY—Specifiesthelist of trusted CA
certificates for al Orbix services. This substitution variable initializes the
policies:trusted ca_list_policy configurati on variable (see
“Specifying Trusted CA Certificates’ on page 369).

SERVICES_AUTH_ METHOD_DATA—Specifies the own X.509 certificate for all
Orbix services. It is recommended that you avoid putting the certificate’s
private key password directly into configuration (that is, set the
password_file attribute instead of the password attribute). This
substitution variable initializes the

principal_sponsor:auth method data configuration variable (see
“Specifying an Application’s Own Certificate” on page 371) within the
configuration scopes that affect standard Orbix services.

UTILITIES_AUTH METHOD_DATA—SpeCifies the own X.509 certificate for
the itadmin command-line utility. This substitution variableinitializes the
principal_sponsor:auth method_data configuration variablewithinthe
iona_utilities configuration scope.

ADMINISTRATOR _GSSUP_CREDENTIALS—Specifies the CSI GSSUP
(username and password) credentialsfor all Orbix services. This
substitution variable initializes the
principal_sponsor:csi:auth_method data configuration variable (see
“Providing a Username and Password” on page 428).
ITADMIN_ADMIN_CERT ROOT_ DIR—gpecifiesthelocation of adirectory that
contains PKCS#12 certificates that can be used by an administrator to log
on to the KDM server using the itadmin utility (for details see “Logging
In” on page 397). This substitution variable initializes the
itadmin_x509_cert_root configuration variable.
KDM_AUTH_METHOD_DATA—currently, not used (the KDM server is
colocated with and uses the same X.509 certificate as the location service).

217

CHAPTER 9 | Securing Orbix Services

Creating a secure domain using
theitconfigure command line

Creating a secure domain using
theitconfigure GUI

Run itconfigure

218

® KDM_CERT_CONSTRAINTS—SpeCifies certificate constraints that restrict
accessto the KDM server, protecting it from unauthorized clients (see
“Defining certificate constraints’ on page 400).

® KDM_ADM CERT_CONSTRAINTS—Specifies certificate constraintsthat protect
the itadmin utility from rogue applications that might attempt to
impersonate the KDM server (see“ Defining certificate constraints” on
page 400).

If you have a pre-existing deployment descriptor, DeploymentDescriptor, for a
secure domain, you can apply the substitution variables from a substitutionsfile,
SubstitutionsFile, by invoking itconfigure from the command line with the
-substitutions switch, asfollows:

itconfigure -nogui -load DeploymentDescriptor
-substitutions SubstitutionsFile

For more details about the command-line approach to configuring domains, see
the Deployment Guide.

To create a customized secure domain, perform the following steps:
Run itconfigure.

Select expert mode.

Specify domain details.

Specify asubstitutionsfile.

Specify storage locations.

Select services.

Confirm choices.

© N O g0~ wDd PR

Finish configuration.

To begin creating a new configuration domain, enter itconfigure a a
command prompt. An Orbix Configuration Welcome dialog box appears, as
shown in Figure 41.

Customizing a Secure Domain

Click Cancel to skip this dialog.

Figure 41: The Orbix Configuration Welcome Dialog Box

{i7 Orbix Configuration Welcome |
Welcome to the Orbix Configuration tool. Please select an aption:

@ |Create a new domain|
() Open an existing domain

(0 Go straight into itconfigure

[] Don't show this dialog again

Ok H Cancel I

Select expert mode From the main Orbix Configuration window, select File]New|Expert to begin

creating adomain in expert mode, as shown in Figure 42.

Figure 42: Selecting File|New|Expert from the Main Window

fis) sample-domain - Orbix Configuration

File | View PRun Tools Help
[NEEENNN ¢ steara =
Open | # Expert Ih o B
Reopen » AN
@& Connect

[Deploy
Exit

219

CHAPTER 9 | Securing Orbix Services

Specify domain details A Domain Details window appears, as shown in Figure 43.

In the Configuration Domain Name text field, type custom-secure. Set the

Allow Secure Communication checkbox and unset the Allow Insecure
Communication checkbox.

Figure 43: Specifying Domain Details

fjj_-" Create a Configuration Domain - Expert Mode

Steps Domain Details

1. Domain Details Domain Name: |custom-gecure |
2. Storage Locations Location Domain: |cu5tnm—secure.|0cati0n |
3. Select Services

4. Confirm Choices @ File Based Domain [Allow Insecure Communication

4, Deploying ... () Configuration Repositary Domain Allow Secure Communication

6. Summary
[Launch Domain Services on Machine Startup

[] Generate EMS configuration files

Address Mode Policy for Ohject References: Short (ungqualified) hostname E“

[Listen an Address
[l Use Corbalocs

nialize || Localize || Substittions |

[<gack |[_met-][Emisn || cancel

220

Customizing a Secure Domain

Specify a substitutionsfile From the Domain Details window, click the Substitutions button at the bottom
of the panel—see Figure 43 on page 220.
A file selection dialog appears, as shown in Figure 44. Select a prepared
substitutions file (a properties file containing substitution variables—see
“Substitution variables’ on page 216) and click Open.

Figure 44: Secifying a Substitutions File

{i}) select File Containing Replacement ¥alues for Substitutio x|
Lookln: |E3 Orbix_63 (] [t (@ &= BEEE
T asp =) licenzes bt
T bin =) orbix_snv bat
0 ete
ik
T registry
O tmp
T var
File Marne: | |
Files of Type: | All Files -]

open || cancel |

From the Domain Details window, click Next> to continue.

Specify storage locations A Storage L ocations window appears.
If you want to store the domain configuration files somewhere other than the
default locations, you can use the Storage L ocations panel to customize the
relevant directory locations.

Click Next> to continue.

221

CHAPTER 9 | Securing Orbix Services

Select services

Confirm choices

Finish configuration

222

A Select Serviceswindow appears.

Using the checkboxes on this panel, select the servicesthat you require.
Typically, you require at least aL ocation service and a Node Daemon. Y ou
only need to select the IONA Security service, if you want to install it on the
current host.

Note: For more details about how to deploy a domain across multiple hosts,
please consult the Orbix Deployment Guide.

Click Next> to continue.

A Confirm Choices window appears.

Y ou now have the opportunity to review the configuration settings in the
Confirm Choices window. If necessary, you can use the <Back button to make
corrections.

Click Next> to create the secure configuration domain and progress to the next
window.

The itconfigure utility now creates and deploys the secure configuration
domain, writing files into the OrbixInstalIDir /etc/bin,

OrbixInstallDir /etc/domain, OrbixInstallDir /etc/1log, and

OrbixInstallDir /var directories (or into custom locations, if you changed the
defaults in the Stor age L ocations window).

Click Finish to quit the i tconfigure utility.

Customizing a Secure Domain

Configuring an iSF Adapter for the Security Service

Overview

Install an iSF adapter

Configurethethird-party
enterprise security system

By default, a new domain configures the security service to use the file adapter
to store security data (usernames, passwords, roles and realm data). It is
necessary to replace the file adapter with a different iSF adapter, however,
because the file adapter is not designed for use in a production environment.

WARNING: The file adapter is provided for demonstration purposes only.
Orbix does not support the use of the file adapter in a production environment.

There are two approaches you can take to installing an i SF adapter in the Orbix

security service:

° Install a standard i SF adapter—Orhix provides arange of ready-made i SF
adapters for the Orbix security service. Currently, the LDAP adapter is the
only iSF adapter suitable for a production environment.

For details, see “ Configuring the Orbix Security Service” on page 137.

. Install a customiSF adapter—you can implement and install your own
custom i SF adapter using a special Java API provided by Orbix.

For details, see “Developing an iSF Adapter” on page 531.

After installing an i SF adapter (which interfaces a third-party enterprise security
system into the Orbix security service), you must then prime the third-party
enterprise security system with security data (usernames, passwords, roles and
realm data).

For more information about the kind of security datathat is required for
role-based access control, see “Managing Users, Roles and Domains’ on
page 167.

223

CHAPTER 9 | Securing Orbix Services

Configuring a Typical Orbix Service

Overview This section describes how to configure atypical Orbix service—such as
naming, trading, events, and so on—running in a domain with an Orbix security
service. Details of the Orbix security service configuration are discussed in the
next subsection “ Configuring the Security Service” on page 233.

To configure atypical Orbix service, there are two groups of configuration

settings that are relevant:

. Configuration settings for the application ORB—these settings configure
the behavior of Orbix at the application level.

® Configuration settings for the internal ORB—these settings configure an
internal ORB that allows the server process to be monitored by the Orbix
management service.

Configuration settingsfor the Example 27 shows the configuration settings for atypical Orbix service (not the
application ORB security service itself). These settings configure the application ORB—that is,
these settings determine the ordinary runtime behavior of the service.

Example 27: Typical Service Configuration for the Application ORB
Orbix Configuration File

General configuration at root scope.

1 Dbinding:client_binding list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

2 policies:mechanism policy:protocol_version = "SSL_V3";
policies:mechanism policy:ciphersuites =
["RSA WITH _RC4_128 SHA", "RSA WITH RC4_128 MD5"];

3 policies:trusted ca_list_policy =
"%{ROOT_TRUSTED_CA LIST POLICY}";

iona_services

{
Common SSL/TLS security settings.

224

Customizing a Secure Domain

Example 27: Typical Service Configuration for the Application ORB

4 principal_sponsor:use_principal_sponsor = "true";
5 principal_sponsor:auth _method id = "pkcsl2_file";
6 principal sponsor:auth _method data =

"% {SERVICES_AUTH_METHOD DATA}";

7 policies:target_secure_invocation_policy:requires =
["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity"];

policies:target_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

8 policies:client_secure_ invocation policy:requires =
["Confidentiality", "EstablishTrustInTarget",
"DetectMisordering", "DetectReplay", "Integrity"l];

policies:client_secure invocation policy:supports
["Confidentiality", "EstablishTrustInClient",
"EstablishTrustInTarget", "DetectMisordering",
"DetectReplay", "Integrity"];

9 binding:server_binding list = ["CSI+GSP+0TS", "CSI+GSP",
"CSI+OTS", "CSI"];

Service {

Service-specific security configuration.

10 orb_plugins = ["local_log_stream", "iiop_profile",
"giop" , "iiOp_tlS" , "OtS" , ||gspn] ,.

11 plugins:Service:iiop tls:port = "0";
plugins:Service:iiop_tls:host = "ServiceHost";

Configuration of CSI and GSP plug-ins.
12 policies:csi:auth_over transport:target_requires

"EstablishTrustInClient";

policies:csi:auth_over transport:target_supports
"EstablishTrustInClient";

policies:csi:auth_over_transport:server domain_name =
"IONA";

policies:csi:auth_over transport:client_supports =
"EstablishTrustInClient";

13 principal_sponsor:csi:use principal_sponsor = "true";
principal_sponsor:csi:auth_method_id = "GSSUPMech";

225

CHAPTER 9 | Securing Orbix Services

226

14

15

Example 27: Typical Service Configuration for the Application ORB

I8

principal_sponsor:csi:auth_method_data =
"% {ADMINISTRATOR_GSSUP_CREDENTIALS}";

plugins:gsp:action_role mapping file =
"file:///vob/art/etc/domains/filedomain-secure-is2-tls/allow_

all authenticated clients_action_role mapping.xml";

plugins:gsp:authorization_realm = "IONAGlobalRealm";

The preceding service configuration can be explained as follows:

1.

Make sure that the binding:client_binding_list variable includes
bindings with the 11op_TLS and cs1 interceptors. Y ou can use the value of
thebinding:client_binding list shown here.

The SSL/TL S mechanism policy specifies the default security protocol
version and the available cipher suites—see “ Specifying Cipher Suites’ on
page 349.

An SSL/TLS application needs alist of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from other
SSL/TLS applications.

By default, thepolicies:trusted ca list_policy variableisinitialized
from a substitution variable, ROOT _TRUSTED CA_LIST POLICY.
Alternatively, you can edit thepolicies:trusted ca_list _policy
variableto point at alist of trusted certificate authority (CA) certificates.
For example, the following configuration fragment shows how to initialize
thepolicies:trusted_ca_list_policy configuration variable explicitly:

policies:trusted_ca_list_policy =
"/vob/art/etc/tls/x509/trusted ca_lists/ca_listl.pem";

Customizing a Secure Domain

For details, see “ Specifying Trusted CA Certificates” on page 369.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), thepolicies:trusted ca list_policy variableisignored.
Within Schannel, the trusted root CA certificates are obtained from the
Windows certificate store.

The Orhix services al require an X.509 certificate. Hence, thisline enables
the SSL/TLS principal sponsor, which specifies a certificate for the
application.

This line specifies that the X.509 certificate is contained in a PKCS#12
file. For alternative methods, see “ Specifying an Application’s Own
Certificate” on page 371.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the principal_sponsor:auth_method_id value must be
security label instead of pkes12_file.

By default, the service’s own X.509 certificate is specified by the value of
the SERVICES_AUTH_METHOD_DATA substitution variable.

Alternatively, you can edit the principal_sponsor:auth_method_data
configuration variable directly. For example, the following configuration
fragment specifies the service's own X.509 certificate by setting the
filename and password_file attributes:

principal_sponsor:auth method data =
["filename=/vob/art/etc/tls/x509/certs/services/administ
rator.pl2",
"password_file=/vob/art/etc/tls/x509/certs/services/admi
nistrator.pwf"];

The filename value should be initialized with the location of a certificate
filein PKCS#12 format—see “ Specifying an Application’s Own
Certificate” on page 371 for more details.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), you would set the 1abel option instead of the £ilename Optionin
the principal_sponsor:auth_method_data configuration variable. The
label specifiesthe common name (CN) from the application certificate's
subject DN.

227

CHAPTER 9 | Securing Orbix Services

228

10.

Thefollowing two lines set the required options and the supported options
for the target secure invocation palicy. In this example, which is a secure
domain, the target policies specify that the application will accept secure
connections only.

Alternatively, in a semi-secure domain the target secure invocation policy
would be set asfollows:

policies:target_secure_invocation_policy:requires

["NoProtection"];
policies:target_secure invocation policy:supports =
["NoProtection", "Confidentiality",

"EstablishTrustInTarget", "EstablishTrustInClient",
"DetectMisordering", "DetectReplay", "Integrity"];

Thefollowing two lines set the required options and the supported options
for the client secure invocation policy. In this example, which is a secure
domain, the client policies reguire the connection to open secure
connections only.

Alternatively, in a semi-secure domain the client secure invocation policy
would be set asfollows:

policies:client_secure_ invocation_policy:requires
["NoProtection"];

policies:client_secure_invocation_policy:supports
["NoProtection", "Confidentiality",
"EstablishTrustInTarget", "EstablishTrustInClient",
"DetectMisordering", "DetectReplay", "Integrity"l];

Make sure that the binding: server_binding_list variable includes
bindings with the CSI and GSP interceptors. Y ou can use the value of the
binding:server_binding list shown here.

Make sure that the orb_plugins variable in this configuration scope
includes both the iiop_t1s plug-in and the gsp plug-in.

Note: For fully secure applications, you should exclude the iiop
plug-in (insecure 11OP) from the ORB plug-inslist. This renders the
application incapable of making insecure |1OP connections.

For semi-secure applications, however, you should include the iiop
plug-in before the iiop_t1s plug-ininthe ORB plug-inslist.

11

12.

13.

Customizing a Secure Domain

The llIOP/TLSIP port isset to 0 in this example, because the node daemon
isresponsible for alocating the port dynamically (on demand activation).
Servicesthat are not activated on demand (for example, the locator) will be
allocated a specific IP port.

In this example (secure domain), the CSI policies are set up in such away
that clients are required to provide a username and password to log on to
the service.

Alternatively, in a semi-secure domain the
policies:csi:auth_over_transport:target_requires variableis set
to an empty string, ", implying that clients are not required to provide a
username and password to the service. For example:

policies:csi:auth over_ transport:server domain name =
"IONA";

policies:csi:auth_over transport:target_supports =
"EstablishTrustInClient";

policies:csi:auth_over transport:target_requires = "";

policies:csi:auth_over transport:client_supports =
"EstablishTrustInClient";

The CSl principal sponsor sets a username, a password and a domain,
which the server uses when acting in a client role to connect to other
applications. By default, the username, password, and domain for the CSl
principal sponsor are initialized from the
ADMINISTRATOR_GSSUP_CREDENTIALS substitution variable.

Alternatively, you can set the username, password, and domain explicitly,
as shown in the following configuration fragment:

principal_sponsor:csi:auth_method data =
["username=IONAServiceAdmin", "password=service",
"domain=IONA"];

The principal_sponsor:csi:auth _method data var jableisset as

follows:

+ username—has the value ToNAServiceadmin. When using the
default ACLs (see “ Default Access Control Lists” on page 237), the
TONAServiceAdmin USer enjoys unrestricted accessto al of the core
Orbix services.

229

CHAPTER 9 | Securing Orbix Services

Configuration settingsfor the
internal ORB

230

14.

15.

+ password—in this example, the CS| password is provided directly in
the configuration file. For alternative ways of specifying the CSI
password, see “Providing a Username and Password” on page 428.

+ domain—hasthe value 1ona. The CSI authentication domain must
match the target server’s domain name, as specified by the
policies:csi:auth over_transport:server_ domain_ name
configuration variable, or could be an empty string (actsasa
wildcard).

Theaction_role mapping configuration variable specifiesthe location of

an action-role mapping that controls accessto the IDL interfaces

implemented by the server. Thefilelocation is specified in an URL format,
fOfexanHﬂe:file:///security_admin/action_role_mapping.Xml

(UNIX) or file:///c:/security admin/action_role mapping.xml

(Windows).

For more details about the action-role mapping file, see “CORBA

Action-Role Mapping ACL” on page 188.

This configuration setting specifies the i SF authorization realm,

AuthzRealm, to which this server belongs (the default is

TONAGlobalRealm). For more details about i SF authorization realms, see

“iSF Authorization Realms” on page 171.

Example 28 shows the configuration settings for the internal ORB. These
settings enabl e the management service to monitor the Orbix services. All of the
settings for the internal ORB are intended to configure the server end of a
connection. Theinternal ORB does not open any connections to other processes.

Example 28: Typical Service Configuration for the Internal ORB

Orbix Configuration File

IT_POAInternalORB

{

principal_ sponsor:use_principal_sponsor = "true";
principal_sponsor:auth method id = "pkcsl2_file";
principal_ sponsor:auth method data =

"% {SERVICES_AUTH METHOD_DATA}";

Customizing a Secure Domain

Example 28: Typical Service Configuration for the Internal ORB

policies:target_secure invocation policy:requires =
["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity"];
policies:target_secure invocation policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

policies:client_secure_invocation_policy:requires
["Confidentiality", "EstablishTrustInTarget",
"DetectMisordering", "DetectReplay", "Integrity"];
policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInClient",
"EstablishTrustInTarget", "DetectMisordering",
"DetectReplay", "Integrity"];

binding:server_binding list = ["CSI+GSP+O0TS", "CSI+GSP",
"CSI+OTS", "CSI"];

policies:csi:auth_over transport:target_requires =
"EstablishTrustInClient";

policies:csi:auth_over transport:target_supports =
"EstablishTrustInClient";
policies:csi:auth_over_transport:server domain_name =
"IONA";

iona_services
{
Service
{
orb_plugins = ["local_log_stream", "iiop_profile",
"giop", "iiop_tls", "ots", "gsp"l;

plugins:local_log_stream:filename =
"/vob/art/var/filedomain-secure-is2-tls/logs/IT POAInternalOR
Bifr.log";

plugins:gsp:action_role_mapping file =
"file:///vob/art/etc/domains/filedomain-secure-is2-tls/allow_
all_authenticated clients_action_role mapping.xml";
17

231

CHAPTER 9 | Securing Orbix Services

The preceding internal ORB configuration can be explained as follows:
Theinternal ORB’s principa sponsor should be configured with an X.509
certificate suitable for a secure Orbix service.

1

Note: Instead of using the principal sponsor here, you could set the
plugins:security:share_credentials_across_orbs confi gurati on

variable instead. See “ Security Configuration” on page 485.

2. Makesurethat the orb_plugins variable in this configuration scope
includes both the iiop_t1s plug-in and the gsp plug-in.
3. Theinternal ORB usesthe

allow_all_authenticated_clients_action_role_mapping.xml filefor

access control. This configuration gives unrestricted accessto all
authenticated clients.

232

Customizing a Secure Domain

Configuring the Security Service

Overview

Configuration settings for
application ORB

This section describes how to configure the Orbix security service. This service
is configured somewhat differently from the others. For example, because the
gsp plug-in contacts the security service to perform authentication, the gsp
plug-in must be excluded from the security service’s own orb_plugins listin
order to avoid acircular dependency.

Example 29 shows the configuration settings for the Orbix security service.
These settings configure the application ORB—that is, these settings determine
the ordinary runtime behavior of the service.

Example 29: Security Service Configuration for the Application ORB
Orbix Configuration File
General configuration at root scope.

initial_references:IT SecurityService:reference = "IOR: ...";

iona_services {
Common SSL/TLS security settings.

security

{
iS2Host |
éiﬁgins:security:iiop_tls:port = "53112";
plugins:security:iiop_tls:host = "iS2Host";
orb_plugins = ["local_log_stream", "iiop_profile",

"giop", "iiop_tls"];

policies:iiop_tls:target_secure_invocation policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

233

CHAPTER 9 | Securing Orbix Services

234

Example 29: Security Service Configuration for the Application ORB

i

policies:iiop_tls:target_secure_invocation policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:security server:client_certificate constraints =
["C=US, ST=Massachusetts, O=ABigBank*, CN=0Orbix2000 IONA
Services (demo cert), OU=Demonstration Section -- no warranty
--", "C=US, ST=Massachusetts, O=ABigBank*, CN=Abigbank Accounts
Server*", "C=US,ST=Massachusetts, O=ABigBank*,CN=Iona
utilities - demo purposes"];

server
{
orb _plugins = ["local_log_stream", "iiop_ profile",

"giop", "iiop_tls", "it_servlet_binding_manager",
"it_deployer", "it_servlet context", "it_http_sessions",
"it_servlet_filters", "http", "https", "it_servlet_dispatch",
"it_exception_mapping", "it_naming_context",
"it_web_security", "it_web_app_activator",
"it_default_servlet _binding", "it_character_ encoding",
"it_locale", "it_classloader_mapping"];

be

i

The preceding security service configuration can be explained as follows:

1

The security service' sroot configuration settings are the same asin
Example 27 on page 224.

The IT_securityService initia reference specifies the IOR that CORBA
applications use to talk to the security service.

The common configuration settings (in the iona_services scope) are the
same as in Example 27 on page 224.

Customizing a Secure Domain

Theplugins:security:iiop_tls:port Variable specifiesthe IP port
where the security service listens for secure connections.

Note: If you want to change the security service'slistening port, you
would also have to update the IOR in the

initial references:IT SecurityService:reference Setting. You
could regenerate the IOR by re-running the itconfigure utility.

This orb_plugins setting is required here for technical reasons.
Specificaly, the Orbix security serviceis bootstrapped in two stages, as
follows:

v. Inthefirst stage, the generic server (implemented in C++)
instantiates an ORB with the iona_services.security.iS2Host
configuration scope, loading aminimal set of ORB plug-ins (this
orb_plugins Setting).

vi. Inthe second stage, the generic server spawns a Java process, which
instantiates an ORB with the
iona_services.security.iS2HOst. server configuration scope,
loading the full set of ORB plug-ins.

The IIOP/TLStarget secure invocation policy requires a strong quality of

protection for incoming connections.

Restricts access to the Orbix security server, allowing only clients that

match the specified certificate constraints to open a connection to the

security service. For details of how to specify certificate constraints, see

“Applying Constraints to Certificates’ on page 555.

Note: This configuration variable must be set, otherwise the Orbix
security server will not start.

235

CHAPTER 9 | Securing Orbix Services

8. Make surethat the orb_plugins variablein this configuration scope
includesthe iiop_tl1s plug-in.

Note: For fully secure applications, you should exclude the iiop
plug-in (insecure 11OP) and the http plug-in (insecure HTTP) from the
ORB plug-ins list. This renders the application incapable of making
insecure I1OP connections and insecure HT TP connections.

For semi-secure applications, however, you should include the iiop
plug-in beforethe iiop_t1s plug-inin the ORB plug-inslist.

236

Default Access Control Lists

Default Access Control Lists

Overview

In thissection

When you use the i tconfigure utility to generate a secure domain,
SecureDomain, a collection of default action-role mapping files are generated in
the etc/domains/SecureDomain directory. Each of the core Orbix services,
Service, is associated with an action-role mapping file asfollows:

i Service_action_role_mapping.xml—for asecure domain.
4 Service_semi_secure_action_role mapping.xml—for a semi-secure
domain.

Two basic levels of access are defined in these ACLS: 10NAUserRole for
ordinary users; and TONAServiceRole for administrators.

Note: It isrecommended that you check whether the default ACLs provide
thelevel of security you need before depl oying the core Orbix servicesin areal
system.

This section contains the following subsections:

Configuration Repository ACL page 238
Locator ACL page 243
Node Daemon ACL page 245
Naming Service ACL page 247
Trader Service ACL page 248
Event Service ACL page 251
Notification Service ACL page 254
Basic Log Service ACL page 262
Event Log Service ACL page 264
Notify Log Service ACL page 267

237

CHAPTER 9 | Securing Orbix Services

Configuration Repository ACL

Overview The configuration repository (CFR) ACL is aspecial case, because it requires
access control of parameter valuesin the IDL operations. To enable
parameter-based access control, the CFR includes a special subsystem, arequest
to action mapper, which is responsible for parsing the operation parameters. In
the CFR, the following kinds of parameter can be subjected to access control:

® Configuration scopes.
° Namespaces.

Note: It isrecommended that you check whether the default configuration
repository ACL providesthe level of security you need before deployingitina
real system.

Configuration scopes Similarly to afile domain, the CFR uses a configuration scope to group together
related configuration settings. Configuration scopes can be nested as shown in
the following example:

Orbix Configuration File
demos {
tls {
secure_client_with_cert {

To reference a nested configuration scope, the period character (.) isused asa
delimiter. For example, demos . t1ls.secure_client_with_cert refersto the
innermost configuration scope of the preceding example.

238

Namespaces

IT_CFR module

CompoundName type

Default Access Control Lists

The CFR uses namespaces to represent compound variable names. For example,
the principal_sponsor:csi:auth_method_id variable nameis built up as
follows:

principal_sponsor Namespace.
principal_sponsor:csi Namespace.
principal_sponsor:csi:auth_method_id Variable name.

To represent compound names composed of namespaces, the colon character (:)
isused as adeimiter.

The 17_cFr module defines some of the CFR’s remotely accessible interfaces
and operations (the CFR aso implements the IDL modules defined in
cfr_replication.idl). ThelDL for the 1T_cFr moduleisavailablein the
following file:

OrbixInstalIDir /asp/Version/idl/orbix pdk/cfr.idl

For example, the itadmin utility calls operations from the 1T_cFr modulein
order to read from and update the configuration repository. Example 30 shows
an overview of the interfaces defined in the 1T_crr module.

Example 30: The IT_CFR Module

// IDL

module IT CFR {
interface ConfigScope { ... };
interface Namespace { ... };
interface ConfigRepository { ... };
interface Listener { ... };
interface ListenerRegistration { ... };

The IT_CFR: : CompoundName type is defined as follows:

// IDL
module IT CFR {

typedef sequence<string> CompoundName;
I g

239

CHAPTER 9 | Securing Orbix Services

Par ameter-based access control

240

The compoundName type represents configuration scopes and namespaces as
follows:
® Configuration scope—is converted into a compoundName by recognizing
the period character (.) asadelimiter. For example, the
demos . tls.secure client with cert Scopeisconverted to the
following sequence of strings: demos, tls, secure_client_with_cert.
° Namespace—is converted into a compoundName by recognizing the colon
character (:) asadelimiter. For example, the
principal_sponsor:csi:auth_method id variable nameis converted to
the following sequence of strings: principal_sponsor, csi,
auth _method_id.

In order to provide a meaningful level of access control for the CFR, itis
necessary to control access at the level of operation parameters; operation-based
access control would not be sufficient.

For example, consider the following destroy_subscope () operation from the
IT_CFR module:

// IDL
module IT CFR {
interface ConfigScope
{
ConfigScope destroy_subscope (
in CompoundName name
) raises (CFRException);
b g
I8

Ordinary users should not have permission to destroy critical configuration
scopes such as iona_services (Which holds the configuration settings for the
core Orhix services). But ordinary users do need full accessto at least one scope,
for example demos, in order to configure their own applications.
Parameter-based access control enables you to control access based on the
value of the name parameter in the preceding operation.

Default Access Control Lists

To control access based on the destroy_scope () Operation’ s name parameter,
you could use the following fragment in an action-role mapping file:

<interface>
<name>IDL:iona.com/IT_CFR/ConfigScope:1l.0</name>

<action-role>
<action-name>destroy_subscope</action-name>
<parameter-control>
<parameter name="name" value="demos.*"/>
<role-name>IONAUserRole</role-name>
</parameter-control>

<role-name>IONAServiceRole</role-name>
</action-role>
</interface>

This ensures that ordinary users (represented by ToNaUserRole) can only
destroy the demos scope and its subscopes.

ACL for configuration scope Example 31, which is extracted from the default
operations cfr_action_role_mapping.xml file, shows how access control is configured
for the IT_CFR: :ConfigScope interface.

Example 31: ACL for the IT_CFR::ConfigScope I nterface

<interface>
<name>IDL:iona.com/IT_CFR/ConfigScope:1l.0</name>
<action-role>
<action-name>*get*</action-name>
<role-name>IONAUserRole</role-name>
</action-role>
<action-role>
<action-name>scope_lookup</action-name>
<role-name>IONAUserRole</role-name>
</action-role>
<action-role>
<action-name>create_subscope</action-name>
<parameter-control>
<parameter name="name"
value="_it_cfr_root_scope.*"/>
<role-name>IONAUserRole</role-name>
</parameter-control>
<parameter-control>
<parameter name="name" value="demos.*"/>

241

CHAPTER 9 | Securing Orbix Services

Example 31: ACL for the IT_CFR::ConfigScope I nterface

<role-name>IONAUserRole</role-name>
</parameter-control>
<parameter-control>
<parameter name="name" value="multicast_demo.*"/>
<role-name>IONAUserRole</role-name>
</parameter-control>
<role-name>IONAServiceRole</role-name>
</action-role>
<action-role>
<action-name>destroy_ subscope</action-name>
<parameter-control>
<parameter name="name" value="demos.*"/>
<role-name>IONAUserRole</role-name>
</parameter-control>
<parameter-control>
<parameter name="name" value="multicast_demo.*"/>
<role-name>IONAUserRole</role-name>
</parameter-control>
<role-name>IONAServiceRole</role-name>
</action-role>
<action-role>
<action-name>*</action-name>
<role-name>IONAServiceRole</role-name>
</action-role>
</interface>

242

Default Access Control Lists

Locator ACL

Overview

IONAServiceRole

IONAUserRole and
UnauthenticatedUser Role

This subsection describes which interfaces and operations are accessible through
the default locator ACL. The following alternative ACL files are generated by
itconfigure for the locator service:

4 locator_action_role_mapping.xml (Secure domain).

. locator_semi_secure action_role mapping.xml (Semi-secure

domain).

Note: It isrecommended that you check whether the default locator ACL
provides the level of security you need before deploying it in areal system.

The r0NAServiceRole can access al interfaces and operations in both secure
and semi-secure domains.

The 10NAUserRole can access the locator interfaces and operations shown in
Table 5 in both secure and semi-secure domains.

Unauthenticated users (represented by the special tnauthenticatedUserRolein
the action-role mapping file) can access the interfaces and operations shown in
Table 5in semi-secure domains only.

Table5: Locator Interfaces and Operations Accessible to the IONAUserRole
and the UnauthenticatedUser Role

IDL Interface IONAUserRole UnauthenticatedUser Role
Accessible Operations Accessible Operations
(Secure and semi-secure) (Semi-secure only)
IT Location: :Locator All All
IT IMRAdmin: :Process Al All
IT IMRAdmin: :ProcessRegistry All All
IT IMRAdmin: :Process All All
IT_IMRAdmin: :ORBRegistry All All

243

CHAPTER 9 | Securing Orbix Services

Table5: Locator Interfaces and Operations Accessible to the IONAUserRole
and the UnauthenticatedUserRole

IDL Interface IONAUserRole UnauthenticatedUser Role
Accessible Operations Accessible Operations
(Secur e and semi-secur €) (Semi-secure only)
IT_IMRAdmin: :ORB All All
IT_ NamedKey: :NamedKeyRegistry All All
IT_POATMRAdmin: : POA All All
IT POAIMRAdmin: : POARegistry All All
IT LocatorAdmin::ActiveORBRegistry All All
IT LocatorAdmin::ActiveProcessRegistry All All
IT POALocatorAdmin: :ActivePOARegistry All All
IT_POATMRAdmin: : ActivePOA All All
IT_POATMRAdmin: : POAACtiveORB All All
IT_POATIMRAdmin: : CachedPOA All All
IT_POAIMRAdmin: : POA All All
IT_POAIMRAdmin: : POACache All All
IT NodeDaemon: :NodeDaemonRegistry All All
IT NodeDaemon : : NodeDaemon None None
IT NodeDaemon: : DynamicStateRegistry None None
IT ServerLocation::ServerValidator None None
IT ServerLocation: :EndpointCache None None
IT LocatorAdmin: :ActiveProcess None None

244

Default Access Control Lists

Node Daemon ACL

Overview

IONAServiceRole

IONAUserRole and
UnauthenticatedUser Role

This subsection describes which interfaces and operations are accessible through
the default node daemon ACL. The following alternative ACL files are
generated by itconfigure for the node daemon service:

® node_daemon_action_role_mapping.xml (Secure domain).

° node_daemon_semi_secure_action_role_mapping.xml (sem -secure

domain).

Note: It isrecommended that you check whether the default node daemon
ACL providesthe level of security you need before deploying it in areal
system.

The ToNAServiceRole can access all interfaces and operations in both secure
and semi-secure domains.

The I0NAUserRole can access the node daemon interfaces and operations shown
in Table 6 in both secure and semi-secure domains.

Unauthenticated users (represented by the special UnauthenticatedUserRolein
the action-role mapping file) can access the interfaces and operations shown in
Table 6 in semi-secure domains only.

Table6: Node Daemon Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface

UnauthenticatedUser Role
Accessible Operations
(Semi-secure only)

IONAUserRole
Accessible Operations
(Secure and semi-secure)

IT _NodeDaemon : : NodeDaemon shutdown shutdown
shutdown_complete shutdown_complete
register_ process register process

IT NodeDaemon: : ORBStateRegistry None None

IT NodeDaemon: : EndpointRegistry None None

IT NodeDaemon: : ProcessRegistry None None

245

CHAPTER 9 | Securing Orbix Services

Table6: Node Daemon Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface IONAUserRole UnauthenticatedUser Role
Accessible Operations Accessible Operations
(Secur e and semi-secur €) (Semi-secure only)
IT NodeDaemon: : DynamicStateRegistry All All

246

Default Access Control Lists

Naming Service ACL

Overview

IONAServiceRole

IONAUserRole and
UnauthenticatedUser Role

This subsection describes which interfaces and operations are accessible through
the default naming service ACL. The following alternative ACL files are
generated by itconfigure for the naming service:

b naming_action_role_mapping.xml (Secure domain).

. naming_semi_secure_action_role mapping.xml (Semi-secure domain).

Note: It isrecommended that you check whether the default naming ACL
provides the level of security you need before deploying itin area system.

The ToNAServiceRole can access all interfaces and operations in both secure
and semi-secure domains.

The r0NAUserRole €an access the naming service interfaces and operations
shown in Table 7 in both secure and semi-secure domains.

Unauthenticated users (represented by the special UnauthenticatedUserRolein
the action-role mapping file) can access the interfaces and operations shown in
Table 7 in semi-secure domains only.

Table7: Naming Service Interfaces and Operations Accessible to the
IONAUSser Role and the UnauthenticatedUser Role

IDL Interface IONAUserRole UnauthenticatedUser Role
Accessible Operations Accessible Operations
(Secure and semi-secure) (Semi-secure only)
IT Naming: :IT NamingContextExt Al All
IT NamingReplication::IT MasterNamingAd | shutdown shutdown
min
IT NamingAdmin: :NamingAdmin shutdown shutdown
CosNaming: : NamingContextExt None None
CosNaming: :BindingIterator All All

247

CHAPTER 9 | Securing Orbix Services

Trader Service ACL

Overview

Secure domain

248

The default action-role mappings for the trader service are designed to protect

the service by differentiating between non-intrusive operations (for example,

read operations) and intrusive operations that might threaten the integrity of the

service (for example, write operations).

Two different action-role mappings are provided, as follows:

® Secure domain—both intrusive and non-intrusive access to the trader
serviceis restricted to authenticated applications only.

® Semi-secure domain—non-intrusive access to the trader serviceis
available to both authenticated and unauthenticated applications. Intrusive
accessis limited to authenticated applications only.

Note: It isrecommended that you check whether the default trader ACL
provides the level of security you need before deploying it in area system.

In a secure domain, the trader’ s action-role mapping fileis:
etc/DomainName/ trader_action_role mapping.xml

Only authorized applications can add service types and service offers. This
ensures that unauthorized peerswill not be able to add to the repository
references to malicious applications designed to mimic the behavior and
appearance of expected service offers.

Applications that need to obtain references to existing service offers must also
be authenticated. This prevents unauthorized client applications from looking up
servicesthey are not allowed to use.

Note: This precaution alone is not sufficient to protect server applications
from unauthorized access, because querying the trader serviceis not the only
way to obtain references to server applications. Sensitive applications must
incorporate their own security mechanisms, or be protected by the security
service aswell.

Access to administrative operation that could endanger the integrity of the
database if accessed by unauthorized partiesis restricted to roles normally used
by administrators (that is, ToNAServiceRole and IONAAdminRole).

Semi-secure domain

IONAServiceRole

IONAUserRole and
UnauthenticatedUser Role

Default Access Control Lists

In a semi-secure domain, the trader’ s action-role mapping fileis:
etc/DomainName/ trader_semi_secure_action_role mapping.xml

This mapping relaxes the settings from the secure domain, so that
unauthenticated users (using either secure or insecure transports) are allowed to
invoke any operations that perform read only queries.

Only authenticated users are allowed to invoke operations that require write
access to the Trader’ s database. This ensures that no malicious application will
be able to export unauthorized service types or offers (for example, server
applications that mimic legitimate service offers, but instead collect information
passed to them by client applications).

The ToNAServiceRole can access all interfaces and operations in both secure
and semi-secure domains.

The IoNAUserRole Can access the trader serviceinterfaces and operations shown
in Table 8 in both secure and semi-secure domains.

Unauthenticated users (represented by the special UnauthenticatedUserRolein
the action-role mapping file) can access the interfaces and operations shown in
Table 8 in semi-secure domains only.

Table8: Trader Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface

UnauthenticatedUser Role
Accessible Operations
(Semi-secure only)

IONAUserRole
Accessible Operations
(Secure and semi-secure)

CosTradingRepos: : ServiceTypeRepository

list_types
describe_type

add_type
list_types
describe_type

fully describe_type fully describe_type

CosTradingDynamic: : DynamicPropEval All All
IT Trading::IT LookupExt All All
IT TradingAdmin: :TradingAdmin None None
CosTrading: : Lookup All All

249

CHAPTER 9 | Securing Orbix Services

Table8: Trader Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface IONAUserRole UnauthenticatedUser Role
Accessible Operations Accessible Operations
(Secur e and semi-secur €) (Semi-secure only)
CosTrading: :Register export None
withdraw
describe
modify
withdraw_using_constraint
CosTrading: :Link None None
CosTrading: : Proxy All None
CosTrading: : Admin None None
CosTrading: :0OfferIterator All All
CosTrading: :0f ferIdIterator None None

250

Default Access Control Lists

Event Service ACL

Overview

Securedomain

Semi-secure domain

The default action-role mappings for the event service are designed to protect the
service by differentiating between non-intrusive operations (for example, read
operations) and intrusive operations that might threaten the integrity of the
service (for example, write operations).

Two different action-role mappings are provided, as follows:

. Secure domai n—intrusive access to the event serviceis restricted to
authenticated applications only.

® Semi-secure domain—intrusive access to the event serviceis available to
both authenticated and unauthenticated applications.

Note: It isrecommended that you check whether the default events ACL
provides the level of security you need before deploying itin area system.

In a secure domain, the event service's action-role mapping fileis:
etc/DomainName/event_action_role_mapping.xml

Only authenticated applications can connect to the event service for the purpose
of sending or receiving events. With this security scheme in place, consumers
connected to the service can trust that the events they receive are legitimate
(because they are known to originate from authenticated suppliers). Suppliers
that send events through the event service can trust that their events reach only
legitimate consumers (because consumers are also authenticated).

In a semi-secure domain, the event service's action-role mapping fileis:
etc/DomainName/event_semi_secure_action_role_mapping.xml

The security scheme for the semi-secure domain is very permissive, because al
applications have full access to the service by default. The scheme could be
made more secure by restricting the role of unauthenticated applicationsto
simple listeners (by denying them the privilege of connecting suppliers to event
channels).

WARNING: The semi-secure scheme should not be used if events can carry
security-sensitive information, because the identity of neither the suppliers nor
the consumers can be guaranteed.

251

CHAPTER 9 | Securing Orbix Services

|ONAServiceRole The ToNAServiceRole can access all interfaces and operations in both secure
and semi-secure domains.
IONAUserRole and The ToNAUserRole Can access the event serviceinterfaces and operations shown

UnauthenticatedUser Role in Table 9 in both secure and semi-secure domains.

Unauthenticated users (represented by the special UnauthenticatedUserRolein
the action-role mapping file) can access the interfaces and operations shown in

Table 9 in semi-secure domains only.

Table 9:

Event Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface

IONAUserRole
Accessible Operations
(Secur e and semi-secur €)

UnauthenticatedUser Role
Accessible Operations
(Semi-secure only)

IT EventChannelAdminInternal: :
EventChannelFactory

_get_name

_get_host

shutdown
create_channel
find_channel
find_channel_by_ id
list_channels
create_typed channel
find_typed_channel
find_typed_channel_by_id
list_typed_ channels
Create

_get_name

_get_host

shutdown
create_channel
find_channel
find_channel_by_ id
list_channels
create_typed_channel
find_typed_channel
find_typed_channel_by. id
list_typed_channels
Ccreate

find find
findByRef findByRef
list list
createTyped createTyped
findTyped findTyped
findByTypedRef findByTypedRef
listTyped listTyped

CosEventChannelAdmin: : EventChannel All All

CosTypedEventChannelAdmin: : All All

TypedEventChannel
CosEventChannelAdmin: : SupplierAdmin All All

252

Table9:

Default Access Control Lists

Event Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUser Role

Accessible Operations
(Semi-secure only)

CosTypedEventChannelAdmin: : All All
TypedSupplierAdmin

CosEventChannelAdmin: : ConsumerAdmin All All

CosTypedEventChannelAdmin: : All All
TypedConsumerAdmin

CosEventChannelAdmin: : ProxyPushConsumer All All

CosTypedEventChannelAdmin: : All All
TypedProxyPushConsumer

CosEventChannelAdmin: : ProxyPushSupplier | All All

CosEventChannelAdmin: : ProxyPullSupplier | All All

CosEventChannelAdmin: : ProxyPullConsumer | All All

253

CHAPTER 9 | Securing Orbix Services

Notification Service ACL

Overview

Securedomain

254

The default action-role mappings for the notification service are designed to

protect the service by differentiating between non-intrusive operations (for

example, read operations) and intrusive operations that might threaten the

integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

® Secure domain—both intrusive and non-intrusive access to the notification
service are restricted to authenticated applications only.

® Semi-secure domain—non-intrusive access to the notification service is
available to both authenticated and unauthenticated applications. Intrusive
accessis limited to authenticated applications only.

Note: It isrecommended that you check whether the default notification
ACL providesthe level of security you need before deployingitin area
system.

In a secure domain, the event service's action-role mapping fileis:
etc/DomainName/notify_action_role_mapping.xml

Only authenticated applications can connect to the notification service for the
purpose of sending or receiving notifications. With this security schemein place,
consumers connected to the service can trust that the events they receive are
legitimate (because they are known to originate from authenticated suppliers).
Suppliers that send events through the notification service can trust that their
events reach only legitimate consumers (because consumers are also
authenticated).

Authenticated applications are allowed to create and apply event filters and
mapping filters, as normal.

Authenticated applications are allowed to ater the behavior of the notification
service by setting Quality of Service properties at any level of the service. The
operations that administer the notification service are also protected by access
control. Hence, these adminstration operations can only be called by
authenticated applications and utilities.

Semi-secure domain

|ONAServiceRole

Default Access Control Lists

In a semi-secure domain, the event service's action-role mapping fileis:
etc/DomainName/notify semi_secure action_role mapping.xml

The security scheme for the semi-secure domain forces all event suppliersto
authenticate with the notification service. However any consumer, even
non-authenticated consumers, can connect to the service and receive events.

Under this security model, consumers can trust the notifications they receive to
be legitimate (because they are known to originate from authenticated
applications only). On the other hand, suppliers do not know whether the events
they send will reach authenticated or unauthenticated consumers.

WARNING: The semi-secure scheme should not be used if notifications can
carry security-sensitive information, because suppliers have no way of
knowing the identity of consumers. Also, an insecure transport might be used
to carry events to the consumers.

Operations that could potentially compromise the integrity or the functionality
of the notification service are restricted to authenticated applications only.

Only authenticated peers are allowed to apply filters to objects other than proxy
consumers or suppliers, since filters set at any other level could potentially be
used by malicious applications to prevent events from reaching they legitimate
targets.

Unauthenticated consumers have the right to decide which events they want to
receive: they can till apply filtersto their proxy supplier. Similarly, they have
read-only access to filters set at the channel administration level (so that they
can interpret the filtration logic of the events they receive).

The ToNAServiceRole can access all interfaces and operations in both secure
and semi-secure domains.

255

CHAPTER 9 | Securing Orbix Services

IONAUserRole and
UnauthenticatedUser Role

The ToNAUserRole can access the notification service interfaces and operations
shown in Table 10 in both secure and semi-secure domains.

Unauthenticated users (represented by the special UnauthenticatedUserRolein
the action-role mapping file) can access the interfaces and operations shown in
Table 10 in semi-secure domains only.

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUSser Role and the UnauthenticatedUser Role

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secur €)

UnauthenticatedUser Role
Accessible Operations
(Semi-secure only)

ProxyPullSupplier

IT NotifyFilterInternal::Filter All All

IT NotifyFilterInternal::MappingFilter All All

IT NotifyFilterInternal::FilterFactory All All

IT NotifyComm: : GroupNotifyPublish None None

IT NotifyComm: : GroupPushConsumer All All

IT NotifyComm: : All All
GroupStructuredPushConsumer

IT NotifyComm: : All Al
GroupSequencePushConsumer

IT NotifyChannelAdmin::IT ProxySupplier | All All

IT NotifyChannelAdmin: : All Al
NotifyProxySupplier

IT NotifyChannelAdmin: : All Al
ProxyPushSupplier

IT NotifyChannelAdmin: : All Al
StructuredProxyPushSupplier

IT NotifyChannelAdmin: : All All
SequenceProxyPushSupplier

IT NotifyChannelAdmin: : All Al

256

Default Access Control Lists

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUser Role

Accessible Operations
(Semi-secure only)

IT NotifyChannelAdmin: : Al All
StructuredProxyPullSupplier

IT NotifyChannelAdmin: : Al All
SequenceProxyPullSupplier

IT_NotifyChannelAdmin: : IT_ProxyConsumer | All All

IT NotifyChannelAdmin: : All All
NotifyProxyConsumer

IT NotifyChannelAdmin: : All All
ProxyPushConsumer

IT NotifyChannelAdmin: : All All
StructuredProxyPushConsumer

IT NotifyChannelAdmin: : All All
SequenceProxyPushConsumer

IT NotifyChannelAdmin: : All All
ProxyPullConsumer

IT NotifyChannelAdmin: : Al All
StructuredProxyPullConsumer

IT NotifyChannelAdmin: : All All

SequenceProxyPul lConsumer

257

CHAPTER 9 | Securing Orbix Services

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUSser Role and the UnauthenticatedUser Role

IDL Interface

IONAUserRole
Accessible Operations
(Secur e and semi-secur €)

UnauthenticatedUser Role
Accessible Operations
(Semi-secure only)

IT NotifyChannelAdmin: :ConsumerAdmin

get_bridge_proxy supplier

obtain_subscription_types
_for_admin

_get_bridge pull_supplier
s

_get_bridge push_supplier
s

get_proxy_supplier

obtain_notification_pull_
supplier

obtain notification push_
supplier

_get_MyID

_get_MyChannel

_get_MyOperator

_get_priority filter

_get_lifetime filter

_get_pull_suppliers

_get_push_suppliers

get_gos

validate_gos

get_filter

get_all_filters

obtain_push_supplier

obtain _pull_supplier

destroy

_set_priority filter

_set_lifetime filter

set_gos

subscription_change

add_filter

remove_filter

remove_all_filters

get_bridge proxy supplier

obtain_subscription_types
_for_admin

_get_bridge pull_supplier
s

_get_bridge push_supplier
s

get_proxy_supplier

obtain_notification_pull_
supplier

obtain_notification_push_
supplier

_get_MyID

_get_MyChannel

_get_MyOperator

_get_priority filter

_get_lifetime filter

_get_pull_suppliers

_get_push_suppliers

get_gos

validate_dgos

get_filter

get_all_filters

obtain_push_supplier

obtain_pull_supplier

subscription_change

258

Default Access Control Lists

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUser Role
Accessible Operations
(Semi-secure only)

IT NotifyChannelAdmin: : SupplierAdmin

get_bridge proxy_ consumer

obtain_offered_types_for_
admin

_get_bridge pull_consumer
s

_get_bridge_push_consumer
s

_get_MyID

_get_MyChannel

_get_MyOperator

get_gos

validate_dgos

get_filter

get_all_filters

obtain_typed notification
_pull_consumer

obtain_typed_notification
_push_consumer

get_proxy_consumer

obtain_notification_pull_
consumer

obtain_notification_push
consumer

destroy

_get_pull_consumers

_get_push_consumers

set_qgos

offer_change

add_filter

remove_filter

remove_all_filters

obtain_push_consumer

obtain_pull_consumer

get_bridge proxy_ consumer

obtain_offered_types_for_
admin

_get_bridge pull_consumer
s

_get_bridge_push_consumer
s

_get_MyID

_get_MyChannel

_get_MyOperator

get_qgos

validate_qgos

get_filter

get_all_filters

IT_NotifyChannelAdmin: :Manager

None

None

IT_NotifyChannelAdmin: :
GroupProxyPushSupplier

Al

Al

259

CHAPTER 9 | Securing Orbix Services

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUSser Role and the UnauthenticatedUser Role

IDL Interface IONAUserRole UnauthenticatedUser Role
Accessible Operations Accessible Operations
(Secur e and semi-secur €) (Semi-secure only)
IT NotifyChannelAdmin: : All Al

GroupStructuredProxyPushSupplier

IT NotifyChannelAdmin: : All All
GroupSequenceProxyPushSupplier

IT_NotifyChannelAdminInternal: : All obtain_offered_types
EventChannel obtain_subscribed types

_get_event_info

get_consumeradmin

get_supplieradmin

get_all_consumeradmins

get_all_supplieradmins

_get_MyFactory

_get_default_consumer_adm
in

_get_default_supplier_adm
in

_get_default_filter facto
ry

get_qgos

validate_gos

get_admin

for_consumers

new_for_ consumers_delegat
e

new_for_consumers

IT NotifyChannelAdminInternal: : All _get_default_filter_ facto
EventChannelFactory ry
find_channel
find_channel_ by id
list_channels
_get_manager
get_all_channels
get_event_channel
create_named_channel
create_channel

260

Default Access Control Lists

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface IONAUserRole UnauthenticatedUser Role
Accessible Operations Accessible Operations
(Secure and semi-secure) (Semi-secure only)
IT NotifyChannelAdminInternal: : Al None

BridgeProxyPushSupplier

IT NotifyChannelAdminInternal: : All None
BridgeProxyPushConsumer

261

CHAPTER 9 | Securing Orbix Services

Basic Log Service ACL

Overview

Securedomain

Semi-secure domain

|ONAServiceRole

262

The default action-role mappings for the basic log service are designed to

protect the service by differentiating between non-intrusive operations (for

example, read operations) and intrusive operations that might threaten the

integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

® Secure domain—intrusive access to the basic log service isrestricted to
authenticated applications only.

® Semi-secure domain—intrusive access to the basic log service is available
to both authenticated and unauthenticated applications.

Note: It isrecommended that you check whether the default basic log ACL
provides the level of security you need before deploying it in area system.

In a secure domain, the basic log service's action-role mapping fileis:
etc/DomainName/basic_log_action_role mapping.xml

Only authenticated applications can connect to the basic log service.
Authenticated applications can create new logs, retrieve existing logs, or delete
logs. They also have unlimited accessto all of the operations related to records.
Authenticated applications also have full access to the administrative functions
of thelogs (for example, setting the quality of service properties on the log,
changing the maximum log size, disabling alog, and so on).

In a semi-secure domain, the basic log service' s action-role mapping fileis:
etc/DomainName/basic_log_semi_secure_action_role mapping.xml

The security scheme for the semi-secure domain is very permissive, because all
applications have full access to the service by default. The scheme could be
made more secure by denying unauthenticated peers access to some of the write
operations of the services (such aslog creation or deletion).

The 10NAServiceRole can access al interfaces and operations in both secure
and semi-secure domains.

IONAUserRole and
UnauthenticatedUser Role

Default Access Control Lists

The ToNAUserRole can access the basic log service interfaces and operations
shown in Table 11 in both secure and semi-secure domains.

Unauthenticated users (represented by the special UnauthenticatedUserRolein
the action-role mapping file) can access the interfaces and operations shown in
Table 11 in semi-secure domains only.

Table 11: Basic Log Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUser Role
Accessible Operations
(Semi-secure only)

IT_BasicLogAdmin: :BasicLogFactory

_get_manager
create
create_with_id
list_logs
find_log
list_logs_by_ id

_get_manager
create
create_with_id
list_logs

find log
list_logs_by id

IT_MessagingAdmin: :Manager _get_name _get_name
_get_host _get_host
shutdown shutdown

DsLogAdmin: : BasicLog Al All2

DsLogAdmin: : Iterator get get
destroy destroy

a. Security could betightened at thislevel by removing accessto the destroy operation, for example, or to some of the operations

used to access log records (see operations inherited from the DsLogAdmin::Log interface).

263

CHAPTER 9 | Securing Orbix Services

Event Log Service ACL

Overview

Securedomain

264

The default action-role mappings for the event log service are designed to
protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

® Secure domain—intrusive access to the event log service isrestricted to
authenticated applications only.

® Semi-secure domain—intrusive access to the event log serviceis available
to both authenticated and unauthenticated applications.

Note: It isrecommended that you check whether the default event log ACL
provides the level of security you need before deploying it in area system.

In a secure domain, the event log service's action-role mapping fileis:
etc/DomainName/event_log_action_role_mapping.xml

Only authenticated applications can connect to the event log service. With this
security scheme in place, consumers connected to the built-in event channel can
trust that the events they receive are legitimate (because they are known to
originate from authenticated suppliers). Event suppliers can trust that their
eventswill be sent only to legitimate consumers (because consumers are also
authenticated).

Authenticated applications can create new logs, retrieve existing logs, or delete
logs.
Authenticated applications also have full access to the administrative functions

of thelogs (for example, setting the quality of service properties on the log,
changing the maximum log size, disabling alog, and so on).

Semi-secure domain

IONAServiceRole

IONAUserRole and
UnauthenticatedUser Role

Default Access Control Lists

In a semi-secure domain, the event log service' s action-role mapping fileis:
etc/DomainName/event_log_semi_secure_action role_mapping.xml

The security scheme for the semi-secure domain is very permissive, since by
default all applications have full access to the service. This scheme could be
made more secure by restricting the role of unauthenticated applications to
simple listeners (by denying them the privilege of connecting suppliersto the
event channel as well asrestricting write access to the logs and log records).
The semi-secure scheme should not be used if events carry security-sensitive
information, because the identity of neither the suppliers or the consumer can be
guaranteed. The integrity of the logs cannot be guaranteed since unauthenticated
peers have access to all of the write operations and can alter the content of the
logs.

The ToNAServiceRole can access all interfaces and operations in both secure
and semi-secure domains.

The roNAUserRole Can access the event log service interfaces and operations
shown in Table 12 in both secure and semi-secure domains.

Unauthenticated users (represented by the special UnauthenticatedUserRolein
the action-role mapping file) can access the interfaces and operations shown in
Table 12 in semi-secure domains only.

Table12: Event Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUser Role

IDL Interface IONAUserRole UnauthenticatedUser Role
Accessible Operations Accessible Operations
(Secure and semi-secure) (Semi-secure only)
IT_EventLogAdmin: : EventLogFactory _get_manager _get_manager
create create
create_with_id create_with_id
list_logs list_logs
find log find log
list_logs_by_id list_logs_by_id
obtain_push_supplier obtain_push_supplier
obtain_pull_supplier obtain_pull_supplier

265

CHAPTER 9 | Securing Orbix Services

Table12: Event Log Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface IONAUserRole UnauthenticatedUser Role
Accessible Operations Accessible Operations
(Secur e and semi-secur €) (Semi-secure only)

IT MessagingAdmin: :Manager _get_name _get_name

_get_host _get_host

shutdown shutdown
DsEventLogAdmin: : EventLog All All
DsLogAdmin: : Iterator get get

destroy destroy
CosEventChannelAdmin: : ConsumerAdmin All All
CosEventChannelAdmin: : SupplierAdmin All All
CosEventChannelAdmin: : ProxyPushSupplier | All All
CosEventChannelAdmin: : ProxyPullConsumer | All All
CosEventChannelAdmin: : ProxyPullSupplier | All All
CosEventChannelAdmin: : ProxyPushConsumer | All All

266

Default Access Control Lists

Notify Log Service ACL

Overview

Secure domain

The default action-role mappings for the notify log service are designed to

protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the

integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

® Secure domain—both intrusive and non-intrusive access to the notify log
service are restricted to authenticated applications only.

® Semi-secure domain—non-intrusive access to the notify log serviceis
available to both authenticated and unauthenticated applications. Intrusive
accessis limited to authenticated applications only.

Note: It isrecommended that you check whether the default notify log ACL
provides the level of security you need before deploying itin area system.

In a secure domain, the notify log service's action-role mapping fileis:
etc/DomainName/notify_log_action_role mapping.xml

Only authenticated applications can connect to the notify log service. With this
security scheme in place, consumers connected to the built-in event channel can
trust that the events they receive are legitimate (because they are known to
originate from authenticated suppliers). Suppliers that send events through the
notification service can trust that their events will reach only legitimate
consumers (because consumers are also authenticated).

Authenticated applications can create new logs, retrieve existing logs, or delete
logs.

Authenticated applications also have full access to the administrative functions
of the logs (for example, setting the quality of service properties on the log,
changing the maximum log size, disabling alog, and so on).

Authenticated applications are allowed to create and apply both types of filters
supported by the service: log filters (which decide which events get logged) and
notification-style filters (which decide which kind of events pass through the
built-in event channel).

267

CHAPTER 9 | Securing Orbix Services

Semi-secure domain

|ONAServiceRole

268

In a semi-secure domain, the notify log service's action-role mapping fileis:
etc/DomainName/notify log_semi_secure_action role mapping.xml
The security scheme for the semi-secure domain requires event suppliers
(applicationsthat create logs or write log records) to authenticate with the notify
log service. Any consumer (even if unauthenticated) can connect to the service,
however, in order to receive events and access the logs.

Only authenticated applications (normally event suppliers) can create new logs
or alter the list of existing logs (for example, by removing logs). This ensures
that unauthenticated applications are not able to interfere with the logging logic
or ater critical information by tampering with the service's database (by
removing log entries, for example).

With this semi-secure scheme, consumers are able to trust the notifications they
receive from the built-in event channel to be legitimate (because the events must
have originated from an authenticated application). Consumers can also trust all
logs to be genuine. On the other hand, suppliers do not know whether the events
they send and/or the logs they create will reach authenticated and/or
unauthenticated consumers.

Unauthenticated applications have unlimited read-only access to al the
properties of the service and the logs. They can receive events from the built-in
channel, accessthelist of existing logs and obtain records from any existing log.
Unauthenticated applications can also examine, but not change, thefiltering
logic applied to the service. However, even unauthenticated consumers can
decide which events they want to receive by applying filters to their proxy
supplier.

Note: This semi-secure scheme all ows unauthenticated applications to create
filters. Thisis asafe policy, because the unauthenticated applications cannot
apply the newly created filtersin places they are not supposed to.

The ToNAServiceRole can access all interfaces and operations in both secure
and semi-secure domains.

IONAUserRole and
UnauthenticatedUser Role

Default Access Control Lists

The ToNAUserRole can access the notify log service interfaces and operations
shown in Table 13 in both secure and semi-secure domains.

Unauthenticated users (represented by the special UnauthenticatedUserRolein
the action-role mapping file) can access the interfaces and operations shown in
Table 13 in semi-secure domains only.

269

CHAPTER 9 | Securing Orbix Services

Table13: Notify Log Service Interfaces and Operations Accessible to the
IONAUSser Role and the UnauthenticatedUser Role

IDL Interface IONAUserRole UnauthenticatedUser Role
Accessible Operations Accessible Operations
(Secur e and semi-secur €) (Semi-secure only)
IT_NotifyLogAdmin: :NotifyLog All _non_existent

obtain_offered_types

obtain_subscribed_types

get_filter

my_factory

id

get_log_qgos

get_max_record_life

get_max_size

get_current_size

get_n_records

get_log_full_action

get_administrative_state

get_forwarding_state

get_operational_state

get_interval

get_availability status

get_capacity_alarm_ thresh
olds

get_week mask

query

retrieve

match

get_record_attribute

get_consumeradmin

get_supplieradmin

get_all_consumeradmins

get_all_supplieradmins

_get_MyFactory

_get_default_consumer_adm
in

_get_default_supplier_adm
in

_get_default_filter facto
ry

get_qgos

validate_gos

get_admin

for_consumers

new_for_ consumers

270

Default Access Control Lists

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUser Role
Accessible Operations
(Semi-secure only)

IT NotifyLogAdmin: :NotifylLogFactory

_get_default_filter facto
ry
_get_manager
create
create_with_id
list_logs
find_log
list_logs_by_ id
get_proxy_supplier
obtain notification pull_
supplier
obtain_notification_push
supplier
_get_MyID
_get_MyChannel
_get_MyOperator
_get_priority filter
_get_lifetime_filter
_get_pull_suppliers
_get_push_suppliers
get_qgos
validate_gos
get_filter
get_all_filters
obtain_push_supplier
obtain_pull_supplier
destroy
_set_priority filter
_set_lifetime filter
set_qgos
subscription_ change
add_filter
remove_filter
remove_all_filters

_get_default_filter_facto

ry
_get_manager

list_logs
find log
list_logs_by id
get_proxy_supplier
obtain notification_pull_
supplier
obtain_notification_push_
supplier
_get_MyID
_get_MyChannel
_get_MyOperator
_get_priority_filter
_get_lifetime_ filter
_get_pull_suppliers
_get_push_suppliers
get_qgos
validate_gos
get_filter
get_all_filters
obtain_push_supplier
obtain_pull_supplier

subscription_change

IT MessagingAdmin: :Manager All None
DsLogAdmin: : Iterator get get
destroy destroy

271

CHAPTER 9 | Securing Orbix Services

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface

(Secur e and semi-secur €)

IONAUserRole
Accessible Operations

UnauthenticatedUser Role
Accessible Operations
(Semi-secure only)

IT NotifyChannelAdmin: :ConsumerAdmin

All

get_bridge proxy_ supplier

obtain_subscription_types
_for_admin

_get_bridge pull_supplier
s

_get_bridge push_supplier
s

get_proxy_supplier

obtain_notification_pull_
supplier

obtain notification push_
supplier

_get_MyID

_get_MyChannel

_get_MyOperator

_get_priority filter

_get_lifetime_filter

_get_pull_suppliers

_get_push_suppliers

get_qgos

validate_dgos

get_filter

get_all_filters

obtain_push_supplier

obtain_pull_supplier

subscription_change

272

Default Access Control Lists

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface

(Secure and semi-secure)

IONAUserRole
Accessible Operations

UnauthenticatedUser Role
Accessible Operations
(Semi-secure only)

IT NotifyChannelAdmin: : SupplierAdmin All get_bridge_proxy_consumer
obtain_offered_types_for_
admin
_get_bridge pull_consumer
s
_get_bridge_push_consumer
s
_get_MyID
_get_MyChannel
_get_MyOperator
get_gos
validate_qgos
get_filter
get_all_filters
IT NotifyChannelAdmin: : All All
ProxyPushSupplier
IT NotifyChannelAdmin: : All All
StructuredProxyPushSupplier
IT NotifyChannelAdmin: : All All
SequenceProxyPushSupplier
IT NotifyChannelAdmin: : All All
ProxyPullSupplier
IT NotifyChannelAdmin: : All All
StructuredProxyPullSupplier
IT NotifyChannelAdmin: : All All
SequenceProxyPullSupplier
IT NotifyChannelAdmin: : All All
ProxyPushConsumer
IT NotifyChannelAdmin: : All All

StructuredProxyPushConsumer

273

CHAPTER 9 | Securing Orbix Services

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUSserRole and the UnauthenticatedUser Role

IDL Interface

IONAUserRole
Accessible Operations
(Secur e and semi-secur €)

UnauthenticatedUser Role

Accessible Operations
(Semi-secure only)

FilterFactory

IT NotifyChannelAdmin: : All Al
SequenceProxyPushConsumer
IT NotifyChannelAdmin: : All Al
ProxyPullConsumer
IT NotifyChannelAdmin: : All Al
StructuredProxyPullConsumer
IT NotifyChannelAdmin: : All Al
SequenceProxyPullConsumer
IT NotifyChannelAdmin: : All Al
GroupProxyPushSupplier
IT NotifyChannelAdmin: : All All
GroupStructuredProxyPushSupplier
IT NotifyChannelAdmin: : All Al
GroupSequenceProxyPushSupplier
IT NotifyFilterInternal:: All Al
Filter
IT NotifyFilterInternal:: All Al
MappingFilter
IT NotifyFilterInternal:: All Al

274

Part |11
SSL/TLS Administration

Inthispart This part contains the following chapters:
Choosing an SSL/TLS Toolkit page 277
Managing Certificates page 289
Configuring SSL/TL S Secure Associations page 333
Configuring SSL/TLS Authentication page 361
Automatic Activation of Secure Servers page 389

In this chapter

CHAPTER 10

Choosing an
SSL/TLS Toolkit

This chapter describes the SSL/TLStoolkit replaceability feature,
which enablesyouto replacetheunderlying third-party toolkit that
implements the SSL/TLS protocol for Orbix applications.

This chapter contains the following sections:

Toolkit Replaceability page 278
Baltimore Toolkit for C++ and Java page 279
OpenSSL Toolkit for C++ page 280
Schannel Toolkit for C++ page 281
JSSE/JCE Architecture page 283

277

CHAPTER 10 | Choosing an SSL/TL S Toolkit

Toolkit Replaceability

Overview

Toolkitsfor C++ applications

JSSE/JCE architecturefor Java
applications

Custom toolkit plug-in for C++

278

In Orbix, the underlying SSL/TLS security layer is provided by athird-party
security toolkit. The Orbix security configuration variables and programming
APIswrap the third-party toolkit in order to integrate it with CORBA
technology.

Orbix provides atoolkit replaceability feature by exploiting Orbix’s Adaptive
Runtime Technology (ART) to encapsulate third-party SSL/TLStoolkitsin an
ART plug-in. Using this modular approach, you can replace the SSL/TLS
security layer underlying Orbix by specifying a different ART plug-in to load at
runtime.

The following SSL/TL S toolkits are currently available for use with Orbix C++
applications:

e “Bdtimore Toolkit for C++ and Java’ on page 279.
® “OpenSSL Toolkit for C++" on page 280.
® “Schannel Toolkit for C++” on page 281.

To replace the SSL/TL Stoolkit underlying your Orbix Java applications, you
can configure Orbix to use the JSSE toolkit option. For details, see:

® “JSSE/JCE Architecture” on page 283.

Orhix also provides an option to devel op a custom toolkit plug-in for C++
applications, using the Orbix plug-in development kit (PDK). Y ou can use this
feature to integrate any third-party SSL/TLS toolkit with Orbix.

Please contact Progress Consulting for more details:

http://web.progress.com/consulting/index.html

http://web.progress.com/consulting/index.html

Baltimor e Toolkit for C++ and Java

Baltimore Toolkit for C++ and Java

Overview

Default SSL/TL Stoolkit

ChoosingtheBaltimor etoolkit for
C++ applications

ChoosingtheBaltimor etoolkit for
Java applications

This section describes how to configure Orbix to use the SSL/TL S toolkit from
Baltimore technologies.

Orbix applications use the Baltimore SSL/TL Stoolkit by default. Hence, thereis
no need to alter your Orbix configuration to use this toolkit.

Note: The Baltimore toolkit is deprecated from Orbix 6.3 SP4 onwards and
will be removed from later rel eases of Orbix. It isrecommended that you
migrate C++ applications to the OpenSSL toolkit and that you migrate Java
applications to the JSSE toolkit

To ensure that Orbix uses the Baltimore toolkit for C++ applications, you can
optionally add the settings shown in Example 32 to your Orbix configuration.
These settings are not necessary, however, because the Baltimore toolkit is used
by defauilt.

Example 32: Configuring Orbix to use the Baltimore Toolkit in C++
Orbix configuration file

initial_references:IT TLS_Toolkit:plugin = "baltimore_toolkit";
plugins:baltimore_toolkit:shlib name = "it_tls_baltimore";

To ensure that Orbix uses the Baltimore toolkit for Java applications, you can
optionally add the setting shown in Example 33 to your Orbix configuration.
This setting is not necessary, however, because the Baltimore toolkit is used by
default.

Example 33: Configuring Orbix to use the Baltimore Toolkit in Java

Orbix configuration file
plugins:atli2_tls:use_jsse_tk = "false";

279

CHAPTER 10 | Choosing an SSL/TL S Toolkit

OpenSSL Toolkit for C++

Overview

Migrating to OpenSSL

Choosingthe OpenSSL toolkit for
C++ applications

280

This section describes how to configure Orbix to use the OpenSSL toolkit from
the OpenSSL project.

From Orbix 6.3 SP4 onwards, OpenSSL is the preferred toolkit for C++
applications. Although the Baltimore toolkit is still used by default in Orbix 6.3,
it is recommended that you migrate applications to the OpenSSL toolkit.

Note: The Baltimore toolkit is now deprecated and will be removed in later
versions of Orbix.

To ensure that Orbix uses the OpenSSL toolkit for C++ applications, add (or
change) the settings shown in Example 34 in your Orbix configuration.

Example 34: Configuring Orbix to use the OpenSSL Toolkit in C++
Orbix configuration file

initial_references:IT TLS_Toolkit:plugin = "openssl_toolkit";
plugins:openssl_toolkit:shlib name = "it_tls_openssl";

http://www.openssl.org/

Schannel Toolkit for C++

Schannel Toolkit for C++

Overview

Smart cards

Schannel certificate stores

Choosing the Schannel toolkit

Administration impact of
switching to Schannel

This section describes how to configure Orbix to use the Schannel toolkit from
Microsoft. Schannel is a software implementation of the SSL/TL S security
protocol which uses the Microsoft Crypto APl (MS CAPI) to implement the
cryptographic functionality required by SSL/TLS.

Note: The Schannel toolkit is available only on Windows platforms for the
purpose of securing C++ applications.

The following special features are available to C++ applications that use the
Schannel toolkit:

* Smart cards.
. Schannel certificate stores.

Because almost all smart card hardware vendors make their devices available as
an MS CAPI Cryptographic Service Provider (CSP), applications that use
Schannel can access avery wide range of cyptographic devices and smart cards.

With Schannel, application certificates and trusted CA certificates are stored in
the standard Windows certificate store, thus simplifying the administration of
certificates on Windows platforms.

Y ou can specify that Orbix uses the Schannel toolkit by adding the settings
shown in Example 32 to your Orbix configuration.

Example 35: Configuring Orbix to use the Schannel Toolkit
Orbix configuration file

initial_references:IT TLS_Toolkit:plugin = "schannel_ toolkit";
plugins:schannel_toolkit:shlib_name = "it_tls_schannel";

Orbix toolkit replaceability is designed to be as transparent as possible to the
user. Nevertheless, there are some aspects of administration that are affected by
the switch to using Schannel, as follows:

281

CHAPTER 10 | Choosing an SSL/TL S Toolkit

Programmingimpact of switching
to Schannel

282

* “Deploying Trusted Certificate Authorities” on page 327.
* “Deploying Application Certificates’ on page 328.

* “Deploying Certificatesin Smart Cards’ on page 331.

® “Providing a Pass Phrase or PIN” on page 375.

The following aspects of security programming are affected by the switch to
using Schannel:

® “Creating SSL/TLS Credentials’ on page 474.

JSSE/JCE Architecture

JSSE/JCE Architecture

Overview

Prerequisites

Using JSSE/JCE with Orbix

The Java Cryptography Extension (JCE) is a pluggable framework that allows
you to replace the Java security implementation with arbitrary third-party
toolkits, known as security providers.

By default, Orbix does not use the JSSE/JCE framework (it accesses the
Baltimore toolkit directly instead). It is possible, however, to configure Orbix to
use the JSSE/JCE architecture, as described in this section.

The following prerequisites must be satisfied to use the JSSE/JCE architecture

with Orbix:

1. Install the appropriate version of J2SE (JDK)—consult the Orbix
Installation Guide to find the recommended JDK version for your
platform. It is crucial to install an up-to-date version of the JDK, because
some earler versions of the JDK do not have the required support for
JSSE/JCE.

2. Install the unlimited strength JCE policy files—these files allow you to use
security providers that implement strong cryptography. Y ou can obtain
these files from the Java Cryptography Extension (JCE) Unlimited
Strength Jurisdiction Palicy Files download link on the JDK downloads
page:
http://java.sun.com/javase/downl oads/index.jsp

To use the JSSE/JCE architecture with your Orbix Java applications and to
install athird-party security provider, perform the following steps:

Step Action

1 | Configure Orbix to use JSSE/JCE.

2 | Configure the java.security file (Optional).

3 | Install the provider JAR files (Optional).

283

http://java.sun.com/javase/downloads/index.jsp

CHAPTER 10 | Choosing an SSL/TL S Toolkit

Configure Orbix touse JSSE/JJCE To configure Orbix to use JSSSE/JCE, add the setting shown in Example 36 to

Configurethejava.security file

284

your Orbix configuration.
Example 36: Configuring Orbix to use JSSE/JCE

Orbix configuration file
plugins:atli2_tls:use_jsse tk = "true";

(Optional) Normally, you do not need to configure the java.security file. If
you are using adefault JDK installation, it is already configured to use the
SunJSSE Security provider.

JCE security providers are selected by specifying alist of security provider
classesin the java.security file, which isfound at the following location in
your JDK installation:

JAVA HOME/jre/1lib/security/java.security

If you are using a Java Runtime Environment (JRE) instead of aJDK, omit /jre
from the preceding path.

For example, to use the Sun JSSE security implementation you would configure
java.security asshown in Example 37.

Example 37: Sample Java Security File

security.provider.l=sun.security.provider.Sun
security.provider.2=com.sun.net.ssl.internal.ssl.Provider
security.provider.3=com.sun.rsajca.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider

The propertiesin Example 37 are organized as aprioritized list. When JCE looks
for the implementation of a Java security interface, it first checks the class
specified by security.provider.1 and then proceeds to the higher positions
until it finds an interface implementation. Hence, it is possible for different
aspects of security to be implemented by different security providers.

For more details, see Configuring the Provider
(http://java.sun.com/j2se/1.5.0/docs/gui de/security/j ce/ JCERef Guide.html#Conf
iguring).

http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html#Configuring

Install the provider JAR files

Add a provider by programming

Using the Or bix principal sponsor
and PKCS#12 files

JSSE/JCE Architecture

(Optional) Normally, you do not need to install provider JARS. The sunJssE
provider files are already available in the Java runtime.

If you are using a third-party security provider (not sunJsse), you heed to add
the third-party JAR files to your CLASSPATH to make the security provider
accessible to Orbix. Please follow the installation instructions provided by your
third-party security provider.

For more details about installing the provider classes, see:

http://java.sun.com/j2se/1.5.0/docs/gui de/security/jce/ JCERef Guide.html#l nstal
|Prov

The JCE architecture provides an API that enables you to add a security provider
by programming—see Configuring the Provider
(http://java.sun.com/j2se/1.4.2/docs/guide/security/j ce/ ICERef Guide.htmi#l nsta
IIProv). The java.security.Security APl can be used instead of or in addition
to configuring the java.security file.

java.security.Security.addProvider ()
Add a security provider to the next available position.

java.security.Security.insertProvider At()

Add a security provider to the specified position. The succeeding security
providers are shifted down by one position.

For more details, seethe java.security.Security reference page:
http://java.sun.com/j2se/1.5.0/docs/api/javalsecurity/Security.html

When you switch to the JSSE/JCE framework with the SunJSSE provider, you
can continue to use the Orbix principa sponsor settings to specify an
application’s own certificate in PK CS#12 format—for example:

Orbix Configuration File
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "pkcsl2_file";
principal_sponsor:auth_method data =
["filename=C: \Programs\Orbix\asp\6.3\etc\tls\x509\certs\demos
\bank_server.pl2", "password=bankserverpass"];

285

http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html#InstallProv
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html#InstallProv
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#InstallProv
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Security.html

CHAPTER 10 | Choosing an SSL/TL S Toolkit

Using the Orbix principal sponsor
and keystorefiles

Migrating certificatesto keystore
format

286

Y ou can also continue to provide the trusted CA list in PEM format—for
example:

Orbix Configuration File

policies:trusted ca_list_policy =
"C:\Programs\Orbix\asp\6.3\etc\tls\x509\trusted ca_lists\ca_ 1
istl.pem";

See“ Specifying an Application’s Own Certificate” on page 371 and “ Specifying
Trusted CA Certificates’ on page 369.

If you switch to the JSSE/JCE framework with the SunJSSE provider, you have
the option of supplying an application’s own certificate in Java Keystore (JKS)
format. To use this feature, set the principal_sponsor:auth method_id
variable to keystore and configure the principal sponsor variables as follows:

Orbix Configuration File
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth method id = "keystore";
principal_sponsor:auth method data =
["keystore_name=C: \Programs\Orbix\asp\6.3\etc\tls\x509\certs\
demos\bank_server.ks", "password=bankserverpass"];

The keystore_name property specifies the location of akeystore file that
contains asingle key entry (the application’s own certificate and associated
private key). The password property specifies a password that is used both to
unlock the keystore file (store password) and to decrypt the key entry (key
password). Hence, when you create the keystore file, you must ensure that these
two passwords are identical.

If you need to migrate certificates from the PK CS#12 format to the keystore
format, use the -importkeystore option of the Java keytool utility.

Note: Thekeytool -importkeystore option isavailable only from JDK 6
onwards.

Logging

JSSE/JCE Architecture

For example, if you have a certificate in PK CS#12 format, bank_server.pl12,
with password, bankserverpass, you can convert it to akeystorefile,
bank_server. ks, using the following command:

keytool -importkeystore
-srckeystore bank_server.pl2
-destkeystore bank_server.ks
-srcstoretype pkcsl2
-deststoretype jks
-srcstorepass bankserverpass
-deststorepass bankserverpass

If you use the preceding form of the keytool -importkeystore command, the
store password and the key password for bank_server.ks areidentical and
equal to bankserverpass.

When using the JSSE/JCE architecture with Orhix, the log records which
security provider performs an action. Thisis auseful debugging aid when
multiple security providers areinstalled.

For example, the following is alog extract for an application that uses the
Bouncy Castle security provider to read PKCS#12 files (pkcs12 Bc) and the
IAIK security provider to read PKCS#11 smart card credentials (PKkCs11 IATIK
PKCS#11:1).

11:24:15 2/20/2003
[_it_orb id l@yogibear.dublin.emea.iona.com/10.2.3.6]
(IT_ATLI_TLS:250) I - "Using the following provider: PKCS12
BC"

11:24:21 2/20/2003
[_it_orb_id l@yogibear.dublin.emea.iona.com/10.2.3.6]
(IT_TLS:201) I - Authentication succeeded using the
IT TLS_AUTH METH PKCS12_FILE method

11:24:15 2/20/2003 [_it_orb_id l@yogibear/10.2.3.58]
(IT_ATLI_TLS:250) I - "Using the following provider: PKCS11
IAIK PKCS#11:1"

11:24:15 2/20/2003 [_it_orb_id l@yogibear/10.2.3.58]

(IT TLS:201) I - Authentication succeeded using the
IT TLS_AUTH METH_PKCS11l method

287

CHAPTER 10 | Choosing an SSL/TL S Toolkit

Troubleshooting

References

288

At the time of writing, the JISSE/JCE architecture is arelatively new technology
and some of the third-party security providers have specific limitations or bugs.
One approach to working around these problems is by using a combination of
security providers, with different security providers implementing different
aspects of security.

For example, the following general security features could be implemented by
distinct security providers:

° PK CS#12 functionality—Ioading credentials from PK CS#12 files.

. PKCS#11 functionality—Iloading credentials from a smart card.

® SSL/TLSencryption.

For more information about Sun’s JSSE/JCE architecture, see the following
links:
® JavaCryptography Extension
(http://java.sun.com/javase/technol ogies/security/).
® J2SE (JDK) 1.5.0 Security
(http://java.sun.com/j2se/1.5.0/docs/guide/security//).
® JCE Reference Guide
(http://java.sun.com/j2se/1.5.0/docs/guide/security/j ce/ ICERef Guide.html)

° How to implement a security provider
(http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/HowTol mpl AJCEP
rovider.html).

® Instaling JCE providers
(http://java.sun.com/j2se/1.5.0/docs/guide/security/j ce/ JCERef Guide.html
#InstallProvider).

http://java.sun.com/javase/technologies/security/
http://java.sun.com/j2se/1.5.0/docs/guide/security/
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/HowToImplAJCEProvider.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html#InstallProvider

In this chapter

CHAPTER 11

Managing
Certificates

TLSauthentication uses X.509 certifi cates—a common, secureand
reliable method of authenticating your application objects. This
chapter explainshowyou can create X.509 certificatesthat i dentify
your Orbix applications.

This chapter contains the following sections:

What are X.509 Certificates? page 290
Certification Authorities page 292
Certificate Chaining page 295
PKCSH#12 Files page 297
Using the Demonstration Certificates page 298
Creating Y our Own Certificates page 300
Deploying Certificates page 307
Deploying Certificates with Schannel page 321

289

CHAPTER 11 | Managing Certificates

What are X.509 Certificates?

Role of certificates An X.509 certificate binds a name to a public key value. Therole of the
certificate is to associate a public key with the identity contained in the X.509
certificate.

Integrity of the public key Authentication of a secure application depends on the integrity of the public key

valuein the application’s certificate. If an impostor replaced the public key with
its own public key, it could impersonate the true application and gain access to
secure data.

To prevent this form of attack, all certificates must be signed by acertification
authority (CA). A CA isatrusted node that confirms the integrity of the public
key value in a certificate.

Digital signatures A CA signs acertificate by adding its digital signature to the certificate. A
digital signatureis a message encoded with the CA’s private key. The CA’s
public key is made available to applications by distributing a certificate for the
CA. Applications verify that certificatesare validly signed by decoding the CA’s
digita signature with the CA’s public key.

WARNING: Most of the demonstration certificates supplied with Orbix are
signed by the CA abigbank_ca.pem. This CA iscompletely insecure because
anyone can access its private key. To secure your system, you must create new
certificates signed by atrusted CA. This chapter describes the set of certificates
required by an Orbix application and shows you how to replace the default

certificates.
The contents of an X.509 An X.509 certificate contains information about the certificate subject and the
certificate certificate issuer (the CA that issued the certificate). A certificate is encoded in

Abstract Syntax Notation One (ASN.1), a standard syntax for describing
messages that can be sent or received on a network.

The role of a certificate isto associate an identity with apublic key value. In
more detail, a certificate includes:

° X.509 version information.

290

Distinguished names

What are X.509 Certificates?

® A serial number that uniquely identifies the certificate.

®* A subject DN that identifies the certificate owner.

® The public key associated with the subject.

® Anissuer DN that identifiesthe CA that issued the certificate.

* Thedigital signature of the issuer.

. Information about the algorithm used to sign the certificate.

®* Some optional X.509 v.3 extensions. For example, an extension exists that
distinguishes between CA certificates and end-entity certificates.

A distinguished name (DN) isageneral purpose X.500 identifier that is often
used in the context of security.

See“ASN.1 and Distinguished Names’ on page 645 for more details about DNs.

291

CHAPTER 11 | Managing Certificates

Certification Authorities

Choice of CAs

In this section

292

A CA must be trusted to keep its private key secure. When setting up an Orbix
system, it isimportant to choose a suitable CA, make the CA certificate
available to all applications, and then use the CA to sign certificates for your
applications.

There are two types of CA you can use:

* A commercial CAisacompany that signs certificates for many systems.

e A private CAisatrusted node that you set up and use to sign certificates
for your system only.

This section contains the following subsections:

Commercial Certification Authorities page 293

Private Certification Authorities page 294

Certification Authorities

Commercial Certification Authorities

Signing certificates There are several commercial CAs available. The mechanism for signing a
certificate using acommercial CA depends on which CA you choose.

Advantages of commercial CAs An advantage of commercial CAsisthat they are often trusted by alarge number
of people. If your applications are designed to be available to systems external to
your organization, use acommercial CA to sign your certificates. If your
applications are for use within an internal network, a private CA might be

appropriate.

Criteriafor choosinga CA Before choosing a CA, you should consider the following criteria:
* What arethe certificate-signing policies of the commercial CAs?
* Areyour applications designed to be available on an internal network
only?
®* What arethe potential costs of setting up a private CA?

293

CHAPTER 11 | Managing Certificates

Private Certification Authorities

Choosing a CA softwar e package

OpenSSL softwar e package

Setting up a private CA using
OpenSSL

Choosing a host for a private
certification authority

Security precautions

294

If you wish to take responsibility for signing certificates for your system, set up
aprivate CA. To set up aprivate CA, you require access to a software package
that provides utilities for creating and signing certificates. Several packages of
thistype are available.

One software package that allows you to set up a private CA is OpenSSL,
http: //www.openssl.org. OpenSSL is derived from SSLeay, an
implementation of SSL developed by Eric Y oung (eay @cryptsoft.com).
Complete license information can be found in Appendix | on page 687. The
OpenSSL package includes basic command line utilities for generating and
signing certificates and these utilities are available with every installation of
Orbix. Complete documentation for the OpenSSL command line utilitiesis
available from http: / /www.openssl . org/docs.

For instructions on how to set up a private CA, see“Creating Y our Own
Certificates’ on page 300.

Choosing ahost is an important step in setting up a private CA. The level of
security associated with the CA host determinesthelevel of trust associated with
certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Orbix
applications, use any host that the application devel opers can access. However,
when you create the CA certificate and private key, do not make the CA private
key available on hosts where security-critical applications run.

If you are setting up a CA to sign certificates for applications that you are going
to deploy, make the CA host as secure as possible. For example, take the
following precautions to secure your CA:

° Do not connect the CA to a network.
. Restrict all accessto the CA to alimited set of trusted users.
° Protect the CA from radio-frequency surveillance using an RF-shield.

Certificate Chaining

Certificate Chaining

Certificate chain A certificate chain is a sequence of certificates, where each certificate in the

chainis signed by the subsequent certificate.

Self-signed certificate Thelast certificatein the chainis normally aself-signed certificate—acertificate

that signsitself.

Example Figure 45 shows an example of a simple certificate chain.

Peer

signs

Certificate |

CA _ signs
Certificate |

I

Figure 45: A Certificate Chain of Depth 2

Chain of trust The purpose of certificate chain is to establish achain of trust from a peer

certificate to atrusted CA certificate. The CA vouchesfor the identity in the peer
certificate by signing it. If the CA isonethat you trust (indicated by the presence
of acopy of the CA certificatein your root certificate directory), thisimpliesyou
can trust the signed peer certificate as well.

295

CHAPTER 11 | Managing Certificates

Certificates signed by multiple
CAs

Trusted CAs

Maximum chain length policy

296

A CA certificate can be signed by another CA. For example, an application
certificate may be signed by the CA for the finance department of Progress
Software, which in turn is signed by a self-signed commercial CA. Figure 46
shows whet this certificate chain looks like.

Finance Commercial
CA CA
Certificate Certificate

I

Peer | signs
Certificate |

signs

signs
-

Figure 46: A Certificate Chain of Depth 3

An application can accept asigned certificate if the CA certificate for any CA in
the signing chain is available in the certificate filein the local root certificate
directory.

See “Providing a List of Trusted Certificate Authorities’ on page 309.

Y ou can limit the length of certificate chains accepted by your applications, with
the maximum chain length policy. You can set avalue for the maximum length
of acertificate chainwiththepolicies:iiop tls:max chain length_policy
and policies:https:max_chain length policy configuration variables for
IIOP/TLS and HTTPS respectively.

PKCS#12 Files

PKCS#12 Files

Contentsof a PK CS#12 file

Creating a PKCS#12 file

Viewing a PKCS#12 file

Importing and exporting
PKCS#12 files

A PKCS#12 file contains the following:

® An X.509 peer certificate (first in achain).

® All the CA certificatesin the certificate chain.
® A privatekey.

Thefileis encrypted with a password.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer. They are also used in Orbix. Orbix does not
support .pem format certificate chains, however.

To create a PKCS#12 file, see “Use the CA to Create Signed Certificates’ on
page 304.

To view aPKCS#12 file, CertName.p12:
openssl pkesl2 -in CertName.pi2

The generated PK CS#12 files can be imported into browsers such as IE or
Netscape. Exported PK CS#12 files from these browsers can be used in Orbix.

Note: Use OpenSSL v0.9.2 or later; Internet Explorer 5.0 or later; Netscape
4.7 or later.

297

CHAPTER 11 | Managing Certificates

Using the Demonstration Certificates

L ocation of the demonstration
certificates

Default CA certificate

Certificatesfor demonstration
programs

Untrusted demonstration
certificate

298

The Orbix certificates directory contains a set of demonstration certificates that
enable you to run the Orbix example applications. The certificates are contained
in this directory:

ASPInstallDir /asp/6.0/etc/tls/x509/certs

The CA used to sign the demonstration certificates is the default Orbix CA:
d The CA certificate isx509/certs/ca/abigbank_ca.pem.
* Thelist of trusted CA’sis contained in

x509/certs/trusted_ca_lists/ca_listl.pem Thisinitially contains
only the abigbank_ca.pem CA, but other CAs can be appended.

Note: No whitespace or text is allowed in this file outside the BEGIN/END
Statements.

The PKCS#12 certificatesin Table 14 are used by the Orbix demonstration
programs. These certificates arelocated in the x509/certs/demos directory and
signed by the x509/certs/ca/abigbank ca.pem CA certificate.

Table 14: Demonstration Certificates and Passwords

Demonstration Certificate Password
certs/demos/admin.pl2 adminpass
certs/demos/alice.pl2 alicepass
certs/demos/bankserver.pl2 bankserverpass
certs/demos/bob.pl2 bobpass
certs/demos/CertName.p12 CertNamepass

In the demonstration programs, the following certificate, bad_guy.p12, is used
to represent a certificate from an untrusted CA:

certs/demos/bad_guy.pl2

Certificates for the Orbix services

Using the Demonstration Certificates

[REVISIT - What is the password for bad_guy.p12? | don't think it is
bad_guypass]

The Orbix services all use the same certificate, as shown in Table 15.

Table 15: Demonstration Certificate for the Orbix Services

Services Demonstration Certificate Password

certs/services/administrator.pl2 administratorpass

299

CHAPTER 11 | Managing Certificates

Creating Your Own Certificates

Overview

OpenSSL utilities

Sample CA directory structure

In this section

300

This section describes the steps involved in setting up a CA and signing
certificates.

The steps described in this section are based on the OpenSSL command-line
utilities from the OpenSSL project, http: / /www.openssl.org—Ssee

Appendix F on page 661. Further documentation of the OpenSSL command-line
utilities can be obtained from http: / /www.openssl.org/docs.

For the purposes of illustration, the CA database is assumed to have the
following directory structure:

X509CA/ca

X509CA/certs

X509CA /newcerts

X509CA/crl

Where X509CA is the parent directory of the CA database.

This section contains the following subsections:

Set Up Your Own CA page 301

Use the CA to Create Signed Certificates page 304

Creating Your Own Certificates

Set Up Your Own CA

Substepsto perform

Step 1—Add thebin directory to
your PATH

Step 2—Createthe CA directory
hierarchy

Step 3—Copy and edit the
openssl.cnf file

This section describes how to set up your own private CA. Before setting up a
CA for areal deployment, read the additional notesin “Choosing a host for a
private certification authority” on page 294.

To set up your own CA, perform the following substeps:

® Step 1—Add the bin directory to your PATH

® Step 2—Create the CA directory hierarchy

®* Step 3—Copy and edit the openssl.cnf file

® Step 4—Initialize the CA database

®* Step 5—Create aself-signed CA certificate and private key

On the secure CA host, add the Orbix bin directory to your path:
Windows

> set PATH=ASPInstallDir\asp\6.0\bin; $PATHS

UNIX

% PATH=ASPInstal|Dir /asp/6.0/bin: $PATH; export PATH

This step makes the openss1 utility available from the command line.

Create a new directory, X509CA, to hold the new CA. This directory will be
used to hold all of the files associated with the CA. Under the X509CA directory,
create the following hierarchy of directories:

X509CA/ca

X509CA /certs

X509CA /newcerts

X509CA/crl

Copy the openss1 . cnf file to the X509CA directory, as follows:
Windows

copy ASPInstallDir\asp\6.0\etc\t1ls\x509\openssl.cnf
X509CA\openssl.cnf

UNIX

301

CHAPTER 11 | Managing Certificates

Step 4—Initializethe CA database

302

cp ASPInstallDir /asp/6.0/etc/tls/x509/openssl.cnf
X509CA/openssl.cnf

Edit the openss1 . cnf to reflect the directory structure of the X509CA directory
and to identify the files used by the new CA.

Edit the [cA_default] section of the openssl.cnf file to makeit look like the
following:

$H#E# R R R R R
[CA_default]

dir = X509CA # Where CA files are kept
certs = Sdir/certs # Where issued certs are kept

crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file

new_certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new_ca.pem # The CA certificate

serial = S$dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/new_ca_pk.pem # The private key
RANDFILE = $dir/ca/.rand # Private random number file

x509_extensions = usr_cert # The extensions to add to the cert

Y ou might like to edit other details of the OpenSSL configuration at this point—
for more details, see “ The OpenSSL Configuration File” on page 671.

In the X509CA directory, initidize two files, serial and index. txt.

Windows

> echo 01 > serial

To create an empty file, index. txt, in Windows start aWindows Notepad at the
command line in the X509CA directory, as follows:

> notepad index.txt

In response to the dialog box with thetext, Cannot find the text.txt file.
Do you want to create a new file?, click ves, and close Notepad.

UNIX

% echo "01" > serial
% touch index.txt

Step 5—Create a self-signed CA
certificate and private key

Creating Your Own Certificates

These files are used by the CA to maintain its database of certificate files.

Note: The index.txt file must initially be completely empty, not even
containing white space.

Create anew self-signed CA certificate and private key:

openssl req -x509 -new -config
X509CA/openssl.cnf -days 365 —out X509CA/ca/new_ca.pem
~keyout X509CA/ca/new_ca_pk.pem

The command prompts you for a pass phrase for the CA private key and details
of the CA distinguished name:

Using configuration from X509CA/openssl.cnf

Generating a 512 bit RSA private key

c ettt

Lt

writing new private key to 'new_ca_pk.pem'

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE

State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin

Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown

Email Address []:gbrown@iona.com

Note: The security of the CA depends on the security of the private key file
and private key pass phrase used in this step.

Y ou should ensure that the file names and location of the CA certificate and
private key, new_ca.pem and new_ca_pk . pem, are the same as the values
specified in openssl.cenf (seethe preceding step).

Y ou are now ready to sign certificates with your CA.

303

CHAPTER 11 | Managing Certificates

Usethe CA to Create Signed Certificates

Substepsto perform If you have set up aprivate CA, as described in * Set Up Y our Own CA” on
page 301, you are now ready to create and sign your own certificates.

To create and sign acertificate in PK CS#12 format, CertName.p12, perform the
following substeps:

. Step 1—Add the bin directory to your PATH
® Step 2—Create a certificate signing request
® Step 3—Signthe CSR

. Step 4—Concatenate the files

° Step 5—Create a PKCS#12 file

® Step 6—Repeat stepsasrequired

Step 1—Add the bin directory to I you have not aready done so, add the Orbix bin directory to your path:
your PATH Windows

> set PATH=ASPInstallDir\asp\6.0\bin; $PATHS

UNIX

% PATH=ASPInstallDir /asp/6.0/bin: $PATH; export PATH

This step makes the openss1 utility available from the command line.

Step 2—Create a certificate Create anew certificate signing request (CSR) for the CertName. p12 certificate:

signing request openssl req -new -config X509CA/openssl.cnf
-days 365 -out X509CA/certs/CertName_csr.pem -keyout
X509CA/certs/CertName_pk . pem

This command prompts you for a pass phrase for the certificate’ s private key and
information about the certificate’ s distinguished name.

Some of the entries in the CSR distinguished name must match the valuesin the
CA certificate (specified in the CA Policy section of the openss1.cnf file). The
default openss1 . enf file requires the following entries to match:

° Country Name
® Stateor Province Name
® Organization Name

304

Step 3—Sign the CSR

Creating Your Own Certificates

The Common Name must be distinct for every certificate generated by
OpenSSL.

Using configuration from X509CA/openssl.cnf

Generating a 512 bit RSA private key

At

e

writing new private key to 'X509CA/certs/CertName _pk.pem'
Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE

State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin

Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:0rbix

Email Address []:info@iona.com

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:password
An optional company name []:IONA
Sign the CSR using your CA:

openssl ca -config X509CA/openssl.cnf -days 365 -in
X509CA/certs/CertName_csr.pem -out X509CA/certs/CertName.pem

This command requires the pass phrase for the private key associated with the
new_ca.pem CA certificate:

Using configuration from X509CA/openssl.cnf

Enter PEM pass phrase:

Check that the request matches the signature

Signature ok

The Subjects Distinguished Name is as follows

countryName :PRINTABLE: 'IE'
stateOrProvinceName :PRINTABLE: 'Co. Dublin'
localityName :PRINTABLE: 'Dublin'
organizationName :PRINTABLE: ' IONA Technologies PLC'

305

CHAPTER 11 | Managing Certificates

Step 4—Concatenate thefiles

Step 5—Createa PK CS#12 file

Step 6—Repeat stepsasrequired

306

organizationalUnitName: PRINTABLE: 'Systems'

commonName :PRINTABLE: 'Bank Server Certificate'

emailAddress : IA5STRING: 'info@iona.com'

Certificate is to be certified until May 24 13:06:57 2000 GMT (365
days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries

Data Base Updated

To sign the certificate successfully, you must enter the CA private key pass
phrase—see “ Set Up Y our Own CA” on page 301.

Concatenate the CA certificate file, CertName certificate file, and
CertName_pk . pem private key file asfollows:

Windows

copy XB509CA\ca\new_ca.pem +
X509CA\certs\CertName.pem +
X509CA\certs\CertName_pk.pem
X509CA\certs\CertName_list.pem

UNIX

cat X509CA/ca/new_ca.pem
X509CA /certs/CertName. pem
X509CA/certs/CertName_pk.pem >
X509CA/certs/CertName_list.pem

Create a PK CS#12 file from the CertName_1ist.pem file asfollows:

openssl pkcsl2 -export -in XB509CA/certs/CertName_list.pem -out
X509CA/certs/CertName.pl2 -name "New cert"

Repeat steps 2 to 5, creating a compl ete set of certificates for your system. A
minimum set of Orbix certificates must include a set of certificatesfor the secure
Orbix services.

Deploying Certificates

Deploying Certificates

Overview This section provides an overview of deploying X.509 certificatesin atypical
secure Orbix system, with detailed instructions on how to deploy certificates for
different parts of the Orbix system.

I'n this section This section contains the following subsections:
Overview of Certificate Deployment page 308
Providing a List of Trusted Certificate Authorities page 309
Deploying Application Certificates page 311
Deploying Certificates in Smart Cards page 331
Deploying Orbix Service Certificates page 315
Deploying itadmin Certificates page 318
Configuring Certificate Warnings page 320

307

CHAPTER 11 | Managing Certificates

Overview of Certificate Deployment

Overview Figure 47 provides an overview of the certificates used in atypical deployment
of Orbix.
Trusted CA Lists Application Certificates

CA Cert List 1 PKCS#12 PKCS#12 PKCS#12

CA Cert List 2

Service Certificates

PKCS#12 PKCS#12 PKCS#12
File File File

itadmin Certificates

PKCS#12 PKCS#12 PKCS#12
File File File

Figure 47: Overview of Certificatesin a Typical Deployed System

Sample deployment directory For the purposes of illustration, the examples in this section deploy certificates
structure into the following sample directory structure:

X509Deploy/trusted_ca_lists
X509Deploy/certs/applications
X509Deploy/certs/services
X509Deploy/certs/admin

Where X509Depl oy is the parent directory for the deployed certificates.

308

Deploying Certificates

Providing aList of Trusted Certificate Authorities

Configuration variable

Choosing a configuration domain

Choosing a deployment directory

Deploying

Y ou can specify the list of root trusted certificates authorities by setting the
policies:iiop tls:trusted ca_list policy and
policies:https:trusted ca_list policy configuration variablesfor
IIOP/TLS and HTTPS respectively.

Thisvariable contains a list of strings, each of which provides the filename and
path of afile containing one or more trusted CA certificates. For example:
policies:iiop_tls:trusted _ca_list policy =
["ASPInstalIDir /asp/6.0/etc/tls/x509/certs/trusted_ca_lists/ca_
listl.pem"];
The directory containing the trusted CA certificate lists (for example,
ASPInstalIDir /asp/6.0/etc/tls/x509/certs/trusted_ca_lists/) should be
asecure directory.

Note: If an application supports authentication of a peer, that isaclient
supports EstablishTrustInTarget, then afile containing trusted CA
certificates must be provided. If not, aNo_RESOURCES exception is raised.

Before deploying the CA certificate on atarget host, you must have accessto a
secure configuration domain or you can create a new domain—see the
Administrator’s Guide.

For example, if you create a secure file-based configuration domain,
SecureDomain, you could view or modify the configuration by editing the
corresponding ASPInstalIDir /etc/domains/SecureDomain. c£g file.

CA certificates are deployed as concatenated lists. These CA list files can be
stored in any location; however, it is convenient to store them under acommon
deployment directory, for example:

X509Deploy/trusted_ca_lists

To deploy atrusted CA certificate, perform the following steps:

309

CHAPTER 11 | Managing Certificates

310

Step

Action

If you have access to an existing secure domain, SecureDomain,
you can append the CA certificate contents to one of the files
specifiedinthepolicies:iiop_tls:trusted ca_list_policy
configuration variable for IOP/TLS or in the
policies:https:trusted ca_list_policy configuration
variable for HTTPS.

For example, consider how to configure the IIOP/TLS protocal. If
policies:iiop_tls:trusted ca_list_policy liststhefile,
X509Deploy/trusted_ca_lists/ca_listl.pem, you can add
your new CA totheca_listl.pem file asfollows:

Windows

copy X509Deploy\trusted _ca_lists\ca_listl.pem +
X509CA\ca\new_ca.pem
X509Deploy\trusted_ca_lists\ca_listl.pem

UNIX

cat X509CA/ca/new_ca.pem >>
X509Deploy/trusted_ca_lists/ca_listl.pem

The CA certificate is now deployed; hence you can skip steps 2
and 3.

Alternatively, you can create anew CA list file to hold your CA
certificate. Copy the new_ca.pem certificate to the
X509Deploy/trusted_ca_lists directory. Rename new_ca.pem
t0 ca_list.pem, to remind you that thisfileis actualy alist of
certificates that happens to contain one certificate.

Do not copy the CA private key to the target host.

Add the ca_1ist.pemfileto your list of trusted CA files. For

example, inthe case of IIOP/TLS:

policies:iiop_tls:trusted ca_list_policy =
["X509Deploy/trusted_ca_lists/existing list.pem",
"X509Deploy/trusted _ca_lists/ca_list.pem"];

Deploying Certificates

Deploying Application Certificates

Choosing a deployment directory Application certificates are stored as PK CS#12 files (with .p12 suffix). The
certificates can be stored in arbitrary locations; however, it isusually convenient
to store the application certificates under a common deployment directory, for
example:

X509Deploy/certs/applications

Deploying To deploy an application certificate, CertName.p12, for an application that uses
the SampleApp ORB name in the DomainName domain, perform the following
steps:

Step Action

1 | Copy the application certificate, CertName.p12, to the certificates
directory—for example, X509Deploy/certs/applications—o0n
the deployment host.

The certificates directory should be a secure directory that is
accessible only to administrators and other privileged users.

2 | Edit the DomainName configuration file (usualy

ASPInstallDir /etc/domains/DomainName. c£g). In the
SampleApp scope, change the principal sponsor configuration to
specify the CertName. p12 certificate, asfollows:

Orbix Configuration File

SampleApp |
principal_sponsor:use_principal sponsor = "true";
principal_sponsor:auth method _id = "pkcsl2_file";

principal_sponsor:auth_method data =
["filename=X509Deploy/certs/applications/CertName.
pl2"];
}i

3 | By default, the application will prompt the user for the certificate
pass phrase as it starts up. To choose another option for providing
the pass phrase, see “Providing a Certificate Pass Phrase” on
page 376.

311

CHAPTER 11 | Managing Certificates

312

Step

Action

If you are using the KDM to enable automatic activation of your
secure servers, make sure you update the KDM database with the
new certificate passwords. See “ Automatic Activation of

Secure Servers’ on page 389.

Deploying Certificates

Deploying Certificatesin Smart Cards

Overview

Prerequisites

Deploying the certificates

Deployment constraints

Configuring an application to use
thesmart card

Orbix supports an option to store credentials (that is, an X.509 certificate chain
and private key) on a smart card.

Before deploying your certificatesin a smart card, you must have the following

third-party productsinstalled:

° Baltimore smart card toolkit—a software library that supports the
PKCS#11 interface and enables Orbix to communicate with the smart card
. Thislibrary is bundled with Orbix.

® Toolsand utilitiesto administer the smart card (usually bundled with the
hardware).

Smart card hardware is normally delivered with drivers and utilities that enable
you to deploy X.509 certificate chains and private keys to the smart card.
Consult the third-party documentation that accompanies your smart-card
hardware for details.

Please note the following constraints when deploying the certificates:

®* You must deploy the certificate chain and private key to slot 0. Thisis
currently the only supported smart card slot.

®* Thesdot o should contain only one certificate chain and public/private key
pair.

To configure an application to use the smart card, edit the configuration for your
domain (usualy ASPIngtalIDir /etc/domains/DomainName. c£g). In the
SmartCardApp scope, ensure that the principal sponsor is configured to use the
smart card, asfollows:

Orbix Configuration File
SmartCardApp {

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth _method id = "pkcsll";
principal_sponsor:auth _method _data = ["provider=dkckl132.d11",
"slot=0"];
Y

313

CHAPTER 11 | Managing Certificates

By default, the application will prompt the user for the smart card PIN asit starts
up. To choose another option for providing the PIN, see “Providing a Smart
Card PIN” on page 380.

314

Deploying Certificates

Deploying Orbix Service Certificates

Orbix servicesrequiring
certificates

Choosing a deployment directory

Deploying

In a secure system, all Orbix services should be capable of servicing secure
connections; hence, all of the services require certificates. A minimal system
typically includes the following secure services:

° Locator,

i Node daemon,

. Naming service,

i Interface repository (IFR),

. Management service.

® Security service.

Additionaly, your system might also require certificates for the events,
notification, and OTS services.

Orbix service certificates are stored as PK CS#12 files. The service certificates
are similar to application certificates and, like application certificates, can be
stored in arbitrary locations. It is usually convenient to store the service
certificates in their own subdirectory—for example:

X509Deploy/certs/services

To deploy aservice certificate, CertName.p12, for a service that uses the
Service ORB name in the DomainName domain, perform the following steps:

Step Action

1 | Copy the service certificate, CertName.p12, to the service
certificates directory X509Deploy/certs/services onthe
deployment host.

The service certificates directory should be a secure directory that
is accessible only to administrators and other privileged users.

315

CHAPTER 11 | Managing Certificates

Step Action

2 | Edit the DomainName configuration file (usually

ASPIngtalIDir /etc/domains/DomainName. c£g). In the Service
scope, change the principal sponsor configuration to specify the
CertName.p12 certificate, as follows:

Orbix Configuration File
Service {

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth _method_id = "pkcsl2_file";
principal_sponsor:auth_method data =
["filename=X509Deploy/certs/services/CertName.p12"
1;
}i

3 | By default, the application will prompt the user for the certificate
pass phrase as it starts up. To choose another option for providing
the pass phrase, see “Providing a Certificate Pass Phrase” on
page 376.

4 | If you are using the KDM to enable automatic activation of the
Orbix service, make sure you update the KDM database with the
new certificate pass phrase. See “ Automatic Activation of
Secure Servers’ on page 389.

Providing pass phrasesfor Orbix It is possible to combine the different ways of providing pass phrasesto the
Services Orbix services. For example, some of the alternatives for setting up the Orbix
services are:
® Useapassword filefor al Orbix services.
° Provide the pass phrase from a dialog prompt for all Orbix services.
® Useapassword filefor thelocator and the node daemon. Use the KDM for
all other Orbix services.
° Provide the pass phrase from a dialog prompt for the locator and the node
daemon. Use the KDM for all other Orbix services.

316

Deploying Certificates

Example configuration The default configuration of the Orbix services specifiesthat all services use the
administrator.pl2 certificate. The principal sponsor for servicesis configured
asfollows:

Orbix Configuration File
iona_services
{
principal_ sponsor:use_principal sponsor = "true";
principal_sponsor:auth method id = "pkcsl2_file";
principal_sponsor:auth method data =
["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\services\a
dministrator.pl2",
"password_file=ASPInstallDir\asp\6.0\etc\tls\x509\certs\servic
es\administrator.pwf"];

ServiceA {

// Inherit principal sponsor settings from outer scope.

T
ServiceB ¢

// Inherit principal sponsor settings from outer scope.
B g

I g

The sub-scopes, ServiceA, ServiceB and so on, use the principal sponsor settings
from the outer scope, iona_services. Hence, al of the Orbix services use the
same certificate, administrator.pl2.

It is possible to override settings from the iona_services outer scope by
configuring the principal sponsor in alocal scope—for example, within the
ServiceA scope.

317

CHAPTER 11 | Managing Certificates

Deploying itadmin Certificates

Overview

Specifyingadeployment directory
for administrator certificates

Deploying an ordinary certificate
for itadmin

318

The Orbix command-line administration utility, itadmin, requires a certificate

when used in a secure domain. Two categories of certificate can be used with

itadmin, asfollows:

® Ordinary certificates—for users with ordinary privileges who want to
perform routine administration tasks such as checking the status of servers
and administering the naming service.

®* Administrator certificates—for users with administrator privileges who
need to administer pass phrases and security checksums stored in the
KDM—see “KDM Administration” on page 397.

Before deploying itadmin certificates for the first time, you can edit the Orbix
configuration file to specify the directory that will contain the administrator
certificates. Y ou can specify the administrator certificates deployment directory
using the itadmin x509_cert_root configuration variable.

For example, if you choose the following deployment directory for your
itadmin certificates:

X509Deploy/certs/admin

you should then set itadmin x509_cert_root asfollows:

Orbix Configuration File
itadmin_x509_cert_root = "X509Deploy/certs/admin";

To deploy an ordinary certificate for itadmin, OrdinaryCert.p12, in the
DomainName domain, perform the following steps:

Step Action

1 | Copy theordinary certificate, OrdinaryCert.p12, to the service
certificates directory X509Deploy/certs/services onthe
deployment host.

The service certificates directory should be a secure directory that
is accessible only to administrators and other privileged users.

Deploying an administrator
certificate for itadmin

Overriding the ordinary
certificate with the administrator
certificate

Deploying Certificates

Step

Action

Edit the DomainName configuration file (usually

ASPInstallDir /etc/domains/DomainName. c£g). In the
ItadminUtility scope, change the principal sponsor configuration to
specify the OrdinaryCert.p12 certificate, asfollows:

Orbix Configuration File
ItadminUtility {

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "pkcsl2_file";
principal_sponsor:auth _method data =
["filename=X509Deploy/certs/services/OrdinaryCert.p
12"]1;
}i

By default, the itadmin utility would prompt the user for the
certificate pass phrase as it starts up. A more convenient option,
however, isto store the pass phrase in a secure password file—see
“Providing a Certificate Pass Phrase” on page 376 for details of
how to configure this.

To deploy an administrator certificate for itadmin, AdminCert.p12, perform the
following step:

Step

Action

1

Copy the administrator certificate, AdminCert.p12, to the i tadmin
certificates directory specified by the itadmin x509_cert_root
configuration variable.

The itadmin certificates directory should be a secure directory that
is accessible only to administrators and other privileged users.

To perform administrator tasks requiring special privileges, such as
administering the KDM, you must override the ordinary certificate with the
administrator certificate using the itadmin admin_logon subcommand.

See“KDM Administration” on page 397 for details.

319

CHAPTER 11 | Managing Certificates

Configuring Certificate War nings

Overview

Certificate expiration warning

Own credentialswarning

320

Orbix enables you to configure the following kinds of certificate warning:
® Certificate expiration warning.
. Own credentials warning.

Normally, an X.509 certificate would be defined to expire after a certain date.
Y ou can arrange to send a warning message to the Orbix log, if certificate
expiration isimminent, thus helping to avoid unexpected failure.

To configure a certificate expiration warning, add the configuration variables
from Example 38 to your application’s configuration scope.

Example 38: Configuring a Certificate Expiration Warning

#0rbix Configuration File

plugins:iiop_tls:enable_warning for approaching cert_expiration
= "true";

plugins:iiop_tls:cert_expiration_warning days = "31";

The configuration in Example 38 would send awarning to the Orbix log, if the
application’s own certificate is less than 31 days away from expiry. Only an
application’s own certificate is checked, not the peer certificates.

Y ou can also configure Orbix to log awarning, if the subject DN from an
application’s own certificate matches a certain pattern. This can be useful, for
example, if you want to ensure that demonstration certificates are not
accidentally deployed in a production system.

Example 39 shows how to configure the own credentials warning. If the
specified certificate constraints match the subject DN of an application’s own
certificate, awarning is issued to the Orbix log. For details of the constraint
language, see “ Applying Constraints to Certificates” on page 555.

Example 39: Configuring an Own Credentials Warning
#0rbix Configuration File

plugins:iiop_tls:own_credentials_warning_cert_constraints =
["C=US, ST=Massachusetts"];

Deploying Certificateswith Schannel

Deploying Certificates with Schannel

Overview This section describes how to deploy X.509 certificates into the Schannel
certificate store. This method of deployment is used only for C++ applications
that use the Schannel SSL/TL S toolkit on the Windows platform—see
“Choosing an SSL/TLS Toolkit” on page 277 for more details.

In this section This section contains the following subsections:
Schannel Certificate Store page 322
Deploying Trusted Certificate Authorities page 327
Deploying Application Certificates page 328
Deploying Certificates in Smart Cards page 331

321

CHAPTER 11 | Managing Certificates

Schannel Certificate Store

Overview

Prerequisites

Managing the certificate store

Internet Explorer

Microsoft Management Console

322

This subsection describes how to manage certificatesin the Schannel certificate
store (Windows C++ applications only).

The Schannel certificate storeis only available to C++ applications on the
Windows platform when you have sel ected Schannel asthe underlying SSL/TLS
toolkit. See “Choosing an SSL/TLS Toolkit” on page 277 for details.

Windows makes the Schannel certificate store accessible through the following
O/S tilities:

. Internet Explorer.
® Microsoft Management Console.

To access the certificate store from Internet Explorer:

1. Choosethe Tools|l nternet Options... menu option to open the I nter net
Options dialog box.
Click on the Content tab.
Click Certificates... to open the Certificates dialog box.

Use the Certificates dialog box to manage the certificate store.

Y ou can a so access the certificate store from within the Microsoft Management
Console (MMC), using the certificate snap-in. The MMC is genera -purpose,
customizable management tool for the Windows operating system. The
functionality of the MM C can be customized by adding, removing and
configuring avariety of different MMC snap-ins.

Deploying Certificateswith Schannel

Y ou can add the certificate snap-in to the MM C asfollows:

1. Start the MMC from the start menu by selecting Start|Run and then
entering the command mmc. The MMC opens as shown in Figure 48.

Figure 48: The Microsoft Management Console

=101 x|

Marme |

323

CHAPTER 11 | Managing Certificates

2. Fromthe MMC, select the Console/Add/Remove Snap-In... menu option.
The Add/Remove Snap-In dialog opens as shown in Figure 49.

Add/Remove Snap-in 21 x|

Standalane | Extensions I

Use thiz page to add or remove a standalone Snap-in fram the conzole.

Snap-ing added to:

— Description

Add... Eemove About... I

oK I Cancel

Figure 49: The Add/Remove Snap-In Dialog Box

324

Deploying Certificateswith Schannel

3. Click Add... to openthe Add Standalone Snap-In dialog box, asshownin
Figure 50.

Add Standalone Snap-in cd |
Available Standalone Snap-ing:
Shap-in | endor | -
gﬁlActiveM Control

HI

[ClearCase Administration
[dClearCase Host o
(A ClearCase Metwark Brawser

[ClearCase on the ‘web
[dClearCase Fegisty Adminiztration
@ Component Services
[CComputer Management

[Device Managsr

Microzoft Corporation

— Description

The Certificates snap-in allows you to browse the contents of the
cerlificate stores for yourself, a service, or a computer.

Audd Cloze

Figure 50: The Add Standalone Shap-In Dialog Box

4. From the snap-in list box, select the Certificates snap-in and then click
Add.

A wizard utility starts up to guide you through the process of adding the

Certificates snap-in. Follow the instructions in the wizard to add the
snap-in.

325

CHAPTER 11 | Managing Certificates

6. After finishing the certificate snap-in wizard, close the dialog boxes. The
console window should now look similar to Figure 51.

Figure 51: Microsoft Management Console with Certificates Shap-In

Tﬁ. Consolel - [Console Rooth Certificates - Current User Personal’,Certificates] - |EI|£|
Juﬁ] Console Window Help “ = | |;|i|£|‘
|J Action Wiew Fawvorites “ o= | | ﬁl | @ ‘
Tree I Favorites I Issued To | Issued By | Expirakion Dake | Inkten
(] Console Root Ed administrator Adrmiristrator 19/08/2101 Fil= R
9 Certificates - current L |l Administrator Administrabor 10j0zfz101 File R
E1-(Z] Persanal El administrator &dministrator 09j0zf2101 File R
Ly (e | (= administrator Administr atar 30412/2100 File: R

(2 Trusted Root Certif [Z administrator Adrministrator Zei1Z1Z2100 File R,

[:l Enterprise Trust
[Intermediate Certif
[:l Active Directary Us
-] REQUEST

KN KN | i

|Persona| store conkains 5 certificates, | |

7. Tosavethe current console configuration for future use, select
Console|Save As... and save the customized console in a convenient
location.

References For more details about the MMC utility, see the following white paper from
Microsoft:

®* Microsoft Management Console: Overview
(http://www.microsoft.com/windows2000/docs_Toc463917037).

326

http://www.microsoft.com/windows2000/docs/_Toc463917037

Deploying Certificateswith Schannel

Deploying Trusted Certificate Authorities

Overview This subsection describes how to deploy trusted certificate authority (CA)
certificates to the Schannel certificate store (Windows C++ applications only).
Y our Orbix application must be configured to use Schannel asits underlying
SSL/TLS toolkit.

CA certificate format A trusted CA certificate is distributed as a plain certificate without a private key
(the private key is known only to the certification authority). For example,
trusted CA certificates might be distributed in PEM format, but not in PK CS#12
format (which includes a private key).

Deploying To deploy atrusted CA certificate to the Schannel certificate store, perform the
following steps:

1. Launchan MMC utility that has been configured with acertificates snap-in
(see “ Schannel Certificate Store” on page 322).

2. Fromthe MMC console tree, select the Console
Root\Certificates\Trusted Root Certification Authorities\Certificates
directory.

3. Right-click the Certificates directory and select the All Tasks|Import...
option. A Certificate Import Wizard launches.

4. Follow theinstructionsin the Certificate Import Wizard to add a trusted
CA certificate to the certificate store.

Note: The Orbix policies:iiop tls:trusted_ca_list_policy
configuration variable isignored when your C++ application is configured to
use the Schannel SSL/TL S toolkit.

327

CHAPTER 11 | Managing Certificates

Deploying Application Certificates

Overview This subsection describes how to deploy application certificatesin the Schannel
certificate store (Windows C++ applications only). Y our Orbix application must
be configured to use Schannel asits underlying SSL/TL S toolkit.

Deploying To deploy an application certificate to the Schannel certificate store, perform the
following steps:
1. Launchan MMC utility that has been configured with a certificates snap-in
(see “ Schannel Certificate Store” on page 322).
2. Fromthe MMC console tree, select the Console
Root\Certificates\Per sonal\Cer tificates directory.

Note: Currently, Orbix can load application certificates from the
personal certificate directory only.

3. Right-click the Certificates directory and select the All Tasks|Import...
option. A Certificate Import Wizard launches.

4. Follow the instructionsin the Certificate Import Wizard to add an
application certificate to your personal certificate store.

5. To configure an Orbix application to use the certificate, you need to know
the common name (CN) from the certificate’ s subject DN.
If you do not already know the certificate’'s common name, you can easily
find out by double-clicking the certificate entry in the Console
Root\Certificates\Per sonal\Cer tificates directory of the MMC console.
In the Certificate dialog, click the Details tab and then select the Subj ect

328

Deploying Certificateswith Schannel

field from the scrollbox. Figure 52 shows the Certificate dialog at this
point.

Certificate 2=l

General Details ICertiFication Path I

Shaw: |<n||> ﬂ

I Field | Value -
E‘v‘ersion k]

ESeriaI number 10EF

ESignature algorithm mdSRS4A

Elssuer info@abigbank.com, ABigBank. .. b
E‘v‘alid Fram 04 October 2000 16:01:05

E'v'alid to 05 September 2005 16:01:05

‘Subjeck alice@abigbank.com, Alice, Fin. ..
[Flpublic key RS54 (1024 Eits) x|
E = alice@abigbank.com
CM = Alice
(OLl = Finance:

(0 = ABigBank -- no warranty -- demo purposes
S = Massachusetts
C =5

Edit Properties. .. | Copy to File. .. |

Figure 52: Certificate Dialog Showing the Certificate’s Subject DN.

The lower pane shows the AV A settings from the certificate' s subject DN
(for an explanation of X.509 certificate terminology, see “ASN.1 and
Distinguished Names” on page 645). From Figure 52, you can see that the
common name (CN) of this certificateisalice.

329

CHAPTER 11 | Managing Certificates

Importing PK CS#12 files

330

6. Edit the Orbix configuration for your domain (usually
ASPInstalIDir /etc/domains/DomainName. cfg). In your application’s
configuration scope, MyApp, ensure that the principal sponsor is
configured to use the new certificate, as shown in Example 40.

Orbix Configuration File

MyApp {
principal_ sponsor:use_principal_ sponsor = "true";
principal_sponsor:auth _method id = "security label";

principal_sponsor:auth method data =
["1label=CommonName"] ;
17

Where CommonName is the common name (CN) from the new
certificate’s subject DN. For example, if using the certificate shown in
Figure 52 on page 329, the CommonName would be alice.

Note: When Orbix is configured to use Schannel, you cannot use
PKCS#12 files directly. Hence, the pkes12_file value of
principal_ sponsor:auth method id cannot be used with Schannel.

7. Whenyou start an Orbix application that usesthe new certificate, Schannel
might or might not prompt you for a private key password. The behavior at
runtime depends on whether or not you chose the Enable strong private
key protection option when importing the certificate with the Certificate
Import Wizard.

If you want to import a PK CS#12 certificate (. p12 file suffix) into the certificate
store, thereis an easy short cut available: double-click the PK CS#12 file and
follow the instructions in the Certificate Import Wizard to add the certificate
to your personal certificate store.

Deploying Certificateswith Schannel

Deploying Certificatesin Smart Cards

Overview

Prerequisites

Deploying the certificates

Smart card transparency in
Schannel

Configuring an application to use
thesmart card

Orbix supports an option to store credentials (that is, an X.509 certificate chain
and private key) on a smart card.

This subsection describes how to deploy certificatesin asmart card which is
accessible through the Schannel certificate store (Windows C++ applications
only). Your Orbix application must be configured to use Schannel as its
underlying SSL/TL S toolkit.

Before deploying your certificatesin a smart card, you must have the following

third-party products installed:

® Third-party smart card toolkit—a software library that integrates the smart
card hardware with the Schannel toolkit and certificate store.

®* Toolsand utilities to administer the smart card (usually bundled with the
hardware).

Smart card hardware is normally delivered with drivers and utilities that enable
you to deploy X.509 certificate chains and private keys to the smart card.
Consult the third-party documentation that accompanies your smart-card
hardware for details.

Assoon as asmart card is inserted into the card reader, the smart card
credentials automatically appear in the Schannd certificate store. The
credentials are then accessiblein just the same way as any other certificatein the
store.

To configure an Orbix application to use the smart card through Schannel, edit
the configuration for your domain (usually
ASPInstalIDir /etc/domains/DomainName. cfg). In your application’s

331

CHAPTER 11 | Managing Certificates

Supplying thesmart card PIN

332

configuration scope, SmartCardApp, ensure that the principal sponsor is
configured to use the smart card, as shown in Example 40.

Example 40: Configuring an Application to Use a Smart Card in Schannel
Orbix Configuration File

SmartCardApp <

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth _method id = "security label";

principal_sponsor:auth_method data = ["label=CommonName"];
}i

Where CommonName is the common name (CN) from the smart card
certificate's subject DN (see “ASN.1 and Distinguished Names® on page 645).

By default, Schannel will prompt the user for the smart card PIN as it starts up.
Thereis currently no aternative to supplying the smart card PIN in Schannel.

In this chapter

CHAPTER 12

Configuring
SSL/TLS Secure
A ssociations

You cangovernthebehavior of client-server connectionsby setting
configuration variables to choose association options and to
specify cipher suites.

This chapter discusses the following topics:

Overview of Secure Associations page 334
Setting Association Options page 336
Specifying Cipher Suites page 349
Caching TL S Sessions page 358

333

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

Overview of Secure Associations

Secur e association

TL S session

Colocation

Configuration overview

334

Secure association isthe CORBA term for any link between aclient and aserver
that enables invocations to be transmitted securely. In practice, a secure
association is often realized as a TCP/IP network connection augmented by a
particular security protocol (such as TLS) but many other realizations are
possible.

In the context of Orbix, secure associations alwaysuse TLS.

A TLSsession isthe TLS implementation of a secure client-server association.
The TL S session is accompanied by a session state that stores the security
characteristics of the association.

A TLS session underlies each secure association in Orbix.

For colocated invocations, that is where the calling code and called code share
the same address space, Orbix supports the establishment of colocated secure
associations. A special interceptor, TLs_Coloc, is provided by the security
plug-in to optimize the transmission of secure, colocated invocations.

The security characteristics of an association can be configured through the

following CORBA policy types:

® Client secure invocation policy—enables you to specify the security
requirements on the client side by setting association options. See
“Choosing Client Behavior” on page 340 for details.

®* Target secureinvocation policy—enables you to specify the security
reguirements on the server side by setting association options. See
“Choosing Target Behavior” on page 342 for details.

i Mechani sm policy—enables you to specify the security mechanism used
by secure associations. In the case of TLS, you are required to specify alist
of cipher suites for your application. See “ Specifying Cipher Suites’ on
page 349 for details.

Overview of Secure Associations

Figure 53 illustrates all of the elements that configure a secure association. The
security characteristics of the client and the server can be configured
independently of each other.

A Secure Association A
Client > Server 1]
Client Configuration Server Configuration
Client Invocation .) Target Invocation .)
. Association Options . Association Options
Policy Policy
Mechanism Policy — Specified Cipher Suites Mechanism Policy — Specified Cipher Suites

Figure 53: Configuration of a Secure Association

335

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

Setting Association Options

Overview This section explains the meaning of the various SSL/TL S association options
and describes how you can use the SSL/TL S association options to set client and
server secure invocation policies for both SSL/TLS and HTTPS connections.

In this section The following subsections discuss the meaning of the settings and flags:
Secure Invocation Policies page 337
Association Options page 338
Choosing Client Behavior page 340
Choosing Target Behavior page 342
Hints for Setting Association Options page 344

336

Setting Association Options

Secur e I nvocation Policies

Secureinvocation policies

OM G-defined policy types

Configuration example

Y ou can set the minimum security requirements of objects in your system with
two types of security policy:

® Client secure invocation policy—specifies the client association options.
® Target secureinvocation policy—specifies the association options on a
target object.

These policies can only be set through configuration; they cannot be specified
programmatically by security-aware applications.

The client and target secure invocation policies correspond to the following
policy types, as defined in the OMG security specification:
b Security: :SecClientSecureInvocation

b Security: :SecTargetSecureInvocation

These policy types are, however, not directly accessible to programmers.

For example, to specify that client authentication isrequired for IOP/TLS
connections, you can set the following target secure invocation policy for your
server:

Orbix Configuration File

secure_server_enforce_client auth

{
policies:iiop_tls:target_secure_invocation policy:requires =
["EstablishTrustInClient", "Confidentiality"];

policies:iiop_tls:target_secure_invocation policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

// Other settings (not shown)...
I8

337

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

Association Options

Available options

NoPr otection

Integrity

Confidentiality

DetectReplay

DetectMisordering

338

Y ou can use association options to configure Orbix. They can be set for clients
or servers where appropriate. These are the available options:

* NoProtection

b Integrity

b Confidentiality
DetectReplay

b DetectMisordering

° EstablishTrustInTarget

b EstablishTrustInClient

Use the NoProtection flag to set minimal protection.This means that insecure
bindings are supported, and (if the application supports something other than
NoProtection) the object can accept secure and insecure invocations. Thisisthe
equivalent to SEMI_SECURE serversin OrbixSSL.

Use the Integrity flag to indicate that the object supports integrity-protected
invocations. Setting this flag implies that your TLS cipher suites support
message digests (such as MD5, SHA1).

Usethe confidentiality flag if your object requires or supports at least
confidentiality-protected invocations. The object can support this feature if the
cipher suites specified by the MechanismPolicy support
confidentiality-protected invocations.

Use the DetectReplay flag to indicate that your object supports or requires
replay detection on invocation messages. Thisis determined by characteristics of
the supported TL S cipher suites.

Use the DetectMisordering flag to indicate that your object supports or
requires error detection on fragments of invocation messages. Thisis determined
by characteristics of the supported TLS cipher suites.

Setting Association Options

EstablishTrustInTarget The EstablishTrustInTarget flagisset for client policiesonly. Usetheflag to
indicate that your client supports or requires that the target authenticate its
identity to the client. Thisis determined by characteristics of the supported TLS
cipher suites. Thisisnormally set for both client supports and requires unless
anonymous cipher suites are supported.

EstablishTrustInClient Usethe EstablishTrustInClient flag to indicate that your target object
requires the client to authenticate its privileges to the target. This option cannot
berequired as aclient policy.

If this option is supported on aclient’ s policy, it meansthat the client is prepared

to authenticate its privilegesto the target. On atarget policy, the target supports
having the client authenticate its privileges to the target.

Note: Examples of all the common cases for configuring association options
can be found in the default Orbix configuration file—see the demos . t1s scope
of the ASPInstalIDir /etc/domains/DomainName. c£g configuration file.

339

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

Choosing Client Behavior

Client secureinvocation policy

I1OP/TL S configuration

HTTPS configuration

Association options

Default value

340

The security: : SecClientSecureInvocation policy type determines how a
client handles security issues.

Y ou can set this policy for [IOP/TLS connections through the following

configuration variables:

policies:iiop_tls:client_secure_invocation_policy:requires
Specifies the minimum security features that the client requiresto establish
an IIOP/TLS connection.

policies:iiop_tls:client_secure_invocation policy:supports
Specifies the security features that the client is able to support on
IIOP/TLS connections.

Y ou can set this policy for HTTPS connections through the following
configuration variables:
policies:https:client_secure_invocation policy:requires
Specifies the minimum security features that the client requiresto establish
aHTTPS connection.
policies:https:client_secure_invocation_policy:supports
Specifies the security features that the client is able to support on HTTPS
connections.

In both cases, you provide the details of the security levelsin the form of
AssociationOption flags—see “ Association Options’ on page 338 and
Appendix D on page 651.

The default value for the client secure invocation policy is:
supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

Setting Association Options

Example In the default configuration file, the demos . t1s.bank_client scope specifies
the following association options:

Orbix Configuration File
In ‘demos.tls’ scope
bank_client {

policies:iiop_tls:client_secure_invocation_policy:requires
["Confidentiality", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

341

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

Choosing Target Behavior

Target secureinvocation policy

I1OP/TL S configuration

HTTPS configuration

Association options

Default value

342

The security: : SecTargetSecureInvocation policy type operatesin asimilar
way to the security: : SecClientSecureInvocation policy type. It determines
how atarget handles security issues.

Y ou can set the target secure invocation policy for [IOP/TLS connections

through the following configuration variables:

policies:iiop_tls:target_secure_invocation_policy:requires
Specifies the minimum security features that your targets require, before
they accept an IIOP/TLS connection.

policies:iiop_tls:target_secure_invocation policy:supports
Specifies the security features that your targets are able to support on
IIOP/TLS connections.

Y ou can set the target secure invocation policy for HTTPS connections through
the following configuration variables:
policies:https:target_secure_invocation policy:requires
Specifies the minimum security features that your targets require, before
they accept a HTTPS connection.
policies:https:target_secure_invocation_policy:supports
Specifies the security features that your targets are able to support on
HTTPS connections.

In both cases, you can provide the details of the security levelsin the form of
AssociationOption flags—see “ Association Options’ on page 338 and
Appendix D on page 651.

The default value for the target secure invocation policy is:
supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering

Setting Association Options

Example In the default configuration file, the demos . t1s.bank_server scope specifies
the following association options:

Orbix Configuration File
In ‘demos.tls’ scope

bank_server {

policies:iiop_tls:target_secure invocation_policy:requires =
["Confidentiality"];

policies:iiop_tls:target_secure_ invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

343

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

Hintsfor Setting Association Options

Overview This section gives an overview of how association options can be used in real
applications.
Use the sample scopes The quickest way to configure a secure SSL/TL S application is by basing the

configuration on one of the sample demos . t1s scopes in the DomainName. cfg
configuration file. In demos . t1s, there are sample scopes that match all of the
common use cases for SSL/TLS configuration.

For more details, see “ Configuration samples’ on page 64.

Rules of thumb The following rules of thumb should be kept in mind:

i If an association option isrequired by a particular invocation policy, it
must also be supported by that invocation policy. It makes no sense to
require an association option without supporting it.

. It isimportant to be aware that the secure invocation policies and the
security mechanism policy mutually interact with each other. That is, the
association options effective for a particular secure association depend on
the available cipher suites (see “ Constraints Imposed on Cipher Suites’ on
page 355).

® TheNoprotection option must appear alonein alist of required options.
It does not make sense to require other security optionsin addition to

NoProtection.

344

Types of association option

EstablishTrustinTarget and

EstablishTrustInClient

Setting Association Options

Association options can be categorized into the following different types, as
shown in Table 16.

Table 16: Description of Different Types of Association Option

Description

Relevant Association Options

Request or require TLS peer
authentication.

EstablishTrustInTarget and
EstablishTrustInClient.

Quiality of protection.

Confidentiality, Integrity,
DetectReplay, and
DetectMisordering.

Allow or require insecure
connections.

NoProtection.

These association options are used as follows:

EstablishTrustInTarget—determines whether a server sendsits own
X.509 certificate to a client during the SSL/TLS handshake. In practice,
secure Orbix applications must enable Establ ishTrustInTarget, because
all of the cipher suites supported by Orbix require it.

The EstablishTrustInTarget 8sS0Ciation option should appear in all of
the configuration variables shown in the relevant row of Table 17.

EstablishTrustInClient—determines whether aclient sendsits own
X.5009 certificate to a server during the SSL/TL S handshake. The
EstablishTrustInClient featureisoptiona and various combinations of
settings are possible involving this assocation option.

345

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

The EstablishTrustInClient association option can appear in any of the
configuration variables shown in the relevant row of Table 17.

Table17: Setting EstablishTrustinTarget and EstablishTrustinClient
Association Options

Association Option Client sde—can appear in... Server side—can appear in...

EstablishTrustInTarget policies:client_secure_invocation_pol policies:target_secure_invoca
icy:supports tion_policy:supports

policies:client_secure_ invocation_pol
icy:requires

EstablishTrustInClient policies:client_secure_ invocation_pol policies:target_secure_invoca

icy:supports tion_policy:supports

policies:target_secure_invoca
tion_policy:requires

Note: The SSL/TLS client authentication step can also be affected by the
policies:allow_unauthenticated clients_policy configuration variable.
See “policies’ on page 582.

Confidentiality, Integrity, These association options can be considered together, because normally you
DetectReplay, and would require either al or none of these options. Most of the cipher suites
DetectMisordering supported by Orbix support all of these association options, although there are a

couple of integrity-only ciphers that do not support confidentiality (See
Table 21 on page 356). Asarule of thumb, if you want security you generally
would want all of these association options.

Table18: Setting Quality of Protection Association Options

Association Options Client sde—can appear in... Server side—can appear in...
Confidentiality, policies:client_secure_ invocation_pol policies:target_secure_invoca
Integrity, icy:supports tion_policy:supports
DetectReplay, and policies:client_secure_ invocation_pol policies:target_secure_invoca
DetectMisordering .) . . .

icy:requires tion_policy:requires

346

Setting Association Options

A typical secure application would list all of these association optionsin all of
the configuration variables shown in Table 18.

Note: Some of the sample configurations appearing in the generated
configuration file require confidentiality, but not the other qualities of
protection. In practice, however, the list of required association options is
implicitly extended to include the other qualities of protection, because the
cipher suites that support confidentiality also support the other qualities of
protection. Thisis an example of where the security mechanism policy
interacts with the secure invocation policies.

NoProtection The NoProtection association option is used for two distinct purposes:

Disabling security selectively—security is disabled, either in the client role
or in the server role, if NoProtection appears as the sole required
association option and as the sole supported association option in a secure
invocation policy. This mechanism is selective in the sense that the client
role and the server role can be independently configured as either secure or
insecure.

Note: In thiscase, the orb_plugins configuration variable should
include the iiop plug-in to enable insecure communication.

Making an application semi-secure—an application is semi-secure, either

inthe client role or in the server role, if NoProtection appears asthe sole

required association option and as a supported association option along

with other secure association options. The meaning of semi-securein this

context is, asfollows:

¢ Semi-secureclient—the client will open either asecure or an insecure
connection, depending on the disposition of the server (that is,
depending on whether the server accepts only secure connections or
only insecure connections). If the server is semi-secure, the type of
connection opened depends on the order of the bindingsin the

binding:client_binding list.

347

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

+ Sami-secure server—the server accepts connections either from a
secure or an insecure client.

Note: Inthiscase, the orb_plugins configuration variable should
include both the iiop_t1s plug-in and the iiop plug-in.

Table 19 shows the configuration variables in which the Noprotection
association option can appear.

Table19: Setting the NoProtection Association Option

Association Option Client sde—can appear in... Server side—can appear in...

NoProtection policies:client_secure_invocation_pol

policies:target_secure_invoca
icy:supports

tion_policy:supports
policies:client_secure_ invocation_pol

policies:target_secure_invoca
icy:requires

tion_policy:requires

References For more information about setting association options, see the following:

® “Securing Communications with SSL/TLS" on page 64.
® Thedemos.tls scopein agenerated Orbix configuration file.

348

Specifying Cipher Suites

Specifying Cipher Suites

Overview

In thissection

This section explains how to specify the list of cipher suites that are made
available to an application (client or server) for the purpose of establishing
secure associations. During a security handshake, the client chooses a cipher
suite that matches one of the cipher suites available to the server. The cipher
suite then determines the security algorithms that are used for the secure
association.

This section contains the following subsections:

Supported Cipher Suites page 350
Setting the Mechanism Policy page 352
Constraints Imposed on Cipher Suites page 355

349

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

Supported Cipher Suites

Orbix cipher suites

Security algorithms

Key exchange algorithms

Encryption algorithms

350

The following cipher suites are supported by Orbix:
° Null encryption, integrity-only ciphers:

RSA_WITH NULL_MD5
RSA_WITH_NULL_SHA
® Standard ciphers

RSA_EXPORT_WITH_RC4_40_MD5
RSA_WITH RC4_128_ MD5

RSA_WITH RC4_128 SHA
RSA_EXPORT_WITH_DES40_CBC_SHA
RSA_WITH_DES_CBC_SHA
RSA_WITH 3DES_EDE CBC_SHA

Each cipher suite specifies a set of three security algorithms, which are used at

various stages during the lifetime of a secure association:

® Key exchange algorithm—used during the security handshake to enable
authentication and the exchange of a symmetric key for subsequent
communication. Must be a public key algorithm.

. Encryption algorithm—used for the encryption of messages after the
secure association has been established. Must be a symmetric (private key)
encryption algorithm.

® Secure hash algorithm—used for generating digital signatures. This
algorithm is needed to guarantee message integrity.

The following key exchange a gorithms are supported by Orbix:

RSA Rivest Shamir Adleman (RSA) public key encryption using
X.509v3 certificates. No restriction on the key size.

RSA_EXPORT RSA public key encryption using X.509v3 certificates. Key
sizerestricted to 512 bits.

The following encryption a gorithms are supported by Orbix:

RC4_40 A symmetric encryption algorithm developed by RSA data
security. Key size restricted to 40 bits.

Specifying Cipher Suites

RC4_128 RC4 with a 128-hit key.

DES40_CBC Data encryption standard (DES) symmetric encryption. Key
size restricted to 40 bits.

DES_CBC DES with a 56-bit key.

3DES_EDE_CBC Triple DES (encrypt, decrypt, encrypt) with an effective key
size of 168 bhits.

Secur e hash algorithms The following secure hash algorithms are supported by Orbix:
MD5 Message Digest 5 (MD5) hash algorithm. This algorithm
produces a 128-bit digest.
SHA Secure hash algorithm (SHA). This algorithm produces a

160-bit digest, but is somewhat slower than MD5.

Cipher suite definitions The Orbix cipher suites are defined as follows:

Table20: Cipher Suite Definitions

Cipher Suite Key Exchange Encryption Secure Hash Exportable?
Algorithm Algorithm Algorithm
RSA_WITH NULL_MD5 RSA NULL MD5 yes
RSA_WITH NULL_SHA RSA NULL SHA yes
RSA_EXPORT_WITH_RC4_40_MD5 RSA_EXPORT RC4_40 MD5 yes
RSA WITH_RC4_128_MD5 RSA RC4_128 MD5 no
RSA WITH_RC4_128_SHA RSA RC4_128 SHA no
RSA_EXPORT_WITH_DES40_CBC_SHA RSA_EXPORT DES40_CBC SHA yes
RSA_WITH DES_CBC_SHA RSA DES_CBC SHA no
RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA no
Reference For further details about cipher suitesin the context of TLS, seerrc 2246 from

the Internet Engineering Task Force (IETF). Thisdocument is available from the
IETF Web site: http://www.ietf.org.

351

http://www.ietf.org

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

Setting the M echanism Policy

M echanism policy

The protocol_version
configuration variable

I nter operating with CORBA
applications on 0S/390

352

To specify cipher suites, use the mechanism policy. The mechanism policy isa
client and server side security policy that determines

® Whether SSL or TLSisused, and
® Which specific cipher suites are to be used.

Y ou can specify whether SSL, TL'S or both are used with atransport protocol by
assigning alist of protocol versions to the

policies:iiop_tls:mechanism policy:protocol_version configuration
variable for [IOP/TLS and the

policies:https:mechanism policy:protocol_version configuration
variable for HTTPS. For example:

Orbix Configuration File
policies:iiop_tls:mechanism policy:protocol_version = ["TLS_V1",
"SSL,_Vv3"];

Y ou can set the protocol_version configuration variable to include one or
more of the following protocols:

TLS_V1

SSL,_V3

The order of the entriesin the protocol_version list isunimportant. During the
SSL/TLS handshake, the highest common protocol will be negotiated.

There are some implementations of SSL/TL S on the OS/390 platform that
erroneously send SSL V2 client hellos at the start of an SSL V3 or TLSV1
handshake. If you need to interoperate with a CORBA application running on
0S/390, you can configure Artix to accept SSL V2 client hellos using the

policies:iiop_tls:mechanism policy:accept_v2_hellos configuration
variable for IIOP/TLS. For example:

Orbix Configuration File
policies:iiop_tls:mechanism policy:accept_v2_hellos = "true";

The default is false.

I nter operating with Orbix
versions 3.3.6 and earlier

The cipher suites configuration
variable

Cipher suite order

Specifying Cipher Suites

The default configuration of the mechanism policy protocol version—that is,
support for both SSLv3 and the TL Svl—is not compatible with Orbix versions
3.3.6 and earlier. To work around this interoperability problem, you should edit
thepolicies:iiop_tls:mechanism policy:protocol_version configuration
setting for IOP/TLS, such that only the ss1,_v3 protocol appearsin the protocol
version list. For example:

Orbix Configuration File
policies:iiop_tls:mechanism policy:protocol_version =
["SSL_V3"];

Thisinteroperability problem arises because of abug in the older SSLeay
security toolkits on which Orbix versions 3.3.6 and earlier are based. The older
SSL eay toolkits support only the SSLv3 protocol, which initself isnot a
problem, because an SSL toolkit always negotiates the protocol version during
the SSL handshake. A problem does arise, however, because the early SSLeay
kits implement the protocol negotiation phase incorrectly. The only solution to
this problem is to restrict the protocol version list to SSLv3 in Orbix 6.2.

Note: Theimplementation of SSL protocol negotiation in Orbix 6.2 SP1is
compliant with the SSL/TLS standards. Aslong as Orbix 6.2 SP1is
communicating with other SSL/TL S-compliant applications, you should not
encounter interoperability problems of this kind.

Y ou can specify the cipher suites available to a transport protocol by setting the
policies:iiop_tls:mechanism policy:ciphersuites configurationvariable
for IOP/TLS and the policies:https:mechanism policy:ciphersuites
configuration variable for HTTPS. For example:

Orbix Configuration File
policies:iiop_tls:mechanism policy:ciphersuites =
["RSA_EXPORT WITH RC4_40_MD5",
"RSA_WITH RC4_128 MD5"];

The order of the entries in the mechanism policy’s cipher suiteslist isimportant.

353

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

Valid cipher suites

Default values

354

During a security handshake, the client sendsalist of acceptable cipher suitesto
the server. The server then chooses the first of these cipher suites that it finds
acceptable. The secure association is, therefore, more likely to use those cipher
suites that are near the beginning of the ciphersuites list.

Y ou can specify any of the following cipher suites:
. Null encryption, integrity only ciphers:
RSA_WITH_NULL_MD5,
RSA_WITH NULL_SHA
® Standard ciphers

RSA_EXPORT _WITH_RC4_40_MD5,
RSA_WITH RC4_128 MD5,

RSA_WITH RC4_128_ SHA,
RSA_EXPORT _WITH_DES40_CBC_SHA
RSA_WITH_DES_CBC_SHA,
RSA_WITH 3DES_EDE CBC_SHA

If no cipher suites are specified through configuration or application code, the
following apply:

RSA_WITH RC4_128_SHA,

RSA_WITH RC4_128_MD5,

RSA_WITH_3DES_EDE_CBC_SHA,
RSA_WITH _DES_CBC_SHA

Specifying Cipher Suites

Constraints Imposed on Cipher Suites

Effective cipher suites

Required and supported
association options

Figure 54 shows that cipher suitesinitially specified in the configuration are not
necessarily made available to the application. Orbix checks each cipher suite for
compatibility with the specified association options and, if necessary, reduces
the size of the list to produce alist of effective cipher suites.

constrain Specified

Association Options Cipher Suites

yields ‘ ‘

Effective
Cipher Suites

Figure 54: Constraining the List of Cipher Suites

For example, in the context of the IIOP/TLS protocol the list of cipher suitesis

affected by the following configuration options:

. Required association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:requires ON
the client side, or
policies:iiop_tls:target_secure_invocation_policy:requires ON
the server side.

® Supported association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:supports ON
the client side, or
policies:iiop_tls:target_secure_invocation_policy:supports ON
the server side.

355

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

Cipher suite compatibility table

Deter mining compatibility

356

Use Table 21 to determine whether or not a particular cipher suite is compatible
with your association options.

Table21: Association Options Supported by Cipher Suites

Cipher Suite

Supported Association Options

RSA_WITH NULL_MD5

Integrity, DetectReplay,
DetectMisordering

RSA_WITH_NULL_SHA

Integrity, DetectReplay,
DetectMisordering

RSA_EXPORT_WITH_RC4_40_MD5

Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_WITH RC4_128 MD5

Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_WITH RC4_128_ SHA

Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_EXPORT_WITH_DES40_CBC_SHA

Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_WITH_DES_CBC_SHA

Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_WITH 3DES_EDE CBC_SHA

Integrity, DetectReplay,
DetectMisordering, Confidentiality

The following algorithm is applied to the initial list of cipher suites:

1. For the purposes of the algorithm, ignore the EstablishTrustInClient

and EstablishTrustInTarget association options. These options have no

effect on the list of cipher suites.

2. Fromtheinitia list, remove any cipher suite whose supported association

options (see Table 21) do not satisfy the configured required association

options.

3. Fromtheremaining list, remove any cipher suite that supports an option
(see Table 21) not included in the configured supported association

options.

Specifying Cipher Suites

No suitable cipher suitesavailable If no suitable cipher suites are available as aresult of incorrect configuration, no
communications will be possible and an exception will be raised. Logging also
provides more details on what went wrong.

Example For example, specifying a cipher suite such as Rsa_wrTH_RC4_128_MD5 that
supports Confidentiality, Integrity, DetectReplay, DetectMisordering,
EstablishTrustInTarget (and optionally EstablishTrustInClient) but
specifying a secure_invocation_policy that supports only a subset of those
features results in that cipher suite being ignored.

357

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

Caching TL S Sessions

Session caching policy

Configuration variable

Valid values

Default value

Configuration variable

Valid values

Default value

Configuration variable

Default value

358

Youcanusethe IT_TLS API::SessionCachingPolicy to control TLS session
caching and reuse for both the client side and the server side.

You can set the IT_TLS_API: :SessionCachingPolicy with the
policies:iiop_tls:session_caching policy Or
policies:https:session_caching policy configuration variables. For
example:

policies:iiop_tls:session_caching policy = "CACHE_CLIENT";

Y ou can apply the following values to the session caching policy:

CACHE_NONE,
CACHE_CLIENT,
CACHE_SERVER,
CACHE_SERVER_AND_CLIENT

The default value is CACHE_NONE.

plugins:atli_tls_tcp:session_cache_validity period
This alows control over the period of time that SSL/TL S session caches
arevalid for.

session_cache_validity_period is specified in seconds.

The default value is 1 day.

plugins:atli_tls_tcp:session_cache_size
session_cache_size isthe maximum number of SSL/TLS sessions that
are cached before sessions are flushed from the cache.

This defaults to no limit specified for C++.
This defaults to 100 for Java.

Caching TL S Sessions

359

CHAPTER 12 | Configuring SSL/TL S Secur e Associations

360

In this chapter

Configuring

SSL/TLS

CHAPTER 13

Authentication

This chapter describes how to configure the authentication

requirements for your application.

This chapter discusses the following topics:

Requiring Authentication page 362
Specifying Trusted CA Certificates page 369
Specifying an Application’s Own Certificate page 371
Providing a Pass Phrase or PIN page 375
Advanced Configuration Options page 382

361

CHAPTER 13| Configuring SSL/TL S Authentication

Requiring Authentication

Overview

In this section

362

This section discusses how to specify whether atarget object must authenticate
itself to aclient and whether the client must authenticateitself to thetarget. For a
given client-server link, the authentication requirements are governed by the
following policies:

® Client secureinvocation policy.

® Target secureinvocation palicy.

® Mechanism policy.

These policies are explained in detail in “Configuring SSL/TLS Secure
Associations” on page 333. This section focuses only on those aspects of the
policies that affect authentication.

There are two possible arrangements for a TL S secure association:

Target Authentication Only page 363

Target and Client Authentication page 366

Requiring Authentication

Target Authentication Only

Overview When an application is configured for target authentication only, the target
authenticates itself to the client but the client is not authentic to the target
object—see Figure 55.

Secure Association

) 7
Client Server

Trusted CA Lists Authenticate

Certificate
] 4 PKCS#12 File
CACert List 1

X.509

CA Cert List 2

X.509
CA

Figure 55: Target Authentication Only

Security handshake Prior to running the application, the client and server should be set up asfollows:

* A certificate chain is associated with the server—the certificate chainis
provided in the form of a PKCS#12 file. See “ Specifying an Application’s
Own Certificate” on page 371.

®* Oneor morelists of trusted certification authorities (CA) are made
available to the client—see “Providing a List of Trusted Certificate
Authorities” on page 309.

During the security handshake, the server sendsiits certificate chain to the
client—see Figure 55. The client then searchesits trusted CA liststo find a CA
certificate that matches one of the CA certificates in the server’s certificate
chain.

Client configuration For target authentication only, the client policies should be configured as
follows:

363

CHAPTER 13| Configuring SSL/TL S Authentication

Server configuration

Example of target authentication
only

364

® Client secureinvocation policy—must be configured both to require and
support the EstablishTrustInTarget association option.

° Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target authentication. All of the cipher suites
currently provided by Orbix E2A support target authentication.

For target authentication only, the target policies should be configured as

follows:

® Target secureinvocation policy—must be configured to support the
EstablishTrustInTarget assoCiation option.

® Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target authentication. All of the cipher suites
currently provided by Orbix E2A support target authentication.

The following sample extract from an Orbix E2A configuration file shows a
configuration for a CORBA client application, bank_client, and a CORBA
server application, bank_server, in the case of target authentication only.

Orbix Configuration File

policies:iiop_tls:mechanism policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism policy:ciphersuites =
["RSA WITH_RC4_128 SHA", "RSA WITH RC4_128 MD5"];

bank_server {
policies:iiop_tls:target_secure_invocation policy:requires =
["Confidentiality"];
policies:iiop_tls:target_secure_invocation policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

}i
bank_client {

policies:iiop_tls:client_secure_ invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_ policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

Requiring Authentication

365

CHAPTER 13| Configuring SSL/TL S Authentication

Target and Client Authentication

Overview When an application is configured for target and client authentication, the target
authenticates itself to the client and the client authenticates itself to the target.
This scenario isillustrated in Figure 56. In this case, the server and the client
each require an X.509 certificate for the security handshake.

Authenticate
PKCS#12 File Client

X.509 Trusted CA Lists

N

CA Cert List 1

X.509 CA Cert List 2

Q
>

. A Secure Association A\
Client |1 Server |1]

Authenticate
Target

Trusted CA Lists

- i PKCS#12 File
CA Cert List 1

X.509

CA Cert List 2

X.509
CA

Figure 56: Target and Client Authentication

Security handshake Prior to running the application, the client and server should be set up asfollows:

® Both client and server have an associated certificate chain (PK CS#12
file)—see “ Specifying an Application’s Own Certificate” on page 371.

366

Client configuration

Server configuration

Requiring Authentication

. Both client and server are configured with lists of trusted certification
authorities (CA)—see “Providing aList of Trusted Certificate Authorities’
on page 309.

During the security handshake, the server sendsits certificate chain to the client,
and the client sends its certificate chain to the server—see Figure 55.

For target and client authentication, the client policies should be configured as

follows:

® Client secureinvocation policy—must be configured both to require and
support the EstablishTrustInTarget association option. The client also
must support the EstablishTrustInClient association option.

° Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target authentication.

For target and client authentication, the target policies should be configured as

follows:

®* Target secure invocation policy—must be configured to support the
EstablishTrustInTarget association option. Thetarget must alsorequire
and support the EstablishTrustInClient association option.

® Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target and client authentication.

367

CHAPTER 13| Configuring SSL/TL S Authentication

Example of target and client The following sample extract from an Orbix E2A configuration file shows a

authentication configuration for a client application, secure_client_with_cert, and a server
application, secure_server_enforce_client_auth, in the case of target and
client authentication.

Orbix Configuration File

policies:iiop_tls:mechanism policy:protocol_version = "SSL, V3";
policies:iiop_tls:mechanism policy:ciphersuites =
["RSA WITH_RC4_128 SHA", "RSA WITH RC4_128_MD5"];

secure_server_enforce_client auth
{
policies:iiop tls:target_secure invocation policy:requires =
["EstablishTrustInClient", "Confidentiality"];
policies:iiop_tls:target_secure_invocation_ policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

hg

secure_client with_cert
{
policies:iiop_tls:client_secure_ invocation policy:requires =
["Confidentiality", "EstablishTrustInTarget"];
policies:iiop_tls:client_secure_ invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

368

Specifying Trusted CA Certificates

Specifying Trusted CA Certificates

Overview

Which applicationsneed tospecify
trusted CA certificates?

Deploying trusted CA certificates

Trusted CA list policy

Schanndl certificate store

When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received certificate
by checking whether the issuer CA is one of a pre-defined set of trusted CA
certificates. If the received X.509 certificate is validly signed by one of the
application’ strusted CA certificates, the certificate is deemed trustworthy;
otherwise, it isrejected.

Any application that is likely to receive an X.509 certificate as part of an
SSL/TLS or HTTPS handshake must specify alist of trusted CA certificates. For
example, thisincludes the following types of application:

e AIllIOPTLSor HTTPS clients.

® AnyIlIOP/TLS or HTTPS servers that support mutual authentication.

Y ou can use one of the following approaches to deploying trusted CA

certificates, depending on which SSL/TL Stoolkit your application uses:

° Baltimore toolkit (all platforms), OpenSSL toolkit (all C++ platforms),
JSSE/JCE (Java platform)—use the Trusted CA list policy.

® Schannd toolkit (Windows C++ applications only)—use the Schannel
certificate store.

The trusted CA list policy specifiesalist of files, each of which containsa
concatenated list of CA certificatesin PEM format. Y ou can configure this
policy by setting one of the following configuration variablesin your
application’s configuration scope:

4 policies:iiop_tls:trusted_ca_list_policy, for IOP/TLS, and
d policies:https:trusted_ca_list_policy, for HTTPS.

If you have configured your application to use the Schannel SSL/TLS toolkit
(Windows C++ applications only), you would deploy trusted CA certificates by
adding them to the Schannel certificate store, which is an integral part of the
Windows operating system.

369

CHAPTER 13| Configuring SSL/TL S Authentication

Moredetails For more details about deploying trusted CA certificates, see one of the
following references:
i Baltimore toolkit, OpenSSL toolkit, JSSE/JCE toolkit—" Providing a List
of Trusted Certificate Authorities” on page 3009.
® Schannel toolkit—"Deploying Trusted Certificate Authorities’ on
page 327.

370

Specifying an Application’s Own Certificate

Specifying an Application’s Own Certificate

Overview

PKCS#12 files

To enable an Orhix application to identify itself, it must be associated with an
X.509 certificate. The X.509 certificate is needed during an SSL/TLS
handshake, where it is used to authenticate the application to its peers. The
method you use to specify the certificate depends on the type of application:

® Security unaware—configuration only,

® Security aware—configuration or programming.

This section describes how to specify a certificate by configuration only. For
details of the programming approach, see “ Authentication” on page 469.

In practice, the TLS protocol needs more than just an X.509 certificate to

support application authentication. Orbix therefore stores X.509 certificatesin a

PK CS#12 file, which contains the following elements:

®* Theapplication certificate, in X.509 format.

® Oneor more certificate authority (CA) certificates, which vouch for the
authenticity of the application certificate (see aso “Certification
Authorities’ on page 292).

®* Theapplication certificate’ s private key (encrypted).

In addition to the encryption of the private key within the certificate, the whole

PKCS#12 certificate is also stored in encrypted form.

Note: The same pass phraseis used both for the encryption of the private key
within the PKCS#12 file and for the encryption of the PKCS#12 file overall.
This condition (same pass phrase) is not officially part of the PKCS#12
standard, but it is enforced by most Web browsers and by Orbix.

371

CHAPTER 13| Configuring SSL/TL S Authentication

PKCS#11 and smart cards

Schanndl certificate store

SSL/TL S principal sponsor

372

Figure 57 shows the typical elementsin a PKCS#12 file.

PKCS#12 File
X.509]
A
— Certificate Chain
X.509
CA
O—l-rl < Private Key

Figure57: Elementsin a PKCS#12 File

Orbix supports the use of smart cards for storing credentials. Orbix accesses the
smart card through a standard PK CS#11 interface (implemented by the
third-party toolkit from Baltimore).

Smart card storage is arranged as a series of dots. To use the smart card with
Orhix, slot 0 should be initialized to contain an X.509 certificate chain and a
public/private key pair. The user gains access to the data in the smart card by
supplying a slot number and a PIN.

(Windows C++ applications only) If you have configured your application to use
the Schannel toolkit, the applications own certificate will be stored in the
Schannel certificate store, which isan integral part of the Windows operation
system. For details of how to manage the certificate store, see “ Schannel
Certificate Store” on page 322.

The SSL/TLS principal sponsor is apiece of code embedded in the security
plug-in that obtains SSL/TL S authentication information for an application. It is
configured by setting variables in the Orbix configuration.

Single or multiple certificates

Principal sponsor configuration

Sample PK CS #12 configuration

Sample PK CS#11 configuration

Sample Schannel configuration

Specifying an Application’s Own Certificate

The SSL/TLS principal sponsor is limited to specifying asingle certificate for
each ORB scope. Thisis sufficient for most applications.

Specifying multiple certificates for asingle ORB can only be achieved by
programming (see “Authentication” on page 469). If an application is
programmed to own multiple certificates, that application ought to be
accompanied by documentation that explains how to specify the certificates.

To use aprincipal sponsor, you must set the principal_sponsor configuration
variables:

1. Setthevariable principal_sponsor:use_principal_sponsor tO true.

2. Providevauesfor the principal_sponsor:auth_method_id and
principal_sponsor:auth_method_data variables.

For example, to use a certificate, DemoCerts/demo_cert_ie5.p12, that hasits
password in the DemoCerts/demo_cert_ie5.pwf file:
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method id = "pkcsl2_file";
principal_sponsor:auth_method data =
["filename=DemoCerts/demo_cert_ie5.pl2",
"password_file=DemoCerts/demo_cert_ie5.pwf"];
Details of these configuration variables can be found in “principal _sponsor
Namespace” on page 507.

(Javaonly.) For example, to use a smart card from the provider, dkck132.d11
(Baltimore), with credentialsin slot o:
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method id = "pkcsll";
principal_sponsor:auth_method _data = ["provider=dkck132.d11l",
"slot=0"];
Details of these configuration variables can be found in “principal _sponsor
Namespace” on page 507.

(Windows C++ applications only) If you have configured your application to use
the Schannel toolkit, you should set the principal sponsor as follows:

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth _method id = "security label";

373

CHAPTER 13| Configuring SSL/TL S Authentication

Credentialssharing

374

principal_sponsor:auth_method data = ["label=CommonName"];

Where CommonName is the common name (CN) from the certificate’ s subject
DN (see“ASN.1 and Distinguished Names’ on page 645).

Normally, when you specify an own credential using the SSL/TL S principal
sponsor, the credential is available only to the ORB that created it. By setting the
plugins:security:share credentials_across_orbs vVa iableto true,
however, the own credentials created by one ORB are automatically made
available to any other ORBs that are configured to share credentials.

Providing a Pass Phrase or PIN

Providing a Pass Phrase or PIN

Overview

In thissection

When you specify an application’s own certificate, in the form of a certificate
file or smart card, you must also provide authorization data that decrypts the
certificate's private key, as follows:

® PKCS#12 certificate file—provide a pass phrase,

®* PKCS#11 or Schannel smart card—provide a PIN.

This section contains the following subsections:

Providing a Certificate Pass Phrase page 376

Providing a Smart Card PIN page 380

375

CHAPTER 13| Configuring SSL/TL S Authentication

Providing a Certificate Pass Phrase

Overview

From a dialog prompt

376

Once you have specified a PK CS#12 certificate, you must also provide its pass
phrase. The pass phraseis needed to decrypt the certificate’s private key (which
is used during the TL S security handshake to prove the certificate’ s
authenticity).

The pass phrase can be provided in one of the following ways:

From adialog prompt.
From the KDM server.
In apassword file.
Directly in configuration.
By programming.

If the pass phrase is not specified in any other way, Orbix will prompt the user
for the pass phrase as the application starts up. This approach is suitable for
persistent (that is, manually-launched) servers.

C++ Applications

When a C++ application starts up, the user is prompted for the pass phrase at the
command line as follows:

Initializing the ORB
Enter password :

Providing a Pass Phrase or PIN

Java Applications Using PKCS #12

If the Java application uses a PK CS#12 file to storeiits certificate, the following
dialog window pops up to prompt the user for the pass phrase:

x|

File |CASPS. Olorbix_ar2 Deteista0gicensd | = |

Password | |

| Login | | Exit |

Figure 58: Java Dialog Window for Certificate Pass Phrase

The Java dialog window can also be customized by programming. See
“principal_sponsor Namespace” on page 507.

From the KDM server The pass phrase can be obtained automatically from the KDM server asthe
application starts up. This mechanism is suitable for automatically launched
servers. See “ Automatic Activation of Secure Servers’ on page 389 for details.

377

CHAPTER 13| Configuring SSL/TL S Authentication

In apassword file The pass phrase is stored in a password file whose location is specified in the
principal_sponsor:auth_method_data configuration variable using the
password_file option. For example, the iona_services scope configures the
principal sponsor as follows:

Orbix Configuration File
iona_services {

principal_ sponsor:use_principal_ sponsor = "true";
principal_sponsor:auth _method id = "pkcsl2_file";

principal_sponsor:auth method data =
["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\services\a

dministrator.pl2",
"password_file=ASPInstallDir\asp\6.0\etc\tls\x509\certs\servic

es\administrator.pwf"];

I g

In this example, the pass phrase for the bank_server.p12 certificateis stored in
the administrator.pwd file, which contains the following pass phrase:

administratorpass

WARNING: Because the password file stores the pass phrase in plain text, the
password file should not be readable by anyone except the administrator. For
greater security, you could supply the pass phrase from a dialog prompt
instead.

Directly in configuration For a PKCS #12 file, the pass phrase can be specified directly in the
principal_sponsor:auth_method data configuration variable using the
password option. For example, the bank_server demonstration configures the

principal sponsor asfollows:

Orbix Configuration File
bank_server {

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth method id = "pkcsl2_file";

principal_ sponsor:auth_method data =
["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\demos\bank
_server.pl2", "password=bankserverpass"];

I8

378

By programming

Providing a Pass Phrase or PIN

In this example, the pass phrase for the bank_server.p12 certificateis

bankserverpass.

WARNING: Storing the pass phrase directly in configuration is not
recommended for deployed systems. The pass phraseisin plain text and could
be read by anyone.

A CORBA application developer can specify X.509 certificate credential s by
programming—see “ Creating SSL/TL S Credentials’ on page 474.

In this case, an administrator should ensure that the SSL/TL S principal sponsor
is disabled for the application. Either the
principal_sponsor:use_principal_sponsor vVariable can to be set to false,
or the SSL/TLS principal sponsor variables can be removed from the
application’s configuration.

The best approach isto set the principal_sponsor:use_principal_sponsor
variable to false in the application’s configuration scope. For example:

Orbix configuration file
outer_config scope {

my_app_config_scope {
principal_sponsor:use_principal_sponsor = "false";

I8

This ensures that the principal sponsor cannot be enabled accidentally by
picking up configuration variables from the outer configuration scope.

379

CHAPTER 13| Configuring SSL/TL S Authentication

Providinga Smart Card PIN

Overview

From a dialog prompt

380

If you are using a smart card (PKCS #11 or Schannel), you must provide a PIN
when the application starts up to gain access to the smart card.

The PIN can be provided in one of the following ways:
. From adialog prompt.
° Directly in configuration (PK CS#11 only).

If the PIN is not specified in any other way, Orbix will prompt the user for the
PIN as the application starts up.

Java Applications Using PKCS#11 (Smart Card)

If the Java application uses a smart card to store its certificate, the following
dialog window pops up to prompt the user for the provider name, slot number,
and PIN:

x
Provider |dkck1 32.dll

siotfp]
PIN oo |
Ok Exit

Figure 59: Java Dialog Window for Certificate PIN

Providing a Pass Phrase or PIN

Windows C++ Application Using Schannel (Smart Card)

If your C++ application is configured to use Schannel in combination with a
smart card, the following dialog window pops up to prompt the user for the
smart card PIN:

Cryptographic Service Provider

Enter User Pass Phrase:

oK I Cancel |

Figure 60: Schannel Dialog Window for Certificate PIN

Directly in configuration The PKCS #11 authentication mechanism allows you to specify the PIN directly
(PKCS#11 only) in configuration.
The PIN can be specified directly in the
principal_sponsor:auth_method_data configuration variable using the pin
option. For example:

Orbix Configuration File
bank_server {

principal_sponsor:use principal_sponsor = "true";
principal_sponsor:auth _method_id = "pkcsll";
principal_sponsor:auth _method data = ["provider=dkckl132.d11l",
"slot=0", "pin=1234"];
hg

In this example, the PIN for slot 0 of the smart card is 1234.

WARNING: Storing the PIN directly in configuration is not recommended for
deployed systems. The PIN isin plain text and could be read by anyone.

381

CHAPTER 13| Configuring SSL/TL S Authentication

Advanced Configuration Options

Overview

In thissection

382

For added security, Orbix allows you to apply extra conditions on certificates.
Before reading this section you might find it helpful to consult “Managing
Certificates’ on page 289, which provides some background information on the
structure of certificates.

This section discusses the following advanced configuration options:

Setting a Maximum Certificate Chain Length page 383
Applying Constraints to Certificates page 384
Delaying Credential Gathering page 386

Advanced Configuration Options

Setting a Maximum Certificate Chain Length

Max chain length policy

Example

Configuration variable

Default value

Y ou can use the MaxChainLengthPolicy to enforce the maximum length of
certificate chains presented by a peer during handshaking.

A certificate chain is made up of aroot CA at the top, an application certificate
at the bottom and any number of CA intermediaries in between. The length that
this policy appliesto isthe (inclusive) length of the chain from the application
certificate presented to the first signer in the chain that appearsin the list of
trusted CA's (as specified in the TrustedcaListPolicy).

For example, achain length of 2 mandates that the certificate of the immediate
signer of the peer application certificate presented must appear in the list of
trusted CA certificates.

Y ou can specify the maximum length of certificate chains used in
MaxChainLengthPolicy With the

policies:iiop tls:max_chain length policy and
policies:https:max_chain length policy configuration variables. For
example:

policies:iiop_tls:max_chain_length _policy = "4";

The default valueis 2 (that is, the application certificate and its signer, where the
signer must appear in thelist of trusted CA’s.

383

CHAPTER 13| Configuring SSL/TL S Authentication

Applying Constraintsto Certificates

Certificate constraints policy

Configuration variable

Constraint language

Example

384

Y ou can use the certConstraintsPolicy to apply constraintsto peer X.509
certificates by the default certificatevalidatorPolicy. These conditions are
applied to the owner’ s distinguished name (DN) on the first certificate (peer
certificate) of the received certificate chain. Distinguished names are made up of
anumber of distinct fields, the most common being Organization Unit (OU) and
Common Name (CN).

Y ou can specify alist of constraints to be used by CertConstraintsPolicy
through thepolicies:iiop_tls:certificate_constraints_policy Or
policies:https:certificate_constraints_policy configuration variables.
For example:

policies:iiop_tls:certificate constraints_policy =
["CN=Johnny*,OU=[unitl|IT SSL],0=IONA,C=Ireland, ST=Dublin,L=Ea
rth", "CN=Paul * , OU=SSLTEAM, O=IONA, C=Ireland, ST=Dublin, L=Earth",
"CN=TheOmnipotentOne"] ;

These are the special characters and their meanings in the constraint list:

* Matches any text. For example:
an* matches ant and anger, but not aunt
[] Grouping symbols.
| Choice symbol. For example:

OU=[unitl|IT_ssL] signifiesthat if theouisunitl or
IT_ssL, the certificate is acceptable.

=, 1= Signify equality and inequality respectively.

Thisisan example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OU=[unitl|IT_SSL],CN=Steve*,L=Dublin",

"OU=IT_ART*,0U!=IT ARTtesters,CN=[Jan \ Donall], ST=

Boston" 1;

This constraint list specifiesthat a certificate is deemed acceptable if and only if

it satisfies one or more of the constraint patterns:

If

Distinguished names

Advanced Configuration Options

The OU is unitl or IT SSL
And
The CN begins with the text Steve
And
The location is Dublin
Then the certificate is acceptable
Else (moving on to the second constraint)
If
The OU begins with the text IT ART but isn't IT ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston
Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like aboolean OR, trying the constraints defined in each line

until the certificate satisfies one of the constraints. Only if the certificate fails all
constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "cN =" might not be recognized, where "cn=" is recognized.

For more information on distinguished names, see “ASN.1 and Distinguished
Names’ on page 645.

385

CHAPTER 13| Configuring SSL/TL S Authentication

Delaying Credential Gathering

Overview Delayed credential gathering is afeature that enables a client to send an X.509
certificate to a secure server at alater point in the SSL/TLS handshake. The
advantage of this handshake procedure is that the server sendsthe client alist of
trusted CA certificates. Hence, the client can select a certificate at runtime which
is compatible with the server’ s trusted CA certificates.

Note: Delayed credential gathering is currently only supported in
combination with the Schannel SSL/TL Stoolkit (Windows C++ applications
only). See “Choosing an SSL/TLS Toolkit” on page 277.

SSL/TL S handshake process Delayed credential gathering occurs during the course of the SSL/TLS
handshake process as follows:

Stage Description

1 | A client opensanew connection to asecure server and initiatesthe
SSL/TLSS connection handshake.

2 | Theclient doesnot initially send an X.509 certificate to the server,
although the client supports authentication (that is, the
EstablishTrustInClient association option is supported on the
client side, but the principal sponsor is disabled).

3 | Atalater stage of the handshake, the server givesthe client a
second chance to send an X.509 certificate. The server explicitly
requests a certificate from the client and sends alist of all the CA
certificatesit iswilling to trust.

4 | Atthispoint, if delayed credential gathering is enabled, the client
will select a certificate and send it on to the server. Depending on
the configuration, the certificate is selected either by default or
manually by the user.

If delayed credential gathering is not enabled, connection
establishment would fail at this point.

386

Enabling delayed credential
gathering

Promptingtheuser for credentials

Choosing credentials by default

Example client configuration

Advanced Configuration Options

Delayed credential gathering is enabled by setting the following variable to true
in the relevant scope of your Orbix configuration:

plugins:iiop_tls:delay credential_gathering until_handshake

When the server requests a client certificate during the SSL/TL S handshake, the
certificate can be selected using one of the following procedures:

° Prompting the user for credentials.

® Choosing credentials by default.

To enable the user to choose aclient certificate at SSL/TL S handshake time, you
should set the plugins: schannel : prompt_with_credential_choice variable
to true. For example:

plugins:iiop_tls:delay credential gathering until handshake =
"true";
plugins:schannel :prompt_with credential choice = "true";

If the plugins: schannel :prompt_with_credential_choice variableis set to

false, the default behavior isfor Orbix to choose thefirst certificate it can find in
the certificate store that meets the applicable constraints. For example, you can

enable a default credential choice as follows

plugins:iiop_tls:delay credential_ gathering until_handshake =
"true";
plugins:schannel :prompt_with credential_choice = "false";

Example 41 shows how to configure an SSL/TLS client to use delayed
credential gathering.

Example 41: Client Configuration with Delayed Credential Gathering
Orbix configuration file

SchannelClientApplication {
Configuration to load Schannel toolkit (not shown)

SSL/TLS Configuration

policies:client_secure_invocation _policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

387

CHAPTER 13| Configuring SSL/TL S Authentication

Example 41: Client Configuration with Delayed Credential Gathering

2 policies:client_secure invocation policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",

"EstablishTrustInClient"];

Delaying credentials gaterhing

3 principal_sponsor:use principal_ sponsor = "false";

4 plugins:iiop_tls:delay credential gathering until_ handshake
= "true";

5 plugins:schannel :prompt_with credential choice = "true";

i

The preceding configuration example can be explained as follows:

1. A basic prerequisite for delayed credentia gathering isthat your
application is configured to use the Schannel toolkit (see “ Schannel
Toolkit for C++” on page 281 for details).

The client must support the EstablishTrustInClient association option.
The principal sponsor must be disabled when using the delayed credential
gathering feature; in addition you must ensure that no certificateis
associated with the client through programming the principal authenticator.

4. Thedelay credential_gathering until_handshake variableis set to
true to enable delayed credential gathering.

5. In this example, the prompt_with_credential_choice variableis set to
true so that Schannel will prompt the user for credentialsat SSL/TLS
handshake time. Y ou could also set this variable to false, if you want to let
Orbix choose the credentials by default.

388

In this chapter

CHAPTER 14

Automatic
Activation of
Secure Servers

Every server secured with Orbix has an associated certificate and
private key. To accessits private key, and use it to encrypt
messages, a server must retrieve the associated pass phrase. This
chapter shows you how to use Orbix administration to supply pass
phrasesto servers.

This chapter covers the following topics:

Managing Server Pass Phrases page 390
Protecting against Server Imposters page 393
How the KDM Activates a Secure Server page 395
KDM Administration page 397
Setting Up the KDM page 400
Registering a Secure Server page 402

389

CHAPTER 14 | Automatic Activation of Secure Servers

Managing Server Pass Phrases

Overview Every server secured with Orbix has an associated certificate and private key. To
access the private key, which is stored in encrypted form, a pass phrase must be
supplied to the server asit starts up. The server isthen able to identify itself to
other applications that require authentication.

Persistent activation To activate a secure server persistently (manual start-up), the server’s pass
phrase must be supplied by the operator who is starting the process. Typicaly,
the operator types in the pass phrase manually in response to alogin prompt at
the console.

Automatic activation To activate a secure server automatically (in response to a client request), the
server’s pass phrase should be supplied automatically because it would be
impractical for the server to wait for manual intervention. Thisis particularly
true of high availability environments. It is necessary, therefore, to have a
mechanism for automatic delivery of authentication data to a server.

Key distribution management Orbix provides the key distribution management (KDM) mechanism to manage
the authentication data required by servers. The KDM manages the storage of
authentication data and is responsible for delivering the authentication datato
automatically activated servers.

390

Managing Server Pass Phrases

KDM architecture Figure 61 shows the main components of the KDM architecture:
Host 1 Host 2
Activatign
= Requ de (&)
Request O Locator hd e} DaNeomZn n

Oo— KDM Server ‘ ‘
Activates

[
Server n
Key Distribution IMR
Repository
Figure 61: The KDM Architecture
The KDM server The main component of the KDM isthe KDM server, which isimplemented asa

plug-in and embedded in the locator service. The main responsibility of the
KDM server isto manage the secure storage and retrieval of authentication data.

Thekey distribution repository The key distribution repository (KDR) is the database that stores authentication

datafor the KDM server.The KDR currently stores the following information:

. Pass phrases—a pass phrase is stored in the form of an ORB name/pass
phrase association. Given an ORB name, the KDM server can retrieve the
associated pass phrase. Just one pass phrase can be stored per ORB name.

® Checksums—a checksum is generated for a particular server record in the
IMR and stored in the form of a process name/checksum association.
Checksums are described in “ Protecting against Server Imposters’ on
page 393.

391

CHAPTER 14 | Automatic Activation of Secure Servers

Role of the locator

Role of the node daemon

392

When the locator receives a client request for an inactive server, the role of the
locator isto contact the KDM server (a plug-in to the locator), retrieve the
server's authentication data and send the authentication data on to the node
daemon.

When the node daemon receives an activation request from the locator, the node
daemon launches the corresponding server process and passes the authentication
datato the server asit starts up.

Protecting against Server Imposters

Protecting against Server Imposters

Security threats

Protection measures

The secure_directories
configuration variable

A server imposter is arogue server executable that runsin place of alegitimate
server application.The KDM must ensure that authentication data are not
supplied to server imposters. The following forms of attack must be guarded
against:

. Replacing the server executable by an imposter.

® Replacing one or more Orbix plug-ins by imposters.

®* Tampering with the IMR record to point a a rogue executable.

The following measures should be taken to protect against server imposters:

° Place all server executablesin atrusted directory (for example, one secured
by the operating system).

. Place dl plug-in librariesin atrusted directory.

* Specify thelist of trusted directoriesin the node daemon’s
secure_directories configurati on variable.

® Usethe KDM checksum facility to protect the IMR record from tampering.

The secure_directories configuration variable specifies alist of trusted
directories to the node daemon. For example, on the Windows platform you
could set it asfollows:

Orbix E2A Configuration File
iona_services ({

node_daemon {

secure_directories = ["c:\trusted servers",
"c:\trusted apps"];

b
I8

If the node daemon’s secure_directories configuration variableis set, only
server executables stored in one of the listed directories can be launched.

393

CHAPTER 14 | Automatic Activation of Secure Servers

Checksums

394

The server’s IMR record contains details of where to find the server executable
and other server activation information. By protecting the IMR record from
tampering, you can ensure that the KDM passes its authentication dataonly to a
known server executable.

After an administrator creates or modifies a server’s IMR record the
administrator generates an associated checksum for the IMR record. The
checksum is then stored in the KDR database, in the form of aprocess
name/checksum association.

How the KDM Activates a Secur e Server

How the KDM Activates a Secur e Server

Overview

Activation process

When the KDM mechanism is used, two different kinds of server activation are

supported, asfollows:

. Insecure server activation—the server is activated using the normal
(insecure) activation mechanism. A server isimplicitly treated as insecure
if no pass phrases are registered for the server.

® Secure server activation—the server is activated using a secure activation
algorithm. The KDM supplies pass phrases to the server and verifies the

server’s checksum.

Figure 62 outlines the steps for activating a secure server:

Host 1

1) Client

Request

7y
o Locator |1

KDM Server

@ veripy

Checksum

(@Rem’eve Pass
Phrase

KDR

@Pa

s Sec

Attribu

Host 2
rity

IMR

Node (&)
Daemon n

@ Activate and
Pass Security
Attributes

a)
Server

Figure 62: Automatic Activation of a Secure Server

395

CHAPTER 14 | Automatic Activation of Secure Servers

Description

396

The secure server shown in Figure 62 is activated using the KDM, as follows:

Stage

Description

1

A client makes arequest on a server that is currently inactive.

In Figure 62, the client request (a Request OF LocateRequest
message) is sent to the locator. The example assumes that the
target object belongs to an indirect persistent POA.

The locator requests the server’s checksum from the KDM, which
attempts to retrieve the checksum from the KDR database.

If there is achecksum for the server, the checksum for the server's
current IMR record is calculated and compared with the retrieved
checksum. If the checksums do not match, the locator reports an
error.

Thelocator requests the server pass phrases from the KDM, which
retrieves the pass phrases from the KDR database.

If there are pass phrases but no checksum for the server, the locator
reports an error (unless the plugins: kdm: checksums_optional
configuration variable is set to false).

If there are no pass phrases registered for the server, the locator
reverts to the standard procedure for activating an insecure server
at this point.

The locator sends an activation request and authentication data to
the node daemon.

The node daemon activates the server and passes the
authentication data to the server asit starts up.

KDM Administration

KDM Administration

Overview

Logging In

An administrator uses an extended version of the itadmin utility to manage the
pass phrases and checksums stored in the KDR. In a secure environment, the
itadmin utility includes a KDM administration plug-in, kam_adm. Figure 63
shows how the itadmin utility communicates with the KDM server.

Host 1
. (=
itadmin Client oO—— Locator
KDM
i Subcommands
H kdm_adm O KDM Server
Plug-In

%

Enter

Administration
Commands

Key Distribution IMR
Repository

Figure 63: Using itadmin to Manage the KDM Server

Whenever the administrator invokes a KDM command (kdm_adm Or checksum)
the itadmin client communicates directly with a secure |P port on the KDM
server (separate from the locator’s ports).

Before invoking itadmin commands to manage the KDM, an administrator
must log on to the itadmin utility. To log on, enter the following at acommand
prompt:

itadmin

% admin_logon login identity

Please enter password for identity identity:

%

397

CHAPTER 14 | Automatic Activation of Secure Servers

Commands

398

After entering itadmin, subsequent commands are entered in itadmin Script
mode (see Administrator’s Guide). The admin_logon command logs the
administrator on to the itadmin utility using the X.509 certificate specified by
identity. The identity certificate refers to the PK CS#12 certificate, identity.p12,
stored in the directory specified by the itadmin x509_cert_root configuration
variable. The administrator then enters the pass phrase to access the certificate.

See the Administrator’s Guide for full details of the admin_1ogon command
syntax.

Two new administration commands, kdm adm and checksum, are provided for
the KDM. These commands are used from within the i tadmin scripting mode.

The kdm_adm command manages pass phrases stored in the KDR. The command
supports the following subcommands and options:

Table 22: The kdm_adm Administration Command

Command Subcommand and Options

kdm_adm create -orbname NamMe [-password pass_phrase]

confirm -orbname Name

remove -orbname Name

list [-count]

change_pw

The checksum command manages server checksums stored in the KDR. The
command supports the following subcommands and options:

Table23: The checksum Administration Command

Command Subcommand and Options

checksum create -orbname Name [-password pass_phrase]

confirm -orbname Name

remove -orbname Name

list [-count]

KDM Administration

See the Administrator’s Guide for detailed descriptions of these commands.

Examples of using these commands appear in “ Registering a Secure Server” on
page 402.

Configuration The KDM is configured by two sets of variables, as follows:

Table 24: Prefixesfor KDM Configuration Variables

Prefix Description

plugins:kdm Variables with this prefix configure the KDM server
plug-in, which is embedded in the locator service.

plugins:kdm_adm Variables with this prefix configure the KDM
administration plug-in, which is embedded in the
itadmin utility.

A complete list and descriptions of KDM configuration variablesis provided in
the Appendix A on page 485.

399

CHAPTER 14 | Automatic Activation of Secure Servers

Setting Up the KDM

Setting up a secure domain

Using secure directories

Defining certificate constraints

400

Usethe itconfigure utility to create a secure domain that includes the KDM.
Y ou must choose file-based configuration instead of the configuration repository
(CFR).

When an administrator enables automatic activation of a secure server, it
becomes possible for remote clients to trigger activation of the secure server. It
is, therefore, essential to protect server executables from being overwritten by
storing them in atrusted directory.

Create adirectory, SecureServerDir, that is accessible only to administrators and
store your secure server executables in this directory. Add the secure directory,
SecureServerDir, to the node daemon’s list of trusted directories. For example:

Orbix E2A Configuration File
iona_services {

node_daemon {
secure directories = ["SecureServerDir];

In areal deployment, you must define a set of certificate constraints for the

KDM. Thefollowing certificate constraints are relevant to the KDM:

i plugins:kdm:cert_constraints—restricts access to the KDM server,
protecting it from unauthorized clients. See* plugins:kdm:cert_constraints’
on page 494 for details of how to set this variable.

4 plugins:kdm_adm:cert_constraints—protectsthe itadmin utility from
rogue applications that might attempt to impersonate the KDM server. See
“plugins:kdm_adm:cert_constraints’ on page 495 for details of how to set
thisvariable.

Setting Up the KDM

Creating and installing When you create a new set of X.509 certificates for use with Orbix, you need to
administration certificates choose a naming pattern for your Distinguished Names that is compatible with
the KDM certificate constraints. In particular, your certificates should satisfy the
following conditions:
®* TheOrbix locator certificate (also used by the KDM server) must satisfy
the plugins:kdm_adm:cert_constraints certificate constraints.
® Certificates with administrator privileges should satisfy the
plugins:kdm:cert_constraints certificate constraints.
® Other certificates must not satisfy the KDM certificate constraints.
To deploy the administrator certificates (that is, the certificates used by
itadmin), create a secure directory AdminCerts, copy the administrator

certificatesto this directory, and set the itadmin_x509_cert_root
configuration variable equal to AdminCerts.

401

CHAPTER 14 | Automatic Activation of Secure Servers

Registering a Secure Server

Server registration steps Y ou must register the server with the locator daemon to enable it to find the
server when requested by aclient. To register the server with the locator,
perform the following steps:

1. Enter itadmin. This starts the Orbix administration command shell, and
avoids typing itadmin before each command.

2. Register the server’ s persistent POA name and ORB name with thelocator,
using the following commands:
% orbname create demos.tls.secure_bank extended_server

% poa create -replica demos.tls.secure_bank_extended_server
bank_server_ persistent_poa

The first command creates an ORB name called

demos . tls.secure_bank_extended_server. The second creates a POA
name called bank_server_persistent_poa, and associates it with

demos . t1s.secure bank extended server ORB name, using the
-replica option. For more details about POA names and ORB names, see
the Administrator’s Guide.

3. Register the server process name with the locator.

C++ Server
To register a C++ process name, use the following command:

UNIX

% process create -node_daemon hostname/it_node_daemon
-pathname

{install-dir/asp/6.0/demos/tls/secure_bank_extended/

cxX_server/server} -args "--use_kdm /tmp/bank.ior"
secure_bank_ extended_process

Windows

% process create -node_daemon hostname/it_node_daemon
-pathname

{install-dir\asp\6.0\demos\tls\secure bank_extended\

cxx_server\server.exe} -args "--use_kdm C:\temp\bank.ior"
secure_bank_extended_process

Replace hostname with your machine’s DNS name, and replace
install-dir with thelocation of your Orbix installation (for example,

402

Running the server

Registering a Secur e Server

c:\iona). The -args parameter specifies command-line arguments (for
example, the file used to publish the server object reference).

4. Register the server process name with the appropriate ORB name (in this
Case, demos . t1ls.secure_bank_extended_server):

orbname modify -process secure_bank_extended_process
demos. tls.secure _bank extended_ server

5. From the itadmin command prompt, log on to the itadmin utility:
% admin_logon login kdmadmin
Please enter password for identity kdmadmin:
This example uses the kdmadmin.p12 certificate which has the password
kdmadminpass.

6. Register the server’s pass phrase with the KDM:

% kdm_adm create -orbname
demos.tls.secure_bank_extended server
Please enter password for orb my orb_name :

The secure_bank_extended_server demonstration uses the
bankserver.pl2 certificate which has the password bankserverpass.
7. Create and store a checksum for the server’s IMR record:

% checksum create -process secure_bank_ extended_process

After registering the bank server, you must run the bank server onceto initialize
the bank. ior file containing a persistent object reference. It is only necessary to
run the server explicitly once. Subsequently, the node daemon can activate the
bank server automatically in response to client requests.

403

CHAPTER 14 | Automatic Activation of Secure Servers

Inthispart

Part |V

CSIv2 Administration

This part contains the following chapters:

Introduction to CSIv2 page 407

Configuring CSlv2 Authentication over Transport page 417

Configuring CSIv2 | dentity Assertion page 437

CHAPTER 15

| ntroduction to
CSlv2

C3Vv2 isthe OMG’'s Common Secure Interoperability protocol
v2.0, which can provide the basis for application-level securityin
CORBA applications. The Orbix Security Framework uses CSv2
to transmit usernames and passwords, and asserted identities

between applications.

This chapter discusses the following topics:

In this chapter
CSlv2 Features page 408
Basic CSlv2 Scenarios page 410
Integration with the Orbix Security Framework page 414

407

CHAPTER 15 | Introduction to CSIv2

CSlv2 Features

Overview

Application-level security

Transmitting CSlv2-related
security data

CSlv2 mechanisms

CSlv2 authentication over
transport mechanism

408

This section gives a quick overview of the basic features provided by CSlv2
application-level security. Fundamentally, CSIv2 is agenera, interoperable
mechanism for propagating security data between applications. Because CSIv2
is designed to complement SSL/TL S security, CSIv2 focuses on providing
security features not covered by SSL/TLS.

CSlv2 is said to provide application-level security because, in contrast to
SSL/TLS, security datais transmitted above the transport layer and the security
datais sent after a connection has been established.

The CSlv2 specification defines a new GIOP service context type, the security
attribute service context, which is used to transmit CSIv2-related security data.
There are two important specializations of GIOP:

° I1OP—the Internet inter-ORB protocol, which speciaises GIOP to the
TCP/IP transport, is used to send CSIv2 data between CORBA
applications.

i RMI/IIOP—RMI over I10OP, which is an [|OP-compatible version of
Java s Remote Method Invocation (RMI) technology, is used to send
CSlv2 data between EJB applications and also for CORBA-to-EJB
interoperability.

The following CSlv2 mechanisms are supported:

® CSlv2 authentication over transport mechanism.
® CSlv2 identity assertion mechanism.

The CSlv2 authentication over transport mechanism provides asimple client
authenti cation mechanism, based on a username and a password. This
mechanism propagates a username, password, and domain name to the server.
The server then authenticates the username and password before allowing the
invocation to proceed.

CSlv2 identity assertion
mechanism

Applicability of CSIv2

CSlv2 Features

The CSIv2 identity assertion mechanism provides away of asserting the identity
of acaller without performing authentication. This mechanism is usually used to
propagate a caller identity that has already been authenticated at an earlier point
in the system.

CSlv2 is applicable to both CORBA technology. CSIv2 can be used by the
following kinds of application:

®* CORBA C++ agpplications.
®* CORBA Javaapplications.

409

CHAPTER 15 | Introduction to CSIv2

Basic CSIv2 Scenarios

Overview

In this section

410

The CSlv2 specification provides two independent mechanisms for sending
credentials over the transport (authentication over transport, and identity
assertion), but the CSlv2 specification does not mandate how the transmitted
credentials are used. Hence, there are many different ways of using CSIv2 and
different waysto integrate it into a security framework (such asiSF).

This section describes some of the basic scenarios that illustrate typical CSIv2
usage.

This section contains the following subsections:

CSlv2 Authentication over Transport Scenario page 411

CSlv2 Identity Assertion Scenario page 412

Basic CSlv2 Scenarios

CSlv2 Authentication over Transport Scenario

Overview Figure 64 shows a basic CSIv2 scenario where a CORBA client and a CORBA
server are configured to use the CSIv2 authentication over transport mechanism.

Dﬂ’ Propagate
@ User login @ authentication

token

Client Request+ |u/p/d | Server
Client 4

authentication)
token @ authenticate()

4
Authentication
Service

Figure 64: Basic CHv2 Authentication over Transport Scenario

Scenario description The scenario shown in Figure 64 can be described as follows:

Stage Description

1 | Theuser enters a username, password, domain name on the client
side (user login).

2 | When the client makes a remote invocation on the server, CSlv2
transmits the username/password/domain authentication data to
the server in a security attribute service context.

3 | The server authenticates the received username/password before
alowing the invocation to proceed.

Moredetails For more details about authentication over transport, see “Configuring CSIv2
Authentication over Transport” on page 417.

411

CHAPTER 15 | Introduction to CSIv2

CSlv2 Identity Assertion Scenario

Overview Figure 65 shows a basic CSIv2 scenario where a client and an intermediate
server are configured to use the CSlv2 authentication over transport mechanism,
and the intermediate server and atarget server are configured to use the CSIv2
identity assertion mechanism. In this scenario, the client invokes on the
intermediate server, which then invokes on the target server.

Figure 65: Basic CSVv2 |dentity Assertion Scenario

Exami
@ Set asserted identity ca ”’,:;l:;::ﬁ ty

[, © iy L]

y / \‘V Propagate identity

u/p/d '
Client Request+ |u/p/d | Intermediate Request + El | Target
‘ g Server

" Server
7'y
Client

authentication

token , Identity token
Authentication
Service
Scenario description The second stage of the scenario shown in Figure 65 (intermediate server

invokes an operation on the target server) can be described as follows:

Stage Description

1 | Theintermediate server can set the identity that will be asserted to

the target in one of two ways:

* Implicitly—if the execution context has an associated CSlv2
received credentials, the intermediate server extracts the user
identity from the received credentials, or

* Explicitly—by programming.

412

Basic CSlv2 Scenarios

Stage Description

2 | When the intermediate server makes aremote invocation on the
target server, CSlv2 transmits the user identity datato the server in
a security attribute service context.

3 | Thetarget server can access the propagated user identity
programmatically (by extracting it from a
SecurityLevel2: :ReceivedCredentials Object).

Moredetails For more details about identity assertion, see “ Configuring CSIv2 Identity
Assertion” on page 437.

413

CHAPTER 15 | Introduction to CSIv2

| ntegration with the Orbix Security
Framework

Overview This section presents an example of how CSIv2 works in the context of the
Orbix Security Framework. The purpose of the example isto show the
distinction between the purely CSlv2 functionality and the way in which CSlv2
is used in the Orbix Security Framework. The example also provides a case
study of how to integrate the CSI plug-in within awider security framework.

CSlv2 authentication domain In the context of the Orbix Security Framework, the CSIv2 authentication
domain set by the user on the client side must match the CSlv2 authentication
domain set on the server side.

Plug-ins used by the iSF Within the iSF, atypical CORBA server would load the following security
plug-ins: IIOP/TLS, GSP, and CSI. The roles of the GSP plug-in and the CS|
plug-in in particular are important in the context of the iSF, as follows:

® GSPplug-in,
e CSl plug-in.
GSP plug-in Therole of the GSP plug-in isto manage the interpretation of authentication data

and to perform authorization. The GSP plug-in implements features specific to
the Orbhix Security Framework.

CSl plug-in The role of the CSIv2 plug-in is to manage the propagation of authentication
data. It handles the protocol that delivers the data and makes decisions such as
whether to propagate authentication datain further callsto other servers.

414

Integration with the Orbix Security Framework

How CSlv2 integrates with iSF Figure 66 shows how the CSIv2 and the GSP plug-ins behave in the context of
the iSF, for aserver that is configured to use CSlv2 authentication over
transport.

Figure 66: CSv2 in the Orbix Security Framework

CORBA Server

CSI/GSP @ Action-role
1IOP/ mapping file

LS u/p/d Auth

A — |
Request+ |u/p/d|---~ “(2) extract
authenticate() Retrieve roles and realms
v
Orbix Security Service
Invocation
Description The stages of a secure invocation using CSlv2 authentication over transport, as

shown in Figure 66, can be described as follows:

Stage Description

1 | A secure operation invocation arrives at the server. Initially, the
invocation passes through the IIOP/TLS plug-in, which is
responsible for decrypting the incoming message and performing
other transport layer security tasks.

2 | The CSl plug-in extracts the username/password/domain
authentication data, which identifies the calling user, from the
incoming message’ s security attribute service context.

415

CHAPTER 15 | Introduction to CSIv2

416

Stage Description
3 | The CSl plug-in delegates authentication to the
IT _CSI::AuthenticateGSSUPCredentials callback object,
which isimplemented in the GSP plug-in.
4 | The authenticateGSSUPCredentials object further delegates
authentication to the central Orbix security service.
5 | If authentication with the Orbix security serviceis successful, the

GSP plug-in receives details of al the roles and realms for the
calling user. The roles and realms are cached, to be used later
during the authorization step.

In this chapter

CHAPTER 16

Configuring CSlv2
Authentication over
Transport

This chapter explains the concepts underlying the CSv2
authentication over transport mechanism and provides details of
how to configure a client and a server to use this mechanism.

This chapter discusses the following topics:

CSlv2 Authentication Scenario page 418
SSL/TLS Prerequisites page 422
Requiring CSIv2 Authentication page 424
Providing an Authentication Service page 427
Providing a Username and Password page 428
Sample Configuration page 432

417

CHAPTER 16 | Configuring CSlv2 Authentication over Transport

CSIv2 Authentication Scenario

Overview This section describes a typical CSlv2 authentication scenario, where the client
is authenticated over the transport by providing a username and a password.

Authentication over transport The CSlv2 authentication over transport mechanismisasimple client
authenti cation mechanism based on a username and a password. |n a system
with alarge number of clients, it is significantly easier to administer CSlv2
client authentication than it isto administer SSL/TLS client authentication.

CSlv2 authentication is said to be over transport, because the authentication step
is performed at the General Inter-ORB Protocol (GIOP) layer. Specificaly,
authentication datais inserted into the service context of a GIOP request
message. CSlv2 authentication, therefore, occurs after a connection has been
established (in contrast to SSL/TLS authentication).

GSSUP mechanism The Generic Security Service Username/Password (GSSUP) mechanismis the
basic authentication mechanism supported by CSIv2 at Level 0 conformance.
Currently, thisisthe only authentication mechanism supported by Orbix’s
implementation of CSIv2.

Dependency on SSL/TLS Note, that CSlv2 authentication over transport cannot provide adequate security
on its own. The authentication over transport mechanism relies on the transport
layer security, that is SSL/TLS, to provide the following additional security
features:

® Server authentication.
. Privacy of communication.

. Message integrity.

418

CSlv2 scenario

How CSIv2 authentication over
transport proceeds

CSlv2 Authentication Scenario

Figure 67 shows atypical scenario for CSlv2 authentication over transport:

Figure 67: CSv2 Authentication Over Transport Scenario
PKCS#12
File
O
O—m
Client Target Server

®

>

invoke @
Client

authentication

token @

Request + —>

I
_____ _» | SSL/TLS Connection n I

® y

[Authentication Service J

Asshown in Figure 67 on page 419, the authentication over transport
mechanism proceeds as follows:

Stage

Description

1

When aclient initiates an operation invocation on the target, the
client’s CSI plug-in inserts a client authentication token
(containing username/password/domain) into the GIOP request

message.

419

CHAPTER 16 | Configuring CSlv2 Authentication over Transport

SSL/TL S connection

Client authentication token

420

Stage

Description

The request, together with the client authentication token, is sent
over the SSL/TLS connection. The SSL/TL S connection provides
privacy and message integrity, ensuring that the username and
password cannot be read by eavesdroppers.

Before permitting the request to reach the target object, the CSI
server interceptor calls an application-supplied object (the
authentication service) to check the username/password
combination.

If the username/password combination are authenticated
successfully, the request is allowed to reach the target object;
otherwise the request is blocked and an error returned to the client.

The client and server should both be configured to use a secure SSL/TLS
connection. In this scenario, the SSL/TLS connection is configured for target
authentication only.

See“SSL/TLS Prerequisites’ on page 422 for details of the SSL/TLS
configuration for this scenario.

A client authentication token contains the data that a client uses to authenticate
itself to a server through the CSIv2 authentication over transport mechanism, as
follows:

Username—a UTF-8 character string, which is guaranteed not to undergo
conversion when it is sent over the wire.

Password—a UTF-8 character string, which is guaranteed not to undergo
conversion when it is sent over the wire.

Domain—a string that identifies the CSIv2 authentication domain within
which the user is authenticated.

Note: The client’s domain should match the target domain, which is
specified by the

policies:csi:auth_over transport:server domain_name
configuration variable on the server side.

Authentication service

CSlv2 Authentication Scenario

The client authentication token is usualy initialized by the CSv2 principal
sponsor (which prompts the user to enter the username/password and domain).
See “Providing a Username and Password” on page 428.

The authentication service is an external service that checks the username and
password received from the client. If the authentication succeeds, the request is
allowed to proceed and an invocation is made on the target object; if the
authentication fails, the request is automatically blocked and a

CORBA: :NO_PERMISSION System exception is returned to the client.

See “Providing an Authentication Service” on page 427.

421

CHAPTER 16 | Configuring CSlv2 Authentication over Transport

SSL/TL S Prerequisites

Overview

SSL/TL Starget authentication
only

Configuration samples

422

The SSL/TL S protocol isan essential complement to CSIv2 security. The CSlv2
authentication over transport mechanism relies on SSL/TL S to provide the
following additional security features:

° Server authentication.

° Privacy of communication.

. Message integrity.

WARNING: If you do not enable SSL/TLS for the client-server connection,

the GSSUP username and password would be sent over the wire unencrypted
and, therefore, could be read by eavesdroppers.

For the scenario depicted in Figure 67 on page 419, the SSL/TLS connection is

configured for target authentication only. The SSL/TLS configuration can be

summarized as follows:

® Client-side SSL/TLS configuration—the client requires confidentiality,
message integrity, and the EstablishTrustInTarget SSL/TLS
association option. No X.509 certificate is provided on the client side,
because the client is not authenticated at the transport layer.

® Server-side SSL/TLSconfiguration—the server requires confidentiality and
message integrity, but the EstablishTrustInclient SSL/TLSassociation
optionis not required. An X.509 certificate is provided on the server side
to enable the client to authenticate the server.

The SSL/TLS configuration of this CSlv2 scenario is based on the following
TLS demonstration configurations in your Orbix configuration
(DomainName. c£g file or CFR service):

° demos.tls.secure_client_with_no_cert

° demos.tls.secure_server_no_client_auth

SSL/TLS Prerequisites

SSL/TLSprincipal sponsor In this scenario, the SSL/TLS principal sponsor needs to be enabled only on the
configuration server side, because it is only the server that has an associated X.509 certificate.

Note: The SSL/TLS principal sponsor is completely independent of the
CSIv2 principal sponsor (see “CSlv2 principal sponsor” on page 428). Itis
possible, therefore, to enable both of the principal sponsors within the same
application.

References See*“ Sample Configuration” on page 432 for adetailed example of the client and
server SSL/TLS configuration.

See“SSL/TLS Administration” on page 275 for complete details of configuring
and administering SSL/TLS.

423

CHAPTER 16 | Configuring CSlv2 Authentication over Transport

Requiring CSIv2 Authentication

Overview This section describes the minimal configuration needed to enable CSlv2
authentication over transport. In atypical system, however, you also need to
configure SSL/TLS (see “SSL/TLS Prerequisites’ on page 422) and the CSIv2
principal sponsor (see “Providing a Username and Password” on page 428).

Loading the CSI plug-in To enable CSIv2 for aC++ or Javaapplication, you must include the csi plug-in
in the orb_plugins list in your Orbix configuration. The
binding:client_binding list and binding:server binding list mMust
aso beinitialized with the proper list of interceptor combinations.

Sample settings for these configuration variables can be found in the
demos . t1s.csiv2 configuration scope of your Orbix configuration. For
example, you can load the csi plug-in with the following configuration:

Orbix configuration file

csiv2 {
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "csi"];
binding:client _binding list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

binding:server _binding_ list = ["CSI"];
i
Client configuration A client can be configured to support CSIv2 authentication over transport, as
follows:

Orbix configuration file
policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient"];

424

Client CSlv2 association options

Server configuration

Server CSlv2 association options

Server domain name

Requiring CSIv2 Authentication

The EstablishTrustInClient option isa CSlv2 association option. Including
thisoptioninthepolicies:csi:auth_over_transport:client_supports list
indicates that the client supports the CSIv2 authentication over transport
mechanism.

A server can be configured to support CSlv2 authentication over transport, as
follows:

Orbix configuration file
policies:csi:auth_over_transport:target_supports
["EstablishTrustInClient"];
policies:csi:auth_over transport:target_requires =
["EstablishTrustInClient"];
policies:csi:auth_over_ transport:server domain_ name =
"AuthDomain* ;
policies:csi:auth over transport:authentication service =
"csiv2.AuthenticationServiceObject";

Including the EstablishTrustInCclient CSlv2 association option in the
policies:csi:auth_over_transport:target_supports list indicates that the
server supports the CSlv2 authentication over transport mechanism.

Including the EstablishTrustInCclient CSIV2 association optionin the
policies:csi:auth over_transport:target_requires list indicatesthat the
server requires clients to authenticate themselves using the CSlv2 authentication
over transport mechanism. If the client fails to authenticate itself to the server
when the server requiresit, the server throws a CORBA: :NO_PERMISSION System
exception back to the client.

The server domain name is the name of avalid CSlv2 authentication domain. A
CSlv2 authentication domain is an administrative unit within which a
username/password combination is authenticated.

A CSlv2 client will check that the domain nameinits CSIv2 credentialsisthe
same as the domain name set on the server side by the
policies:csi:auth _over transport:server domain name configuration
variable. If the domain in the client credentials is an empty string, however, the
domain always matches (the empty string is treated as a wildcard).

425

CHAPTER 16 | Configuring CSlv2 Authentication over Transport

Authentication service

426

The authentication_service variable specifies a Java class that provides an
implementation of the authentication service. This enables you to provide a
custom implementation of the CSIv2 authentication service in Java.

When using CSIv2 in the context of the Orbix Security Framework, however,
this configuration variable should be omitted. In the Orbix Security Framework,
the GSP plug-in specifies the CSlv2 authentication service programmatically.

See “Providing an Authentication Service” on page 427 for more details.

Providing an Authentication Service

Providing an Authentication Service

Overview

By configuration (Java only)

By programming a policy (Java
only)

By registering an initial reference

Default authentication service

Orbix Security Framework

Sample implementation

An implementation of the CSIv2 authentication service can be specified in one
of the following ways:

. By configuration (Java only).
° By programming a policy (Javaonly).
. By registering an initial reference.

In Java, the authentication service is provided by a customizable class which can
be loaded by setting the

policies:csi:auth_over transport:authentication_service
configuration variable to the fully-scoped name of the Java class.

In Java, you can specify a CSlv2 authentication service object programmatically
by setting the IT_cs1::CSI_SERVER AS_POLICY policy with an
IT_CSI::AuthenticationService Struct asits policy value.

See the CORBA Programmer’ s Reference, Java for more details.

Y ou can specify a CSlv2 authentication service object (in C++ and Java) by
registering an instance asthe IT_csIAuthenticationObject initial reference.
This approach is mainly intended for use by Orbix plug-ins.

If no authentication serviceis specified, a default implementation is used that
always returns false in response to authenticate() cals.

In the context of the Orbix Security Framework, the GSP plug-in provides a
proprietary implementation of the CSIv2 authentication service that delegates
authentication to the Orbix security service.

A sample implementation of a CSIv2 authentication service can be found in the
following demonstration directory:

ASPInstallDir /asp/Version/demos/corba/tls/csiv2/java/src/csiv

427

CHAPTER 16 | Configuring CSlv2 Authentication over Transport

Providing a Username and Password

Overview

CSlIv2 principal sponsor

Credentialssharing

Loggingin

428

This section explains how a user can provide a username and a password for
CSlv2 authentication (logging on) as an application starts up. CSIv2 mandates
the use of the GSSUP standard for transmitting a username/password pair
between aclient and a server.

The CSVv2 principal sponsor isa piece of code embedded in the CS| plug-in that
obtains authentication information for an application. It is configured by setting
variablesin the Orbix configuration. The great advantage of the CSIv2 principal
sponsor isthat it enablesyou to provide authentication data for security unaware
applications, just by modifying the configuration.

The following configuration file extract shows you how to enable the CSIv2
principal sponsor for GSSUP-style authentication (assuming the application is
already configured to load the CSl plug-in):

Orbix configuration file
principal_sponsor:csi:use principal_sponsor = "true";
principal_sponsor:csi:use_method_id = "GSSUPMech";

Normally, when you specify an own credential using the CSI principal sponsor,
the credential is available only to the ORB that created it. By setting the
plugins:security:share_credentials_across_orbs variableto true,
however, the own credentials created by one ORB are automatically made
available to any other ORBs that are configured to share credentials.

The GSSUP username and password can be provided in one of the following
ways:

. From adialog prompt.

° Directly in configuration.

. By programming.

From a dialog prompt

Providing a Username and Password

If the login data are not specified in configuration, the CSlv2 principal sponsor
will prompt the user for the username, password, and domain as the application
starts up. The dialog prompt is displayed if the client supports the
EstablishTrustInClient CSlv2 association option and one or more of the
principal_sponsor:csi:auth_method_data fields are missing (username,
password, or domain).

C++ Applications

When a C++ application starts up, the user is prompted for the username and
password at the command line as follows:

Please enter username :
Enter password :

Java Applications

The following dialog window pops up to prompt the user for the username,
password, and domain name:

i

Username: |jh|'3'995 |

Password: |“‘*'“‘***‘* |

Domain: \pcGROUP)

Ok Exit

Figure 68: Java Dialog Window for GSSUP Username and Password

Note: The password is not checked until the client communicates with a
server secured by CSlv2. Hence, the dialog is unable to provide immediate
confirmation of a user’s password and a mis-typed password will not be
detected until the client begins communicating with the server.

429

CHAPTER 16 | Configuring CSlv2 Authentication over Transport

Directly in configuration

By programming

430

The username, password, and domain can be specified directly in the
principal_sponsor:csi:auth_method data configuration variable. For
example, the CSIv2 principal sponsor can be configured as follows:

Orbix configuration file

principal_sponsor:csi:use principal_sponsor = "true";

principal_sponsor:csi:use method id = "GSSUPMech";

principal_sponsor:csi:auth method_data = ["username=User",
"password=Pass", "domain=AuthDomain"];

In this example, the auth_method_data Variable specifies aUser username,
Pass password, and AuthDomain domain.

WARNING: Storing the password directly in configuration is not
recommended for deployed systems. The password isin plain text and could be
read by anyone.

A CORBA application developer can optionally specify the GSSUP username,
password and domain name by programming—see “ Creating CSIv2
Credentials’ on page 478.

In this case, an administrator should ensure that the CSIv2 principal sponsor is

disabled for the application. Either the
principal_sponsor:csi:use_principal_sponsor variable can to be set to
false, Or the CSIv2 principal sponsor variables can be removed from the
application’s configuration.

The best approach is to set the
principal_sponsor:csi:use_principal_sponsor Variableto false inthe
application’s configuration scope. For example:

Orbix configuration file
outer_config_scope {

my_app_config scope {
principal_sponsor:csi:use_principal_sponsor = "false";

Providing a Username and Password

This ensures that the principal sponsor cannot be enabled accidentally by
picking up configuration variables from the outer configuration scope.

431

CHAPTER 16 | Configuring CSlv2 Authentication over Transport

Sample Configuration

Overview

In this section

432

This section provides complete sample configurations, on both the client side
and the server side, for the scenario described in “ CSlv2 Authentication
Scenario” on page 418.

This section contains the following subsections:

Sample Client Configuration page 433

Sample Server Configuration page 435

Sample Configuration

Sample Client Configuration

Overview

Configuration sample

This section describes a sample client configuration for CSlv2 authentication

over transport which has the following features:

® Theiiop_tls and csi plug-ins areloaded into the application.

®* Theclient supportsthe SSL/TLS EstablishTrustInTarget association
option.

® Theclient supports the CSlv2 authentication over transport
EstablishTrustInClient assoCiation option.

® Theusername and password are specified using the CSIv2 principal
SpONSOr.

The following sample shows the configuration of a client application that uses
CSlv2 authentication over transport to authenticate a user, Paul (using the
csiv2.client.paul ORB name):

Orbix configuration file

csiv2

{
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop tls", "csi"];
event_log:filters = ["IT CSI=*", "IT TLS=*", "IT IIOP_TLS=*",
"IT ATLI_TLS=*"];
binding:client_binding list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

binding:server_binding_list = ["CSI"];

client
{
policies:iiop_tls:client_secure_invocation policy:supports
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];
policies:iiop_tls:client_secure_invocation policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

433

CHAPTER 16 | Configuring CSlv2 Authentication over Transport

paul
{
plugins:csi:allow_csi_reply without_service context =
"false";
policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];
policies:csi:auth_over_transport:target_requires
["EstablishTrustInClient"];

principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:auth_method_id = "GSSUPMech";
principal_sponsor:csi:auth_method data =
["username=Paul", "password=password", domain="DEFAULT"];
Vg
Y
g

434

Sample Configuration

Sample Server Configuration

Overview

Configuration sample

This section describes a sample server configuration for CSlv2 authentication

over transport which has the following features:

® Theiiop_tls and csi plug-ins areloaded into the application.

® Theserver supportsthe SSL/TLS EstablishTrustInTarget and
EstablishTrustInClient association options.

®* Theserver's X.509 certificate is specified using the SSL/TLS principal
sponsor.

® The server supports the CSIv2 authentication over transport
EstablishTrustInClient association option.

The following sample shows the configuration of a server application that
supports CSlv2 authentication over transport (using the csiv2 . server ORB
name):

Orbix configuration file

csiv2

{
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop tls", "csi"];
event_log:filters = ["IT CSI=*", "IT TLS=*", "IT IIOP_TLS=*",
"IT ATLI_TLS=*"];
binding:client_binding list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

binding:server_binding_list = ["CSI"];

server
{
policies:iiop_tls:target_secure_invocation policy:supports
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];
policies:iiop_tls:target_secure_invocation policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

435

CHAPTER 16 | Configuring CSlv2 Authentication over Transport

436

principal_sponsor:use principal_sponsor = "true";

principal_ sponsor:auth method id = "pkcsl2 file";

principal_sponsor:auth _method data =
["filename=C:\ASPInstallDir\asp\6.0\etc\tls\x509\certs\demos\b
ank_server.pl2", "password=bankserverpass"];

policies:csi:auth_over_ transport:target_ supports =
["EstablishTrustInClient"];
policies:csi:auth_over transport:authentication service =
"csiv2.AuthenticationServiceObject";
policies:csi:auth_over_transport:server domain_name =
"DEFAULT" ;
b g

CHAPTER 17

Configuring CSlv2
|dentity Assertion

This chapter explains the concepts underlying the CSv2 identity
assertion (or delegation) mechanism and provides details of how
to configure your applications to use this mechanism.

In this chapter This chapter discusses the following topics:
CSlv2 Identity Assertion Scenario page 438
SSL/TLS Prerequisites page 442
Enabling CSlv2 Identity Assertion page 444
Sample Configuration page 446

437

CHAPTER 17 | Configuring CSlv2 I dentity Assertion

CSIv2 | dentity Assertion Scenario

Overview This section describes atypical CSlv2 identity assertion scenario, involving a
client, an intermediate server, and atarget server. Once the client has
authenticated itself to the intermediate server, the intermediate server can
impersonate the client by including an identity token in the requests that it sends
to the target server. The intermediate server thus acts as a proxy (or delegate)
Sserver.

I dentity assertion The CSlv2 identity assertion mechanism provides the basis for a
general-purpose delegation or impersonation mechanism. ldentity assertion is
used in the context of a system where a client invokes an operation on an
intermediate server which then invokes an operation on atarget server (see
Figure 69). When making a call on the target, the client identity (which is
authenticated by the intermediate server) can be forwarded by the intermediate
to the target. This enables the intermediate to impersonate the client.

Dependency on SSL/TLS The CSlv2 identity assertion mechanism relies on SSL/TLS to provide the the
following security features at the transport layer (between the intermediate
server and the target server):
® Authentication of the target server to the intermediate server.
® Authentication of the intermediate server to the target server.

i Privacy of communication.

° Message integrity.

438

CSlv2 scenario

CSlv2 Identity Assertion Scenario

Figure 69:

Client

©

CSV2 | dentity Assertion Scenario

PKCS#12
File
O3

O—m

Client
authentication
token

How CSIv2 identity assertion

proceeds

Intermediate Server

® ®

®

invoke

Identity token

Request + —>

®

/)
_____ _» | SSL/TLS Connection n R

Request + —>

Figure 69 shows atypical scenario for CSlv2 identity assertion:

PKCS#12
File
OO0

O—m

Target Server

,n VOkL’Q

©O)

U\

->> SSL/TLS Connection

7N\

v ®

[

Authentication Service ’

Received credentials

object

asfollows:

Asshown in Figure 69 on page 439, the identity assertion mechanism proceeds

Stage

Description

1

When aclient initiates an operation invocation on the intermediate,

the client’s CSl plug-in inserts a client authentication token
(containing username/password/domain) into the GIOP request

message.

439

CHAPTER 17 | Configuring CSlv2 I dentity Assertion

Stage Description

2 | Therequest, together with the client authentication token, is sent
over the SSL/TLS connection. The SSL/TL S connection provides
privacy and message integrity, ensuring that the username and
password cannot be read by eavesdroppers.

3 | Before permitting the request to reach the target object in the
intermediate, the intermediate’s CSl plug-in callsthe
authentication service to check the username/password
combination.

4 | If the username/password combination are authenticated
successfully, the request is allowed to reach the object; otherwise
the request is blocked and an error is returned to the client.

5 | Within the context of the current invocation, the intermediate
server invokes an operation on the target server.

Because identity assertion has been enabled on the intermediate
server, theintermediate’ s CSI plug-in extracts the client username
from the received GSSUP credentials, creates an identity token
containing this username, and then inserts the identity token into
the GIOP request message.

6 | Thereguest, together with the identity token, is sent over the
SSL/TLS connection. The SSL/TL S connection provides privacy
message integrity, and mutual authentication between the
intermediate and the target.

7 | When the request arrives at the target server, the asserted identity
is extracted and made available to the target through the CORBA
received credentials object—see “ Retrieving Received
Credentials’ on page 497.

SSL/TL S connection The intermediate server and target server should both be configured to use a
secure SSL/TLS connection. In this scenario, the intermediate-to-target
SSL/TLS connection is configured for mutual authentication.

See “SSL/TLS Prerequisites’ on page 442 for details of the SSL/TLS
configuration for this scenario.

I dentity token An identity token can contain one of the following types of identity token:

440

Received credentials

CSlv2 Identity Assertion Scenario

° ITTAbsent—if No identity token isincluded in the GIOP message sent by
theintermediate server (for example, if CSIv2 identity assertion is disabled
in the intermediate server).

i ITTAnonymous—if the intermediate server is acting on behalf of an
anonymous, unauthenticated client.

i ITTPrincipalName—if the intermediate server is acting on behalf of an
authenticated client. In this case, the client identity contains the following
data:

¢ GSSUP username—automatically extracted from the GSSUP client
authentication token received from the client.

+ Subject DN—if the intermediate server authenticates the client using
an X.509 certificate, but not using a username and password, the
intermediate would forward on an identity token containing the
subject DN from the client certificate.

The received credentialsis an object, of

SecurityLevel2: :ReceivedCredentials type, defined by the OMG CORBA
Security Service that encapsulates the security credentialsreceived from aclient.
In this scenario, the target server is programmed to access the asserted identity
using the received credentials.

For details of how to accessthe asserted identity through the received credentials
object, see “Retrieving Received Credentials from the Current Object” on
page 498.

441

CHAPTER 17 | Configuring CSlv2 I dentity Assertion

SSL/TL S Prerequisites

Overview

SSL/TL S mutual authentication

Setting certificate constraints

442

The CSlv2 identity assertion mechanism relies on SSL/TLS to provide the the
following security features at the transport layer (between the intermediate
server and the target server):

® Authentication of the target server to the intermediate server.
® Authentication of the intermediate server to the target server.
. Privacy of communication.

. Message integrity.

For the scenario depicted in Figure 69 on page 439, the SSL/TLS connection
between the intermediate and the target server is configured for mutual
authentication. The SSL/TLS configuration can be summarized as follows:

. Intermediate server SSL/TLS configuration—the intermediate server
requires confidentiality, message integrity, and the
EstablishTrustInTarget SSL/TLS association option. An X.509
certificate is provided, which enables the intermediate server to be
authenticated both by the client and by the target server.

® Target server SSL/TLS configuration—the server requires confidentiality,
message integrity, and the EstablishTrustInClient SSL/TLS
association option. An X.509 certificate is provided, which enables the
target server to be authenticated by the intermediate server.

See " Sample Intermediate Server Configuration” on page 449 for adetailed

example of the SSL/TLS configuration in this scenario.

See“SSL/TLS Administration” on page 275 for complete details of configuring
and administering SSL/TLS.

In the scenario depicted in Figure 69 on page 439, the target server grants a
special type of privilege (backward trust) to the intermediate server—that is, the
target accepts identities asserted by the intermediate without getting the chance
to authenticate these identities itself. It is, therefore, recommended to set the
certificate constraints policy on the target server to restrict the range of
applications that can connect to it.

Principal sponsor configuration

SSL/TLS Prerequisites

The certificate constraints policy prevents connections being established to the
target server, unless the ASN.1 Distinguished Name from the subject line of the
incoming X.509 certificate conforms to a certain pattern.

See “Applying Constraints to Certificates’ on page 384 for further details.

In this scenario, the SSL/TLS principal sponsor needs to be enabled in the
intermediate server and in the target server.

See " Specifying an Application’s Own Certificate” on page 371 and “Providing
a Certificate Pass Phrase” on page 376 for further details.

Note: The SSL/TLS principal sponsor is completely independent of the
CSlv2 principal sponsor (see “Providing a Username and Password” on
page 428). It is possible, therefore, to enable both of the principal sponsors
within the same application.

443

CHAPTER 17 | Configuring CSlv2 I dentity Assertion

Enabling CSlIv2 Identity Assertion

Overview Based on the sample scenario depicted in Figure 69 on page 439, this section
describes the basic configuration variables that enable CSIv2 identity assertion.
These variables on their own, however, are by no means sufficient to configure a
system to use CSIv2 identity assertion. For a complete example of configuring
CSlv2 identity assertion, see “ Sample Configuration” on page 446.

Loading the CSI plug-in To enable CSIv2, you must include the csi plug-in in the orb_plugins listin
your Orbix configuration. The binding:client_binding list and
binding:server binding list must also beinitialized with the proper list of
interceptor combinations.

Sample settings for these configuration variables can be found in the
demos . t1s.csiv2 configuration scope of your Orbix configuration. For
example, you can load the csi plug-in with the following configuration:

Orbix configuration file

csiv2 {
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "csi"];
binding:client_binding list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

binding:server _binding_ list = ["CSI"];

Intermediate server configuration Theintermediate server can be configured to support CSIv2 identity assertion, as
follows:

Orbix configuration file
policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

Intermediate server CSlv2
association options

Target server configuration

Target server CSlv2 association
options

Enabling CSIv2 | dentity Assertion

Including the IdentityAssertion CSIv2 association option in the
policies:csi:attribute_service:client_supports list indicates that the

application supports CSIv2 identity assertion when acting as aclient.

The target server can be configured to support CSIv2 identity assertion, as
follows:

Orbix configuration file
policies:csi:attribute_service:target_supports

["IdentityAssertion"];

Including the I1dentityAssertion CSIv2 association option in the
policies:csi:attribute_service:target_supports list indicates that the

application supports CSIv2 identity assertion when acting as a server.

445

CHAPTER 17 | Configuring CSlv2 I dentity Assertion

Sample Configuration

Overview

In this section

446

This section provides complete sample configurations, covering the client, the
intermediate server, and the target server, for the scenario described in “CSlv2
Identity Assertion Scenario” on page 438.

This section contains the following subsections:

Sample Client Configuration page 447
Sample Intermediate Server Configuration page 449
Sample Target Server Configuration page 451

Sample Configuration

Sample Client Configuration

Overview

Configuration sample

This section describes a sample client configuration for the CSIv2 identity

assertion scenario. In this part of the scenario, the client is configured to use

CSlv2 authentication over transport, as follows:

® Theiiop_tls and csi plug-ins areloaded into the application.

®* Theclient supportsthe SSL/TLS EstablishTrustInTarget association
option.

® Theclient supports the CSlv2 authentication over transport
EstablishTrustInClient assoCiation option.

® Theusername and password are specified using the CSIv2 principal
SpONSOr.

The following sample shows the configuration of a client application that uses
CSlv2 authentication over transport to authenticate a user, Paul (using the
csiv2.client.paul ORB name):

Orbix configuration file

csiv2

{
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop _tls", "csi"];
event_log:filters = ["IT CSI=*", "IT TLS=*", "IT IIOP_TLS=*",
"IT ATLI_TLS=*"];
binding:client_binding list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

binding:server_binding_list = ["CSI"];

client
{
policies:iiop_tls:client_secure_invocation policy:supports
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];
policies:iiop_tls:client_secure_invocation policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

447

CHAPTER 17 | Configuring CSlv2 I dentity Assertion

paul
{
plugins:csi:allow_csi_reply without_service context =
"false";
policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:auth_method_id = "GSSUPMech";
principal_sponsor:csi:auth_method_data =
["username=Paul", "password=password", "domain=DEFAULT"];
i
b g
¥

448

Sample Configuration

Sample Intermediate Server Configuration

Overview

Configuration sample

This section describes a sample intermediate server configuration for CSlv2

identity assertion which has the following features:

® Theiiop_tls and csi plug-ins areloaded into the application.

. In therole of server, the intermediate server supports the SSL/TLS
EstablishTrustInTarget and EstablishTrustInClient association
options.

i In therole of client, the intermediate server supportsthe SSL/TLS
EstablishTrustInTarget and EstablishTrustInClient association
options.

®* Theintermediate server’s X.509 certificate is specified using the SSL/TLS
principal sponsor.

° In the role of server, the intermediate server supports the CSlv2
authentication over transport EstablishTrustInClient association
option.

i In therole of client, the intermediate server supports the CSIv2
TdentityAssertion association option.

The following sample shows the configuration of an intermediate server
application that supports CSIv2 authentication over transport (when acting asa
server) and identity assertion (when acting as a client). In this example, the
server executable should use the csiv2. intermed_server ORB name:

Orbix configuration file

csiv2

{
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "csi"];
event_log:filters = ["IT _CSI=*", "IT TLS=*", "IT IIOP_TLS=*",
"IT ATLI_TLS=*"];
binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA Coloc", "OTS+TLS_Coloc+POA Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

binding:server_binding list = ["CSI"];

449

CHAPTER 17 | Configuring CSlv2 I dentity Assertion

450

intermed_server
{
policies:iiop_tls:target_secure_invocation_ policy:supports
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];
policies:iiop_tls:target_secure invocation policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"] ;
policies:iiop_tls:client_secure invocation_ policy:supports
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];
policies:iiop_tls:client_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"] ;

principal_sponsor:use_principal_sponsor = "true";

principal_sponsor:auth _method id = "pkcsl2_file";

principal_ sponsor:auth _method data =
["filename=C:\ASPInstallDir\art\6.0\etc\tls\x509\certs\demos\b
ank_server.pl2", "password=bankserverpass"];

plugins:csi:allow_csi_reply without_service context =
"false";

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

policies:csi:auth_over_ transport:target_supports =
["EstablishTrustInClient"];

policies:csi:auth_over transport:target_requires =
["EstablishTrustInClient"];

policies:csi:auth_over transport:authentication service =
"csiv2.AuthenticationServiceObject";
policies:csi:auth_over_transport:server domain_name =
"DEFAULT" ;
b g

Sample Configuration

Sample Target Server Configuration

Overview

Configuration sample

This section describes a sample target server configuration for CSIv2 identity
assertion which has the following features:

The iiop_tls and csi plug-ins areloaded into the application.

The server supports the SSL/TLS EstablishTrustInTarget and
EstablishTrustInClient association options.

The server requiresthe SSL/TLS EstablishTrustInClient association
option.

The server’s X.509 certificate is specified using the SSL/TLS principal
SpONSOr.

The intermediate server supports the CSIv2 TdentityAssertion
association option.

The following sample shows the configuration of atarget server application that
supports identity assertion (using the csiv2.target_server ORB name).

Orbix configuration file

csiv2

{
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "csi"];
event_log:filters = ["IT _CSI=*", "IT TLS=*", "IT IIOP_TLS=*",
"IT ATLI_TLS=*"];
binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA Coloc", "OTS+TLS_Coloc+POA Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

binding:server_binding list = ["CSI"];

target_server

{
policies:iiop_tls:target_secure_invocation_policy:supports

= ["Integrity", "Confidentiality", "DetectReplay",

"DetectMisordering", "EstablishTrustInTarget",

"EstablishTrustInClient"];
policies:iiop_tls:target_secure_invocation policy:requires

= ["Integrity", "Confidentiality", "DetectReplay",

"DetectMisordering", "EstablishTrustInClient"];

451

CHAPTER 17 | Configuring CSlv2 I dentity Assertion

principal_ sponsor:use_principal_ sponsor = "true";
principal_sponsor:auth _method id = "pkcsl2_file";
principal_sponsor:auth_method data =

["filename=C:\ASPInstallDir\art\6.0\etc\tls\x509\certs\demos\b

ank_server.pl2", "password=bankserverpass"];
policies:csi:attribute service:target_supports =

["IdentityAssertion"];

}i
g

452

Inthispart

Part V

CORBA Security
Programming

This part contains the following chapters:

Programming Policies page 455

Authentication page 469

Validating Certificates page 511

CHAPTER 18

Programming
Policies

You can customize the behavior of secure CORBA applications by
setting policies programmatically.

In this chapter This chapter discusses the following topics:
Setting Policies page 456
Programmable SSL/TLS Policies page 459
Programmable CSIv2 Policies page 466

455

CHAPTER 18 | Programming Policies

Setting Policies

Overview

Client-side policy levels

Server-side policy levels

Policy management

456

This section provides a brief overview of how to set CORBA policies by
programming. An example, in C++ and Java, is provided that shows how to set a
CORBA policy at the ORB level.

How to program CORBA paliciesis described in more detail in the CORBA
Programmer’s Guide.

Y ou can set client-side policies at any of the following levels:
° ORB

® Thread

®* Object (for client-side proxies).

You can set server-side policies at any of the following levels:
e ORB
* POA

As described in the CORBA Programmer’ s Guide, you can set apolicy at each
level using the appropriate policy management object as listed in Table 25.

Table25: Policy Management Objects

Policy Level Policy Management Object
ORB CORBA: : PolicyManager
Thread CORBA: : PolicyCurrent
POA PortableServer: : POA: :create POA()
Client-side proxy (ObjectRef) ._set_policy overrides ()

Setting Policies

C++ Example The following C++ example shows how to set an SSL/TL S certificate
constraints policy at the ORB level:

Example 42: C++ Example of Setting ORB-Level Policies

//C++
CORBA: : Any any;
CORBA: :PolicyList orb_policies;
orb_policies.length(1);
1 CORBA: :Object_var object =

global_orb->resolve_initial_references ("ORBPolicyManager") ;
CORBA: :PolicyManager_var policy mgr =
CORBA: : PolicyManager: : _narrow (object) ;

2 IT TLS_API::CertConstraints cert_constraints;
cert_constraints.length (1) ;

3 cert_constraints[0] = CORBA::string_dup (
"C=US, ST=Massachusetts, O=ABigBank*, OU=Administration"
)i

any <<= cert_constraints;
4,5 orb_policies[0] = global_orb->create policy (
IT TLS_API::TLS_CERT CONSTRAINTS_ POLICY, any
) g
6 policy mgr->set_policy_ overrides (
orb _policies, CORBA::ADD_OVERRIDE
) g

Java Example The following Java example shows how to set an SSL/TLS certificate
congtraints policy at the ORB level:

Example 43: Java Example of Setting ORB-Level Palicies

//Java
1 PolicyManager pol_manager = null;
pol_manager = (PolicyManager)

orb.resolve_initial_references ("ORBPolicyManager") ;
Any policy value = orb.create any() ;
String[] constraint =
{"C=US, ST=Massachusetts, O=ABigBank*,OU=Administration"};
2,3 CertConstraintsHelper.insert (policy_value, constraint);
Policy[] policies = new Policyl[1l];

457

CHAPTER 18 | Programming Policies

Example 43: Java Example of Setting ORB-Level Policies

4,5 policies[0] =
orb.create policy (TLS_CERT CONSTRAINTS_POLICY.value,
policy_value) ;
6 pol_manager.set_policy overrides (policies,
SetOverrideType.SET OVERRIDE) ;

Setting a Policy at ORB Level The programming stepsin the preceding examples, “C++ Exampl€” on page 457
and “Java Example” on page 457, can be explained as follows:

1. Retrievethe ORB policy manager.

2. Create an instance of the policy that you are to adjust, based on the Orbix
IDL (see the CORBA Programmer’s Reference).

3. Setyour new values on this palicy.

Create an ORB policy object using the CORBA: : ORB: create_policy ()
operation and provide your new policy as a parameter.

Add the policy to aPolicyList object.

Usethe PolicyManager: : set_policy_overrides () operation to set the
new policyList onthe ORB.

458

Programmable SSL/TL S Policies

Programmable SSL/TL S Policies

Overview

In thissection

This section gives abrief overview of the different kinds of programmable
SSL/TLS palicy and discusses how these policies interact with each other and
with policies set in configuration.

For more details of these SSL/TLS policies, consult the relevant sections of the
CORBA Programmer’ s Reference.

This section contains the following subsections:

Introduction to SSL/TLS Policies page 460
The QOPPolicy page 462
The EstablishTrustPolicy page 463
The InvocationCredential sPolicy page 464
Interaction between Policies page 465

459

CHAPTER 18 | Programming Policies

I ntroduction to SSL/TL S Policies

Configuring or programming
policies

Augmenting minimum levels of
security

What are the minimum security
levelsfor objects?

460

Y ou can use policies to govern security behavior in Orbix and most of these
policies can be set through the Orbix configuration file (see “policies’ on
page 582).

However, policies set with the configuration file only apply at the ORB level. If
you devel op security-aware applications, you can add afiner level of security to
objects by programming policies in your application code.

Y ou can use the CORBA policy IDL and the TLS policy IDL to refine the

security features that your objects require. Follow these steps:

1. Consider what are the minimum security levels set for objectsin your
system.

2. Addto these minimum levels, by adding the available programmable
policies to your application code.

Note: Examples of configuring policies programmatically can be found in
the TLS policy demo, in the ASPInstalIDir /asp/6.0/demos/t1ls/policy
directory.

Y ou can set the minimum levels of security that objects require with secure
invocation policies. There are two types of secure invocation policy:

b Security: :SecClientSecureInvocation

b Security: :SecTargetSecureInvocation

Y ou can apply values for these in the Orbix configuration file, as discussed in
“Setting Association Options’ on page 336, or by programming policies.

It isimportant to remember that by programming policies you can only add more
security to the minimum required in the configuration; you cannot reduce the
minimum required security by programming.

Programmable SSL/TL S Palicies

Required and supported security Any object, can have the following dispositions to a security feature:
features * | the object requires a certain type of security, that requirement must be
complied with before a call to the object succeeds.
i If the object supports a certain type of security, that security feature can be
used, but does not have to be used.

461

CHAPTER 18 | Programming Policies

The QOPPolicy

IDL definition The securitylLevel2: :Q0PPolicy policy provides away to override the client
and target secure invocation policies. Y ou can apply four levels of protection
defined by the enumerated type, security: :QoP, defined as follows:

//IDL
module Security {

enum QOP {
SecQOPNoProtection,
SecQOPIntegrity,
SecQOPConfidentiality,
SecQOPIntegrityAndConfidentiality
¥
}i

Purpose The securitylevel2: :Q0PPolicy iS used by security aware applications for
twO purposes:
. Restricting the types of cipher suites available for consideration.
® Overriding the way in which a specific object is contacted.

Restricting cipher suites The values allowed for QOP policies are not specific enough to identify
particular cipher suites (the mechanism policy can be used for this). However the
QoPPolicy value can render certain cipher suites inapplicable—see “ Constraints
Imposed on Cipher Suites’ on page 355.

If you set aQOP policy to override an existing QOP policy, the applicable list of
cipher suites can be extended as a result.

Over-riding how an object is When you set a QOP policy override for an object, this resultsin a new object

contacted reference that contains the applicable policies. This means that the QOP policy
can conveniently be used to create an insecure object reference (where allowed
by the administration policies) that you can use for operations where you wish
insecure invocations to take place. The original object reference that contains a
higher quality of protection can be used for the more sensitive operations.

462

Programmable SSL/TL S Palicies

The EstablishTrustPolicy

Purpose Y ou can use the securityLevel?2: :EstablishTrustPolicy to control whether
server or client authentication is to be enforced.

Both aclient and target object can support this policy, meaning that, for aclient,
the client is prepared to authenticate its privileges to the target, and the target
supports this.

However, you can also set this policy asrequired for atarget policy. This means
that a client must authenticate its privileges to the target, before the target will
accept the connection.

IDL Definition The securitylevel2: :EstablishTrustPolicy policy contains an attribute,
trust, Of Security: :EstablishTrust typethat specifieswhether trustin client
and trust in target is enabled. The security: :EstablishTrust typeis defined
asfollows:

//IDL
module Security {

struct EstablishTrust {
boolean trust_in_client;
boolean trust_in_target;
Fi

Structure members This structure contains the following members:

® Thetrust_in_client element stipulates whether the invocation must
select credentials and mechanism that allow the client to be authenticated
to the target.

i The trust_in_target element stipul ates whether the invocation must first
establish trust in the target.

Note: Normally, all SSL/TLS cipher suites need to authenticate the target.

463

CHAPTER 18 | Programming Policies

The InvocationCredentialsPolicy

Purpose

Attribute

Setting the policy at object level

464

The securityLevel2: : InvocationCredentialsPolicy policy forcesaPOA to
use specific credentials or to use specific credentials on a particular object.
When this object is returned by the get_policy () operation, it contains the
active credentials that will be used for invocations using this target object
reference.

The SecurityLevel2: : InvocationCredentialsPolicy policy hasasingle
attribute, creds, that returns alist of credentials objectsthat are used as
invocation credentials for invocations through this object reference.

An InvocationCredentialsPolicy Object can be passed to the
set_policy overrides () operation to specify one or more credentials
objects to be used when calling this target object, using the object reference
returned by set_policy overrides().

Programmable SSL/TL S Palicies

I nter action between Policies

Upgrading security

No downgrading of security

Compatibility withthemechanism
policy value

To upgrade an insecure Orbix application to be fully secure using the cop and
EstablishTrust policies, the application must initially be configured to support
the DetectReply and the DetectMisordering association options. Thisis
because it is not possible to specify the DetectReplay and DetectMisordering
association options programatically, but these association options are needed for
al the SSL/TLS cipher suites. See “ Constraints Imposed on Cipher Suites’ on
page 355.

When you specify the client secure invocation policy and the target secure
invocation policy, you are providing your application with its minimum security
reguirements. These minimum requirements must be met by any other specified
policies and cannot be weakened. This means that the following policies cannot
be specified, if their values would conflict with the corresponding

SecureInvocationPolicy ValUe:
b QOPPolicy
b MechanismPolicy

b EstablishTrustPolicy

Y ou cannot specify valuesfor the goPPolicy, SecureInvocationPolicy (client
and target), or EstablishTrustPolicy, if the underlying mechanism policy
does not support it. For example, you cannot specify that confidentiality is
required, if only NULL cipher suites are enabled in the MechanismPolicy.

465

CHAPTER 18 | Programming Policies

Programmable CSIv2 Palicies

Overview This section gives a brief overview of the programmable CSIv2 policies. These
programmabl e policies provide functionality equivalent to the CSIv2
configuration variables.

For complete details of the CSIv2 policies, see the description of the IT_cst
module in the CORBA Programmer’ s Reference.

CSlv2 policies The following CSIv2 policies can be set programmatically:
® Client-side CSIv2 authentication policy.
® Server-side CSlv2 authentication policy.
®* (Client-side CSIv2 identity assertion policy.
® Server-side CSlv2 identity assertion policy.

Client-side CSlv2 authentication Y ou can set the client-side CSIv2 authentication policy to enable an application
policy to send GSSUP username/password credentias over the wire in a GIOP service
context. The programmable client-side CSIv2 authentication policy provides
functionality equivalent to setting the following configuration variable:
policies:csi:auth_over_ transport:client_supports
To create a client-side CSlv2 authentication policy, use the following IDL data
types from the IT_cst module:
° Policy type constant is IT_CST: :CSI_CLIENT_AS_POLICY.
. Policy datais IT CSI::AuthenticationService.

Server-side CSlv2 authentication Y ou can set the server-side CSlv2 authentication policy to enable an application

policy to receive and authenticate GSSUP username/password credentials. The
programmabl e server-side CSlv2 authentication policy provides functionality
equivalent to setting the following configuration variables:
policies:csi:auth_over_ transport:target_supports
policies:csi:auth_over transport:target_requires
policies:csi:auth_over_transport:server_domain name
policies:csi:auth_over transport:authentication_service
To create a server-side CSIv2 authentication policy, use the following IDL data
types from the IT_cst module:

466

Client-side CSIv2 identity
assertion policy

Server-side CSIv2 identity
assertion policy

Programmable CSIv2 Policies

. Policy type constant iS IT_CSI: :CSI_SERVER AS_POLICY.
4 Policy datais IT_CST: :AuthenticationService.

Y ou can set the client-side CSIv2 identity assertion policy to enable an
application to send a CSlv2 asserted identity over the wirein a GIOP service
context. The programmable client-side CSIv2 identity assertion policy provides
functionality equivalent to setting the following configuration variable:
policies:csi:attribute _service:client_supports

To create a client-side CSlv2 identity assertion policy, use the following IDL
data types from the 1T_cst module:

. Policy type constant iS IT_CSI: :CSI_CLIENT SAS_POLICY.

° Policy datais IT_CSI::AttributeService.

Y ou can set the server-side CSIv2 identity assertion policy to enable an
application to receive a CSlv2 asserted identity. The programmable server-side
CSlv2 identity assertion policy provides functionality equivalent to setting the
following configuration variable:

policies:csi:attribute_service:target_supports

To create a server-side CSIv2 identity assertion policy, use the following IDL
data types from the 1T_cst module:

. Policy type constant iS IT_CSI: :CSI_SERVER_SAS_POLICY.
° Policy datais IT_CSI::AttributeService.

467

CHAPTER 18 | Programming Policies

468

In this chapter

CHAPTER 19

Authentication

The Orhix Security Framework protects your applications by
preventing principals from making calls to the system unless they

authenticate themsel ves.

This chapter discusses the following topics:

Using the Principal Authenticator page 470
Using a Credentials Object page 483
Retrieving Own Credentials page 485
Retrieving Target Credentials page 491
Retrieving Received Credentids page 497
Copying CSI Credentials between Threads page 506

469

CHAPTER 19 | Authentication

Using the Principal Authenticator

Overview The principal authenticator is an object that associates secure identities with a
CORBA application. This section explains how to use the principal authenticator
to create various kinds of credentials.

In this section This section contains the following subsections:
Introduction to the Principal Authenticator page 471
Creating SSL/TLS Credentials page 474
Creating CSlv2 Credentias page 478

470

Using the Principal Authenticator

Introduction to the Principal Authenticator

Overview This section describes the role of the principal authenticator object in creating
and authenticating an application’s own credentials.

Creating own credentials There are two alternative ways to create an application’s own credentials:
° By configuration—that is, by setting the principal sponsor configuration
variables. See*“ Specifying an Application’s Own Certificate” on page 371.
. By programming—that is, by calling the
SecuritylLevel2: :PrincipalAuthenticator: :authenticate ()

operation directly. This alternative is described here.

Principal A principal can be any person or code that wants to use your secure system. The
principal must be identified, for example by a user name and password, and
authenticated. Once authenticated, your system assigns credentials to that
principal, that assert the authenticated identity.

Own credentials An own credentials object, of securitylLevel2: :Credentials type, represents
a secure identity under whose authority the context is executing. When an
application invokes an operation on aremote server, it sends one or more of its
own credentials to the server in order to identify itself to the server.

Principal authenticator The principal authenticator is afactory object that creates own credentials and
associates them with the current ORB instance. By calling the principal
authenticator’'s authenticate () operation multiple times, you can associate a
list of own credentials objects with the current ORB.

Note: Interms of the CORBA Security Specification, an ORB object is
identified with a security capsule. The list of own credentials created by a
principal authenticator isimplicitly associated with the enclosing security

capsule.

471

CHAPTER 19 | Authentication

Credentials sharing

Creating own credentials

Types of credentials

SSL/TLSown credentials

CSlv2 own credentials

472

Normally, when you specify an own credential using the principal authenticator,
the credentia is available only to the ORB that created it. By setting the
plugins:security:share_credentials_across_orbs variableto true,
however, the own credentials created by one ORB are automatically made
available to any other ORBs that are configured to share credentials.

To create own credentials and make them available to your application, follow
these steps:

Step Action

1 | Obtainaninitia referenceto the
SecurityLevel2: : SecurityManager Object.

2 | AcquireasecurityLevel2: :PrincipleAuthenticator object
from the security manager.

3 | CalthePrincipleAuthenticator: :authenticate () operation
to authenticate the client principal and create a
SecurityLevel2: :Credentials OWN credentials object.

4 | If morethan one type of own credentials object is needed, call the
PrincipleAuthenticator: :authenticate () operation again
with the appropriate arguments.

Using the principalauthenticator, you can create the following types of
credentials:

* SSL/TLS own credentials.
° CSlv2 own credentials.

An SSL/TLS own credentials contains an X.509 certificate chain and is
represented by an object of TT_TLS_APT: : TLSCredentials type.

The contents of a CSlv2 own credentials depends on the particular mechanism

that isused, asfollows:

® Username and password—if the CSlv2 authentication over transport
mechanism is used.

Using the Principal Authenticator

® Username only—if the CSIv2 identity assertion mechanism is used.

In both cases, the CSIv2 own credentials is represented by an object of
IT_CSI::CSICredentials type.

473

CHAPTER 19 | Authentication

Creating SSL/TL S Credentials

Overview

C++ example

474

The following authentication methods are supported for SSL/TLS:

IT_TLS_API::IT _TLS_AUTH METH PKCS12_FILE—enablesyou to specify
the path name of a PK CS#12 file containing an X.509 certificate chain.
Not supported by Schannel.
IT_TLS_API::IT_TLS_AUTH METH PKCS12_DER—enablesyou to specify
an X.509 certificate chain in DER-encoded PK CS#12 format. The
PKCS#12 dataiis provided in the form of an IT_certificate: :DERData
object. Not supported by Schannel.

IT TLS_API::IT TLS_AUTH METH CERT CHAIN—enablesyou to specify
the private key and certificate chain directly as

IT Certificate::DERData and IT Certificate::X509CertChain
objects, respectively. Not supported by Schannel.

IT_TLS API::IT TLS_AUTH METH CERT CHAIN FILE—enablesyou to
specify the path name of afile containing a PEM-encoded X.509 certificate
chain. Not supported by Schannel.

IT_TLS_APT::IT_TLS_AUTH METH_PKCS11—enables you to specify the
provider, slot number and PIN for a PK CS#11 smart card. Not supported
by Schannel.

IT_TLS_API::IT_TLS_AUTH METH LABEL—enablesyou to specify the
common name (CN) from an application certificate's subject DN. This
method can be used only in combination with the Schannel toolkit
(Windows C++ only).

In the following C++ example, aclient principal passesitsidentity to the
principal authenticator in the form of a PKCS#12 file:

Example 44: C++ Example of SSL/TLS Authentication

//C++

int pkcsl2_login (

CORBA: :ORB_ptr orb,
const char *pkcsl2_filename,
const char *password

Using the Principal Authenticator

Example 44: C++ Example of SSL/TLS Authentication

{
CORBA: : Any auth_data;
CORBA: : Any* continuation_data_ign;
CORBA: : Any* auth_specific_data_ign;
Security: :AttributeList privileges; // Empty

SecuritylLevel2: :Credentials_var creds;
Security::AuthenticationStatus status;
IT _TLS_API::PKCS12FileAuthData pl2_auth_data;
CORBA: :Object_var obj;
SecurityLevel2: :SecurityManager _var security manager obj;
SecurityLevel2: :PrincipalAuthenticator_var

principal_ authenticator_obj;

obj = orb->resolve_initial_references ("SecurityManager") ;
security_manager_obj = SecurityLevel2::SecurityManager: :
_narrow(obj) ;

principal authenticator_obj =
security manager_obj->principal_authenticator () ;

pl2_auth_data.filename =
CORBA: :string_dup (pkcsl2_filename) ;
pl2_auth_data.password =
CORBA: : string_dup (password) ;
auth_data <<= pl2_auth_data;

status = principal_authenticator_obj->authenticate (

IT TLS_API::IT TLS_AUTH METH PKCS12_FILE,

UL // The mechanism name.

NULL, // SecurityName (not used for this method) .

auth_data, // The authentication data for this method of

// authentication.

privileges, // Empty list, no privileges are supported
// by SSL.

creds,

continuation_data_ign, // These last two paramaters are

auth_specific_data_ign // not used by this

// mechanism/method combination.

475

CHAPTER 19 | Authentication

C++ notes The preceding C++ example can be explained as follows:
1. Declare an empty credentials object reference to hold the security
attributes of this client if login is successful.

Obtain an initia reference to the securi tyManager object.
Acquire a principleauthenticator object from the security manager.

Usethe Principleauthenticator to authenticate the client principal. If
thisoperation returnsavalue of security: : SecAuthSuccess, the security
attributes of the authenticated object are stored in the credentials object,

creds.

Java example In the following Java example, aclient principal passesits identity to the
principal authenticator in the form of a PKCS#12 file:

Example 45: Java Example of SSL/TLS Authentication

//Java
1 org.omg.SecuritylLevel2.SecurityManager manager =
(org.omg.SecurityLevel2.SecurityManager)
orb.resolve_initial_references ("SecurityManager") ;

2 PrincipalAuthenticator authenticator
manager .principal_authenticator () ;

Any auth _data_any = orb.create_any() ;
PKCS12FileAuthData authentication _data =
new PKCS12FileAuthData ("bankserverpass", certificate);
PKCS12FileAuthDataHelper.insert (auth_data_any,
authentication_data) ;

SecAttribute[] privileges = new SecAttribute[0];

// Holder for the credentials returned from logging in
3 CredentialsHolder credentials = new CredentialsHolder () ;

// Holders for continuation_data and auth_specific_data
// are not used

AnyHolder continuation data = new AnyHolder() ;
AnyHolder auth_specific_data = new AnyHolder () ;

AuthenticationStatus authentication_result;

476

Java notes

Using the Principal Authenticator

Example 45: Java Example of SSL/TLS Authentication

authentication_result = authenticator.authenticate (

IT TLS_AUTH METH_PKCS12_FILE.value,
"', // mechanism empty
"', // security name empty
auth_data_any,
privileges,
credentials,
continuation data,
auth_specific_data

The preceding Java example can be explained as follows:

1
2.
3.

Obtain an initial reference to the securityManager object.

Acquire a Principleauthenticator object from the security manager.

Initialize an empty credentials holder object to hold the security attributes

of thisclient if login is successful.

Usethe Principleauthenticator to authenticate the client principal. If
this operation returnsavalue of security: : SecAuthSuccess, the security
attributes of the authenticated object are stored in the credentials object.

477

CHAPTER 19 | Authentication

Creating CSlv2 Credentials

Overview The following authentication method is supported for CSlv2:

i IT_CSI::IT_CSI_AUTH METH_USERNAME_PASSWORD—enables you to
specify a GSSUP username, password, and domain. The GSSUP
authentication datais provided in the form of an IT_csI: :GSSUPAuthpata
object.

C++ example Example 46 shows how to create CSIv2 credentialsin C++, by supplying a
username, <user_name>, password, <password>, and authentication domain,
<domain>, to the principal authenticator’s authenticate () operation.

Example 46: C++ Example of CSv2 Authentication

// C++

int

set_csiv2_credential (CORBA: :ORB_var orb)
{

IT _CSI::GSSUPAuthData csi_gssup_auth_data;
CORBA: : Any auth_data;

CORBA: : Any* continuation_data_ign;
CORBA: : Any* auth_specific_data_ign;
Security: :AttributelList privileges;
SecurityLevel2: :Credentials_var creds;

CORBA: : String var username;

Security: :AuthenticationStatus status;

SecurityLevel2: :PrincipalAuthenticator_var authenticator;

try {
// Get initial reference of SecurityManager
SecurityLevel2: :SecurityManager_var security_manager_obj;

try
{
CORBA: :Object_var obj;
1 obj = orb->resolve_initial_references (
"SecurityManager"
)5
security manager_obj =
SecurityLevel2: : SecurityManager: :_narrow (obj) ;

478

Using the Principal Authenticator

Example 46: C++ Example of CSv2 Authentication

if (CORBA::is_nil (security manager_obj))

{
cerr << "Unexpected Error. Failed to initialize "
"SecurityManager initial reference." << endl;
}
authenticator =

security manager_obj->principal_authenticator () ;
if (CORBA::is_nil (authenticator))

{
// Log error message (not shown)
return -1;
}
}
catch (const CORBA: :ORB: :InvalidName&)
{
// Log error message (not shown)
return -1;
}

username = CORBA::string dup ("<USEr_name>") ;
csi_gssup_auth data.password =

CORBA: : string_dup ("<password>") ;
csi_gssup_auth_data.domain =

CORBA: : string dup ("<domain>") ;
auth_data <<= csi_gssup_auth data;

status = authenticator->authenticate (
IT CSI::IT CSI_AUTH METH USERNAME_PASSWORD,

o, // NOT USED
username, // GSSUP user name
auth_data, // GSSUP auth data in an any
privileges, // NOT USED
creds, // returned credentials
continuation_data_ign, // NOT USED
auth_specific_data_ign // NOT USED
) g
if (status != Security::SecAuthSuccess)
{
// Log error message (not shown)
return -1;
}

}
catch (const CORBA: :Exception& ex)

479

CHAPTER 19 | Authentication

C++ notes

Java example

480

Example 46: C++ Example of CSv2 Authentication

cerr << "Could not set csi credentials, " << ex << endl;
return -1;
}

return 0;

The preceding C++ example can be explained as follows:

1
2.
3.

Obtain an initial reference to the securityManager object.
AcquireapPrincipleauthenticator object from the security manager.
Create aGssuPAuthData Struct containing the GSSUP password,
<password>, and domain, <domain>.

Insert the GssupauthData Struct, auth_data, into the any, auth_data_any.

Call authenticate() onthe PrincipleAuthenticator object to
authenticate the client principal. If the authenticate () operation returnsa
value of security: : SecAuthSuccess, the security attributes of the
authenticated object are stored in creds.

Example 47 shows how to create CSIv2 credentials in Java, by supplying a
username, <user_name>, password, <password>, and authentication domain,
<domain>, to the principal authenticator’s authenticate () operation.

Example 47: Java Example of CSv2 Authentication

//Java

// Given the following prerequisites:
// orb - A reference to an org.omg.CORBA.ORB object.

org.omg.SecuritylLevel?2.SecurityManager manager =
(org.omg.SecuritylLevel2.SecurityManager)
orb.resolve_initial_ references ("SecurityManager") ;

org.omg.SecuritylLevel2.PrincipalAuthenticator authenticator
= manager.principal_authenticator() ;

org.omg.CORBA.Any auth data_any = orb.create_any/() ;

Using the Principal Authenticator

Example 47: Java Example of CSv2 Authentication

com.iona.IT CSI.GSSUPAuthData auth data =
new com.iona.IT CSI.GSSUPAuthData (
"<password>",
"<domain> "
)i
com. iona.IT_CSI.GSSUPAuthDataHelper.insert (
auth_data_any,
auth_data
)&

org.omg.Security.SecAttribute[] privileges
= new org.omg.Security.SecAttributel0];

// Holder for the credentials returned from logging in
org.omg.SecuritylLevel2.CredentialsHolder credentials
= new org.omg.SecurityLevel2.CredentialsHolder () ;

// Holders for continuation_data and auth_specific_data
// are not used
org.omg.CORBA.AnyHolder continuation_data

= new org.omg.CORBA.AnyHolder () ;
org.omg.CORBA.AnyHolder auth_specific_data

= new org.omg.CORBA.AnyHolder () ;

org.omg.Security.AuthenticationStatus authentication_result;

authentication_result = principal_authenticator.authenticate (
com.iona.IT_CSI.IT CSI_AUTH METH_USERNAME_PASSWORD.value,

b, // NOT USED
"<user_name>", // GSSUP user name
auth_data_any, // an any containing the
// IT _CSI::GSSUPAuthData struct
privileges, // NOT USED
credentials, // returns the CSIv2 user credentials

continuation_data, // NOT USED
auth_specific_data // NOT USED
) g

// Returned credentials can be accessed in ’‘credentials.value’

481

CHAPTER 19 | Authentication

Java notes The preceding Java example can be explained as follows:

1. Obtainaninitia reference to the securityManager object.

2. AcquireaprincipleAuthenticator object from the security manager.

3. Create acssupauthpata Struct containing the GSSUP password,
<password>, and domain, <domain>.

Insert the Gssupauthbata Struct, auth_data, into the any, auth_data_any.

5. Initidlize an empty credentials holder object to hold the security attributes
of thisclient.

6. Call authenticate() Onthe PrincipleAuthenticator object to
authenticate the client principal. If the authenticate () operation returnsa
value of security: : SecAuthSuccess, the security attributes of the
authenticated object are stored in credentials.value.

482

Using a Credentials Object

Using a Credentials Object

What is a credentials object?

Credentialstypes

How credentials are obtained

Accessing the credentials
attributes

A Securitylevel2::Credentials Object isalocality-constrained object that
represents a particular principal’s credential information, specific to the
execution context. A credentials object stores security attributes, including
authenticated (or unauthenticated) identities, and provides operations to obtain
and set the security attributes of the principal it represents.

There are three types of credentials:

® Own credentials—identifies the principal under whose authority the
context is executing. An own credential is represented by an object of
Securitylevel2: :Credentials type.

® Target credentials—identifies aremote target object. A target credential is
represented by an object of securitylevel2: : TargetCredentials type.

° Received credentials—identifies the principal that last sent a message to
the current execution context (for example, the principal that called a
currently executing operation). A received credential is represented by an
object of securitylLevel2: :ReceivedCredentials type.

Credentials objects are created or obtained as the result of:

* Authentication.

® Asking for acredentials object from asecuritylLevel2: :Current
object or from a securitylLevel2: : SecurityManager Object.

The security attributes associated with a credentials object can be obtained by
calling the securitylLevel2: :Credentials: :get_attributes () Operation,
which returns alist of security attributes (of security: :AttributeList type).

483

CHAPTER 19 | Authentication

Standard credentials attributes

Orbix-specific credentials
attributes

Retrieval method summary

484

Two security attribute types are supported by Orbix (of
Security: :SecurityAttributeType type), asfollows:

Security::_Public—present in every Credentials object. The value of
this attribute is always empty.

Note: The _ (underscore) prefix in _public isneeded to avoid aclash
with the IDL keyword, public. The underscore prefix is, however,
omitted from the corresponding C++ and Javaidentifiers.

Security: :AccessId—present only if the credentials object represents
avalid credential (containing an X.509 certificate chain). In SSL/TLS, the
value of this attribute is the string form of the subject DN of the first
certificate in the certificate chain.

Orhix also enables you to access the X.509 certificate chain associated with a
Credentials object by narrowing the credentials object to one of the
following interface types: IT_TLS_APT: :Credentials,

IT _TLS_API::ReceivedCredentials, OF IT_TLS_API::TargetCredentials.

The different credentials types can be retrieved in the following ways:

Retrieving own credentials—aclient’s own credentials can be retrieved
from the securitylevel2: : SecurityManager object.

Retrieving target credentials—a client can retrieve target credentials (if
they are available) by passing the target’ s object reference to the
SecurityLevel2: : SecurityManager: :get_target_credentials ()
operation.

Retrieving received credentials—a server can retrieve an authenticated
client’s credentials from the securitylLevel2: : Current object.

Retrieving Own Credentials

Retrieving Own Credentials

Overview This section describes how to retrieve own credentials from the security
manager object and how to access the information contained in the own
credentials.

In this section This section contains the following subsections:

Retrieving Own Credentia s from the Security Manager page 486
Parsing SSL/TLS Own Credentials page 488
Parsing CSIv2 Own Credentials page 490

485

CHAPTER 19 | Authentication

Retrieving Own Credentials from the Security M anager

Overview

The security manager object

Security manager oper ations and
attributes

C++ example

486

This section describes how to retrieve an application’s list of own credentials

from the security manager object.

The securitylLevel2: : SecurityManager Object provides access to
ORB-specific security information. The attributes and operations of the

SecurityManager object apply to the current security capsule (that is, ORB or

group of credentials-sharing ORBS) regardless of the thread of execution.

The attributes and operations on the securitylLevel2: : SecurityManager

object are described in the CORBA Programmer’ s Reference.

In C++, you can retrieve an application’s own credentials list as shown in
Example 48.

Example 48: Retrieving a C++ Application’s Own Credentials List

// C++

CORBA: :Object_var obj =
my_orb->resolve_initial_references ("SecurityManager") ;
SecurityLevel2: :SecurityManager_var security manager_obj =
SecurityLevel2: :SecurityManager: :_narrow (obj) ;
if (CORBA::is_nil (security manager_obj))
{
// Error! Deal with failed narrow...

}

SecuritylLevel2: :CredentialsList_var creds_list =
security manager_obj->own_credentials () ;

The preceding code example can be described, as follows:

1. Thestandard string, SecurityManager, is used to obtain aninitia
reference to the SecuritylLevel2: : SecurityManager Object.

2. Thelist of own credentiasis obtained from the own_credentials attribute

of the security manager object.

Java example

Retrieving Own Credentials

In Java, you can retrieve an application’s own credentials list as shown in
Example 49.

Example 49: Retrieving a Java Application’s Own Credentials List
// Java
try {
org.omg.CORBA.Object obj =
my_orb.resolve_initial_references ("SecurityManager") ;
org.omg.SecuritylLevel2.SecurityManager security manager_ obj
= org.omg.Securitylevel?2.SecurityManagerHelper.narrow (obj) ;

}
catch (org.omg.CORBA.ORB.InvalidName e) {

}
catch (org.omg.CORBA.BAD_PARAM e)
{

// Error! Deal with failed narrow. ..

org.omg.SecurityLevel2.Credentials[] creds_list =
security manager_obj.own_credentials() ;

The preceding code example can be described, as follows:

1. Thestandard string, SecurityManager, is used to obtain aninitial
reference to the SecurityLevel2: : SecurityManager Object.

2. Thelist of own credentialsis obtained from the own_credentials attribute
of the security manager object.

487

CHAPTER 19 | Authentication

Parsing SSL/TLS Own Credentials

Overview This subsection explains how to access the information stored in an SSL/TLS
credentials object. If a credentials object obtained from the security manager is
of SSL/TLStype, you can narrow the credentialsto the
IT TLS_API::TLSCredentials typeto gain accesstoits X.509 certificate chain.

C++ example In C++, if the own credentials list contains alist of SSL/TLS credentials, you
can access the credentials as follows:

// C++
for (CORBA::ULong i=0; i < creds_list->length(); i++)
{
// Access the i’th own credentials in the list
IT TLS_API::TLSCredentials_var tls_creds =
IT _TLS_API::TLSCredentials::_narrow(creds_list([i]);
if (CORBA::is_nil(tls_creds))
{
// Error! Deal with failed narrow...

}
// Get the first X.509 certificate in the chain
IT Certificate::X509Cert_var cert =

tls_creds->get_x509_cert() ;

// Examine the X.509 certificate, etc.

488

Retrieving Own Credentials

Java example In Java, if the own credentials list containsalist of SSL/TLS credentias, you
can access the credentials as follows:

// Java

import com.iona.corba.IT TLS_API.TLSCredentials;
import com.iona.corba.IT TLS_API.TLSCredentialsHelper;
import com.iona.corba.IT Certificate.X509Cert;

for (int i1=0; i < creds_list.length; i++)
{
// Access the i’th own credentials in the list
TLSCredentials tls_creds =
TLSCredentialsHelper.narrow(creds_list[i]);

// Get the first X.509 certificate in the chain
X509Cert cert =
tls_creds.get_x509_cert() ;

// Examine the X.509 certificate, etc.

489

CHAPTER 19 | Authentication

Parsing CSlv2 Own Credentials

Overview

Java example

490

This subsection explains how to access the information stored in a CSlv2
credentials object. If a credentials object obtained from the security manager is
of CSIv2 type, you can narrow the credentialsto the IT_cs1: :CSICredentials

type.

In Java, if the own credentials list contains alist of CSIv2 credentials, you can

access the credentials as follows:

// Java

import com.iona.corba.IT CSI.CSICredentials;
import com.iona.corba.IT CSI.CSICredentialsHelper;
import com.iona.corba.IT CSI.CSICredentialsType;
import

com.iona.corba.IT CSI.CSICredentialsType.GSSUPCredentials;

import

com.iona.corba.IT CSI.CSICredentialsType.PropagatedCredential

S;

for (int i=0; i < creds_list.length; i++)

{

// Access the i’th own credentials in the list
CSICredentials csi_creds =
CSICredentialsHelper.narrow(creds_list[i]);
CSICredentialsType csi_type
= csi_creds.csi_credentials_type()
if (csi_type == GSSUPCredentials) {
System.out.println("[" + i + "] = "

+ "credentials for CSIv2 authentication mechanism") ;

Retrieving Target Credentials

Retrieving Target Credentials

Overview This section describes how to retrieve the target credentials from a particular
target object and how to access the information contained in the target
credentials.

In this section This section contains the following subsections:

Retrieving Target Credentials from an Object Reference page 492
Parsing SSL/TL S Target Credentials page 495

491

CHAPTER 19 | Authentication

Retrieving Target Credentials from an Object Reference

Availability of target credentials

The TargetCredentialsinterface

I nteraction with rebind policy

492

Target credentials are available on the client side only if the client is configured
to authenticate the remote target object. For aimost all SSL/TLS cipher suites
and for all SSL/TLS cipher suites currently supported by Orbix E2A ASPthisis
the case.

When target credentials are available to the client, they are implicitly associated
with an object reference.

The securitylevel2: :TargetCredentials interfaceis the standard type used
to represent atarget credentials object. It is described in the CORBA
Programmer’ s Reference.

If you are going to retrieve target credentials, you should be aware of the
possible interactions with the rebind policy.

WARNING: If you want to check the target credential's, you should ensure that
transparent rebinding is disabled by setting the policies:rebind policy
configuration variable to no_reBIND. Otherwise, a secure association could
close (for example, if automatic connection management is enabled) and
rebind to a different server without the client being aware of this.

Retrieving Target Credentials

C++ example In C++, you can retrieve the target credentials associated with a particular object
reference, target_ref, as shown in Example 50.

Example 50: C++ Obtaining Target Credentials
// C++

// Given the following prerequisites:
// my_orb - a reference to an ORB instance.
// target_ref - an object reference to a remote, secured object.

CORBA: :Object_var obj =
my_orb->resolve_initial_references ("SecurityManager") ;
SecurityLevel2: :SecurityManager_var security manager_obj =
SecurityLevel2: :SecurityManager: : _narrow(obj) ;
if (CORBA::is_nil (security manager_obj))
{

// Error! Deal with failed narrow...

SecuritylLevel2: :TargetCredentials_var target_creds =
security manager obj->get_target_credentials (target_ref);

493

CHAPTER 19 | Authentication

Java example In Java, you can retrieve the target credential s associated with a particular object
reference, target_ref, as shown in Example 51.

Example 51: Java Obtaining Target Credentials

// Java

// Given the following prerequisites:
// my_orb - a reference to an ORB instance.
// target_ref - an object reference to a remote, secured object.

try {
org.omg.CORBA.Object obj =
my_orb.resolve initial_references ("SecurityManager") ;
org.omg.SecuritylLevel?2.SecurityManager security manager_obj
= org.omg.Securitylevel2.SecurityManagerHelper.narrow (obj) ;
}
catch (org.omg.CORBA.ORB.InvalidName e) {

}
catch (org.omg.CORBA.BAD_PARAM e)
{
// Error! Deal with failed narrow. ..

org.omg.SecuritylLevel2.TargetCredentials target_creds =
security manager_obj.get_target_credentials (target_ref) ;

494

Retrieving Target Credentials

Parsing SSL/TLS Target Credentials

Overview

C++ example

If you want to access the added value Orbix functionality for SSL/TL S target
credentials, perform this additional step after obtaining the target credentials
(otherwise, you can use the standard securityLevel2: :Credentials interface).

Narrow the securitylLevel2: : TargetCredentials object to the
IT_TLS_API::TLSTargetCredentials typeto gain accessto its X.509
certificate.

In C++, after obtaining atarget credentials object, target_creds, asshownin
Example 50 on page 493, you can access the SSL/TL S specific data as follows:

// C++

IT _TLS_API::TLSTargetCredentials_var tls_target_creds =

IT TLS_API::TLSTargetCredentials::_narrow(target_ creds) ;
if (CORBA::is_nil(tls_target_creds))
{

// Error! Deal with failed narrow...

}
// Get the first X.509 certificate in the chain
IT Certificate::X509Cert_var cert =

tls_target_creds->get_x509_cert() ;

// Examine the X.509 certificate, etc.

495

CHAPTER 19 | Authentication

Java example In Java, after obtaining atarget credentials object, target_creds, asshownin
Example 51 on page 494, you can access the SSL/TL S specific data as follows
(exception handling not shown):

// Java

import com.iona.corba.IT TLS_API.TLSTargetCredentials;
import com.iona.corba.IT TLS_API.TLSTargetCredentialsHelper;
import com.iona.corba.IT Certificate.X509Cert;

TLSTargetCredentials tls_target_creds =
TLSTargetCredentialsHelper.narrow (target_creds) ;

// Get the first X.509 certificate in the chain
X509Cert cert =
tls_target_creds.get_x509_cert();

// Examine the X.509 certificate, etc.

496

Retrieving Received Credentials

Retrieving Recelved Credentials

Overview

In thissection

This section describes how to retrieve received credentials from the current
object and how to access the information contained in the received credentials.

This section contains the following subsections:

Retrieving Received Credentials from the Current Object page 498
Parsing SSL/TL S Received Credentials page 500
Parsing CSIv2 Received Credentials page 502

497

CHAPTER 19 | Authentication

Retrieving Received Credentials from the Current Object

Role of the
SecurityL evel2::Current object

The SecurityL evel2::Current
interface

C++ example

498

A security-aware server application can obtain information about the attributes
of the calling principal through the securityLevel2: :Current oObject. The
SecurityLevel2: :Current Object contains information about the execution
context.

The securitylLevel2: :Current interface is described in detail in the CORBA
Programmer’ s Reference.

In C++, to obtain received credentials, perform the steps shown in Example 52.
Example 52: C++ Retrieving Received Credentials

// C++

};.In the context of an operation/attribute implementation

CORBA: :Object_var obj =
my_orb->resolve_initial_references ("SecurityCurrent") ;

Securitylevel2: :Current_var current_obj =
SecurityLevel2: :Current: :_narrow(obj) ;

if (CORBA::is_nil (current_obj))

{
// Error! Deal with failed narrow...

}

SecurityLevel2: :ReceivedCredentials_var recvd_creds =
current_obj->received_credentials() ;

Retrieving Received Credentials

Java example In Java, to obtain received credentials, perform the steps shown in Example 53.
Example 53: Java Retrieving Received Credentials

// Java
// In the context of an operation/attribute implementation

try {
org.omg.CORBA.Object obj =
my_orb.resolve_initial_ references ("SecurityCurrent") ;
org.omg.SecuritylLevel2.Current current_obj
= org.omg.SecuritylLevel2.CurrentHelper.narrow (obj) ;
}
catch (org.omg.CORBA.ORB.InvalidName e) {

}
catch (org.omg.CORBA.BAD PARAM e)
{

// Error! Deal with failed narrow...

org.omg.SecuritylLevel2.ReceivedCredentials recvd creds =
current_obj.received credentials() ;

499

CHAPTER 19 | Authentication

Parsing SSL/TL S Received Credentials

Overview If you want to access the added value Orbix functionality for SSL/TLS received
credentials, perform this additional step (otherwise, you can use the standard
SecurityLevel2: :Credentials interface).

Narrow the securitylevel2: :ReceivedCredentials Object to the
IT_TLS_API::TLSReceivedCredentials typeto gain accessto its X.509
certificate (this step is specific to Orbix).

C++ example In C++, after obtaining areceived credentials object, recvd_creds, (see
Example 52 on page 498) you can access the SSL/TL S specific data as follows:

// C++

IT TLS_API: :TLSReceivedCredentials_var tls_recvd_creds =

IT TLS_API::TLSReceivedCredentials: :_narrow(recvd_creds) ;
if (CORBA::is_nil (tls_recvd_creds))
{

// Error! Deal with failed narrow...

}
// Get the first X.509 certificate in the chain
IT Certificate::X509Cert_var cert =

tls_recvd_creds->get_x509_cert() ;

// Examine the X.509 certificate, etc.

500

Retrieving Received Credentials

Java example In Java, after obtaining areceived credentials object, recvd _creds, (see
Example 53 on page 499) you can access the SSL/TL S specific data as follows
(exception handling not shown):

// Java

import com.iona.corba.IT TLS_API.TLSReceivedCredentials;

import com.iona.corba.IT TLS_API.TLSReceivedCredentialsHelper;

import com.iona.corba.IT Certificate.X509Cert;

TLSReceivedCredentials tls_recvd_creds =
TLSReceivedCredentialsHelper.narrow (recvd_creds) ;

// Get the first X.509 certificate in the chain
X509Cert cert =

tls_recvd creds.get x509_cert();

// Examine the X.509 certificate, etc.

501

CHAPTER 19 | Authentication

Parsing CSlv2 Received Credentials

Overview

CSlv2 received credentials

CSlReceivedCredentialsinterface

502

If you want to access the added value Orbix functionality for CSIv2 received
credentials, you need to narrow the generic

SecurityLevel2: :ReceivedCredentials Object to the
IT_CSI::CSIReceivedCredentials type. This subsection explains, with the
help of examples, how to access the CSIv2 received credentials.

The CSIv2 received credentials are a special case, because the CSIv2

specification allows up to three distinct credentials types to be propagated

simultaneously. A CSIv2 received credentials can, therefore, include one or

more of the following credentials types:

° Propagated identity credentials (through the CSIv2 identity assertion
mechanism).

® GSSUP credentials (through the CSlv2 authentication mechanism).

®* Transport credentials (through SSL/TLS).

Accessto each of the credentialstypesis provided by the following attributes of
the IT_CSI: :CSIReceivedCredentials interface:

// IDL
module IT CSI {

local interface CSIReceivedCredentials :
IT_TLS_API::TLSReceivedCredentials, CSICredentials
{
readonly attribute CSICredentials gssup_ credentials;
readonly attribute CSICredentials
propagated_identity credentials;
readonly attribute SecuritylLevel2::Credentials
transport_credentials;

Java example

Retrieving Received Credentials

In Java, after obtaining a received credentials object, recvd_creds (see
Example 53 on page 499), you can access the CSlv2 specific data as shown in
Example 54. This example assumesthat CSIv2 authentication is enabled, but not
CSlv2 identity assertion. Hence, no attempt is made to access the propagated

identity credentials.

Example 54: Java Parsing CSv2 Received Credentials

// Java

import
import

import
import
import
import
import

//

org.
org.

com.
com.
com.
com.
com.

Get

omg.Security. *;
omg.SecuritylLevell.*;

iona.
iona.
iona.
iona.
iona.

corba

corba

.IT CSI.CSIReceivedCredentials;
corba.
corba.
corba.

IT CSI.CSIReceivedCredentialsHelper;
IT CSI.CSICredentialsType;
IT CSI.CSI_SERVER AS POLICY;

.util.OrbServicesUtility;

the TLS received credentials
CSIReceivedCredentials csi_rec_creds

= CSIReceivedCredentialsHelper.narrow (recvd _creds) ;
Credentials transport_credentials_rec

csi_rec_creds.transport_credentials () ;

// Select the org.omg.Security.AccessId SecAttribute type
AttributeType[] attributes_types =

{

new AttributeType (
new ExtensibleFamily ((short)0, (short)l), AccessId.value

b7

SecAttributel]

trans_attribute
transport_credentials_rec.get_attributes (

attributes_types

)i

String trans_access_id = new String(
trans_attribute[0] .value, 0, trans_attribute[0].value.length

)7

// Get the GSSUP
Credentials gssup creds = csi_rec_creds.gssup_credentials();

(username/passsword) credentials

SecAttribute[] gssup_attribute

503

CHAPTER 19 | Authentication

Example 54: Java Parsing CSv2 Received Credentials

= gssup_creds.get_attributes (attributes_types) ;

8 String gssup_access_id = new String(
gssup_attribute[0] .value, 0, gssup_attribute[0].value.length
)

The preceding Java example can be explained as follows:

1. Thisline attempts to narrow the generic received credentials object,
recvd_creds, t0the IT_CSI::CSIReceivedCredentials type. If the
received credentials object is not of thistype, the narrow would fail and a
CORBA: : BAD_PARAM exception would be thrown.

2. Thetransport_credentials attribute accessor returns areference to the
received transport credentials (for example, SSL/TLS), which form part of
the overall CSl received credentials. If there is no secure transport or if the
client is not configured to send transport credentials, the return value
would benu11.

3. Thislineinitidlizesa security: :AttributeTypeList Sequence (Java
org.omg.Security.AttributeType[] array) with asingle attribute type
for asecurity: :AccessId.

4. Theattribute type list created in the previouslineis passed to
get_attributes () to retrieve the access1d attribute from the received
transport credentials. The access1d for the transport credentiasisthe
distinguished name of the subject of the X.509 certificate received from the
client. In other words, the access1d identifies the invoking client.

5. Thisline convertsthe access1d from its native format (an octet sequence)
into a string. The result is a distinguished name in string format (see
“ASN.1 and Distinguished Names’ on page 645).

This step completes the process of identifying the client using the transport
credentials portion of the CSI received credentials.

504

Retrieving Received Credentials

The gssup_credentials attribute accessor returns areference to the
received GSSUP credentials. The GSSUP credentials contain an
authenticated username sent by the client using the CSIv2 authentication
mechanism. If the client is not configured to use the CSIv2 authentication
mechanism, the return value would be nu11.

The get_attributes () operation isinvoked to retrieve the access1d
attribute from the received GSSUP credentials. The Access1d for the
GSSUP credentiasisthe client’s username.

This line converts the access1d from its native format (an octet sequence)
into a string.

This step compl etes the process of identifying the client using the GSSUP
portion of the CSl received credentials.

505

CHAPTER 19 | Authentication

Copying CSI Credentials between Threads

Overview This section considers athree-tier CS| authentication scenario, where the
second-tier server (intermediate server) spawns a separate thread to make a
follow-on operation invocation on athird-tier server (target server). Because the
original invocation context (that is, thread-specific invocation data) is not
availablein the newly-spawned thread, it is necessary for the intermediate server
to copy CSl received credentials from the original thread to the new thread.

Three-tier CSl scenario Figure 70 shows athree-tier CORBA application, featuring aclient, an
intermediate server and atarget server, where CSl is used to transmit credentials
between the tiers.

Figure 70: Three-Tier CS Scenario with Copying of CS Credentials

N Transfer CSl credentials
, between threads @ Obtain user's
->(u d|--- realms and roles
@% @ e \\‘J Propagate identity
[u/p/d] '
Client Request + |u/p/d | Intermediate | Reauest+ [u] | Target
" Server ‘ " Server
7'y
Client @ Apply access
authentication Identity token control
token v
Orbix Secure
Service
Scenario description The scenario shown in Figure 70 on page 506 is almost identical to the scenario

described in “ Securing Three-Tier CORBA Systems with CSI” on page 82. The
difference, in this case, is that the intermediate server spawns a separate thread
to perform afollow-on invocation on the target server.

506

Threading modél in the
intermediate server

Copying CSI Credentials between Threads

Thethreetiersinteract as follows:

Stage Description

1 | Theclient invokes an operation on theintermediate server, passing
username, password, and domain credentials (also known as
GSSUP credentials) over the CSl authentication layer.

2 | The GSP plug-in in the intermediate server automatically
authenticates the credentials received from the client, by calling
out to the Orbix security service.

3 | Theintermediate server spawns a new thread to make afollow-on
operation invocation on the target server. It is at this point that the
current scenario differs from the one described in “ Securing
Three-Tier CORBA Systemswith CSI” on page 82.

Making the follow-on invocation from within a new thread creates
complications for the intermediate server, because the new thread
lacks the data from the original thread’ s invocation context. In
particul ar, the new thread does not automatically have accessto the
CSl received credentials. To get around this problem, the
intermediate server explicitly copiesthe CSI received credentials
from the original thread to the newly-spawned thread.

4 | After the new thread context isinitialized with the CS| received
credentias, thefollow-oninvocation is automatically accompanied
by an asserted identity (the client’ s username), which is
transmitted over the CS| identity layer (the GSP plug-in
automatically initializes outgoing CSl credentials, based on the
CSl received credentias in the current thread context).

The intermediate server spawns a thread to make a follow-on operation
invocation on the target server. This enables the intermediate server to be more
responsive, by returning from the called operation immediately, without having
to wait for the follow-on invocation to finish. A difficulty with this threading
model, however, isthat the new thread, lacking the data from the original
invocation context, does not have automatic access to the CS| received
credentials. By default, therefore, the follow-on operation invocation would be
transmitted to the target without a CS| asserted identity (probably causing the
operation to fail).

507

CHAPTER 19 | Authentication

set_csi_received_credentials()
function

C++ example

508

The solution to this problem is to pass the CSI received credentials explicitly,
from the original thread in the intermediate server to the newly spawned thread.
In summary, the new thread should be created as follows:

1

In the original thread, obtain the CSI received credentials object from the
security current instance.
Pass the CSl received credentials object to the new thread.

Within the new thread, call the
IT_CSI::CSICurrent2::set_csi_received credentials () functionto

simulate the receipt of CSI credentials in the current thread context.

In order to set CSl received credentialsin a newly spawned thread, call the
IT_CSI::CSICurrent2::set_csi_received_credentials()fUﬂCﬁOﬂ,p&Sﬁﬂg
inareferencetoan IT_CST: :CSIReceivedCredentials object. The signature of
this function is as follows:

// C++
virtual CORBA::Boolean
set_csi_received credentials (

IT CSI::CSIReceivedCredentials_ptr rec_creds

) IT_THROW_DECL ((CORBA: : SystemException))

Example 55 shows an example of an intermediate server operation,
mid_tier_operation (), which implements the threading model described
previously. That is, the implementation of this operation extracts the CS
received credentials from the current execution context and passes these
credentials to a new thread, MyThreadBody.

Example 55: Mid-Tier Operation that Spawns a New Thread

// C++

void
MidTierImpl: :mid_tier operation()
IT THROW_DECL ((CORBA: : SystemException))
{
// Obtain a reference to the CSI received credentials.
CORBA: :Object_var obj =
orb->resolve_initial_references ("SecurityCurrent") ;
SecurityLevel2: :Current_var security2_current =
SecurityLevel2: :Current: :_narrow(obj) ;

Copying CSI Credentials between Threads

Example 55: Mid-Tier Operation that Spawns a New Thread

SecurityLevel2: :ReceivedCredentials_var rec_creds =
security2_current->received_credentials() ;

IT _CSI::CSIReceivedCredentials_var csi_rec_creds =
IT CSI::CSIReceivedCredentials::_narrow(rec_creds) ;

// Spawn a new thread to make the follow-on invocation:
MyThreadBody thread body = new MyThreadBody (csi_rec_creds) ;
// ... run the thread (not shown)

// Return, without waiting for the sub-thread to finish.

Example 56 shows the body of athread that makes afollow-on invocation on the
target server. In order to ensure that a CSl asserted identity is transmitted to the
target, the MyThreadBody: : run () function calls
set_csi_received_credentials () to Simulate the receipt of the received
credentials within the current thread context.

Example 56: Body of Thread that Makes a Follow-On Invocation

// C++

#include <it_ts/thread.h>
#include <it_cal/iostream.h>
#include <stdlib.h>

#include <it_cal/strstream.h>

class MyThreadBody : public IT ThreadBody
{
public:
MyThreadBody (

IT _CSI::CSIReceivedCredentials_ptr csi_rec_creds
: m_csi_rec_creds(
IT _CSI::CSIReceivedCredentials::_duplicate(csi_rec_creds)

// Complete

virtual void* run()
{
CORBA: :Object_var obj =
orb->resolve_initial_references ("SecurityCurrent") ;

509

CHAPTER 19 | Authentication

Example 56: Body of Thread that Makes a Follow-On Invocation

IT _CSI::CSICurrent2_var it csi_current =
IT_CSI::CSICurrent2::_narrow(obj) ;

// Set CSI received credentials in the current context
CORBA: :Boolean creds_set =
it_csi_current->set_csi_received_credentials (
m_csi_rec_creds

)i

// Make the follow-on CORBA operation invocation.

IT CurrentThread::yield();
return 0;

private:
IT CSI::CSIReceivedCredentials_var m csi_rec_creds;
bg

510

In this chapter

CHAPTER 20

Validating
Certificates

During secure authentication, Orbix TLS checksthe validity of an
application’s certificate. This chapter describes how Orhbix
validates a certificate and how you can use the Orbix API to
introduce additional validation to your applications.

This chapter discusses the following topics:

Overview of Certificate Validation page 512
The Contents of an X.509 Certificate page 515
Parsing an X.509 Certificate page 516
Controlling Certificate Validation page 518
Obtaining an X.509 Certificate page 527

511

CHAPTER 20 | Validating Certificates

Overview of Certificate Validation

Certificate validation The Orbix API alows you to define a certificate validation policy that
implements custom validation of certificates. During authentication, Orbix
validates a certificate and then passesit to a certificate validation object, if you
have specified a certificate validation policy. This functionality is useful in
systems that have application-specific requirements for the contents of each
certificate.

Validation process A server sendsits certificate to aclient during a TL S handshake, as follows:

1. Theserver obtainsits certificate (for example, by reading it from alocal
file) and transmits it as part of the handshake.

2. Theclient reads the certificate from the network, checks the validity of its
contents, and either accepts or rejects the certificate.

Figure 71: Validating a Certificate

4 Client N 4 Server R
Application Code Application Code
Orbix 2000 SSL/ Orbix 2000 SSL/TLS
TLS
_ \) 1. TLS Checks / Y.

Certificate

2. TLS Accepts
or Rejects
Certificate

512

Default validation

Custom validation

Example of custom validation

Overview of Certificate Validation

The default certificate validation in Orbix checks the following:

The certificateisavalidly constructed X.509 certificate.

The signature is correct for the certificate.

The certificate has not expired and is currently valid.

The certificate chain is validly constructed, consisting of the peer
certificate plus valid issuer certificates up to the maximum allowed chain
depth.

If the certconstraintsPolicy has been set, the DN of the received peer
certificate is checked to seeiif it passes any of the constraintsin the policy
conditions. This applies only to the application certificate, not the CA
certificatesin the chain.

For some applications, it is necessary to introduce additional validation. For
example, your client programs might check that each server uses a specific,
expected certificate (that is, the distinguished name matches an expected value).
Using Orhix, you can perform custom validation on certificates by registering an
IT_TLS_APT: :CertValidatorPolicy and implementing an associated

IT_TLS: :CertValidator object.

For example, Figure 72 shows the steps followed by Orbix to validate a
certificate when acertvalidatorPolicy has been registered on the client side:

1
2.

The standard validation checks are applied by Orbix.

The certificate is then passed to an IT_TLS: :Certvalidator callback
object that performs user-specified validation on the certificate.

The user-specified certvalidator callback object can decide whether to
accept or reject the certificate.

513

CHAPTER 20 | Validating Certificates

3.
CertValidator
Callback
Accepts or
Rejects
Certificate

514

4. Orbix accepts or rejects the certificate.

Figure 72: Using a CertValidator Callback

Client

Application Code

CertValidator
Callback

Orbix 2000 SSL/TLS

N\

~

4. TLS Accepts
or Rejects
Certificate

2. CertValidator
Callback Checks
Certificate

Server

Application Code

1. TLS Checks

Orbix 2000 SSL/

TLS

/)

Certificate

The Contents of an X.509 Certificate

The Contents of an X.509 Certificate

Purpose of a certificate An X.509 certificate contains information about the certificate subject and the
certificate issuer (the CA that issued the certificate).

Certificate syntax A certificate is encoded in Abstract Syntax Notation One (ASN.1), a standard
syntax for describing messages that can be sent or received on a network.

Certificate contents The role of acertificate isto associate an identity with a public key value. In

more detail, a certificate includes:

® X.509 version information.

® A serial number that uniquely identifies the certificate.

®* A common name that identifies the subject.

®* The public key associated with the common name.

i The name of the user who created the certificate, which is known as the
subject name.

* Information about the certificate issuer.

®* Thesignature of the issuer.

. Information about the algorithm used to sign the certificate.

® Some optional X.509 v3 extensions. For example, an extension exists that
distinguishes between CA certificates and end-entity certificates.

515

CHAPTER 20 | Validating Certificates

Parsing an X.509 Certificate

Parsing APIs Two distinct APIs are used to parse an X.509 certificate, depending on whether
you program in C++ or Java, as follows:
® C++ parsing usesthe interfaces defined in the IT_certificate IDL
module.
®* Javaparsing usesthe java.security.cert package and a subset of the
interfacesinthe IT_Certificate IDL module.

C++ parsing Orbix E2A ASP provides a high-level set of C++ classes that provide the ability
to parse X.509 v3 certificates, including X.509 v3 extensions. When writing
your certificate validation functions, you use these classes to examine the
certificate contents.

The C++ parsing classes are mapped from the interfaces appearing in the
IT_Certificate IDL module—see the CORBA Programmer’s Reference.

Java parsing Orbix E2A ASP alows you to use the X.509 functionality provided by the JDK.
If you develop Java applications, only the following IDL interfaces are relevant:
° IT Certificate::Certificate
b IT Certificate::X509Cert
° IT Certificate::X509CertificateFactory
To access the information in a Java X.509 certificate, perform the following
steps:
1. Extract the DER data from the certificate using the
IT Certificate::Certificate::encoded_form attribute.

2. Passthe DER datato the
com.iona.corba.tls.cert.CertHelper.bytearray to_cert () method
to obtain ajava.security.cert.Certificate object.

3. Usethejava.security.cert package to examine the certificate.

516

Working with distinguished
namesin C++

Extracting distinguished names
from certificatesin C++

Working with X.509 extensionsin
C++

Parsing an X.509 Certificate

An X.509 certificate uses ASN. 1 distinguished name structures to store
information about the certificate issuer and subject. A distinguished name
consists of a series of attribute value assertions (AVASs). Each AVA associates a
value with afield from the distinguished name.

For exampl e, the distinguished name for a certificate issuer could be represented
in string format as follows:

/C=IE/ST=Co. Dublin/L=Dublin/O=IONA/OU=PD/CN=IONA

In this example, AVAs are separated by the / character. The first field in the
distinguished nameis ¢, representing the country of the issuer, and the
corresponding value is the country code 1E. This example distinguished name
containssix AVAs.

Once you have acquired a certificate, the IT Certificate::Certificate
interface permits you to retrieve distinguished names using the
get_issuer_dn_string() and get_subject_dn_string() operations. These
operations return an object derived from the IT Certificate: :AVAList
interface. The avarist interface gives you access to the ava objects contained in
the distinguished name. For more information on these interfaces, see the
CORBA Programmer’ s Reference.

Some X.509 v3 certificates include extensions. These extensions can contain
severa different types of information. Y ou can use the

IT Certificate: :ExtensionList and IT _Certificate::Extension
interfaces described in the CORBA Programmer’ s Reference to retrieve this
information.

517

CHAPTER 20 | Validating Certificates

Controlling Certificate Validation

Poalicies used for certificate Y ou can control how your applications handle certificate validation using the
validation following Orhix policies:
CertConstraintsPolicy Use this policy to apply conditions that peer

X.509 certificates must meet to be accepted.

CertificatevalidatorPolicy Usethispolicy to create customized
validations of peer certificate chains.

In this section This section contains the following subsections:
Certificate Constraints Policy page 519
Certificate Validation Policy page 523

518

Controlling Certificate Validation

Certificate Constraints Policy

Constraints applied to
distinguished names

Alternatives waysto set the
constraints policy

Setting the CertConstraintsPolicy
by configuration

Setting the CertConstraintsPolicy
by programming

Y ou can impose rules about which peer certificates to accept using certificate
constraints. These are conditions imposed on a received certificate subject's
distinguished name (DN). Distinguished names are made up of a number of
distinct fields, the most common being Organization Unit (OU) and Common
Name (CN). Constraints are not applied to al certificatesin areceived certificate
chain, but only to thefirst in the list, the peer application certificate.

Use the certificate constraints policy to apply these conditions. Y ou can set this
policy in two ways:

By configuration This allows you to set constraints at the granularity of
an ORB. The same constraints are applied to both client
and server peer certificates.

By programming This allows you to set constraints by ORB, thread,
POA, or object reference. Y ou can also differentiate
between client and server certificates when specifying
congtraints.

Y ou can set the certconstraintspPolicy in the configuration file. For example:
"C=US, ST=Massachusetts, O=ABigBank*, OU=Administration"
In this case, the same constraints string appliesto al POAs. If you need different

congtraints for different POAs then you must supply the policy at POA creation
time. For more details, see “ Applying Constraints to Certificates’ on page 384.

When you specify a CertConstraintsPolicy object on an ORB
programatically, objects created by that ORB apply the certificate constraints to
al applications that connect to it.

In the following example, the certificate constraints string specified only allows
clientsfrom the Administration Organization unit to connect. The administration
user isthe only client that has a certificate that satisfies this constraint.

Note: Thiscertificateconstraintspolicy isonly relevant if thetarget object
supports client authentication.

519

CHAPTER 20 | Validating Certificates

C++ example The following C++ example shows how to set the certConstraintsPolicy
programmatically:

Example 57: C++ Example of Setting the CertConstraintsPolicy

//C++

CORBA: :Any any;

CORBA: :PolicyList orb_policies;
orb policies.length (1) ;

CORBA: :Object_var object =

global_orb->resolve_initial_references ("ORBPolicyManager") ;

CORBA: :PolicyManager var policy mgr = CORBA::PolicyManager: :
_narrow (object) ;

IT _TLS_API::CertConstraints cert constraints;

cert_constraints.length (1) ;

cert_constraints[0] =

CORBA: :string_ dup ("C=US, ST=Massachusetts,
O=ABigBank*,OU=Administration") ;

any <<= cert_constraints;

orb _policies[0] = global_orb->create_policy (IT TLS API::
TLS_CERT_CONSTRAINTS_ POLICY, any);

policy mgr->set_policy overrides (orb policies, CORBA::
ADD_OVERRIDE) ;

C++ example description The preceding C++ example can be explained as follows:

1

2
3.
4

520

Create aPolicyList object.
Retrieve the PolicyManager object.
Instantiate acertconstraints datainstance (string array).

Create apolicy using the CORBA: :ORB: : create_policy () operation. The
first parameter to this operation sets the policy typeto

TLS_CERT CONSTRAINTS_POLICY, andthesecondisan any
containing the custom poalicy.

Use the PolicyManager to add the new policy override to the Orb scope

Controlling Certificate Validation

Java example The following Java example shows how to set the certConstraintsPolicy
programmatically:

Example 58: Java Example of Setting the CertConstraintsPolicy (Sheet 1 of 2)
// Java

// OMG imports

import org.omg.CORBA.ORBPackage.InvalidName;

import org.omg.CORBA.Policy;

import org.omg.CORBA.PolicyManager;

import org.omg.CORBA.PolicyManagerHelper;

import org.omg.CORBA.SetOverrideType;

// Orbix specific security imports

import com.iona.corba.IT TLS_API.CertConstraintsHelper;
import com.iona.corba.IT TLS_API.TLS_CERT CONSTRAINTS_POLICY;

public class Server
{
public static void main(String argsl[])
{
try
{

PolicyManager pol_manager = null;
try
{
1 pol_manager = PolicyManagerHelper.narrow (
orb.resolve_initial_references ("ORBPolicyManager")
) g
}
catch(InvalidName invalid name)
{
System.err.println(
"x509 initial reference not set. Check plugin list"
) g
System.exit (1) ;
}
catch (org.omg.CORBA.BAD_PARAM exXcC)
{
System.err.println("narrow to PolicyManager failed.");
System.exit (1) ;

org.omg.CORBA.Any policy value = orb.create_ any();

521

CHAPTER 20 | Validating Certificates

Example 58: Java Example of Setting the CertConstraintsPolicy (Sheet 2 of 2)

2 String[] constraint =
{"C=US, ST=Massachusetts, O=ABigBank*,OU=Administration"};
3 CertConstraintsHelper.insert (policy_value, constraint);
Policy[] policies = new Policy[1];
4 policies[0] = orb.create_policy(

TLS_CERT_CONSTRAINTS_POLICY.value,
policy value
)7
5 pol_manager.set_policy_overrides (
policies,
SetOverrideType.SET_OVERRIDE
)

Java example description The preceding Java example can be explained as follows:

1. Retrievethe PolicyManager object.

2. Instantiate acertConstraints datainstance (string array).
3. Insert the constraint into policy_value (an Any).
4

Create apolicy using the CORBA: : ORB: : create_policy () operation. The
first parameter to this operation sets the policy typeto
TLS_CERT_CONSTRAINTS_ POLICY, andthesecondisanany
containing the custom policy.

5. Usethe policyManager to add the new policy override to the ORB scope

522

Controlling Certificate Validation

Certificate Validation Policy

Certificate validation Y our applications can perform customized validation of peer certificate chains.
This enables them, for example, to perform special validation on x.509 v3
extensions or do automatic database lookups to validate subject DNs.

Restrictions on custom certificate The customized certificate validation policy cannot make Orbix accept a
validation certificate that the system has already decided isinvalid. It can only reject a
certificate that would otherwise have been accepted.

Customizing your applications To customize your applications, perform the following steps:

Step Action

1 | Deriveaclassfrom the CertValidator signature class.

2 | Overridethevalidate_cert_chain() operation.

3 | Specify the CertValidatorPolicy on the ORB.

Y our customized policy is used in addition to the default

CertValidatorPolicy.
Derive a classfrom the In the following example, an implementation class is derived from the
CertValidator signature class IT TLS::CertValidator interface:
//C++

class CustomCertValidatorImpl :
public virtual IT_TLS::CertValidator,
public virtual CORBA: :LocalObject

{
public:

CORBA: :Boolean

validate_cert_chain(
CORBA: :Boolean chain_is_valid,
const IT Certificate::X509CertChain& cert_chain,
const IT TLS::CertChainErrorInfo& error_info

523

CHAPTER 20 | Validating Certificates

)7
hg

The class contains your custom version of the validate_cert_chain()

function.
Overridethe The following an example custom validation function simply retrieves a name
validate cert_chain() operation from acertificate:

Example 59: C++ Example of Overriding validate_cert_chain()

//CH++

CORBA: : Boolean

CustomCertValidatorImpl: :validate_cert_chain(
CORBA: :Boolean chain is valid,
const IT Certificate::X509CertChain& cert_chain,
const IT TLS::CertChainErrorInfo& error_info

{
if (chain_is_valid)
{
CORBA: : String_var CN;
1 IT Certificate::X509Cert_var cert = cert_chain[0];
2 IT Certificate::AVAList_var subject =

cert->get_subject_avalist();

IT Certificate::Bytes* subject_string name;
3 subject_string_name = subject->convert (IT_Certificate::
IT FMT STRING) ;

int len = subject_string_name->length() ;
char *str _name = new char([len];
for (int 1 = 0; i < len; i++)({
str_name[i] = (char) ((*subject_string name) [1]);

}

return chain_is_valid;

524

Specify the CertValidator Policy
on the ORB

Controlling Certificate Validation

The preceding C++ example can be explained as follows:

1
2.

The certificate is retrieved from the certificate chain.

An AVAList (see“Working with distinguished namesin C++” on
page 517) containing the distinguished name is retrieved from the
certificate.

The distinguished name is converted to string format.

Once you have devised your custom validation class, create an instance of it and
apply it asapolicy to the Orb with the policy manager, as shown in the
following example:

Example 60: C++ Example of Setting the CertValidator Policy

//C++
int main(int argc, char* argvl[])

{

CORBA: : PolicyTypeSeq types;

CORBA: :PolicyList policies (1) ;

CORBA: :Any policy any;

CORBA: :Object_var object;

CORBA: : PolicyManager var policy mgr;
IT_TLS::CertValidator_ ptr custom cert_val_obj;

policies.length(1);
types.length (1) ;
types[0] = IT TLS_API::TLS_CERT VALIDATOR_POLICY;

CORBA: :ORB_var orb = CORBA::0RB_init (argc, argv);

object = orb->resolve_initial_references ("ORBPolicyManager") ;
policy mgr = CORBA::PolicyManager: :_narrow (object) ;

// set cert validator policy at ORB scope

custom _cert_val_obj = new CustomCertValidatorImpl;

policy any <<= custom cert_val_obj;

policies[0] =
orb->create_policy (IT_TLS_API: :TLS_CERT_ VALIDATOR_POLICY,
policy_any) ;

policy mgr->set_policy overrides (
policies,
CORBA: : ADD_OVERRIDE
) g

525

CHAPTER 20 | Validating Certificates

526

Example 60: C++ Example of Setting the CertValidatorPolicy

}

As can be seen from the above example, you can apply the new certvalidator
policy to the Orb in the same manner as any other Orbix2000 policy:

1. CreateacorBa::PolicyList Object.

2. Setthetype of the appropriate policy slot in the PolicyList to
TLS_CERT VALIDATOR_POLICY. Inthisexample, thefirst slot is chosen.

3. Retrievethe CorRBA: : PolicyManager Object.
Instantiate the custom IT_TLS: :Certvalidator policy object.

Create apolicy using the CORBA: : ORB: : create_policy () operation. The
first parameter to this operation sets the policy typeto
TLS_CERT_VALIDATOR_POLICY, and the second is a CORBA: : Any
containing the custom policy.

6. Usethe policyManager to add the new policy override to the ORB scope.

Obtaining an X.509 Certificate

Obtaining an X.509 Certificate

Alternative ways of obtaining
certificates

Y ou can obtain a certificate in the following ways:

® Usingthe IT_TLS_API: :TLSCredentials interface, which enablesyou to
retrieve X.509 certificates from a credentials object—see “ Retrieving Own
Credentials” on page 485.

® TheIT Certificate::X509CertChain Object that Orbix passesto the
IT TLS::CertValidator::validate_cert_chain() operation.

o Usingthe IT _Certificate: :X509CertificateFactory interface, which
createsan IT Certificate: :x509Cert object from DER data.

The certificate can be accessed through the IT_certificate: :X509Cert

interface. For more For more information on this interface, see the CORBA
Programmer’ s Reference.

527

CHAPTER 20 | Validating Certificates

528

Part VI

|SF Programming

Inthispart This part contains the following chapters:

Developing an iSF Adapter page 531

In this chapter

CHAPTER 21

Developing an 1SF
Adapter

An iSF adapter is a replaceable component of the iSF server
module that enables you to integrate i SF with any third-party
enter prise security service. This chapter explains how to develop
and configure a custom i S- adapter implementation.

This chapter discusses the following topics:

iSF Security Architecture page 532
iSF Server Module Deployment Options page 536
iSF Adapter Overview page 538
Implementing the | S2Adapter Interface page 539
Deploying the Adapter page 548

531

CHAPTER 21 | Developing an iSF Adapter

ISF Security Architecture

Overview This section introduces the basic components and concepts of the i SF security
architecture, as follows:

® Architecture.

° iSF client.

. iSF client SDK.

® Orbix Security Service.
® |SFadapter SDK.

® Sk adapter.

®* Example adapters.

532

Architecture

iSF client

iSF Security Architecture

Figure 73 gives an overview of the Orbix Security Service, showing how it fits
into the overall context of a secure system.

Java C/C++
application application
iSF client SDK iSF client SDK

Orbix Security Service

iSF Server Module

iSF adapter SDK

iSF adapter

Third-party security service

Figure 73: Overview of the Orbix Security Service

AniSF client is an application that communicates with the Orbix Security
Service to perform authentication and authorization operations. The following
are possible examples of i SF client applications:

° CORBA servers.
® Artix servers.
* Any server that has areguirement to authenticate its clients.

Hence, an iSF client can also be a server. It isaclient only with respect to the
Orbix Security Service.

533

CHAPTER 21 | Developing an iSF Adapter

iSF client SDK

Orbix Security Service

iSF server module

iSF adapter SDK

iSF adapter

534

TheiSF client SDK is the programming interface that enables the iSF clients to
communicate (usually remotely) with the Orbix Security Service.

Note: TheiSF client SDK isonly used internally. It is currently not available
as apublic programming interface.

The Orbix Security Service is a standalone process that acts a thin wrapper layer
around the iSF server module. On its own, the i SF server moduleis a Java
library which could be accessed only through local calls. By embedding the iSF
server module within the Orbix Security Service, however, it becomes possible
to access the security service remotely.

TheiSF server module is a broker that mediates between iSF clients, which
reguest the security service to perform security operations, and a third-party
security service, which isthe ultimate repository for security data.

The iSF server module has the following special features:

® A replaceableiSF adapter component that enables integration with a
third-party enterprise security service.

®* A single sign-on feature with user session caching.

The iSF adapter SDK isthe Java API that enables adevel oper to create acustom
i SF adapter that plugs into the i SF server module.

AniSF adapter isareplaceable component of theiSF server module that enables
you to integrate with any third-party enterprise security service. An iSF adapter
implementation provides access to arepository of authentication data and
(optionally) authorization data as well.

iSF Security Architecture

Example adapters The following standard adapters are provided with Orbix:
. Lightweight Directory Access Protocol (LDAP).

* File—asimple adapter implementation that stores authentication and
authorization datain aflat file.

WARNING: Thefile adapter isintended for demonstration purposes only. It is
not industrial strength and is not meant to be used in a production environment.

535

CHAPTER 21 | Developing an iSF Adapter

ISF Server Module Deployment Options

Overview

CORBA service

536

The i SF server module, which is fundamentally implemented as a Javalibrary,
can be deployed in one of the following ways:

° CORBA service.

The i SF server module can be deployed as a CORBA service (Orbix Security
Service), as shown in Figure 74. Thisis the default deployment model for the

i SF server module in Orbix. This deployment option has the advantage that any
number of distributed i SF clients can communicate with the i SF server module
over IIOP/TLS.

With thistype of deployment, the iSF server module is packaged as an
application plug-in to the Orbix generic server (just like any of the other
standard Orbix services). The Orbix Security Service can be launched by the
itsecurity executable and basic configuration is set in the
iona_services.security Scope of the Orbix configuration file.

Application

iSF client SDK

11OP/TLS
CORBA Service

A

IDL Interface

A

iSF Security Module

iSF adapter

Figure 74: iSF Server Module Deployed as a CORBA Service

iSF Server Module Deployment Options

537

CHAPTER 21 | Developing an iSF Adapter

ISF Adapter Overview

Overview

Standard iSF adapters

Custom iSF adapters

Main elements of a custom iSF
adapter

Implementation of the | SF
Adapter Javainterface

Configuration of the | SF adapter
using the iSF propertiesfile

538

This section provides an overview of the i SF adapter architecture. The
modularity of the iSF server module design makesiit relatively straightforward
to implement a custom i SF adapter written in Java.

Orbix provides several ready-made adapters that are implemented with the i SF
adapter API. The following standard adapters are currently available:

. File adapter.
° LDAP adapter.

The iSF server module architecture also alows you to implement your own
custom i SF adapter and use it instead of a standard adapter.

The main elements of a custom i SF adapter are, as follows:
. Implementation of the | SF Adapter Javainterface.
® Configuration of the | SF adapter using the i SF propertiesfile.

The only code that needs to be written to implement an iSF adapter is aclassto
implement the 1s2adapter Javainterface. The adapter implementation class
should respond to authentication requests either by checking arepository of user
data or by forwarding the requests to a third-party enterprise security service.

The iSF adapter is configured by setting Java propertiesin the is2 . properties

file. The is2.properties file stores two kinds of configuration data for the iSF

adapter:

® Configuration of the iSF server module to load the adapter—see
“Configuring iSF to Load the Adapter” on page 549.

® Configuration of the adapter itself—see " Setting the Adapter Properties’
on page 550.

Implementing the | S2Adapter Interface

| mplementing the | S2ZAdapter Interface

Overview

Test user

iSF adapter example

The com. iona.security.is2adapter package defines an 1s2adapter Java
interface, which adeveloper must implement to create a custom i SF adapter. The
methods defined on the 1sFadapter class are called by the iSF server modulein
response to requests received from i SF clients.

This section describes a simple example implementation of the r1s2adapter
interface, which is capable of authenticating a single test user with hard-coded
authorization properties.

The example adapter implementation described here permits authentication of
just asingle user, test_user. Thetest user has the following authentication
data:

Username: test_user
Password: test_password

and the following authorization data:

® Theuser'sglobal realm contains the GuestRole role.

. The user’s EngRealm realm contains the EngineerRole role.

* The user’s FinanceRealm realm contains the AccountantRole role.

Example 61 shows a sample implementation of an i SF adapter class,
Exampleadapter, that permits authentication of asingle user. The user’s
username, password, and authorization are hard-coded. In arealistic system,
however, the user datawould probably be retrieved from a database or from a
third-party enterprise security system.

Example 61: Sample |SF Adapter Implementation

import com.iona.security.azmgr.AuthorizationManager;
import com.iona.security.common.AuthenticatedPrincipal;
import com.iona.security.common.Realm;

import com.iona.security.common.Role;

import com.iona.security.is2adapter.IS2Adapter;

import com.iona.security.is2adapter.IS2AdapterException;
import java.util.Properties;

import java.util.ArrayList;

import java.security.cert.X509Certificate;

539

CHAPTER 21 | Developing an iSF Adapter

Example 61: Sample |SF Adapter |mplementation

import org.apache.log4dj.*;
import java.util.ResourceBundle;

import java.util.MissingResourceException;
public class ExampleAdapter implements IS2Adapter {

public final static String EXAMPLE_PROPERTY =
"example property";

public final static String ADAPTER_NAME = "ExampleAdapter";

1 private final static String MSG_ EXAMPLE_ADAPTER_ INITIALIZED
= "initialized";
private final static String MSG_EXAMPLE_ADAPTER_CLOSED
= "closed";
private final static String MSG_EXAMPLE ADAPTER AUTHENTICATE
= "authenticate";

private final static String
MSG_EXAMPLE_ADAPTER_AUTHENTICATE REAIM =
"authenticate_realm";

private final static String

MSG_EXAMPLE_ADAPTER_AUTHENTICATE OK = "authenticateok";
private final static String MSG_EXAMPLE ADAPTER_ GETAUTHINFO

= "getauthinfo";

private final static String

MSG_EXAMPLE_ADAPTER_ GETAUTHINFO_OK = "getauthinfook";

private ResourceBundle _res_bundle = null;

2 private static Logger LOG =
Logger .getLogger (ExampleAdapter.class.getName()) ;

public ExampleAdapter () {

3 _res_bundle = ResourceBundle.getBundle ("ExampleAdapter") ;
LOG.setResourceBundle (_res_bundle) ;
}

4 public void initialize (Properties props)
throws IS2AdapterException {

LOG.17dlog (Priority.INFO, ADAPTER NAME + "." +
MSG_EXAMPLE ADAPTER INITIALIZED,null);

540

Implementing the | S2Adapter Interface

Example 61: Sample |SF Adapter Implementation

// example property
String propVal = props.getProperty (EXAMPLE PROPERTY) ;
LOG.info (propval) ;

public void close() throws IS2AdapterException {
LOG.17dlog (Priority.INFO, ADAPTER NAME + "." +
MSG_EXAMPLE_ADAPTER _CLOSED, null) ;
}

public AuthenticatedPrincipal authenticate (String username,
String password)
throws IS2AdapterException {

LOG.17dlog (Priority.INFO, ADAPTER NAME + "." +
MSG_EXAMPLE_ADAPTER AUTHENTICATE, new
Object[] {username, password},null) ;

AuthenticatedPrincipal ap = null;
try{
if (username.equals("test_user")
&& password.equals ("test_password")) {
ap = getAuthorizationInfo (new
AuthenticatedPrincipal (username)) ;
}
else {
LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
IS2AdapterException.WRONG_NAME PASSWORD,null) ;
throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.WRONG_NAME PASSWORD, new
Object[]{username}) ;

}

} catch (Exception e) {
LOG.17dlog (Priority.WARN, ADAPTER _NAME + "." +
IS2AdapterException.AUTH_FAILED, e) ;
throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.AUTH _FAILED, new Object[]{username}, e);
}

LOG.17dlog (Priority .WARN, ADAPTER NAME + "." +

MSG_EXAMPLE_ADAPTER AUTHENTICATE_OK,null) ;
return ap;

541

CHAPTER 21 | Developing an iSF Adapter

542

Example 61: Sample |SF Adapter |mplementation

10 public AuthenticatedPrincipal authenticate(String realmname,
String username, String password)
throws IS2AdapterException {

LOG.17dlog (Priority.INFO, ADAPTER NAME + "." +
MSG_EXAMPLE_ADAPTER AUTHENTICATE REAIM, new
Object[]{realmname, username, password},null) ;

AuthenticatedPrincipal ap = null;
try{
if (username.equals("test_user")
&& password.equals ("test_password")) {
1 AuthenticatedPrincipal principal = new
AuthenticatedPrincipal (username) ;
principal .setCurrentRealm(realmname) ;
ap = getAuthorizationInfo (principal) ;
}
else {
LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
IS2AdapterException.WRONG_NAME_PASSWORD,null) ;
throw new IS2AdapterException (_res_bundle, this,
IS2AdapterException.WRONG_NAME_PASSWORD, new
Object[] {username}) ;
}

} catch (Exception e) {
LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
IS2AdapterException.AUTH FAILED,e) ;
throw new IS2AdapterException (_res_bundle, this,
IS2AdapterException.AUTH _FAILED, new Object[] {username}, e);
}

LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK,null) ;
return ap;

12 public AuthenticatedPrincipal authenticate (X509Certificate
certificate)
throws IS2AdapterException {
throw new IS2AdapterException (
_res_bundle, this,
IS2AdapterException.NOT_IMPLEMENTED

Implementing the | S2Adapter Interface

Example 61: Sample |SF Adapter Implementation

) g

public AuthenticatedPrincipal authenticate (String realm,
X509Certificate certificate)
throws IS2AdapterException {
throw new IS2AdapterException (
_res_bundle, this,
IS2AdapterException.NOT IMPLEMENTED
) g

public AuthenticatedPrincipal
getAuthorizationInfo (AuthenticatedPrincipal principal) throws
IS2AdapterException{

LOG.17dlog (Priority.INFO, ADAPTER NAME + "." +
MSG_EXAMPLE_ADAPTER GETAUTHINFO, new
Object[] {principal .getUserID() },null) ;

AuthenticatedPrincipal ap = null;
String username = principal.getUserID() ;
String realmname = principal.getCurrentRealm() ;

try{
if (username.equals("test_user")) {
ap = new AuthenticatedPrincipal (username) ;
ap.addRole (new Role("GuestRole", ""));
if (realmname == null || (realmname != null &&
realmname.equals ("EngRealm")))
{

ap.addRealm(new Realm("EngRealm", ""));
ap.addRole ("EngRealm", new
Role("EngineerRole", ""));

}

if (realmname == null || (realmname != null &&
realmname.equals ("FinanceRealm"))

{

ap.addRealm(new Realm("FinanceRealm",""));
ap.addRole ("FinanceRealm", new
Role ("AccountantRole", ""));
}

543

CHAPTER 21 | Developing an iSF Adapter

544

Example 61: Sample |SF Adapter |mplementation

else {
LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
IS2AdapterException.USER_NOT _EXIST, new Object[]{username},

null) ;
throw new IS2AdapterException (_res_bundle, this,
IS2AdapterException.USER_NOT _EXIST, new Object[]{username}) ;
}

} catch (Exception e) {
LOG.17dlog (Priority .WARN, ADAPTER NAME + "." +
IS2AdapterException.AUTH _FAILED,e) ;
throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.AUTH FAILED, new Object[] {username}, e);
}

LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
MSG_EXAMPLE ADAPTER GETAUTHINFO_OK,null) ;
return ap;

19 public AuthenticatedPrincipal getAuthorizationInfo (String
username) throws IS2AdapterException{

// this method has been deprecated
throw new IS2AdapterException (
_res_bundle, this,
IS2AdapterException.NOT_IMPLEMENTED
)i

20 public AuthenticatedPrincipal getAuthorizationInfo (String
realmname, String username) throws IS2AdapterException{

// this method has been deprecated
throw new IS2AdapterException (
_res_bundle, this,
IS2AdapterException.NOT_IMPLEMENTED
) g

21 public ArrayList getAllUsers ()
throws IS2AdapterException {

Implementing the | S2Adapter Interface

Example 61: Sample |SF Adapter Implementation

22

}

throw new IS2AdapterException (
_res_bundle, this,
IS2Adapter: EXception .NOT_IMPLEMENTED
) g

public void logout (AuthenticatedPrincipal ap) throws
IS2AdapterException {

}

The preceding i SF adapter code can be explained as follows:

1

These lines list the keys to the messages from the adapter’ s resource
bundle. The resource bundle stores messages used by the Log4J logger and
exceptions thrown in the adapter.

Thisline creates a L og4J logger.

This line loads the resource bundle for the adapter.

The initialize() methodiscalled just after the adapter isloaded. The
properties passed to the initialize () method, props, are the adapter
properties that the i SF server module has read from the is2.properties
file.

See “ Setting the Adapter Properties’ on page 550 for more details.

The close () method is called to shut down the adapter. This gives you an
opportunity to clean up and free resources used by the adapter.

This variant of the 1s2adapter.authenticate () method iscaled
whenever an iSF client calls authManager . authenticate () with
username and password parameters.

In this simple demonstration implementation, the authenticate () method
recognizes only one user, test_user, with password, test_password.
Thisline calls aLog4J method in order to log alocalized and parametrized
message to indicate that the authenticate method has been called with the
specified username and password values. Since al the keysin the resource
bundle begin with the adapter name, the adapter name is prepended to the

545

CHAPTER 21 | Developing an iSF Adapter

546

10.

11

12.

13.

14.

key. The 17dlog () method isused becauseit autometicaly searchesthe resource
beundlewhichwas set previoudy by theloggers setResourceBundle ()

method.

If authentication is successful; that is, if the name and password passed in
match test_user and test_password, the getauthorizationInfo ()
method is called to obtain an aAuthenticatedPrincipal object populated
with all of the user’'srealmsand role

If authentication fails, an 1s2adapterException israised with minor code
IS2AdapterException.WRONG_NAME PASSWORD.

The resource bundle is passed to the exception as it accesses the exception
message from the bundle using the key,

ExampleAdapter .wrongUsernamePassword.

This variant of the 1s2adapter.authenticate () method iscaled
whenever an iSF client calls AuthManager . authenticate () With ream
name, username and password parameters.

This method differs from the preceding username/password
authenticate () method in that only the authorization data for the
specified realm and the global realm are included in the return value.

If authentication is successful, the getauthorizationInfo () methodis
called to obtain an authenticatedprincipal object populated with the
authorization data from the specified realm and the global realm.
Thisvariant of the 1s2adapter.authenticate () method iscaled
whenever an iSF client calls authManager . authenticate () with an
X.509 certificate parameter.

This variant of the Is2adapter . authenticate () method is called
whenever an iSF client calls authManager . authenticate () withaream
name and an X.509 certificate parameter.

This method differs from the preceding certificate authenticate()
method in that only the authorization data for the specified realm and the
global realm are included in the return value.

This method should create an authenticatedPrincipal object for the
username User. If arealm isnot specified in the principal, the
AuthenticatedPrincipal is populated with al realms and roles for this

15.

16.

17.

18.

19.

20.

21.

22.

Implementing the | S2Adapter Interface

user. If arealm is specified in the principal, the authenticatedpPrincipal
is populated with authorization data from the specified realm and the
global realm only.

Thisline creates anew AuthenticatedPrincipal object for the username
user to hold the user’ s authorization data.

Thisline adds aGuestRole role to the global realm, ToNAGlobalRealm,
using the single-argument form of addrole (). Roles added to the global
realm implicitly belong to every named realm as well.

Thisline checks if no realm is specified in the principal or if the realm,
EngRealm, is specified. If either of theseistrue, the following lines add the
authorization realm, EngRealm, tOthe AuthenticatedPrincipal object
and add the EngineerRole role to the EngrRealm authorization realm.

Thisline checksif no realm is specified in the principal or if the realm,
FinanceRealm, iS specified. If either of these istrue, the following lines
add the authorization realm, FinanceRealm, tothe
AuthenticatedPrincipal object and add the AccountantRole roleto the
FinanceRealm authorization realm.

Since SSO was introduced to Orbix, this variant of the
IS2Adapter.getAuthorizationInfo () method hasbeen deprecated. The
method

IS2Adapter.getAuthorizationInfo (AuthenticatedPrincipal
principal) should be used instead

Since SSO was introduced to Orbix, this variant of the
IS2Adapter.getAuthorizationInfo() method hasalso been deprecated.
The method

IS2Adapter.getAuthorizationInfo (AuthenticatedPrincipal

principal) should be used instead

The getallusers () method is currently not used by theiSF server module
during runtime. Hence, there is no need to implement this method
currently.

When the 1ogout () method is called, you can perform cleanup and release
any resources associated with the specified user principal. The iSF server
module calls back on Ts2adapter. logout () €ither in responseto a user
calling authManager . logout () explicitly or after an SSO session has
timed out.

547

CHAPTER 21 | Developing an iSF Adapter

Deploying the Adapter

Overview

In this section

548

This section explains how to deploy a custom i SF adapter.

This section contains the following subsections:

Configuring iSF to Load the Adapter page 549
Setting the Adapter Properties page 550
Loading the Adapter Class and Associated Resource Files page 551

Deploying the Adapter

Configuring iSF to L oad the Adapter

Overview

Adapter name

Adapter class

Example adapter

Y ou can configure the i SF server module to load a custom adapter by setting the
following properties in the i SF server module's is2 . properties file:

® Adapter name.
e Adapter class.

The iSF server module loads the adapter identified by the
com.iona.isp.adapters property. Hence, to load a custom adapter,
AdapterName, Set the property as follows:

com. iona.isp.adapters=AdapterName

Note: In the current implementation, the i SF server module can load only a
single adapter at atime.

The name of the adapter classto beloaded is specified by the following property
setting:

com. iona.isp.adapter.AdapterName.class=AdapterClass

For example, the example adapter provided shown previously can be configured
to load by setting the following properties:

com.iona.isp.adapters=example
com. iona.isp.adapter.example.class=isfadapter.ExampleAdapter

549

CHAPTER 21 | Developing an iSF Adapter

Setting the Adapter Properties

Overview This subsection explains how you can set properties for a specific custom
adapter inthe is2.properties file.

Adapter property name format All configurable properties for acustom file adapter, Adapteriame, should have
the following format:

com. iona.isp.adapter.AdapterName.param. PropertyName

Truncation of property names Adapter property names are truncated before being passed to the i SF adapter.
That is, the com. iona. ispadapter . AdapterName.param prefix is stripped from
each property name.

Example For example, given an adapter named Exampleadapter Which has two
properties, host and port, these properties would be set as followsin the
is2.properties file
com. iona.isp.adapter.example.param.example property="This is an

example property"
Before these properties are passed to the i SF adapter, the property names are
truncated asif they had been set asfollows:

example property="This is an example property"

Accessing propertiesfrom within ~ The adapter properties are passed to the i SF adapter through the
an iSF adapter com.iona.security.is2adapter.IS2Adapter.initialize () callback
method. For example:

public void initialize(java.util.Properties props)
throws IS2AdapterException {
// Access a property through its truncated name.
String propVal = props.getProperty (" PropertyName")

550

Deploying the Adapter

L oading the Adapter Class and Associated Resource Files

Overview

CORBA service

Y ou need to make appropriate modifications to your cLassPATH to ensure that
the i SF server module can find your custom adapter class.

In all cases, the location of the file used to configure Log4j logging can be set
using the 1og4j.configuration property inthe is2.properties file.

By default, the Orbix Security Service usesthe iona_services. security Scope
inyour Orbix configuration file (or configuration repository service). Modify the
plugins:java_server:classpath variable to include the directory containing
the compiled adapter class and the adapter’ s resource bundle. The
plugins:java_server:classpath variable uses the value of the
SECURITY_CLASSPATH variable.

For example, if the adapter class and adapter resource bundle are located in the
OrbixTInstallDir\ExampleAdapter directory, you should set the
SECURITY_CLASSPATH variable asfollows:

Orbix configuration file

SECURITY_CLASSPATH =
"OrbixInstallDir\ExampleAdapter; OrbixInstallDir\etc\domains; O
rbixInstallDir\etc\domains\DomainName\ ; OrbixInstallDir\asp\Ve
rsion\lib\security.jar";

The Orbix Security Service launches a Java process which uses the classpath
defined in the securityserver ce.xml filewhichislocated in the
OrbixInstallDir/etc/domains/DomainName/resources directory. This
classpath also needs to be modified.

551

CHAPTER 21 | Developing an iSF Adapter

In this case, you must also modify the ce: loader element of
securityserver_ce.xml file, as shown in the following example:

securityserver_ce.xml file
<ce:loader>
<ce:location>OrbixInstallDir\ExampleAdapter</ce:location>
<ce:location>${java.home}/../lib/tools.jar</ce:location>
<ce:location>OrbixInstallDir\etc\domains</ce:location>
<ce:location>OrbixInstallDir\asp\VErsion\bin\..\lib\security.

jar</ce:location>
</ce:loader>

552

APPENDIX A

Security

This appendix describes variables used by the Orbix Security
Framework. The Orbix security infrastructureis highly

configurable.
In this appendix This appendix discusses the following topics:
Applying Constraints to Certificates page 555
Root Namespace page 557
initial_references page 558
password_retrieval_mechanism page 559
plugins:atli2_tls page 560
plugins.csi page 562
plugins.csi page 562
plugins.gsp page 564
plugins:https page 570
pluginsiiop_tls page 571
plugins:kdm page 576
plugins.kdm_adm page 578
plugins:locator page 579

553

APPENDIX A | Security

554

plugins:schannel page 580
plugins:security page 581
policies page 582
policies:.cs page 588
policies:https page 591
policiesiiop_tls page 596
policies:security_server page 606
policies:tls page 608
principal_sponsor page 609
principal_sponsor:csi page 614
principal_sponsor:https page 617
principal_sponsor:iiop_tls page 619

Applying Constraintsto Certificates

Applying Constraintsto Certificates

Certificate constraints policy

Configuration variable

Constraint language

Example

You can use the certConstraintsPolicy to apply constraintsto peer X.509
certificates by the default certificatevalidatorPolicy. These conditions are
applied to the owner’ s distinguished name (DN) on the first certificate (peer
certificate) of the received certificate chain. Distinguished names are made up of
anumber of distinct fields, the most common being Organization Unit (OU) and
Common Name (CN).

Y ou can specify alist of constraintsto be used by certConstraintsPolicy
ﬂWOUghthEpolicies:iiop_tls:certificate_constraints_poliqyOr
policies:https:certificate constraints_policy configurati on variables.
For example:

policies:iiop_tls:certificate_constraints_policy =
["CN=Johnny*, OU=[unitl | IT SSL],0=IONA,C=Ireland, ST=Dublin, L=Ea
rth", "CN=Paul*, OU=SSLTEAM, O=IONA, C=Ireland, ST=Dublin, L=Earth",
"CN=TheOmnipotentOne"] ;

These are the special characters and their meaningsin the constraint list:

* Matches any text. For example:
an* matches ant and anger, but not aunt
[Grouping symbols.
| Choice symbol. For example:

OU=[unitl|IT_ssL] signifiesthat if the ouisunitl or
IT_sst, the certificate is acceptable.

=, I= Signify equality and inequality respectively.

Thisis an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [

"OU=[unitl | IT_SSL],CN=Steve*,L=Dublin",
"OU=IT_ART*,OU!=IT ARTtesters,CN=[Jan|Donal], ST=
Boston" 1;

555

APPENDIX A | Security

Distinguished names

556

This constraint list specifiesthat a certificate is deemed acceptable if and only if
it satisfies one or more of the constraint patterns:

If
The OU is unitl or IT SSL
And
The CN begins with the text Steve
And
The location is Dublin
Then the certificate is acceptable
Else (moving on to the second constraint)
If
The OU begins with the text IT ART but isn't IT ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston
Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The languageis like a boolean OR, trying the constraints defined in each line
until the certificate satisfies one of the constraints. Only if the certificate fails all
congtraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "cN =" might not be recognized, where "cn=" is recognized.

For more information on distinguished names, see the Security Guide.

Root Namespace

Root Namespace

itadmin_x509 cert_root

The following configuration variables are defined in the root namespace:
. itadmin_x509 cert root

This configuration variable specifies the directory containing administrator
certificates for the itadmin utility. The administrator certificates are used
specifically for performing KDM administration tasks

For example, if you choose the directory, X509Deploy/certs/admin, for your
itadmin certificates, you would set itadmin_x509_cert_root asfollows:

Orbix Configuration File
itadmin x509_cert_root = "X509Deploy/certs/admin";

To administer the KDM, you must override the ordinary certificate with an
administrator certificate, using the itadmin admin_logon subcommand.

See “KDM Administration” on page 397 for details.

557

APPENDIX A | Security

Initial_references

The initial_references namespace contains the following configuration
variables:

. IT_TLS Toolkit:plugin

IT_TLS Toolkit:plugin

This configuration variable enables you to specify the underlying SSL/TLS
toolkit to be used by Orbix. It is used in conjunction with the
plugins:baltimore_toolkit:shlib_name,
plugins:openssl_toolkit:shlibname,

plugins:schannel toolkit:shlib name (Windows only) and
plugins:systemssl_toolkit:shlib name (Z/OSonly) configuration variables
to implement SSL/TL Stoolkit replaceability.

The default is the Baltimore toolkit.

For example, to specify that an application should use the Schannel SSL/TLS
toolkit, you would set configuration variables as follows:

initial_references:IT TLS_Toolkit:plugin = "schannel_toolkit";
plugins:schannel_toolkit:shlib name = "it_tls_schannel";

558

password_retrieval_mechanism

password_retrieval mechanism

The configuration variablesin the password_retrieval mechanismnamespace
are intended to be used only by the Orbix services. The following variables are
defined in this namespace:

® inherit_from_parent
® use my password_as kdm_ password

inherit_from_parent

If an application forks a child process and this variable is set to true, the child
process inherits the parent’ s password through the environment.

use_ my_password_as kdm_password

This variable should be set to true only in the scope of the KDM plug-ins
container. From a security perspective it is dangerous to do otherwise asthe
password could be left in cleartext within the process.

The KDM isalocator plug-in and so it is natural that it should use the locator's
identity asitsidentity. However, it requires a password to encrypt its security
information. By default the KDM reguests such a password from the user during
locator startup and thisis separate from the locator password. The locator
password would be used if thisvariable is set to true.

559

APPENDIX A | Security

plugins:atli2 tls

cert_store protocol

cert_store provider

560

Theplugins:atli2_tls namespace contains the following variables:
® cert_store protocol

® cert_store provider

®* kmf_algorithm

e tmf_agorithm

® use jsse tk

(Java only) Thisvariableis used in conjunction with
policies:tls:use_external_cert_store to configure Orbix to use an
externa certificate store. Orbix passes the value of thisvariable asthe protocol
argument to the javax.net.ssl.SSLContext .getInstance () method. To
obtain alist of possible values for this variable, consult the documentation for
your third-party JSSE/JCS security provider.

For example, if your application is using the Sun JSSE security provider, you
can configure the certificate store to use the SSLv3 protocol as follows:

plugins:atli2_tls:cert_store_protocol = "SSLv3";

(Java only) Thisvariableisused in conjunction with
policies:tls:use_external_ cert_store to configure Orbix to use an
external certificate store. Orbix passesthe value of thisvariable asthe provider
argument to the javax.net .ssl.SSLContext .getInstance () method. To
obtain alist of possible values for this variable, consult the documentation for
your third-party JSSE/JCS security provider.

For example, if your application is using the Sun JSSE security provider, you
can configure the certificate store provider asfollows:

plugins:atli2_tls:cert_store_provider = "SunJSSE";

kmf_algorithm

tmf_algorithm

use jsse tk

plugins.atli2_tls

(Java only) Thisvariableisused in conjunction with
policies:tls:use_external_cert_store to configure Orbix to use an
external certificate store. Orbix passes the value of this variable asthe
algorithm argument to the
javax.net.ssl.KeyManagerFactory.getInstance () method, overridi ng the
value of the ss1.KeyManagerFactory.algorithm property setin the
java.security file. To obtain alist of possible values for this variable, consult
the documentation for your third-party JSSE/JCS security provider.

For example, if your application is using the Sun JSSE security provider, you
can configure the key manager factory to use the following agorithm:

plugins:atli2_tls:kmf_algorithm = "Sunx509";

(Java only) Thisvariableisused in conjunction with
policies:tls:use_external_cert_store to configure Orbix to use an
external certificate store. Orbix passes the value of this variable asthe
algorithm argument to the
javax.net.ssl.TrustManagerFactory.getInstance () method, overriding
the value of the ss1.TrustManagerFactory.algorithm property setin the
java.security file. To obtain alist of possible values for this variable, consult
the documentation for your third-party JSSE/JCS security provider.

For example, if your application is using the Sun JSSE security provider, you
can configure the trust manager factory to use the following algorithm:

plugins:atli2_tls:tmf_algorithm = "SunX509";

(Java only) Specifies whether or not to use the JSSE/JCE architecture with
Orbix Java applications. If true, Orbix uses the JSSE/JCE architecture to
implement SSL/TLS security; if false, Orbix usesthe Baltimore SSL/TLS
toolkit.

The default is false.

561

APPENDIX A | Security

plugins.cs

The plugins:csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

° allow_csi_reply without_service_ context.
b ClassName.
° shlib_name.

b use_legacy policies.

allow_csi_reply without_service _context

(Java only) Boolean variable that specifieswhether a CSlv2 client enforces strict
checking for the presence of a CSlv2 service context in thereply it receivesfrom
the server.

Up until Orbix 6.2 SP1, the Javaimplementation of the CSlv2 protocol
permitted replies from a CSIv2 enabled server even if the server did not send a
CSlv2 response. From Orhix 6.2 SP1 onwards, this variable determines whether
or not the client checks for a CSIv2 response.

If thevariableis set to false, the client enforces strict checking on the server
reply. If thereis no CSIv2 service context in the reply, aNo_PERMISSION
exception with the minor code, BAD_SAS_SERVICE_CONTEXT, iS thrown by the
client.

If thevariableis set to true, the client does not enforce strict checking on the
reply. If thereis no CSlv2 service context in the reply, the client does not raise
an exception.

Default is true.

ClassName
ClassName Specifies the Java class that implements the csi plugin. The default
Setting is:
plugins:csi:ClassName = "com.iona.corba.security.csi.CSIPlugin";

562

shlib_name

use legacy policies

plugins.csi

This configuration setting makes it possible for the Orbix core to load the plugin
on demand. Internally, the Orbix core uses a Java class |oader to load and
instantiate the csi class. Plugin loading can be initiated either by including the
csi inthe orb_plugins list, or by associating the plugin with an initial
reference.

shlib name identifies the shared library (or DLL in Windows) containing the
csi plugin implementation.

plugins:csi:shlib_name = "it_csi_prot";

The csi plug-in becomes associated withthe it_csi_prot shared library, where
it_csi_prot isthe base name of thelibrary. The library base name,
it_csi_prot, isexpanded in a platform-dependent manner to obtain the full
name of the library file.

Boolean variable that specifies whether the application can be programmed
using the new CSIv2 policy types or the older (legacy) CSIv2 palicy types.

If plugins:csi:use_legacy policies iSSetto true, you can program CSlv2
using the following policies:

° IT CSI::AuthenticationServicePolicy
b IT_CSI::AttributeServicePolicy

If plugins:csi:use legacy policies iSSetto false, you can program CSlv2
using the following policies:

b IT _CSI::AttributeServiceProtocolClient

° IT _CSI::AttributeServiceProtocolServer

Default is false.

563

APPENDIX A | Security

plugins:.gsp

The plugins: gsp Nnamespace includes variables that specify settings for the
Generic Security Plugin (GSP). This provides authorization by checking auser’s
roles against the permissions stored in an action-role mapping file. It includes
the following:

° accept_asserted_authorization_info
° action_role_mapping_file

° assert_authorization_info
authentication_cache_size

* authentication_cache_ timeout

authorization policy enforcement_point

authorization policy store_type

* authorization realm

M ClassName

° enable_authorization

b enable_gssup_sso

° enable_user_id logging
° enable _x509_sso

enforce_secure_comms_to_sso_server
enable_security_service_cert_authentication
retrieve_isf_auth principal_info_for_all_realms
sso_server_certificate_constraints

° use_client_load balancing

accept_asserted_authorization_info

If false, SAML datais not read from incoming connections. Default is true.

action_role_mapping_file

Specifies the action-role mapping file URL. For example:

564

assert_authorization_info

authentication_cache size

plugins:gsp

plugins:gsp:action_role mapping_file =
"file:///my/action/role/mapping";

If false, SAML datais not sent on outgoing connections. Default is true.

The maximum number of credentials stored in the authentication cache. If this
sizeis exceeded the oldest credential in the cacheis removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable the
cache.

authentication_cache_timeout

The time (in seconds) after which a credential is considered stale. Stale
credentials are removed from the cache and the server must re-authenticate with
the Orbix security service on the next call from that user. The cache timeout
should be configured to be smaller than the timeout set inthe is2.properties
file (by default, that setting is is2.sso.session. timeout=600).

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

authorization_policy_enforcement_point

Specifies whether access decisions should be made locally (based on cached

ACL data) or delegated to the Orbix security service. Thisvariableis meaningful

only when the authorization_policy_store_ type iSSet tO centralized.

This configuration variable can have the following values:

. local—after retrieving and caching ACL datafrom the Orbix security
service, the GSP plug-in consults only the local cache when making access
decisions.

565

APPENDIX A | Security

® centralized—thisoption is currently not implemented. If you set this
option, the application will throw a corpa: : NO_IMPLEMENT System
exception.

The default is 1ocal.

authorization_policy_store type

authorization_realm

ClassName

566

Specifies whether ACL data should be stored locally (on the same host as the

Orbix application) or centrally (on the same host as the Orbix security server).

This configuration variable can have the following values:

° local—retrieves ACL datafrom the local file specified by the
plugins:gsp:action_role mapping file configuration variable.

® centralized—rtetrieves ACL datafrom the Orbix security service. The
Orbix security service must be configured to support centralized ACLs by
editing the relevant propertiesin its is2.properties file.

The default is 1ocal.

authorization_ realm Specifiesthe iSF authorization realm to which a server
belongs. The value of this variable determines which of a user'srolesare
considered when making an access control decision.

For example, consider a user that belongs to the ejb-developer and
corba-developer roles within the Engineering realm, and to the ordinary role
within the Salesrealm. If you set plugins:gsp:authorization_realmto Sales
for aparticular server, only the ordinary role is considered when making access
control decisions (using the action-role mappingfile).

ClassName specifies the Java class that implements the gsp plugin. This
configuration setting makes it possible for the Orbix core to load the plugin on
demand. Internally, the Orbix core uses a Java class loader to load and

enable authorization

enable gssup_sso

enable user_id_logging

enable x509 sso

plugins.gsp

instantiate the gsp class. Plugin loading can be initiated either by including the
csi inthe orb_plugins list, or by associating the plugin with an initial
reference.

A boolean GSP policy that, when true, enables authorization using action-role
mapping ACLsin server.

Default is true.

Enables SSO with a username and a password (that is, GSSUP) when set to

true.

A boolean variable that enables |ogging of user IDs on the server side. Default is

false.

Up until the release of Orbix 6.1 SP1, the GSP plug-in would log messages

containing user 1Ds. For example:

[Junit] Fri, 28 May 2004 12:17:22.0000000 [SLEEPY:3284]
(IT_CSI:205) I - User alice authenticated successfully.

In some cases, however, it might not be appropriate to expose user IDsin the

Orbix log. From Orbix 6.2 onward, the default behavior of the GSP plug-inis

changed, so that user IDs are not logged by default. To restore the pre-Orbix 6.2

behavior and log user I1Ds, set this variable to true.

Enables certificate-based SSO when set to true.

567

APPENDIX A | Security

enforce_secure_comms to_Sso_server

Enforces a secure SSL/TLS link between a client and the login service when set
to true. When this setting is true, the value of the SSL/TLS client secure
invocation policy does not affect the connection between the client and the login
service.

Default is true.

enable security service cert_authentication

A boolean GSP setting that enables X.509 certificate-based authentication on the
server side using the Orbix security service.

Default is false.

retrieve isf_auth_principal_info for_all realms

A boolean setting that determines whether the GSP plug-in retrieves role and
realm datafor all realms, when authenticating user credentials. If true, the GSP
plug-in retrieves the user’ srole and realm datafor all realms; if false, the GSP
plug-in retrieves the user’ s role and realm data only for the realm specified by

plugins:gsp:authorization_realm.

Setting this variable to false can provide a useful performance optimization in
some applications. But you must take special care to configure the application
correctly for making operation invocations between different realms.

Default is true.

sso_server_certificate_constraints
A special certificate constraints policy that applies only to the SSL/TLS

connection between the client and the SSO login server. For details of the pattern
constraint language, see “Applying Constraints to Certificates’ on page 555.

568

plugins.gsp

use _client_load_balancing

A boolean variable that enables |oad balancing over a cluster of security
services. If an application is deployed in adomain that uses security service
clustering, the application should be configured to use client load balancing (in
this context, client means a client of the Orbix security service). See al'so

policies:iiop_tls:load _balancing_mechanism.

Default is true.

569

APPENDIX A | Security

plugins: https

The plugins:https Namespace contains the following variable:
* ClassName

ClassName

(Javaonly) This variable specifies the class name of the https plug-in
implementation. For example:

plugins:https:ClassName = "com.iona.corba.https.HTTPSPlugIn";

570

plugins:iiop_tls

plugins:iiop_tls

Theplugins:iiop_tls hamespace contains the following variables:

buffer_pool:recycle_segments
buffer_pool:segment_preallocation
buffer_pools:max_incoming_buffers_in_pool
buffer_pools:max_outgoing_buffers_in_pool
cert_expiration_warning_days
delay_credentia_gathering_until_handshake
enable_iiop_1 O client_support
enable_warning_for_approaching_cert_expiration
incoming_connections:hard_limit
incoming_connections:soft_limit
outgoing_connections:hard_limit
outgoing_connections.soft_limit
own_credentials warning_cert_constraints
tcp_listener:reincarnate_attempts
tcp_listener:reincarnation_retry backoff ratio
tcp_listener:reincarnation_retry delay

buffer_pool:recycle segments

(Javaonly) When thisvariableis set, the iiop_t1s plug-in readsthis variable’'s
value instead of the plugins:iiop:buffer pool:recycle segments
variable' svalue.

buffer_pool:segment_preallocation

(Javaonly) When thisvariableis set, the iiop_t1s plug-in readsthisvariable's

value instead of the plugins:iiop:buffer pool:segment_preallocation

variable' svalue.

571

APPENDIX A | Security

buffer_pools:max_incoming_buffers in_pool

(C++ only) When thisvariable is set, the iiop_t1s plug-in readsthisvariable's
valueinstead of the

plugins:iiop:buffer pools:max_incoming buffers_in pool variable's
value.

buffer _pools:max_outgoing_buffers in_pool

(C++ only) When thisvariable is set, the iiop_t1s plug-in readsthisvariable's
valueinstead of the

plugins:iiop:buffer pools:max_outgoing buffers_in pool variable's
value.

cert_expiration_warning_days

(Since Orhix 6.2 SP1) Specifies the threshold for the number of days left to
certificate expiration, before Orbix issues awarning. If the application’s own
certificateis dueto expirein less than the specified number of days, Orbix issues
awarning message to the log.

Default is 31 days.

See also the following related configuration variables:

plugins:iiop_ tls:enable warning_for_approaching cert_expiration
plugins:iiop tls:own_credentials_warning cert_constraints

delay _credential_gathering_until_handshake

(Windows and Schannel only) This client configuration variable provides an
alternativeto using the principal_sponsor variablesto specify an application’s
own certificate. When this variable is set to true and
principal_sponsor:use_principal_ sponsor iSSet to false, the client delays
sending its certificate to a server. The client will wait until the server explicitly
requests the client to send its credentials during the SSL/TL S handshake.

This configuration variable can be used in conjunction with the
plugins:schannel :prompt_with_credential_choice configuration variable.

572

plugins:iiop_tls

enable iiop_1 0 client_support
Thisvariable enables client-side interoperability of Orbix SSL/TLS applications

with legacy I10P 1.0 SSL/TLS servers, which do not support [10P 1.1.

The default valueis false. When set to true, Orbix SSL/TLS searches secure
target 11OP 1.0 object references for legacy 110P 1.0 SSL/TL S tagged
component data, and attempts to connect on the specified port.

Note: Thisvariablewill not be necessary for most users.

enable warning_for_approaching_cert_expiration

(Snce Orhix 6.2 SP1) Enables warnings to be sent to the log, if an application’s
own ceritificate isimminently about to expire. The boolean value can have the
following values: true, enablesthe warning feature; false, disablesthewarning
feature.

Default is true.

See also the following related configuration variables:

plugins:iiop_tls:cert_expiration warning_days
plugins:iiop_tls:own_credentials_warning_ cert_constraints

incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side) connections permitted
to [10OP. I11OP does not accept new connections above this limit. Defaultsto -1
(disabled).

When thisvariable is set, the iiop_t1s plug-in readsthis variable’ s value
instead of the plugins:iiop:incoming connections:hard_limit variable's
vaue.

Please see the chapter on ACM in the CORBA Programmer’s Guide for further
details.

573

APPENDIX A | Security

incoming_connections.soft_limit

Specifies the number of connections at which I10OP should begin closing
incoming (server-side) connections. Defaults to -1 (disabled).

When thisvariableis set, the iiop_t1s plug-in readsthis variable's value
instead of the plugins:iiop:incoming connections:soft_limit variable's
value.

Please see the chapter on ACM in the CORBA Programmer’ s Guide for further
details.

outgoing_connections.hard_limit

When thisvariableis set, the iiop_t1s plug-in readsthis variable' s value
instead of the plugins:iiop:outgoing_connections:hard limit variable's
value.

outgoing_connections.soft_limit

When thisvariableis set, the iiop_t1s plug-in readsthis variable' s value
instead of the plugins:iiop:outgoing_connections:soft_limit variable's
value.

own_credentials warning_cert_constraints

574

(Snce Orbix 6.2 SP1) Set this certificate constraints variable, if you would like
to avoid deploying certain certificates as an own certificate. A warning isissued,
if the own certificate’ s subject DN matches the constraints specified by this
variable (see “ Applying Constraints to Certificates’ on page 555 for details of
the constraint language). For example, you might want to generate awarning in
case you accidentally deployed an Orbix demonstration certificate.

Default isan empty list, (7.

Note: Thiswarning is not related to certificate expiration and works
independently of the certificate expiration warning.

plugins:iiop_tls

tcp_listener:reincarnate attempts

(Windows only)

plugins:iiop_tls:tcp_listener:reincarnate attempts Specifiesthe
number of times that a Listener recreates its listener socket after recieving a
SocketException.

Sometimes a network error may occur, which results in alistening socket being
closed. On Windows, you can configure the listener to attempt areincarnation,
which enables new connectionsto be established. Thisvariable only affects Java
and C++ applications on Windows. Defaults to 0 (no attempts).

tcp_listener:reincarnation_retry backoff _ratio

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry delay Specifiesa
delay between reincarnation attempts. Datatypeis 1ong. Defaultsto o (no
delay).

tcp_listener:reincarnation_retry _delay

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry backoff_ ratioSpe
cifies the degree to which delays between retries increase from one retry to the
next. Datatypeis long. Defaultsto 1.

575

APPENDIX A | Security

plugins.kdm

cert_constraints

576

The plugins : kdm Nnamespace contains the following variables:
. cert_constraints

* iop_tlsport

® checksums_optional

Specifiesthelist of certificate constraints for principals attempting to open a
connection to the KDM server plug-in. See “ Applying Constraints to
Certificates’ on page 555 for a description of the certificate constraint syntax.

To protect the sensitive data stored within it, the KDM applies restrictions on

which entities are allowed talk to it. A security administrator should choose

certificate constraints that restrict accessto the following principals:

®* Thelocator service (requires read-only access).

® Thekdm adm plug-in, which is normally loaded into the itadmin utility
(requires read-write access).

All other principals should be blocked from access. For example, you might

define certificate constraints similar to the following:

plugins:kdm:cert_constraints =
["C=US, ST=Massachusetts, O=ABigBank*,CN=Secure admin*",
"C=US, ST=Boston, O=ABigBank*, CN=0rbix2000 Locator Service*"]
Y our choice of certificate constraints will depend on the naming scheme for
your subject names.

plugins:kdm

liop_tls:port

Specifies the well known IP port on which the KDM server listens for incoming
cals.

checksums_optional
When equal to false, the secure information associated with a server must

include achecksum; when equal to true, the presence of achecksumisoptional.
Default is false.

577

APPENDIX A | Security

plugins.kdm_adm

cert_constraints

578

The plugins: kdm_adm namespace contains the following variable:

. cert_constraints

Specifiesthelist of certificate constraints that are applied when the KDM
administration plug-in authenticatesthe KDM server. See* Applying Constraints
to Certificates’ on page 555 for a description of the certificate constraint syntax.

The KDM administration plug-in requires protection against attack from
applications that try to impersonate the KDM server. A security administrator
should, therefore, choose certificate constraints that restrict access to trusted
KDM serversonly. For example, you might define certificate constraints similar
to the following:
plugins:kdm adm:cert_constraints =

["C=US, ST=Massachusetts, O=ABigBank*,CN=IT KDM*"];
Y our choice of certificate constraints will depend on the naming scheme for
your subject names.

plugins:locator

plugins:locator

The plugins:locator namespace contains the following variable:

* iop_tlsport

liop_tls:port

Specifies the | P port number where the Orbix locator service listens for secure
connections.

Note: Thisisonly useful for applicationsthat have asingle TLS listener. For
applications that have multiple TLS listeners, you need to programmatically
specify the well-known addressing policy.

579

APPENDIX A | Security

plugins:schannel

The plugins:schannel hamespace contains the following variable:

. prompt_with_credential_choice

prompt_with_credential_choice

(Windows and Schannel only) Setting both this variable and the
plugins:iiop_tls:delay credential_gathering until_handshake
variableto true on the client side allows the user to choose which credentialsto
use for the server connection. The choice of credentials offered to the user is
based on the trusted CAs sent to the client in an SSL/TL S handshake message.

If prompt_with_credential_choice iSSet to false, runtime chooses the first
certificate it finds in the certificate store that meets the applicable constraints.

The certificate prompt can be replaced by implementing an IDL interface and
registering it with the ORB.

580

plugins:security

plugins:security

The plugins: security hamespace contains the following variable:
. share credentials across orbs

share credentials across orbs

Enables own security credentialsto be shared across ORBs. Normally, when you
specify an own SSL/TLS credential (using the principal sponsor or the principal
authenticator), the credential is available only to the ORB that created it. By
Setting the plugins:security: share_credentials_across_orbs variable to
true, however, the own SSL/TLS credentials created by one ORB are
automatically made available to any other ORBs that are configured to share
credentials.

See dS0 principal_sponsor:csi:use_existing_credentials for details of
how to enable sharing of CSI credentials.

Default is false.

581

APPENDIX A | Security

policies

The policies namespace defines the default CORBA palicies for an ORB.
Many of these policies can also be set programmatically from within an
application. SSL/TLS-specific variablesin the policies namespace include:
° allow_unauthenticated_clients_policy

b certificate_constraints_policy

b client_secure_invocation policy:requires
client_secure_invocation_policy:supports
b max_chain_length_policy

b mechanism policy:accept_v2_hellos
mechanism policy:ciphersuites

° mechanism _policy:protocol_version

b session_caching_policy
target_secure_invocation_policy:requires
target_secure_invocation_policy:supports

° trusted_ca_list_policy

allow_unauthenticated clients policy

(See also policies:iiop_tls: allow_unauthenticated_clients_policy.)

A generic variable that sets the policy for iiop_tls. The variable prefixed by
policies:iiop_tls takes precedence over this generic variable.

582

policies

certificate_constraints policy

(Seeasopolicies:iiop tls:certificate constraints_policy and
policies:https:certificate_constraints_policy.)

A generic variable that sets this policy both for iiop_t1s and https. The
variables prefixed by policies:iiop_tls and policies:https take
precedence over this generic variable.

client_secure_invocation_policy:requires

(Seedso

policies:iiop tls:client_secure invocation_policy:requires and
policies:https:client_secure_invocation_policy: requires.)

A generic variable that sets this policy both for iiop_t1s and https. The
variables prefixed by policies:iiop_tls and policies:https take
precedence over this generic variable.

client_secure_invocation_policy:supports

(Seedso
policies:iiop_tls:client_secure_ invocation_policy:supports and
policies:https:client_secure_invocation_policy:supports.)

A generic variable that sets this policy both for iiop_t1s and https. The
variables prefixed by policies:iiop_tls and policies:https take
precedence over this generic variable.

583

APPENDIX A | Security

max_chain_length_policy

(Seealsopolicies:iiop_tls:max_chain_length_policy and
policies:https:max_chain_length policy.)

max_chain_length_policy specifiesthe maximum certificate chain length that
an ORB will accept. The policy can also be set programmatically using the

IT TLS_API: :MaxChainLengthPolicy CORBA policy. Defaultis 2.

Note: Themax _chain length policy isnot currently supported onthe ZOS
platform.

mechanism_policy:accept_v2 hellos

(Seeasopolicies:iiop_tls:mechanism policy:accept_v2_hellos and
policies:https:mechanism policy: accept_v2_hellos.)

The accept_v2_hellos policy isaspecia setting that facilitates interoperability
with an Orbix application deployed on the Z/OS platform. When true, the Orbix
application accepts V2 client hellos, but continues the handshake using either the
SSL_V3or TLS V1 protocol. When false, the Orbix application throws an
error, if it receivesa V2 client hello. The default is false.

For example:

policies:mechanism policy:accept_v2_hellos = "true";

mechanism_policy:cipher suites

584

(Seeasopolicies:iiop_tls:mechanism policy:ciphersuites and
policies:https:mechanism policy: ciphersuites.)
mechanism_policy:ciphersuites specifiesalist of cipher suitesfor the default
mechanism policy. One or more of the cipher suites shown in Table 26 can be
specified in thislist.

Table26: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH RC4_40_MD5

policies

Table26: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers

RSA_WITH_NULL_SHA RSA_WITH RC4_128_MD5

RSA_WITH RC4_128_SHA

RSA_EXPORT_WITH DES40_CBC_SHA

RSA_WITH DES_CBC_SHA

RSA_WITH_3DES_EDE CBC_SHA

If you do not specify the list of cipher suites explicitly, all of the null encryption
ciphers are disabled and all of the non-export strength ciphers are supported by
default.

mechanism_policy:protocol _version

session_caching_policy

(Seedsopolicies:iiop_tls:mechanism policy:protocol_version and
policies:https:mechanism policy:protocol_version.)

mechanism policy:protocol_version Specifiesthelist of protocol versions
used by a security capsule (ORB instance). The list can include one or more of
the values ssL._v3 and TLs_v1. For example:

policies:mechanism policy:protocol_version=["TLS_V1", "SSL_V3"];

session_caching policy specifies whether an ORB caches the session
information for secure associations when acting in aclient role, a server role, or
both. The purpose of session caching is to enable closed connectionsto be
re-established quickly. The following values are supported:

CACHE_NONE(default)

CACHE_CLIENT
CACHE_SERVER
CACHE_SERVER_AND_CLIENT

585

APPENDIX A | Security

The policy can also be set programmatically using the
IT_TLS_API::SessionCachingPolicy CORBA policy.

target_secure_invocation_policy:requires

(Seedso

policies:iiop_ tls:target_secure_invocation policy:requires and
policies:https:target_secure_invocation_policy: requires.)
target_secure_invocation_policy:requires specifi&the minimum level of
security required by a server. The value of thisvariable is specified as alist of
association options.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

target_secure_invocation_policy:supports

(Seedso

policies:iiop_tls:target_secure_ invocation policy:supports and
policies:https:target_secure_invocation policy: supports.)

supports Specifies the maximum level of security supported by a server. The
value of thisvariableis specified as alist of association options. This policy can
be upgraded programmatically using either the gop or the EstablishTrust
policies.

586

trusted ca list_policy

policies

(Seedsopolicies:iiop_tls:trusted_ca_list_policy and
policies:https:trusted ca_list_policy.)

trusted_ca_list_policy Specifiesalist of filenames, each of which containsa
concatenated list of CA certificatesin PEM format. The aggregate of the CAsin
all of the listed filesisthe set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
["install dir/asp/version/etc/tls/x509/ca/ca_listl.pem",
"install dir/asp/version/etc/tls/x509/ca/ca_list extra.pem"];

The purpose of having more than one file containing a CA list isfor
administrative convenience. It enables you to group CAs into different lists and
to select aparticular set of CAsfor a security domain by choosing the
appropriate CA lists.

587

APPENDIX A | Security

policies.cs

Thepolicies:csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):
° attribute_service:backward_trust:enabled

° attribute_service:client_supports

b attribute_service:target_supports
auth_over_ transport:authentication_service
auth_over_transport:client_supports
auth_over_ transport:server_domain_name

auth_over_ transport:target_requires

auth_over_transport:target_supports

attribute service:backward_trust:enabled

(Obsolete)

attribute_service:client_supports

attribute service:client supports isaclient-side policy that specifiesthe
association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. Thispolicy isnormally specified in an intermediate server
so that it propagates CSIv2 identity tokens to atarget server. For example:

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

588

policies:.cs

attribute service:target_supports

attribute_service:target_supports iSaserver-side policy that specifiesthe
association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. For example:

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

auth_over_transport:authentication_service

(Java CSl plug-in only) The name of a Java class that implements the
IT_CSI::AuthenticateGSSUPCredentials IDL interface. The authentication
serviceisimplemented as a callback object that plugs into the CSlv2 framework
on the server side. By replacing this class with a custom implementation, you
could potentially implement a new security technology domain for CSIv2.

By default, if no value for thisvariable is specified, the Java CSl plug-in uses a
default authentication object that always returns false when the
authenticate () operationis called.

auth_over_transport:client_supports

auth_over_transport:client_supports iSaclient-side policy that specifies
the association options supported by CSlv2 authentication over transport. The
only assocation option that can be specified is EstablishTrustInClient. For
example:

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

589

APPENDIX A | Security

auth_over_transport:server_domain_name

The iSF security domain (CSlv2 authentication domain) to which this server
application belongs. TheiSF security domains are administered within an
overall security technology domain.

The value of the server_domain_name variable will be embedded in the IORs
generated by the server. A CSIv2 client about to open a connection to this server
would check that the domain name in its own CSIv2 credentials matches the
domain name embedded in the IOR.

auth_over_transport:target_requires

auth_over_ transport:target_ requires iSaserver-side policy that specifies
the association options required for CSlv2 authentication over transport. The
only assocation option that can be specified iSEstablishTrustInClient. For
example:

policies:csi:auth_over transport:target_requires =
["EstablishTrustInClient"];

auth_over_transport:target_supports

590

auth_over_transport:target_supports iSaserver-side policy that specifies
the association options supported by CSlv2 authentication over transport. The
only assocation option that can be specified is EstablishTrustInClient. For
example:

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

policies:https

policies: https

Thepolicies:https hamespace contains variables used to configurethe https
plugin.

Note: In Orbix 6.1 SP1 and Orbix 6.2, the policies:https configuration
variables are available only in the Javaimplementation of the https plug-in.

Thepolicies:https hamespace contains the following variables:
b certificate constraints_policy

° client_secure_invocation_policy:requires
b client_secure_invocation_policy:supports
b max_chain_length policy

b mechanism policy:accept_v2_hellos

b mechanism policy:ciphersuites

mechanism _policy:protocol_version
session_caching_policy

b target_secure_invocation_policy:requires
target_secure_invocation_policy:supports

° trusted_ca_list_policy

certificate_constraints _policy

(Java only) A list of constraints applied to peer certificates—see “ Applying
Congtraints to Certificates’ on page 555 for the syntax of the pattern constraint
language. If a peer certificate failsto match any of the constraints, the certificate
validation step will fail.

The policy can also be set programmatically using the
IT_TLS_APT: :CertConstraintsPolicy CORBA policy. Default isno
constraints.

591

APPENDIX A | Security

client_secure_invocation_policy:requires

(Java only) Specifies the minimum level of security required by aclient. The

value of this variable is specified asalist of association options—see the Orbix

Security Guide for details on how to set SSL/TL S association options.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

client_secure_invocation_policy:supports

max_chain_length_policy

(Java only) Specifiestheinitial maximum level of security supported by aclient.
The value of thisvariableis specified as alist of association options—see the
Orbix Security Guide for details on how to set SSL/TL S association options.

Note: This palicy can be upgraded programmatically using either the gop or
the EstablishTrust policies.

(Java only) The maximum certificate chain length that an ORB will accept (see
the discussion of certificate chaining in the Orbix Security Guide).

The policy can also be set programmatically using the

IT_TLS_APTI: :MaxChainLengthPolicy CORBA policy. Defaultis 2.

Note: Themax_chain length policy isnot currently supported onthe z/OS
platform.

mechanism_policy:accept_v2 hellos

592

(Java only) This HTTPS-specific policy overides the generic
policies:mechanism _policy:accept_v2_hellos policy.

The accept_v2_hellos policy isaspecial setting that facilitates HTTPS
interoperability with certain Web browsers. Many Web browsers send SSL V2
client hellos, because they do not know what SSL version the server supports.

policies:https

When true, the Orbix server accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS V1 protocol. When false, the
Orbix server throws an error, if it receivesaV2 client hello. The default is true.

Note: Thisdefault value is deliberately different from the
policies:iiop_tls:mechanism policy:accept_v2_hellos default value.

For example:

policies:https:mechanism policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

(Java only) Specifiesalist of cipher suitesfor the default mechanism policy.
One or more of the following cipher suites can be specified in thislist:

Table27: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers
RSA_WITH_NULL_MD5 RSA_EXPORT WITH_RC4_40_MD5
RSA_WITH NULL_SHA RSA_WITH RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH 3DES_EDE CBC_SHA

If you do not specify thelist of cipher suites explicitly, all of the null encryption
ciphers are disabled and all of the non-export strength ciphers are supported by
default.

mechanism_policy:protocol_version

(Java only) This HTTPS-specific policy overides the generic

policies:mechanism policy:protocol_version policy.

593

APPENDIX A | Security

session_caching_policy

Specifiesthe list of protocol versions used by a security capsule (ORB instance).
Can include one or more of the following values:

TLS_V1
SSL_V3

The default setting is ss1,_v3 and TLS_V1.
For example:

policies:https:mechanism policy:protocol_version = ["TLS_V1",
"SSL_V3"];

(Java only) When this policy is set, the https plug-in reads this policy’ s value
instead of thepolicies:session caching policy’svaue (C++) or
policies:session _caching policy policy’svalue (Java).

target_secure_invocation_policy:requires

(Java only) Specifies the minimum level of security required by a server. The
value of thisvariable is specified asalist of association options—see the Orbix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

target_secure_invocation_policy:supports

594

(Java only) Specifies the maximum level of security supported by a server. The
value of thisvariable is specified asalist of association options—see the Orbix
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the gop or the
EstablishTrust policies.

policies:https

trusted ca list_policy

(Java only) Contains alist of filenames (or asingle filename), each of which
contains a concatenated list of CA certificatesin PEM format. The aggregate of
the CAsin al of thelisted filesisthe set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_listl.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];
The purpose of having more than one file containing a CA list isfor
administrative convenience. It enables you to group CAs into different lists and
to select aparticular set of CAsfor a security domain by choosing the
appropriate CA lists.

595

APPENDIX A | Security

policies:iiop_tls

Thepolicies:iiop_tls namespace contains variables used to set |1 OP-related
policies for a secure environment. These setting affect the iiop_t1s plugin. It
contains the following variables:

° allow_unauthenticated_clients_policy

° buffer_sizes_policy:default_buffer_size

° buffer_sizes_policy:max_buffer size

b certificate_constraints_policy
client_secure_invocation_policy:requires

b client_secure_invocation_ policy:supports

client_version_policy

° connection_attempts

° connection_retry delay

° load_balancing_mechanism

b max_chain_length policy

b mechanism policy:accept_v2_hellos

mechanism policy:ciphersuites

b mechanism policy:protocol_version

° server_address_mode_policy:local_domain

° server_address_mode_policy:local_hostname

b server_address_mode_policy:port_range

° server_address_mode_policy:publish_hostname

server_version_policy

b session_caching_policy

b target_secure_invocation policy:requires
target_secure_invocation_policy:supports
b tcp_options_policy:no_delay

b tcp_options_policy:recv_buffer_ size

b tcp_options_policy:send buffer_size

b trusted_ca_list_policy

596

policies:iiop_tls

allow_unauthenticated_clients policy

A boolean variable that specifies whether a server will allow aclient to establish
a secure connection without sending a certificate. Default is false.

This configuration variableis applicable only in the special case wherethetarget
secure invocation policy is set to require NoProtection (& Semi-secure Server).

buffer_sizes policy:default_buffer _size

When thispolicy is set, the iiop_t1s plug-in readsthis policy’s value instead of
thepolicies:iiop:buffer sizes_policy:default_buffer_ size policy’s
value.

buffer_sizes_policy:default_buffer_size specifies, in bytes, theinitial
size of the buffers allocated by |10P. Defaults to 16000. This value must be
greater than 80 bytes, and must be evenly divisible by 8.

buffer_sizes policy:max_buffer_size

When thispolicy is set, the iiop_t1s plug-in readsthis policy’s value instead of
thepolicies:iiop:buffer_sizes_policy:max_buffer_ size policy’svaue.
buffer sizes_policy:max buffer size Specifiesthe maximum buffer size
permitted by I10P, in kilobytes. Defaultsto 512. A value of -1 indicates
unlimited size. If not unlimited, this value must be greater than 80.

certificate_constraints policy

A list of constraints applied to peer certificates—see the discussion of certificate
constraints in the Orbix security guide for the syntax of the pattern constraint
language. If a peer certificate fails to match any of the constraints, the certificate
validation step will fail.

The policy can also be set programmatically using the
IT_TLS_APTI::CertConstraintsPolicy CORBA policy. Default isno
constraints.

597

APPENDIX A | Security

client_secure_invocation_policy:requires

Specifies the minimum level of security required by aclient. The value of this
variableis specified as alist of association options—see the Orbix Security
Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

client_secure_invocation_policy:supports

client_version_policy

connection_attempts

598

Specifies the initial maximum level of security supported by aclient. The value
of thisvariableis specified asalist of association options—see the Orbix
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the gop or the
EstablishTrust policies.

client_version_policy specifiesthe highest IIOP version used by clients. A
client usesthe version of I10OP specified by this variable, or the version specified
in the IOR profile, whichever islower. Valid values for thisvariable are: 1.0,
1.1,and1.2.

For example, the following file-based configuration entry sets the server 11OP
versionto 1.1.

policies:iiop:server_version policy="1.1";
Thefollowing itadmin command set this variable:

itadmin variable modify -type string -value "1.1"
policies:iiop:server_version policy

connection_attempts Specifiesthe number of connection attempts used when
creating a connected socket using a Java application. Defaults to s.

connection_retry delay

load_balancing_mechanism

max_chain_length_policy

policies:iiop_tls

connection_retry delay Specifiesthe delay, in seconds, between connection
attempts when using a Java application. Defaults to 2.

Specifies the load balancing mechanism for the client of a security service
cluster (seeasoplugins:gsp:use_client_load_balancing). Inthiscontext, a
client can also be an Orbix server. This policy only affects connections made
using |ORs that contain multiple addresses. The iiop_t1s plug-inload balances
over the addresses embedded in the IOR.

The following mechanisms are supported:

®* random—Cchoose one of the addresses embedded in the IOR at random (this
isthe default).

i sequential—choose the first address embedded in the IOR, moving on to
the next addressin the list only if the previous address could not be
reached.

This policy overidespolicies:max_chain_length policy fortheiiop tls
plugin.
The maximum certificate chain length that an ORB will accept.

The policy can also be set programmatically using the
IT_TLS_APTI: :MaxChainLengthPolicy CORBA policy. Default is 2.

Note: Themax_chain length policy isnot currently supported onthe zZ/OS
platform.

mechanism_policy:accept_v2 hellos

This IIOP/TL S-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.

599

APPENDIX A | Security

Theaccept_v2_hellos policy isaspecial setting that facilitatesinteroperability
with an Orbix application deployed on the z/OS platform. Orbix security on the
z/OS platform is based on IBM’s System/SSL toolkit, which implements SSL
version 3, but does so by using SSL version 2 hellos as part of the handshake.
Thisform of handshake causes interoperability problems, because applications
on other platforms identify the handshake as an SSL version 2 handshake. The
misidentification of the SSL protocol version can be avoided by setting the
accept_v2_hellos policy to true in the non-z/OS application (this bug also
affects some old versions of Microsoft Internet Explorer).

When true, the Orbix application accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS V1 protocol. When false, the
Orbix application throws an error, if it receivesaVV2 client hello. The default is

false.

Note: Thisdefault valueis deliberately different from the
policies:https:mechanism _policy:accept_v2_hellos default value.

For example:

policies:iiop_tls:mechanism policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

600

This policy overidespolicies:mechanism policy:ciphersuites for the
iiop_tls plugin.

Specifiesalist of cipher suitesfor the default mechanism policy. One or more of
the following cipher suites can be specified in thislist:

Table28: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers
RSA_WITH NULL_MD5 RSA_EXPORT WITH_RC4_40_MD5
RSA_WITH NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH _RC4_128_SHA

RSA_EXPORT_WITH DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

policies:iiop_tls

Table28: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers

RSA_WITH 3DES_EDE CBC_SHA

If you do not specify thelist of cipher suites explicitly, all of the null encryption
ciphers are disabled and all of the non-export strength ciphers are supported by
default.

mechanism_policy:protocol_version

This IIOP/TLS-specific policy overidesthe generic

policies:mechanism policy:protocol_version policy.

Specifiesthelist of protocol versions used by a security capsule (ORB instance).
Can include one or more of the following values:

TLS_V1

SSI,_V3
sst,_v2v3 (Deprecated)

The default setting is ss1._v3 and TLS_V1.

For example:

policies:iiop tls:mechanism policy:protocol_version = ["TLS V1",
"SSL_V3"];

The ssL_v2v3 value is now deprecated. It was previously used to facilitate

interoperability with Orbix applications deployed on the z/OS platform. If you

have any legacy configuration that uses ssr._v2v3, you should replaceit with the

following combination of settings:

policies:iiop_tls:mechanism policy:protocol_version = ["SSL_V3",
"TLS_V1"];
policies:iiop_tls:mechanism policy:accept_v2_hellos = "true";

server_address mode policy:local_domain
(Javaonly) When this policy is set, the 1iop_t1s plug-in readsthis policy’s

value instead of the
policies:iiop:server_address_mode policy:local_domain policy’ svaue.

601

APPENDIX A | Security

server_address mode policy:local_hostname

(Javaonly) When this policy is set, the iiop_t1s plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:local_hostname policy’s
value.

server_address_mode policy:local_hostname Specifiesthe hostname
advertised by the locator daemon/configuration repository, and listened on by
server-side I1OP.

Some machines have multiple hostnames or | P addresses (for example, those
using multiple DNS aiases or multiple network cards). These machines are
often termed multi-homed hosts. The 1ocal_hostname variable supports these
type of machines by enabling you to explicitly specify the host that serverslisten
on and publishin their IORs.

For example, if you have a machine with two network addresses (207.45.52.34
and 207.45.52.35), you can explicitly set this variable to either address:

policies:iiop:server_address_mode policy:local_hostname =
"207.45.52.34";

By default, the 1ocal_hostname variable is unspecified. Servers use the default
hostname configured for the machine with the Orbix configuration tool.

server _address mode policy:port_range

(Javaonly) When this policy is set, the iiop_t1s plug-in reads this policy’s
value instead of the

policies:iiop:server address_mode_policy:port_range policy’svalue.
server_address_mode_policy:port_range Specifiesthe range of portsthat a
server uses when there is no well-known addressing policy specified for the port.

server_address mode policy: publish_hosthame

602

When thispolicy isset, the iiop_t1s plug-in readsthis policy’ s valueinstead of
thepolicies:iiop:server address_mode_policy:publish hostname

policy’ svalue.

server_version_policy

session_caching_policy

policies:iiop_tls

server_address_mode-policy:publish_hostname Specifes whether 11OP
exports hostnames or | P addresses in published profiles. Defaultsto false
(exports IP addresses, and does not export hostnames). To use hosthames in
object references, set this variable to true, asin the following file-based
configuration entry:

policies:iiop:server_address_mode_policy:publish hostname=true
The following itadmin command is equivalent:

itadmin variable create -type bool -value true
policies:iiop:server_address_mode policy:publish hostname

When thispolicy is set, the iiop_t1s plug-in readsthis policy’s value instead of
thepolicies:iiop:server_version_policy policy’svalue.
server_version_policy specifiesthe GIOP version published in 11OP profiles.
Thisvariable takesavalue of either 1.1 or 1.2. Orbix servers do not publish
I1OP 1.0 profiles. The default valueis 1. 2.

This policy overidespolicies:session _caching policy for theiiop tls
plugin.

target_secure_invocation_policy:requires

This policy overides

policies:target_secure_invocation policy:requires for the iiop tls
plugin.

Specifies the minimum level of security required by a server. The value of this
variable is specified as alist of association options—see the Orbix Security
Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

603

APPENDIX A | Security

target_secure_invocation_policy:supports

This policy overides
policies:target_secure_invocation_policy:supports for the iiop_tls
plugin.

Specifies the maximum level of security supported by a server. The value of this
variableis specified as alist of association options—see the Orbix Security
Guide for more detail s about association options.

This policy can be upgraded programmatically using either the gop or the
EstablishTrust policies.

tcp_options policy:no_delay

604

When this policy isset, the iiop_t1s plug-in readsthis policy’s value instead of
thepolicies:iiop:tcp_options_policy:no_delay policy’svalue.
tcp_options_policy:no_delay Specifies whether the Tcp_NoDELAY Option
should be set on connections. Defaultsto false.

policies:iiop_tls

tcp_options policy:recv_buffer _size

When thispolicy is set, the iiop_t1s plug-in readsthis policy’s value instead of
thepolicies:iiop:tcp_options_policy:recv_buffer_ size policy’svaue.
tcp_options_policy:recv_buffer size Specifiesthe size of the TCP receive
buffer. This variable can only be set to 0, which coresponds to using the default
size defined by the operating system.

tcp_options_policy:send_buffer_size

trusted_ca list_policy

When thispolicy is set, the iiop_t1s plug-in readsthis policy’s value instead of
thepolicies:iiop:tcp_options_policy:send buffer size policy’svaue.
tcp_options_policy:send buffer size specifiesthe size of the TCP send
buffer. This variable can only be set to 0, which coresponds to using the default
size defined by the operating system.

Thispolicy overidesthepolicies:trusted_ca_list_policy fortheiiop_tls
plugin.

Containsalist of filenames (or asingle filename), each of which contains a
concatenated list of CA certificatesin PEM format. The aggregate of the CAsin
all of the listed filesis the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_listl.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];
The purpose of having more than one file containing a CA list isfor
administrative convenience. It enables you to group CAs into different lists and
to select aparticular set of CAs for a security domain by choosing the
appropriate CA lists.

605

APPENDIX A | Security

policies.security server

Thepolicies:security_ server namespace contains the following variables:

. client_certificate constraints

client_certificate_constraints

606

Restricts access to the Orbix security server, allowing only clients that match the
specified certificate constraints to open a connection to the security service. For
details of how to specify certificate constraints, see “ Applying Constraints to
Certificates’ on page 555.

For example, by inserting the following setting into the
iona_services.security configuration scopein the Orbix configuration file,
you can allow access by clients presenting the administrator.p12 and
iona_utilities.pi2 certificates (demonstration certificates).

Allow access by demonstration client certificates.

WARNING: These settings are NOT secure and must be customized

before deploying in a real system.

#

policies:security server:client_certificate constraints =
["C=US, ST=Massachusetts, O=ABigBank*,CN=0Orbix2000 IONA

Services (demo cert), OU=Demonstration Section -- no warranty
--", "C=US, ST=Massachusetts, O=ABigBank* , CN=Abigbank Accounts
Server*", "C=US,ST=Massachusetts, O=ABigBank*,CN=Iona

utilities - demo purposes"];

WARNING: The default setting generated by the itconfigure utility alows
demonstration certificates to be used. This valueis not secure, because the
same demonstration certificates are provided with al installations of Orbix.

The effect of setting this configuration variable is dightly different to the effect
of setting policies:iiop_tls:certificate_constraints_policy. Whereas
policies:iiop_ tls:certificate constraints_policy affectsall services
deployed in the current process, the

policies:security server:client_certificate constraints variable
affects only the Orbix security service. This distinction is significant when the
login server is deployed into the same process as the security server. In this case,

policies:security_server

you would typically want to configure the login server such that it does not
reguire clients to present an X.509 certificate (this is the default), while the
security server doesrequire clients to present an X.509 certificate.

This configuration variable must be set in the security server’s configuration
scope, otherwise the security server will not start.

607

APPENDIX A | Security

policies:tls

use external cert _store

608

The following variables are in this namespace:

° use_external_cert_store

(Java only) A binary variable that configures Orbix to check for the presence of
athird-party certificate store. The possible values are: true, to check for the
presence of an external certificate store, and false, to usethe built-in certificate
store (that is, certificate location specified by the principa sponsor).

The default is false.

Thisvariable has no effect unless you also configure your Java application to use
an external security provider—see the description of the
plugins:atli2_tls:use_ jsse_tk configuration variable for more details.

This policy variable must be used in conjunction with the following
configuration variables:

plugins:atli2_tls:cert_store_provider
plugins:atli2_tls:cert_store_protocol

Y ou can also optionally set the following configuration variables (which
override the corresponding propertiesin the java. security file):

plugins:atli2_tls:kmf_algorithm
plugins:atli2_tls:tmf_algorithm

principal_sponsor

principal _sponsor

In this section

use principal_sponsor

Theprincipal_sponsor namespace stores configuration information to be used
when obtaining credentials. Orbix provides an implementation of a principal
sponsor that creates credentials for applications automatically. The principal
sponsor automatically callsthe authenticate () operation onthe
Principalauthenticator object after determining the datato supply.

Use of the Principalsponsor is disabled by default and can only be enabled
through configuration.

The PrincipalSponsor represents an entry point into the secure system. It must
be activated and authenticate the user, before any application-specific logic
executes. This allows unmodified, security-unaware applications to have
Credentials established transparently, prior to making invocations.

The following variables are in this namespace:
° use_principal_sponsor

* auth_method_id

° auth_method_data

b callback _handler:ClassName

b login_attempts

use_principal_sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaultsto false. If set to true, the following
principal_sponsor variables must contain datain order for anything to
actually happen.

609

APPENDIX A | Security

auth_method_id

auth_method_data

610

auth _method_id specifies the authentication method to be used. The following
authentication methods are available:

pkcsl2_file
keystore

pkcsll

security label

The authentication method uses a PK CS#12 file.
The authentication method uses a Java keystore file.

Java only. The authentication datais provided by a
smart card.

Windows and Schannel only. The authentication data
is specified by supplying the common name (CN) from
an application certificate’ s subject DN.

For example, you can select the pkes12_file authentication method as follows:

principal_sponsor:auth method id = "pkcsl2_file";

auth_method_data isastring array containing information to be interpreted by
the authentication method represented by the auth_method_id.

For the pkes12_file authentication method, the following authentication data
can be provided in auth_method_data:

filename

password

password_file

A PKCS#12 file that contains a certificate chain and private
key—required.

A password for the private key—optional.

It is bad practice to supply the password from configuration
for deployed systems. If the password is not supplied, the
user is prompted for it.

The name of afile containing the password for the private
key—optional.

principal_sponsor

For the keystore authentication method, the following authentication data can
be provided in auth_method_data:

filename A Javakeystore file containing akey entry that consists of a
certificate chain and a private key—required.

password A password for the keystore (used both for the store
password and for the key password)—optional.

It is bad practice to supply the password from configuration
for deployed systems. If the password is not supplied, the
user is prompted for it.

password_file The name of afile containing the password for the
keystore—optional.

For the pkes11 (smart card) authentication method, the following authentication
data can be provided in auth_method data:

provider A namethat identifies the underlying PK CS #11 toolkit
used by Orbix to communicate with the smart card.

The toolkit currently used by Orbix has the provider
name dkck132.d11 (from Baltimore).

slot The number of a particular slot on the smart card (for
example, 0) containing the user’s credentials.

pin A PIN to gain access to the smart card—optional.

It is bad practice to supply the PIN from configuration
for deployed systems. If the PIN is not supplied, the
user is prompted for it.

For the security label authentication method on Windows, the following
authentication data can be provided in auth_method_data:

label (Windows and Schannel only.) The common name
(CN) from an application certificate's subject DN

For example, to configure an application on Windows to use a certificate,
bob.p12, Whose private key is encrypted with the bobpass password, set the
auth_method_data asfollows:

principal_sponsor:auth_method data =
["filename=c:\users\bob\bob.pl2", "password=bobpass"];

The following points apply to Javaimplementations:

611

APPENDIX A | Security

612

If the file specified by filename=isnot found, it is searched for on the
classpath.

Thefile specified by filename= can be supplied with aURL instead of an
absolute file location.

The mechanism for prompting for the password if the password is supplied
through password= can be replaced with a custom mechanism, as
demonstrated by the 10gin demo.

principal_sponsor

®* There aretwo extra configuration variables available as part of the
principal_sponsor namespace, namely
principal_sponsor:callback_handler and
principal_sponsor:login_attempts. These are described below.

®* These Java-specific features are available subject to change in future
releases; any changes that can arise probably come from customer
feedback on this area

callback _handler:ClassName

callback_handler:ClassName Specifiesthe class name of an interface that
implements the interface com. iona.corba.tls.auth.CallbackHandler. This
variable is only used for Java clients.

login_attempts

login_attempts specifieshow many timesauser is prompted for authentication
data (usually a password). It applies for both internal and custom
CallbackHandlers; if acallbackHandler issupplied, it isinvoked upon up to
login_attempts timesaslong asthe Principalauthenticator returns
SecAuthFailure. Thisvariableisonly used by Javaclients.

613

APPENDIX A | Security

principal _sponsor:csi

Theprincipal_sponsor:csi hamespace stores configuration information to be
used when obtaining CSl (Common Secure Interoperability) credentials. It
includes the following:

° use_existing_credentials

° use_principal_sponsor
° auth_method_data

° auth_method_id

use_existing_credentials

A boolean value that specifies whether ORBs that share credentials can also
share CSI credentials. If true, any CSl credentials loaded by one
credential-sharing ORB can be used by other credential-sharing ORBs loaded
after it; if false, CSl credentials are not shared.

Thisvariable has no effect, unlessthe

plugins:security:share credentials_across_orbs variableis also true.

Default is false.

use principal_sponsor

use_principal_sponsor iSaboolean value that switches the CSI principal
sponsor on or off.

If set to true, the CSl principal sponsor is enabled; if false, the CSI principal
sponsor is disabled and the remaining principal_sponsor:csi variables are
ignored. Defaultsto false.

If no CSl credentials are set on the client side, the client might still send an
authentication token containing null credentials. If you want to completely
disable the sending of CSl credentials (so that no client authentication token is
sent), use the following setting on the client side:

policies:csi:auth_over transport:client_supports = [];

614

auth_method_data

principal_sponsor:csi

auth_method data iSastring array containing information to be interpreted by
the authentication method represented by the auth_method_id.

For the GSSUPM ech authentication method, the following authentication data
can be provided in auth_method_data:

username The username for CSIv2 authorization. Thisis optional.
Authentication of CSIv2 usernames and passwords is performed
on the server side. The administration of usernames depends on
the particular security mechanism that is plugged into the server
side see auth_over_ transport:authentication service.

password The password associated with username. Thisisoptional. It is
bad practice to supply the password from configuration for
deployed systems. If the password is not supplied, the user is
prompted for it.

domain The CSlv2 authentication domain in which the
username/password pair is authenticated.

When the client is about to open a new connection, this domain
nameis compared with the domain name embedded in the
relevant IOR (see

policies:csi:auth_over transport: server_domain_name).
The domain names must match.

Note: If domain isan empty string, it matches any target
domain. That is, an empty domain string is equivalent to a
wildcard.

If any of the preceding data are omitted, the user is prompted to enter
authentication data when the application starts up.

For example, to log on to a CSlv2 application as the administrator user in the
US-SantaClara domain:

principal_ sponsor:csi:auth method data =
["username=administrator", "domain=US-SantaClara"];

615

APPENDIX A | Security

auth_method_id

616

When the application is started, the user is prompted for the administrator
password.

Note: Itiscurrently not possible to customize the login prompt associated
with the CSIv2 principal sponsor. As an aternative, you could implement your
own login GUI by programming and pass the user input directly to the
principal authenticator.

auth_method_id specifies astring that selects the authentication method to be
used by the CSl application. The following authentication method is available:

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.

For example, you can select the GSSUPM ech authentication method as follows:

principal_sponsor:csi:auth method id = "GSSUPMech";

principal_sponsor:https

principal_sponsor:https

In thissection

use principal_sponsor

Theprincipal_sponsor:https hamespace provides configuration variables
that enable you to specify the own credentials used with the HTTPS transport.
The variablesin the principal_sponsor : https hamespace (which are specific
to the HTTPS protocol) have precedence over the analogous variablesin the
principal_sponsor NAMeSPace.

Note: In Orbix 6.1 SP1 and Orbix 6.2, the principal_sponsor:https
configuration variables are available only in the Javaimplementation of the
https plug-in.

Use of the Principalsponsor is disabled by default and can only be enabled
through configuration.

The PrincipalSponsor represents an entry point into the secure system. It must
be activated and authenticate the user, before any application-specific logic
executes. This allows unmodified, security-unaware applications to have
credentials established transparently, prior to making invocations.

The following variables are in this namespace:
b use_principal_sponsor
° auth_method_id

b auth_method_data

(Java only) use_principal_sponsor Specifies whether an attempt is made to
obtain credentials automatically. Defaultsto false. If set to true, thefollowing
principal_sponsor:https variables must contain datain order for anything to
actually happen:

° auth_method_id

° auth_method_data

617

APPENDIX A | Security

auth_method_id

auth_method_data

618

(Java only) auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

pkcsl2_file The authentication method uses a PK CS#12 file

For example, you can select the pkes12_file authentication method as follows:

principal_sponsor:auth method id = "pkcsl2_file";

(Java only) auth_method data isastring array containing information to be
interpreted by the authentication method represented by the auth_method_id.
For the pkes12_file authentication method, the following authentication data
can be provided in auth_method_data:

filename A PKCS#12 file that contains a certificate chain and private
key—required.
password A password for the private key—optional.

It is bad practice to supply the password from configuration
for deployed systems. If the password is not supplied, the
user is prompted for it.

password_file Thename of afile containing the password for the private
key—optional.

This option is not recommended for deployed systems.
For example, to configure an application on Windows to use a certificate,

bob.pl12, Whose private key is encrypted with the bobpass password, set the
auth_method_data asfollows:

principal_sponsor:auth method data =
["filename=c: \users\bob\bob.pl2", "password=bobpass"];

principal_sponsor:iiop_tls

principal_sponsor:iiop _tls

In thissection

use principal_sponsor

Theprincipal_sponsor:iiop_tls hamespace provides configuration
variables that enable you to specify the own credentials used with the IOP/TLS
transport.

The lIOP/TLS principal sponsor is disabled by default.

The following variables are in this namespace:
b use_principal_sponsor
° auth_method_id

b auth_method_data

use_principal_sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaultsto false. If set to true, the following
principal_sponsor:iiop_tls variables must contain datain order for
anything to actually happen:

° auth_method_id

b auth_method_data

619

APPENDIX A | Security

auth_method_id

auth_method_data

620

auth _method_id specifies the authentication method to be used. The following
authentication methods are available:

pkcsl2_file The authentication method uses a PK CS#12 file

For example, you can select the pkes12_file authentication method as follows:

principal_ sponsor:iiop_tls:auth method_id = "pkcsl2_file";

auth_method_data isastring array containing information to be interpreted by
the authentication method represented by the auth_method_id.

For the pkes12_file authentication method, the following authentication data
can be provided in auth_method_data:

filename A PKCS#12 file that contains a certificate chain and private
key—required.
password A password for the private key.

It is bad practice to supply the password from configuration
for deployed systems. If the password is not supplied, the
user is prompted for it.

password_file Thename of afile containing the password for the private
key.
The password file must be read and write protected to
prevent tampering.

For example, to configure an application on Windows to use a certificate,
bob.p12, Whose private key is encrypted with the bobpass password, set the
auth_method_data asfollows:

principal_ sponsor:iiop_tls:auth method data =
["filename=c: \users\bob\bob.pl2", "password=bobpass"];

APPENDIX B

|SF Configuration

This appendix provides details of how to configure the Orbix
security server.

In thisappendix This appendix contains the following sections:
Properties File Syntax page 622
iSF Properties File page 623
Cluster Properties File page 639
log4j Properties File page 641

621

CHAPTER B |iSF Configuration

Properties File Syntax

Overview

Property definitions

Specifying full pathnames

Specifying relative pathnames

622

The Orbix security service uses standard Java property filesfor its configuration.
Some aspects of the Java properties file syntax are summarized here for your
convenience.

A property is defined with the following syntax:
<PropertyName>=<PropertyValue>

The <PropertyName> isacompound identifier, with each component delimited
by the . (period) character. For example, is2.current.server.id. The
<PropertyValue>isan arbitrary string, including all of the characters up to the
end of the line (embedded spaces are allowed).

When setting a property equal to afilename, you normally specify afull
pathname, as follows:

UNIX
/home/data/securityInfo.xml

Windows
D:/iona/securityInfo.xml

or, if using the backslash as a delimiter, it must be escaped as follows:

D:\\iona\\securityInfo.xml

If you specify arelative pathname when setting a property, the root directory for
this path must be added to the Orbix security service's classpath. For example, if
you specify arelative pathname as follows:

UNIX

securityInfo.xml

The security service's classpath must include the file's parent directory:

CLASSPATH = /home/data/:<rest_of classpath>

iSF PropertiesFile

ISF PropertiesFile

Overview

Filelocation

AniSF propertiesfile is used to store the properties that configure a specific
Orbix security serviceinstance. Generally, every Orbix security service instance
should have its own i SF properties file. This section provides descriptions of all
the properties that can be specified in an i SF propertiesfile.

The default location of the iSF propertiesfile is the following:

OrbixInstallDir/etc/domains/DomainName/server Host/is2.propertie
s

In general, the iSF propertiesfilelocation is specified in the Orbix configuration
by setting the is2.properties property in the
plugins:java_server:system_properties property list.

For example, on UNIX the security server’s property list is normally initialized
inthe iona_services.security configuration scope as follows:

Orbix configuration file

iona_services {
security {

plugins:java_server:system properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl .ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com. iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=ASPInstallDir/etc/domains/DomainName/is2 .prop

erties"];

}i

623

CHAPTER B |iSF Configuration

List of properties

check.kdc.running

check.kdc.principal

com.iona.isp.adapters

The following properties can be specified in the i SF propertiesfile:

A boolean property that specifies whether or not the Artix security service
should check whether the Kerberos KDC server isrunning. Default is false.

(Used in combination with the check. kdc . running property.) Specifiesthe
dummy KDC principal that is used for connecting to the KDC server, in order to
check whether it isrunning or not.

Specifies the i SF adapter type to be loaded by the Orbix security service at
runtime. Choosing a particular adapter type is equivalent to choosing an Artix
security domain. Currently, you can specify one of the following adapter types:
o file

o LDAP

For example, you can select the LDAP adapter as follows:

com. iona.isp.adapters=LDAP

Note: Thefile adapter isintended for demonstration purposes only. Use of
the file adapter is not supported in production systems.

com.iona.isp.adapter .file.class

Specifies the Java class that implements the file adapter.

For example, the default implementation of the file adapter provided with Orbix
is selected as follows:

com.iona.isp.adapter.file.class=com.iona.security.is2adapter.file.FileAuthAdapter

624

iSF PropertiesFile

com.iona.isp.adapter file.param.filename

Specifies the name and location of afilethat is used by the file adapter to store
user authentication data.

For example, you can specify thefile, ¢: /is2_config/security_info.xml, as
follows:

com.iona.isp.adapter.file.param.filename=C:/is2_config/security info.xml

com.iona.isp.adapter .file.params

Obsolete. This property was needed by earlier versions of the Orbix security
service, but is now ignored.

com.iona.isp.adapter L DAP.class

Specifies the Java class that implements the LDAP adapter.

For example, the default implementation of the LDAP adapter provided with
Orbix is selected as follows:

com. iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.ldap.LdapAdapter

com.iona.isp.adapter L DAP.param.CacheSize

Specifies the maximum LDAP cache size in units of bytes. This maximum
appliesto thetotal LDAP cache size, including all LDAP connections opened by
this Orbix security service instance.

Internally, the Orbix security service uses athird-party toolkit (currently the
iPlanet SDK) to communicate with an LDAP server. The cache referred to here
isonethat is maintained by the LDAP third-party toolkit. Dataretrieved from
the LDAP server istemporarily stored in the cache in order to optimize
subsequent queries.

For example, you can specify a cache size of 1000 as follows:

com.iona.isp.adapter.LDAP.param.CacheSize=1000

625

CHAPTER B |iSF Configuration

com.iona.isp.adapter L DAP.param.CacheTimeToLive

Specifiesthe LDAP cachetimeto-live in units of seconds. For example, you can
specify a cache time to-live of one minute as follows:

com.iona.isp.adapter.LDAP.param.CacheTimeToLive=60

com.iona.isp.adapter L DAP.param.GroupBaseDN

Specifiesthe base DN of thetree in the LDAP directory that stores user groups.

For example, you could use the RDN sequence, bc=iona, DC=com, as abase DN
by setting this property as follows:

com. iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona, dc=com

Note: The order of the RDNsissignificant. The order should be based on the
LDAP schema configuration.

com.iona.isp.adapter .L DAP.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the name
of the user group. The default iscn.

For example, you can use the common name, c, attribute type to store the user
group’s name by setting this property as follows:

com. iona.isp.adapter.LDAP.param.GroupNameAttr=cn

com.iona.isp.adapter.L DAP.param.GroupObjectClass

Specifies the object class that applies to user group entriesin the LDAP
directory structure. An object class definesthe required and allowed attributes of
an entry. The default is groupofUniqueNames.

For example, to specify that all user group entries belong to the
groupOfUniqueNames Object class:

com. iona.isp.adapter.LDAP.param.GroupObjectClass=groupofuniquenames

626

iSF PropertiesFile

com.iona.isp.adapter .L DAP.param.GroupSear chScope

Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur. This
property can be set to one of the following values:

® Base—Search asingle entry (the base object).

®* oNE—Search al entriesimmediately below the base DN.
* sus—Search al entries from awhole subtree of entries.
Default is sus.

For example:

com. iona.isp.adapter.LDAP.param.GroupSearchScope=SUB

com.iona.isp.adapter L DAP.param.host.<Server| D>

For the <servertp> LDAP server replica, specify the IP hostname where the
LDAP server isrunning. The <serverzp> can be any string that uniquely
identifies the server replica.

For example, you could specify that the primary LDAP server isrunning on host
10.81.1.100 asfollows:

com.iona.isp.adapter.LDAP.param.host.primary=10.81.1.100

com.iona.isp.adapter.L DAP.param.M axConnectionPool Size

Specifies the maximum LDAP connection pool size for the Orbix security
service (a strictly positive integer). The maximum connection pool sizeisthe
maximum number of LDAP connections that would be opened and cached by
the Orbix security service. The default is 1.

For example, to limit the Orbix security service to open amaximum of 50 LDAP
connections at atime:

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize=50

627

CHAPTER B |iSF Configuration

com.iona.isp.adapter L DAP.param.Member DNAttr

Specifies which LDAP attribute is used to retrieve group members. The LDAP
adapter uses the MemberDNAt tr property to construct a query to find out which
groups a user belongsto.

The list of the user’s groups is needed to determine the compl ete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user asfollows:

1. Theadapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves all
the roles assigned to those groups.

Default is uniqueMember.
For example, you can select the uniqueMember attribute as follows:

com. iona.isp.adapter.LDAP.param.MemberDNAttr=unigqueMember

com.iona.isp.adapter.L DAP.param.Member Filter

Specifies how to search for membersin a group. The value specified for this
property must be an LDAP search filter (can be a custom filter).

com.iona.isp.adapter .L DAP.param.MinConnectionPool Size

628

Specifies the minimum LDAP connection pool size for the Orbix security
service. The minimum connection pool size specifies the number of LDAP
connections that are opened during initialization of the Orbix security service.
The defaultis 1.

For example, to specify a minimum of 10 LDAP connections at atime:

com. iona.isp.adapter.LDAP.param.MinConnectionPoolSize=10

iSF PropertiesFile

com.iona.isp.adapter L DAP.param.port.<Server| D>

For the <servertD> LDAP server replica, specifiesthe | P port where the LDAP
server islistening. The <server1p> can be any string that uniquely identifiesthe
server replica. The default port is 389.

For example, you could specify that the primary LDAP server islistening on
port 636 asfollows:

com.iona.isp.adapter.LDAP.param.port.primary=636

com.iona.isp.adapter L DAP.param.PrincipalUser DN.<Server | D>

For the <server1p> LDAP server replica, specifies the username that is used to
login to the LDAP server (in distinguished name format). This property need
only be set if the LDAP server is configured to require username/password
authentication.

No default.

com.iona.isp.adapter L DAP.param.PrincipalUser Passwor d.<Server| D>

For the <serverzD> LDAP server replica, specifies the password that is used to
login to the LDAP server. This property need only be set if the LDAP server is
configured to require username/password authentication.

No default.

WARNING: Because the password is stored in plaintext, you must ensure that
the is2.properties fileis readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.L DAP.param.RetrieveAuthinfo

Specifies whether or not the Orbix security service retrieves authorization
information from the LDAP server. This property selects one of the following
alternatives:

629

CHAPTER B |iSF Configuration

i yes—the Orbix security service retrieves authorization information from
the LDAP server.

®* no—theOrbix security serviceretrieves authorization information from the
iS2 authorization manager..

Default isno

For example, to use the LDAP server’s authorization information:

com. iona.isp.adapter.LDAP.param.RetrieveAuthInfo=yes

com.iona.isp.adapter L DAP.param.RoleNameAttr

Specifiesthe attribute type that the LDAP server usesto storetherole name. The
default iscw.

For example, you can specify the common name, cn, attribute type as follows:

com. iona.isp.adapter.LDAP.param.RoleNameAttr=cn

com.iona.isp.adapter L DAP.param.SSL CACertDir.<Server| D>

630

For the <server1p> LDAP server replica, specifies the directory name for
trusted CA certificates. All certificate filesin this directory are loaded and set as
trusted CA certificates, for the purpose of opening an SSL connection to the
LDAP server. The CA certificates can either be in DER-encoded X.509 format
or in PEM-encoded X.509 format.

No default.

For example, to specify that the primary LDAP server usesthe d: /certs/test
directory to store CA certificates:

com. iona.isp.adapter.LDAP.param.SSLCACertDir.primary=d: /certs/te
st

iSF PropertiesFile

com.iona.isp.adapter L DAP.param.SSL ClientCertFile.<Server | D>

Specifies the client certificate file that is used to identify the Orbix security
serviceto the <server1p> LDAP server replica. This property is needed only if
the LDAP server requires SSL/TLS mutual authentication. The certificate must
be in PKCS#12 format.

No default.

com.iona.isp.adapter.L DAP.param.SSL ClientCertPasswor d.<Server| D>

Specifies the password for the client certificate that identifies the Orbix security
service to the <server1p> LDAP server replica. This property is needed only if
the LDAP server requires SSL/TLS mutual authentication.

WARNING: Because the password is stored in plaintext, you must ensure that
the is2.properties fileis readable and writable only by users with
administrator privileges.

com.iona.isp.adapter L DAP.param.SSL Enabled.<Server| D>

Enables SSL/TLS security for the connection between the Orbix security service
and the <server1D> LDAP server replica. The possible values are yes or no.
Default isno.

For example, to enable an SSL/TL'S connection to the primary LDAP server:

com.iona.isp.adapter.LDAP.param.SSLEnabled.primary=yes

com.iona.isp.adapter.L DAP.param.UseGroupAsRole

Specifies whether a user’ s groups should be treated as roles. The following
alternatives are available:

®* yes—each group nameisinterpreted as arole name.
®* no—for each of the user’s groups, retrieve all roles assigned to the group.

This option is useful for some older versions of LDAP, such asiPlanet 4.0, that
do not have the role concept.

631

CHAPTER B |iSF Configuration

Default is no.
For example:

com. iona.isp.adapter.LDAP.param.UseGroupAsRole=no

com.iona.isp.adapter.L DAP.param.User BaseDN

Specifies the base DN (an ordered sequence of RDNS) of the tree in the LDAP
directory that stores user object class instances.

For example, you could use the RDN sequence, bc=iona, DC=com, as abase DN
by setting this property as follows:

com. iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona, dc=com

com.iona.isp.adapter .L DAP.param.User CertAttrName

Specifies the attribute type that stores a user certificate. The default is

userCertificate.

For example, you can explicitly specify the attribute type for storing user
certificates to be usercertificate asfollows:

com.iona.isp.adapter.LDAP.param.UserCertAttrName=userCertificate

com.iona.isp.adapter .L DAP.param.User NameAttr=uid

Specifies the attribute type whose corresponding value uniquely identifies the
user. Thisis the attribute used as the user’slogin ID. The default isuid.

For example:

com. iona.isp.adapter.LDAP.param.UserNameAttr=uid

com.iona.isp.adapter .L DAP.param.User ObjectClass

Specifies the attribute type for the object class that stores users. The default is

organizationalPerson.

632

iSF PropertiesFile

For example:

com.iona.isp.adapter.LDAP.param.UserObjectClass=organizationalPerson

com.iona.isp.adapter L DAP.param.User RoleDNAttr

Specifies the attribute type that stores auser’srole DN. The default isnsrolebn
(from the Netscape LDAP directory schema).

For example:

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn

com.iona.isp.adapter L DAP.param.User Sear chFilter

Custom filter for retrieving users. In the current version, $USER_NAMES is the
only replaceable parameter supported. This parameter would be replaced during
runtime by the LDAP adapter with the current User's login ID. This property
uses the standard L DAP search filter syntax.

For example:

& (uid=SUSER_NAMES) (objectclass=organizationalPerson)

com.iona.isp.adapter.L DAP.param.User Sear chScope

Specifies the user search scope. This property can be set to one of the following
values:

® Base—Search asingle entry (the base object).
®* oNE—Search al entriesimmediately below the base DN.
* sus—Search al entries from awhole subtree of entries.

Default is sus.

For example:

com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB

633

CHAPTER B |iSF Configuration

com.iona.isp.adapter L DAP.param.version

Specifies the LDAP protocol version that the Orbix security service uses to
communicate with LDAP servers. The only supported versionis 3 (for LDAP
v3, http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com. iona.isp.adapter.LDAP.param.version=3

com.iona.isp.adapter L DAP.params

Obsolete. This property was needed by earlier versions of the Orbix security
service, but is now ignored.

com.iona.isp.authz.adapters

Specifies the name of the adapter that is |oaded to perform authorization. The
adapter nameis an arbitrary identifier, Adapterivame, which is used to construct
the names of the properties that configure the adapter—that is,
com.iona.isp.authz.adapter.AdapterName.class and

com.iona.isp.authz.adapter.AdapterName.param. filelist. FOr example:

com. iona.isp.authz.adapters=file

com. iona.isp.authz.adapter.file.class=com.iona.security.is2AzAda
pter.multifile.MultiFileAzAdapter

com.iona.isp.authz.adapter.file.param.filelist=ACLFileListFile;

com.iona.isp.authz.adapter .adaptername.class

634

Selects the authorization adapter class for the adaptername adapter. The

following adapter implementations are provided by Orbix:

b com.iona.security.is2AzAdapter.multifile.MultiFileAzAdapter—
an authorization adapter that enables you to specify multiple ACL files. It
is used in conjunction with the
com.iona.isp.authz.adapter.file.param.filelist property.

http://www.ietf.org/rfc/rfc2251.txt

iSF PropertiesFile

For example:

com.iona.isp.authz.adapters = file
com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzAda
pter.multifile.MultiFileAzAdapter

com.iona.isp.authz.adapter .adaptervame.par am.filelist

is2.current.server.id

Specifies the absolute pathname of afile containing alist of ACL filesfor the
AdapterName adapter. Each line of the specified file has the following format:

[ACLKey=]ACLF1ileName

A file name can optionally be preceded by an ACL key and an equals sign,
ACLKey=, if you want to select thefileby ACL key. The ACL file, ACLFi1eName,
is specified using an absolute pathname in the local file format.

For example, on Windows you could specify alist of ACL files asfollows:
U:/orbix_security/etc/acl_files/server A.xml

U:/orbix_security/etc/acl_files/server_ B.xml
U:/orbix_security/etc/acl_files/server_ C.xml

The server ID is an alphanumeric string (excluding spaces) that specifies the
current Orbix security service'sID. The server 1D is needed for clustering.
When a secure application obtains a single sign-on (SSO) token from this Orbix
security service, the server ID is embedded into the SSO token. Subsequently, if
the SSO token is passed to a second Orbix security service instance, the second
Orbix security service recognizes that the SSO token originates from the first
Orbix security service and delegates security operations to the first Orbix
security service.

The server ID isalso used to identify replicasin the cluster.properties file.

For example, to assign aserver ID of primary to the current Orbix security
service:

is2.current.server.id=primary

635

CHAPTER B |iSF Configuration

is2.cluster.properties.filename

is2.replication.required

is2.replication.interval

Specifies the file that stores the configuration properties for clustering. For
example:

is2.cluster.properties.filename=C:/is2_config/cluster.properties

Enables the replication feature of the Orbix security service, which can be used
in the context of security service clustering. The possible values are true
(enabled) and false (disabled). When replication is enabled, the security service
pushes its cache of SSO data to other serversin the cluster at regular intervals.

Default is false.

For example:

is2.replication.required=true

Specifies the timeinterval between replication updates to other serversin the
security service cluster. The value is specified in units of a second.

Default is 30 seconds.

For example:

is2.replication.interval=10

Is2.replica.selector .classname

636

If replication is enabled (see is2.replication.required), you must set this
variable equal to com.iona.security.replicate.StaticReplicaSelector.

For example:

is2.replica.selector.classname=com.iona.security.replicate.Stati
cReplicaSelector

is2.sso.cache.size

is2.sso0.enabled

is2.ss0.r emote.token.cached

iS2.ss0.session.idle.timeout

iSF PropertiesFile

Specifies the maximum cache size (number of user sessions) associated with
single sign-on (SSO) feature. The SSO caches user information, including the
user’s group and role information. If the maximum cache size is reached, the
oldest sessions are deleted from the session cache.

No default.
For example:

is2.sso.cache.size=1000

Enables the single sign-on (SSO) feature of the Orbix security service. The
possible values are yes (enabled) and no (disabled).

Default is yes.
For example:

is2.sso.enabled=yes

In afederated scenario, this variable enables caching of token data for tokens
that originate from another security service in the federated cluster. When this
variableis set to true, asecurity service need contact another security servicein
the cluster, only when the remote token is authenticated for the first time. For
subsequent token authentications, the token data for the remote token can be
retrieved from the local cache.

Default is false.

Sets the session idle time-out in units of seconds for the single sign-on (SSO)
feature of the Orbix security service. A zero value implies no time-out.

637

CHAPTER B |iSF Configuration

1S2.850.5ession.timeout

log4j .configuration

638

If auser logs on to the Orbix Security Framework (supplying username and
password) with SSO enabled, the Orbix security service returns an SSO token
for the user. The next time the user needs to access aresource, there is no need to
log on again because the SSO token can be used instead. However, if no secure
operations are performed using the SSO token for the length of time specified in
the idle time-out, the SSO token expires and the user must log on again.

Default is 0 (no time-out).

For example:

is2.sso.session.idle.timeout=0

Sets the absolute session time-out in units of seconds for the single sign-on
(SSO) feature of the Orbix security service. A zero value implies no time-out.

Thisis the maximum length of time since the time of the original user login for
which an SSO token remains valid. After thistime interval elapses, the session
expiresirrespective of whether the session has been active or idle. The user must
then login again.

Default is 0 (no time-out).

For example:

is2.sso.session. timeout=0

Specifiesthe log4j configuration filename. Y ou can use the propertiesin thisfile
to customize the level of debugging output from the Orbix security service. See
aso “logdj Properties File” on page 641.

For example:

logdj.configuration=d:/temp/myconfig.txt

Cluster PropertiesFile

Cluster PropertiesFile

Overview

Filelocation

List of properties

The cluster propertiesfileis used to store properties common to agroup of Orbix
security service instances that operate as a cluster or federation. This section
provides descriptions of all the properties that can be specified in acluster file.

The location of the cluster propertiesfileis specified by the
is2.cluster.properties.filename property in theiSF propertiesfile. All of
the Orbix security service instances in a cluster or federation must share the
same cluster propertiesfile.

The following properties can be specified in the cluster propertiesfile:

com.iona.security.common.securityl nstanceURL .<Server | D>

Specifies the server URL for the <serverzp> Orbix security service instance.

When single sign-on (SSO) is enabled together with clustering or federation, the
Orbix security service instances use the specified instance URLs to
communicate with each other. Because the Orbix security service instances
share the same cluster file, they can read each other’s URL s and open
connections to each other.

The connections between Orbix security service instances are made using the
I1OP protocol combined with SSL/TLS. The detailed configuration of the
IIOP/TLS endpoint is specified in the Orbix configuration file for each security
servicein the cluster. Hence, you can discover the host and port used by a
particular security service by inspecting the values of the
plugins:security:iiop_tls:host and plugins:security:iiop_tls:port
variables from its Orbix configuration. Y ou can use the host and port values to
construct the value of the security instance URL.

639

CHAPTER B |iSF Configuration

For example, consider acluster of three security services, where the first security
service (ID=1) is configured as follows:

Orbix Configuration File for service with ID=1
plugins:security cluster:iiop tls:addr_list =
["+security01:5001", "+security02:5002", "+security03:5003"];
plugins:security:iiop_tls:host = "5001";
plugins:security:iiop_tls:port = "security0l";

The plugins:security:iiop_tls:host and
plugins:security:iiop_tls:port variablesgive the host and port of the first
service, server01:5001. Assuming the host and port for the second and third
services are server02:5002 and server03:5003 respectively, you would
configure the security instance URLs as follows:

Advertise the locations of the security services in the cluster.

com. iona.security.common.securityInstanceURL.l=corbaloc:it_iiops:1.2@security01:5001/IT Security
Service

com. iona.security.common.securityInstanceURL.2=corbaloc:it_iiops:1.2@security02:5002/IT Security
Service

com. iona.security.common. securityInstanceURL.3=corbaloc:it_iiops:1.2@security03:5003/IT_ Security
Service

com.iona.security.common.replicaURL .<Server | D>

A comma-separated list of URLs for the other security services to which this
service replicates its SSO token data. In Orbix, the URLs for the other security
services are normally specified in a corbaloc format.

For example, to configure thefirst servicein acluster (ID=1) to replicate its SSO
token data to the second service (with address, server02:5002) and the third
service (with address, server02:5002) in the cluster, you would add the
following line to the cluster.properties file

Configure replication between security services.
com. iona.security.common.replicalURL.1l=corbaloc:it_iiops:1.2@security02:5002/IT SecurityService,c
orbaloc:it_iiops:1.2@security03:5003/IT SecurityService

640

log4j PropertiesFile

log4) PropertiesFile

Overview

log4j documentation

Filelocation

List of properties

The log4j properties file configures log4j logging for your Orbix security
service. This section describes aminimal set of log4j properties that can be used
to configure basic logging.

For complete log4j documentation, see the following Web page:
http://jakarta.apache.org/l ogdj/docs/documentation.html

The location of the log4j propertiesfile is specified by the
log4j.configuration property in the iSF propertiesfile. For ease of
administration, different Orbix security service instances can optionally share a
common logdj propertiesfile.

To give you some idea of the capabilities of log4j, the following is an
incomplete list of properties that can be specified in alog4j propertiesfile:

log4j .appender . <appendertandie>

This property specifies alog4j appender class that directs <appenderHandle>
logging messages to a particular destination. For example, one of the following
standard log4j appender classes could be specified:

b org.apache.log4dj.ConsoleAppender

b org.apache.log4j.FileAppender

° org.apache.log4j.RollingFileAppender

° org.apache.log4j.DailyRollingFileAppender

b org.apache.log4dj.AsynchAppender

b org.apache.log4dj.WriterAppender

For example, to log messages to the console screen for the a1 appender handle:

log4j.appender.Al=org.apache.log4j.ConsoleAppender

641

http://jakarta.apache.org/log4j/docs/documentation.html

CHAPTER B |iSF Configuration

| Og4j .appen der. <AppenderHandle>. | ayout

This property specifies alog4j layout class that is used to format
<AppenderHandle> logging messages. One of the following standard log4j
layout classes could be specified:

* org.apache.log4j.PatternLayout

° org.apache.log4j .HTMLLayout

b org.apache.log4dj.SimpleLayout

M org.apache.log4j.TTCCLayout

For example, to use the pattern layout class for |og messages processed by the a1
appender:

log4j.appender.Al.layout=org.apache.log4dj .PatternLayout

log4j .appender . <appenderrandies.layout.Conver sionPatter n

This property is used only in conjunction with the

org.apache. logd]j . PatternLayout class (when specified by the

log4j .appender . <AppenderHandle>.layout property) to define the format of
alog message.

For example, you can specify abasic conversion pattern for the a1 appender as
follows:

log4j.appender.Al.layout.ConversionPattern=%-4r [%t] %-5p %$c %X - mM¥n

log4j .rootCategory

642

This property is used to specify the logging level of the root logger and to
associate the root logger with one or more appenders. The value of this property
is specified as a comma separated list as follows:

<LogLevel>, <AppenderHandle0l>, <AppenderHandle(02>,

Thelogging level, <LogLevel>, can have one of the following values:

DEBUG
INFO
WARN
ERORR

log4j PropertiesFile

b FATAL

An appender handleis an arbitrary identifier that associates alogger with a
particular logging destination.

For example, to select all messages at the beBUG level and direct them to the a1
appender, you can set the property as follows:

log4j.rootCategory=DEBUG, Al

643

CHAPTER B | iSF Configuration

In this appendix

APPENDIX C

ASN.1 and
Distinguished
Names

The O Abstract Syntax Notation One (ASN.1) and X.500
Distinguished Names play an important rolein the security
standards that define X.509 certificates and LDAP directories.

This appendix contains the following section:

ASN.1 page 646

Distinguished Names page 647

645

CHAPTER C | ASN.1 and Distinguished Names

ASN.1

Overview

BER

DER

References

646

The Abstract Syntax Notation One (ASN.1) was defined by the OSI standards
body in the early 1980s to provide away of defining data types and structures
that isindependent of any particular machine hardware or programming
language. In many ways, ASN.1 can be considered a forerunner of the OMG’s
IDL, because both languages are concerned with defining platform-independent
datatypes.

ASN.1isimportant, becauseit iswidely used in the definition of standards (for
example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitousin the
field of security standards—the formal definitions of X.509 certificates and
distinguished names are described using ASN.1 syntax. Y ou do nhot require
detailed knowledge of ASN.1 syntax to use these security standards, but you
need to be aware that ASN.1 is used for the basic definitions of most
security-related data types.

The OSI’s Basic Encoding Rules (BER) define how to translate an ASN.1 data
type into a sequence of octets (binary representation). The role played by BER
with respect to ASN.1 is, therefore, similar to the role played by GIOP with
respect to the OMG IDL.

The OSI’ s Distinguished Encoding Rules (DER) are a specialization of the BER.
The DER consists of the BER plus some additional rules to ensure that the
encoding is unique (BER encodings are not).

Y ou can read more about ASN.1 in the following standards documents:
® ASN.lisdefinedin X.208.
° BER isdefined in X.209.

Distinguished Names

Distinguished Names

Overview

String representation of DN

DN string example

Structureof a DN string

OID

Historically, distinguished names (DN) were defined as the primary keysin an

X.500 directory structure. In the meantime, however, DNs have come to be used

in many other contexts as general purpose identifiers. In the Orbix Security

Framework, DNs occur in the following contexts:

. X.509 certificates—for example, one of the DNsin a certificate identifies
the owner of the certificate (the security principal).

° LDAP—DNs are used to locate objectsin an LDAP directory tree.

Although aDN isformally defined in ASN.1, thereis also an LDAP standard
that defines a UTF-8 string representation of aDN (see rrc 2253). The string
representation provides a convenient basis for describing the structure of a DN.

Note: The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, aDN that is converted from string
format back to DER format does not always recover the original DER
encoding.

The following string is a typical example of a DN:

C=US,0=IONA Technologies, OU=Engineering,CN=A. N. Other

A DN string is built up from the following basic elements:

e OID.

* Attributetypes.
e AVA.

* RDN.

An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely identifies
agrammatical construct in ASN.1.

647

CHAPTER C | ASN.1 and Distinguished Names

Attribute types

The variety of attribute types that could appear in aDN is theoretically
open-ended, but in practice only asmall subset of attribute types are used.
Table 29 shows a selection of the attribute types that you are most likely to

encounter:

Table29: Commonly Used Attribute Types

String X.500 Attribute Type Size of Data Equivalent OID
Representation
C countryName 2 2.5.4.6
0] organizationName 1...64 2.5.4.10
ou organizationalUnitName 1...64 2.5.4.11
CN commonName 1...64 2.5.4.3
ST stateOrProvinceName 1...64 2.5.4.8
L localityName 1...64 2.5.4.7
STREET streetAddress
DC domainComponent
UID userid

AVA

648

An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type>=<attr-value>

For example:

CN=A. N. Other

Alternatively, you can use the equivalent OID to identify the attribute typein the
string representation (see Table 29). For example:

2.5.4.3=A. N. Other

RDN

Distinguished Names

A relative distinguished name (RDN) represents a single node of aDN (the bit
that appears between the commas in the string representation). Technically, an
RDN might contain more than one AVA (it isformally defined as a set of

AV Ays); in practice, however, this almost never occurs. In the string
representation, an RDN has the following syntax:
<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

Hereis an example of a (very unlikely) multiple-value RDN:
OU=Engl+0U=Eng2+0U=Eng3

Hereis an example of asingle-value RDN:

OU=Engineering

649

CHAPTER C | ASN.1 and Distinguished Names

650

APPENDIX D

Association
Options

Thisappendix describesthe semanticsof all theassociation options
that are supported by Orbix.

In this appendix This appendix contains the following section:

Association Option Semantics page 652

651

APPENDIX D | Association Options

Association Option Semantics

Overview

IDL Definitions

Table of association options

This appendix defines how associationOptions are used with
SecClientInvocation and SecTargetInvocation poliCies.

AssociationOptions are enumerated in the CORBA security specification as
follows:

//IDL

typedef unsigned short AssociationOptions;

const
const
const
const
const
const
const

AssociationOptions
AssociationOptions
AssociationOptions
AssociationOptions
AssociationOptions
AssociationOptions
AssociationOptions

NoProtection = 1;
Integrity = 2;
Confidentiality = 4;
DetectReplay = 8;

DetectMisordering = 16;

EstablishTrustInTarget
EstablishTrustInClient

// Unsupported option: NoDelegation

// Unsupported option: SimpleDelegation
// Unsupported option: CompositeDelegation

7

32;
= 64;

Table 30: AssociationOptions for Client and Target

Table 30 shows how the options affect client and target policies:

Association client_supports client_requires target_supports target_requires
Options

NoProtection Client supports Theclient's Target supports Thetarget's
unprotected minimal unprotected minimal protection
messages. protection messages. requirement is

requirement is unprotected
unprotected messages.
messages.

Integrity The client Theclientrequires | Thetarget supports | Thetarget requires
supportsintegrity | messagesto be integrity protected messages to be
protected integrity messages. integrity protected.
messages. protected.

652

Table 30:

Association Option Semantics

AssociationOptions for Client and Target

Association client_supports client_requires target_supports target_requires
Options

Confidentiali | Theclient Theclientrequires | Thetarget supports | Thetarget requires

ty supports messages to be confidentiality messages to be
confidentiality confidentiality protected messages. | confidentiality
protected protected. protected.
messages.

DetectReplay The client can Theclientrequires | Thetarget can The target requires
detect replay of detection of detect replay of detection of
reguests (and message replay. requests (and message replay.
request request fragments).
fragments).

DetectMisorde | Theclient can Theclientrequires | Thetarget can The target requires

ring detect sequence detection of detect sequence detection of
errors of requests | message errors of requests message
(and request mis-sequencing. (and request mis-seguencing.
fragments). fragments).

EstablishTrus Theclientis Theclientrequires | Thetargetis (Thisoptionis

tInTarget capable of establishment of prepared to invalid).
authenticating the | trustinthetarget's | authenticateits
target. identity. identity to the

client.

EstablishTrus | Theclientis (Thisoptionis Thetargetis The target requires

tInClient prepared to invalid). capable of establishment of
authenticate its authenticating the trust in the client’s
identity to the client. identity.
target.

653

APPENDIX D | Association Options

654

DTD file

APPENDIX E

Action-Role
Mapping DTD

Thisappendix presentsthe document type definition (DTD) for the
action-role mapping XML file.

The action-role mapping DTD is shown in Example 62.
Example 62:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT action-name (#PCDATA)>
<!ELEMENT role-name (#PCDATA)>
<!ELEMENT server-name (#PCDATA)>
<!ELEMENT action-role-mapping (server-name, interface+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT interface (name, action-role+)>
<!ELEMENT parameter EMPTY>
<!ATTLIST parameter
name CDATA #REQUIRED
value CDATA #REQUIRED
>
<!ELEMENT parameter-control (parameter+, role-name+)>
<!ELEMENT action-role (action-name, parameter-control*,
role-name+) >
<!ELEMENT allow-unlisted-interfaces (#PCDATA)>
<!ELEMENT secure-system (allow-unlisted-interfaces*,
action-role-mapping+)>

655

CHAPTER E | Action-Role Mapping DTD

Action-role mapping elements

656

The elements of the action-role mapping DTD can be described as follows:
<!ELEMENT action-name (#PCDATA)>
Specifies the action name to which permissions are assigned. The
interpretation of the action name depends on the type of application:

+ CORBA server—for IDL operations, the action name corresponds to
the GIOP on-the-wire format of the operation name (usually the same
asit appearsin IDL).
For IDL attributes, the accessor or modifier action name corresponds
to the GIOP on-the-wire format of the attribute accessor or modifier.
For example, an IDL attribute, foo, would have an accessor,
_get_foo, and amodifier, _set_foo.

+ Artix server—for WSDL operations, the action nameis equivalent to
aWSDL operation name; that is, the operationname from atag,

<operation name="OperationName">.

The action-name element supports a wildcard mechanism, where the
specia character, *, can be used to match any number of contiguous
charactersin an action name. For example, the following action-name
element matches any action:

<action-name>*</action-name>

<!ELEMENT action-role (action-name, parameter-control%*,
role-name+) >

Groupstogether aparticular action and all of the roles permitted to perform
that action.
<!ELEMENT action-role-mapping (server-name, interface+)>

Contains all of the permissions that apply to a particular server application.

<!ELEMENT allow-unlisted-interfaces (#PCDATA)>

Specifies the default access permissions that apply to interfaces not

explicitly listed in the action-role mapping file. The element contents can

have the following values:

. true—for any interfaces not listed, accessto al of the interfaces
actionsis allowed for al roles. If the remote user is unauthenticated
(in the sense that no credentials are sent by the client), accessis also
allowed.

Note: However, if <allow-unlisted-interfaces> iS true and a
particular interface is listed, then only the actions explicitly listed within
that interface’s interface element are accessible. Unlisted actions from
the listed interface are not accessible.

. false—for any interfaces not listed, access to al of the interfaces’
actionsis denied for al roles. Unauthenticated users are also denied
access.

Default is false.

<!ELEMENT interface (name, action-role+)>
In the case of a CORBA server, the interface element contains all of the
access permissions for one particular IDL interface.

In the case of an Artix server, the interface element contains all of the
access permissions for one particular WSDL port type.
Y ou can also use the wildcard, *, to match any number of contiguous
charactersin an interface name.

<!ELEMENT name (#PCDATA)>
Within the scope of an interface element, identifies the interface (IDL
interface or WSDL port type) with which permissions are being associated.
The format of the interface name depends on the type of application, as
follows:

+ CORBA server—the name element identifies the IDL interface using
the interface’s OMG repository ID. The repository ID normally
consists of the characters 1oL: followed by the fully scoped name of
theinterface (using / instead of : : asthe scoping character),

657

CHAPTER E | Action-Role Mapping DTD

followed by the characters : 1.0. Hence, the Simple: : SimpleObject
IDL interface isidentified by the IpL: Simple/SimpleObject:1.0
repository 1D.

Note: Theform of the repository ID can also be affected by various
#pragma directives appearing in the IDL file. A commonly used directive
IS #pragma prefix.

For example, the CosNaming: :NamingContext interface in the naming
service module, which uses the omg . org prefix, has the following
repository ID: IDL: omg . org/CosNaming/NamingContext: 1.0

¢ Artix server—the name element contains aWSDL port type name,
specified in the following format:
NamespaceURI : PortTypeName
The PortTypeName comes from atag, <portType
name="PortTypeName">, defined in the NamespaceURT NaMmespace.
The NamespaceURT is usualy defined in the <definitions
targetNamespace="NamespaceURI" ...> tag of the WSDL
contract.

<!ELEMENT parameter EMPTY>
<!ATTLIST parameter
name CDATA #REQUIRED
value CDATA #REQUIRED

The <parameter> element is used in conjunction with the action-role
mapping feature to restrict user accessto an action. A user roleis allowed
to access an action only if the parameter specified by the name attribute has
the value specified by the value attribute.

Note: By default, the <parameter> and <parameter-control> tags
only have an effect for the CFR service. Extending this feature to work
with other services requires the Orbix ART plug-in development kit.

<!ELEMENT parameter-control (parameter+, role-name+)>
Specifies access control based on the values of certain parameters of the
associated action. The role names listed within the <parameter-control>
element are granted access to the enclosing action only if the parameters
take the values specified by the <parameter> tags.

<!ELEMENT role-name (#PCDATA)>

658

Specifies arole to which permission is granted. The role name can be any
role that belongs to the server’s Artix authorization realm (for CORBA
bindings, the realm name is specified by the
plugins:gsp:authorization_realm configuration variable; for SOAP
bindings, the realm name is specified by the
plugins:asp:authorization_realm configuration variable) or to the
IONAGlobalRealm realm. The roles themselves are defined in the security
server backend; for example, in afile adapter file or in an LDAP backend.

<!ELEMENT secure-system (allow-unlisted-interfaces*,
action-role-mapping+) >

The outermost scope of an action-role mapping file groups together a
collection of action-role-mapping €lements.

<!ELEMENT server-name (#PCDATA)>
The server-name element specifies the configuration scope (that is, the
ORB name) used by the server in question. Thisis normally the value of
the -OrRBname parameter passed to the server executable on the command
line.
Y ou can also use the wildcard, *, to match any number of contiguous
characters in a configuration scope name.

659

CHAPTER E | Action-Role Mapping DTD

660

APPENDIX F

OpenSSL Utilities

The openss1 program consists of a large number of utilities that
have been combined into one program. This appendix describes
how you usethe openss1 programwith Or bix when managing X.509
certificates and private keys.

In this appendix This appendix contains the following sections:
Using OpenSSL Utilities page 662
The OpenSSL Configuration File page 671

661

CHAPTER F | OpenSSL Utilities

Using OpenSSL Utilities

The OpenSSL package

Command syntax

The openssl utilities

The -help option

662

Orhix ships aversion of the OpenSSL program that is available with Eric
Young's openssl package. OpenSSL is a publicly available implementation of
the SSL protocol. Consult “License Issues’ on page 687 for information about
the copyright terms of OpenSSL.

Note: For complete documentation of the OpenSSL utilities, consult the
documentation at the OpenSSL web site http: / /www.openssl .org/docs.

An openss1 command line takes the following form:
openssl Utility arguments
For example:

openssl x509 -in OrbixCA -text

This appendix describes four openss1 utilities:

x509 Manipulates X.509 certificates.

req Creates and manipul ates certificate signing requests, and self-signed
certificates.

rsa Manipulates RSA private keys.
ca Implements a Certification Authority (CA).

To get alist of the arguments associated with a particular command, use the
-help option as follows:

openssl Utility -help
For example:

openssl x509 -help

Using OpenSSL Utilities

The x509 Utility

Purpose of the x509 utility

Options

In Orbix the x509 utility ismainly used for:

® Printing text details of certificates you wish to examine.
® Converting certificates to different formats.

The options supported by the openssl x509 utility are as follows:

-inform arg

-outform arg

-keyform arg

-CAform arg

-CAkeyform arg

input format - default PEM

(one of DER, NET or PEM)

output format - default PEM

(one of DER, NET or PEM

private key format - default PEM
CA format - default PEM

CA key format - default PEM

-in arg - input file - default stdin

-out arg - output file - default stdout

-serial - print serial number value

-hash - print serial number value

-subject - print subject DN

-issuer - print issuer DN

-startdate - notBefore field

-enddate - notAfter field

-dates - both Before and After dates

-modulus - print the RSA key modulus

-fingerprint - print the certificate fingerprint

-noout - no certificate output

-days arg - How long till expiry of a signed certificate
- def 30 days

-signkey arg - self sign cert with arg

-x509toreq - output a certification request object

-req - input is a certificate request, sign and
output

-CA arg - set the CA certificate, must be PEM format

663

CHAPTER F | OpenSSL Utilities

Using the x509 utility

664

-CAkey arg - set the CA key, must be PEM format. If missing
it is assumed to be in the CA file

-CAcreateserial - create serial number file if it does not exist

-CAserial - serial file

-text - print the certificate in text form

-C - print out C code forms

-md2/-md5/-shal/ - digest to do an RSA sign with

-mdc2

To print the text details of an existing PEM-format X.509 certificate, use the
x509 utility asfollows:

openssl x509 -in MyCert.pem -inform PEM -text

To print the text details of an existing DER-format X.509 certificate, use the
%509 utility asfollows:

openssl x509 -in MyCert.der -inform DER -text

To change a certificate from PEM format to DER format, use the x509 utility as
follows:

openssl x509 -in MyCert.pem -inform PEM -outform DER -out
MyCert .der

Using OpenSSL Utilities

Thereq Utility

Purpose of the x509 utility

Options

The req utility isused to generate a self-signed certificate or a certificate signing
request (CSR). A CSR contains details of a certificate to be issued by a CA.
When creating a CSR, the req command prompts you for the necessary
information from which a certificate request file and an encrypted private key
file are produced. The certificate request is then submitted to a CA for signing.

If the -nodes (no DES) parameter isnot supplied to req, you are prompted for a
pass phrase which will be used to protect the private key.

Note: Itisimportant to specify avalidity period (using the -days parameter).
If the certificate expires, applications that are using that certificate will not be

authenticated successfully.

The options supported by the openssl req utility are asfollows:

-inform arg
-outform

-in arg

-out arg
-text

-noout
-verify
-modulus
-nodes

-key file
-keyform arg
-keyout arg
-newkey rsa:bits

-newkey dsa:file

-[digest]
-config file

-new

input format - one of DER TXT PEM

arg output format - one of DER TXT PEM
inout file

output file

text form of request

do not output REQ

verify signature on REQ

RSA modulus

do not encrypt the output key

use the private key contained in file

key file format

file to send the key to

generate a new RSA key of ‘bits’ in size
generate a new DSA key, parameters taken from
CA in ‘file’

Digest to sign with (md5, shal, md2, mdc2)
request template file

new request

665

CHAPTER F | OpenSSL Utilities

Using thereq Utility

666

-x509 output an x509 structure instead of a
certificate req. (Used for creating self signed
certificates)

-days number of days an x509 generated by -x509 is

valid for

-asnl-kludge Output the ‘request’ in a format that is wrong
but some CA’s have been reported as requiring
[Tt is now always turned on but can be turned
off with -no-asnl-kludge]

To create a self-signed certificate with an expiry date ayear from now, the req
utility can be used as follows to create the certificate ca_cert .pem and the
corresponding encrypted private key file ca_pk. pem:

openssl req -config S9_conf_path_name -days 365

-out CA_cert.pem -new -x509 -keyout CA_pk.pem

Thisfollowing command creates the certificate request MyReq . pem and the
corresponding encrypted private key file MyEncryptedkey . pem:

openssl req -config ssl_conf_path_name -days 365
-out MyReqg.pem -new -keyout MyEncryptedKey.pem

Using OpenSSL Utilities

Thersa Utility

Purpose of the rsa utility

Options

Using thersa Utility

The rsa command isauseful utility for examining and modifying RSA private
key files. Generally RSA keys are stored encrypted with a symmetric algorithm
using auser-supplied pass phrase. The OpenSSL req command prompts the user
for apass phrase in order to encrypt the private key. By default, req usesthe
triple DES agorithm. The rsa command can be used to change the password
that protects the private key and to convert the format of the private key. Any
rsa command that involves reading an encrypted rsa private key will prompt
for the PEM pass phrase used to encrypt it.

The options supported by the opensdl rsa utility are as follows:

-inform arg input format - one of DER NET PEM

-outform arg output format - one of DER NET PEM

-in arg inout file

-out arg output file

-des encrypt PEM output with cbc des

-des3 encrypt PEM output with ede cbc des using
168 bit key

-text print the key in text

-noout do not print key out

-modulus print the RSA key modulus

Converting a private key to PEM format from DER format involves using the
rsa Utility asfollows:

openssl rsa -inform DER -in MyKey.der -outform PEM -out MyKey.pem

Changing the pass phrase which is used to encrypt the private key involves using
the rsa utility asfollows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey.pem
-des3

Removing encryption from the private key (which is not recommended)
involves using the rsa command utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey?2.pem

667

CHAPTER F | OpenSSL Utilities

Note: Do not specify the samefile for the -in and -out parameters, because
this can corrupt thefile.

668

Using OpenSSL Utilities

The ca Utility

Purpose of the ca utility Y ou can use the ca utility create X.509 certificates by signing existing signing
reguests. It isimperative that you check the details of a certificate request before
signing. Y our organization should have a policy with respect to the issuing of
certificates.

The ca utility is used to sign certificate requests thereby creating avalid X.509
certificate which can be returned to the request submitter. It can also be used to
generate Certificate Revocation Lists (CRLS). For information on the ca
-policy and -name options, refer to “The OpenSSL Configuration File” on
page 671.

Creatinganew CA To create anew CA using the opensdl ca utility, two files (serial and
index. txt) need to be created in the location specified by the opensd
configuration file that you are using.

Options The options supported by the openssl ca utility are asfollows:
-verbose - Talk alot while doing things
-config file - A config file
-name arg - The particular CA definition to use
-gencrl - Generate a new CRL
-crldays days - Days is when the next CRL is due
-crlhours hours - Hours is when the next CRL is due
-days arg - number of days to certify the certificate for
-md arg - md to use, one of md2, md5, sha or shal
-policy arg - The CA ‘policy’ to support
-keyfile arg - PEM private key file
-key arg - key to decode the private key if it is
encrypted
-cert - The CA certificate
-in file - The input PEM encoded certificate request (s)
-out file - Where to put the output file(s)
-outdir dir - Where to put output certificates

669

CHAPTER F | OpenSSL Utilities

Using the ca Utility

670

-infiles.... - The last argument, requests to process

-spkac file - File contains DN and signed public key and
challenge

-preserveDN - Do not re-order the DN

-batch - Do not ask questions

-msie_hack - msie modifications to handle all thos

universal strings

Note: Most of the above parameters have default values as defined in
openssl.cnf.

Converting aprivate key to PEM format from DER format involves using the ca
utility as shown in the following example. To sign the supplied CSR MyReq. pem
to be valid for 365 days and create a new X.509 certificate in PEM format, use
the ca utility asfollows:

openssl ca -config SS_conf_path name -days 365
-in MyReq.pem -out MyNewCert.pem

The OpenSSL Configuration File

The OpenSSL Configuration File

Overview A number of OpenSSL commands (for example, req and ca) take a -config
parameter that specifies the location of the opensd configuration file. This
section provides a brief description of the format of the configuration file and
how it applies to the req and ca commands. An example configuration fileis
listed at the end of this section.

Structure of openssl.cnf The openssl1 . cnf configuration file consists of a number of sectionsthat specify
aseries of default values that are used by the openssl commands.

In this section This section contains the following subsections:
[req] Variables page 672
[ca] Variables page 673
[policy] Variables page 674
Example openss.cnf File page 675

671

CHAPTER F | OpenSSL Utilities

[req] Variables

Overview of thevariables

default_bits configuration
variable

default_keyfile configuration
variable

distinguished name
configuration variable

672

The req section contains the following variables:

default_bits = 1024

default_keyfile = privkey.pem
distinguished name = req distinguished_ name
attributes = req attributes

The default_bits variableisthe default RSA key size that you wish to use.
Other possible values are 512, 2048, and 4096.

The default_keyfile variable isthe default name for the private key file
created by req.

The distinguished_name Variable specifies the section in the configuration file
that defines the default values for components of the distinguished namefield.
The req_attributes variable specifies the section in the configuration file that
defines defaults for certificate request attributes.

The OpenSSL Configuration File

[ca] Variables

Choosing the CA section

Overview of thevariables

Y ou can configure the file openss1 . cnf to support a number of CAsthat have
different policies for signing CSRs. The -name parameter to the ca command
specifies which CA section to use. For example:

openssl ca -name MyCa ...

This command refers to the CA section [Myca]. If -name is not supplied to the
ca command, the CA section used isthe oneindicated by the default_ca
variable. In the “Example openssl.cnf File” on page 675, thisis set to
ca_default (Whichisthe name of another section listing the defaults for a
number of settings associated with the ca command). Multiple different CAscan
be supported in the configuration file, but there can be only one default CA.

Possible [ca] variables include the following

dir: The location for the CA database
The database is a simple text database containing the
following tab separated fields:

status: A value of ‘R’ - revoked, ‘E’ -expired or ‘V’ valid
issued date: When the certificate was certified

revoked date: When it was revoked, blank if not revoked

serial number: The certificate serial number

certificate: Where the certificate is located

CN: The name of the certificate

The serial number field should be unique, as should the cn/status
combination. The ca utility checks these at startup.

certs: This is where all the previously issued certificates are
kept

673

CHAPTER F | OpenSSL Utilities

[policy] Variables

Choosing the policy section

Example policy section

Thematch policy value

The optional policy value

The supplied policy value

674

The policy variable specifies the default policy section to be used if the -policy
argument is not supplied to the ca command. The CA policy section of a
configuration file identifies the requirements for the contents of a certificate
request which must be met before it is signed by the CA.

There are two policy sections defined in the “ Example opensd.cnf File” on
page 675: policy match and policy anything

The policy_match section of the example openss1 . enf file specifies the order
of the attributesin the generated certificate as follows:

countryName
stateOrProvinceName
organizationName
organizationalUnitName
commonName
emailAddress

Consider the following value:
countryName = match

This means that the country name must match the CA certificate.

Consider the following value:
organisationalUnitName = optional

This means that the organisationalunitName does not have to be present.

Consider the following value:
commonName = supplied

This means that the commonName must be supplied in the certificate request.

The OpenSSL Configuration File

Example opensdl.cnf File

Listing

The following listing shows the contents of an example openssl.cnf
configuration file:

FHHHHHEE R R R
openssl example configuration file.

This is mostly used for generation of certificate requests.

B 6 o
[cal

default _ca= CA default # The default ca section

B 8 8o

[CA _default]
dir=/opt/iona/OrbixSSL1.0c/certs # Where everything is kept

certs=$dir # Where the issued certs are kept
crl_dir= $dir/crl # Where the issued crl are kept
database= S$dir/index.txt # database index file
new_certs_dir= $dir/new_certs # default place for new certs
certificate=$dir/CA/OrbixCA # The CA certificate
serial= S$dir/serial # The current serial number
crl= $dir/crl.pem # The current CRL

private_key= $dir/CA/OrbixCA.pk # The private key
RANDFILE= $dir/.rand # private random number file
default _days= 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md= md5 # which message digest to use
preserve= no # keep passed DN ordering

A few different ways of specifying how closely the request
should
conform to the details of the CA

policy= policy match
For the CA policy

[policy_match]

countryName= match
stateOrProvinceName= match
organizationName= match
organizationalUnitName= optional
commonName= supplied

675

CHAPTER F | OpenSSL Utilities

emailAddress= optional

For the ‘anything’ policy
At this point in time, you must list all acceptable ‘object’
types

[policy_anything]

countryName = optional
stateOrProvinceName= optional
localityName= optional
organizationName = optional
organizationalUnitName = optional
commonName= supplied
emailAddress= optional

[req]

default_bits = 1024

default_keyfile= privkey.pem
distinguished name = reqg distinguished_name
attributes = req attributes

[req distinguished name]

countryName= Country Name (2 letter code)
countryName_min= 2

countryName _max = 2

stateOrProvinceName= State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)
organizationalUnitName = Organizational Unit Name (eg, section)
commonName = Common Name (eg. YOUR name)

commonName _max = 64

emailAddress = Email Address

emailAddress_max = 40

[req attributes]

challengePassword = A challenge password
challengePassword min = 4
challengePassword max = 20
unstructuredName= An optional company name

676

APPENDIX G

Security
Recommendations

This appendix lists some general recommendations for ensuring
the effectiveness of Orbix security.

In this appendix This appendix contains the following sections:

Genera Recommendations page 678

677

APPENDIX G | Security Recommendations

General Recommendations

List of recommendations

678

The following general recommendations can help you secure your system using
Orbix applications

1
2.

Use SSL security for every application wherever possible.

Use the strongest cipher suites available. Thereislittle extra overhead if
you use 128 bit instead of 40 bit encryption for atypical connection.

If your application must connect to insecure applications, limit the aspects
of your system that use insecure communications to the minimum
necessary using policies and security aware code.

Treat any 10R received from an insecure endpoint as untrustworthy. Set
your policies so that you cannot use insecure |ORs accidentally. Set all
communications in your ORBs to be secure by default and use the
appropriate policies to override these where necessary.

It isimportant to remember that the certificates supplied with Orbix are for
demonstration purposes only and must be replaced with a securely
generated set of real certificates before applications can run in aproduction
environment.

The contents of your trusted CA list filesmust only include CA certificates
that you trust.

Do not use passwords in the configuration file. Thisfeatureisonly a
developer aid.

The security of all SSL/TLS programsis only as strong as the weakest
cipher suite that they support. Consider making stronger cipher suites
available as an optional service which may be availed of by applications
with stronger minimum security requirements.

The bad guys will of course choose to use the weakest cipher suites.
Depending on the sensitivity of your system an RSA key size greater than
512 bits might be appropriate. 1024 bit keys are significantly slower than
512 bit keys but are much more secure.

APPENDIX H

Sample TLS
Configurations

This appendix lists the standard demonstration configurations
from the demos.tls configuration scope.

In this appendix This appendix contains the following section:

Demonstration TL S Scopes page 680

679

CHAPTER H | Sample TL S Configurations

Demonstration TL S Scopes

Overview The following TL S scopes demonstrate how to configure elementary security
policiesfor secure IOP/TLS clients and servers.

Orbix Coniguration File

demos {
tls {
secure_client_with no_cert
{
principal_sponsor:use_principal_sponsor = "false";
policies:client_secure invocation policy:requires = ["Confidentiality",

"EstablishTrustInTarget"];

policies:client_secure invocation policy:supports = ["Confidentiality",
"Integrity", "DetectReplay", "DetectMisordering", "EstablishTrustInTarget"];

by
secure_client_with cert
{
policies:client_secure invocation policy:requires = ["Confidentiality",
"EstablishTrustInTarget"];
policies:client_secure invocation policy:supports = ["Confidentiality",
"Integrity", "DetectReplay", "DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];
principal_sponsor:use principal_sponsor = "true";

principal_sponsor:auth _method id = "pkcsl2_file";

principal_sponsor:auth _method data =
["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bob.pl2", "password=bobpass"];

schannel

{
principal_sponsor:auth_method_id = "security label";
principal_sponsor:auth_method_data = ["label=Bob"];
initial_references:IT TLS_Toolkit:plugin = "schannel_ toolkit";

680

Demonstration TL S Scopes

event_log:filters = ["IT_ATLI TLS=*", "IT_IIOP=*", "IT_IIOP_TLS=*", "IT_TLS=*",
"IT_SCHANNEL=*"];

b5
smart_card
{

principal_sponsor:auth method id = "pkcsll";

principal_sponsor:auth method data = ["provider=dkckl32.d1ll", "slot=0",

"pin=demopassword"] ;
b5
iy

semi_secure_client_with_cert

{

orb_plugins = ["iiop_profile", "giop", "iiop", "iiop_tls", "local_log_stream"];
policies:client_secure invocation policy:requires = ["NoProtection"];
policies:client_secure_invocation policy:supports = ["NoProtection",

"Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInClient", "EstablishTrustInTarget"];

principal_ sponsor:use_principal_ sponsor = "true";
principal_sponsor:auth _method id = "pkcsl2_file";
principal sponsor:auth _method data =
["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank server.pl2",
"password=bankserverpass"] ;
17

semi_secure_client_with_no_cert

{
orb plugins = ["iiop profile", "giop", "iiop", "iiop_ tls", "local_ log stream"];
principal_sponsor:use_principal_sponsor = "false";
policies:client_secure_invocation_policy:requires = ["NoProtection"];

681

CHAPTER H | Sample TL S Configurations

policies:client_secure_ invocation policy:supports = ["NoProtection",
"Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

bg

insecure_server

{
orb_plugins = ["iiop_profile", "giop", "iiop", "local_log_stream"];

bg

secure_server_no_client_auth

{
policies:target_secure invocation policy:requires = ["Confidentiality"];
policies:target_secure_invocation_policy:supports = ["Confidentiality",

"Integrity", "DetectReplay", "DetectMisordering", "EstablishTrustInTarget"];
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth method id = "pkcsl2_file";
principal_sponsor:auth _method data =

["filename=C: \Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank server.pl2",

"password=bankserverpass"] ;

iy

secure_server_request_client_auth

{
policies:target_secure_invocation _policy:requires = ["Confidentiality"];
policies:target_secure_ invocation policy:supports = ["EstablishTrustInClient",

"Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",

"EstablishTrustInTarget"];
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth method id = "pkcsl2_file";
principal_sponsor:auth _method data =

["filename=C: \Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank server.pl2",

"password=bankserverpass"] ;

iy

682

Demonstration TL S Scopes

secure_server_enforce_client_auth

{
policies:target_secure_ invocation policy:requires = ["EstablishTrustInClient",
"Confidentiality™"];
policies:target_secure_ invocation policy:supports = ["EstablishTrustInClient",

"Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

principal_ sponsor:use_principal_ sponsor = "true";
principal_sponsor:auth _method id = "pkcsl2_file";
principal sponsor:auth _method data =

["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank_ server.pl2",
"password=bankserverpass"] ;

schannel
{
principal_sponsor:auth_method_id = "security_ label";
principal_ sponsor:auth method data = ["label=Abigbank Accounts Server"];
initial_references:IT TLS_Toolkit:plugin = "schannel_toolkit";
event_log: filters = ["IT ATLI_TLS=*", "IT IIOP=*", "IT IIOP_TLS=*", "IT TLS=*",

"IT_SCHANNEL=*"1];

b g

iy

semi_secure_server_no_client_auth

{
orb_plugins = ["iiop_profile", "giop", "iiop", "iiop_tls", "local_log_stream"];
policies:target_secure_ invocation policy:requires = ["NoProtection"];
policies:target_secure_ invocation policy:supports = ["NoProtection",

"Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

principal_ sponsor:use_principal_ sponsor = "true";

principal_sponsor:auth method id = "pkcsl2_file";

683

CHAPTER H | Sample TL S Configurations

principal_sponsor:auth _method data =
["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank_server.pl2",
"password=bankserverpass"] ;

bg

semi_secure_server_enforce_client_auth

{
orb_plugins = ["iiop_profile", "giop", "iiop", "iiop_tls", "local_log_stream"];
policies:target_secure_invocation_policy:requires = ["NoProtection"];
policies:target_secure invocation policy:supports = ["NoProtection",

"Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInClient", "EstablishTrustInTarget"];

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth _method id = "pkcsl2_file";
principal_sponsor:auth _method data =
["filename=C: \Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank server.pl2",
"password=bankserverpass"] ;
iy

semi_secure_server_request_client_auth

{
orb_plugins = ["iiop_profile", "giop", "iiop", "iiop_tls", "local_log_stream"];
policies:target_secure_ invocation policy:requires = ["NoProtection"];
policies:target_secure invocation policy:supports = ["NoProtection",

"Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInClient", "EstablishTrustInTarget"];

policies:allow_unauthenticated _clients_policy = "true";
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "pkcsl2_file";
principal_sponsor:auth _method data =

["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank_server.pl2",
"password=bankserverpass"] ;

684

Demonstration TL S Scopes

CHAPTER H | Sample TL S Configurations

686

APPENDIX |

| 1cense | ssues

This appendix contains the text of licenses relevant to Orbix.

In thisappendix This appendix contains the following section:

OpenSSL License page 688

687

CHAPTER | | License I ssues

OpenSSL License

Overview The licence agreement for the usage of the OpenSSL command line utility
shipped with Orbix SSL/TLSis as follows:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/*
* Copyright (c) 1998-1999 The OpenSSL Project. All rights reserved.

*

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:

* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment :
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.

* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.

688

OpenSSL License

* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment :

* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ""AS IS'' AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

* PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.

* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).

*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*

* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

* This library is free for commercial and non-commercial use as long as

* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation

* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).

*

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

*

*

689

CHAPTER| | License I ssues

*

*/

This can be in the form of a textual message at program startup or
in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]

690

| ndex

Symbols <interface> tag 190
#pragmaprefix 19_0 <name> tag 190
<action-role-mapping> tag 190, 198 <server-name>tag 190
<allow-unlisted-interfaces> tag 189 CORBA
<interface> tag 190 configuring 188
<name>tag 190 example 189
<ream>tag 182 action-role mapping files
<role>tag 182 Orbix services, for 237
<server-name> tag 190, 196 activation
<users>tag 182 automatic 390
of insecure servers 395
A persistent 390
T . . f
accept_asserted_authorization_info configuration adglriggﬁ e?(r) r?ie?ho d
variehl € 118, 120 JCE security provider, adding 285
Accessld attribute type 504 administration
Accessld credentials attribute 484 . A .
: - itadmin utility, certificates for 318

Accessld security attribute 484 of the KDM server 397
ACL : OpenSSL command-line utilities 300

<action-role-mapping> tag 190 administrator

<allow-unlisted-interfaces> tag 189 certificates 401

<interface> tag 190 admin_|logon sub-command 398

<name>tag 190

admin_logon subcommand 403
and i SF adapter properties 550
application-level security 408
Artix security service
architecture 533

<server-name>tag 190

action_role_mapping configuration variable 188
action-role mapping file 188

action-role mapping file, example 189

centralized 192, 195 o
ClientAccessDecision interface 193, 196, 201 definition >34
Icé)cn;l.iltz)gg_lig?nhz.adapters property 197 pluginsjava_server:classpath configuration
plugins.gsp:acl_policy_data id variable 199, 200 stand\;gla(r)fgldeepslgi/ment of 536
plugins.gsp:action_role_mapping_file variable 193 ASN.1 290. 645
pluginsgi)lzauihorization _policy_enforcement_point att.ributet’ypes 648
vaiable 197 . AVA 648
plugins.gsp:authorization_policy_store type oID 647
variable 197 RDN 649
aa;gg’:;'g?;gﬁ' gcgc%s control 171 assert_authorization_info configuration variable 118,
action_role_mapping configuration variable 80, 105, 120

association options
and cipher suite constraints 355
and mechanism policy 344
client secure invocation policy, default 340

116, 188, 230
action-role mapping file
<action-role-mapping> tag 190
<alow-unlisted-interfaces> tag 189

691

INDEX

compatibility with cipher suites 356 IT_TLS AUTH_METH_CERT_CHAIN_FILE
DetectMisordering 465 authentication method 474
DetectReply 465 IT_TLS AUTH_METH_LABEL authentication
EstablishTrustInClient 69, 86, 367 method 474
EstablishTrustInClient, CSIv2 424, 425 IT_TLS AUTH_METH_PKCS11 authentication
EstablishTrustinTarget 364, 367 method 474
IdentityAssertion, CSIv2 445 IT_TLS AUTH_METH_PKCS12 DER
NoProtection 72 authentication method 474
rules of thumb 344 IT_TLS AUTH_METH_PKCS12 FILE
SSL/TLS authentication method 474
Confidentiality 338 methodsfor SSL/TLS 474
DetectMisordering 338 multiple own certificates 373
DetectReplay 338 over transport, in CSlv2 418
EstablishTrustInClient 339 own certificate, specifying 371
EstablishTrustinTarget 339 pass phrase
Integrity 338 dialog prompt, C++ 376
NoProtection 338 dialog prompt, Java 377
setting 336 in configuration 378
target secure invocation policy, default 342 KDM server, from 377
Asymmetric cryptography 47 password file, from 378
AttributeList type 483 PIN
attribute service policy 444 dialog prompt 380
AttributeService policy data 467 in configuration 381
AttributeTypeL ist sequence 504 principal authenticator 470
attribute value assertion 648 security capsule 471
Attribute value assertions, See AVA smart card
authenticate() method PIN 380
in 1S2Adapter 545 SSL/TLS
authenticate() operation 471, 472 principal sponsor 372
AuthenticateGSSUPCredentias interface 416 requiring 362
Authentication 44, 46 smart cards 372
authentication target and client 366
and mechanism policy 367 target only 363
caching of credentials 94 trusted CA list 369
CSlIv2, client configuration 433 authentication_cache_size configuration variable 94
CSIv2, requiring 424 authentication_cache_timeout configuration
CSlv2, sample configuration 432 variable 94
CSlIv2, server configuration 435 authentication data
CSlv2 client-side policy 466 and key distribution management 390
CSlv2 server-side policy 466 authentication domain
EstablishTrustPolicy 463 CSlIv2, definition 180
GSSUP mechanism authentication over transport 114
invocation credentials 464 client authentication token 420
iSF client support, enabling 424
process of 77 dependency on SSL/TLS 418
IT_CSI_AUTH_METH_USERNAME_PASSWOR description 408, 418
D authentication method 478 GSSUP credentials 505
IT_TLS AUTH_METH_CERT_CHAIN own credentials 472
authentication method 474 scenario 411

692

server configuration 425

SSL/TLS prerequisites 422

target requirements 425

target support, enabling 425
authentication realm

JAAS, definition 180
authentication service

sample implementation 427
authentication service class

specifying 426
authentication service object

and CSI_SERVER_AS _POLICY policy 427

default implementation 427
iSF implementation 427

registering asan initial reference 427
AuthenticationService policy data 466, 467
AuthenticationService policy value 427
auth_method_data configuration variable 373
auth_method_id configuration variable 373

authorization
caching of credentials 94
iSF
processof 77,89
procedure 178
role-based access control 171
roles
creating 173
example 175
special 174
SAML data 107
terminology 179
authorization realm
adding aserver 172
IONAGIobaRealm realm 174
iSF 171
iSF, setting in server 80
rolesin 173
serversin 172
special 174
authorization realms
creating 173
example 175
automatic activation 390
automatic connection management
interaction with rebind policy 492
AVA 648
in distinguished names 517
AVAList interface 517

INDEX

B
backward trust 87, 442
Baltimore SSL/TLS toolkit 279
Baltimore toolkit
selecting for C++ applications 558
Basic Encoding Rules 646
basic log service ACL
IONAServiceRole 262
IONAUserRole 263
secure domain 262
semi-secure domain 262
UnauthenticatedUserRole 263
BER 646
bytearray_to_cert() method 516

C
CA 49,290

appendingto aCA list 310

choosing ahost 294

commercial CAs 293

default 298

deploying 309

index file 302

in PKCS#12 file 371

list of trusted 296

multiple CAs 296

private CAs 294

private key, creating 303

security precautions 294

See Alsocertificate authority

self-signed 303

seria file 302

trusted list 309, 327, 369

673

CA, setting up 301
CA certificates 281

deploying to Windows certificate store 327
CACHE_CLIENT session caching value 358
CACHE_NONE session caching value 358
CACHE_SERVER_AND_CLIENT session caching

value 358

CACHE_SERVER session caching value 358
caching

authentication_cache_size configuration variable 94

authentication_cache_timeout configuration

variable 94
CACHE_CLIENT session caching value 358
CACHE_NONE session caching value 358

693

INDEX

CACHE_SERVER_AND_CLIENT session caching setting 519
value 358 three-tier target server 87
CACHE_SERVER session caching value 358 certificate_constraints_policy variable 384, 555
of credentials 94 Certificate interface 516
SSL/TLS 358 Certificates 47, 49
cachesize 358 chainlength 383
validity period 358 constraints 384, 555
Caching sessions 358 contents of 515
CAPI 281 vaidating 511-515
CAs 301 validation process 512
cautility 669 certificates
centralized ACL 197 accessing from Microsoft Management Console 322
<action-role-mapping> tag 198 administrator 401
<server-name> tag 196 C++ parsing
ClientAccessDecision interface 196 get_issuer_dn_string() operation 517
com.iona.isp.authz.adapters property 197 get_subject_dn_string() operation 517
filelist 198 CertConstraintsPolicy policy 384, 555
is2.propertiesfile 197 Certificate interface 516
overview 192, 195 chaining 295
plugins.gsp:acl_policy_data id variable 199, 200 common names 515
plugins.gsp:authorization_policy_enforcement_point constraint language 384, 555
variable 197 constraint policy, C++ example 520
plugins.gsp:authorization_policy_store type constraint policy, Java example 521
variable 197 constraints, applying 519
selecting an ACL file 198 constraints policy 87
selection by ACL key 200 contents 515
selection by ORB name 198 contents of 290
selection by override value 199 creating and signing 304
cert_constraints configuration variable 400 creating for the KDM 401
CertConstraintsPolicy 384, 555 default validation 513
CertConstraintsPolicy policy 384, 513, 518, 555 demonstration 298
CertConstraints string array 520, 522 demonstration passwords 298
certificate authority deploying 311
and certificate signing 290 deploying in Schannel 321, 328
certificate-based authentication deployment, 308
example scenario 88 deployment of 308
file adapter, configuring 183 DER encoding 516
LDAP adapter, configuring 184 DER format 527
certificate-based SSO for itadmin utility 318
overview 110 importing and exporting 297
typical scenario 112 issuer 515
certificate constraints 400 itadmin_x509_cert_root configuration variable 318
login server 114 Javaparsing 516
certificate constraints policy 513 KDM administrator 401
C++ example 520 length limit 296
configuration, setting by 519 locator 401
identity assertion and 442 MaxChainLengthPolicy 383
Java example 521 multiple own certificates 373
programming, setting by 519 obtaining 527

694

Orbix services 299
own, specifying 371
parsing 516
AVAList interface 517
bytearray to_cert() method 516
pass phrase 376
peer 295
PKCS#11 interface 313, 372
PKCS#12 file 297, 371
public key 291, 515
public key encryption 350
security handshake 363, 367
self-signed 295, 303
serial number 291, 515
signing 290, 305
signing request 304
smart card deployment 313, 331
smart cards 372
subject name 515
syntax 515
trusted CA certificates 281
trusted CA list 309, 327, 369
validation
validate_cert_chain() operation 524
validation, implementing 523
X.509 290
X.509 extensions 517
X509CertificateFactory interface 516, 527
X509Cert interface 516
certificate signing request 304
common name 305
signing 305
certificate snap-in, for MMC 323
certificate store
accessing from Internet Explorer 322
deploying application certificates 328
importing PKCS#12 files 330
Schannel 281
trusted CA certificates, depoying 327
certificate validation
CertValidator interface 513
custom 513
default validation 513
certificate validation policy 512
implementing 523
CertificateValidatorPolicy policy 518
Certification Authority. See CA
CertValidator interface 513
implementing 523

CertValidatorPolicy policy 513
CFR
CompoundName type 239
configuration scope 238
namespaces 239
parameter-based access control 240
CFR domain
Domain.cfg file 208
secure-Domain.cfg file 208
cfr-Domain.cfg file 208
chaining of certificates 295
checksums 394
and the key distribution repository 391
checking 396

checksums_optional configuration variable 396

checksum subcommand 398, 403
ciper suites
order of 353
Ciphersuites
choosing 678
cipher suites
ciphersuites configuration variable 353
compatibility algorithm 356
compatibility with association options 356
default list 354
definitions 351
effective 355
encryption algorithm 350
exportable 351
integrity-only ciphers 350
key exchange agorithm 350
mechanism policy 352
secure hash algorithm 350
secure hash algorithms 351
security algorithms 350
specifying 349
standard ciphers 350
ciphersuites configuration variable 353
ClientAccessDecision interface 193, 196, 201
client authentication token
CSlv2 authentication over transport 420
client_binding_list configuration variable 444
and CSlv2 authentication 424
iSF, client configuration 78
secure client 68, 226
client secure invocation policy 355
HTTPS 340
IIOP/TLS 340
ClientSecurelnvocationPolicy policy 337

INDEX

695

INDEX

client-side policies 456

client_version_policy
I1OP 598

close() method 545

cluster.propertiesfile 150
example 154

clustering
definition 145
is2.cluster.properties.filename property 153
is2.replica.selector.classname 153
is2.replica.selector.classname property 153
is2.replication.required property 153, 158
IT_SecurityServiceinitial reference 156
load balancing 153, 160
login service 152, 153

plugins:security:iiop_tls:addr_list variable 157

plugins:security:iiop_tls:host variable 157
plugins:security:iiop_tls:port variable 157
policiesiiiop_tls:load_balancing_mechanism
variable 161
replicaURL property 155
securitylnstanceURL property 154
clustering, and fixed ports 75
cluster propertiesfile 150
colocated invocations
and secure associations 334
com.iona.isp.adapters property 549
com.iona.isp.authz.adapters property 197
common names 515
uniqueness 305
common secure interoperability, see CSlv2
CompoundName type 239
Confidentiality association option 338
hints 346
Confidentiality option 338
configuration
and i SF standal one deployment 536
of OpenSSL 301
of the iSF adapter 549
plugins;java_server:classpath configuration
variable 551
Configuration file 671
configuration repository ACL 238
configuration scope 238
connection_attempts 598
constraint language 384, 555
Constraints
for certificates 384, 555
Contents of certificates 515

696

CORBA
ACLs 186
action-role mapping file 188
action-role mapping file, example 189
and iSF client SDK 534
intermediate server configuration 83
iSF, three-tier system 82
security, overview 62
SSL/TLS
client configuration 67
securing communications 64
server configuration 69
three-tier target server configuration 85
two-tier systems 76
CORBA policies
how to set 456
CORBA security
CSlv2 plug-in 63
GSP plug-in 63
IIOP/TLS plug-in 63
CORBA Security RTF 1.7 44
create_POA() operation
and policies 456
create_policy() operation 520, 522
Credentials
and Principa Authenticator 54, 57
defined 54, 57
retrieving 484
credentials
Accessld attribute 484
AttributeList type 483
attributes, Orbix-specific 484
creating CSlv2 credentials 478, 480
creating own 471
definition 483
get_attributes() operation 504
get_target_credentials() operation 484
GSSUP 505
invocation credentials 464
obtaining 483
own
C++ example 488
Java example 489, 490
parsing 488
own, creating multiple 472
own, CSIv2 472
parsing 490
own, SSL/TLS 472
_Public attribute 484

received 484
C++ example 498
Java example 499
received, CSlv2
Java example 503
parsing 502
received, SSL/TLS
parsing 500, 501
retrieving 484
retrieving own 485
C++ example 486
Java example 487
retrieving received 497
retrieving target 491
SecurityAttributeType type 484
sharing 374, 428, 472
smart cards 372
target, interaction with rebind policy 492
target, retrieving
C++ example 493
Java example 494
target, SSL/TLS
C++ example 495
Java example 496
parsing 495
Credentialsinterface 471, 483
get_attributes() operation 483
Orbix-specific 484
Cryptography
asymmetric 47
RSA. See RSA cryptography
symmetric 47,50
Csl
and certificate-based SSO 110
authentication over transport 114
CSl authentication over transport
and single sign-on 107
CSI_CLIENT_AS POLICY palicy type 466

CSI_CLIENT_SAS POLICY poalicy type 467

CSlCredentials interface 473
parsing 490

CSl identity assertion
and single sign-on 107

CSl interceptor 78, 228

CSl plug-in
and CSIv2 principal sponsor 428
loading for Java applications 424
roleiniSF 415
roleintheiSF 414

cs plug-in 444
CSIReceivedCredentiasinterface 502
CSI_SERVER_AS POLICY policy 427
CSI_SERVER_AS POLICY policy type 467

CSI_SERVER_SAS POLICY policy type 467

CSlv2
applicability 409
application-level security 408
association options 425
ldentityAssertion 445
attribute service policy 444

AuthenticateGSSUPCredentials interface 416

authentication, client configuration 433
authentication, Java example 478, 480
authentication, requiring 424
authentication, sample configuration 432
authentication, server configuration 435
authentication domain 180
authentication over transport 408

authentication over transport, description 418

INDEX

authentication over transport, own credentials 472

authentication over transport scenario 411
authentication policy, client-side 466
authentication policy, server-side 466
authentication scenario 418
authentication service 426

authentication service object 421
backward trust 442

certificate constraints policy 87

client authentication token 420

client_binding_list configuration variable 444

csi plug-in for Java applications 444
features 408
GSSUPAuthData interface 478
GSSUP mechanism 418
identity assertion 409
own credentials 473
identity assertion, description 438
identity assertion, enabling 444
identity assertion, scenario description 439
identity assertion scenario 412
identity token types 440
intermediate server 412
iSF integration with
ITTAbsent identity token type 441
ITTAnonymous identity token type 441
ITTPrincipalName identity token type 441
level 0 418
login 411

697

INDEX

login, by configuration 430
login, by programming 430
login, dialog prompt 429
login options 428
policies 466
principal sponsor

client configuration 79
principal sponsor, description 428
principal sponsor, disabling 430
principal sponsor, enabling 428

principal_sponsor:csi:auth_method_data

configuration variable 430

principal sponsor and client authentication token 421

received credentials 441
sample configurations 446
scenarios 410

server_binding_list configuration variable 444

SSL/TLS mutual authentication 442
SSL/TLS prerequisites 422, 442
SSL/TLS principal sponsor 443
transmitting security data 408

username and password, providing 428

CSIv2 authentication domain
and server domain name 425
intheiSF 414

CSlv2 plug-in
CORBA security 63

CSP 281

CSR 304

Csv2
CSlCredentialsinterface 473

Current interface
and credentials 484
retrieving received credentials 498

custom validation 513

D
Data Encryption Standard 50
data encryption standard
see DES
delegation
and identity assertion 438
demonstration certificates 298
passwords 298
deployinga CA 309
deployment
application certificates 311
certificates 308
service certificates 315

698

smart card, constraints 313
smart cards 313, 331
DER 646
DER encoding 516
DER format 527
DES 50
symmetric encryption 351
DetectMisordering association option 338, 465
hints 346
DetectMisordering option 338
DetectReplay association option 338
hints 346
DetectReplay option 338
DetectReply association option 465
DIRECT_PERSISTENCE policy value 74
Distinguished Encoding Rules 646
distinguished names 517
definition 647
DN
definition 647
string representation 647
Domain.cfg file 208
domain name
and CSIv2 authentication over transport 408
ignored by iSF 77
domain names
server domain name 425
domains
federating across 146

E
effective cipher suites
definition 355
effective credentials 120
enable_gssup_sso variable 101
enable_x509_sso variable
and certificate-based SSO 112
Encryption 44
encryption algorithm
RC4 351
encryption algorithms 350
DES 351
symmetric 350
triple DES 351
enforce_secure_comms_to_sso_server variable 103
and the login service 97
login server 114
enterprise security service
and i SF security domains 169

EstablishTrustInClient
CSlv2 association option 424, 425, 429
EstablishTrustInClient association option 69, 339, 367
hints 345
three-tier target server 86
EstablishTrustInClient CSl association option
and username/password-based authentication 103,
105
EstablishTrustInClient option 339
EstablishTrustInTarget association option 339, 364,
367
hints 345
EstablishTrustinTarget option 339
EstablishTrustPolicy policy 463
and interaction between policies 465
EstablishTrust type 463
event log service ACL
IONAServiceRole 265
IONAUserRole 265
secure domain 264
semi-secure domain 265
UnauthenticatedUserRole 265
event service ACL
IONAServiceRole 252
IONAUserRole 252
secure domain 251
semi-secure domain 251
UnauthenticatedUserRole 252
exportable cipher suites 351
ExtendedReceivedCredentials interface 108
Extension interface 517
ExtensionList interface 517

E

failover
definition 151

features, of the Artix security service 534

federation
and the security service 146
cluster.propertiesfile 150
cluster propertiesfile 150
definition 145
is2.cluster.properties.filename property 149
is2.current.server.id property 146
is2.properties file 149, 153
plugins:security:iiop_tls settings 150

file adapter 138
configuring certificate-based authentication 183
properties 138

INDEX

file domain
<ream>tag 182
<users>tag 182
example 175, 181
filelocation 181
managing 181
fixed ports 74
DIRECT_PERSISTENCE policy value 74
host 75
IIOP/TLS addr_list 75
IIOP/TLSlisten_addr 75
IIOP/TLS port 75
INDIRECT_PERSISTENCE palicy value 74

G

generic security service username/password mechanism
generic server 536
getAllUsers() method 547
get_attributes() operation 504

in Credentials interface 483
getAuthorizationinfo() method 546
get_issuer_dn_string() operation 517
get_subject_dn_string() operation 517
get_target_credentials() operation 484
GIOP

and CSlv2 408
GroupBaseDN property 142
GroupNameAttr property 142
GroupObjectClass property 142
GroupSearchScope property 142
GSP interceptor 228
GSP plug-in

and ClientAccessDecision 193

and the login service 96

authentication_cache_size configuration variable 94

authentication_cache_timeout configuration

variable 94

caching of credentials 94

CORBA security 63

roleintheiSF 414
GSSUP

modifications for single sign-on 100
GSSUPAUuthData interface 478
GSSUPA uthData struct 480, 482
GSSUP credentials 148, 505
GSSUP mechanism 418

and CSIv2 principal sponsor 428
GSSUP username 441

699

INDEX

H
Handshake, TLS 47-7?
high availability 151
HTTP
login realm 180
HTTPS
ciphersuites configuration variable 353

I
identity assertion
backward trust 442
certificate constraints policy
CSlv2

certificate constraints policy

442
csi plug-in for Java applications 444
description 409, 438
enabling 444
intermediate server configuration 444
own credentials 473
policy, client-side 467
policy, server-side 467
received credentialsand 441
sample client configuration 447
sample configurations 446
sample intermediate server configuration 449
sample target server configuration 451
scenarioCSlv2
identity assertion scenario 438
scenario description 439
SSL/TLS dependency 438
SSL/TLS mutual authentication 442
SSL/TLS prerequisites 442
SSL/TLS principal sponsor 443
IdentityAssertion CSlv2 association option 445
identity assertion scenario 412
identity tokens
GSSUP username 441
subect DN in 441
types of 440
I10OP
and CSIv2 408
IIOP/TLS
ciphersuites configuration variable 353
host 75
IIOP/TLS addr_list 75
IIOP/TLS listen_addr 75
IIOP/TLS plug-in

700

CORBA security 63

roleiniSF 415
IIOP/TLS port 75
I1OP plug-in

and semi-secure clients 68, 228, 236
IIOP policies 591, 596

client version 598

connection attempts 598

export hostnames 602

export | P addresses 602

GIOP versionin profiles 603

server hostname 602

TCP options

delay connections 604
receive buffer size 605

I1OP policy

ports 602
IIOP_TLSinterceptor 68, 226
impersonation

and identity assertion 438
imposter, server 393
IMR record 403

protecting with checksums 394
index file 302
INDIRECT_PERSISTENCE policy value 74
initialize() method 545, 550
initia references

IT_CSlAuthenticationObject 427
insecure object references

and QOP palicy 462
insertProviderAt() method

JCE security provider, adding 285
Integrity 46, 51
Integrity association option 338

hints 346
integrity-only ciphers 350
Integrity option 338
intermediate server

and CSIv2 identity assertion 412

SSL/TLS connection from 440
intermediate server configuration 444
internal ORB

configuration 230

management service, monitoring 230

share_credentials_across_orbs variable 232
International Telecommunications Union 49
Internet Explorer

accessing the Windows certificate store 322
InvocationCredentialsPolicy policy 464

invocation policies

interaction with mechanism policy 344
IONAGIobalRealm 547
IONAGIobalRealm realm 174
IONA security framework, see iSF
IONAServiceRolerole 237
IONAUserRolerole 237
is2.cluster.properties.filename property

and clustering 153

and federation 149
is2.current.server.id property 146

and clustering 153
is2.propertiesfile 138, 197

and clustering 153

and federation 149, 153

and i SF adapter configuration 538
is2.replica.sel ector.classname property

and clustering 153
is2.replication.interval property 159
is2.replication.required property 158

and clustering 153
| S2AdapterException class 546
| S2Adapter Javainterface 538

implementing 539
iS2 adapters

enterprise security service 169

filedomain

managing 181
file domain, example 175
LDAP domain
managing 184

standard adapters 535
iS2 server

bootstrapping 235

configuring 137

file adapter 138

IP port 235

is2.propertiesfile 138

LDAP adapter 140

LDAP adapter, properties 141

log4j logging 165

securing 204

security infomation file 138
iS2 service

configuring 233
iSF

action_role_mapping configuration variable 80, 105,

116, 230
and certificate-based authentication 88

INDEX

and CSIv2
authentication service implementation 427
authorization
process of 77, 89
authorization realm
setting in server 80
client configuration
CSl interceptor 78
CORBA
three-tier system 82
three-tier target server configuration 85
two-tier scenario description 77
CORBA security 62
CSl plug-inrole 414, 415
CSlv2 authentication domain in the 414
domain name, ignoring 77
GSPplug-inrole 414
IIOP/TLS plug-inrole 415
intermediate server configuration 83
security domain
creating 170
server configuration
server_hinding_list 78
server domain name, ignored 425
server_domain_name configuration variable 80
three-tier scenario description 83
two-tier CORBA systems 76
user account
creating 170
iSF adapter
adapter class property 549
and IONAGIobalRealm 547
and the i SF architecture 534
authenticate() method 545
close() method 545
com.iona.isp.adapters property 549
configuring to load 549
custom adapter, main elements 538
example code 539
getAllUsers() method 547
getAuthorizationinfo() method 546
initialize() method 545, 550
logout() method 547
overview 538
property format 550
property truncation 550
WRONG_NAME_PASSWORD minor
exception 546
iSF adapter SDK

701

INDEX

and the i SF architetecture 534
iSF client
iniSF architecture 533
iSF client SDK 534
iSF server
plugins;java_server:classpath configuration
variable 551
itadmin utility
admin_logon 398
and KDM administration 397
deploying certificatesfor 318
itadmin_x509_cert_root configuration variable 318
protection 400
itadmin_x509 _cert_root configuration variable 318,
401
IT_Certificate module 516
IT_CFR module 239
IT_CORBASEC module 108
IT_CSIAuthenticationObject initial object ID 427
IT_CSI_AUTH_METH_USERNAME_PASSWORD
authentication method 478
IT_SecurityServiceinitial reference 156, 234
ITTAbsent identity token type 441
ITTAnonymous identity token type 441
IT_TLS AUTH_METH_CERT_CHAIN
authentication method 474
IT_TLS AUTH_METH_CERT_CHAIN_FILE
authentication method 474
IT_TLS AUTH_METH_LABEL authentication
method 474
IT_TLS AUTH_METH_PKCS11 authentication
method 474
IT_TLS AUTH_METH_PKCS12_DER authentication
method 474
IT_TLS AUTH_METH_PKCS12_FILEauthentication
method 474
ITTPrincipal Name identity token type 441
ITU 49

J
J2EE
and iSF client SDK 534
reaim 180
security policy domain 180
security technology domain 179
JAAS
authentication realm 180
Java
certificates 516

702

java.security.cert package 516
Java Authentication and Authorization Service
see JAAS
Java Cryptography Extension 283
JCE 283
JCE architecture
enabling 561
enabling in Orbix 284
logging 287
JSSE toolkit 278

K
KDM
activation 395
activation process 395
administration overview 397
and activation 390
and certificate constraints 400
and checksums 394
and checksum storage 391
and deploying certificates 312, 316
and secure directories 400
and security threats 393
and the key distribution repository 391
and the locator 391
architecture 391
certificates, creating 401
checking the checksum 396
checksum creation 403
configuration variables 399
definition of 390
itadmin utility
protection 400
itadmin_x509 cert_root 401
logging on 398
loggin on 403
pass phrase registration 403
pass phrase storage 391
registration of a secure server 402
role of the locator 392
role of the node daemon 392
secure_directories configuration variable 393
server plug-in 391
setting up 400
kdm_adm subcommand 398, 403
KDM server protection 400
KDR 391
key distribution mechanism. See KDM
key distribution repository 391

key exchange algorithms 350

L
LDAP adapter 140
basic properties 143

configuring certificate-based authentication 184

GroupBaseDN property 142
GroupNameALttr property 142
GroupObjectClass property 142
LDAP server replicas 144
MemberDNALtr property 143
PrincipalUserDN property 144
Principal UserPassword property 144
properties 141
replicaindex 144
RoleNameAttr property 142
SSLCACertDir property 144
SSLClientCertFile property 144
SSL ClientCertPassword property 144
SSLEnabled property 144
UserBaseDN property 142
UserNameAttr property 142
UserObjectClass property 142
UserRoleDNALtr property 142

LDAP database
and clustering 152

LDAP domain
managing 184

LifespanPolicy policy 74

Lightweight Directory Access Protocol
see LDAP

load balancing 152
and clustering 153, 160
policiesiiiop_tls:load_balancing_mechanism

variable 161

local ACL 193

local_hostname 602

localized ACL
ClientAccessDecision interface 201

locator
and theKDM 392
and the KDM server 391
certificate 401

locator ACL 243
IONAServiceRole 243
IONAUserRole 243

log4j 165
documentation 165

logging

INDEX

in secure client 69
JCE architecture 287
logdj 165
login
Cslv2 411
CSlv2, by configuration 430
CSlv2, by programming 430
CSlv2 dialog prompt 429
CSlv2 options 428
login realm
HTTP, definition 180
login server
enforce_secure_comms to_sso_server variable 114
login service 152
and single sign-on 96
embedded deployment 96
enforce_secure_comms to _sso_server variable 97
login operation 111
secure connection to 97
standal one deployment mode 98
logout() method 547

M
MAC 51
management service
and theinternal ORB settings 230
max_chain_length_policy configuration variable 383
MaxChainLengthPolicy policy 383
MD5 338, 351
mechamism policy
interaction with invocation policies 344
MechanismPolicy 338
mechanism policy 352
and authentication 367
and interaction between policies 465
and Orbix services 226
MechanismPolicy policy
and interaction between policies 465
MemberDNALttr property 143
message authentication code 51
message digest 5
see MD5
message digests 338
message fragments 338
Message integrity 44
Microsoft Crypto APl 281
Microsoft Cryptographic Service Provider 281
Microsoft Management Console
accessing certificates 322

703

INDEX

minimum security levels 460
mixed configurations, SSL/TLS 72
MMC 322
multi-homed hosts, configure support for 602
multiple CAs 296
multiple own certificates 373
mutual authentication
identity assertion scenario 442

N
names, distinguished 517
namespace
plugins.cs 562
plugins.gsp 564
policies 582
policiesics 588
policies:https 591
policiesiiiop_tls 595
principal_sponsor:csi 614
principle_sponsor 609, 617
namespaces 239
naming service ACL
IONAServiceRole 247
IONAUserRole 247
UnauthenticatedUserRole 247
node daemon
andtheKDM 391, 392
secure_directories configuration variable 393
node daemon ACL
IONAServiceRole 245
IONAUserRole 245
UnauthenticatedUserRole 245
no_delay 604
NO_PERMISSION exception
and login server certificate constraings 114
and SSO token refresh 97
NoProtection assocation option
rules of thumb 344
NoProtection association option 72, 338
hints 347
semi-secure applications 347
NoProtection option 338
notification service ACL
IONAServiceRole 255
IONAUserRole 256
secure domain 254
semi-secure domain 255
UnauthenticatedUserRole 256
notify log service ACL

704

IONA ServiceRole 268
IONAUserRole 269

secure domain 267
semi-secure domain 268
UnauthenticatedUserRole 269

@)
object-level palicies
invocation credentials policy 464
object references
and target credentials 492
making insecure 462

opage Abstract Syntax Notation One
see ASN.1 645
OpenSSL 294, 661
openSSL
configuration file 671
utilities 662
openSSL.cnf examplefile 675
opensdl.cnf file 301
OpenSSL command-line utilities 300
OpenSSL configuration file 301
OpenSSL toolkit
selecting for C++ applications 558
ORB
security capsule 471
Orbix configuration file 536
orbname create 402
orbname modify 403
orb_plugins configuration variable 68, 228, 236
client configuration 78
orb_pluginslist
CSl plug-in, including the 424
orb_pluginsvariable
and the NoProtection association option 347
semi-secure configuration 348
own credentials
creating 471
creating multiple 472
CSlCredentiasinterface 473
CSlv2 472
parsing 490
definition 483
principal authenticator 471
retrieving 485
C++ example 486
Java example 487
SSL/TLS 472

C++ example 488

Java example 489

parsing 488
TLSCredentials interface 472

P
parameter-based access control 240
pass phrase 376

and the kdm_adm subcommand 398

and the key distribution repository 391

dialog prompt, C++ 376

dialog prompt, Java 377

in configuration 378

KDM server, from 377

password file, from 378

registering with the KDM 403
pass phrases

and key distribution management 390
passwords

demonstration, for 298
PDK

and custom SSL/TL S toolkit 278
peer certificate 295
performance

caching of credentials 94
PersistenceModePolicy policy 74
persistent activation 390
PIN 314, 332

dialog prompt 380

in configuration 381

smart card 372
PKCS#11 interface 313, 372
PKCS#H12 file

importing into Windows certificate store 330

PKCS#12 files 371
creating 297, 304
definition 297
deploying 311
importing and exporting 297
pass phrase 376
private key 371
viewing 297
plug-in development kit 278
plug-ins
csi 444
CSl, and CSlv2 principal sponsor 428
CSl, roleiniSF 414, 415
CSlv2, in CORBA security 63
GSP, in CORBA security 63

INDEX

GSP, roleiniSF 414
I1OP 68, 228, 236
IIOP/TLS, in CORBA security 63
IIOP/TLS, roleiniSF 415
kdm_adm 397
plugins.csi:ClassName 562
plugins.csi:shlib_name 563
plugins.gsp:acl_policy_data id variable 199, 200
plugins.gsp:action_role_mapping_file variable 193,
197
plugins:gsp:authorization_policy_enforcement_point
variable 197
plugins:gsp:authorization_policy_store type
variable 197
plugins.gsp:authorization_realm 566
plugins.gsp:ClassName 566
pluginsiiop:tcp_listener:reincarnate_attempts 575
plugins.iiop:tcp_listener:reincarnation_retry _backoff r
atio 575
plugins:iiop:tcp_listener:reincarnation_retry_delay 575
pluginsiiop_tls:hfs keyring_file_password 599
pluginsiiop_tls:itcp_listener:reincarnation_retry _backof
f_ratio 575
pluginsiiop_tls:itcp_listener:reincarnation_retry_delay
575

plugins;java_server:classpath configuration
variable 551

plugins:security:iiop_tls:addr_list variable

and clustering 157
plugins:security:iiop_tls:host variable 157
plugins:security:iiop_tls:port variable 157
plugins:security:iiop_tls settings 150
poacreate 402
polices:max_chain_length_policy 584
policies

and create_POA () operation 456

and _set_policy_overrides() operation 456

C++ example 457

CertConstraintsPolicy 384, 518, 555

certificate constraints 513, 519

certificate validation 512

CertificateValidatorPolicy 518

client secure invocation 355

ClientSecurelnvocationPolicy 337

client-side 456

CSI_SERVER_AS POLICY 427

CSlv2, programmable 466

EstablishTrustPolicy 463

how to set 456

705

INDEX

HTTPS
client secure invocation 340
target secure invocation 342
identity assertion, client-side 467
identity assertion, server-side 467
IIOP/TLS
client secure invocation 340
target secure invocation 342
insecure object references 462
interaction between 465
InvocationCredentialsPolicy policy 464
Java example 457
MaxChainLengthPolicy 383
minimum security levels 460
PolicyCurrent type 456
PolicyManager type 456
QOPPalicy policy 462
rebind policy 492
restricting cipher suites 462
SecClientSecurelnvocation 340
SecClientSecurel nvocation policy 460
SecQOPConfidentiality enumeration value 462
SecQOPIntegrityAndConfidentiality enumeration
value 462
SecQOPIntegrity enumeration value 462
SecQOPNoProtection enumeration value 462
SecTargetSecurelnvocation 342
SecTargetSecurelnvocation policy 460
server-side 456
SessionCachingPolicy 358
SSL/TLS 459
target secure invocation 355
TargetSecurel nvocationPolicy 337
TLS CERT_CONSTRAINTS_POLICY 520, 522
policies:allow_unauthenticated clients policy 582
policies.certificate_constraints policy 583
policies.csi:attribute_service:client_supports 588
policies:.csi:attribute_serviceitarget_supports 589
policies.csi:auth_over_transpor:target_supports 590
policies:csi:auth_over_transport:authentication_service
configuration variable 426, 427
policies.csi:auth_over_transport:client_supports 589
policies.csi:auth_over_transport:client_supports
configuration variable 424
policies.csi:auth_over_transport:target_requires 590
policies.csi:auth_over_transport:target_requires
configuration variable 425
policies.csi:auth_over_transport:target_supports
configuration variable 425

706

policies:https.certificate_constraints policy 591
policies:https:client_secure invocation_policy:requires
592
policies:https.client_secure_invocation_policy:supports
592
policies:https:max_chain_length_policy 592
policies:https:mechanism_policy:ciphersuites 593
policies:https:mechanism_policy:protocol_version 593
policieshttps.session_caching_policy 594
policies:https:target_secure_invocation_policy:requires
594
policies:https:target_secure_invocation_policy:supports
594
policies.https:itrusted_ca list_policy 595
policiesiiiop_tls:allow_unauthenticated clients policy
597
policiesiiop_tls:.certificate_constraints policy 597
policiesiiiop_tls.client_secure_invocation_policy:requir
es 598
policiesiiiop_tls:client_secure_invocation_policy:suppo
rts 598
policiesiiop_tls.client_version_policy 598
policiesiiiop_tls:connection_attempts 598
policiesiiiop_tls.connection retry_delay 599
policiesiiiop_tls:load_balancing_mechanism
variable 161
policiesiiiop_tls:max_chain_length_policy 599
policies:iiop_tls:mechanism_policy:ciphersuites 600
policiesiiiop_tls:mechanism_policy:protocol_version 6
01
policiesiiiop_tls:server_address_mode_policy:local_ho
stname 602
policiesiiiop_tls:server_address mode _policy:port_ran
ge 602
policiesiiiop_tls:server_address mode _policy:publish_
hosthame 602
policiesiiop_tls:server_version_policy 603
policiesiiiop_tls:session_caching_policy 603
policiesiiop_tlsitarget_secure_invocation_policy:requir
es 603
policiesiiiop_tls:target_secure invocation_policy:suppo
rts 604
policiesiiiop_tls:tcp_options:send_buffer_size 605
policiesiiiop_tls:tcp_options_policy:no_delay 604
policiesiiop_tls:itcp_options_policy:recv_buffer_size 6
05
policiesiiop_tls:trusted ca list_policy 605
policies:mechanism_policy:ciphersuites 584
policies:mechanism_policy:protocol_version 585

policies:session_caching_policy 585
policiesitarget_secure invocation policy:requires 586
policies:target_secure_invocation_policy:supports 586
policies:trusted_ca list_policy 587
674
PolicyCurrent type 456
policy data
AttributeService 467
AuthenticationService 466, 467
PolicyList interface 520
PolicyList object 458
PolicyManager interface 520, 522
PolicyManager object 458
PolicyManager type 456
policy types
CSI_CLIENT_AS POLICY 466
CSI_CLIENT_SAS POLICY 467
CSI_SERVER_AS POLICY 467
CSI_SERVER_SAS POLICY 467
policy values
AuthenticationService 427
principal
definition 471
principal authenticator
authenticate() operation 471, 472
CSlv2
Java example 478, 480
definition 471
security capsule 471
SSL/TLS
C++ example 474
Java example 476
using 470
principal sponsor
configuring for smart cards 332
CSlv2
client configuration 79
CSlv2, description 428
CSlIv2 and client authentication token 421
SSL/TLS
configuring 373
definition 372
enabling 71, 227
SSL/TLS, disabling 69
principal_sponsor:csi:auth_method_data 615
principal_sponsor:csi:auth_method_data configuration
variable 429, 430
principal_sponsor:csi:use_method_id configuration
variable 428

INDEX

principal_sponsor:csi:use_principal_sponsor 614
principal_sponsor:csi:use_principal_sponsor
configuration variable 428, 430
principal_sponsor:use_principal_sponsor configuration
variable 379

principal_sponsor configuration namespace 373
principal_sponsor Namespace Variables 609, 617
principal sponsors

CSlv2, disabling 430

CSlv2, enabling 428

SSL/TLS, and CSIv2 423

SSL/TLS, disabling 379
PrincipalUserDN property 144
Principal UserPassword property 144
PrincipleAuthenticator interface 472, 476, 480, 482
principle_sponsor:auth_method_data 610, 618
principle_sponsor:auth_method_id 610, 618
principle_sponsor:callback_handler:ClassName 613
principle_sponsor:login_attempts 613
principle_sponsor:use_principle_sponsor 609, 617
Privacy 46
private key 303

in PKCS#12 file 371
process create 402
Protocol, TLS handshake 47-7?
protocol_version configuration variable 352
_Public credentials attribute 484
public key 515
Public key cryptography 47
public key encryption 350
public keys 291
_Public security attribute 484
publish_hostname 602

QOP enumerated type 462
QOP policy

restricting cipher suites 462
QOPPolicy policy 462

and interaction between policies 465
quality of protection 462

R
RC4 50
RCA4 encryption 351
RDN 649
ream
J2EE, definition 180

707

INDEX

see authorization realm
realms
and GSP plug-in 416
IONAGIobaRealm, adding to 547
SAML data 107
rebind policy
interaction with target credentials 492
received credentials
CSlv2
Java example 503
parsing 502
Current object 498
definition 483
identity assertion and 441
retrieving 497
C++ example 498
Java example 499
SSL/TLS
parsing 500, 501
ReceivedCredentiasinterface 413, 483
Orbix-specific 484
parsing received credentials 500
recv_buffer_size 605
registration
of asecure server 402
relative distinguished name 649
remote method invocation, see RMI
Replay detection 338
replication
definition 151
is2.replication.interval property 159
overview 158
replicaURL property 155
repository ID
#pragma prefix 190
in action-role mapping file 190
672
required security features 461
req utility 665
reg Utility command 665
Rivest Shamir Adleman
see RSA
Rivest Shamir Adleman cryptography. See RSA
cryptography
RMI/1IOP
and CSlv2 408
role-based access control 171
example 173
RoleNameAttr property 142

708

roles
and GSP plug-in 416
creating 173
example 175
SAML data 107
special 174
root certificate directory 296
RSA 350
key size 678
symmetric encryption algorithm 350
RSA cryptography 47
RSA_EXPORT_WITH_DES40_CBC_SHA cipher
suite 350, 354, 356
RSA_EXPORT_WITH_RC4 40 _MDS5 cipher
suite 350, 356
rsautility 667
rsa Utility command 667
RSA_WITH_3DES EDE_CBC_SHA cipher
suite 350, 356
RSA_WITH_DES CBC_SHA cipher suite 350, 356
RSA_WITH_NULL_MDS5 cipher suite 350, 356
RSA_WITH_NULL_SHA cipher suite 350, 356
RSA_WITH_RC4_128 MDS5 cipher suite 350, 356
RSA_WITH_RC4 128 SHA cipher suite 350, 356

S
SAML

piggybacking data 107
sample configurations

SSL/TLS 64
scenarios

authenticationin CSIv2 418

authentication over transport 411

CSlv2 410

identity assertion 412
Schannel

and smart cards 331

deploying application certificates 328

deploying certificates 321

deploying trusted CA certificates 327
Schannel toolkit 281

selecting for C++ applications 558
SecClientSecurelnvocation policy 340, 460
SecQOPConfidentiality enumeration value 462
SecQOPI ntegrityAndConfidentiality enumeration

value 462

SecQOPIntegrity enumeration value 462
SecQOPNoProtection enumeration value 462
SecTargetSecurelnvocation policy 342, 460

secure associations
client behavior 340
definition 334
TLS_Coloc interceptor 334
secure_client_with_no_cert configuration sample 422
secure_directories configuration variable 393
secure-Domain.cfg file 208
secure hash algorithms 350, 351
secure invocation policy 337, 460
secure_server_no_client_auth configuration 66
secure_server_no_client_auth configuration
sample 422
Secure Sockets Layer, See SSL
Security 677
security algorithms
and cipher suites 350
security attribute service context 408, 413
SecurityAttributeType type 484
security capsule
and principal authenticator 471
credentials sharing 374, 428, 472
security domain
creating 170
file domain example 175
security domains
architecture 169
iSF 169
security handshake
cipher suites 349
SSL/TLS 363, 367
security infomation file 138
securitylnstanceURL property 154
SecurityManager interface 472, 476, 480, 482
and credentials 484
retrieving own credentials 486
security policy domain
J2EE, definition 180
security providers
configuring JCE 284
JCE 283
providing by programming 285
Security recommendations 677
security service
federation of 146
security technology domain
J2EE, definition 179
security threats 393
self-signed CA 303
self-signed certificate 295

INDEX

semi-secure applications
and NoProtection 347
SEMI_SECURE servers 338
serial file 302
serial number 291, 515
server_hinding_list configuration variable 78, 444
and CSIv2 authentication 424
secure server 228
server domain name
and CSIv2 authentication over transport 425
server_domain_name configuration variable
iSF, ignored by 80
server-side policies 456
server_version_policy
I1OP 603
service contexts
security attribute 408, 413
services
certificates 299
configuring Orbix 224
deploying certificates 315
principal sponsor
example configuration 317
securing Orbix 204
session_cache_size configuration variable 358
session_cache validity_period configuration
variable 358
session_caching_policy configuraion variable 358
SessionCachingPolicy policy 358
session_caching_policy variable 358
_set_policy_overrides() operation 456
set_policy_overrides() operation 458, 520
and invocation credentials 464
SHA 351
SHA1 338
share_credentials_across_orbs variable
internal ORB settings 232
shared credentials 374, 428, 472
signing certificates 290
single sign-on
accept_asserted_authorization_info configuration
variable 118, 120
assert_authorization_info configuration
variable 118, 120
effective credentials 120
ExtendedReceivedCredentials interface 108
IT_CORBASEC module 108
sample client configurations 128
sso_server_certificate_constraints configuration

709

INDEX

variable 109
token timeouts 97
slot number, in smart card 372
smart card
certificate deployment 313
PIN 372,380
slot number 372
smart cards 372
and Schannel 281
certificate deployment 331
deploying credentials 331
deployment constraints 313
PIN 314, 332
Specifying ciphersuites 349
SSL/TLS
association options
setting 336
caching 358
caching validity period 358
cipher suites 349
client configuration 67
colocated invocations 334
encryption algorithm 350
fixed ports 74
IIOP_TLSinterceptor 68, 226
key exchange algorithm 350
logging 69
mechanism policy 352
mixed configurations 72
orb_pluginslist 68, 228, 236
principal sponsor
disabling 69
enabling 71, 227

protocol_version configuration variable 352

sample configurations 64
secure associations 334
secure client, definition 65
secure hash algorithm 350
secure hash algorithms 351
secure invocation policy 337
securing communications 64
security handshake 363, 367
selecting atoolkit, C++ 558
semi-secure client

[1OP plug-in 68, 228, 236
semi-secure client, definition 65
semi-secure server, definition 66
server configuration 69
server server, definition 66

710

session cache size 358

terminology 65

TLSsession 334
SSL/TLS policies 459
SSL/TLS principal sponsor

and CSIv2 authentication over transport 423

SSL/TLS toolkit
Baltimore 279
SSL/TLStoolkits 278
Schannel 281
SSLCACertDir property 144
SSL ClientCertFile property 144
SSL ClientCertPassword property 144
SSLeay 294
SSLEnabled property 144
SSO

see single sign-on

sso_server_certificate_constraints configuration

variable 109

sso_server_certificate_constraints variable 101

and certificate-based SSO 112
SSO TOKEN 100
certificate-based SSO 111
SSO token 108, 120
and certificate-based SSO 111
and thelogin service 96
automatic refresh 97
re-authenticating 119, 123, 125
timeouts 97
standal one deployment 536
standard ciphers 350
subject DN
and identity tokens 441
subject name 515
supported security features 461
Symmetric cryptography 50
symmetric encryption algorithms 350

T
Target
choosing behavior 342
target and client authentication 366
example configuration 368
target authentication 363
target authentication only
example 364
target credentials
availability of 492
definition 483

interaction with rebind policy 492
retrieving 491
C++ example 493
Java example 494
SSL/TLS
C++ example 495
Java example 496
parsing 495
TargetCredentias interface 483, 492
Orbix-specific 484
target secure invocation policy 355
HTTPS 342
IIOP/TLS 342
TargetSecurel nvocationPolicy policy 337
TCP palicies
delay connections 604
receive buffer size 605
terminology
SSL/TLS
secure client, definition 65
semi-secure client, definition 65
semi-secure server, definition 66
server server, definition 66
SSL/TLS samples 65
terminology, for domain and realm 179
three-tier scenario description 83
TLS
authentication 46
handshake 47-7?
how provides security 46
integrity 51
session caching 358
TLS CERT_CONSTRAINTS_POLICY policy
type 520, 522
TLS Coloc interceptor 334
TLSCredentias interface 472, 488, 527
TLSReceivedCredentialsinterface 500
TLSsession
definition 334
TLSTargetCredentials interface
parsing target credentials 495
token
SSO 108, 120
tokens
client authentication 420
toolkit replaceability 278
enabling JCE architecture 561
JSSE/JCE architecture 283

logging 287

INDEX

selecting the toolkit, C++ 558
trader service ACL
IONAServiceRole 249
IONAUserRole 249
secure domain 248
semi-secure domain 249
UnauthenticatedUserRole 249
Transport Layer Security, See TLS
triple DES 351
truncation of property names 550
trusted CA list 309, 327
trusted CA list policy 369
trusted _ca list_policy 310
trusted_ca list_policy configuration variable 369
trusted_ca list_policy variable 309
and Orbix services 226
trusted CAs 296
trust in client
by programming, SSL/TLS 463
trust in target
by programming, SSL/TLS 463

U
use jsse_tk configuration variable 561
use_principal_sponsor configuration variable 373
user account

creating 170
UserBaseDN property 142
username/password-based authentication

overview 99
username and password

CSlv2 428
UserNameAttr property 142
UserObjectClass property 142
UserRoleDNALttr property 142
UserSearchScope property

LDAP adapter

UserObjectClass property 142

\Y,

validate_cert_chain() operation 524
Variables 672, 673, 674

w

well-known addressing policy 74
WellKnownAddressingPolicy policy 74

WRONG_NAME_PASSWORD minor exception 546

711

INDEX

X
X.500 645
X.509
and PKCS#12 file 371
certificates. See certificates
Extension interface 517
ExtensionList interface 517
extensions 517
public key encryption 350
v3 extensions 515, 516
X.509 certificate
contents 515
definition 290
X.509 certificates 289
parsing 516
X509CertChain interface 527
X509CertificateFactory interface 516, 527
X509Cert interface 516, 527
x509 utility 663

712

INDEX

713

INDEX

714

	List of Tables
	List of Figures
	Preface
	Introducing Security
	Getting Started with Security
	Creating a Secure Domain
	Running a Secure CORBA Demonstration
	Debugging with the openssl Utility
	Where do I go from here?

	Orbix Security Framework
	Introduction to the iSF
	iSF Features
	Example of an iSF System
	Security Standards

	Orbix Security Service
	Orbix Security Service Architecture
	iSF Server Development Kit

	Secure Applications
	ART Security Plug-Ins
	Secure CORBA Applications

	Administering the iSF
	Overview of iSF Administration
	Secure ASP Services

	Transport Layer Security
	What does Orbix Provide?
	How TLS Provides Security
	Authentication in TLS
	Certificates in TLS Authentication
	Privacy of TLS Communications
	Integrity of TLS Communications

	Obtaining Credentials from X.509 Certificates
	Obtaining Certificate Credentials from a File
	Obtaining Certificate Credentials from a Smart Card

	Securing CORBA Applications
	Overview of CORBA Security
	Securing Communications with SSL/TLS
	Specifying Fixed Ports for SSL/TLS Connections
	Securing Two-Tier CORBA Systems with CSI
	Securing Three-Tier CORBA Systems with CSI
	X.509 Certificate-Based Authentication
	Caching of Credentials

	Single Sign-On for CORBA Applications
	SSO and the Login Service
	Username/Password-Based SSO
	Three Tier Example with Identity Assertion
	X.509 Certificate-Based SSO
	Enabling Re-Authentication at Each Tier
	Optimising Retrieval of Realm Data
	SSO Sample Configurations

	Orbix Security Framework Administration
	Configuring the Orbix Security Service
	Configuring the File Adapter
	Configuring the LDAP Adapter
	Clustering and Federation
	Federating the Orbix Security Service
	Failover and Replication
	Client Load Balancing

	Additional Security Configuration
	Configuring Single Sign-On Properties
	Configuring the Log4J Logging

	Managing Users, Roles and Domains
	Introduction to Domains and Realms
	iSF Security Domains
	iSF Authorization Realms
	Example Domain and Realms
	Domain and Realm Terminology

	Managing a File Security Domain
	Managing an LDAP Security Domain

	Managing Access Control Lists
	CORBA ACLs
	Overview of CORBA ACL Files
	CORBA Action-Role Mapping ACL

	Centralized ACL
	Local ACL Scenario
	Centralized ACL Scenario
	Customizing Access Control Locally

	Securing Orbix Services
	Introduction to Securing Services
	Secure File-Based Domain
	Secure CFR Domain
	Customizing a Secure Domain
	Creating a Customized Secure Domain
	Configuring an iSF Adapter for the Security Service
	Configuring a Typical Orbix Service
	Configuring the Security Service

	Default Access Control Lists
	Configuration Repository ACL
	Locator ACL
	Node Daemon ACL
	Naming Service ACL
	Trader Service ACL
	Event Service ACL
	Notification Service ACL
	Basic Log Service ACL
	Event Log Service ACL
	Notify Log Service ACL

	SSL/TLS Administration
	Choosing an SSL/TLS Toolkit
	Toolkit Replaceability
	Baltimore Toolkit for C++ and Java
	OpenSSL Toolkit for C++
	Schannel Toolkit for C++
	JSSE/JCE Architecture

	Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Using the Demonstration Certificates
	Creating Your Own Certificates
	Set Up Your Own CA
	Use the CA to Create Signed Certificates

	Deploying Certificates
	Overview of Certificate Deployment
	Providing a List of Trusted Certificate Authorities
	Deploying Application Certificates
	Deploying Certificates in Smart Cards
	Deploying Orbix Service Certificates
	Deploying itadmin Certificates
	Configuring Certificate Warnings

	Deploying Certificates with Schannel
	Schannel Certificate Store
	Deploying Trusted Certificate Authorities
	Deploying Application Certificates
	Deploying Certificates in Smart Cards

	Configuring SSL/TLS Secure Associations
	Overview of Secure Associations
	Setting Association Options
	Secure Invocation Policies
	Association Options
	Choosing Client Behavior
	Choosing Target Behavior
	Hints for Setting Association Options

	Specifying Cipher Suites
	Supported Cipher Suites
	Setting the Mechanism Policy
	Constraints Imposed on Cipher Suites

	Caching TLS Sessions

	Configuring SSL/TLS Authentication
	Requiring Authentication
	Target Authentication Only
	Target and Client Authentication

	Specifying Trusted CA Certificates
	Specifying an Application’s Own Certificate
	Providing a Pass Phrase or PIN
	Providing a Certificate Pass Phrase
	Providing a Smart Card PIN

	Advanced Configuration Options
	Setting a Maximum Certificate Chain Length
	Applying Constraints to Certificates
	Delaying Credential Gathering

	Automatic Activation of Secure Servers
	Managing Server Pass Phrases
	Protecting against Server Imposters
	How the KDM Activates a Secure Server
	KDM Administration
	Setting Up the KDM
	Registering a Secure Server

	CSIv2 Administration
	Introduction to CSIv2
	CSIv2 Features
	Basic CSIv2 Scenarios
	CSIv2 Authentication over Transport Scenario
	CSIv2 Identity Assertion Scenario

	Integration with the Orbix Security Framework

	Configuring CSIv2 Authentication over Transport
	CSIv2 Authentication Scenario
	SSL/TLS Prerequisites
	Requiring CSIv2 Authentication
	Providing an Authentication Service
	Providing a Username and Password
	Sample Configuration
	Sample Client Configuration
	Sample Server Configuration

	Configuring CSIv2 Identity Assertion
	CSIv2 Identity Assertion Scenario
	SSL/TLS Prerequisites
	Enabling CSIv2 Identity Assertion
	Sample Configuration
	Sample Client Configuration
	Sample Intermediate Server Configuration
	Sample Target Server Configuration

	CORBA Security Programming
	Programming Policies
	Setting Policies
	Programmable SSL/TLS Policies
	Introduction to SSL/TLS Policies
	The QOPPolicy
	The EstablishTrustPolicy
	The InvocationCredentialsPolicy
	Interaction between Policies

	Programmable CSIv2 Policies

	Authentication
	Using the Principal Authenticator
	Introduction to the Principal Authenticator
	Creating SSL/TLS Credentials
	Creating CSIv2 Credentials

	Using a Credentials Object
	Retrieving Own Credentials
	Retrieving Own Credentials from the Security Manager
	Parsing SSL/TLS Own Credentials
	Parsing CSIv2 Own Credentials

	Retrieving Target Credentials
	Retrieving Target Credentials from an Object Reference
	Parsing SSL/TLS Target Credentials

	Retrieving Received Credentials
	Retrieving Received Credentials from the Current Object
	Parsing SSL/TLS Received Credentials
	Parsing CSIv2 Received Credentials

	Copying CSI Credentials between Threads

	Validating Certificates
	Overview of Certificate Validation
	The Contents of an X.509 Certificate
	Parsing an X.509 Certificate
	Controlling Certificate Validation
	Certificate Constraints Policy
	Certificate Validation Policy

	Obtaining an X.509 Certificate

	iSF Programming
	Developing an iSF Adapter
	iSF Security Architecture
	iSF Server Module Deployment Options
	iSF Adapter Overview
	Implementing the IS2Adapter Interface
	Deploying the Adapter
	Configuring iSF to Load the Adapter
	Setting the Adapter Properties
	Loading the Adapter Class and Associated Resource Files

	Security
	Applying Constraints to Certificates
	Root Namespace
	itadmin_x509_cert_root
	initial_references
	IT_TLS_Toolkit:plugin
	password_retrieval_mechanism
	inherit_from_parent
	use_my_password_as_kdm_password
	plugins:atli2_tls
	cert_store_protocol
	cert_store_provider
	kmf_algorithm
	tmf_algorithm
	use_jsse_tk
	plugins:csi
	allow_csi_reply_without_service_context
	ClassName
	shlib_name
	use_legacy_policies
	plugins:gsp
	accept_asserted_authorization_info
	action_role_mapping_file
	assert_authorization_info
	authentication_cache_size
	authentication_cache_timeout
	authorization_policy_enforcement_point
	authorization_policy_store_type
	authorization_realm
	ClassName
	enable_authorization
	enable_gssup_sso
	enable_user_id_logging
	enable_x509_sso
	enforce_secure_comms_to_sso_server
	enable_security_service_cert_authentication
	retrieve_isf_auth_principal_info_for_all_realms
	sso_server_certificate_constraints
	use_client_load_balancing
	plugins:https
	ClassName
	plugins:iiop_tls
	buffer_pool:recycle_segments
	buffer_pool:segment_preallocation
	buffer_pools:max_incoming_buffers_in_pool
	buffer_pools:max_outgoing_buffers_in_pool
	cert_expiration_warning_days
	delay_credential_gathering_until_handshake
	enable_iiop_1_0_client_support
	enable_warning_for_approaching_cert_expiration
	incoming_connections:hard_limit
	incoming_connections:soft_limit
	outgoing_connections:hard_limit
	outgoing_connections:soft_limit
	own_credentials_warning_cert_constraints
	tcp_listener:reincarnate_attempts
	tcp_listener:reincarnation_retry_backoff_ratio
	tcp_listener:reincarnation_retry_delay
	plugins:kdm
	cert_constraints
	iiop_tls:port
	checksums_optional
	plugins:kdm_adm
	cert_constraints
	plugins:locator
	iiop_tls:port
	plugins:schannel
	prompt_with_credential_choice
	plugins:security
	share_credentials_across_orbs
	policies
	allow_unauthenticated_clients_policy
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	max_chain_length_policy
	mechanism_policy:accept_v2_hellos
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	trusted_ca_list_policy
	policies:csi
	attribute_service:backward_trust:enabled
	attribute_service:client_supports
	attribute_service:target_supports
	auth_over_transport:authentication_service
	auth_over_transport:client_supports
	auth_over_transport:server_domain_name
	auth_over_transport:target_requires
	auth_over_transport:target_supports
	policies:https
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	max_chain_length_policy
	mechanism_policy:accept_v2_hellos
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	trusted_ca_list_policy
	policies:iiop_tls
	allow_unauthenticated_clients_policy
	buffer_sizes_policy:default_buffer_size
	buffer_sizes_policy:max_buffer_size
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	client_version_policy
	connection_attempts
	connection_retry_delay
	load_balancing_mechanism
	max_chain_length_policy
	mechanism_policy:accept_v2_hellos
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	server_address_mode_policy:local_domain
	server_address_mode_policy:local_hostname
	server_address_mode_policy:port_range
	server_address_mode_policy:publish_hostname
	server_version_policy
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	tcp_options_policy:no_delay
	tcp_options_policy:recv_buffer_size
	tcp_options_policy:send_buffer_size
	trusted_ca_list_policy
	policies:security_server
	client_certificate_constraints
	policies:tls
	use_external_cert_store
	principal_sponsor
	use_principal_sponsor
	auth_method_id
	auth_method_data
	callback_handler:ClassName
	login_attempts
	principal_sponsor:csi
	use_existing_credentials
	use_principal_sponsor
	auth_method_data
	auth_method_id
	principal_sponsor:https
	use_principal_sponsor
	auth_method_id
	auth_method_data
	principal_sponsor:iiop_tls
	use_principal_sponsor
	auth_method_id
	auth_method_data

	iSF Configuration
	Properties File Syntax
	iSF Properties File
	check.kdc.running
	check.kdc.principal
	com.iona.isp.adapters
	com.iona.isp.adapter.file.class
	com.iona.isp.adapter.file.param.filename
	com.iona.isp.adapter.file.params
	com.iona.isp.adapter.LDAP.class
	com.iona.isp.adapter.LDAP.param.CacheSize
	com.iona.isp.adapter.LDAP.param.CacheTimeToLive
	com.iona.isp.adapter.LDAP.param.GroupBaseDN
	com.iona.isp.adapter.LDAP.param.GroupNameAttr
	com.iona.isp.adapter.LDAP.param.GroupObjectClass
	com.iona.isp.adapter.LDAP.param.GroupSearchScope
	com.iona.isp.adapter.LDAP.param.host.<ServerID>
	com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize
	com.iona.isp.adapter.LDAP.param.MemberDNAttr
	com.iona.isp.adapter.LDAP.param.MemberFilter
	com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize
	com.iona.isp.adapter.LDAP.param.port.<ServerID>
	com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<ServerID>
	com.iona.isp.adapter.LDAP.param.PrincipalUserPassword.<ServerID>
	com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo
	com.iona.isp.adapter.LDAP.param.RoleNameAttr
	com.iona.isp.adapter.LDAP.param.SSLCACertDir.<ServerID>
	com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<ServerID>
	com.iona.isp.adapter.LDAP.param.SSLClientCertPassword.<ServerID>
	com.iona.isp.adapter.LDAP.param.SSLEnabled.<ServerID>
	com.iona.isp.adapter.LDAP.param.UseGroupAsRole
	com.iona.isp.adapter.LDAP.param.UserBaseDN
	com.iona.isp.adapter.LDAP.param.UserCertAttrName
	com.iona.isp.adapter.LDAP.param.UserNameAttr=uid
	com.iona.isp.adapter.LDAP.param.UserObjectClass
	com.iona.isp.adapter.LDAP.param.UserRoleDNAttr
	com.iona.isp.adapter.LDAP.param.UserSearchFilter
	com.iona.isp.adapter.LDAP.param.UserSearchScope
	com.iona.isp.adapter.LDAP.param.version
	com.iona.isp.adapter.LDAP.params
	com.iona.isp.authz.adapters
	com.iona.isp.authz.adapter.AdapterName.class
	com.iona.isp.authz.adapter.AdapterName.param.filelist
	is2.current.server.id
	is2.cluster.properties.filename
	is2.replication.required
	is2.replication.interval
	is2.replica.selector.classname
	is2.sso.cache.size
	is2.sso.enabled
	is2.sso.remote.token.cached
	is2.sso.session.idle.timeout
	is2.sso.session.timeout
	log4j.configuration
	Cluster Properties File
	com.iona.security.common.securityInstanceURL.<ServerID>
	com.iona.security.common.replicaURL.<ServerID>
	log4j Properties File
	log4j.appender.<AppenderHandle>
	log4j.appender.<AppenderHandle>.layout
	log4j.appender.<AppenderHandle>.layout.ConversionPattern
	log4j.rootCategory

	ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Association Options
	Association Option Semantics

	Action-Role Mapping DTD
	OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility
	The req Utility
	The rsa Utility
	The ca Utility

	The OpenSSL Configuration File
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	Security Recommendations
	General Recommendations

	Sample TLS Configurations
	Demonstration TLS Scopes

	License Issues
	OpenSSL License

	Index

