
User’s Guide

ACUCOBOL-GT®

Version 8.1

Micro Focus
9920 Pacific Heights Blvd

San Diego, CA 92121
858.795.1900

© Copyright Micro Focs (IP) LTD. 1998-2008. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
AcuXUI, extend, and “The new face of COBOL” are registered trademarks or registered service
marks of Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is
protected by U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX is a registered trademark of the Open Group in the United States and
other countries. Solaris is a trademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

E-01-UG-080501-ACUCOBOL-GT-8.1

Contents

Chapter 1: Introduction
1.1 ACUCOBOL-GT Documentation ... 1-2
1.2 Product Overview .. 1-2

1.2.1 Portability and Compatibility .. 1-4
1.2.2 Native Instructions... 1-5
1.2.3 The ACUCOBOL-GT Runtime... 1-6

1.2.3.1 Windows console runtime ... 1-7
1.2.4 Runtime Configuration .. 1-9
1.2.5 Graphical Technology ... 1-9
1.2.6 File System Flexibility... 1-11
1.2.7 Complementary Technologies ... 1-12

1.3 Document Overview .. 1-14
1.3.1 User’s Guide .. 1-15
1.3.2 User Interface Programming.. 1-15
1.3.3 Reference Manual.. 1-17
1.3.4 Appendices .. 1-17
1.3.5 Getting Started ... 1-18
1.3.6 Transitioning to ACUCOBOL-GT.. 1-19
1.3.7 A Guide to Interoperating with ACUCOBOL-GT .. 1-19
1.3.8 A Programmer’s Guide to the Internet .. 1-19
1.3.9 Related Documents.. 1-19

1.4 Supported Hardware .. 1-20
1.4.1 Native Code Supported Processors.. 1-20

1.5 Environment Variables .. 1-21
1.6 Notation ... 1-22
1.7 How to Get Help .. 1-23

1.7.1 Handling Compilation Problems ... 1-23
1.7.2 Handling Program Execution Problems .. 1-25

Chapter 2: Compiler and Runtime
2.1 Introduction.. 2-2
2.2 Using the Compiler .. 2-3

2.2.1 Standard Options ... 2-4
2.2.2 Native Code Options.. 2-5
2.2.3 Listing Options .. 2-9

Contents-ii
2.2.4 Internal Tables Options...2-13
2.2.5 Compatibility Options..2-15
2.2.6 Interoperability Options ...2-21
2.2.7 File Options..2-23
2.2.8 Source Options...2-29
2.2.9 Reserved Word Options...2-31
2.2.10 Data Storage Options ...2-33

2.2.10.1 Truncation Options ..2-44
2.2.11 Video Options ..2-46
2.2.12 Warning and Error Options..2-49
2.2.13 Debugging Options ..2-50
2.2.14 Mapping Options ...2-52
2.2.15 Conditional Compilation Options ..2-55
2.2.16 Miscellaneous Options...2-56
2.2.17 Upper and Lower Case ..2-65
2.2.18 File Name Handling...2-65

2.2.18.1 Remote file name handling..2-66
2.2.19 Compiler Command-Line Examples ...2-67
2.2.20 CBLFLAGS Environment Variable ..2-68
2.2.21 Help, Version Information, and Communication With C Programs2-69
2.2.22 The “>>IMP” Directive ...2-70

2.3 Using the Runtime System...2-72
2.3.1 Runtime Options ..2-74

2.4 Compatibility Modes..2-89
2.5 Source Formats ..2-90
2.6 COPY Libraries..2-92

2.6.1 Resource Files..2-94
2.6.1.1 General Rules for Resources ...2-95

2.7 Source Code Control ..2-96
2.8 Runtime Configuration ..2-97

2.8.1 File Name Assignments ...2-99
2.8.2 Code and Data File Search Paths ...2-102
2.8.3 File Status Codes ...2-103
2.8.4 Terminal Handling Options ...2-104
2.8.5 File Handling Options..2-104

2.8.5.1 Sort files...2-105
2.8.5.2 Carriage control ...2-105
2.8.5.3 Device locking ...2-106

2.9 File Name Interpretation ..2-106
2.9.1 File Names Starting With a Hyphen ..2-109

 Contents-iii
2.9.2 File Name Examples.. 2-110
2.9.2.1 Example 1: Default name handling ... 2-110
2.9.2.2 Example 2: Accessing printers .. 2-111

2.9.3 Assigning Files to Local Printers... 2-113
2.10 Calling Subprograms ... 2-113

2.10.1 CALL... 2-114
2.10.2 CANCEL ... 2-117
2.10.3 CHAIN... 2-117
2.10.4 Alternate ENTRY Points ... 2-118

2.11 Reducing the Size of the Runtime ... 2-118
2.12 acushare Utility Program ... 2-119

2.12.1 Using Shared Memory... 2-120
2.12.1.1 Indicating programs to share ... 2-121

2.12.2 Using acushare... 2-122
2.12.2.1 acushare -start .. 2-123
2.12.2.2 acushare -kill ... 2-124
2.12.2.3 acushare -clean .. 2-124
2.12.2.4 acushare -version ... 2-124
2.12.2.5 acushare (with no options)... 2-124

2.12.3 acushare errors ... 2-126
2.13 General Preprocessor Interface .. 2-127

2.13.1 Use of Preprocessors.. 2-129
2.13.1.1 Calling a preprocessor ... 2-129
2.13.1.2 Calling two or more preprocessors.. 2-130
2.13.1.3 Compiler options forwarded to preprocessors....................................... 2-131
2.13.1.4 Calling a preprocessor without the compiler... 2-132

2.13.2 AcuSQL Pre-compiler ... 2-134
2.13.2.1 Compatibility with ACUCOBOL-GT general preprocessor interface.. 2-134
2.13.2.2 Calling the AcuSQL pre-compiler... 2-134

2.13.3 Writing a Preprocessor .. 2-135
2.13.3.1 Command-line options .. 2-136
2.13.3.2 Line and file directives .. 2-137
2.13.3.3 Error messages... 2-140

Chapter 3: Debugger and Utilities
3.1 Runtime Debugger ... 3-2

3.1.1 Entering the Debugger... 3-5
3.1.2 Cursor and Mouse Handling in Source-level Debugging...................................... 3-7
3.1.3 Debugger Commands .. 3-8

3.1.3.1 Source-level commands... 3-10
3.1.3.2 Other commands.. 3-11

Contents-iv
3.1.3.3 Multithreading Issues...3-15
3.1.3.4 Getting help ...3-16
3.1.3.5 File menu ...3-17
3.1.3.6 View menu...3-20
3.1.3.7 Run menu...3-22
3.1.3.8 Source menu ..3-25
3.1.3.9 Data menu..3-28
3.1.3.10 Breakpoints menu ..3-35
3.1.3.11 Selection menu...3-41
3.1.3.12 Help menu..3-45

3.1.4 File Tracing...3-47
3.1.5 Screen Tracing ...3-50
3.1.6 Macro Debugger ..3-51
3.1.7 Specifying Addresses..3-51

3.1.7.1 Variables ..3-51
3.1.7.2 Program addresses ...3-53

3.1.8 Debugger Restrictions..3-53
3.1.9 Using the Abend Diagnostic Report (ADR) ..3-54

3.1.9.1 Generating a report ..3-56
3.1.9.2 ADR restrictions ..3-58

3.2 Object File Utility — cblutil ..3-58
3.2.1 Object Libraries ...3-59
3.2.2 Creating Object Libraries...3-60

3.2.2.1 Creating remote object libraries...3-62
3.2.3 Getting Object Information..3-63
3.2.4 Generating Native Code...3-64

3.3 Vision File Utility — vutil ...3-66
3.3.1 Examining File Information...3-67
3.3.2 Testing File Integrity ...3-69
3.3.3 Rebuilding Files ...3-71
3.3.4 Resetting User Counts ...3-78
3.3.5 Resetting Internal Revision Number..3-78
3.3.6 Extracting Records From a File ...3-79
3.3.7 Recovering Deleted Records ...3-80
3.3.8 Creating Empty Files ...3-81

3.3.8.1 Responding to vutil generated prompts...3-82
3.3.8.2 Specifying file attributes in advance..3-84

3.3.9 Unloading to Binary and Line Sequential Format ...3-87
3.3.10 Loading a File ..3-89
3.3.11 File Size Summary Report ...3-92
3.3.12 Converting RM/COBOL-85 Indexed Files..3-92

 Contents-v
3.3.13 Converting C-ISAM Files ... 3-92
3.3.14 Converting Micro Focus Files ... 3-94
3.3.15 Changing Record Size ... 3-96
3.3.16 Setting the Comment Field .. 3-97
3.3.17 Miscellaneous Commands ... 3-97
3.3.18 Default Settings of vutil... 3-98

3.4 File Transfer Utility — vio .. 3-98
3.4.1 vio Options .. 3-100
3.4.2 Windows Considerations ... 3-104
3.4.3 vio Examples ... 3-105
3.4.4 Known Limitations .. 3-106

3.5 Indexed File Record Editor (alfred)... 3-107
3.6 logutil ... 3-107

3.6.1 Syntax and Options.. 3-107
3.6.2 logutil Report Headings... 3-110

3.7 The Profiler .. 3-111
3.7.1 Using the Profiler... 3-112
3.7.2 Configuring the Profiling Tools .. 3-113
3.7.3 Understanding the Report .. 3-115
3.7.4 Understanding the XML Data File .. 3-117

3.8 External Sort Utility — AcuSort ... 3-121
3.8.1 AcuSort Command Format.. 3-121
3.8.2 AcuSort Instructions .. 3-122

3.8.2.1 CHAR-ASCII and SIGN-ASCII ... 3-122
3.8.2.2 CHAR-EBCDIC and SIGN-EBCDIC instructions 3-123
3.8.2.3 SORT/MERGE instructions .. 3-123
3.8.2.4 USE/GIVE instructions ... 3-125
3.8.2.5 INCLUDE/OMIT instructions... 3-128

3.8.3 Code Sample.. 3-131
3.8.4 AcuSort Environment Variables.. 3-133

3.9 Remote Preprocessing Utility — Boomerang ... 3-135
3.9.1 License Requirements and Installation.. 3-135
3.9.2 Server Setup and Configuration... 3-136

3.9.2.1 Step 1: Creating an Alias File.. 3-136
Pro*COBOL Alias Example ... 3-140
 CICS Alias Example... 3-141
UniKix Alias Example .. 3-142
DB2 Alias Example... 3-143
3.9.2.2 Step 2: Creating a Configuration File.. 3-145
3.9.2.3 Step 3: Creating an Access File... 3-145
3.9.2.4 Step 4: Starting the Server... 3-146

Contents-vi
3.9.3 Server commands...3-146
3.9.4 Client-side Operation – Remote Precompiling ..3-147
3.9.5 Client Commands ..3-148
3.9.6 Working with INCLUDE files...3-150

Chapter 4: Terminal Manager
4.1 How the Terminal Manager Works ...4-2

4.1.1 Terminal Manager Functions...4-3
4.1.2 Alternate Terminal Manager (ATM) ...4-4

4.2 Getting Your Terminals Ready ..4-5
4.2.1 Step One: Terminal Identification ...4-5
4.2.2 Step Two: Terminal Definition..4-7

4.2.2.1 Windows special considerations..4-7
4.2.3 Step Three: Configuration Variables ...4-8

4.3 The Keyboard Interface ...4-9
4.3.1 Key Mapping ...4-10

4.3.1.1 Key interpretation ..4-10
4.3.1.2 Key translation...4-11
4.3.1.3 Keyboard configuration ...4-12

4.3.2 Redefining the Keyboard ...4-16
4.3.2.1 The KEYBOARD variable ..4-16
4.3.2.2 The KEYSTROKE variable ..4-19
4.3.2.3 Table of keys..4-31
4.3.2.4 Additional Windows keys..4-35
4.3.2.5 Special keys ...4-37
4.3.2.6 Default keyboard ...4-39
4.3.2.7 Modification examples ..4-41

4.4 The Display Interface...4-42
4.4.1 Adding Color ...4-43
4.4.2 The SCREEN Option...4-45

4.4.2.1 SCREEN examples..4-57
4.4.3 Additional Configuration Variables...4-57
4.4.4 Double-Byte Character Handling ..4-59

4.5 Restricted Attribute Handling ..4-61
4.5.1 Restricted Video Modes...4-62

4.5.1.1 Restrictions ..4-64
4.6 The Terminal Database File ...4-65

4.6.1 Required Functions ..4-70
4.6.2 Additional Screen Functions..4-71
4.6.3 Video Attributes...4-73

 Contents-vii
4.6.4 Color .. 4-74
4.6.4.1 One-color terminals ... 4-75

4.6.5 Function Keys and Other Keys.. 4-75
4.6.5.1 User-defined keys.. 4-76

4.6.6 Line Drawing ... 4-76
4.6.6.1 Multi-character sequences for graphics... 4-77

4.6.7 Graphical Window and Control Emulation .. 4-78
4.6.8 Mouse Support for X Terminals .. 4-82
4.6.9 Initialization... 4-83
4.6.10 Print Functions... 4-83
4.6.11 Continued Entries .. 4-84

Chapter 5: File Processing
5.1 Transaction Management... 5-2

5.1.1 Overview of Transaction Management ... 5-2
5.1.1.1 Transaction logging ... 5-3
5.1.1.2 File types ... 5-4
5.1.1.3 Features.. 5-4

5.1.2 The Transaction Logging Process ... 5-4
5.1.3 Transaction Management Verbs .. 5-6
5.1.4 Extended Locking Rules... 5-7

5.1.4.1 Special handling of implicit transactions .. 5-9
5.1.5 Logging and Rollback of File Update Operations... 5-9
5.1.6 Multiple Log Files ... 5-10
5.1.7 Configuration Variables... 5-11
5.1.8 Transaction Error Handling ... 5-11
5.1.9 Compiler File Options ... 5-13
5.1.10 Recovery .. 5-13

5.1.10.1 Transaction logging and recovery with AcuServer 5-15
5.2 AcuServer .. 5-16

5.2.1 System Requirements .. 5-17
5.2.2 Remote Name Notation ... 5-18

5.3 XFD Files... 5-19
5.3.1 Defaults Used in XFD Files... 5-23

5.3.1.1 KEY IS phrase... 5-23
5.3.1.2 RENAMES clause ... 5-23
5.3.1.3 REDEFINES clause... 5-24
5.3.1.4 Multiple record definitions .. 5-24
5.3.1.5 Group items ... 5-25
5.3.1.6 FILLER data items .. 5-25

Contents-viii
5.3.1.7 OCCURS clauses...5-25
5.3.1.8 Summary of dictionary fields ..5-26
5.3.1.9 Identical field names..5-26
5.3.1.10 Long field names ...5-27
5.3.1.11 Naming the XFD..5-27
5.3.1.12 Examples of XFD names ...5-28

5.3.2 Using Directives ..5-29
5.3.2.1 Important for Acu4GL and AcuXML sites ...5-30

5.3.3 Syntax ..5-31
5.3.3.1 ALPHA directive ...5-32
5.3.3.2 BINARY directive ...5-33
5.3.3.3 COBOL-TRIGGER directive ..5-33
5.3.3.4 COMMENT directive..5-35
5.3.3.5 DATE directive..5-35
5.3.3.6 FILE directive..5-39
5.3.3.7 NAME directive...5-40
5.3.3.8 NUMERIC directive..5-44
5.3.3.9 SECONDARY-TABLE directive..5-44
5.3.3.10 SUBTABLE directive (AcuXDBC use only)..5-45
5.3.3.11 USE GROUP directive ..5-46
5.3.3.12 VAR-LENGTH directive...5-48
5.3.3.13 WHEN directive ..5-48
5.3.3.14 XSL directive...5-54

5.3.4 XFD Format ...5-55
5.3.4.1 Identification section ...5-55
5.3.4.2 Key section ..5-57
5.3.4.3 Condition section ...5-58
5.3.4.4 Field section...5-59

5.4 International Character Handling...5-63
5.4.1 Files Required for Translation ...5-64

Chapter 6: Programmer’s Guide
6.1 Handling Files ..6-2

6.1.1 Sequential Files..6-2
6.1.2 Relative Files ...6-4
6.1.3 Indexed Files - Vision..6-5

6.1.3.1 Segment naming of Vision 4 and 5 files..6-7
6.1.3.2 Method one: The format method ...6-8
6.1.3.3 Method two: The default method ..6-9
6.1.3.4 Overriding individual segment names ...6-10
6.1.3.5 Selecting the Vision version ..6-10
6.1.3.6 Keys ...6-11

 Contents-ix
6.1.3.7 Other Vision features... 6-13
6.1.4 Record Locking ... 6-15
6.1.5 Device Locking Under UNIX.. 6-16
6.1.6 Indexed File Considerations .. 6-17

6.1.6.1 Compression .. 6-17
6.1.6.2 Mass update ... 6-19
6.1.6.3 Bulk addition mode for Vision .. 6-20

6.1.7 Performance Considerations.. 6-32
6.1.8 Limits on Open Files ... 6-33

6.2 Terminal I/O .. 6-34
6.2.1 Performance Considerations.. 6-34
6.2.2 Terminal Manager Restrictions ... 6-35

6.3 Memory Management.. 6-37
6.3.1 External Data Items ... 6-41

6.4 Memory Testing and Error Handling.. 6-41
6.4.1 Memory Access Violations.. 6-41
6.4.2 Logging Errors to the Runtime’s Error File .. 6-42
6.4.3 Runtime Memory Tracking and Testing.. 6-43

6.4.3.1 Memory handling descriptions .. 6-43
6.4.3.2 Memory tracking ... 6-44
6.4.3.3 Memory bounds checking ... 6-44

6.5 Screen Section.. 6-45
6.5.1 Advantages .. 6-46
6.5.2 Structure... 6-46
6.5.3 Syntax .. 6-47
6.5.4 Comparison to Field-level ... 6-50
6.5.5 Using Screen Section Embedded Procedures .. 6-51

6.6 Data Validation .. 6-54
6.7 Exiting From ACUCOBOL-GT Programs .. 6-55
6.8 Multiple Execution Threads... 6-56

6.8.1 Thread Fundamentals... 6-57
6.8.1.1 LAST THREAD.. 6-58

6.8.2 Data Sharing Among Threads ... 6-59
6.8.2.1 LOCK THREAD and UNLOCK THREAD ... 6-60

6.8.3 Thread Communication ... 6-61
6.8.3.1 SEND and RECEIVE.. 6-61

6.8.4 Thread Priorities .. 6-64
6.8.5 Threading Rules That Affect Windows and ACCEPT Statements 6-64
6.8.6 Thread Pausing .. 6-67
6.8.7 Multithreading and Multiprocessor Systems... 6-68
6.8.8 Thread Interaction With Run Units ... 6-69

6.9 Working with External Sort Modules (UNIX) ..6-70
6.9.1 Before Using an External Sort Module..6-70
6.9.2 Linking in a Third-Party Sort Module ...6-70

Index

1
 Introduction
Key Topics

ACUCOBOL-GT Documentation .. 1-2
Product Overview.. 1-2
Document Overview .. 1-13
Supported Hardware .. 1-19
Environment Variables ... 1-20
Notation .. 1-21
How to Get Help ... 1-22

1-2 Introduction
1.1 ACUCOBOL-GT Documentation

This is Book 1 of a four-book set that describes the features of
ACUCOBOL-GT®.

The other books in this set include:

• Book 2, ACUCOBOL-GT User Interface Programming

• Book 3, ACUCOBOL-GT Reference Manual

• Book 4, ACUCOBOL-GT Appendices

This set is augmented by four additional volumes:

• Getting Started

• Transitioning to ACUCOBOL-GT

• A Guide to Interoperating with ACUCOBOL-GT

• A Programmer’s Guide to the Internet

Please see section 1.3, “Document Overview,” for a brief introduction to all
of these volumes.

1.2 Product Overview

ACUCOBOL-GT is part of the extend® family of Micro Focus solutions.
ACUCOBOL-GT is an ANSI® 1985 COBOL compiler that also includes
components of the ANSI X3.23a-1989 supplement. It is designed to provide
a powerful development environment for a wide range of computers.

Fast compile speed, clear error messages, and a multi-window source level
debugger work together to provide a high performance, easy-to-use COBOL
development platform.

Product Overview 1-3
Portable object code, a generic interface to a variety of file systems, and a
device-independent terminal interface help to simplify the distribution of
applications developed with ACUCOBOL-GT.

In addition to portable object code, ACUCOBOL-GT can generate and
execute object files that contain native instructions for specific types of
processors. This enables you to optimize the use of CPU resources on the
host machine while maintaining full portability within the same family of
processors.

Installation instructions for all computer types are provided in the Getting
Started book. The compiler, the runtime, and some utility programs have
different names, depending on the host system. For simplicity, we refer to
the compiler as ccbl, the runtime as runcbl, and the utilities by their base
names (vutil, vio, logutil, and cblutil).

Unless otherwise indicated, the references to "Windows" in this manual
denote the following 32-bit versions of the Windows operating systems:
Windows Vista, Windows XP, Windows NT 4.0 or later, Windows 2000,
Windows 2003; and the following 64-bit versions of the Windows operating
system: Windows Server 2003 and 2008 x64, Vista x64. In those instances
where it is necessary to make a distinction among the individual versions of
those operating systems, we refer to them by their specific version numbers
("Windows 2000", "Windows NT 4.0", etc.).

ACUCOBOL-GT is a single-pass compiler that produces an object file.

COBOL

source code

ACUCOBOL-GT

compiler

ccbl

object code

1-4 Introduction
The object file is ready for immediate execution by the ACUCOBOL-GT
runtime system. No linking step is required.

1.2.1 Portability and Compatibility

One of the primary focuses of the product is program portability.
ACUCOBOL-GT offers source code compatibility modes for five popular
compilers:

• Ryan McFarland’s RM/COBOL™

• ICOBOL (originally Data General Interactive COBOL)

• VAX™ COBOL

• IBM® COBOL

• HP COBOL

Although not provided as a “mode” that is turned on with a compiler switch,
there is extensive built-in compatibility for MF COBOL. These facilities
allow programs to be moved to or from these environments with minimum
effort.

ACUCOBOL-GT also offers fully portable object code. Any program
compiled on one machine using ACUCOBOL-GT will run unmodified on
any other machine that supports ACUCOBOL-GT--recompiling is not
required. This allows the developer access to a diverse user base with a
minimum investment in hardware.

ACUCOBOL-GT

runtime system

runcbl

object code

Product Overview 1-5
1.2.2 Native Instructions

ACUCOBOL-GT can also generate and execute object files that contain
native instructions for selected families of processors. This results in
generally faster code at the cost of reduced portability and larger object files.

Generally speaking, a native-code module will be a much more efficient user
of the CPU. However, a native-code module will typically be several times
larger than a portable object code module. You must weigh the benefits of
better CPU utilization versus the cost of more memory used. For systems
where memory is tight, one solution is to use native code only for those
modules that are CPU intensive while leaving the rest of the system in
portable object code.

When you compile using native instructions, the resulting object file may be
run only on a machine containing the appropriate processor. Note, however,
that within this class of machines, the object file is still portable. For
example, you could run an Intel object file on a Windows machine or on a
Linux machine. There is no need (or benefit) to compile directly on the target
machine.

Please refer to section 1.4 of this chapter for the complete list of platforms
supported by ACUCOBOL-GT and to section 1.4.1 for the complete list of
processors supported by its native-code functionality.

Object files that contain native-code instructions are similar to normal
COBOL object files. The only difference is the internal instruction set used.
Native-code object files are run in the same fashion as normal (portable)
objects: by using the runtime. The runtime acts as the memory manager and
support libraries for the native-code module. You may mix native and
non-native modules in a single run freely.

1.2.3 The ACUCOBOL-GT Runtime

After a program is successfully compiled it is ready for immediate execution
with the ACUCOBOL-GT runtime. There is no link step. Detailed
instructions on the use of the runtime are provided in Chapter 2, section 2.3,
“Using the Runtime System.”

1-6 Introduction
On UNIX, Linux, OpenVMS, and MPE/iX systems, the runtime executable
is named “runcbl” or “runcbl.exe”. On some UNIX systems the runtime is
provided as a shared object library named “libruncbl.so” or “libruncbl.a”.

Several distinct runtimes are available for Windows systems. Each is
licensed separately.

• The standard Windows runtime is named “wrun32.exe”. It is used with
all standard deployments.

• Thin client deployments use a special runtime named “acuthin.exe”.
acuthin is used in conjunction with AcuConnect and a standard runtime,
both of which are installed on the application host. For more information
about thin client technology, see Chapter 1, section 1.3.2, “Thin Client,”
in the AcuConnect User’s Guide.

• To support applications originally developed for Extended DOS, as well
as other character-based applications, we offer a Windows
consoleconsole runtime, named “crun32.exe”. The console runtime uses
the Windows Console API and runs in a virtual DOS window. For more
information, see section 1.2.3.1, below.

• The Alternate Terminal Manager (ATM) runtime, named “run32.exe”,
allows you to use a 32-bit Windows server in much the same way that
some UNIX servers are used. With the ATM runtime, the user can telnet
to the Windows server (with a third-party telnet service) to execute
character-based ACUCOBOL-GT programs in the telnet window. The
ATM is described in more detail in Chapter 4, section 4.1.2, “Alternate
Terminal Manager (ATM).”

• To support Windows-based deployment of applications to be accessed
via the World Wide Web, we offer a special Web runtime and CGI
runtime. For more information on these options, see the book titled, A
Programmer’s Guide to the Internet.

1.2.3.1 Windows console runtime

The Windows console runtime (crun32.exe) is a 32-bit Windows runtime that
provides support for applications originally developed for Extended DOS
and other character-based systems. The console runtime uses the Windows
Console API and runs in a virtual DOS window. The Windows console
runtime is sold and licensed separately.

Product Overview 1-7
The console runtime includes support for:

• calling Windows DLLs

• using Acu4GL modules without having to relink the runtime

Although the console runtime is designed to run ACUCOBOL-GT
applications developed for Extended DOS, your applications may require
some modifications. For example, the console runtime supports printing
capabilities based on the Windows model. Programs that rely on DOS
printing functions must be changed. You should examine your applications
for the use of DOS functions that are not supported in the Windows
environment.

Two runtime configuration variables allow you to tune the execution
environment: DOS_SYS_EMULATE and DOS_BOX_CHARS. For
details, see their respective entries in Book 4, Appendix H.

Note: Should you need to relink the console runtime, refer to the
instructions in section 6.3.6 of A Guide to Interoperating with
ACUCOBOL-GT.

1-8 Introduction
1.2.4 Runtime Configuration

Users of ACUCOBOL-GT can modify many aspects of the runtime
environment on a site-by-site or user-by-user basis without recompiling.
This is accomplished in a text file known as a COBOL configuration file, and
by environment variables:

For example, the location of data files, names of devices, color, text of error
messages, file buffering, and screen editing functionality can all be
maintained outside of the compiled programs. For maximum flexibility, we
strongly encourage you to review Appendix H in Book 4, Appendices, for
configuration variables that may be useful to your site.

If machine-specific behavior is required, a program can directly inquire what
type of machine it is running on. All of these features work together to allow
the developer to support a wide range of machines with a minimum amount
of resources.

1.2.5 Graphical Technology

ACUCOBOL-GT includes broad programming and runtime support for
adding a native Graphical User Interface (GUI). In addition, many
graphical elements, such as floating windows, labels, entry fields, push

Object code

Environment

variables

ACUCOBOL-GT

runtime system

runcbl

COBOL

configuration file

(cblconfig)

Product Overview 1-9
buttons, radio buttons, check boxes, list boxes, combo boxes, and others, are
emulated with character-based components when run on text-mode systems.
Some graphical elements are not emulated in text-mode environments and
are simply ignored by the runtime (see Book 2, User Interface
Programming, Chapter 1).

ACUCOBOL-GT GUI syntax extensions make it easy to implement
specialized user interfaces that are well suited to both graphical and
character-based systems, and which remain fully portable. For a discussion
of user interface development approaches, see section 1.5, “Creating Portable
User Interfaces,” in Book 2, User Interface Programming.

The graphical capabilities supported in ACUCOBOL-GT include:

• syntax extensions for creating floating windows, toolbars, and controls
(such as buttons, entry fields, and labels)

• support for creating and managing menu bars with pull-down submenus

• configuration variables for customizing windows, importing icons, and
mapping colors

• library support for host specific features such as file open and save-as
dialog boxes, message boxes, font selections, print spoolers, and
context-sensitive help

1-10 Introduction
1.2.6 File System Flexibility

ACUCOBOL-GT also includes a generic architecture for connecting to file
systems. This means that developers can choose from a variety of file
systems and database management systems, as shown in the following
diagram:

On all platforms except VMS and OpenVMS, ACUCOBOL-GT is shipped
with the powerful, performance optimized Vision indexed file system. On
VMS and Open VMS systems, ACUCOBOL-GT uses the native RMS file
system. On the HP e3000 platform, in addition to Vision, ACUCOBOL-GT
interfaces with MPE/KSAM files. extend’s interfaces to other file systems
are licensed separately.

object code

ACUCOBOL-GT

runtime system with

generic file interface

Acu4GL interfaces

Informix

Oracle

Others

C-ISAM

Btrieve

Vision files

Product Overview 1-11
1.2.7 Complementary Technologies

Acu4GL

ACUCOBOL-GT uses Acu4GL® libraries to access information stored in
relational database management systems (RDBMSs). Data dictionaries
generated by the compiler guide the libraries in mapping the field names and
data types that are passed between COBOL and the database engine.

The essence of Acu4GL libraries is that standard COBOL I/O statements
are used to access databases.

Acu4GL dynamically generates industry-standard SQL from the COBOL
I/O statements. As the ACUCOBOL-GT runtime module is executing your
COBOL application, Acu4GL is running “behind the scenes” to match up the
requirements and rules of both COBOL and the RDBMS to accomplish the
task set by your application.

AcuBench

AcuBench® is an integrated development environment for COBOL.
AcuBench extends and enhances the ACUCOBOL-GT compiler and runtime
system with a powerful suite of GUI-based development tools for COBOL.
With AcuBench you can develop and maintain your COBOL applications in
an integrated, developer friendly Microsoft Windows environment and
deploy your applications on any of the more than 600 platforms supported by
Micro Focus.

AcuSQL

AcuSQL® is an add-on tool that supports embedded SQL (ESQL) COBOL
programs. It gives COBOL applications access to Microsoft SQL, IBM
DB2, MySQL and ISO/ANSI SQL92 compliant data sources.

AcuXDBC

AcuXDBCTM is a data management system, designed to integrate
ACUCOBOL-GT data files into a relational database-like environment.
AcuXDBC enables you to apply SQL and relational database concepts to

1-12 Introduction
your COBOL data files resulting in data that is accessed and managed in
much the same way as many of today’s popular relational database
management systems.

AcuXDBC is the next generation of AcuODBC and is engineered to provide
broader flexibility in the way your COBOL data is accessed and maintained.
Like previous versions of AcuODBC, AcuXDBC lets you retrieve and
update ACUCOBOL-GT’s Vision indexed files, relative files, and sequential
files from Windows-based applications including Microsoft Word, Excel,
and Access. Business Intelligence tools such as Crystal Reports®
Professional, and custom applications developed in ODBC supported
environments such as Visual Basic® are supported as well. With the
enterprise edition, new functionality lets you retrieve data through Java
applications that utilize JDBC standards. Direct SQL access to your
ACUCOBOL-GT data is now available in both the Windows and UNIX
environments.

AcuConnect

AcuConnect® is a client/server technology that is an integral part of extend’s
distributed computing solution. AcuConnect lets you implement a client/
server system in which the client piece can be as “thin” or as “fat” as you
need.

AcuConnect has two deployment environments. With AcuConnect’s
distributed processing deployment, users can distribute application logic
between client and server machines in a way that best suits their needs.
AcuConnect users can also take advantage of Micro Focus’s Thin Client
technology, which lets you run the user interface (UI) portion of your
application on a graphical display host while the rest of the application and
data reside on the server.

AcuServer

AcuServer® is an add-on module that provides remote file access services to
ACUCOBOL-GT applications. AcuServer is available for applications
running on most UNIX, Linux, and Windows TCP/IP based networks and
executing with ACUCOBOL-GT runtime Version 5.0 or later.

With AcuServer, your applications gain:

Document Overview 1-13
• the ability to create and store data files on any UNIX or Windows NT/
Windows 2000 server equipped with AcuServer

• full function remote access from UNIX, Linux, and Windows clients to
all Vision, relative, sequential, and object files stored on an AcuServer
server

• full record locking support of all Vision and relative files

• transparent access of remote and local files

AcuServer is described briefly in Chapter 5 of this book. A separate
AcuServer User’s Guide is included with the server software and provides
additional details.

AcuXUI

AcuXUI is an optional cross-platform user interface engine that allows
graphical ACUCOBOL-GT programs to exhibit their user interface on UNIX
and Linux platforms as well as Windows platforms.

As always, graphical controls—such as windows, entry fields, and radio
buttons—are described in the COBOL program with ACUCOBOL-GT.
However, with AcuXUI, rather than directing the Windows operating system
to create the controls, the runtime directs the Java Runtime Environment
(JRE) to create the controls on a Java desktop. For this reason, the controls
can run on most operating systems, including UNIX, Linux, and Macintosh.
The Java desktop can also run on Windows.

1.3 Document Overview

ACUCOBOL-GT’s features and how to use them are documented in a
four-volume set of books. These books include: Book 1, User’s Guide,
Book 2, User Interface Programming, Book 3, Reference Manual, and
Book 4, Appendices. This set is supplemented by four essential volumes:
Getting Started, Transitioning to ACUCOBOL-GT, A Guide to
Interoperating with ACUCOBOL-GT, and A Programmer’s Guide to the
Internet. These books are briefly outlined in the following sections.

1-14 Introduction
This User’s Guide describes how to compile and run programs with
ACUCOBOL-GT and includes programming suggestions for both new and
experienced programmers. It also includes details about how to use the
debugger and file utilities. Please note that this book does not teach the
COBOL programming language. A companion book, the ACUCOBOL-GT
Reference Manual, describes every verb included in the language.

1.3.1 User’s Guide

The User’s Guide is Book 1 of the ACUCOBOL-GT documentation set.

Chapter 1: “Introduction” gives an overview of this User’s Guide
with information on supported hardware, environment
variables, and command notation.

Chapter 2: “Compiler and Runtime” describes how to use the
ACUCOBOL-GT compiler and its runtime system.

Chapter 3: “Debugger and Utilities” discusses the source-level
debugger and the file system maintenance utilities.

Chapter 4: “Terminal Manager” gives a detailed description of
the operational aspects of the ACUCOBOL-GT screen
manager, along with instructions for creating new
terminal definitions.

Chapter 5: “File Processing” describes the transaction
management and client/server features of the
ACUCOBOL-GT language.

Chapter 6: “Programmer’s Guide” gives suggestions for taking
advantage of the power and flexibility of
ACUCOBOL-GT.

1.3.2 User Interface Programming

User Interface Programming is Book 2 of the ACUCOBOL-GT
documentation set.

Document Overview 1-15
Chapter 1: “Introduction” provides a general introduction to
floating windows and graphical controls, as well as
detailed discussions on interface programming issues
and approaches, and basic windowing concepts.

Chapter 2: “Floating Windows” provides an introduction to the
properties of moveable, floating windows.

Chapter 3: “Graphical Controls” provides an introduction to the
properties of graphical controls, as well as specific
discussions regarding the use of bitmap buttons and
paged list boxes.

Chapter 4: “Supporting Concepts and Related Issues” discusses a
variety of issues related to the use of floating windows
and graphical controls.

Chapter 5: “Control Types Reference” describes the components
of a control, in general, and the special properties of
each control type.

Chapter 6: “Events Reference” describes every event that the
ACUCOBOL-GT runtime can return to the program.

Chapter 7: “Using the Mouse” describes how to use the automatic
and programmable mouse functions available in
ACUCOBOL-GT.

Chapter 8: “Menu Bars and Pop-Up Menus” describes the
process of creating, integrating, and managing
program menu bars and pop-up menus.

Chapter 9: “Color Mapping” describes how to configure the
program and environment to take advantage of color
display devices.

Chapter 10: “Help Automation” describes how to use the syntax
extensions and runtime functions that support
context-sensitive help.

Chapter 11: “Using AcuXUI to Deploy a Cross-Platform User
Interface” describes the AcuXUI product and using
the Java Runtime Environment.

1-16 Introduction
Chapter 12: “Tips and Hints” answers commonly asked questions
having to do with interface programming and the use
of floating windows and controls.

Chapter 13: “UI Terminology” provides a glossary of common
user interface terminology.

1.3.3 Reference Manual

The Reference Manual is Book 3 of the ACUCOBOL-GT documentation
set.

Chapter 1: “Introduction” gives an overview of the Reference
Manual and includes information on the conventions
used.

Chapter 2: “Program Structure” describes the overall structure of
a COBOL program and provides basic information
about the format of user-defined words, literals, and
source code.

Chapter 3: “Identification Division” gives a detailed description
of the COBOL Identification Division.

Chapter 4: “Environment Division” describes the COBOL
Environment Division.

Chapter 5: “Data Division” describes the COBOL Data Division.

Chapter 6: “Procedure Division” describes the COBOL
Procedure Division. This also contains a complete
discussion of all the verbs used by ACUCOBOL-GT.

1.3.4 Appendices

Appendices is Book 4 of the ACUCOBOL-GT documentation set.

Document Overview 1-17
Appendix A: “Specifications” describes how ACUCOBOL-GT
compares with the ANSI standard and also describes
various internal limits set by the compiler.

Appendix B: “Reserved Words” provides a complete list of words
reserved in ACUCOBOL-GT and notes which dialect
is the source of each word.

Appendix C: “Changes Affecting Earlier Versions” describes
features of ACUCOBOL-GT that have changed since
earlier versions, and how to accommodate these
differences.

Appendix D: “Compiler Error Messages” lists and describes the
error messages that the compiler can generate.

Appendix E: “File Status Codes” is a table of the various file status
and transaction status values and their meanings.

Appendix F: “Intrinsic Functions” provides detailed information
about the latest ANSI intrinsic function module
standards for COBOL.

Appendix G: “Reserved For Future Use” is a placeholder that serves
to preserve the historic placement of Appendices H
and I.

Appendix H: “Configuration Variables” summarizes the entries that
are available for use in the ACUCOBOL-GT runtime
configuration file.

Appendix I: “ACUCOBOL-GT Library Routines” describes
callable routines that are built into the
ACUCOBOL-GT runtime system. These routines
may be called directly by your programs.

1.3.5 Getting Started

Getting Started contains information about how to install, configure, and
rapidly become productive with ACUCOBOL-GT.

1-18 Introduction
1.3.6 Transitioning to ACUCOBOL-GT

Transitioning to ACUCOBOL-GT provides information on how to convert
from several popular COBOL dialects to ACUCOBOL-GT. It includes
chapters on RM COBOL, ICOBOL, HP COBOL, and IBM DOS/VS
COBOL.

1.3.7 A Guide to Interoperating with ACUCOBOL-GT

A Guide to Interoperating with ACUCOBOL-GT describes the capabilities
and methods that enable your ACUCOBOL-GT applications to interoperate
with other languages and other technologies. Topics include working with
Java, working with Windows, working with C and C++, deploying on the
Web, accessing mobile devices, working with OLTP systems, and working
with non-COBOL data.

1.3.8 A Programmer’s Guide to the Internet

A Programmer’s Guide to the Internet is designed to teach
ACUCOBOL-GT developers how to deploy applications on the Internet. It
includes a description of alternative approaches to Internet deployment and
specific instructions on implementing each approach.

1.3.9 Related Documents

Product documentation in the form of user’s guides and technology
supplements are included on the ACUCOBOL-GT product media and can be
installed when the ACUCOBOL-GT software is installed, or installed at a
later date, or accessed directly from the product media when the media is a
CD-ROM. The set of documents includes information about: Acu4GL,
AcuBench, AcuConnect, AcuXDBC, AcuServer, and AcuSQL. Product
docmentation is also available for viewing and downloading from Micro
Focus’s website, www.microfocus.com.

Supported Hardware 1-19
1.4 Supported Hardware

ACUCOBOL-GT is available on a wide range of machines. In this manual,
these machines are distinguished by their operating system. These are the
main classes of currently supported operating environments:

Windows: Windows Vista, Windows XP, Windows NT 4.0 or
later, Windows 2000, Windows 2003; and the
following 64-bit versions: Windows Server 2003 and
2008 x64, Vista x64.

UNIX/Linux: Virtually any UNIX® or Linux operating system.

VMS: The VMS™ and OpenVMS operating system.

MPE/iX: The HP e3000 operating system.

Differences among the operating environments are detailed in the appropriate
sections of the manual. See, also, A Guide to Interoperating with
ACUCOBOL-GT.

1.4.1 Native Code Supported Processors

The native code generation functionality of ACUCOBOL-GT currently
extends to the following popular families of processors:

Intel: 486, Pentium®, Pentium II, Pentium III (and
compatible); protected (32-bit) mode only.

PA-RISC: 32-bit and 64-bit PA-RISC processors under HP-UX
and MPE/iX.

PowerPC: 32-bit and 64-bit IBM pSeries™ running under AIX®

SPARC: v7, v8, v9 (and compatible); 32-bit, and SPARC v9
64-bit mode.

Generated for one of these families, the native code object file is completely
portable among all the supported members of that family.

1-20 Introduction
1.5 Environment Variables

This manual often refers to the host machine’s environment variables. These
are values maintained by the host operating system that can be changed by
the user. Exactly how an environment variable is set differs among various
operating systems:

1. With Windows NT/2000/2003/XP, environment variables are set using
the “System” applet in the Control Panel. Windows must be restarted for
the new values to take effect.

2. With Windows 98/ME, environment variables can be defined in the
“autoexec.bat” file (with the same syntax that’s used with MS-DOS).
Any changes made to the “autoexec.bat” file require restarting
Windows to take effect. Environment variables can be defined
temporarily by booting to MS-DOS mode, defining variables with the
SET command and then starting Windows. Variables defined in this
way persist until the system is rebooted.

3. On Windows systems where the console runtime (crun32) is used,
environment variables are inherited from the Windows environment.
Temporary environment variables can be defined in the console
window (DOS-box) with the SET command. For example, to set the
environment variable “SORT_DIR” to “C:\TEMP\”, you would use the
following line:

SET SORT_DIR=C:\TEMP\

Variables defined in this way persist until the DOS-box is closed.
Forward slashes (/) may be used in place of backslashes (\). Upper-case
and lower-case letters are interchangeable.

4. On UNIX and Linux systems, the environment is controlled in one of
two fashions, depending on which command shell you are using. If
you are using the Bourne shell (“sh”) or the Korn shell (“ksh”), then
you set a shell variable to the desired value and then export that
variable. For example:

SORT_DIR=/tmp/; export SORT_DIR

If you are using the C-shell instead, then you use the setenv command.
For example:

Notation 1-21
setenv SORT_DIR /tmp/

Upper-case and lower-case environment variables are distinct.

If you are using a different shell, see the documentation for that shell, or
ask your system administrator.

5. On VAX/VMS systems, you set a symbol to the desired value. For
example:

SORT_DIR == “$DISK1:[TEMP]”

Unlike UNIX, upper-case and lower-case variable names are treated the
same on VMS.

Environment variables for handling temporary files

Temporary files that are not placed in a specific directory via a configuration
variable, such as SORT_DIR, can be directed to a specific directory by
defining the A_TMPDIR or TMPDIR environment variables. The runtime
gives preference to A_TMPDIR. This allows users to specify an alternative
temporary directory exclusively for ACUCOBOL-GT temporary files. On
UNIX systems, TMPDIR is the traditional variable for specifying a location
for temporary files. On Windows, the runtime system also checks the TEMP
and TMP environment variables.

1.6 Notation

When commands are described in this manual, the following conventions are
used:

Plain text - any text appearing in the normal text font refers to a literal value
that must be used exactly as shown.

Italics - any text appearing in italics refers to a generic item. These are
explained in the text that follows the command.

Brackets - any text appearing in brackets ([]) refers to an optional item.
The text following the command describes the action taken if these optional
items are used.

1-22 Introduction
For example, in this command:
vutil -info [-x] [files]

the words “vutil” and “-info” must appear exactly as shown. The “-x” and
“files” items are optional. If they are used, the “-x” must be typed literally
while the “files” would be described in the text explaining the command.

1.7 How to Get Help

You can reach Technical Services in the United States Monday through
Friday from 6:00 a.m. to 5:00 p.m. Pacific time, excluding holidays. You can
also raise and manage product issues online and follow the progress of the
issue or post additional information directly through the website. Following
is our contact information:

For worldwide technical support information, please visit
http://supportline.microfocus.com.

1.7.1 Handling Compilation Problems

When you compile, direct the error messages to a file, and save this file to
examine. The compile command for capturing error output in a file is:

ccbl -e filename program-name

From the information in this file, you will probably be able to determine the
cause of the problem and make the necessary changes. If not, we would be
pleased to assist you. Here’s an overview of the information we need to
know, most of which you can simply fax to us:

Phone: +1 858.795.1902

Phone: 800.399.7220 (in the USA and Canada)

Fax: +1 858.689.4552

E-mail: support@microfocus.com

Online: http://supportline.microfocus.com

mailto:support@microfocus.com
http://supportline.microfocus.com
http://supportline.microfocus.com

How to Get Help 1-23
• We need to know your hardware and operating system.

• It’s also helpful for us to know which version of the ACUCOBOL-GT
compiler you are using. In case you’ve encountered a compiler anomaly,
a later version of the compiler may solve your problem. To determine
the version you are running, type: ccbl -v

• We need a copy of the compile-time error file. If any message appears
on your screen, we need the exact text of the message.

• Finally, if you can isolate the section of the code that is causing the
problem, please fax us a printed copy of this code.

Identify the

hardware

Identify the

operating

system

Use ccbl -v

to determine

version

Obtain error file

with ccbl -e

file prog

Isolate the

trouble spot

if you can

1-24 Introduction
1.7.2 Handling Program Execution Problems

The runtime system contains a built-in debugger that allows you to view the
source code while you are debugging. To prepare to use source debugging,
you must compile with one of the compiler options that include the source
code in the compiled object file, such as “-Ga”.

For example:
ccbl -Ga -o myprog myprog.cbl

Where:

See Chapter 2, sections section 2.2.13 and section 2.2.16 in this book for
complete listings of compiler options available for use with the debugger.
See section 2.2 for syntax rules governing the specifying of compiler options
on the command line.

Using the debugger

Then, when you execute the program, specify “-d” to turn on the debugger.
For example:

runcbl -dle errfile myprog

-Ga includes the source code in the compiled object file
and enables other helpful debugging features (see
section 2.2.13, “Debugging Options,” for detailed
information on those features).

-o allows you to specify the name of the output file for
the object code

myprog is the user-specified name of the output file

myprog.cbl is the name of the file containing the COBOL
source code

How to Get Help 1-25
Where:

Use “s” to step through the program one step at a time, or use the other
options described in section 3.1.3 in this book.

Using file trace

Another tool that is helpful in dealing with program execution problems is
the file trace feature of the debugger. It enables you to save information
about all file OPENs, READs, and WRITEs. File trace can be used even if
the program was compiled without the debugging option. File trace
information is saved in the error file. (The file trace feature is described in
detail in section section 3.1.4.)

Using screen trace

Another tool that is helpful in dealing with program execution problems is
the screen trace feature of the debugger. The screen trace feature enables you
to save information about DISPLAYs of screen section items and CREATEs,
DISPLAYs, MODIFYs and INQUIREs of ActiveX objects. Screen trace can
be used even if the program was compiled without the debugging option.
The screen trace information is saved in the error file. (The screen trace
feature is described in greater detail in section 3.1.5.)

-d turns on the debugger

-l causes the contents of the runtime configuration file
to be included in the error output

-e causes the error output to be placed in the file
named immediately after the option

errfile is the user-specified name of the error file (Be sure
to give a file name if you use the “-e” option.)

myprog is the name of your object file

1-26 Introduction
Working with your Technical Support Representative

We would be happy to assist you with the resolution of runtime problems.
Questions that require extended research are entered into our Technical
Support database and are assigned a tracking number. We use this tracking
number when we phone to give you updates on our investigation.

Here’s the information we’ll need to start our research:

Identify the CPU

and the terminal

by model number

Identify the

operating

system

Use runcbl -v

to determine

runtime version

Obtain error file

and trace with

runcbl -dle file prog

Isolate the trouble spot

if you can. Which

verb is executing?

2
 Compiler and Runtime
Key Topics

Introduction ..
Using the Compiler.. 2-3
Using the Runtime System.. 2-72
Compatibility Modes... 2-89
Source Formats.. 2-90
COPY Libraries... 2-92
Source Code Control ... 2-96
Runtime Configuration... 2-97
File Name Interpretation .. 2-106
Calling Subprograms .. 2-113
Reducing the Size of the Runtime .. 2-118
acushare Utility Program ... 2-119
General Preprocessor Interface .. 2-127

2-2 Compiler and Runtime
2.1 Introduction

ACUCOBOL-GT is a single-pass ANSI X3.23-1985 COBOL compiler
(ccbl). Errors encountered during compilation are displayed on the screen (or
written to an error file if one is requested) referencing the line where the error
was detected by source file and line number. A source listing, a symbol table
listing, and general information can be created on request.

A successful compile produces an object-code file. This file is ready to be
run by the ACUCOBOL-GT runtime system, runcbl. No linking is needed
to run the program. Any programs that are called during execution are loaded
dynamically at runtime by runcbl. Subprograms written in C may be linked
into the runtime system directly, or loaded dynamically if packaged in a
Windows DLL or UNIX/Linux shared object library, and then called by a
COBOL program using the CALL verb.

Note: The compiler, the runtime, and some utility programs have different
names, depending on the host system. For simplicity in this manual, we
refer to the compiler as ccbl, the runtime as runcbl, and the utilities by their
base names (vutil, vio, logutil, and cblutil).

runcbl has a symbolic source-level debugger built into it. You can run any
program under the debugger by specifying the debugger option (“-d”) at
runtime. The debugger runs in its own window that overlays the running
program. This prevents the debugger’s output from interfering with the
program’s output.

Using the Compiler 2-3
2.2 Using the Compiler

The compiler is called ccbl. It can be run in one of three different modes.
These modes are:

The compile mode is the default mode. The other modes are activated by
command-line options. The compile mode is discussed here; other modes are
described in separate sections in this chapter.

To compile a program, enter the following:
ccbl [options] program

No options are required. When no options are specified, the compiler prints
an error listing on the user’s terminal and names the object file
“source-name.acu”. The compiler runs in VAX COBOL compatibility mode
by default.

Many options are available. These are all indicated by an initial hyphen
(minus sign). These options are divided into different groups. Each group
(except the first) has a distinguishing letter. For example, the options that
control listings all start with the letter “L”. Any set of options from the same
group may be specified together. For example, the “-Lo” option and the
“-Ls” option may be grouped together as “-Los”. See below for examples.
Command-line options that begin with a hyphen are not case sensitive. For
example, “-Lo” and “-lo” are equivalent.

Options from the same group that require arguments may also be specified
together, as long as the required arguments immediately follow the combined
options, in the same order as the options. For example,

-o file1 -e file2

may also be specified as
-oe file1 file2

Compile Compiles COBOL programs

Help Prints a command-line summary

Version Prints the version and copyright

2-4 Compiler and Runtime
The complete list of options is given in the following sections.

The options used to compile a COBOL program are automatically embedded
in the header of the resulting object file. Use the “-x” option of the “cblutil
-info” command to output these options.

The compiler also supports several compiler directives. Compiler directives
are directly embedded in the source code and cause the compiler to behave as
specified by the directive. For more information, see section 2.2.15,
“Conditional Compilation Options.” Support for compiler directives is
likely to expand in future versions.

2.2.1 Standard Options

-e

This option must be followed by a file name (as the next separate
argument). When specified, this option causes the error listing to
be written to the specified file instead of the screen. This file is
removed if no errors are found. The acurfap syntax can be used to
specify a file located on a system being served by AcuServer or
AcuConnect. See section 2.2.18.1, “Remote file name handling.”

-o This option must be followed by a file name (as the next separate
argument) which becomes the name of the object file instead of
“source-name.acu”. This file is removed if the compiler detects
errors in the source.

This option supports the use of acurfap syntax to create remote files
and libraries. For detailed rules regarding the file name
specifications for remote objects, see section 2.2.18.1, “Remote
file name handling,” and section 3.2.2.1, “Creating remote
object libraries,” in Chapter 3.

Using the Compiler 2-5
2.2.2 Native Code Options

ACUCOBOL-GT supports several options that cause it to generate and
execute object files that contain native instructions for select families of
processors. These options may not be combined with other options into a
single option. For example, it is an error to specify “-nv”; you must specify
“-n -v” instead.

The compiler uses cblutil to produce the native-code object file. cblutil is
installed in the same directory as the compiler by default. The compiler
searches the execution path if it cannot find cblutil in its own directory.

You run a native-code object module just like a portable-code object module.
You may mix native-code objects and portable-code objects in the same run.
Native objects may be placed in libraries just like portable objects.

-v This option has multiple applications:

If it is the first and only option on the command line, then the
compiler runs in “Version” mode (see section 2.2.21, “Help,
Version Information, and Communication With C Programs”).
Using “-v” you can display version information, the copyright
notice, and other information.

Otherwise, if it is used in combination with other options, it causes
the compiler to be verbose about its progress.

Because “-v” is the lead-in sequence for the video options (see
section 2.2.11, “Video Options”), this option should be specified
by itself.

-w Causes warning messages to be suppressed (a warning condition is
never a fatal compilation error). Suppressing warning messages
can be helpful when you are converting programs from another
COBOL dialect that uses slightly different syntaxes. Note that
“-w” negates the effect of “-Wa” and “-Wl”, which generate
additional warning messages.

-x This causes the CBLFLAGS environment variable to be ignored.
This is described in detail in section 2.2.20, “CBLFLAGS
Environment Variable.”

2-6 Compiler and Runtime
You can use the debugger with a native-code module in the same fashion as
with a portable-code module. The only restriction is that you may not begin
program execution at an arbitrary point in a native-code module (the “@!”
command). Also, to prepare a native-code object for use with the debugger,
you must compile the program with one of the debugging options, such as
“-Ga” or “-Gd”. A complete list of debugging options is located in section
2.2.13, “Debugging Options.”

Example:

To compile and run the “tour.cbl” program as a portable-code object, use the
following commands:

ccbl tour.cbl
runcbl tour

To compile and run the same program as a native-code object, use the
following:

ccbl -n tour.cbl
runcbl tour

Using the Compiler 2-7
These are the ACUCOBOL-GT compiler native code options:

-n

This option causes the compiler to produce native code
for the host machine (instead of processor-independent
portable code). If native code generation is not
supported for the host machine, the compiler generates
an error.

The word-size of the native code generated with the
“-n” option matches the internal word-size of the
compiler, and not that of the host machine’s processor.
It does this because the word-size of the native code
must match the internal word-size of the runtime to
execute correctly. Therefore, a 32-bit compiler, even
when running on a 64-bit machine, will produce 32-bit
native code.

If running a program compiled with “-n” on a Windows
machine that has Data Execution Protection (DEP)
enabled for all processes, you need to set the runtime
configuration variable
USE_EXECUTABLE_MEMORY to “TRUE”.

--noinlineCall This option turns off a feature that enhances the
performance of called subroutines. By default, this
feature is turned on, but in version 8.0 had to be
specified by the “--inlineCall” command. It is not
recommended that you turn off this feature. It is useful
if you have interest in testing the potential peformance
difference.

--intel
or
--ia-32

This option causes the compiler to produce 32-bit native
code for Intel-class processors (486, Pentium, Pentium
II, Pentium III, or compatible processors). You can use
this option from any host machine. This is the same as
specifying “-n” when the host machine is an Intel-class
machine.

2-8 Compiler and Runtime
--pa_risc
or
--pa

This option causes the compiler to produce 32-bit code
for PA-RISC Version 1.0 processors running the
HP-UX or MPE/iX operating systems. Note that the
runtime must be a 32-bit runtime, to match the code
contained in the object file. The 32-bit runtime runs
without modification on PA-RISC 2.0 platforms as
well, providing a portable solution. You can use this
option from any host machine. This is the same as
specifying “-n” with a 32-bit compiler on an HP-UX or
MPE/iX machine.

--pa_risc_2.0
or
--pa2

This option causes the compiler to produce 64-bit code
for PA-RISC Version 2.0 processors running the
HP-UX operating system. Note that the runtime must
be a 64-bit runtime, to match the code contained in the
object file. You can use this option from any host
machine. This is the same as specifying “-n” with a
64-bit compiler on an HP-UX machine.

--power Produces code that is compatible with POWER and
POWER2 processors, as well as PowerPC and later
POWER series processors. This option allows you to
use a wide range of machines, but it may affect
performance.

--powerpc
or
--ppc

This option causes the compiler to produce 32-bit
PowerPC native code for pSeries processors running
AIX. You can use this option from any host machine.
This is the same as specifying “-n” with a 32-bit
compiler on a pSeries machine.

Note that you can compile native code only for
machines with a POWER3 or later chip, not
withPOWER2 or earlier.

--powerpc_64
or
--ppc64

This option causes the compiler to produce 64-bit
PowerPC native code for pSeries processors running
AIX. You can use this option from any host machine.
This is the same as specifying “-n” with a 64-bit
compiler on a pSeries machine.

Using the Compiler 2-9
2.2.3 Listing Options

By default, ACUCOBOL-GT does not generate a listing. The options
described below cause a listing to be created and control its contents. In
addition to the items specified for these options, the listing file contains all
the options given to the compiler. For example, a listing file could begin with

iobench.cbl Sat Sep 18 06:55:54 2005 ACUCOBOL-GT v7.3.0 Page: 0001
..\bin\ccbl32 -Lfo @.lst iobench.cbl
CBLFLAGS: -v -Za

Note that CBLFLAGS (or any other variable) is not included in the listing
unless it is set

CROSS-REFERENCE

Line Name Referenced on line(s)

--sparc This option causes the compiler to produce 32-bit native
code for SPARC (v7 - v9) processors. You can use this
option from any host machine. This is the same as
specifying “-n” with a 32-bit compiler on a
SPARC-based host machine.

--sparc_v9 This option causes the compiler to produce 64-bit
native code for SPARC version 9 processors. You can
use this option from any host machine. This is the same
as specifying “-n” with a 64-bit compiler on a SPARC
v9-based host machine.

-La This option causes the compiler to create and display separate
tallies for “warnings” and “cautions.” Without this switch the
compiler combines the tallies and reports the sum under the
category of “warnings.”

-Lc

This option creates a cross-reference table at the end of the
listing. The cross-reference first lists all Working-Storage data
items in alphabetical order, then all section names and paragraph
names. Included for each item are: the line on which the item is
declared, the name of the item, and the lines on which it is
referenced. A small example is shown below.

2-10 Compiler and Runtime
32 ACOMMA
30 DISPLAY-FILE-STATUS 54* 62
36 ERROR-WINDOW 59* 65*
26 FILE-STATUS 44 83
35 FLD1 44*
34 FLD1-LITERAL 43
27 FULL-FILE-STATUS 53 54*
42 MAIN-SCREEN Unreferenced
31 PRIMARY-FILE-STATUS Owning group referenced
28 PRIMARY-FILE-STATUS Owning group referenced
23 RST-REC Owning group referenced
33 SECONDARY-FILE-STATUS Owning group referenced
29 SECONDARY-FILE-STATUS Owning group referenced
21 TEST-RECORD75 77 79
37 WHITE-ON-BLUE 57

testit.cbl Thu Sep 04 10:05:42 1998 ACUCOBOL-GT v4.0 Page:0002

CROSS-REFERENCE SECTIONS/PARAGRAPHS

Line Name Referenced on line(s)

69 MAIN-LOGIC
51 TESTFIL-ERR-HANDLING
49 TESTFIL-ERROR-HANDLING 50

Using the Compiler 2-11
 If an item is not referenced directly, the listing indicates if the
item’s “owning group” is referenced, or if a “subordinate item” is
referenced, or both (“owning group & subordinate item”).

If the compiler detects that a Working Storage data item may be
removed without affecting program functionality, it prints the
word “Unreferenced” to the right of the name of the data item.
This happens only if the data item is not a group item with
subordinates that are referenced, and the data item is not
subordinate to a group item that is referenced.

A line number followed by an asterisk indicates that the contents
of the data item were modified at that line. Parameters passed in
a CALL statement BY REFERENCE are always marked as
modified in the listing, because it is possible that they were
changed. An item that is not directly referenced but belongs to a
referenced group, or is subordinate to an item that is referenced,
is so indicated. When a full listing is requested with a
cross-reference (“-Lfc”), line numbers are placed in columns 3
through 9 of the listing.

The first three columns of the listing indicate the copy files.
Each line of a copy file is indicated, with the nest level number
followed by a greater than symbol (>). The nest level number is
“1” for a copy file included directly in the main source file, “2”
for a copy file that is included in a level “1” copy file, “3” for a
copy file included in a level “2” copy file, and so forth. An
example of a copy file listing is shown under the “-Lw” option.

-Lf Creates a full listing of the source program including the text of
the COPY libraries.

-Li Creates summary information about the program compiled. This
is automatically set by any of the “-L” options.

-Ll

Sets the page length of the listing. This option must be followed
by the number of lines per page (as the next separate argument).
Specifying a negative number or zero (“0”) for the argument
produces a continuous listing without page headers or form feeds
(a blank line separates different sections of the listing).

2-12 Compiler and Runtime
-Lo This must be followed (as the next separate argument) by the
name of the file to hold the listing. If this option is not specified,
the listing is written to the standard output. This may be
redirected to a file or a printer using the normal operating system
commands. The acurfap syntax can be used to specify a file
located on a system being served by AcuServer or AcuConnect.
See section 2.2.18.1, “Remote file name handling.”

-Lp This option directs the compiler to produce a “preprocessed”
output file that can later be compiled to produce the same object
code as the original source. The output includes the content of all
COPY files and the results of all COPY REPLACING and
REPLACE logic. The output does not include any comments or
formatting from the original source. The output is sent to the
standard output stream unless “-Lo” is used to specify a file.
“-Lp” overrides all other listing options except “-Lo”.

This option is especially useful if your COPY files contain
statements that other preprocessors don’t allow in COPY files,
such as embedded SQL or CICS statements. To compile such a
program, you first create the preprocessed file and then compile
it. For example:
 ccbl -Lpo finalsrc.cbl -sp copybooks origsrc.cbl
 ccbl -Ga -o myprogram.acu finalsrc.cbl

Note: If the preprocessed code is subsequently compiled to
include debugging symbols, the code displayed in the debugger
is, of course, the preprocessed code, which does not include
comments or formatting.

Using the Compiler 2-13
 50 main-logic.
 51 000002 copy "copyfile".
1> 52 *
1> 53 display "COPY file".
1> 54 *
 55 00000E display window
 56 size 40 lines 10
 57 line 10 col 10 boxed
 58 pop-up area is error-window.

2.2.4 Internal Tables Options

The ACUCOBOL-GT compiler makes use of several internal tables for
storing information about the COBOL program it is compiling. Most of these
tables are dynamically resized as needed during compilation. A few of them
are allocated a fixed amount of space. The amount of space allocated to the
fixed size tables is enough for the vast majority of programs, but occasionally
a program will require more space than is allocated by default. When this
occurs, the compilation fails and a “*** %s overflow ***” error message is
output. (See Appendix D, “List of Errors.” for a detailed explanation of the

-Ls Creates a symbol table at the end of the listing.

-Lw Specifies a wide listing format. This option implies a full listing
(thus “-Lw” is equivalent to “-Lfw”). The listing uses 101
characters to display copy book indicators, line numbers, relative
line numbers, program addresses, sequence numbers, and the rest
of each source line.

For multiple-line sentences, the address of the first verb of each
line is shown.

The first three columns indicate copy files. Each line of a copy
file is indicated, with the nest level number followed by a greater
than symbol (>). The nest level number is “1” for a copy file
included directly in the main source file, “2” for a copy file that
is included in a level “1” copy file, “3” for a copy file included in
a level “2” copy file, and so forth. Following is a portion of a
listing that shows a copy file:

-Lx Creates extended statistics at the end of the listing.

2-14 Compiler and Runtime
error.) In such cases, the user can increase the amount of space allocated to
that table by including the appropriate “-T” compilation switch on the
compiler command line.

The switches are:

Note: The compiler error message always suggests that you double the size
of the default value. However, doubling the size is not always the best
approach. Ideally, the size of the table should not be substantially larger
than what is needed to compile the program.

-Td ####

Identifier and statement table--sets the maximum number of
items in each statement. The default value is 4096.

-Te ### Subscript statement table--sets the maximum size for
OCCURS statements. The default value is 256.

Using the Compiler 2-15
2.2.5 Compatibility Options

ACUCOBOL-GT has several options that aid in converting programs written
for other COBOL environments. See Section 2.4, “Compatibility Modes,”
for more information. By default, ACUCOBOL-GT runs in the VAX
COBOL compatibility mode.

-Ca

This option causes simple ACCEPT and DISPLAY statements to
be treated in accordance with ANSI semantics. Specifying this
option is the same as specifying FROM CONSOLE for all simple
ACCEPT statements and UPON CONSOLE for all simple
DISPLAY statements. You can control this behavior for
individual ACCEPT or DISPLAY statements by specifying an
explicit FROM/UPON phrase. For more information, see the
discussion in Book 2, Chapter 2, section 2.3.1, “ANSI
ACCEPT and DISPLAY Verbs”

Prior to Version 2.1, “-Ca” was a synonym for the compile-time
option “-Va”. If you have an obsolete reference to “-Ca” in any
of your compile scripts, or in your CBLFLAGS environment
setting, make sure that you change this to “-Va”.

-Cb This option causes all sequential files that are not explicitly
specified as LINE or BINARY sequential to be treated as
BINARY sequential. Normally the file type is determined by a
long sequence of rules (see Book 3, Reference Manual, Section
5.1.7, “File Types”). Files specified as print files are treated as
LINE sequential even when this option is selected.

2-16 Compiler and Runtime
-Ce This option allows you to specify a default source name
extension that is used for both the main source file and its COPY
files. When it is specified, any source or COPY file name that
does not explicitly specify an extension has the default extension
appended to it. When the option is specified in RM/COBOL
compatibility mode, the default extension is “.CBL”. Otherwise,
the default is “.COB”.

You may specify an alternate default by naming it after an “=”
sign in the “-Ce” option. For example, the option “-Ce=CPY”
would cause the default extension to be “.CPY”.

ACUCOBOL-GT automatically adjusts the extension for upper
or lower case to match the case of the name it is being appended
to, then searches for the COPY file. If this first search fails,
ACUCOBOL-GT matches the case of the extension specified in
the “-Ce” compiler option to perform a second search for the
COPY file.

-Cf This option forces all indexed, relative, and binary sequential
files to be given fixed-length records. Normally the record type
is determined by a sequence of rules (see Section 5.1.7, “File
Types” in Book 3, Reference Manual). This flag is supplied to
enhance compatibility with pre-85 compilers and earlier versions
of ACUCOBOL-GT.

-Ci Causes the compiler to be compatible with ICOBOL for certain
COBOL constructs. References in this manual to VAX COBOL
compatibility also apply to ICOBOL compatibility mode unless
otherwise stated.

Using the Compiler 2-17
-Ck Causes the compiler to generate key numbers for indexed file
alternate keys in a different order. Key numbers are used
internally by the compiler and runtime to identify a key.
Normally, you do not need to know the key number for a
particular key, or care about the order in which they are
generated. By default, the compiler sorts the alternate keys in
record order before assigning key numbers. This ensures that the
keys are given the same number regardless of the ordering in the
file’s SELECT. Specifying “-Ck” causes the compiler to assign
key numbers in the SELECT order.

For most applications, the order in which key numbers are
assigned is irrelevant. This option provides compatibility with
some other COBOL compilers. This could be helpful when you
are sharing data files between ACUCOBOL-GT based programs
and programs compiled with these other systems.

-Cm This option causes the compiler to be compatible with IBM/
COBOL for the ASSIGN phrase of a SELECT statement. The
syntax for the IBM/COBOL ASSIGN phrase is:
ASSIGN TO <filename-1> [<filename-2>
<filename-3> ...]

where <filename-1>, <filename-2>, and <filename-3> are file
identifiers.

Compiling with the “-Cm” option allows the IBM/COBOL
ASSIGN phrase to ignore <filename-2> and <filename-3>. If
<filename-1> contains any “-” characters, only the characters
following the last “-” will constitute the file name assignment for
the particular SELECT command. For example:
SELECT TESTFILE ASSIGN TO SYS000-AS-TEST1

results in a file called “TEST1”.

All of the existing ACUCOBOL-GT SELECT phrases and
options can be used with the IBM/COBOL ASSIGN phrase.

-Cp This sets the compiler to its HP COBOL compatibility mode. In
this mode, it accepts features of HP COBOL that are not
otherwise accepted. See Chapter 4 in Transitioning to
ACUCOBOL-GT for more information.

2-18 Compiler and Runtime
-Cr This option sets the compiler to its RM COBOL compatibility
mode. In this mode, it accepts features of RM COBOL that are
not otherwise accepted. See Chapter 2 in Transitioning to
ACUCOBOL-GT for more information.

-Cv This option sets the compiler to its IBM DOS/VS compatibility
mode. In this mode, it accepts features of IBM DOS/VS COBOL
that are not otherwise accepted. See Chapter 5 in Transitioning
to ACUCOBOL-GT for more information.

Since there are slight differences between IBM COBOL versions,
“-Cv” also takes the following optional arguments:

“-Cv=OSVS” specifies OSVS compatibility.

“-Cv=VSC2” specifies VSC2 compatibility.

“-Cv” by itself defaults to OSVS mode. The two modes are very
similar, except that in VSC2 compatibility mode, the following
words are not reserved:

CURRENT-DATE

EXAMINE

TIME-OF-DAY

TRANSFORM

Note that CURRENT-DATE is a valid function in any
compatibility mode.

-C3 Causes ACUCOBOL-GT to abide by the rules used by Version
1.3. Later versions changed the way ACUCOBOL-GT treats a
few special cases. If you use this flag, ACUCOBOL-GT will
treat these cases in the same way it did under Version 1.3. This
is useful if you are compiling programs written for Version 1.3
and you do not want to modify the programs. Appendix C in
Book 4, Appendices, contains details of which features are
affected by this option.

Specifying this option does not prohibit the use of later features,
but merely ensures that the changed features behave in the
original fashion. Compare with the “-Z3” option below.

-C4 Similar to -C3, this option causes the compiler to generate code
according to the rules used by Version 1.4.

Using the Compiler 2-19
-C5 This option causes the compiler to maintain source compatibility
with the Version 1.5 compiler.

-C20 Causes the compiler to maintain source compatibility with the
Version 2.0 compiler. Chart verbs are allowed.

-C21 Causes the compiler to maintain source compatibility with the
Version 2.1 compiler

-C22 Causes the compiler to maintain source compatibility with the
Version 2.2 compile.

-C23 Causes the compiler to maintain source compatibility with the
Version 2.3 compiler

-C24 Causes the compiler to maintain source compatibility with the
Version 2.4 compiler

-C30 Causes the compiler to maintain source compatibility with the
Version 3.0 compiler

-C31 Causes the compiler to maintain source compatibility with the
Version 3.1 compiler

-C32 Causes the compiler to maintain source compatibility with the
Version 3.2 compiler

-C40 Causes the compiler to maintain source compatibility with the
Version 4.0 compiler

-C41 Causes the compiler to maintain source compatibility with the
Version 4.1 compiler

-C42 Causes the compiler to maintain source compatibility with the
Version 4.2 compiler

-C43 Causes the compiler to maintain source compatibility with the
Version 4.3 compiler

-C50 Causes the compiler to maintain source compatibility with the
Version 5.0 compiler

-C51 Causes the compiler to maintain source compatibility with the
Version 5.1 compiler

-C52 Causes the compiler to maintain source compatibility with the
Version 5.2 compiler

2-20 Compiler and Runtime
-C60 Causes the compiler to maintain source compatibility with the
Version 6.0 compiler

-C61 Causes the compiler to maintain source compatibility with the
Version 6.1 compiler

-C62 Causes the compiler to maintain source compatibility with the
Version 6.2 compiler

-C70 Causes the compiler to maintain source compatibility with the
Version 7.0 compiler

-C71 Causes the compiler to maintain source compatibility with the
Version 7.1 compiler

-C72 Causes the compiler to maintain source compatibility with the
Version 7.2 compiler

-C73 Causes the compiler to maintain source compatibility with the
Version 7.3 compiler

Using the Compiler 2-21
2.2.6 Interoperability Options

 --javaclass

Generates a “.java” file in addition to a “.acu” file.
The “.java” file has the same prefix as the “.acu”
file and is placed in the same directory. This
“.java” file is a Java class that calls the COBOL
program being compiled. Refer to A Guide to
Interoperating with ACUCOBOL-GT, section 2.2
for more information on calling COBOL from
Java.

--javamain

Generates a “.java” file in addition to a “.acu” file.
The “.java” file has the same prefix as the “.acu”
file and is placed in the same directory. This
“.java” file is a Java class with a main method
added. This class calls the COBOL program that is
being compiled. Refer to A Guide to
Interoperating with ACUCOBOL-GT, section 2.2
for more information on calling COBOL from
Java.

2-22 Compiler and Runtime
--netexe Generates a .NET executable file for
command-line execution. The name of the
executable is the name of the program followed by
“.exe.” All valid ACUCOBOL-GT command-line
options can be specified with the executable, as
well as any of the following Linkage Section
parameters:

-int:

-string:

-uint:

-short:

-ushort:

-float:

-double:

-long:

-ulong:

-byte:

See A Guide to Interoperating with
ACUCOBOL-GT, section 5.4 for more details.

--netdll Generates a .NET dynamic link library (DLL) that
gives .NET assemblies—both executables and
DLLs—a programmatic interface to your COBOL
program. All COBOL entry points are exposed as
.NET methods along with ACUCOBOL-GT
runtime properties and methods. This allows .NET
programmers to set ACUCOBOL-GT command
options and call runtime interfaces from their .NET
assembly. Refer to A Guide to Interoperating with
ACUCOBOL-GT, section 5.4 for more details.

Using the Compiler 2-23
2.2.7 File Options

Some file options (-Fa, -Fe, -Fx, and -F4) are used to generate XFD files (data
dictionaries) that are used with Acu4GL, AcuXML, the alfred record editor,
and with international character mapping for AcuXDBC and AcuServer.
Other file options (-Fl, -Fs, and -Ft) can simplify the addition of transaction
management facilities to existing programs that use the Vision file system.
For more details regarding transaction management, see section 5.1,
“Transaction Management.” For more details about international
character mapping, see section 5.4, “International Character Handling.”

-Fa

This option tells the compiler to build data dictionaries
(XFD files) for every indexed, relative, and sequential
data file in the FDs of the program. It is the only option
that builds XFDs for relative and sequential files. This
option is also used for AcuXML file translation and for
international character mapping. See also the “-Fo”
compile-time option, which specifies the directory in
which the data dictionaries are placed.

The “-Fa” option generates the most current format for
the XFD files (Version 6). (XFD versioning is distinct
from Vision versioning.) Any version of Vision will
work with any version of XFD, as long as the XFD
version can store all the necessary precision of the Vision
file. (For example, if you are using Vision Version 5 and
you want to use a larger record size than what can be
stored in 5 digits, then you will need to use Version 5
XFDs.)

An attempt to use the “-Fa” option with a
backwards-compatibility switch results in a warning and
the XFDs for RELATIVE and SEQUENTIAL files are
not created. An attempt to use this option for records
containing duplicate element names also results in a
warning; however, if you are creating XFDs for
AcuXML, you may disregard this warning. XFDs will be
generated, and XML supports duplicate names.

-Fc This option causes the field names in generated XFD
files to match exactly the source of the COBOL program
that generated them.

2-24 Compiler and Runtime
-Fe Causes XFD files to be generated in XML format rather
than the standard flat text format. Acu4GL, AcuXDBC,
and alfred can all read XFD files in XML format. This
option must be used in conjunction with the “-Fx” or
“-Fa” options. The C$XML library routine can be used
to parse the XML files if desired. This option will not
work in combination with “-F4” or “-F3”. Version 4 and
3 XFD files cannot be generated in XML format.

-Fl Enables single locking rules rather than multiple locking
rules as the lock mode default. Normally, “WITH
ROLLBACK” causes multiple locking rules to be in
effect for a file. When “-Fl” is used, the “WITH
ROLLBACK” clause does not affect whether single or
multiple record locking rules are followed. Single
locking becomes the default. You may enable multiple
locking either by specifying “WITH LOCK ON
MULTIPLE RECORDS” in a file’s SELECT statement
or by using “APPLY LOCK-HOLDING ON file” in the
I-O CONTROL paragraph.

-Fm Causes LOCK MODE IS MANUAL to be applied when
the LOCK clause is omitted from the SELECT statement
in the FILE-CONTROL paragraph.

Using the Compiler 2-25
-Fn Specifies file locking as the default behavior for files that
do not have locking or sharing already specified or
implied from within the program. This option can
improve batch processing times and make file access
more restrictive for programs that do not specify any
form of file locking.

This option implies a lock on any OPEN statement
contained in the program. The implied lock is based on
the OPEN format as follows:

OPEN Implied Lock

OPEN INPUT ALLOWING READERS

OPEN OUTPUT ALLOWING NO OTHERS

OPEN EXTEND ALLOWING NO OTHERS

OPEN I-O ALLOWING NO OTHERS

If the following file locking or sharing methods are
applied to a file then the “-Fn” has no effect:

a. SELECT contains a LOCK phrase. The specified or
implied behavior of the LOCK phrase is used.

b. The OPEN statement contains the EXCLUSIVE,
LOCK, MASS-UPDATE, BULK-ADDITION, or
ALLOWING phrases. The sharing attributes that these
phrases set are used.

See Book 3, ACUCOBOL-GT Reference Manual,
OPEN Statement for details on applying file locks and
sharing.

2-26 Compiler and Runtime
-Fo This option must be followed (as the next separate
argument) by the directory that will hold the data
dictionary files generated by the compiler when you use
the “-Fx” option.

Type a space after the option and then give the name of
the chosen directory. If this option is not used, the data
dictionaries are placed into the current directory.

For example, to cause the dictionaries to be stored in the
directory “/usr/inventory/dictionaries” you would enter:

-Fo /usr/inventory/dictionaries

The acurfap syntax can be used to specify a location on a
system being served by AcuServer or AcuConnect. For
information about acurfap syntax, see section 2.2.18.1,
“Remote file name handling.”

-Fp Causes all files, except sort files, to be treated as if the
OPTIONAL phrase is specified in the SELECT
statement.

-Fs Causes an implied START TRANSACTION verb before
the first OPEN, CLOSE, WRITE, REWRITE, or
DELETE and after each COMMIT or ROLLBACK. In
effect, every file operation is part of a transaction. If this
option is enabled, and the compiler encounters a START
TRANSACTION verb, it reports a warning and does not
generate any code for the START TRANSACTION. The
“-Fs” option provides an alternate way to program
transactions and is often useful when you are converting
from other COBOL or SQL implementations.
Transaction management is discussed in detail in Section
5.1.

Using the Compiler 2-27
-Ft Causes implied transactions for every OPEN, CLOSE,
WRITE, REWRITE, or DELETE that is not part of an
explicit transaction. Single file operations that are not
part of a transaction are preceded by an implied START
TRANSACTION and followed by an implied COMMIT.
This option makes converting existing applications to a
transaction system easier. Note that unlike most
COMMITs, which unlock all of the file’s currently
locked records, the implied COMMIT does not unlock
any records. See Section 5.1.4, “Extended Locking
Rules” for details regarding file locking and the handling
of implied transactions.

-Fx This option directs the compiler to build Version 6 data
dictionaries (XFD files) for every indexed data file in the
FDs of the program. If you need an older version of
XFD files, specify the “-F3”, “-F4”or “-F5” option
instead of “-Fx”. If you use relative, sequential, or XML
data files, use the “-Fa” option instead. Use the “-Fo”
option to specify the directory in which the data
dictionaries should be placed.

Note: XFDs are required if you plan to use any
Acu4GL interface, AcuXDBC, or AcuXML; these
interfaces cannot operate without data dictionaries.
XFDs are also required for international character
mapping with AcuServer and they provide useful
information to the alfred record editor. XFD files have
tthree different formats: Version 4, Version 5 and
Version 6. Database technologies in the extend6
Interoperability Series, including AcuXML, require
Version 5 XFDs. Version 4 XFDs are required for
previous versions of Acu4GL, alfred, and AcuODBC
(Version 5.x and earlier).

2-28 Compiler and Runtime
-F4 This option tells the compiler to build Version 4 data
dictionaries (XFD files) for every indexed data file in the
FDs of the program. This older version of the XFD files
is compatible with Acu4GL, AcuODBC, and alfred
Version 5.x and earlier. To build Version 4 XFDs for
every indexed, relative, and sequential data file in your
FDs, combine “-F4” with “-Fa”, as in “ccbl -F4 -Fa”.

-Fxa Supported but obsolete. It produces the same result as
“-Fa”.

--fileAssign= This option allows you to specify how to assign a
filename when neither DYNAMIC or EXTERNAL is
part of the ASSIGN clause of the SELECT statement.
The “=” must be followed by the keyword DYNAMIC or
EXTERNAL. For example, “--fileAssign=external”
causes the compiler to treat SELECT statements that do
not specify DYNAMIC or EXTERNAL in the ASSIGN
clause, as if EXTERNAL were specified.

--fileIdSize=#

Specifies the size, in bytes, of file handles passed to
COBOL programs. “#” is replaced by the value 2, 4, or
8 to specify the number of bytes in the passed integer. A
four byte native integer is passed by default. A two byte
native integer is used in HP COBOL compatibility mode
(“-Cp”).

Using the Compiler 2-29
2.2.8 Source Options

The source options modify the way the compiler treats the physical source
files.

-S#

Specifying a digit with “-S” causes ACUCOBOL-GT to use
alternate tab stops for its source files. By default,
ACUCOBOL-GT sets tabs every eight columns. When this
option is used, tabs will be set every “#” columns apart where “#”
is the number specified. For example, “-S4” will set tab stops at
every fourth column. Tab stops always start in column 1.

-Sa This causes the compiler to assume that the input source is in the
standard ANSI source format. For details on source formats, see
section 2.5, “Source Formats.” This option can be specified in
a compiler directive. See section 2.2.15, “Conditional
Compilation Options.”

-Sc This option must be followed by one of the following encoding
scheme identifiers: BIG5, DBC, EUC, GB, KSC, or SJC. When
used, this option causes the compiler to assume that the input
source is encoded using the specified encoding scheme. This
allows the compiler to recognize double-byte characters used in
string literals and comments. The table below shows the
encoding scheme identifiers, the code system to which each
setting refers, and some examples of operating systems to which
the particular encoding scheme applies:

Setting Code System Op. System Example

BIG5 Big Five (Taiwan) Chinese DOS, Windows

DBC ACUCOBOL-GT
Generic
Double-byte
Coding Scheme

other double-byte machines

EUC Extended UNIX Most UNIX machines

GB Code of Chinese
Graphic Character
Set (People’s
Republic of China)

Chinese DOS, Windows

2-30 Compiler and Runtime
KSC Korean Character
Standard

Korean DOS

SJC Shift JIS Code
(Japanese Industrial
Standard)

DOS/V, Windows, some
UNIX machines

 -Sd

Setting this option causes debugging lines marked with “D” in
the indicator area to be treated as normal source lines instead of
comment lines. This is equivalent to supplying the phrase
“WITH DEBUGGING MODE” in the SOURCE-COMPUTER
paragraph.

-Si This option causes the compiler to include source lines according
to a pattern in the Identification Area of the source line. The next
(separate) command-line argument is treated as this pattern.
(The pattern is case sensitive; enclose it in double quotes on
systems such as VMS where you need to preserve its case.) For
details on source code control and the use of this option, see
section 2.7, “Source Code Control.”

-Sp With this option you can specify a series of directories to be
searched when the compiler is looking for COPY libraries. This
option is followed (as the next separate argument) by the set of
directories to search. See section 2.6, “COPY Libraries.”

The acurfap syntax can be used to specify a location on a system
being served by AcuServer or AcuConnect. For information
about the acurfap syntax, see section 2.2.18.1, “Remote file
name handling.”

-Sr This option causes ACUCOBOL-GT to use RM/COBOL-style
tab stops. These tabs are set four columns apart starting in
column 8 and ending at column 72.

Setting Code System Op. System Example

Using the Compiler 2-31
2.2.9 Reserved Word Options

ACUCOBOL-GT provides the ability to suppress certain sets of reserved
words. When suppressed, these words are treated as user-defined words
instead. This ability is provided to aid in converting programs written for
other COBOL environments. Reserved words that have been added to the
1974 standard are divided into the groups identified below. By specifying the
corresponding option, you cause that group of words to be treated as
user-defined words.

Section B.2 in Book 4, Appendices, includes a list of reserved words and
shows which group each word belongs to. Some words belong to more than
one group. Every group a word belongs to must be suppressed for the word
to be treated as a user-defined word.

-St This forces the compiler to use the terminal source format. For
details, see section 2.5, “Source Formats.” This option can be
specified in a compiler directive. See section 2.2.15,
“Conditional Compilation Options.”

-Sx This is similar to the “-Si” option above, except that the next
argument is treated as a pattern to use to exclude source lines.
For details on source code control and the use of this option, see
section 2.7, “Source Code Control.”

-R8 Suppresses words reserved by the 1985 COBOL standard.

-Ra Suppresses words reserved by ACUCOBOL-GT that are required
for its unique extensions.

-Rc

Allows you to change a reserved word. This option must be
followed by two separate arguments. The first is the reserved
word you want to change. The second is the word that you want
to use instead. For example, “-Rc TITLE NAME” will allow you
to use “TITLE” as a user-defined word and will cause the word
“NAME” to be treated as the reserved word “TITLE”. You may
not specify a word that is already reserved as the new reserved
word. This option may be repeated to transform multiple
reserved words.

2-32 Compiler and Runtime
-Ri Suppresses words reserved by ICOBOL that are not in the 1985
standard.

-Rn Allows you to make a reserved word a synonym for another
reserved word. This option must be followed by two separate
arguments. The first is the reserved word for which you want a
synonym. The second is the word that functions as the synonym.
For example: “-Rn COMP COMP-5” causes “COMP-5” to be
treated the same as the reserved word “COMP”. This option may
be repeated to make multiple synonyms.

-Rr Suppresses words reserved by RM/COBOL that are not in the
1985 standard.

-Rs Suppresses words added to ACUCOBOL-GT in order to support
the Screen Section.

-Rv Suppresses words reserved by VAX COBOL that are not in the
1985 standard.

-Rw This option allows you to suppress a particular reserved word.
The option must be followed (as the next separate argument) by
the reserved word you want to suppress. This option may be
repeated to suppress multiple reserved words.

This option also allows you to suppress some non-reserved
words, such as control names (e.g., “entry-field”, “label”) or
property names (e.g., “max-text”, “bitmap-number”). If you tell
the compiler to suppress a non-reserved word, it issues the
following warning:
Unknown reserved word: non-reserved word

-Rx This option tells the compiler to ignore a particular word. The
option must be followed (as the next separate argument) by the
word you want the compiler to ignore. This option may be
repeated to ignore multiple words.

Using the Compiler 2-33
2.2.10 Data Storage Options

For more information about the format of a data item in memory, see Section
5.7.1.8 in Book 3, Reference Manual.

-Da

Allows you to specify the data alignment modulus for level 01
and level 77 data items. Normally, level 01 and level 77 data
items are aligned on a 4-byte boundary (modulus 4). This is
optimal for 32-bit architectures. You can specify an alternate
alignment boundary by following this option with the desired
modulus. This should be specified as a single digit that
immediately follows the “-Da” as part of the same argument.
For example, “-Da8” specifies that data should be aligned on
eight-byte boundaries, which can provide improved
performance on a 64-bit machine.

-Db Causes COMPUTATIONAL data items to be treated as if they
were declared as BINARY data items. This is the default
when you are using VAX COBOL compatibility mode.

-De Causes the compiler to generate MOVE code for all
LINKAGE data items that works regardless of the alignment
of the data item. The move is, however, less efficient. Please
note that this option should be used only if the linkage is given
values using the SET ADDRESS OF verb.

-Dca

This selects the ACUCOBOL-GT storage convention. It is the
default setting. This convention is also compatible with data
produced by RM/COBOL (not RM/COBOL-85) and previous
versions of ACUCOBOL-GT. It also produces slightly faster
code.

2-34 Compiler and Runtime
-Dcb This selects the MBP COBOL sign storage convention. See
Book 3, section 5.7.1.8 for the specifics of sign storage.

Note that the MBP COBOL sign storage convention for
USAGE DISPLAY directly conflicts with that used by IBM
COBOL and some other COBOLs. As a result, signed
USAGE DISPLAY items in the MBP format are correctly
understood only when the program is compiled with “-Dcb”.
This is unlike the other sign conventions in which the runtime
can usually extract the correct value even when a mismatched
sign convention is specified at compile time.

Also note that MBP COBOL does not have the COMP-2
storage type. The convention that ACUCOBOL-GT
implements (Positive: x’0C’; Negative: x’0D’) was chosen
because MBP COBOL most closely matches the sign storage
of other COBOLs that use that convention.

-Dci This selects the IBM storage convention. It is compatible with
IBM COBOL, as well as with several others including RM/
COBOL-85. It is also compatible with the X/Open COBOL
standard.

-Dcm This selects the Micro Focus storage convention. It is
compatible with Micro Focus COBOL when the Micro Focus
“ASCII” sign-storage option is used (this is the Micro Focus
default).

-Dcn Causes a different numeric format to be used. The format is the
same as the one used when the “-Dci” option is used, except
that positive COMP-3 items use “x0B” as the positive sign
value instead of “x0C”. This option is compatible with NCR
COBOL.

-Dcr This selects the Realia sign storage convention. Sign
information for S9(n) variables is stored using the conventions
for Realia COBOL, and their conversion to binary decimal is
the same as that performed by the Realia compiler.

-Dcv This creates numeric sign formats that are compatible with
VAX COBOL. These are identical to the IBM formats, except
that unsigned COMP-3 fields place “x0C” in the sign position,
instead of “x0F”.

Using the Compiler 2-35
The ANSI definition of COBOL does not state how signs
should be stored in numeric fields (except for the case of SIGN
IS SEPARATE). As a result, different COBOL vendors use
different conventions. By using the options “-Dca”, “-Dci”,
“-Dcm”, “-Dcn”, or “-Dcv”, you may select alternate
sign-storage conventions. Doing so is useful in the following
cases:

If you need to export data to another COBOL system and
need to match its sign-storage convention.

If you are importing data from another COBOL system, and
that data contains key fields with signed data. Keys are treated
alphanumerically, so if you use the incorrect sign-storage
convention, ACUCOBOL-GT will not find a matching key
when it is doing a READ.

The storage-convention affects how data appears in USAGE
DISPLAY, COMP-2 and COMP-3 data types. For additional
information and tables, see Book 3, Reference Manual,
section 5.7.1.8, “USAGE clause.”

-Dd31 This option supports data items with up to 31-digits or 16
bytes. When this option is in effect, you may use as many as
31 “X” or “9” symbols in a PIC, instead of the usual 18. The
maximum number of bytes in a COMP-X or COMP-N data
item, whose picture contains only “X” symbols, is 16, instead
of the usual 8. Intermediate results are calculated to 33 digits
instead of the usual 20.

-Df This option changes the way the compiler treats data items
declared as COMP-1 and COMP-2.

Some compilers use COMP-1 and COMP-2 to specify single
and double precision floating point data items. However,
ACUCOBOL-GT assigns a different meaning to COMP-1 and
COMP-2 and uses FLOAT and DOUBLE to specify floating
point data items.

2-36 Compiler and Runtime
 When the “-Df” option is used, the compiler treats data items
declared as COMP-1 as if they were declared FLOAT and data
items declared as COMP-2 as if they were declared DOUBLE.
With the “-Df” option, you have the following
correspondence:
COMP-1 FLOAT single precision

COMP-2 DOUBLE double precision

The “-Df” option makes it easier to compile code originally
written for another compiler--one that used COMP-1 and
COMP-2 to specify floating point data items. The “-Df”
option lets you compile such code without having to change
COMP-1 and COMP-2 to FLOAT and DOUBLE.

-Di This option causes the compiler to initialize Working-Storage.
Normally, the compiler will initialize all data items to spaces
or the value specified with the “-Dv” option, except for those
items given a VALUE clause. If this option is specified, data
items are initialized according to their type:

Alphabetic, alphanumeric, alphanumeric edited, and
numeric edited items are initialized to spaces.

Numeric items are initialized to zero.

Pointer items are initialized to null.

Index items are initialized to the value 1.

Automatic initialization applies only to Working-Storage and
does not apply to any item that (a) is given a VALUE clause,
(b) is EXTERNAL, or (c) is subordinate to a REDEFINES
phrase.

Using the Compiler 2-37
-Dl Allows you to limit the maximum alignment modulus that will
be used for SYNCHRONIZED data items. Normally, a
synchronized data item is aligned on a 2-, 4-, or 8-byte
boundary depending on its type. This option allows you to
specify an upper bound to the modulus used. This is specified
as a single digit that immediately follows the “-Dl” as part of
the same argument. For example, “-Dl4” specifies that the
maximum synchronization boundary is a 4-byte boundary. If
you want to make programs that are compliant with the 88/
Open COBOL specification, you should specify “-Dl4”. This
option can be specified in a compiler directive. See section
2.2.15, “Conditional Compilation Options.”

-Dm Causes any data item whose underlying type is binary to be
stored in the minimum number of bytes needed to hold it.
Normally, binary types are stored in two, four, or eight bytes.
This option allows storage in any number of bytes ranging
from one to eight. The exact number of bytes used for a
particular data item is described under the USAGE clause in
the ACUCOBOL-GT Reference Manual.

-Dq Causes the QUOTE literal to be treated as an apostrophe, or
single quotation mark, rather than as a double quotation mark
(“). One exception to this is the HP e3000 TRANSFORM
verb, in which QUOTE is always treated as a double quotation
mark.

-Ds This causes USAGE DISPLAY numeric items with no SIGN
clause to be treated as if they were described with the SIGN IS
TRAILING SEPARATE clause. Several versions of RM/
COBOL behave this way (all versions before 2.0, and some
versions afterward).

-Dv Allows you to specify the default byte (initial value) used to
initialize any data item not otherwise initialized when the
program is loaded. The option must be followed by an equals
sign (“=”) and the decimal value of the byte to use (for all
current platforms, this is the ASCII value of the desired
character). For example, to fill memory with the NULL
character, use “-Dv=0”. To fill memory with the ASCII space
character, use “-Dv=32”.

The default value is the space character.

2-38 Compiler and Runtime
-Dw Lets you modify the definition of certain data types. These
data types are generally dependent on the host machine’s
native word size. You may use this option to:

1. Maintain compatibility with COBOL source code written
specifically for 32-bit machines (for example, to set the size of
USAGE POINTER data items to 4 bytes).

2. Make it easier to match a C structure for a particular
machine.

3. Optimize your data storage for a particular class of
machines.

“-Dw” selects the maximum word size of the set of machines
that you expect to run on. You follow this option with the
maximum word size you desire, expressed as the number of
bits per word. Currently, the legal forms are “-Dw32” and
“-Dw64”.

This option determines the maximum word size, not the exact
word size.

The “-Dw” option affects the size of the following data types:

SIGNED-SHORT
SIGNED-INT
SIGNED-LONG
 POINTER
UNSIGNED-SHORT
UNSIGNED-INT
UNSIGNED-LONG

Using the Compiler 2-39
 It also affects the size of the RETURN-CODE special register.

Selecting a maximum word size does not inhibit the portability
of your code. Instead, it limits the size of certain data items. If
you attempt to use a data item that is too small for a particular
machine, you may lose precision. For example, USAGE
POINTER data items are stored in 4 bytes if you use “-Dw32”.
If you attempt to run a program that stores an address in 4
bytes on a 64-bit machine, you may lose some of the address.
While the program will technically run, the results may not be
useful.

For maximum portability, you should use “-Dw64”. This will
allow your code to run on all machines that run
ACUCOBOL-GT. However, if your program will call
Windows DLLs, you should use “-Dw32”. For strict
compatibility with ACUCOBOL-85 Version 2.2 or earlier,
you should use “-Dw32”. For programs prior to Version 2.3,
the only real effect of shifting from “-Dw32” to “-Dw64” is
that USAGE POINTER data types expand from 4 bytes to 8
bytes. If your program does not depend on the size of
POINTER data items, then you should be able to use “-Dw64”
with no harm.

If you use any of the “-C” compile options that establish
source compatibility with ACUCOBOL-85 Version 2.2 or
earlier (e.g. “-C21”), then the default setting is “-Dw32”. If
you do not use these options, then the default setting is
“-Dw64”. You may override the default by using the “-Dw”
option. For example, to compile for source compatibility with
Version 2.1, but to set the target architecture to 64 bits, you
would use “-C21 -Dw64”. In order to use “-Dw64”, you must
use a Version 2.3 or later runtime.

See the related information on USAGE types in Book 3,
Reference Manual, section 5.7.1.8. See also the information
on RETURN-CODE and support for 64-bit architectures in
section C.4 in Book 4, Appendices.

2-40 Compiler and Runtime
-Dy Specifies that all data items whose underlying representation
is binary should be treated as if they were described as
SYNCHRONIZED. This option is not recommended unless
you have a particular need for it. ACUCOBOL-GT is
optimized for non-synchronized handling of binary data, so
synchronization will usually not have beneficial results. Note,
however, that you must specify this option if you want to make
programs that are compliant with the 88/Open COBOL
specification.

-Dz This option causes the compiler to modify its size checking
rules for numeric items. Instead of computing size error by
examining the number of 9’s in an item’s picture, the compiler
computes size error by examining the actual storage for that
item. For example, normally a PIC 99 BINARY data item
cannot hold a number larger than 99, although the storage for
the item can hold a value up to 255. When “-Dz” is used,
ACUCOBOL-GT will not cause a size error until a value
greater than 255 is moved to this item. This option also affects
truncation in MOVE statements and implied moves.

There are four truncation options in all. See the chart in
Section 2.2.10.1 for description and comparison information
on these options.

-D1 Causes any data item whose underlying type is binary to be
stored in one byte if that data item has only one or two digits.
Normally, such a data item would be stored in two bytes.

-D2 Causes COMPUTATIONAL data items to be treated as if they
were declared as COMPUTATIONAL-2. This is the default
when you are using RM/COBOL compatibility mode.

-D5 Causes data items declared as BINARY to be treated as if they
were declared as COMPUTATIONAL-5. This causes the
values to be stored in the host machine’s native byte-ordering
instead of the machine-independent byte-ordering normally
used. This option is usually advised when converting Micro
Focus applications on UNIX/Linux hosts. This option should
be used with caution, however, because it can lead to programs
that are not portable.

Using the Compiler 2-41
-D6 Causes unsigned data items declared as PACKED-DECIMAL
to be treated as if they were declared as
COMPUTATIONAL-6. This saves one-half of a byte because
the compiler will not generate any storage for the sign.

-D7 Allows you to match one of the binary storage conventions
used by Micro Focus COBOL. That convention is identical to
the ACUCOBOL-GT “-Dm” convention, except that a PIC
9(7) data item (unsigned) is stored in 3 bytes instead of 4 and
a PIC 9(12) data item (unsigned) is stored in 5 bytes instead of
6. When you use this option, the size of a binary item is
determined as follows (the value in the table is the number of
bytes occupied by the data item):

Number of
9’s in PIC

Signed
Storage

Unsigned
Storage

1 - 2 1 1

3 - 4 2 2

5 - 6 3 3

7 4 3

8 - 9 4 4

10 - 11 5 5

12 6 5

13 - 14 6 6

15 - 16 7 7

17 - 18 8 8

2-42 Compiler and Runtime
--FpRounding Simulates the behavior of other COBOL systems
with regard to implied rounding when floating
point is used in a math statement.

This case-insensitive option is followed by an
equals sign (“=”) and one of the following:

OSVS means that any math statement that
contains a floating-point data item as a sending
item has “ROUNDED” implied for every
receiving item.

VSC2 means that any math statement that
contains a floating-point data item as either a
sending item or a receiving item has
“ROUNDED” implied for every receiving item.

If “--FpRounding” is not specified, rounding is
not automatically implied.

For example, consider the following program
fragment:

77 INT-1 PIC 99.

77 FLOAT-1 USAGE FLOAT.

MOVE 1.6 TO FLOAT-1

COMPUTE INT-1 = 3 * FLOAT-1.

Without this compiler option, the value moved to
INT-1 is “4” (4.8 truncated). If either
“--FpRounding=OSVS” or
“--FpRounding=VSC2” is specified, the value
moved would be “5” instead (4.8 rounded up).
Alternatively, the following example:

77 INT-1 PIC 99.

77 DEC-1 PIC 99V99.

77 FLOAT-1 USAGE FLOAT.

MOVE 1.6 TO DEC-1

COMPUTE FLOAT-1, INT-1 = 3 * DEC-1

would move “5” to INT-1 only if
“--FpRounding=VSC2” is used (because the only
floating item is a receiving item).

Using the Compiler 2-43
--lastWSDataSeg=#

“#” is an integer between “1” and “32”, inclusive.

This option sets the data segment number that
will be the last one used by data items contained
in Working-Storage. Note that this option applies
only to Version 7.2 and earlier.

The compiler allocates up to 32 data segments per
program, each of which can be up to 64 KB in
size. Data outside of Working-Storage must fit
within these segments. Data contained in
Working-Storage need not, but it can be slightly
more efficient to place Working-Storage data
within these segments. The compiler normally
places Working-Storage data within these
segments until it places some in the segment
identified by “--lastWSDataSeg”. After that
point, the compiler places all Working-Storage
data into a separate address space (identified by
addresses larger than x“40000000” in the symbol
table listing). This reserves space for other data
items that follow Working-Storage, such as the
Screen Section or literals found in the Procedure
Division.

The default setting is “24”. This reserves 8
segments (512 KB) for use by the Screen Section
and literals. This is normally much more than
needed. If it is not enough, then setting
“--lastWSDataSeg” to a lower value will reserve
more space.

 When compiling for Version 6.0 or earlier object
format, the default setting is “32”. This causes all
of Working-Storage to be allocated in data
segments. This sets an absolute limit of about
two MB on the amount of “small” data that a
program can allocate. The term “small” in this
sense means data items individually smaller than
64 KB.

2-44 Compiler and Runtime
2.2.10.1 Truncation Options

In addition to the compiler’s default truncation behavior, the compiler also
supports the ability to use a data item’s storage capacity instead of its
PICTURE phrase to determine the largest numeric value it could hold. This
is the “-Dz” compile option. However, other COBOL systems have similar
concepts that differ in some details from “-Dz”. To give you the greatest
amount of flexibility and compatibility with other COBOLs, there are four

We recommend leaving this option at its default
value unless you receive the error message
“Program exceeds 32 segments”. Should this
occur, try setting “--lastWSDataSeg” to a value
smaller than the default of “24”.

--noAlignLit Inhibits use of the default algorithm for aligning
literals in memory. Use the “-Da” option
(described above) to specify an alignment
modulus other than the default of “4.”

--truncANSI There are four truncation options in all. See the
chart in Section 2.2.10.1 for description and
comparison information on these options.

--noTrunc There are four truncation options in all, see the
chart in Section 2.2.10.1, for description and
comparison information on these options.

--fastRefMod Directs the compiler to use an optimized method
for handling code that performs reference
modification. The result is faster runtime
execution. Note that this option may not work
with certain programs, resulting in unexpected
results or compiler failure. If using this option, be
sure to verify runtime results. When this option is
not specified, the compiler uses the standard
method for reference modification code handling.

Using the Compiler 2-45
truncation options for numeric values. Only one of these options may be
used for any individual compile. The following chart describes and compares
these options.

Option Behavior

<default> Full ANSI COBOL rules are in place. Each
numeric data item stores values up to its PICTURE
in size. A small number of USAGE types provide
exceptions (such as COMP-X). These are
documented under the USAGE phrase. Values
larger than allowed by the PICTURE are truncated
using the standard size rules when the data item is
the target of a MOVE statement. The results of an
arithmetic overflow (without the SIZE phrase) are
undefined.

--truncANSI

Similar to the default, but COMP-5 is added to the
list of data types that ignore their PICTURE when
determining the largest value they can hold.
However, COMP-5 items do use their PICTURE
when moving a value to a nonnumeric data item.
The name of this option is similar to the name used
by some other COBOL systems that behave this
way.

--noTrunc

All binary data types ignore their PICTURE when
determining the largest value they can hold.
However, the PICTURE is used when moving data
from a binary number to a nonnumeric data item.
The name of this option is similar to the name used
by some other COBOL systems that behave this
way.

-Dz All binary and packed-decimal data types ignore
their picture when determining the largest value
they can hold. The PICTURE is not used when
moving to a nonnumeric destination (the largest
possible value determines the number of digits
moved instead).

2-46 Compiler and Runtime
2.2.11 Video Options

-Va This option must be used with either the “-Vh” or “-Vl” option.
When used, the default intensity specified by the “-Vh” or “-Vl”
option will be used only for ACCEPT statements. DISPLAY
statements will use the opposite intensity. Thus “-Vha” will
cause the default intensity for ACCEPT statements to be high
while the default for DISPLAY statements will be low. When
Screen Section items are used, then input and update fields will
use the ACCEPT intensity, while output and literal fields will use
the DISPLAY intensity.

-Vb Causes the phrase “BLANK LINE”, when used in a Screen
Section entry, to be treated as if it were written “BLANK EOL”.
Most other COBOL compilers work this way, but the X/Open
COBOL standard requires the syntax supported by
ACUCOBOL-GT.

-Vc Causes any ACCEPT statement that contains a numeric or
numeric edited receiving field to be treated as if the CONVERT
phrase were also specified. This is the default for RM/
COBOL-85 but not for RM/COBOL version 2 or VAX COBOL.
For information about the CONVERT phrase, see the
CONVERT Phrase in Book 3, Reference Manual.

-Vd Causes non-USAGE DISPLAY numeric items to be converted to
USAGE DISPLAY before the screen display occurs. This option
is used in conjunction with the “-Ca” switch for Micro Focus and
HP COBOL compatibility.

Using the Compiler 2-47
-Ve

Alters the rules that determine which conditions cause an ON
EXCEPTION phrase to receive control in a Format 1 ACCEPT
statement. Normally, entering an exception key will cause the
ON EXCEPTION phrase to receive control. If you specify this
option, then you must follow the “-Ve” with a digit (as part of the
same argument) taken from the following list:

‘1’ Exception keys cause the ON EXCEPTION phrase to
execute (default handling).

‘2’ Conversion error causes the ON EXCEPTION phrase to
execute. When a numeric item is being entered and the
CONVERT phrase is specified, then entering an illegal number
will cause the exception.

‘3’ Combines the effects of both ‘1’ and ‘2’.

By default, the runtime system handles conversion errors by
displaying an error message and forcing the user to re-enter the
data. If you specify “-Ve2” or “-Ve3”, then conversion errors are
returned to your program instead. For strict compatibility with
VAX COBOL, you should specify “-Ve2”, while for strict
compatibility with RM/COBOL, you should specify “-Ve3”.
The default setting is recommended, however, because it
provides a meaning for ON EXCEPTION that is more consistent
with the rest of the ACUCOBOL-GT language.

-Vh Forces the default video intensity for ACCEPT and DISPLAY
statements to be set to high intensity. The default for
ACUCOBOL-GT is to use the normal operating intensity for the
terminal being used.

2-48 Compiler and Runtime
-Vi Changes the behavior of a Screen Section ERASE (and BLANK)
phrase with respect to color handling. If the screen item
containing the ERASE phrase has either
BACKGROUND-COLOR or COLOR specified, then the “-Vi”
option causes the erased area to be painted with that color instead
of the subwindow’s background color.

Keep in mind that background color can be specified using a
background color number with the COLOR phrase. For a table of
foreground and background color numerical values, see the entry
for FOREGROUND-COLOR and
BACKGROUND-COLOR Phrases in section 6.4.9 of Book 3.

If the screen item has no background color specification, or if the
background color portion of a COLOR phrase is zero, then the
subwindow’s background color is used.

The default behavior is to use the current subwindow’s
background color when executing an ERASE phrase.

-Vl Forces the default video intensity for ACCEPT and DISPLAY
statement to be set to low intensity.

-Vq Causes ACUCOBOL-GT to produce quiet programs by
inhibiting the default bell produced by ACCEPT statements
compiled in RM/COBOL compatibility mode. However, this
does not override explicit BELL or BEEP phrases.

-Vu Allows you to imply the UPDATE phrase for all Format 1
ACCEPT statements that do not have an explicit UPDATE or
DEFAULT phrase specified for them.

-Vx Allows exception keys to be entered by the user for any ACCEPT
statement. Normally, ACUCOBOL-GT inhibits the use of
exception keys on ACCEPT statements that do not have a
CONTROL KEY clause or an ON EXCEPTION clause.

Using the Compiler 2-49
2.2.12 Warning and Error Options

Note: The “-w” is an existing compiler option to turn warnings off. The
“-w” option will negate the effects of “-Wa” and -Wl”. To use the previous
“-w” option, it must be specified alone (as the “-v” option is).

-a This flag is now obsolete and should not be used.

-Wl

Generates the following 01-level item warning:
USING parameter <name> is not an 01-level item

The ANSI COBOL standard requires that parameters passed to
subprograms be 01-level items. ACUCOBOL-GT does not
restrict them as such; however, there are valid reasons for
restricting their use. For example, starting in version 7.0.0, the
compiler can generate better code for certain moves and
comparisons, based on the alignment of the underlying data
types. When those data types are in LINKAGE, the alignment
rules that the compiler assumes may not be valid. Making all of
the passed parameters be 01-level items ensures that the
compiler’s assumptions about alignment of the data items are
valid. Note that the compiler can generate incorrect code when
the assumptions are invalid. In such situations, it is possible to
get a MAV at runtime.

-Wa Generates the following alignment warning:
USING parameter <name> not aligned and may
cause problems in the called subprogram

To be less restrictive, the compiler also includes an alignment
warning. This is generated whenever a passed parameter is a
group or is binary, and whose alignment is not an even multiple
of the alignment specified by the “-Da#” option.

2-50 Compiler and Runtime
2.2.13 Debugging Options

All the information obtained when you use the Debugging Options listed
below is coded and stored in the COBOL object file. The runtime retrieves,
decodes, and sends it to the debuggers (runtime and AcuBench integrated)
when requested.

-Qm This option specifies the number of errors the compiler reports
before it exits. The option must be followed by a positive
numeric argument, which is the maximum number of errors the
compiler reports before it exits. The default value is “100”.

-Qp This option allows the compiler to skip entire sections of code
when it finds an error. In particular, when this option is used, the
compiler skips to the next period (“.”) when an error is detected.

-Ga This is a shortcut for turning ON all the debugging options.

-Gd This option includes the source code in the compiled object file.
It also generates a single-byte “no operation” (NOP) instruction
for each CONTINUE statement to make it easier to break at such
statements when debugging.

See also section 3.1, “Runtime Debugger,” for additional
details about this option.

-Gl

This option includes line numbers in the object file. It does not
include source code in the object file. Only a mapping between
addresses and line numbers is included. This allows the runtime
to output line number information along with an address when a
program terminates abnormally. This information also enables
AcuBench to find and indicate the line of source on which the
debugger is currently stopped.

If line number mapping is needed in an object to be placed in
production, “-Gl” is the best switch to use because it results in an
object file that is much smaller than those produced with “-Ga”.

Using the Compiler 2-51
Note: To debug a program in AcuBench, you need only the “-Gl” and
“-Gs” options. This combination allows AcuBench to display the correct
line of the correct source file when the debugger is stopped at a breakpoint
and to display any data items that you want to see. It does not include the
source code in the compiled object, so the object can be safely distributed
without fear of unauthorized access to source code.
To perform source-level debugging with the runtime debugger, you need
only the “-Gd” and “-Gy” options.

-Gs This option includes extra symbol information. It does not
include source code in the compiled object. This information is
accessible only from AcuBench. The extra symbol information
can be used by AcuBench to get all the “children” and “siblings”
of any particular data item. It allows AcuBench to traverse the
symbol table of the COBOL program and to have a tree-type
control for viewing group data items.

-Gy This option includes minimal symbol information. It does not
include source code in the compiled object. Instead, minimal
information about names and locations is stored in the object.
Using this switch, you can accept and display variables from
within the debuggers.

-Gz This option restricts a program from stopping in the debugger in
nearly all cases. The only time the runtime will stop and enter
the debugger when executing a COBOL program compiled with
-Gz is when the runtime encounters a format 2 STOP statement
(STOP literal), which is meant to break into the debugger.

This option is useful if you distribute COBOL objects and allow
your users to create their own COBOL programs, but you don't
want them to be able to debug your programs.

This option is not compatible with any other debugger option. If
other debug options are used on the command line, the last
debugger option will take precedence. For example, specifying
“-Ga -Gz” will result in an object that will never stop in the
debugger, while specifying “-Gz -Ga” will result in an object
with full debugging symbols.

This option is available only if targeting an 8.1 runtime or later.
Note that specifying "-Znn" for any nn <= 80 will turn off a
special flag that is required in order for the -Gz option to work.

2-52 Compiler and Runtime
The “-Ga” option is helpful when you expect to use both debuggers.

The section on the runtime debugger (section 3.1, “Runtime Debugger”)
describes the differences between symbolic debugging and source-level
debugging.

2.2.14 Mapping Options

Each mapping option causes the compiler to produce a simple report about
the program that is being compiled. Mapping options that produce reports
prevent the compiler from generating an object file or XFD file. In this
situation, errors in the source program are usually not reported. Only one
report may be produced at a time, so several of the mapping options are
mutually exclusive.

Specification of any mapping option causes the compiler to ignore all text
positioned between EXEC and END-EXEC keywords.

Using the Compiler 2-53
Mapping options are frequently used internally by AcuBench to implement
some of the editor features.

-Mc

Lists all of the special style and property names associated with
graphical controls. You can combine this with the “-Mr” option
to get a listing of both reserved words and property names. You
might use this to produce word lists for the AcuBench Code
Editor, to specify the words to be colored as “reserved” words.

-Ml Causes the “-Mp” (paragraphs) and “-Mv” (variables) reports to
be printed in lowercase. The default is uppercase. See also the
“-Zw” compiler option (section 2.2.16, “Miscellaneous
Options”).

-Mm Causes the “-Mp” (paragraphs) and “-Mv” (variables) reports to
be printed in mixed upper and lowercase. In this mode, the
beginning of each word is capitalized, and the rest of the word is
made lowercase. See also the “-Zw” compiler option (section
2.2.16, “Miscellaneous Options”).

-Mo Names the output file for a “map” report. This option must be
followed (as the next argument) with the name of a file. If this
option is not used, then “map” reports are sent to the compiler’s
standard output.

-Mp Causes the compiler to produce a report on the Procedure
Division sections and paragraphs contained in the program. If
you select this option, the program is not compiled into an object
file.

-Mr Causes the compiler to produce a report of the reserved words
known to the compiler. The exact list depends on the other
compile time options. You can use this option to produce a word
list that can by used by the workbench’s editor to color reserved
words. The workbench comes with the full reserved word set
pre-programmed. If you modify the set of reserved words with
any of the “-R” compiler options, you can use this option to
produce a custom list that matches the reserved words you use.
Selecting this option prevents the compiler from producing an
object file.

2-54 Compiler and Runtime
-Ms Causes the compiler to produce a report of the COBOL source
files used in the program. This includes the program itself and
any COPY libraries. This list can be useful for generating
dependencies if you use a “make” utility, and can help you
determine which files to send to Technical Support staff when
you need help resolving compiler issues. This option prevents the
compiler from producing an object file.

-Mss Similar to -Ms, this option lists all the COBOL source files
needed to compile a program. If you specify -Mss instead of -Ms
you will get an enhanced listing with the following format:
path base-filename "C" or "R" source-file
line-number

 where:

path is the pathname processed by the compiler. This path may
be relative to the current directory. For Win32 compilers, path is
the full pathname leading up to the COPY file.

base-filename is the base file name of the COPY library.

“C” is listed if the file is a standard COPY library or the original
source file.

“R” is listed if the file corresponds to a COPY RESOURCE
statement.

source-file is the name of the file containing the COPY statement

line-number is the line number of the COPY statement. The
compiler lists a “0” if the file is the original source file.

AcuBench uses this format when you import programs to the
workbench.

-Mu Causes the “-Mp” (paragraphs) and “-Mv” (variables) reports to
be printed in uppercase. This is the default. See also the “-Zw”
compiler option (section 2.2.16, “Miscellaneous Options”).

-Mv Produces a report of the data items (variables) declared in the
program. This option prevents the compiler from producing an
object file.

Using the Compiler 2-55
2.2.15 Conditional Compilation Options

The compiler supports conditional compilation through the use of special
constructs in the COBOL source file and by accepting command-line
arguments that turn on compiler directives and set constants to values. (Refer
to the ACUCOBOL-GT Reference Manual, Section 2.5, “Conditional
Compilation” for a description of the COBOL constructs).

The "-/" (a forward slash) compiler option is used to turn on directives and
specify constants.

The two forms to this option are:

1. Directive setting mode

-/[NO]directive-name

This option is equivalent to having the following line in your COBOL
source from the very beginning of the compilation:

$SET [NO]directive-name

By adding this compile switch, you turn on the directive (or off, if the
directive is preceded by “NO”). This directive can now be tested with a
Format 3 $IF statement, which can signal the compiler to either compile
or skip the next lines of code.

Refer to the ACUCOBOL-GT Reference Manual, Section 2.5,
“Conditional Compilation” for details on the $IF and $SET statements.

If compiling for HP compatibility (-Cp) the “-$IF” and “-$SET”
directives are supported. See Section 4.4.5 of the Transitioning to
ACUCOBOL-GT guide for details.

2. Value setting mode

-/CONSTANT name=value

this option is equivalent to having a level-78 item defined in your
COBOL source. If "value" is composed solely of numeric digits, the
constant is considered numeric; otherwise, it is considered a string
literal. "name" can now be tested with a Format 1 $IF statement.

2-56 Compiler and Runtime
2.2.16 Miscellaneous Options

--acceptrefresh This option takes the most recent value of what
was entered on the screen and then uses that value
in subsequent ACCEPT statements. If you enter
something in a screen section that goes to a
variable, then MOVE something to that variable,
the --acceptrefresh option will allow the
subsequently MOVED value to be the basis of
what is in the next ACCEPT statement.

--arithmeticVSC2 Causes truncation of intermediate results in
arithmetic statements to follow the rules of
VS COBOL II and COBOL/370.

--binaryMath Causes the compiler to use binary math operations
to handle arithmetic as long as the target runtime
supports these operations; this can be abbreviated
“--bin”.

--brand serial#

Causes the compiler to embed the specified value
into the object file. Serial# is a separate argument
of up to 20 characters. When you specify this
option and a value, the COBOL object is
associated with the value of serial# in such a way
that it will execute only with a runtime that has the
corresponding serial number. Attempts to execute
the program with a runtime that has a different
serial number (either as the initial program, or as a
called subprogram) result in the runtime displaying
the message “Incorrect serial number” and
returning a call error of 28. To display a runtime’s
serial number, execute the runtime with the “-v”
option.

--decimalMath Causes the compiler to use decimal math
operations to handle arithmetic, overriding other
compiler flags; can be abbreviated “--dec”.

Using the Compiler 2-57
-defines This option must be followed by the name of a file
as the next separate argument. This option causes
the compiler to find all level 78s in a COPY file
and create equivalent C-language “#define”
statements in the specified file. For more
information, see section 2.2.21, “Help, Version
Information, and Communication With C
Programs.”

2-58 Compiler and Runtime
-Za Causes the compiler to generate code to test array
references at runtime. If an index is used which is
out-of-bounds, the runtime system displays an
error message showing the index value and the
allowed bounds. (This causes some extra code to
be generated and prevents certain table
optimizations from occurring, so it should be
turned off once a program is fully debugged.)
With this option, the compiler does not re-use
previously computed index values.

Because subscript overflow is the most common
cause of memory access violation errors, adding
this option is a good first step when you are
looking for the cause of a memory access violation.
(See section 6.4.1, “Memory Access Violations,”
for more details.)

This option also generates code that performs
range checking on reference modification at run
time. Reference modification that creates a data
item whose size or leftmost position parameter is
out of range of the data item it references causes
the runtime to display the error message
“Reference modifier range error.”

This option also causes the runtime to test the
LINKAGE items automatically. When an item
defined in the Linkage Section is not referenced in
the USING phrase of the Procedure Division
statement and has not had an address assigned to it
with the SET ADDRESS OF phrase, the runtime
returns an error message.

The -Za option also specifies size testing of linkage
items passed to subprograms. when a LINKAGE
SECTION parameter of a size larger than the caller
passed is detected, an error to that effect is
reported.

-Zc This “compact” option causes ACUCOBOL-GT to
optimize for smaller code instead of faster code.

Using the Compiler 2-59
-Zd Although still supported, this option has been
replaced by the “-Gd” option. Both options
produce the same results.

-Zg Enables the use of segmentation (overlays) in the
source. If this option is not used, section numbers
will be ignored. This option applies only to
Version 7.2 and earlier source files.

-Zi Causes the program to be compiled as if it had the
“IS INITIAL PROGRAM” phrase specified in its
PROGRAM-ID paragraph. See book 3 Section
3.2, “PROGRAM-ID Paragraph” for details on
IS INITIAL PROGRAM. This can be useful, in
some cases, when you are compiling programs that
do not contain adequate memory management (no
CANCEL verbs, for example).

-Zl All data items may be larger than 64KB. This
option is obsolete. (In versions prior to 6.0, this
option caused the compiler to allow data items
larger than 64 KB.) See Book 3, Reference
Manual, Section 5.1.6, “Large Data Handling”
for more information.

-Zm Causes the compiler to generate code that tells the
runtime the size of a data item specified in a
Format 7 SET Statement, as in:
SET pointer TO ADDRESS OF data-item.

This option supports thin client applications that
pass pointers in calls to DLLs on the display host.
For complete information, see section 7.2.6,
“Calling Dynamic Link Libraries (DLLs),” in the
AcuConnect User’s Guide.

-Zn This turns off ACUCOBOL-GT’s local optimizer.
This is useful primarily to see if the optimizer is
introducing errors in the generated object code.
This option also prevents the compiler from
re-using previously computed index values.

2-60 Compiler and Runtime
-Zo Although still supported, this option has been
replaced by the “-Fo” option. Both options
produce the same results.

-Zr Allows for a recursive PERFORM Statement.
When this switch is used, the PERFORM verb is
modified so that return addresses are stored on a
stack. Only the most recent PERFORM statement
has an active return address. When this option is
used, a paragraph under the control of a
PERFORM statement may (directly or indirectly)
PERFORM itself. See PERFORM_STACK, in
Book 4, Appendix H.

This behavior is the default. For backward
compatibility, “-Zr” acts like “-Zr1”. If you
compile for compatibility with Version 3.1 or
earlier, recursive PERFORMs are turned off by
default. This behavior may affect existing
programs that do not compile for earlier
compatibility. Event procedures require the ability
to do recursive PERFORMs.

-Zr0 This option tells the compiler not to allow
recursive PERFORMs. Event procedures require
the ability to do recursive PERFORMs.

-Zr1 This option tells the compiler to allow recursive
PERFORMs. Event procedures require the ability
to do recursive PERFORMs.

-Zs Although still supported, this option has been
replaced by the “-Gy” option. Both options
produce the same results.

Using the Compiler 2-61
-Zw This option prepares a program for import into the
AcuBench Screen Designer. It causes the compiler
to mark windows and screen controls with
additional information that can be used by the
graphical screen import utility or
Character-to-GUI Wizard. Graphical windows
imported into the Screen Designer will be more
complete if the program is first compiled with this
option, and character-based screens converted by
the wizard are more likely to contain the proper
control type for each field. Using this option
makes your compiled program somewhat larger, so
you should use it only when you are importing
screens into the workbench. (See the “-import”
and “--char2gui” options in section 2.3, “Using
the Runtime System,” for related information.)

You can also use the “-Ml”, “-Mm”, and “-Mu”
options to affect the case of the additional
information. This will affect how these items are
seen in the Screen Designer, and in your
subsequently generated code. Specifying “-Zw
-Ml” will cause the data imported into the Screen
Designer to be in lowercase. The default is
uppercase (“-Mu”). To specify uppercase for the
first letter of each word, and lower case for the rest
of each word, use “-Mm”.

If you compile with “-Zw”, your screens may use
only literal reference modifications, i.e.,
“data-item(4:20)”, for any of their data items to be
imported into workbench correctly. Data items
that use more complicated variants of reference
modification do not import correctly. For
example, “data-item(data-start:data-length)”
imports as “data-item(:)”, and you need to insert
the correct values into the workbench.

-Zx Although still supported, this option has been
replaced by the “-Fx” option. Both options
produce the same results.

2-62 Compiler and Runtime
-Zy This option lets you treat ACCEPT FROM DATE
as ACCEPT FROM CENTURY-DATE, and
ACCEPT FROM DAY as ACCEPT FROM
CENTURY-DAY. If you use this option, the
4-digit year format will be used for ACCEPT
FROM DATE providing that:

1. The receiving field is numeric or numeric edited
and contains eight or more integer digits; or

2. The receiving field is not numeric or numeric
edited and contains eight or more character
positions.

If neither of the above conditions applies, then
ACCEPT FROM DATE will return its normal
6-digit format even if you use “-Zy”.

ACCEPT FROM DAY works in the same fashion,
except that the receiving field must have seven or
more digits/positions in order to receive the new
format.

Information on ACCEPT FROM DATE and
ACCEPT FROM DAY is located in the Reference
Manual entry for the ACCEPT Statement,
Format 3, in section 6.6.

-Zz This option causes spaces in a USAGE DISPLAY
numeric item to be treated as the value zero, and
non-numeric data to be treated as numeric. It does
this by treating the high-value half of each byte as
“3” so as to bring all bytes in the variable within
the range of 30 to 3F.

“-Zz” must be specified at compile time in order to
prevent the optimizer from mis-constructing the
program. Note that this option should be used only
if you need it, because it causes less efficient
programs to be produced.

Using the Compiler 2-63
-Z3 Causes ACUCOBOL-GT to produce programs
that can be run by the Version 1.3 runtime system.
Specifying this will limit several features of later
versions. If you use a restricted feature, you will
receive an error message at compile time. This
flag also implies the “-C3” option to ensure
compatible behavior of the compiled program (see
above).

-Z4 Similar to the “-Z3” option, except that the
produced object can be run by the Version 1.4
runtime system. Implies “-C4”.

-Z5 Causes the compiler to produce object files that
can be run by the Version 1.5 runtime system. This
option implies “-C5”.

-Z20 Creates object code that can be run with a Version
2.0 runtime (chart verbs are not supported). This
option implies “-C20”.

-Z21 Creates object code that can be run with a Version
2.1 runtime

-Z22 Creates object code that can be run with a Version
2.2 runtime

-Z23 Creates object code that can be run with a Version
2.3 runtime

-Z24 Creates object code that can be run with a Version
2.4 runtime

-Z30 Creates object code that can be run with a Version
3.0 runtime

-Z31 Creates object code that can be run with a Version
3.1 runtime

-Z32 Creates object code that can be run with a Version
3.2 runtime

-Z40 Creates object code that can be run with a Version
4.0 runtime

2-64 Compiler and Runtime
-Z41 Creates object code that can be run with a Version
4.1 runtime

-Z42 Creates object code that can be run with a Version
4.2 runtime

-Z43 Creates object code that can be run with a Version
4.3 runtime

-Z50 Creates object code that can be run with a Version
5.0 runtime

-Z51 Creates object code that can be run with a Version
5.1 runtime

-Z52 Creates object code that can be run with a Version
5.2 runtime

-Z60 Creates object code that can be run with a Version
6.0 runtime

-Z61 Creates object code that can be run with a Version
6.1 runtime

-Z62 Creates object code that can be run with a Version
6.2 runtime

-Z70 Creates object code that can be run with a Version
7.0 runtime

-Z71 Creates object code that can be run with a Version
7.1 runtime

-Z72 Creates object code that can be run with a Version
7.2 runtime

-Z73 Creates object code that can be run with a Version
7.3 runtime

Using the Compiler 2-65
2.2.17 Upper and Lower Case

Command-line arguments that begin with a hyphen are not case sensitive.
For example, “-LO” and “-Lo” and “-lo” all mean the same thing. In this
manual, group letters are shown in upper case, and the actual arguments are
shown in lower case (for example, “-Lo”). This is done for consistency and
clarity.

Other command-line arguments are case sensitive if the host machine is case
sensitive, otherwise, they are not. For example, on UNIX machines, “ccbl
TEST” and “ccbl test” are different commands because the file names
“TEST” and “test” are different on UNIX systems. On VMS systems, these
commands are the same because the two file names are treated as the same by
the operating system.

2.2.18 File Name Handling

Several compiler options (such as “-o”) take a file name as an argument. As
a special abbreviation, the character “@” can be placed in these file names to
stand for the base name of the source program. To form the base name, the
compiler removes all directory information from the source file name, along
with any characters following a period, and the period itself. The resulting
base name is then inserted into the file name argument at the location of the
“@” character.

For example, if you want to compile a program called “TEST.CBL”, and you
want the resulting object file to be named “TEST.OBJ”, and the error output
to be placed in “TEST.ERR”, you can use the following command:

ccbl -o @.OBJ -e @.ERR TEST.CBL

This is equivalent to the following:
ccbl -o TEST.OBJ -e TEST.ERR TEST.CBL

and is also equivalent to:
ccbl -oe @.OBJ @.ERR TEST.CBL

2-66 Compiler and Runtime
In this example, the “-o” indicates that the next argument is the name of the
object file. The “@.OBJ” argument is this name. The “-e” indicates that the
next argument is the name of the error file. The “@.ERR” argument is this
name. The “@” character is replaced with the word “TEST”, which is
derived from the name of the source file “TEST.CBL”.

As another example, on UNIX machines you can compile the program
“test.cbl” and place the object code in the file “/programs/test” with the
command

ccbl -o /programs/@ test.cbl

(Substitute “\@” for “@” if your UNIX machine uses “@” as its default “line
kill” character.) This can be particularly useful in compile scripts or in
conjunction with the CBLFLAGS variable described below.

2.2.18.1 Remote file name handling

If AcuServer or AcuConnect is running on remote machines, the compiler
can read remote source files from and write resulting files to those systems.
The remote filename syntax that is used with the compiler is different than
that used with the runtime and AcuServer. Because the compiler uses the
“at” sign (“@”) as a placeholder for the base name of the source file, you
cannot use that symbol as a tag in front of the name of the remote system (for
example, “-o @server:/objects/@.acu” is ambiguous). Instead, the syntax is
more like standard URL syntax. The remote filename specification must be
of the form:
acurfap://server:[port]:filename

acurfap stands for “Acucorp Remote File Access Protocol.”

Remote file name notation can be used with any compiler option that takes a
file name as an argument. The “//server:port” notation can be used with any
configuration variable that allows remote name notation. See Appendix H,
“Configuration Variables” in Book 4 for details on configuration variables.

If AcuServer is listening on the default port of a server machine, you do not
have to specify the port number because the compiler defaults to that number
(“6523”). However, if you omit the port number, you must include two
colons (“::”) before the file name. If AcuServer is listening on a port other
than the default, the “::” notation will not work.

Using the Compiler 2-67
Examples

If AcuServer is running on a UNIX machine named myserver and is listening
on the default port, you can compile “apmain.cbl” straight to that machine
with the following command.
ccbl -o acurfap://myserver::/myapp/obj/@.acu apmain.cbl

If “apmain.cbl” is located on the server, you can compile the remote file and
write the resulting object file to the server with the following command.
ccbl -o acurfap://myserver::/myapp/obj/@.acu
 acurfap://myserver::/myapp/src/apmain.cbl

If AcuConnect is running on a Windows machine named myserver and is
listening on port “5632”, you can compile “apmain.cbl” straight to that
machine with the following command. Notice that if specifying a Windows
directory, you must also include a drive letter followed by a colon (the “c:” in
this example) after the port number (or the optional “::”).
ccbl32 -o acurfap://myserver:5632:c:/myapp/obj/@.acu
 apmain.cbl

Note: When specifying a remote file name for a Windows machine, you
can use the backward slashes (“\”) used by Windows, the forward slashes
(“/”) used by UNIX, or a combination of the two.

2.2.19 Compiler Command-Line Examples

Here are some examples of common commands. The following command
will simply compile the program “test.cbl” and produce the object file
“test.acu”. The program will be compiled in VAX COBOL compatibility
mode.

ccbl test.cbl

This next command will compile the same program in RM/COBOL
compatibility mode. It will treat signs in a manner consistent with early
versions of RM/COBOL and suppress reserved words not used by that
compiler. These options are particularly common when you are converting
programs written for RM/COBOL.

2-68 Compiler and Runtime
ccbl -Cr -Ds -Rva8 test.cbl

The following Windows console-mode (DOS-box) command will compile
the program “TEST.CBL” and produce an object code file named “TEST” in
the “c:\objects” directory, and create a full listing called “TEST.LST” in the
current directory.

ccbl32 -o c:\objects\@ -Lfo @.lst test.cbl

Finally, this command will perform the same function on a UNIX machine
except that the listing will be sent to the print spooler “lp”.

ccbl -o /objects/@ -Lf test.cbl | lp

2.2.20 CBLFLAGS Environment Variable

To simplify the setting of compiler options, the environment variable
CBLFLAGS may be set to a list of options. These options will be used each
time the compiler is run. The CBLFLAGS variable is particularly useful for
setting options that you use all the time.

If you have set the CBLFLAGS variable and need to unset it temporarily, you
can use the “-x” command-line option to ignore it for any particular run of the
compiler.

You may continue to use command-line options when you use the
CBLFLAGS variable. All of the options from both places are used. Note
that the environment variable CBLFLAGS is examined after the
command-line options.

On UNIX machines, the CBLFLAGS variable is set in the environment. This
can be done with the export command of the Bourne or Korn Shell or the
setenv command of the C-Shell. Under VMS, the CBLFLAGS variable is
set as a symbol. Under Windows NT/2000, this variable can be created in the
Control Panel “System” applet, or for Windows 98 systems, in the
“autoexec.bat” file with the SET command. Windows must be restarted for
the new values to take effect. For more information about setting
environment variables, see section 1.5, “Environment Variables.”

Using the Compiler 2-69
The ‘@’ file name abbreviation is particularly useful in the CBLFLAGS
variable. For example, if you set the variable to “-o /programs/@”, then
every program you compile will have its object file placed in the “/programs”
directory with the same name as the source file.

Note: The number of “acceptable” arguments in the CBLFLAGS
environment variable is limited to 50. The compiler accepts the first 50
arguments set and ignores all the rest in excess of that number. File
specifications are counted as separate arguments, but combined options
from the same group are counted as one argument.

2.2.21 Help, Version Information, and Communication
With C Programs

You can get a summary of compiler options with the following command:
ccbl -help

You can display the copyright notice and version information with this
command:

ccbl -v

You can get configuration information with the following command:
ccbl -vv

On UNIX systems, you can get additional port configuration information
with:

ccbl -vvv

The information displayed with “-vvv” varies depending on the UNIX
system and is subject to change from release to release.

You can find all of the level 78s in a COPY library and create equivalent
C-language “#define” statements with the following command:

ccbl -defines filename

You can use the “-defines” option to simplify communication between
COBOL and C programs.

2-70 Compiler and Runtime
One specific use of this option is to simplify the creation of Windows Help
files when you are building context-sensitive help. Use this option to map
context ID strings to context numbers for use with Windows Help files. First
create a COPY library with level 78s that map the context IDs (strings) from
your help file to unique context numbers (the Windows Help API function
WinHelp requires a number as the context ID parameter). Then when you
specify “ccbl -defines,” the compiler creates a file containing “#defines” that
correspond to the level 78s in the COPY library you created.

The “-defines” option must be followed (as the next separate argument) by
the name of the COPY library. acurfap syntax can be used to specify a file
on a system being served by AcuServer or AcuConnect (see section 2.2.18.1,
“Remote file name handling”).

By default “-defines” creates a file having the same base name as the
specified file and the extension “.h”. For example, if your COPY library is
named “PRHELP.DEF,” you could use this command:

CCBL -DEFINES PRHELP.DEF

to create the file “PRHELP.H” that contains one “#define” for each level 78
in “PRHELP.DEF.”

Be aware that any hyphens in the level 78 names are converted to underscores
in the corresponding “#define.” Although hyphens are allowed in COBOL
and in the help file, hyphens are not allowed in C names. See section 10.4 in
Book 2, User Interface Programming, for more information about Windows
Help files.

2.2.22 The “>>IMP” Directive

The “>>IMP” directive is an implementor defined directive, meaning that
Micro Focus defines its specific uses (described below). The syntax is:
>>IMP (ACU-CBLFLAGS=CompilerOption)

CompilerOption can be:
-Dln, where n is the integer value 1, 2, 4, or 8
-Sa
-St

Using the Compiler 2-71
The directive must start in the indicator area: column 7 for ANSI format
source; column 1 for terminal format source.

ACU-CBLFLAGS and its argument must be enclosed in parentheses. An
equal sign (“=”) must immediately follow ACU-CBLFLAGS and
immediately precede CompilerOption. Note that all three options require a
leading hyphen.

The supported options allow you to work around two unusual compile time
issues.

Specifying an alternate data alignment

You can use the “-Dln” argument to specify an alternate byte alignment for
SYNCHRONIZED data items (for details on the “-Dl” option, see section
2.2.10, “Data Storage Options”). For example, the RM COBOL
compatibility switch (“-Cr”) implies two byte alignment (which is consistent
with legacy RM COBOL). Some variables in your program may require a
larger alignment. To apply the directive, in the source code immediately
before the variable or set of variables (which may be contained in a COPY
file), add the directive in the indicator area. For example, to specify four byte
alignment add:
>>IMP(ACU-CBLFLAGS=-Dl4)

Immediately after the last variable that requires special alignment, set the
alignment back to the original value:
>>IMP(ACU-CBLFLAGS=-Dl2)

Forcing compilation of ANSI or terminal format files

When specified with a compiler directive, the “-Sa” and “-St” options
override the “-Sa” or “-St” option specified on the command line within the
scope of the containing file.

In some instances, due to source origin issues, developers may choose to
enforce compilation of a single source format by specifying either the “-Sa”
(ANSI) or “-St” (terminal) compiler option in the command line. Without the
use of a compiler directive, the compiler will not compile source files of
another format within the same compilation unit. (In prior releases this was
particularly problematic for terminal format compilation (-St) when

2-72 Compiler and Runtime
axdefgen had been used to create COPY files for ActiveX components,
because axdefgen creates ANSI format COPY files. axdefgen now
automatically inserts a compiler directive in the first line of all COPY files it
creates.)

When the “-Sa” or “-St” option is specified in a compiler directive on the first
line of the source file, the compiler compiles that source file regardless of the
format option specified on the command line. Compilation of that format
applies to only the file containing the directive.

For example, when the “-St” (terminal format) option is specified on the
command line and you want to compile an ANSI format COBOL source file
in the same compilation unit, place the following compiler directive in
column 7 of the first line of the COBOL file:
>>IMP(ACU-CBLFLAGS=-Sa)

2.3 Using the Runtime System

The ACUCOBOL-GT runtime system (referred to in this manual as runcbl),
runs the programs created by the compiler. Once compiled, programs are
ready to run; no linking step is required. Programs compiled with
ACUCOBOL-GT are machine transportable. runcbl accommodates the
differences between machines.

To run an ACUCOBOL-GT program, enter the following command
(substitute the name of your runtime for runcbl):

runcbl [options] [program] [parameters]

Program is the name of a compiled program. If omitted, its name defaults to
“cbl.out” (or to the name you have set with the runtime configuration variable
DEFAULT_PROGRAM). Remote name notation is allowed for the name
of the compiled program, if your runtime is client-enabled. See section 5.2.2,
“Remote Name Notation,” for more information.

Parameters are one or more arguments that can be passed to the program.
These arguments can be accessed through the CHAINING phrase of the
Procedure Division header in the compiled program. For details, see the
entry for the “CHAIN Statement” in Book 3, Reference Manual, section

Using the Runtime System 2-73
6.6. If parameters are specified, then program must also be specified.
Under VMS, the parameters that are not in double quotes are converted to
lower case. Parameters should be enclosed in double quotes to preserve case
sensitivity. The maximum number of parameters allowed on the command
line is 50.

Options is a series of one or more of the following flags. These options must
be preceded by a hyphen. You can specify more than one option by simply
combining them. Option characters may be either upper or lower case.

Separately, or in addition to placing options on the command line, options
can be specified in the ACUSW environment variable. ACUSW can contain
any runtime options, which are specified with the same syntax used on the
command line. ACUSW and command-line options can be used together.
ACUSW is processed after the command line, however, the command line
takes precedence with options that specify a filename. For example, you can
specify a default error file in ACUSW (e.g., with the “-e” option) and then
override it on the command line for a particular run. The “--no-acusw”
option inhibits the processing of ACUSW. This is valuable for programs that
directly invoke the runtime and require a fixed set of options that the user is
not allowed to modify with ACUSW.

2-74 Compiler and Runtime
2.3.1 Runtime Options

The allowed runtime options include:

-#

This option must be followed (as the next
separate argument) by a series of letters that
determine which SPECIAL-NAMES switches
to turn on. There are 26 SPECIAL-NAMES
switches. The letter “a” corresponds to switch
1, “b” to switch 2, and so forth. For example,
to start the program with switches 1, 5 and 8
turned on, specify “-# aeh”.

For convenience, you can turn on any of the
first 8 switches by simply specifying the switch
number or numbers without the “#” argument.
For example, “-# aeh” can also be specified as
“-158”.

-a This flag is now obsolete and should not be
used.

-b Inhibits the terminal initialization done by
runcbl. This can be useful if the program is
run in background because terminal
initialization can prevent normal use of the
terminal by the operating system. This is
particularly true on UNIX systems. If you
specify this flag, the behavior of ACCEPT and
DISPLAY statements is undefined; therefore
use this flag with caution. A program can
examine the ACU-NO-TERMINAL field after
an ACCEPT FROM TERMINAL-INFO
statement to determine whether it was started
with “-b”. See Format 3 of the ACCEPT
Statement in Book 3, section 6.6.

Using the Runtime System 2-75
-c This option must be followed (as the next
separate argument) by the name of an alternate
runtime configuration file. It causes runcbl to
use this configuration file instead of the default
file. See section 2.8, “Runtime
Configuration.”

Remote name notation is allowed for this
option if your runtime is client-enabled. See
section 5.2.2, “Remote Name Notation.”

--char2gui This option is used to convert character-based
screens into their graphical equivalents for use
in the AcuBench Screen Designer. When you
run your program with this option,
ACUCOBOL-GT’s Character-to-GUI Wizard
launches in the background.

After your program starts, navigate to the
screen you want to convert and right-click on
the window’s background. A pop-up menu is
displayed. Select “Build Graphical Screen” to
continue with the conversion. The
Character-to-GUI Wizard then creates a
graphical version of the current screen and
displays it together with a Properties dialog
box. You can use the Properties dialog to make
some basic changes to the screen. Repeat this
process for each screen you want to convert.

2-76 Compiler and Runtime
 When you are done, exit the application. When
the application exits, the runtime writes an
“import.out” file into your current working
directory that contains information describing
the converted screens. You can then start
AcuBench and, using the “Add Screen”
function, display the contents of the
“import.out” file in a Screen Designer window.
If you already have a file called “import.out”
in your current working directory, the wizard
overwrites it; therefore, if you intend to
convert screens in stages, you should rename
the file and save it in a separate directory.

If you execute the program in AcuBench, then
after you exit the application, the workbench
creates a new program in the workspace
Structural View. The program’s Screen node
contains entries for each screen described in the
“import.out” file. Those screens open in the
workbench development area, where they can
be modified. Screen node entries can be moved
in the workspace as needed.

 It is important to note that the purpose of the
Character-to-GUI Wizard is to simplify the
initial task of converting traditional text-based
applications into ones that use a graphical user
interface. Although the wizard greatly reduces
the task of converting character-based screens,
it is only a first step in the process. It is
expected that after you use the wizard, you will
spend time manipulating the screens to your
liking using AcuBench Screen Designer. You
will also need to integrate the newly generated
screen section code back into your program.
For more information on using the
Character-to-GUI Wizard, please refer to the
AcuBench User’s Guide.

-d This starts the program in debugging mode.
See section 3.1, “Runtime Debugger.”

Using the Runtime System 2-77
-e This option must be followed by the name of a
file (as the next separate argument). This
option causes the error output from the runtime
system to be placed in this file. This can be
used to trap runtime system error messages and
trace output. “-e” creates a new file or
overwrites an existing file. Use “+e” to cause
error output to be appended to the file. The
format of the output can be tailored with the
TRACE_STYLE configuration variable. See
Book 4, Appendix H.

When specifying a runtime error file name you
can use the following format specifiers:

 “%p” If the name contains the string “%p”,
that string is replaced with the process ID (PID)
of the runtime.

“%d” If the name contains the string “%d”,
that string is replaced with the current date in
the form YYYYMMDD where YYYY is the
year, MM month, and DD day.

“%t” If the name contains the string “%t”,
that string is replaced with the current time in
the form HHMMSSTTT where HH is the hour,
MM minute, SS second, and TTT milliseconds.

“%u” If the name contains the string “%u”,
that string is replaced with the username.

“%h” If the name contains the string “%h”,
that string is replaced with the hostname.

Note that these specifiers may also be used in
the file names configured with the
ACU_MON_FILE and ACU_DUMP_FILE
configuration variables.

Under UNIX systems, redirecting error output
causes problems for “more” and “vi”. For this
reason, we offer two options for redirecting
error messages under UNIX:

2-78 Compiler and Runtime
 “-e” - causes all of the runtime’s tracing and
error messages and DISPLAY UPON
SYSERR output to go to “errorfile”. It does
not redirect stderr. This means that error output
from programs called by CALL “SYSTEM” is
not redirected. If you call “more” or “vi” from
within COBOL, you can safely use “-e” to
redirect error messages.

“-ee” - If you expect programs called by CALL
“SYSTEM” to send their errors to the error file,
use the option “-ee” instead of “-e”.

Remote name notation is allowed for this
option if your runtime is client-enabled. See
section 5.2.2, “Remote Name Notation.”

--embedded-config-file This option causes the runtime to load and use
a configuration file embedded in a COBOL
object library. The name of the embedded
configuration file can be specified with the
runtime -c option. Otherwise, it must be
named “cblconfi” or “cblconfig”.

The configuration file may be embedded either
by using cblutil or the “COPY RESOURCE”
statement.

The object library must be preloaded using the
runtime -y command-line option. This is so
that the configuration file settings will be
available before the primary module is loaded.

Certain configuration variables must be set
before the object library is loaded. Therefore,
these variables cannot be set in an embedded
configuration file. The following is a list of
variables that cannot be set in an embedded
configuration file:

Using the Runtime System 2-79
 CGI
MESSAGE-QUEUE-SIZE
ICON
NO-CONSOLE
LOCKS-PER-FILE
TEST-CHAR
MAX-FILES
MAX-LOCKS
WINDOW-TITLE

 The runtime uses the following higher default
values for the LOCKS-PER-FILE,
MAX-FILES, and MAX-LOCKS variables
when “--embedded-config-file” is specified:

 256 LOCKS-PER-FILE

255 MAX-FILES

512 MAX-LOCKS

-f This option ensures that the runtime does not
perform user interface functions when the
COBOL program is functioning as a Common
Gateway Interface (CGI) program on the
Internet. This option causes the runtime to
suppress warning messages that are normally
displayed in a message box. If the runtime
shuts down due to an error that is not handled
by the COBOL program, it constructs an
HTML page containing the shutdown message
and sends it to the standard output stream
before terminating. This option performs the
same function as the environment variable
“A_CGI” but does not affect the entire
environment.

2-80 Compiler and Runtime
-g This option causes the error file (specified after
the “-e” option) to be compressed with the gzip
compression method. A compressed file must
be decompressed with gzip before reading or
editing. For clarity, it is best to give the error
file a “.gz” extension. When appending to an
existing file (with the “+e” option), you must
use the same format—compressed or
uncompressed—in which the file was
originally created.

-h This option causes the runtime to explicitly
ignore hang-up signals. You can also ignore
hang-up signals by specifying both the “-s” and
“-b” options. However, the “-sb” combination
also inhibits terminal initialization and
prevents the user from killing a program with
an abort key such as “Control-C” or “Delete”.
Unlike “-sb”, the “-h” option ignores only the
hang-up signals.

-i This option must be followed (as the next
separate argument) by a file name. This causes
the keyboard input to be taken from this file. It
can be used as an alternate to input redirection
on UNIX systems. Remote name notation is
not allowed for this option.

Examine your input files carefully, paying
particular attention to the way the <enter> key
is represented. On many systems, it is
represented by a hex “0A” (line feed). Note
that the line feed does not, by default, terminate
an ACCEPT. So, when you use the “-i” option,
you will want to add the following to your
“cblconfig” file:

KEYSTROKE TERMINATE=10 ^J

This option has no effect on Windows
platforms.

Using the Runtime System 2-81
-import This option is available only on Windows and
Windows NT systems. It requires the file
“WEXPRT32.DLL”, which must be installed
in the same directory as the runtime executable.
This option is used to import graphical screens
created with ACUCOBOL-GT Version 3.x or
AcuScreens so that these screens can be used
with the AcuBench Screen Designer. If you are
running with this option, simply right-click on
any window to have the opportunity to add it to
the file “import.out”. See the AcuBench
documentation for details.

It is important to note that the original purpose
of the screen import utility was specifically to
upgrade users from AcuScreens to AcuBench,
and it was not intended as a permanent device
to keep importing all the new screens you
create either from scratch or from AcuBench.
For that reason, when new control types are
added, the screen import utility is not
necessarily updated at all, or it may be updated
with basic information about the new control
type but not all the different properties and
styles of the new control type. You should not
rely on this utility to be able to import all new
screens you create.

When the screen import utility tries to import
an unrecognized type or property of a control,
you will see the following message on your
screen:

This screen contains at least one control type
that the Screen Import Utility does not know
about. You should add these controls
manually.

2-82 Compiler and Runtime
-k This option causes the immediate playback of a
keystroke file. It must be followed (as the next
separate argument) by a file name. The
filename argument is the name of a file
containing recorded keystrokes. The runtime
internally calls W$KEYBUF using opcode “9”
and this file name prior to executing the first
COBOL program. The effect is that the
keystrokes recorded in the file are treated as the
runtime’s first user input. For more
information see W$KEYBUF, in Appendix I
in Book 4, Appendices. Remote name notation
is not allowed for this option. Use this as an
alternative to “-i” in Windows systems.

-l Causes a listing of the contents of the runtime
configuration file to be printed on the error
output. Prints the runtime’s version number on
the first line. Also prints the steps taken by
runcbl when it is trying to load a program,
along with any problems encountered. This is
useful for debugging problems with the
configuration file or program path resolution
(see section 2.8, “Runtime Configuration”).
This is best used in conjunction with the “-e”
option to capture the debugging information in
a file.

-m value file Turns on memory handling descriptions.
These descriptions report detailed information
about memory allocation, reallocation, and
frees. For more information, see section
6.4.3.1, “Memory handling descriptions.”

--no-acusw Inhibits the processing of the ACUSW
environment variable.

--no-save-debug This option has two effects: (a) it prevents the
debugger from reading the “.adb” file, thus
causing the debugger to start in its default state,
and (b) it prevents the debugger from writing
out a new “.adb” file when it exits.

Using the Runtime System 2-83
 The debugger saves state information in a
“.adb” file which is used when the debugger is
executed in another run. This information
includes window placement and breakpoint
settings. There are some cases when you may
find this inconvenient, and the
“--no-save-debug” option provides a way to
eliminate this behavior.

--no-signal-handlers This switch allows you to initialize the runtime
without installing its signal handlers. This
option is designed for use in environments like
CICS that call the ACUCOBOL-GT runtime
from a C main program and want to install their
own signal handlers. For more information,
see the entry for acu_abend() in section 6.4.3 of
A Guide to Interoperating with
ACUCOBOL-GT.

-o This option must be followed by the name of a
file that will take the display output from the
program. This is similar to output redirection
on UNIX systems. If “+o” is used instead, then
the output is appended to the named file.
Remote name notation is not allowed for this
option.

This option has no effect on Windows
platforms.

-p Activates a built-in execution profiling facility,
prompting the runtime to collect information
about I/O operations and CALLs, and to install
a timer to track the amount of time spent in
different parts of the code. Information
collected by the runtime is placed into an
output file called “acumon.xml”. Note that if
you want zero execution count paragraphs
included in the report, you should use the “-p0”
option. For more information, see section 3.7,
“The Profiler.”

2-84 Compiler and Runtime
-p0 Tells the profiler to include zero execution
count paragraphs in the “acumon.xml” file.
For more information, see section 3.7.

-r Starts the program in debugging mode (like
“-d”). This option must be followed by the
name of a file containing debugging
commands. The debugger is run under control
of this file. Remote name notation is not
allowed for this option.

-s Runs the program in “safe” mode. On
non-UNIX systems, the “-s” option prevents
the user from killing the program with the
operating system’s abort key (Control-C,
Delete, etc.). However, any kill command will
interrupt the program run. On UNIX systems
only, the “-s” option must be issued twice
(runcbl -ss) to protect it from the system’s abort
key. This option allows only a kill -9 to stop
the program run.

“Safe” mode can help preserve the integrity of
files used by the program. If the program is not
in “safe” mode, then runcbl will automatically
close its files if the user kills the program. Note
that this keeps each file intact but does not keep
separate files synchronized with each other,
which may be required by the user’s
application.

Using the Runtime System 2-85
-t This option can be used to capture the
runtime’s terminal output to a disk file. This
option must be directly followed by a filename
of the output file.

The -t option can be used instead of piping the
output to the “tee” command. Notice that
piping runtime output to “tee” can cause the
runtime to hang. This is because runtime
detects that the output is not a terminal and so it
will not set terminal attributes for the terminal.
In such state, the runtime has a hard time
accepting input, and the output may not be
flushed to the screen in a timely manner.

 When the “-t filename” flag is set, all the output
to the terminal goes to this file, including
cursor addressing This option can be used only
with a version of the runtime which has an
addressable terminal capability. It will not
work with any of the graphical runtimes, nor
will it work with the Windows console
runtime.

--time Causes the runtime, at shutdown, to write the
total real time spent executing to its error
output file. This option can be used if you want
to measure the time it takes to execute a stand
alone batch program.

Note that such real time measurements are
inexact, because they do not account for time
spent on other tasks or waiting for external
output.

2-86 Compiler and Runtime
-u By default, the runtime tests each use of a
LINKAGE data item to check that the item
passed by the calling program is at least as
large as the item declared by the called
program. This ensures that unallocated
memory is not accidentally referenced. The
“-u” option disables that test, as well as the test
that verifies that all parameters of a
subprogram were passed by the caller. (The
same can be accomplished with the
CHECK_USING configuration variable. See
Appendix H.)

-v Prints the current version number of runcbl,
the serial number, and the maximum number of
users licensed to use the runtime
simultaneously. No program is run.

-vv (double “v”) Prints the current version number
of runcbl, along with extended information.
No program is run.

-vvv (triple “v”) This option is valid on UNIX
systems and causes runcbl to display
additional configuration information about the
UNIX port. The information displayed varies
depending on the UNIX system and is subject
to change without notice. No program is run.

-w This has the same effect as specifying
“WARNINGS 0” and “MAKE-ZERO 0” in
the runtime configuration file. This option is
provided for compatibility with previous
versions of ACUCOBOL-GT. We recommend
that the corresponding configuration entries be
used instead.

Using the Runtime System 2-87
-x When a file error “30” occurs, the root cause of
this error is often not apparent. Specifying “-x”
will cause the runtime system to display the
operating system’s corresponding error number
on the error output. This information may help
in determining the problem. You can use the
“-e” option to direct the error output to a file.

2-88 Compiler and Runtime
-y This option causes the runtime to pre-load the
specified ACUCOBOL-GT object library,
UNIX/Linux shared object library, or
Windows DLL. This option must be followed
(as the next separate argument) by the name of
the library to load. You can pre-load multiple
libraries by specifying multiple “-y” options. If
the library is a DLL, the C calling convention
can be specified after the name (see section
3.3.2, in A Guide to Interoperating with
ACUCOBOL-GT).

The directory of the object module and
ENTRY points contained in the library are
loaded by the runtime before it loads the main
program. All of the object modules in the
library are thus available to be called at any
time. Note that the main program may be
contained in the library because the library is
loaded first.

When specifying a shared object library, you
can include the file suffix or use the
SHARED_LIBRARY_EXTENSION
configuration variable to specify the filename
extension.

Note that shared libraries can also be loaded
with the SHARED_LIBRARY_LIST
configuration variable. You can also use the
SHARED_LIBRARY_PREFIX
configuration variable to specify a set of
directories that the runtime will search when
attempting to locate a shared library. For more
information on these variables, see their entries
in Appendix H of Book 4.

Libraries loaded with the “-y” option remain in
memory until the process exits. The CANCEL
statement cannot be used to unload the library.

Compatibility Modes 2-89
2.4 Compatibility Modes

ACUCOBOL-GT is designed to make porting programs between different
environments as easy as possible. To aid in this, the compiler runs under one
of five compatibility modes. These five modes support source code
portability to/from VAX COBOL, ICOBOL, RM COBOL (version 2), IBM
DOS/VS COBOL, and HP COBOL programming environments.
ACUCOBOL-GT supports a reasonable subset of these COBOL
implementations. This is accomplished in two fashions. When these
compilers have differing but distinct syntaxes for accomplishing the same
thing, all syntaxes are supported. For example, in RM/COBOL, the word
BLINK is used to turn on the blinking attribute. In VAX COBOL, the phrase
used is WITH BLINKING. Because these phrases do not conflict with each
other, both are supported.

ACUCOBOL-GT object libraries are described
in more detail in section 3.2, “Object File
Utility — cblutil.” Windows DLLs and UNIX
shared libraries are described in Chapters 3 and
Chapter 6 of A Guide to Interoperating with
ACUCOBOL-GT.

Remote name notation is allowed. See section
5.2.2, “Remote Name Notation.”

Note: “-y” does not load client-side DLLs for
thin client applications that make calls using
the CALL verb “@[DISPLAY]:” syntax.
These applications must explicitly load the
DLL by calling it with the CALL verb before
calling a function within the DLL.

 -z After an unexpected runtime termination
resulting from a memory access violation, this
option causes the program to output the current
contents of memory where the violation
occurred.

2-90 Compiler and Runtime
In some cases, the compiler cannot simultaneously accept both methods of
doing something because they conflict. For example, VAX COBOL and
RM/COBOL have different rules for determining the default cursor position
for a DISPLAY statement. In this case, ACUCOBOL-GT defaults to using
the VAX COBOL interpretation unless the “-Cr” or “-Ci” flag is used at
compile time. The use of these flags is detailed in section 2.2.5,
“Compatibility Options.”

Many operational characteristics can be configured at runtime. See Section
2.8, “Runtime Configuration,” for details.

See Book 3, Chapter 2, section 2.3.1, “ANSI ACCEPT and DISPLAY
Verbs” for compatibility information concerning ANSI ACCEPT and
DISPLAY verbs.

2.5 Source Formats

ACUCOBOL-GT supports two different source formats. One format is
ANSI compatible. The other format is suitable for interactive COBOL
development from a terminal.

ANSI format has the following characteristics:

1. Columns 1 - 6 are used for Sequence Numbers. This area is ignored by
the compiler.

2. Column 7 is the Indicator Area.

3. Columns 8 - 11 are Area A.

4. Columns 12 - 72 are Area B.

5. Columns 73 - 80 are the Identification Area. This area is ignored by
the compiler (but see Source Code Control below).

6. Lines are 80 characters long. Lines shorter than 80 characters are
padded with spaces, and longer lines are truncated.

Terminal format is convenient for developing programs interactively. This
format has the following characteristics:

Source Formats 2-91
1. The Sequence Number area is eliminated.

2. The Indicator Area is in column 1. All of the usual COBOL
indicators are accepted here except for the conditional debugging line
indicator “D”. This indicator must be preceded by a backslash (\) in
column 1 (placing the “D” in column 2).

3. Area A also starts in column 1 unless an indicator is present, in which
case it starts immediately after the indicator character.

4. Area B starts in column 5 and extends to the end of the line.

5. The Identification Area starts when a “|” or “*>” is encountered,
provided it is not part of a literal. The Identification Area extends to
the end of the line. This can be used to introduce in-line comments.

6. The line ends when a carriage-return or new-line is found. Lines may
be longer or shorter than 80 characters.

Note: Although the compiler accepts lines longer than 80 characters,
the runtime debugger does not display characters past the 80th column.
If possible, use the AcuBench runtime debugger in such cases.

ACUCOBOL-GT Terminal mode is compatible with the VAX COBOL
terminal source format, except for the introduction of the Identification Area,
which VAX COBOL does not support. ACUCOBOL-GT Terminal mode is
also compatible with ICOBOL terminal source format except that Area A
must start in column 1 (in ICOBOL Area A may start in column 2).

Both formats expand tab characters to every eight spaces. Both formats also
translate lower-case characters to upper-case except in literals. Finally, both
formats translate the underscore character to a hyphen when it is found in
identifiers.

Normally, the compiler determines the source format automatically by
examining the first character of the first non-blank line. If this character is
blank or a digit, the file is assumed to be an ANSI file; otherwise it is assumed
to be in terminal format. This is done independently for the main source file
and all COPY libraries. This allows mixing of formats among a source file
and its COPY libraries. If desired, the format to use for the entire input
source can be set to either mode via the “-Sa” or “-St” compile flags.

2-92 Compiler and Runtime
2.6 COPY Libraries

The COPY verb accepts the following forms:
COPY library-name [OF path-name] [SUPPRESS].
COPY RESOURCE resource-name [OF path-name].

where library-name and path-name are either user-defined words or
alphanumeric literals. Resource-name is an alphanumeric literal.

Environment variables may be used in the path-name--this is indicated by a
$ sign before the name of the variable. For example:

COPY library-name OF "$COPYLIB".

You may also use multiple environment variables to define a path:
COPY library-name OF "$LIB/$COPYLIB/$SUBDIR".

Library-name is the file name of the copy file to include in the object library.
Resource-name is a file (other than a COBOL object) that is to be included in
a COBOL object library. If path-name is specified, then it is treated as a
directory specification for library-name or resource-name.

The file name is derived by concatenating path-name with library-name or
resource-name, using the appropriate syntax for the host operating system.
For example, on a UNIX system,

COPY MYCOPY OF "/usr2/acctdir"

is translated to
COPY "/usr2/acctdir/MYCOPY".

Note: Please note the use of quotation marks on path-name and on
library-name and resource-name when they include lower case letters.
This is a requirement on systems that are case sensitive, because the
runtime would otherwise convert lower case to upper case.
The “-Ce” compatibility option can be used to specify an alternate default
file extension. See section 2.2.5, “Compatibility Options.”

COPY Libraries 2-93
A library name can be specified by a user-defined word which may include a
period. This is a special extension to the meaning of “user-defined word”.
This allows you to specify a file extension without putting the name in
quotes. For example, the two statements:

COPY "MYFILE.CPY"

and
COPY MYFILE.CPY

are both allowed and mean exactly the same thing.

When a period is placed in a library name which is a user-defined word used
without quotes, it must be preceded and followed by a (non-period) character
normally allowed in an identifier (thus “.MYFILE”, “MYFILE.” and
“MYFILE..CPY” are all disallowed).

In addition, the COPY RESOURCE statement allows the resource name to be
a user-defined word just like in a Format 1 COPY statement (the resource
name does not have to be an alphanumeric literal).

Note: User-defined words are always treated as uppercase on machines
where file names are case-sensitive.

If the derived file name is a full path name or contains a drive designation,
then that name is used unmodified. Otherwise, a series of directories is
searched to find the COPY file. The default search path is just the current
directory.

You can modify the search path by setting an operating system variable. On
UNIX, Linux, and Windows systems, you do this by setting the environment
variable COPYPATH to be the list of directories to search. For VMS
systems, the symbol COPYPATH is set instead.

The COPYPATH variable consists of a series of prefixes to apply to the file
name. Each prefix is terminated by a special character that depends on the
host operating system.

System Separator

Windows Semicolon

2-94 Compiler and Runtime
For example, to search the current directory, the directory “/u/pr” and the
directory “/u/ap” on a UNIX system, the appropriate COPYPATH setting
would be:

:/u/pr:/u/ap:

The initial colon indicates an empty prefix (i.e., the current directory). Note
that the “-Sp” compiler option can also be used to specify the search path for
COPY libraries. If used, it takes precedence over the COPYPATH setting.

You may use the word SUPPRESS to exclude the contents of a COPY file or
any COPY files nested within from the program listing. For example:

COPY MYFILE OF "$MYLIB" SUPPRESS.

COPY statements may contain other COPY statements. This nesting is
limited by the total number of files that the operating system will allow a
program to open at once.

2.6.1 Resource Files

A resource is a piece of static data (such as a bitmap) that is required by the
program and is embedded directly into the object file. Because a resource is
not actually a separate file in the target environment, using resources reduces
the number of physical files required on the target machine and thus can
simplify the installation of your programs. Using resources is essential if you
want to include bitmap images or sound files in an application that will be
dynamically loaded over the World Wide Web. Bitmap files (BMP and
JPEG), sound files (WAV), ActiveX resource files, and runtime
configuration files are the only types of resources supported in the current
version of ACUCOBOL-GT.

UNIX/Linux Colon

MPE/iX Colon

VMS Comma

System Separator

COPY Libraries 2-95
Note: In order to use JPEG files, you must have the file “ajpg32.dll”
installed in the same directory as the runtime. Only 32-bit runtimes support
JPEG format images. If you need JPEG support on 64-bit Windows, run
the 32-bit runtime or the Thin Client. You can also run the Thin Client with
the 64-bit runtime.

2.6.1.1 General Rules for Resources

The following rules apply to resources in general.

1. Resources are files (other than COBOL objects) that are included in a
COBOL object library.

2. Resources are named as if they were files, but without any directory
information. A resource takes on the same base name as its source file
(including suffix). For example, if you include the resource
“c:\mystuff\toolbar1.bmp”, that resource would be called
“toolbar1.bmp” in the COBOL object library.

3. Resources preserve the case of their names in the object (as specified at
the time they were included in the object). However, resource names
are matched regardless of case. Thus, in the preceding example, a
program could refer to the resource as “toolbar1.bmp” or
“ToolBar1.Bmp” with identical results.

4. A resource name with a hyphen (“MY-FILE”) is considered equivalent
to the same resource name given with an underscore (“MY_FILE”).

5. Resources are accessed by various specific COBOL subroutines or
operations. Currently, there are five useful resource types. These are:
bitmap, JPEG, WAV, ActiveX resource, and runtime configuration
files. The library routines “W$BITMAP”, “WIN$PLAYSOUND” and
“C$RESOURCE” can access resources. See Section 2.3, “Using the
Runtime System,” for information about embedding a runtime
configuration file in an object library.

6. The presence of one or more resources in an object converts that object
into a library. A library consists of a collection of COBOL objects and
resources (either of which may be absent). COBOL objects are named
in a library by their PROGRAM-IDs, while resources are named by

2-96 Compiler and Runtime
their file names. The CALL verb ignores resources when trying to find
a COBOL object, and resource processing routines (such as
W$BITMAP) ignore COBOL objects when trying to find a resource.

7. You can include a resource in an object file by using either the COPY
RESOURCE statement or by using “cblutil -lib”.

2.7 Source Code Control

ACUCOBOL-GT provides a method for conditionally modifying the source
program at compile time. This is accomplished by having lines in the source
that can be excluded or included at compile time. This can be used to
maintain different versions of the program, perhaps to support different
machine environments.

The “-Si” (include) flag controls the actions of the source code control
system. It must be followed by an argument that specifies a pattern that the
compiler will search for in the Identification Area of each source line. If the
pattern is found, then the line will be included in the source program, even if
it is a comment line. However, if the pattern is immediately preceded by an
exclamation point, then the line will be excluded from the source (i.e.,
commented out). The exclamation point here stands for the notion not. Note
that the pattern is case sensitive; enclose it in double quotes on systems such
as VMS where you need to preserve its case.

The “-Sx” (exclude) flag works in the same fashion except that its meaning is
reversed (i.e., lines with the pattern will be commented out and lines with a
preceding exclamation point will be included).

Here is an example. Suppose that a source program is being maintained for
both the UNIX and VMS environments. The following piece of code is in the
program:
 MOVE "SYS$HELP:HELPFILE" TO FILE-NAME. VMS
* MOVE "/etc/helpfile" TO FILE-NAME. UNX
 OPEN INPUT HELP-FILE.

This program fragment is ready to be compiled for the VMS system. If a
UNIX version is desired, then the following command line will correct the
source during compilation:

Runtime Configuration 2-97
ccbl -Si UNX -Sx VMS source

The first “-Si” flag will cause lines marked with “UNX” to be included in the
source. The second flag will cause lines marked with “VMS” to be excluded
from the source. An alternate way of doing the same thing would be:
 MOVE "SYS$HELP:HELPFILE" TO FILE-NAME. !UNX
* MOVE "/etc/helpfile" TO FILE-NAME. UNX
 OPEN INPUT HELP-FILE.

This would be compiled for UNIX systems with:
ccbl -Si UNX source

The line marked with “!UNX” is commented out when this command is run
because of the exclamation point. This alternate method is particularly
appropriate if only two versions are being maintained.

This source code control system can be especially convenient if the source is
being maintained for both ACUCOBOL-GT and non-ACUCOBOL-GT
environments. The ACUCOBOL-GT extensions can be commented out and
marked with a source-code control flag. When the program is compiled
under ACUCOBOL-GT, these lines can be included.

Note: The patterns maintained in the Identification Area should be in
upper case because some systems convert command lines into upper case.
Also note that exclamation points usually need to be quoted on command
lines. As a final note, the entire Identification Area is searched for the
pattern; other information may be placed there too.

2.8 Runtime Configuration

Many aspects of the runtime system can be controlled through configuration
variables. Configuration variables can be modified by each runcbl site as
well as directly by an ACUCOBOL-GT program. This allows a great deal of
flexibility in adapting runcbl to a particular system.

2-98 Compiler and Runtime
Configuration variables are maintained in a configuration file. This is a
standard text file that can be modified by the host system’s text editor.
runcbl uses the following rules to decide what the configuration file is
called:

1. If the “-c” runtime option is used, then the configuration file is the one
named by that option; otherwise,

2. If the operating system environment variable “A_CONFIG” is defined,
then its value is the name of the configuration file; otherwise,

3. The configuration file is named according to the host operating system.
This depends on the operating system used by the machine, as outlined
in the following table.

The configuration file is optional, as are all of its contents. For this reason,
no errors in the configuration file are ever reported. The “-l” runcbl option
can help debug configuration file problems.

Each entry in the configuration file consists of a single line. All entries start
with a keyword, followed by one or more spaces, tabs, or an equals sign, and
then a value. The value consists of the rest of the line less any trailing spaces.
The limit for each configuration value entry is 4095 characters.

For the following configuration variables, a colon (:) may be used instead of
an equals sign (=) in the value portion of the entry:

System Configuration File

Windows \etc\cblconfi

UNIX/Linux /etc/cblconfig

MPE/iX /etc/cblconfig

VMS SYS$LIBRARY:A_CONFIG.DAT

COLOR-TABLE COLOR-MAP

FILE-CONDITION KEYBOARD

KEYSTROKE SCREEN

MENU-ITEM MOUSE

HOT-KEY

Runtime Configuration 2-99
In the above cases, allowing a colon instead of an equals sign in the value
portion of the entry makes it possible to specify these values in environment
variables. This accommodates systems that do not allow an equals sign in the
environment variable.

In all configuration variables, 0, OFF, NO, and FALSE are interchangeable;
1, ON, YES, TRUE are interchangeable. You can insert comments by placing
a “#” in column one. The following sections contain examples of
configuration variables.

In the keyword, all lower-case characters are treated as upper-case and all
hyphens are treated as underscores. Keywords longer than 60 characters are
truncated to 60 characters.

All of the configuration variables may also be given initial assignments in the
host computer’s environment. When a particular variable appears in both the
host’s environment and the configuration file, then the value in the host’s
environment is used. Note that when placed in the host’s environment, a
configuration variable must be upper-case and must use underscores instead
of hyphens.

Note: All configuration variables that have a default value are used by and
affect the runtime in the same way that they would if they were in the
configuration file. That is to say, a configuration variable that has a default
value is treated as if it appears in the configuration file set to the default
value.

The following sections describe some of the most frequently used
configuration variables. A complete list of configuration variables along
with a description of their use can be found in Appendix H in Book 4,
Appendices.

2.8.1 File Name Assignments

File names referenced in an ASSIGN clause can be dynamically reassigned
at runtime by configuration variables (this is sometimes referred to as name
aliasing). Each file’s ASSIGN name is searched for in the configuration

2-100 Compiler and Runtime
environment and, if found, replaced by the value of the matching
configuration variable. The exact meaning of this reassignment is detailed in
the section 2.9, “File Name Interpretation.”

For example, if your code contains a SELECT statement like:
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT idx-file
 ASSIGN TO DISK "idx.dat"
 BINARY SEQUENTIAL
 STATUS IS idx-status.

you could define a name alias for “idx.dat” in your runtime configuration file
by adding the line:
idx.dat usr2/data/idx.dat

Whenever your application references “idx.dat” in a SELECT statement, the
alias “/usr2/data/idx.dat” is substituted.

Remote name notation is allowed in file aliases if your runtime is
client-enabled (for indexed files, remote name notation requires the Vision
file system). See section 5.2.2, “Remote Name Notation.”

Likewise, Internet notation is allowed if you are using AcuXML. For
example, to read the XML file “bookfile.xml” over the Internet, you could
map the file to its URL in your runtime configuration file:
BOOKFILE http://myserver.mycomp.com/data/bookfile.xml

Note that the XFD files required by AcuXML must still be available locally
(or via AcuServer) in the named XFD_DIRECTORY, but the data stream
will be read from the server myserver.mycomp.com via HTTP.

Note: Aliasing is strongly recommended for accessing physical devices
such as printers. This allows a program to easily adapt to the device
naming conventions used at each individual site.

Runtime Configuration 2-101
For portability across applications, the following names are recommended
for device files:

For example, a COBOL program might assign a print file to the system
spooler, printer number 2, with the following line:
ASSIGN TO PRINT "PRINTER2"

Although the assignment of these names to physical devices is arbitrary, the
following conventions are recommended:

1. “PRINTER” devices should be assigned to the host operating system’s
spooler, if applicable. If the host operating system does not have a
spooler, then they should be assigned directly to the print devices.

2. “FORM” devices should not be assigned to a spooler. They should,
instead, be assigned directly to the printer. These are intended to be
used by programs that need to control the printer directly without
intervention by another program.

3. “TAPE” devices can be assigned in any sensible manner.

No names are initially assigned. The process of assigning names is covered
in section 2.9, “File Name Interpretation.”

For more selective aliasing, for example, changing the name of a single
Vision segment, see the filename, filename_DATA_FMT, and
filename_INDEX_FMT configuration variables described in Book 4,
Appendix H.

PRINTER System spooler, default printer

PRINTER1-9 System spooler, printers 1-9

FORM Default special-form printer

FORM1-9 Special-form printers 1-9

TAPE Default tape/floppy transport

TAPE1-9 Tape/floppy transports 1-9

2-102 Compiler and Runtime
2.8.2 Code and Data File Search Paths

A series of directories can be specified that are used to locate program object
files and data files. Object files are located via the CODE_PREFIX
configuration variable. Data files are located by the FILE_PREFIX
variable.

Each of these variables specifies a series of one or more directories to be
searched for the desired code or data file. The search method is detailed in
section 2.9, “File Name Interpretation” and section 2.10, “Calling
Subprograms.”

The directories are specified as a sequence of space-delimited prefixes to be
applied to the file name. All directories in the sequence must be valid names.
The current directory can be indicated by a period (regardless of the host
operating system). For example, the following line:

FILE_PREFIX . /usr/data

specifies that data files should first be searched for in the current directory
and then in the “/usr/data” directory. For convenience, colons can be used
along with spaces as a delimiter (except on Windows systems where
semicolons are used, and VMS systems where commas are used). As an
example of this, the following may be specified for a Windows system:

CODE_PREFIX C:\;C:\OBJ

The “^” (carat) character can be specified in CODE_PREFIX to indicate the
directory containing the calling program.

Note: Directory names with embedded spaces can be used as
FILE_PREFIX and CODE_PREFIX configuration variables if the
directory name is enclosed in quotes, for example:

FILE_PREFIX C:\"Sales Data"

This example will cause the program to search for files first under the
referenced directory name, and then in the current directory.

You can also specify a default file name extension for both code and data
files. By default, ACUCOBOL-GT makes no assumptions about the file
name extension used by files. A default name extension can be specified for
code files by the configuration variable CODE_SUFFIX and for data files

Runtime Configuration 2-103
with the variable FILE_SUFFIX. These suffixes are automatically appended
to any file name that does not explicitly contain an extension. A period is
automatically placed between the file name and the extension, if needed.

For example, you can cause all of your object files to have the implicit
extension of “.COB” by placing the following line in your configuration file:
CODE-SUFFIX COB

2.8.3 File Status Codes

ACUCOBOL-GT supports five different sets of FILE STATUS code values.
These five sets correspond with the values used by RM/COBOL-85, RM/
COBOL version 2, Data General ICOBOL, VAX COBOL, and IBM DOS/
VS COBOL. By default, ACUCOBOL-GT uses the RM/COBOL-85 values.

You can select another set of file status codes at runtime by setting the
configuration variable FILE_STATUS_CODES” to one of the following
values:

The exact values used by each set are covered in Appendix E in Book 4,
Appendices.

Note: The set of status codes used depends solely on the current setting of
the FILE_STATUS_CODES variable and not on any compile-time
settings. This is done to provide a consistent set of status codes to every
program in a run unit. If you need to change the set of status codes during
a run unit, you can do so with the SET ENVIRONMENT verb. Some
programmers use this verb to ensure status code settings for a particular
program, or in situations where programs that conform to the 1985 COBOL
standard and programs that do not conform are both in use at a site.

 “74” -RM/COBOL version 2 codes

“85” -RM/COBOL-85 codes (default)

“DG” -ICOBOL codes

“VAX” -VAX COBOL codes

“IBM” -IBM DOS/VS codes

2-104 Compiler and Runtime
2.8.4 Terminal Handling Options

Many aspects of the terminal I/O sub-system can be modified by
configuration variables. These are described in detail in section 4.2,
“Getting Your Terminals Ready.”

2.8.5 File Handling Options

Some COBOL systems do not abort when a file error occurs and there is no
Declarative to handle it. If you desire this behavior, set the runtime
configuration entry ERRORS_OK to one of the non-zero values described in
the entry for ERRORS_OK in Appendix H of Book 4.

Caution: When ERROR_OK is enabled, file errors that would normally
cause ACUCOBOL-GT to abort will instead allow processing to continue.
This means that when ERRORS_OK is enabled, you will not get the usual
error reporting. Under most circumstances this is undesirable.

Some compilers also automatically create files when they are opened for I/O
or EXTEND, if the files are missing. You can simulate this behavior by
setting EXTEND_CREATES to “1” if you want to create files opened for
EXTEND and setting IO_CREATES to “1” to create files opened for I/O.

RM/COBOL version 2 automatically closes all files except print files when a
program executes an EXIT PROGRAM statement. By default,
ACUCOBOL-GT does not do this, because it is a violation of the ANSI
standard. If the configuration variable CLOSE_ON_EXIT is set to 1, then
this behavior is emulated by runcbl. You can also set this variable to 2 to
cause all files (including print files) to be closed when a program exits.
Setting the variable to zero resets this option.

RM/COBOL version 2 also automatically causes a page eject when a print
file is closed unless the WITH NO REWIND option is used on the CLOSE
statement. The configuration variable PAGE_EJECT_ON_CLOSE can be
set to “1” to cause this behavior. Setting it to “0” causes the normal behavior
of not ejecting a page.

Runtime Configuration 2-105
You can improve the performance of indexed files that are opened WITH
LOCK by setting the configuration variable MASS_UPDATE to “1.” This
causes ACUCOBOL-GT to treat these files as if they were opened with the
“MASS-UPDATE” phrase specified. For details on this phrase, see section
6.1.6.2, “Mass update.”

2.8.5.1 Sort files

The SORT verb often makes use of temporary files. By default these files are
stored in the current directory. You can specify an alternate directory to hold
the sort files by setting the configuration variable SORT_DIR to the desired
directory. This value is treated as a prefix, so any trailing directory syntax
(such as “/”) is required. You can improve the performance of the SORT
verb by placing the temporary files on a fast device. Care should be taken,
however, that the device has enough free space to hold twice the size of the
data to be sorted.

2.8.5.2 Carriage control

RM/COBOL handles carriage-control characters in a line sequential file
differently on different systems. By default, both ACUCOBOL-GT and RM/
COBOL-85 remove carriage-control characters from input records for line
sequential files. This is the ANSI standard. RM/COBOL version 2,
however, does not remove form-feed characters on MS-DOS machines and
does not remove form-feed or carriage-return characters on UNIX systems.
Some existing RM/COBOL version 2 programs depend on this behavior.

ACUCOBOL-GT can optionally retain any or all of these characters in the
input record. If the configuration variable
CARRIAGE_CONTROL_FILTER is set to “1”, then form-feed characters
will be retained in the input record. If it is set to “2”, then carriage-return
characters will be retained. If it is set to “4”, then line feeds will be retained.
You may specify combinations of characters to retain by adding their
corresponding values together. For example, specifying “6” causes
carriage-returns and line feeds (2 plus 4) to be retained. Setting the variable
to zero causes the default action of removing all three characters. Note that
on VMS systems, carriage control information is not placed directly into data
records and is instead maintained separately. For this reason, the
CARRIAGE_CONTROL_FILTER setting has no effect on VMS systems
and should not be considered portable to those machines.

2-106 Compiler and Runtime
2.8.5.3 Device locking

Finally, users on UNIX systems who want to make use of runcbl’s automatic
device locking facility may set the variable LOCK_DIR to the desired lock
directory. This process is covered in detail in section 6.1.5, “Device
Locking Under UNIX.”

There are other configuration options that can affect file operations and
performance. See Appendix H, in Book 4, Appendices, for a complete listing
of configuration options.

2.9 File Name Interpretation

ACUCOBOL-GT employs a rich set of rules when translating a file name
specified in an ASSIGN clause to an actual file name used on the host system.
These rules provide a great deal of flexibility in placing files and dynamically
reassigning them. These rules also allow for convenient handling of printers
and other special devices. See section 2.8.2 for examples that illustrate many
of the rules listed below.

When interpreting a file name, runcbl performs the following steps in order:

1. The initial name is taken from the ASSIGN clause of the file. If not
specified in the ASSIGN clause, then the internal name specified by the
SELECT clause is used instead.

2. The name is examined to see if FILE_ALIAS_PREFIX should be
applied.

• The file name is constructed by prepending the first string listed in
FILE_ALIAS_PREFIX to the file name. The runtime searches for
that name in the environment or the configuration file.

• If the name is not found, the runtime constructs a new name by
prepending the second string in FILE_ALIAS_PREFIX and
searches for that alias.

• The process is repeated with each string in FILE_ALIAS_PREFIX
until a file alias name is found or the end of the list is reached.

File Name Interpretation 2-107
If the file name includes a dollar sign (“$”) and EXPAND_ENV_VARS
is set to one (“1”), the FILE_ALIAS_PREFIX logic is applied to the
environment variable name. So, for example, “$FILE1” and “FILE1”
are treated the same.

3. If this name does not start with a hyphen, then it is searched for in the
environment. First the runtime system’s configuration variables are
searched, followed by the host system’s environment. The value of the
variable found becomes the new name. This search is then repeated
until either no new translation is found or the new name starts with a
hyphen. Note that when the runtime system’s configuration variables
are initially loaded, any name found in both the runtime’s
configuration file and the user’s environment is taken from the user’s
environment.

For example, if the name “PRINT-FILE” is assigned to “PRINTER1” in
the ACUCOBOL-GT configuration file, and you have “PRINTER1”
assigned to “/dev/lp” in the host’s environment, then opening a file
called “PRINT-FILE” will actually open the file “/dev/lp”.
“PRINT-FILE” is first translated to “PRINTER1” and then
“PRINTER1” is subsequently translated to “/dev/lp”.

4. If the name starts with a hyphen, it is interpreted in a special fashion
described below. If it does not start with a hyphen, then it is
considered to be a normal file name. This name is further processed as
follows.

5. If the FILE_CASE configuration variable has been specified, the
change to upper case or lower case is applied if appropriate.

6. The name is examined to see if it has an extension (zero to three
characters following a period). If it does not, and the FILE_SUFFIX
configuration variable has been defined, then the value of the
FILE_SUFFIX is added to the name, with an intervening period if
necessary.

7. The name is examined to see if FILE_PREFIX should be applied.

• If the name contains a disk drive designation, or begins with a “\”
(back slash), processing continues at step 8.

2-108 Compiler and Runtime
• If the name begins with a “/” (forward slash) and the configuration
variable APPLY_FILE_PATH is set to off (0), processing
continues at step 8.

• If the name begins with a “/” (forward slash) and the configuration
variable APPLY_FILE_PATH is set to on (1), the current
FILE_PREFIX is applied to the name and processing continues at
step 8.

• If the name does not contain a full path or drive designation, the
current FILE_PREFIX is applied to it and processing continues at
step 8.

FILE_PREFIX is a configuration variable that contains one or more
strings that are prefixed to the filename. After each string is
prefixed and the EXPAND_ENV_VARS variable is checked (see
step 8), runcbl tries to find a file by that name. If it finds the file,
processing of the name stops. If it does not, the next prefix is tried
until no more prefixes are available. A prefix consisting of a single
period (“.”) is treated as an empty prefix (i.e., the current directory
is used).

8. Before the runtime tries to find the file, if EXPAND_ENV_VARS is
set to on (1), the runtime expands any environment variables found in
the name. A file specification that includes a “$” character will have
all the characters from “$” to the end of the name or to the next “/” or
“\” replaced with the value of the matching environment variable. For
more information, see the entry for EXPAND_ENV_VARS in Book 4,
Appendix H. The runtime now attempts to find the file. If the file is
found, processing stops. If the file is not found and there is another
FILE_PREFIX to apply, the prefix is applied and step 8 is repeated. If
all the prefixes have been tried and the file has not been found, the first
prefix is re-applied, and processing of the name stops. This means that
files newly created by runcbl will reside, by default, in the first
directory specified in the FILE_PREFIX configuration variable.

Upper or lower case in a file name is significant if it is significant to the host
operating system. The same is true when the host environment is searched
for a translation. Upper or lower case is not significant when runcbl’s local
environment is searched for a translation.

File Name Interpretation 2-109
2.9.1 File Names Starting With a Hyphen

File names that start with a hyphen are treated specially. The hyphen and the
following character are removed, as are any spaces following that character.
The rest of the name is interpreted depending on the character after the
hyphen as follows:

1. If the character is an “F”, then the name is treated as a normal file name.
This differs from the default handling only in that the name is not further
translated (i.e., no further searching in the environment and no
application of the FILE_PREFIX or FILE_SUFFIX). This is useful if
you want to ensure that a file name is placed in the current directory or
remains untranslated.

2. If the character is a “D”, then the name is treated as the name of a
device. This is treated no differently than the case for “F” above,
except that file locking rules are slightly changed for devices. Devices
may be assigned only to SEQUENTIAL files.

3. If the character is a “P”, then the name is treated as the name of a
program to run. On UNIX systems, a “pipe” is created between runcbl
and the named program. This program will then either receive data
written to the file or provide the data read from the file.

On Windows and VMS systems this is handled somewhat differently.
The translation of the name must contain at least two space-separated
words. The first word is treated as the name of a file to write or read.
This name is not further translated and is handled as a standard
SEQUENTIAL file. The second and following words are treated as the
program to run. If the file is being opened for input, the program is run
first and then the named file is opened. If the file is being opened for
output, then the named file is first opened normally; when this file is
finally closed, the named program is run. Typically the program should
either create or read the named file as is appropriate.

On Windows and VMS systems you have the option of using the phrase
“%TMP%” in place of a file name. In this case a unique name is created
for you, and that same name is substituted for “%TMP%” every place on
the line that the phrase is found. It is advisable to finish with (or rename)
the file within 19 days, to avoid the possibility of name conflicts with
names generated in the future. (See the examples below.)

2-110 Compiler and Runtime
If you use the “%TMP%” option to assign a file to a simulated pipe (by
using “-P” in the assign name), you can specify where the temporary file
will reside. This is done with the TEMP_DIR configuration entry. It
acts just like the SORT_DIR entry, except that it applies only to
%TMP% files.

On Windows systems, if you append an ampersand (&) character to the
command line, the program will run asynchronously. This should not be
done for programs providing input files, but is often useful for programs
processing output files. For example:

 assign to output "-P %TMP% cmd /c edit %TMP% &"

Program files may be assigned only to SEQUENTIAL files and may not
be opened for I/O or EXTEND.

2.9.2 File Name Examples

Following are some examples of the file name translation rules. These
examples point out some of the more useful aspects of the translation rules.

2.9.2.1 Example 1: Default name handling

Suppose you wanted to place data files in the “\DATA” subdirectory on a
Windows system. You could then make the following assignment in the
configuration file:
FILE_PREFIX C:\DATA D:\DATA

In this case, a file being created by an OPEN OUTPUT statement will be
searched for first in the C:\DATA and D:\DATA directories. If it is found in
either of these directories, that file will be removed and the new file placed in
the same directory. If it is not found, however, then the new file will be
created in the C:\DATA directory because that is the first one in the list.

Notice that the current directory is not mentioned in the above
FILE_PREFIX configuration entry. This means that the current directory
will not be searched for files. If you want the current directory to be one of
the directories that is searched, add “.” to the FILE_PREFIX configuration
entry. If a particular file must be located in the current directory, use the “-F”
flag. The “-F” can be specified in the ASSIGN name. For example, if you

File Name Interpretation 2-111
want to ensure that file “DIRLIST” is located in the current directory
regardless of the value of FILE_PREFIX, place the following clause in your
source code:
ASSIGN TO "-F DIRLIST"

The “-F” flag ensures that “DIRLIST” is not further translated or modified.
Note that the “-F” flag also ensures that the name is not translated when it is
used in a configuration variable. Thus, another way to accomplish the same
result, is with these two steps:

1. Set the file name in the ASSIGN statement as:

ASSIGN TO "DIRLIST"

2. To cause the file to be placed in the current directory, place the
following line in your configuration variable file, or set it in the
environment:

DIRLIST -F DIRLIST

Note: In the above case, the file is placed in the current directory
regardless of the contents of FILE_PREFIX.

Normally, you should avoid using the full directory path names or the “-F”
flag in your source code. If you can, use FILE_PREFIX in the configuration
file. This will provide the most flexibility in file management for each
individual site.

2.9.2.2 Example 2: Accessing printers

ACUCOBOL-GT’s name translation rules make it particularly easy to access
a site’s printers (and other devices) in a machine-independent fashion.

We recommend that you use some pre-designated names in your ASSIGN
statements for files that are to be directed to a printer. Using these names will
simplify the installation of runtime systems for sites using several
ACUCOBOL-GT applications. The ASSIGN name for standard print files
should be “PRINTER“, or one of its variants “PRINTER1”, “PRINTER2”,
etc. By convention, “PRINTER” is associated with the default printer on the
host system, while the alternate names are associated with additional printers.
For print files where you need direct control over the printer (to align special

2-112 Compiler and Runtime
forms, for example), you should use one of the names: “FORM”, “FORM1”,
“FORM2”, etc. By convention, “FORM” devices are directly attached to the
printer and “PRINTER” devices access printers through the system spooler
(if available).

Each site can then place the appropriate definitions of these names in the
configuration file (see section 2.8, “Runtime Configuration”). The
installation of “FORM” devices is easy--simply name the device using the
“-D” flag. For example, to associate the name “FORM” with the “/dev/lp”
device on a UNIX system, place the following line in the configuration file:
FORM -D /dev/lp

It is important to ensure that the users have access permissions to the named
devices. For more information about print spooler issues, see the Getting
Started book and Appendix I, the WIN$PRINTER library routine, in Book
4, Appendices.

The installation of “PRINTER” devices is only slightly more complicated.
Because these should be spooled (if possible), you will usually need to use
the “-P” flag to specify a program to receive the print output. The following
notes give examples for various operating systems:

1. On UNIX systems, the name should be translated to the appropriate
system spooler. This is usually either “lp” (for System V) or “lpr” (for
Berkeley UNIX). You will usually need to specify additional flags to
access devices other than the default one. If you are using the “lp”
spooler, you should also specify the “-s” flag to prevent the “request id is
. . .” message from appearing in the middle of your program.

For example, suppose the site has two printers, a high-speed line printer
(the default) and a laser printer. Furthermore, suppose System V UNIX
is being used and the laser printer is accessed with the flag “-dlaser”.

The following two lines should then be placed in the configuration file:

PRINTER... -P lp -s
PRINTER1 -P lp -s -dlaser

2. On VMS systems the usual way to print files is with the PRINT system
command. One recommended way of doing this is to enter the
following line in the configuration file:

PRINTER -P %TMP% PRINT /NOIDENT /DELETE %TMP%

Calling Subprograms 2-113
Be sure to use the options shown above (NOIDENT and DELETE), and
feel free to add other options as desired.

2.9.3 Assigning Files to Local Printers

For runtimes that use “a_termcap,” you may assign files to local printers.
This makes it easy to switch between local and spooled printing in a single
program--all you need to do is assign to a different device.

To assign a file to a local printer, assign the file to the filename
“LOCALPRINT“. The file must be either a print file or a line sequential file,
and it must be opened for OUTPUT or EXTEND.

If the terminal does not have enable-print/disable-print control sequences
defined for it, you will receive an error “35” when you try to open the file.
Otherwise, the open will succeed and you should be able to use WRITE
statements normally. Note that the runtime has no way of knowing whether
or not a printer is actually attached to the terminal.

The runtime sends an enable-print sequence prior to each line and a
disable-print sequence after each line. If you prefer, you may assign to
“LOCALPRINT-C” instead (the “C” stands for “continuous”). If you do
this, then a single enable-print sequence is sent prior to printing the first line,
and a disable-print sequence is sent when the file is closed. Note that this will
cause any terminal output to be printed, so this should be used with care.

For runtimes that do not use “a_termcap” (such Windows), you should assign
directly to the print device instead. This facility is not currently available
under VMS.

2.10 Calling Subprograms

ACUCOBOL-GT is not a linked language. Instead, when a subprogram is
called it is loaded dynamically at runtime. ACUCOBOL-GT does not use the
name specified in the PROGRAM-ID paragraph. Instead, the name specified
in the CALL statement is treated as the filename of the object file to load.

2-114 Compiler and Runtime
Actually, runcbl maintains two names for each called object file: its call
name (the exact name specified in the CALL statement) and its filename (the
name by which the object file is actually found).

An object module can be in one of three states:

1. Active. This is the state of any program that has been called and has not
yet exited. It also applies to the first (or main) program of a run unit. An
active program is always memory resident.

2. Loaded but inactive. A loaded program is one that is memory
resident but not running. This is the state of a program that has been
called and has also exited. It remains in memory until it is the object
of a CANCEL verb. A program in this state keeps its files and data
items in the same state that they were in when the program exited.
Note that programs with the INITIAL PROGRAM attribute are never
in this state because they are automatically canceled when they exit.

3. Not loaded. This is the initial state of all object files. By default, not
loaded indicates that the program is not in memory. However, if the
logical cancel mechanism is enabled, the program may be cached in
memory. For more information, see section 6.3, “Memory
Management.”

2.10.1 CALL

When a CALL occurs, runcbl performs the following steps. If during any
step the call is resolved, call processing ends:

1. runcbl searches the DYNAMIC_FUNCTION_CALLS configuration
variable for a matching call name or call name prefix. If a match is found
and the “dlopen(NULL)” feature is supported (true on most UNIX
systems) the call name is searched for as a dynamic function in the
current process. If it is not found, the call name is searched for as a
dynamic function in each of the loaded shared libraries or DLLs
specified with the “-y” option or with the SHARED_LIBRARY_LIST
configuration variable.

2. If the runtime is acting as an application host in a thin client
environment, it checks for the “@[DISPLAY]:” prefix and, if found,
passes the call to the thin client.

Calling Subprograms 2-115
3. The runtime next attempts to call any C subprograms that have been
linked into the runtime system. (Interfacing to C routines is detailed in
section 6.3 of A Guide to Interoperating with ACUCOBOL-GT.)

4. If the CODE_CASE configuration variable is defined, the change to
upper case or lower case is applied as appropriate.

5. Next, the list of loaded but inactive programs and their ENTRY points
is searched for a matching call name. If a name is found, that program
is made active, execution is initiated at the proper point in the program.

6. Next, all loaded programs (both active and inactive) are searched to see
if any are part of an object library (see section 3.2). For each object
library found, the call name is searched for in the list of modules
contained in the library. If found, that module is loaded out of the
library and made active.

7. Next, on Windows systems the call name is searched for as the name
of a routine in a loaded DLL.

8. Next, any libraries specified with the “-y” runtime command are
searched for a matching call name. Note that programs in a library are
searched for by their PROGRAM-IDs.

9. If the program has still not been found, the disk is searched for the
object module.

The name is examined to see if it is a full path name.

• If the call name begins with a “\” (back slash), the call name is
treated as the filename, and the object file (if it exists) is loaded and
made active.

• If the call name begins with a “/” (forward slash) and the
configuration variable APPLY_CODE_PATH is set to off (the
default value), the call name is treated as the filename, and the
object file (if it exists) is loaded and made active.

• If the call name begins with a “/” (forward slash) and the
configuration variable APPLY_CODE_PATH is set to on, the
current CODE_PREFIX is applied to it. Or, if the call name is not a
full path name, the current CODE_PREFIX is applied to it.

2-116 Compiler and Runtime
The configuration variable CODE_PREFIX (see section 2.8.2, “Code
and Data File Search Paths”) consists of a series of prefixes to apply to
the call name. These prefixes are applied, in order, until a matching file
is found or all of the prefixes have been tried.

For example, to search for object files in “/usr/obj/ar”, “/usr/obj/ap”, and
the directory containing the calling program, you could set
CODE_PREFIX to:

CODE-PREFIX /usr/obj/ar /usr/obj/ap ^

When each file name is formed, the configuration variable
CODE_SUFFIX is checked to see if it has been defined. If it has, and the
call name does not have an explicit extension specified, the current value
of CODE_SUFFIX is appended to the filename with an intervening
period. An extension is zero to three characters following a period at the
end of the name. (See the entry for CODE_SUFFIX in Book 4,
Appendix H.)

If CODE_SUFFIX is not defined, “.acu” is appended to the filename. If
the file is not found, the file is searched for again, this time without the
“.acu” extension.

Note: As with all filenames, upper and lower case are significant on
UNIX machines but not on VMS and Windows systems.

10. Next, on Windows, the call name is searched for as the name of a DLL.
If the DLL is found it is loaded and the call name is searched for as the
name of a routine in it or any other loaded DLL (see section 3.3 in A
Guide to Interoperating with ACUCOBOL-GT).

11. Next, on UNIX, the call name is searched for as the name of a shared
library (see section 6.3.1 in A Guide to Interoperating with
ACUCOBOL-GT).

12. Finally, the call name is searched for as the name of a dynamic
function in the current process, and then in each of the loaded shared
libraries or DLLs specified with the “-y” runtime command-line option
or the SHARED_LIBRARY_LIST configuration variable. Note that
to match as a dynamic function in Step 1 of this process, the call name
must match a name in the DYNAMIC_FUNCTION_CALLS
configuration variable.

Calling Subprograms 2-117
Recursive CALLs

A program may directly or indirectly call itself. A CALL statement that calls
the active program (itself) is a recursive call. For more information, see the
RECURSION configuration variable in Appendix H, Book 4, Appendices.
For information on sharing data in recursively called programs (such as in the
HP e3000 environment), see the RECURSION_DATA_GLOBAL
configuration variable.

2.10.2 CANCEL

When a CANCEL verb is executed, the following steps are performed:

1. If a CANCEL ALL statement is executed, all loaded programs that are
inactive are set to the not loaded state.

Note: The CANCEL_ALL_DLLS configuration variable can be used
to exclude DLLs and shared object libraries from the results of a
CANCEL ALL statement. See Book 4, Appendix H for details.

2. Otherwise, the list of active programs is searched for a matching call
name. If found, an active program is being canceled and the CANCEL
is ignored.

3. Next the list of loaded but inactive programs is searched for a matching
call name. If found, this program is set to the not loaded state.

4. If no matching programs are found, the CANCEL verb has no effect.
This is not considered an error.

By default, placing the canceled program in the “not loaded” state (initial
state) includes removing the program from memory. However, if the logical
cancel mechanism is enabled, the canceled program is cached in memory.
For more information, see section 6.3, “Memory Management.”

2.10.3 CHAIN

A CHAIN verb performs these steps:

2-118 Compiler and Runtime
1. Any USING parameters are first copied to a safe place. These are made
available to the chained program through the CHAINING phrase of the
Procedure Division header.

2. All active programs are made inactive.

3. A CANCEL ALL is implicitly executed.

4. A new program is loaded using the same rules that apply to the CALL
verb. This becomes the main program of the new run unit.

For more information see the entry for CHAIN Statement in Book 3,
Reference Manual, section 6.6.

2.10.4 Alternate ENTRY Points

The ENTRY statement is used to establish an alternate entry point in a
program. Such alternate points can occur many times in a single program.
To activate a program at the ENTRY point, a CALL statement from a calling
program is used. See “CALL” in section 2.9 for details.

See Book 3, Reference Manual, section 6.6, “Procedure Division
Statements,” for complete syntax diagrams and rules regarding the CALL
Statement and ENTRY Statement.

2.11 Reducing the Size of the Runtime

For a variety of reasons including limited system memory or concerns about
runtime system overhead, it is sometimes necessary or desirable to reduce the
size of the runtime by removing unused elements. This is accomplished by
modifying the special file “config85.c” and relinking the runtime. Of course,
any component removed from the runtime is no longer supported by the
system. Programs that attempt to use those components may terminate in
unexpected ways.

acushare Utility Program 2-119
You can find the file “config85.c” in the “lib” subdirectory of your
ACUCOBOL-GT installation. Instructions on relinking the runtime, as well
as specifications for the C compiler that is required for relinking on each
platform, are described in section 6.3.5 of A Guide to Interoperating with
ACUCOBOL-GT.

“config85.c” supports the removal (or re-inclusion) of the following runtime
components:

• source debugger

• SORT/MERGE support

• extended exponent support

• Screen Section support

• charting support

• AcuServer client support

• AcuConnect client support

• AcuSQL support

Comments in “config85.c” describe how to modify the file and indicate the
approximate reduction in space that will result from the removal of each
component.

2.12 acushare Utility Program

The acushare utility program is included on most UNIX and Linux systems.
On those systems it provides three key services for deployments that use the
ACUCOBOL-GT runtime system and/or AcuServer. These services include:

• ACUCOBOL-GT runtime license management

• ACUCOBOL-GT runtime shared memory management

• AcuServer license management

2-120 Compiler and Runtime
acushare’s role in the extend license management scheme is described in
section 8.2.1 of the Getting Started book. acushare’s role in shared memory
management in UNIX/Linux environments is detailed in section 2.12.1.
Comprehensive instructions on the use of acushare are given in section
2.12.2.

Note that versions of acushare are compatible as follows:

• Versions of acushare shipped with extend8 products are compatible
with all Version 8.x products but cannot be used with previous
versions.

• Versions of acushare shipped with pre-extend8 products can be used
with all pre-extend8 products but not with any extend8 products.

• You can run both extend8 and pre-extend8 versions of acushare on the
same system concurrently.

2.12.1 Using Shared Memory

In most UNIX and Linux environments, ACUCOBOL-GT supports the
ability to have multiple users share the same copy of a COBOL program’s
object code in memory. This conserves memory and can lead to improved
system performance by reducing the amount of memory paging that the
system must do.

Note: Use of shared memory is recommended only in cases where there
is a problem with excessive swapping due to too many users for the amount
of memory in the machine. If you are not experiencing this problem,
enabling shared memory will probably not improve performance. If you
are having a problem with limited memory and excessive swapping, then
the advantage of reduced swapping usually more than offsets the overhead
added by using shared memory. Note that the overhead for using shared
memory varies from machine to machine.

The UNIX code sharing facility is built on top of the UNIX System V shared
memory facility. In order to use this code sharing, your machine must
support shared memory in accordance with the UNIX System V Interface
Definition (SVID) and must also have shared memory support enabled in its

acushare Utility Program 2-121
system kernel. Many UNIX and Linux vendors supply machines with shared
memory already enabled, but others require that you reconfigure your kernel
to use shared memory. Contact your UNIX vendor if you need additional
information on this subject.

One easy way to tell if ACUCOBOL-GT supports code sharing on your
machine is to check the files that are installed with the runtime system. If you
receive a file called acushare, then that system has the ability to share code.
If you do not receive this file, code sharing is not available on that machine
(most likely because that machine does not adequately support shared
memory).

To share program code under ACUCOBOL-GT, you must perform the
following steps:

1. Install acushare.

2. Edit your COBOL configuration file to specify the programs you want
to share (see section 2.12.1.1).

3. Start the acushare program. After it’s started, you can use the
program to perform other tasks. See section 2.12.2 for details.

2.12.1.1 Indicating programs to share

Use your COBOL configuration file to indicate which programs you want to
share code. By default, no programs share code. To use shared code for all
of your programs, add the following line to the configuration file:

SHARED_CODE 1

This causes all programs to attempt to share code. Every code segment
loaded into memory is placed into shared memory until the shared memory
area becomes full. If the system runs out of shared memory and the shared
code requests start failing, each runtime will have its own copy of the
program in its own memory space. The UNIX default for SHARED_CODE
is “0” (no programs share code).

Because shared memory is a limited resource under UNIX and Linux, you
will probably want to restrict the use of shared code to those programs that
render the most benefit. This ensures that other programs do not

2-122 Compiler and Runtime
unnecessarily use up the available shared memory. To do this, specify in
your runtime configuration file each program that you want to share as
follows:

SHARED_CODE Program1
SHARED_CODE Program2
SHARED_CODE Program3

(The program name may also be enclosed in single or double quotes, for
example, “Program1” or ‘Program2’.) When you are using this method,
“Program1”, “Program2”, and so forth, specify the PROGRAM-IDs from
the programs’ Identification Division (note that a program’s object file name
is not used). If you use this method, setting SHARED_CODE to “1” has no
effect.

To maximize the benefits of code sharing, begin by restricting the use of
shared code to large programs that have many users. Later, if you find that
you have enough shared memory in your system, you can extend its use to
small programs that have many users. Use acushare’s reporting facility to
help you optimize the use of shared memory.

2.12.2 Using acushare

On most UNIX and Linux systems, the acushare utility program is provided
to handle ACUCOBOL-GT runtime and AcuServer license management, as
well as shared code segments used by the ACUCOBOL-GT runtime. On
these systems, acushare runs as a background server process that responds to
requests from various client runtimes (a “daemon” in UNIX terminology).
See section 8.2.1 of the Getting Started book for a description of acushare’s
role in extend license management. See section 2.12.1 for a description of
acushare’s role shared memory management.

acushare has several command-line formats. They include:
acushare -start [-f] [-p portnumber] [-e errorfile [-g]]
acushare –kill
acushare –clean
acushare –version
acushare

These formats are described in the following sections.

acushare Utility Program 2-123
2.12.2.1 acushare -start

The command for starting acushare is:
acushare -start [-p portnumber] [-e errorfile [-g]]

A successful start creates a background process that handles license
management and shared code. You can specify:
acushare -start -f ...

to have acushare run in the foreground.

By default, acushare obtains a port number (for the listening port) from the
operating system. If you want to direct acushare to listen on a specific port,
you can include the “-p” option followed by the desired port number. For
example:

acushare -start -p 12345

If the “-e” option is included, acushare error output is appended to the file
named after “-e”. If “-e” is not used, error output is sent to /dev/console by
default. If output is not allowed on /dev/console, acushare attempts to
append to a file named “acushare.err” in the current directory. If that fails,
acushare prints the message “acushare: cannot open error output file” to
standard output and the process exits.

If “-e” is specified, you can optionally use “-g” to cause the error file to be
compressed with the gzip compression method. Such files must be manually
decompressed with gzip before reading or editing. For clarity and to reduce
the risk of confusion or error, it is recommended that you specify a “.gz”
extension in the filename. For example:

acushare -start -eg acushare_trc.gz

Automatic startup at system boot

If you want acushare to start automatically when the system boots, you can
add a small amount of code to the system boot file. The name of the boot file
varies from system to system. Typical names are “/etc/rc.local”, “/etc/brc” or
“/etc/rc”. Identify the proper startup file and add lines similar to the
following:

if [-f /usr/etc/acushare]; then
 echo Starting ACUCOBOL-GT shared-code and license daemon > \

2-124 Compiler and Runtime
 /dev/console
 /usr/etc/acushare -start > /dev/console
fi

The preceding example assumes that you’ve placed acushare in “/usr/etc”.
You will need to adjust the code to match the conventions used in your
environment.

2.12.2.2 acushare -kill

To halt acushare, simply enter “acushare -kill” on the command line.

Should acushare terminate unexpectedly (for example, due to a SIGKILL
signal), you should remove the stranded shared memory segment with the
“-clean” option before restarting. See section 2.12.2.3.

2.12.2.3 acushare -clean

Should acushare terminate unexpectedly, its master shared memory segment
may be left behind. Before restarting acushare, you should use the “acushare
-clean” command to remove the stranded memory segment.

2.12.2.4 acushare -version

This option causes acushare to print its version number.

2.12.2.5 acushare (with no options)

If acushare is not running and you enter the acushare command without any
options, the following message is displayed:

acushare: not running

If acushare is running and you enter the acushare command without any
options, you will get a detailed report of acushare status and usage. The
following is the output of the acushare server running with two shared
programs:
ACUCOBOL-GT shared memory and license manager version 8.0.0
(2005-04-18)
Copyright (c) 1993-2008, Micro Focus (IP) Ltd.

Server Statistics:

acushare Utility Program 2-125
==================

server PID: 19134
IPC key: 0x01010101
shmid: 40370176
listening port: 44659
start date: Tue Apr 19 03:04:34 2005
clients: 2
client deaths: 0

message type sent received
-------------- ---------- ----------
HANDSHAKE 8 8
ACK 2 0
INFO 0 2
KILL 0 0
DATA 1 0
LOAD 0 2
ATTACH_FAILED 0 0
LOADED 0 2
UNLOAD 0 0
STATUS_PROGRAM 2 0
USER_ADD 0 2
USER_SUBTRACT 0 0
STATUS_USER 2 0

Shared Program List:
====================

program-id compilation date code size users shmid
---------- ------------------------ --------- ----- --------
PGM1 Thu Nov 18 10:51:22 2004 32 1 40435719
PGM2 Thu Nov 11 09:45:28 2004 32 1 40402950

shared programs in use: 2
total bytes shared: 64
total bytes saved: 0

Product/License List:
=====================

product: ACUCOBOL, SN: real, users: 2/50, processes: 2/4096
 terminal: pts/0, user: mark, processes: 1
 PID: 21188 (0x42650df9), refs: 2, added: Tue Apr 19 06:56:09 2005
 terminal: pts/1, user: mark, processes: 1
 PID: 21190 (0x42650e0e), refs: 2, added: Tue Apr 19 06:56:30 2005

2-126 Compiler and Runtime
2.12.3 acushare errors

The runtime system gracefully handles errors relating to shared code and
license management. If the runtime cannot use shared code for some reason
(such as running out of shared memory), the runtime simply loads the
program into conventional memory and execution continues.

If acushare stops running or is stopped while networked runtime processes
are active, the runtime issues a warning message, alerting the user to restart
acushare. If the runtime later detects that acushare has not been restarted,
the runtime exits.

By default certain errors cause a warning message to be displayed in a
message box, which requires a response from the user. You can change this
behavior by setting theLICENSE_ERROR_MESSAGE_BOX runtime
configuration variable to “0”. This will send error messages to the error
output (stderr, or an error file if specified). These messages include:

“Error sending message to acushare”

The system has returned an error of an unknown nature when it tried to
send a message to acushare. For shared memory, execution usually
continues. If you kill acushare after some processes have attached to
shared memory, those processes continue to use shared memory but
new processes use conventional memory.

“License manager (acushare) is not running”

This is a one-time message warning that the product will exit soon if
acushare is not restarted immediately. It indicates that a multiple-user
license file is in effect, and the product has detected that acushare has
been stopped and not restarted.

“Shared memory and license manager (acushare) is not running”

This indicates either: (1) code sharing has been requested (with the
SHARED_CODE configuration entry), but cannot be implemented
because acushare is not running, or (2) a multiple-user license file is in
effect, and a runtime process cannot register itself with acushare
because acushare is not running. After outputting the message, the
runtime exits.

“The license manager (acushare) has been killed and restarted. You have ex-
ceeded the licensed number of users for ACUCOBOL-GT. If you would like to

General Preprocessor Interface 2-127
add users, please contact your Customer Service representative.”

This message indicates that a process detected that acushare has been
stopped and restarted, so the product attempted to re-register itself.
However, it could not register itself, either because the maximum
number of users has already been reached, or the maximum number of
processes has already been reached.

“You have exceeded the licensed number of users for ACUCOBOL-GT. If you
would like to add users, please contact your customer service representative.”

A new process cannot be registered with acushare, either because the
maximum number of users has already been reached, or because the
maximum number of processes has been reached.

Note: If there are no shared memory identifiers, acushare aborts and prints
the following error message:
“acushare: cannot create shared memory”
This message indicates that you do not have enough shared memory
configured in your system. Either your UNIX kernel does not have the
resource configured, or all of the resources are in use by other programs. In
either case, you should regenerate your UNIX kernel for more shared
memory. See your UNIX system documentation.

2.13 General Preprocessor Interface

ACUCOBOL-GT includes a general preprocessor interface that allows you
to connect preprocessors to the ACUCOBOL-GT compiler. A preprocessor
is a program designed to take application source code and preprocess it
before compilation into an executable object. In the case of
ACUCOBOL-GT, the conforming preprocessors should be designed to
translate source code written in a variety of COBOLs into ACUCOBOL-GT.

The preprocessor interface in ACUCOBOL-GT has two general functions:
(1) To invoke a preprocessor from the compiler and then have the compiler
process the resultant “expanded” COBOL; and (2) to signal the compiler that
there are fatal errors in the preprocessor and therefore the compiler should not
be run.

2-128 Compiler and Runtime
The interface is designed to accommodate a wide variety of preprocessors
and to work on every platform supported by ACUCOBOL-GT. It is designed
to call preprocessors as chained programs (instead of linking them into the
ACUCOBOL-GT compiler) for three reasons:

1. You can develop and debug preprocessors without access to the
ACUCOBOL-GT compiler.

2. You can invoke preprocessors directly from the command line.

3. The stand-alone design gives much better portability among platforms.

The general preprocessor interface can be used with any preprocessor that
conforms to the requirements of the interface. Most preprocessors will be
written in ACUCOBOL-GT or C/C++, but preprocessors can be written in
any language that produces an executable object file that can read and write
text files and accept command-line arguments.

The specific preprocessors that will be used with ACUCOBOL-GT will be
written by you, the user. The ACUCOBOL-GT general preprocessor
interface supports many features that you can build into your preprocessor to
best handle the job at hand. They include:

• a set of options that the compiler automatically forwards to each
preprocessor

• command-line preprocessor options that allow you to specify certain
preprocessor parameters at the time of its invocation

• a set of line and file directives that are used to pass special information
to successive preprocessors, when two or more preprocessors are used in
a chain

• support for preprocessor-generated one-line error messages

The use of conforming preprocessors is described in section 2.13.1, and how
to write conforming preprocessors is discussed in section 2.13.3. The use of
the AcuSQL pre-compiler is discussed in section 2.13.2.

General Preprocessor Interface 2-129
Source code for a sample preprocessor written in ACUCOBOL-GT is
available for your reference on the Web at http://
supportline.microfocus.com/examplesandutilities/index.asp. Select
Acucorp Samples > General Programming Techniques > ansi2term.zip.

2.13.1 Use of Preprocessors

This section discusses various aspects of the use of preprocessors, including
rules that apply to the command-line syntax for calling preprocessors. These
aspects of use are presented in the context of two sample preprocessors, one
written in ACUCOBOL-GT, the other written in C/C++. They include
information on calling more than one preprocessor with the same
command-line statement, command-line options forwarded to preprocessors
by the compiler, and calling a preprocessor without the compiler.

2.13.1.1 Calling a preprocessor

The compiler option “-Pg” is used to call a preprocessor written in any
language that produces a directly executable object file:

-Pg "preproc-1 [options]"

Here, preproc-1 is the name of the preprocessor’s executable file. The
compiler looks for this file first in the directory in which the compiler
executable is located. We recommend that you place preprocessors in that
directory. If you place them elsewhere, you need to provide a complete path
specification. Under Windows, the compiler appends the extension .EXE
automatically (if it is not already there).

The name of the preprocessor, and of any directories in its path, cannot
contain spaces. Note that Windows creates a space-free alias for any name
with embedded spaces. Every file and directory under Windows has an
“MS-DOS” name and extension (maximum eight character name with a three
character extension; the name can be viewed in the Properties dialog by
right-clicking on the file in the File Explorer). For example, the MS-DOS
name and extension for acuodbcconfig.dll is ACUODB~1.DLL. The
MS-DOS name does not contain spaces, even if the original name does. The
MS-DOS name and extension can be used by any Windows command or
application in lieu of the original name and extension.

http://supportline.microfocus.com/examplesandutilities/index.asp
http://supportline.microfocus.com/examplesandutilities/index.asp

2-130 Compiler and Runtime
If the preprocessor requires or permits special options that are not specified
by the ACUCOBOL-GT interface, they must follow the preprocessor
executable file name and must be separated from it, and from each other, by
spaces or tabs.

If a preprocessor option contains embedded spaces, it must be enclosed in
delimiters so that it will be recognized as a single option. Standard double
quotation marks (“. . . ”) cannot be used for this purpose because they are
used to enclose the preprocessor executable filename and its associated
options. Therefore, two apostrophes (’’. . .’’) are used instead.

For example, the following option might be used to call a preprocessor:
-Pg "preproc -d ’’x=:the quick brown fox’’ "

Preprocessor written in ACUCOBOL-GT

Preprocessors written in ACUCOBOL-GT use extension “.ACU” by default
and are not directly executable. In this case, options of a slightly different
form are required:

-Pg "runtime preproc-2.ACU [options]"

runtime is the name of the ACUCOBOL-GT runtime executable file. By
default, under Windows it is “wrun32”, and under UNIX it is “runcbl”. A
path is usually not required because this file is normally installed in the same
directory as the compiler’s executable file.

preproc-2.ACU is the name and extension of the preprocessor, i.e., your
ACUCOBOL-GT object file. The extension “.ACU” is required; it will not
be added automatically. The runtime will look for this file in the current
directory. If the file is elsewhere, it is necessary to include a complete path
specification.

Rules regarding the use of options with this type of preprocessor are the same
as for other preprocessors.

2.13.1.2 Calling two or more preprocessors

If you want your program to call two or more preprocessors sequentially, you
must separate them with vertical line (or pipe) characters (“|”):

-Pg "preproc1 [options] | preproc2 [options] ... "

General Preprocessor Interface 2-131
The preprocessors are called in the order in which they appear in this list.
The first preprocessor accepts its input from the source file submitted to the
compiler. Each subsequent preprocessor accepts as its input the output
produced by the previous preprocessor. The output of the last preprocessor
is then compiled by the compiler.

Although the pipe notation suggests the use of UNIX-type pipes, the
compiler actually stores the output of each preprocessor in a temporary file
for use as input to the next preprocessor. The temporary files are erased when
the compiler is finished with them.

Note: The temporary file used by the n-th preprocessor for its output is
called “acu_pp#.out”, where “#” is a decimal representation of the number
n. It is in the current directory.

This method of calling multiple preprocessors is incompatible with the
standard method of calling the AcuSQL pre-compiler (with the “-Pn” or
“-Ps” option). If the AcuSQL pre-compiler is to be called in conjunction with
other preprocessors, it must be called with the “-Pg” option. See section
2.13.2, “AcuSQL Pre-compiler.”

2.13.1.3 Compiler options forwarded to preprocessors

The following compiler options are automatically forwarded to each
preprocessor, including the AcuSQL pre-compiler:

-Sa indicates that the input file is in ANSI format

-Sd directs the preprocessor to include debugging lines

-Si directs the preprocessor to include source lines according to a
pattern in the Identification Area of the source code. The next
separate argument is the pattern to match.

-St indicates that the input file is in terminal format COBOL

2-132 Compiler and Runtime
Note: Where some options are mutually exclusive (“-Sa” and “-St”), the
compiler command line will include at most one of those options. That one
will be forwarded to the preprocessor.

Every preprocessor (written to the standards of the ACUCOBOL-GT
General Preprocessor Interface) honors the “-e” option. Every preprocessor
accepts the other options, although it may not make use of them.

Note: A preprocessor honors an option if it does what the option requires.
A preprocessor accepts an option if it tolerates its presence on its command
line but does not necessarily honor it. An option that is not honored or
accepted causes a preprocessor to generate an error message.

Refer to section 2.1 for a description of all compiler options.

2.13.1.4 Calling a preprocessor without the compiler

Every preprocessor can be called as a separate application, without the
ACUCOBOL-GT compiler, by a command line of one of the following forms
(the second example is used with a preprocessor written in
ACUCOBOL-GT):
preproc-1 -Po output-file [options] input-file

runtime preproc-2.ACU -Po output-file [options] input-file

These command lines are very similar to the one used with the “-Pg” option,
but there are some important differences:

• The preprocessor executable, or the ACUCOBOL-GT runtime if the
preprocessor is an ACUCOBOL_GT program, will be located according
to the procedures used by the operating system for locating executables.

-Sx directs the preprocessor to exclude source lines according to a
pattern in the Identification Area of the source code. The next
separate argument is the pattern to match.

-e file

directs the preprocessor to write error messages to specified file
(if not specified, error messages are directed to standard error
output)

General Preprocessor Interface 2-133
• The input and output files must be specified as shown.

• The option list must include any compiler options that the compiler
would normally pass through to the preprocessor (see section 2.13.1.3,
“Compiler options forwarded to preprocessors”).

• Options that might be passed to the compiler in combined form must be
separated for the preprocessor. For example, the compiler accepts
“-Six” for include/exclude, while a preprocessor requires: “-Si” for
include and “-Sx” for exclude.

For diagnostic purposes, a preprocessor also accepts either of the following
two options:

When either of these options is used, the input and output files need not be
specified.

Note: The “-help” and “-v” options are not acceptable when the
preprocessor is called by the compiler.

Some preprocessors may allow other combinations of options and files when
called without the compiler.

The input and output files should be files, not devices, because the
preprocessor may not read or write them in strictly sequential order.

A preprocessor returns an exit value “0” (zero) if the preprocessing was
successful and the value “1” (one) if there were errors.

-help

do not preprocess; show command-line help on standard output
device

-v do not preprocess; show preprocessor version information on
standard output device

2-134 Compiler and Runtime
2.13.2 AcuSQL Pre-compiler

The AcuSQL pre-compiler is a preprocessor for programs with embedded
SQL. AcuSQL is offered by Micro Focus as a separately licensed product.
You can invoke the AcuSQL pre-compiler from the ACUCOBOL-GT
command line.

The AcuSQL pre-compiler is discussed in detail in a separate book, AcuSQL
User’s Guide. This section gives insight into the AcuSQL pre-compiler’s
compatibility with the ACUCOBOL-GT general preprocessor interface and
other conforming preprocessors, and discusses calling the pre-compiler from
the ACUCOBOL-GT compiler via the general preprocessor interface. This
information is especially useful to those who want to use the AcuSQL
pre-compiler in combination with another preprocessor.

2.13.2.1 Compatibility with ACUCOBOL-GT general preprocessor
interface

The AcuSQL pre-compiler is compatible with the ACUCOBOL-GT general
preprocessor interface. It can be used in its standard fashion if it is the only
preprocessor being invoked, or it can be used with other preprocessors with
some minor adjustments.

2.13.2.2 Calling the AcuSQL pre-compiler

You can start and use the AcuSQL pre-compiler from the compiler by using
the “-Ps” compiler option. For example:
ccbl -Ps [options] input_filename

Where options are AcuSQL commands and input_filename is the source file
to be pre-compiled and compiled. See Chapter 3 of the AcuSQL User’s
Guide for names and descriptions of the pre-compiler options. Note that the
AcuSQL User’s guide also discusses other ways to run AcuSQL and and the
reasons for doing so.

Note: When the AcuSQL pre-compiler is called by the compiler along
with other preprocessors, “-P” options other than those specified in the
AcuSQL User’s Guide are not recognized and should not be used.

General Preprocessor Interface 2-135
2.13.3 Writing a Preprocessor

This section presents information on how to write a preprocessor that
conforms to the ACUCOBOL-GT general preprocessor interface. You may
choose to write a preprocessor in any of a number of languages and
architectures, so we limit our discussion here to the general features,
including syntax examples, that are relevant to any conforming preprocessor.
This section contains subsections on using command-line options, line and
file directives, and error messages in your preprocessors.

2.13.3.1 Command-line options

A preprocessor is written as though it were always called without the
compiler by a command line. In particular, every preprocessor must accept
at least the following command-line options:

A preprocessor should accept these options in any order. A preprocessor
must honor the “-e”, “-Po”, “-help” and “-v” options. Other options need not
be honored but must be scanned if they appear on the command line.

-e file causes error messages to be written to the specified file. This
option must be followed by the name of the error file.

-help do not preprocess; show command-line help on standard output
device

-Po file

causes preprocessor output to be written to the specified file.
This option must be followed by the name of the output file.

-Sa indicates that the input file is ANSI format COBOL

-Sd instructs the preprocessor to include lines marked as debugging
lines (“D”) in the indicator area

-Si instructs the preprocessor to include lines based on pattern.
The next separate argument is the pattern to match.

-St indicates that the input file is terminal format COBOL

-Sx instructs the preprocessor to exclude lines based on patter. The
next separate argument is the pattern to match.

-v do not preprocess; show preprocessor version information on
standard output device

2-136 Compiler and Runtime
Note: A preprocessor honors an option if it does what the option requires.
A preprocessor accepts an option if it tolerates its presence on its command
line but does not necessarily honor it. An option that is not honored or
accepted causes a preprocessor to generate an error message.

Another command-line option is highly recommended:

The preprocessor should abort with an appropriate error message if a required
option is missing.

2.13.3.2 Line and file directives

Line and file directives are comment strings that a preprocessor uses to pass
information to the next preprocessor in the sequence. The information may
include directory paths and filenames for the following preprocessor to
access or specific instructions to be carried out. (For more information
related to directives, see section 5.3.2 and section 5.3.3.)

Every preprocessor that follows the first one invoked must scan its input for
directives, and every preprocessor must put directives at the appropriate
places in its output.

A directive always begins with an asterisk (“*”), which is placed in column 7
if the file is in ANSI format or in column 1 if the file is in Terminal format.
The asterisk indicates a COBOL comment. A preprocessor should accept
directives in either ANSI or Terminal format.

A directive of the following form indicates that subsequent input lines came
from the specified source code file:

*((PREPROC PPNAME FILE "<file specification>"))

-n

indicates to the preprocessor that no preprocessor directives
should be included in output. A standard preprocessor output
includes directives, which may make the output very difficult to
read. (See section 2.13.3.2, “Line and file directives,” for more
on directives.) If you want to examine the output of a
preprocessor, this option lets you suppress the directives and
receive clean output.

General Preprocessor Interface 2-137
A preprocessor should replace the letters “PPNAME” in a directive with its
own name (or any other name containing at most six alphanumeric
characters). This field is used only for diagnostic purposes.

The file specification must be abbreviated if necessary, so that the directive
will fit into a line of ANSI format without encroaching on the Identification
Area.

Note: In the ANSI format, code is limited to columns 1-72. Everything
beyond this is part of the Identification Area and is not used, except for
conditional compilation. If the directive is too long, it will extend into this
area, possibly triggering spurious conditional compilation.

Note: Examples in this section show single spaces between items in
directives. Actually, any reasonable number of spaces is acceptable.

The first preprocessor writes a directive of the preceding kind at the very
beginning of its output file. Each subsequent preprocessor will read a
directive of this kind at the very beginning of its input file and will write it at
the beginning of its output file with only the preprocessor name changed.

Directives of this kind also appear whenever a preprocessor honors a COPY
statement or its equivalent in other languages. There will usually be one such
directive at the beginning of the copied code and another at its end.

Within each source file, the lines are numbered consecutively, beginning
with line 1. If a preprocessor always produced one line of output for each line
of input, it would need no other directives for line numbers. However, that is
not usually the case and most preprocessors do need other directives.

A directive of the following form indicates that, until line numbering is
changed by a subsequent directive, every line that follows came from the line
whose number is embedded in the directive.
*((PREPROC PPNAME LINE BEGIN <line number in decimal>))

Normally, the embedded line number will be the number of the next line in
the current source file. However, it might be larger if a previous preprocessor
generated nothing from one or more lines in the source file.

2-138 Compiler and Runtime
When there are two or more lines following this directive, it is presumed that
all of them were generated from the same line of source code. Although this
is not always true, it is a necessary convention because preprocessors that do
a lot of parsing and translation cannot always assign a specific source code
line to each line of output.

A directive of the following form restores regular line numbering; that is, it
indicates that the first line following the directive came from the line after the
one whose number is embedded in the directive, and that until line numbering
is changed by a subsequent directive for the same source file, every
subsequent line came from the line after the previous line.

*((PREPROC PPNAME LINE END <line number in decimal>))

These two directives normally come in matching pairs (although this is not
required). For example, the source file may contain the following code (line
number in parentheses):

(55) display "Making connection".
(56) EXEC SQL CONNECT TO :dsn-name as C1
(57) END-EXEC.
(58) display "Connection made".

The output may be as follows:
 display “Making Connection”.
*((PREPROC ACUSQL LINE BEGIN 56))
 PERFORM CALL “SQL$START” END-CALL CALL “SQL$CONNECT” USING
 dsn-name ‘C1’ END-CALL IF SQLCODE OF SQLCA < 0 THEN GO TO
 Error-Exit END-IF END-PERFORM
*((PREPROC ACUSQL LINE END 57))
 display “Connection made”.

Preprocessors that process COBOL code may also use two other directives to
indicate places where the source code format (ANSI or Terminal) may
change.

The following directive indicates that subsequent lines may be in a different
format because they were taken from a COPY file (or its equivalent in
modified COBOL):
*((PREPROC PPNAME INCLUDE BEGIN "<file specification>"))

General Preprocessor Interface 2-139
The following directive indicates that the code in the new format has ended
and the format reverts to the one that prevailed before the matching
INCLUDE BEGIN directive.
*((PREPROC PPNAME INCLUDE END "<file specification>"))

The file specification must be abbreviated, if necessary, so each directive will
fit into a single line of ANSI format without encroaching on the Identification
Area.

In the above examples the INCLUDE directives are necessary to tell the
compiler that the format may have changed, while the FILE directives are
necessary to tell the compiler that a new file has begun and error messages
should refer to it.

Note: In the ANSI format, code is limited to columns 1-72. Everything
beyond this is part of the Identification Area and is not used, except for
conditional compilation. If the directive is too long, it will extend into this
area, possibly triggering spurious conditional compilation.

Preprocessors that do not distinguish between COBOL formats should pass
such directives along.

2.13.3.3 Error messages

Each error message produced by a preprocessor must be one line long and
must include the source file and line number, as in the following examples:
“myprogram.cbl, line 31: Include file not found at END-EXEC.”
“myprogram.cbl, line 31: parse error at END-EXEC.”

The comma following the source file name, the word “line,” and the colon
following the line number are required. They are used by the compiler and
other software to parse the error message.

Error messages produced by preprocessors other than the first one invoked
must use special means, described in section 2.13.3.2, “Line and file
directives,” to identify the original source file and line that contained the
erroneous code. You should abbreviate the source file specification if it is
too long to be read easily.

3
 Debugger and Utilities
Key Topics

Runtime Debugger .. 3-2
Object File Utility — cblutil ... 3-58
Vision File Utility — vutil ... 3-66
File Transfer Utility — vio.. 3-98
Indexed File Record Editor (alfred) .. 3-107
logutil .. 3-107
The Profiler .. 3-111
External Sort Utility — AcuSort.. 3-121
Remote Preprocessing Utility — Boomerang 3-135

3-2 Debugger and Utilities
3.1 Runtime Debugger

This chapter describes how to use the ACUCOBOL-GT runtime debugger
and other utility programs supplied with ACUCOBOL-GT.

runcbl contains a built-in source-level debugger. This debugger runs in a
window that overlays the screen so that the active program is not disturbed.

In all environments, the runtime debugger interface contains a menu bar and
command window. To navigate through source code in character
environments, use the “Up” and “Down” menu items. You can also use the
arrow keys and Page Up and Page Down keys to move through the code.

The Runtime Debugger (UNIX)

Runtime Debugger 3-3
In Microsoft Windows environments, the debugger also contains a toolbar.
When you perform full source debugging in Windows, a scroll bar appears to
the right of the source, offering an easy way to scroll through the code.

The Runtime Debugger (Windows)

You can run the debugger at any time, but in order to reference the program’s
symbols by name, or view the source code, you must have compiled the
program with some special options.

The runtime debugger supports three modes of operation: source debugging,
symbolic debugging, and low-level debugging.

Source Debugging

At the development stage, source debugging is the most useful, because it
allows you to view the source code while you are debugging. To use source
debugging, compile the program with the “-Gd” or “-Ga” option. Because
these compiler options cause all of the source code to be bundled with the
object code, you’ll notice that the size of your object code grows
considerably.

3-4 Debugger and Utilities
Note: Although the compiler accepts lines longer than 80 characters in
TERMINAL format files, in source debugging mode the debugger does not
display characters past the 80th column. If possible, use the AcuBench
integrated debugger instead.

Symbolic Debugging

Symbolic debugging does not allow you to view the program source, but does
allow you to reference paragraphs and variables by their COBOL identifiers.
The advantage to using symbolic debugging rather than source debugging is
that the compiled object module is much smaller. This may be useful if disk
space is very tight. Some application developers compile their programs with
symbolic debugging for delivery to clients in order to facilitate the resolution
of client questions over the phone. You must compile the program with the
“-Gy” or “-Gs” option to use symbolic debugging.

Low-Level Debugging

Low-level debugging is available at any time even if the program was not
compiled with any debugging options, but you must use absolute addresses
to access variables, so you’ll need a listing of your program. Low-level
debugging is convenient when you’re debugging a data-dependent problem
on a client’s machine, if the client does not have a debug-version of your
program. The “Trace Files” command described in section 3.1.4 operates in
this mode. “Trace Files” is particularly useful for tracking data-specific
problems in complex applications.

Debugging in background mode

If your ACUCOBOL-GT programs are called from programs written in other
languages, or if you are running in an environment that includes an
application server or OLTP software, you likely have programs running in
background mode (executed with the “-b” flag). Complete instructions for
debugging programs running in background mode is available in Chapter 9 of
A Guide to Interoperating with ACUCOBOL-GT.

Runtime Debugger 3-5
The Abend Diagnostic Report

When a program experiences an abnormal shutdown, running in debug may
not reveal the source of the problem. In such cases, the ACUCOBOL-GT
runtime can produce a report to show the state of the program at the moment
of termination. This Abend Diagnostic Report, or ADR, can help you to
analyze the cause of an abnormal shutdown.

More information about this report is included in section 3.1.9, “Using the
Abend Diagnostic Report (ADR).”

3.1.1 Entering the Debugger

When a program is executed in debug mode, the debugging window pops up
over the lower portion of the screen. Commands to the debugger and their
results are displayed in this window. You can control the size of the
command window from within the debugger by pulling down the Source
menu and selecting Window Size.

If you are running the debugger under Windows, you can change the size of
the entire debugger window. Point to a border or corner, and when the mouse
pointer changes into a double arrow, hold the mouse button down and drag
the border or corner to reach the size you want. Release the button when you
are ready.

You can enter the debugger in several ways; the most common is to specify
the “-d” option to runcbl. Here’s a list of all the ways the debugger can be
entered initially:

• When you specify the “-d” option to runcbl. This causes the program to
start in the debugger. For example:

runcbl -d payroll

• Whenever a STOP statement executes that is not a STOP RUN. In this
case, the argument to STOP is displayed in the debugging window. This
method functions even if runcbl is not run in debugging mode. Note,
however, that symbols and source will not be available in this case. To
do source level debugging, compile with the “-Gd” or “-Ga” option and
run with the “-d” option.

3-6 Debugger and Utilities
• When the program has been started in debugging mode, and the abort
key (such as Ctrl + C) is pressed. On Windows systems, the same effect
is achieved by selecting the “Enter Debugger” menu option. In either
case, when the command is received, the program finishes execution of
the current instruction and enters debugging mode. Note that if the
current instruction is an ACCEPT statement, the program will not enter
debugging mode until the ACCEPT statement is satisfied by having
something entered. Using the abort command to enter the debugger does
not work on all machines.

If you have already entered the debugger, you may reenter it in one of the
following ways:

• When a breakpoint is reached. Breakpoints are set by the user through
the debugger.

• When the program is being “stepped” through by the debugger and the
step count has been reached.

• When a variable that is being monitored changes. In this case an
automatic breakpoint is generated at the beginning of the next statement.

• When you’ve compiled with “-Za” along with “-Gd”, and an array
violation occurs. In this case, you automatically break to the debugger
and see the line on which the array violation occurred.

Each of the situations described above causes the debugging window to pop
up over the lower portion of the screen. If source-level debugging is being
used, then the upper half of the screen displays the source at the location
currently being executed. When the debugger exits, these windows are
removed and the application screen is restored. The application screen is not
restored, however, until an ACCEPT or DISPLAY verb is executed. This
allows you to debug a section of code without the distraction of having the
screen being constantly repainted.

Runtime Debugger 3-7
3.1.2 Cursor and Mouse Handling in Source-level
Debugging

In source-level debugging, the entire source code is available for viewing.
An “@” sign is displayed in column one of the current line (the line of code
that’s being executed). The line containing the cursor shows a “>” sign in
column one. (If the cursor is on the current line, then the cursor is hidden by
the “@” sign.) For terminals that support reverse video, the cursor line is
highlighted. Use the arrow keys to move the cursor. Press F10 to access the
menu bar and to toggle back to source code from the menu bar.

If your runtime offers mouse support, then you may use a mouse in the area
of the screen that displays the source code. The mouse allows you to perform
the following common actions:

Move the cursor
line

To move the cursor to a different line, simply click
anywhere on the line you want.

Scroll the source To scroll the source up or down, hold the mouse
button down and move the mouse off the top or
bottom edge of the source window. The source will
scroll to track the mouse. The source scrolls
slowly, to make it easy to adjust the current display
by a small amount.

3-8 Debugger and Utilities
3.1.3 Debugger Commands

Debugger commands are displayed in a menu bar with pull-down submenus,
and on the debugger’s toolbar. Commands can be selected either from the
menus or from the keyboard. A menu item that is followed by three dots
(such as “Accept...”) requires a value. You are prompted for the value unless
you highlight it within the source code before you choose the option. Some,

Highlight a variable
or procedure

Point the mouse at a variable or a procedure name
and click on it to highlight the name and enable the
“Selection” entry on the menu bar (discussed
below). Several operations are available under
“Selection” that act on the highlighted item. The
highlighted item will also become the default value
used by many menu options.

Using variables, you may specify data names that
require arguments, such as tables that require
indexes. You cannot specify literals.

You can use the mouse, F7 (display variable on
current line), or the Tab key (highlight variable on
current line) to view qualified and indexed data
items in the source. As long as a variable and all of
its qualifiers and indexes are on one line, the entire
expression is evaluated by these keys. If a variable
and all of its qualifiers and indexes span multiple
source lines, the entire expression is ignored, but
component items are still found.

Display a variable To view the value of a variable, double-click on
that variable.

View procedure To scroll quickly to a paragraph or section,
double-click on its name.

Run to desired line To set a temporary breakpoint, double-click on a
verb. This establishes a temporary breakpoint at
the line containing the verb. The program runs to
that line (unless it encounters another breakpoint
before it reaches the line). When it reaches a
breakpoint, the runtime returns to the debugger
prompt and awaits your next command.

Runtime Debugger 3-9
but not all, commands may be selected from the toolbar. You can determine
toolbar functions by placing the mouse over a button and holding it there for
a brief period.

If you do not have a mouse, use the F10 to access the debugger menu bar.
Then use the arrow keys to move within the menu system. Press Return or
Spacebar to make your selection. Typing the key letter is another way to
make a selection, if key letters are available on your system. From the menu
bar, press F10 to toggle back to the debugger command line.

On systems such as Windows that include a System Menu in the Debugger
window, you can activate the System Menu by pressing the function key F9.
F9 also activates the System Menu of any window displayed over the
Debugger window.

The debugger displays the first ten characters of the name of the current
program, followed by the current address (in hexadecimal). This name is
derived from the PROGRAM-ID in the Identification Division of the source
code.

The commands described on the following pages may be used in all
debugging modes, unless marked with one or two asterisks.

• One asterisk (*) indicates that the option is available in source-level
debugging only (“-Gd” compiler option).

• Two asterisks (**) indicate that the option is available in either
source-level or symbolic-level debugging (“-Gd” or “-Gy” compiler
option), but not in low-level debugging.

Keep in mind that you must compile with “-Gd” or “-Gy” in order to
reference variables by name. If the program was not compiled with one of
these options, refer to each variable by its absolute address as shown in a
program listing.

The tables below list all debugger commands available through the keyboard,
with their menu equivalents given in parentheses. The same listing is
accessible through the H (Help) debugger command.

3-10 Debugger and Utilities
3.1.3.1 Source-level commands

Command Menu Option Description

<F1> or
<Page Up>

Scrolls source up one page

<F2> or
<Page Down>

Scrolls source down one page.

<F3> Run/Go to Cursor
Line

Sets a temporary breakpoint at the
current cursor line and continues
execution of your program.

<F4> Breakpoints/Togg
le at Cursor Line

Sets or removes a breakpoint at the
source line containing the cursor.

<F5> or
<Up Arrow>

Moves the source cursor up one line.

<F6> or
<Down Arrow>

Moves the source cursor down one
line.

<F7> Causes the cursor line to be searched
for program variables. If one is found,
its name and current contents are
displayed.

Tab Search the current line for selectable
text. If selectable text is found, select
it.

@! Run/Skip to
Cursor Line

Moves the current program location to
the line containing the cursor.

F Source/Repeat
Find

Repeats the last Find command,
starting at the current cursor line.

FB text Source/Find
Backwards

Locates text in the program’s source
code. The debugger searches
backwards from the current cursor
line.

FF text Source/Find
Forward

Locates text in the program’s source
code. The debugger searches forward
from the current cursor line.

FT text Source/Find from
Top

Locates text in the program’s source
code. The debugger starts at the top of
the current program source.

Runtime Debugger 3-11
3.1.3.2 Other commands

VP View/Perform
Stack

Lists all of the nested paragraphs
leading up to the current statement,
starting from the beginning of the
program.

W procedure Source/Paragraph Positions the cursor at the procedure
you name. The procedure must be
located in the current program.

W@ Source/Current
Line

Positions the cursor at the current line
in your program.

WB Source/Last Line Positions the cursor at the last line
(bottom) in your program.

WT Source/Line 1 Positions the cursor at the first line
(top) of your program.

Command Menu Option Description

Command Menu Option Description

! File/Shell Invokes the operating system’s
command processor, allowing you to
enter commands.

!! Returns the process ID (PID) for the
current runtime execution.

<script-file File/Run Script Runs a script file. Causes all input
(debugger and program) to be read
from the script. Control returns to the
keyboard when the script is finished.

> File/Stop
Recorder

Ends your recording. If you do not end
your recording, the script is saved and
closed when the debugger closes.

>script-file File/Record Script Turns on a recorder that saves all of
your keyboard input and menu
selections to a file of your choice.

A variable Data/Accept Lets you modify the contents of a
variable.

3-12 Debugger and Utilities
B View/Breakpoints

Breakpoints/View

Displays a dialog box with all existing
breakpoints. You can add/modify
breakpoints from this dialog box.

B address,
[skip #]

Breakpoints/Set Sets a breakpoint with a skip count.
The breakpoint will not be activated
until it has been hit skip# times.

B address,
[skip #],
[WHEN cond]

Breakpoints/Set Sets a breakpoint with a skip count
and/or condition. The breakpoint will
not be activated unless cond is true #
times.

C address Breakpoints/Clear Removes a breakpoint. You can enter
either the breakpoint’s paragraph name
or hexadecimal address.

CA Breakpoints/Clear
All

Removes all breakpoints.

CM number Data/Monitor/Cle
ar

Clears variable monitor number.

CMA Data/Monitor/Cle
ar All

Clears all variable monitors.

CWA Clears all variable watches.

D variable
[, X]

Data/Display Shows the contents of a variable. The
value is shown in the debugger
command window. If X is appended to
the display command, the variable is
displayed in hexadecimal.

If the variable is specified by its
absolute address from a program
listing, it must be preceded by “.” (a
period)

D variable(x:y) Display a reference modified variable.
The command “d my-var(2:5)”, for
example, displays five characters,
starting with the second character of
the variable string.

Command Menu Option Description

Runtime Debugger 3-13
E File/Exit
Debugger

Turns off the debugger while
continuing the execution of your
program.

G Run/Continue Resumes execution of your program
from its current location.

G address Sets a temporary breakpoint at address,
and continues execution.

GE Run/Go until
Program Exits

Runs your program until the current
program exits to its calling program.

GP Run/Go until
Paragraph Returns

Runs your program until the current
paragraph returns to the point from
which it was performed.

H Displays the online help files.

L Displays the name of source paragraph
or section which is being executed.

M View/Monitors

Data/Monitor/List

Shows all monitored variables and
their values. This also displays a
sequence number for each monitor,
which is used to clear the monitor.

M variable Data/Monitor/Set Causes the program to stop whenever
the named variable changes its value.
The variable is shown in the Watch
Window.

P [#] Step Over Steps over the next statement. With a
count, the program will step count
times. Use this command if you want
to step through a program following
only the original thread.

Q! File/Quit Halts your application and exits the
debugger.

R script Run a debugging script. The debugger
reads commands from a script (but
user-input is gathered normally).

Command Menu Option Description

3-14 Debugger and Utilities
RA [#] Run/Run all
Threads

Toggles or sets the “Run All Threads”
setting.
If # is 0, only the current thread will
run.
If # is non-0, all threads will run.

S [#] Step Into Executes one statement of your
program and then returns control to the
debugger. You may follow the
command with the number of steps to
take. This command will follow a new
thread if one is created. If you want to
follow the original thread, use the
“step over” command (P) described
above.

SA Run/Auto Step Causes your program to execute “step”
commands repeatedly until it reaches
the end of the program., or until you
stop auto-step by pressing the spacebar
while the debugger is active. Like the
“step into” command (S), this follows
a new thread if one is created.

ST [#] Run/Thread Switches to the thread identified by the
given number (or the next thread, if no
number is given). The “Run” menu
displays the number assigned to each
threads.

T flush Causes the error file to be flushed to
disk after each write, if you are writing
to an error file.

TF [#] File/Trace Files Turns on file tracing. The # indicates
the level of tracing, from 1 to 9, where
1 is the lowest and 9 is the highest.

TP File/Trace
Paragraphs

Toggles paragraph tracing, which is a
listing of all paragraphs and sections
entered at runtime.

U View/Memory
Usage

Displays the amount of dynamically
allocated memory currently used by
the runtime system.

Command Menu Option Description

Runtime Debugger 3-15
3.1.3.3 Multithreading Issues

When a program is running under the debugger, by default the “run all
threads” (“RA”) mode is turned on. In this mode, you step through only one
thread at a time, but the background threads run normally. If a background
thread reaches a breakpoint, it returns control to the debugger and becomes
the current thread. The last debugging mode you select is saved into your
“.ADB” file, so the default mode applies only when you do not have a
“.ADB” file.

You can choose to execute one thread at a time in the debugger. This allows
you to trace a thread without interference from other threads. When a new
thread starts, the debugger informs you, but continues tracing the parent
thread. Use the “ST” (Switch Threads) command to switch between threads.

V View/Screen Displays your application’s current
screen. Press any key or click the left
mouse button to return to the
debugger.

WA Data/Monitor/Set Places a variable in the Watch
Window. The difference between a
watched variable and a monitored
variable is that watched variables do
not cause program execution to halt
when they change.

WS number Source/Window
Size

Specifies the number of lines to show
in the command window.

WW number Source/Watch
Size

Specifies the number of lines to
display in the Watch Window. The
number cannot exceed the number of
watched/monitored items.

F8 Recalls the last command entered for
editing.

Ctrl + N Shows the next line in the Watch
Window.

Ctrl + P Shows the previous line in the Watch
Window.

Command Menu Option Description

3-16 Debugger and Utilities
You can find a list of the current threads under the “Run” menu item. This
list shows you the current program and address where each thread is
executing. You can select the appropriate menu item to switch to that thread
as an alternative to the “ST” command.

A list of all current threads appears at the bottom of the “Run” menu. The list
shows both the name of the program associated with the thread and the
address where each thread is executing. To switch between threads, you can
select a thread from the list as an alternative to the “ST” command.

The debugger can manage up to ten threads simultaneously.

3.1.3.4 Getting help

Under Windows, you can access the online debugger documentation from the
Help menu at the far right of the debugger menu bar.

In other environments, access help by typing the letter “H” at the debugger
prompt and then pressing Enter.

Runtime Debugger 3-17
3.1.3.5 File menu

The File menu contains commands relating to the overall operation of the
debugger.

The File Menu (Windows)

3-18 Debugger and Utilities
Menu Option Description

Trace Files Toggles file tracing on or off.

A file trace is a listing of all file operations performed at
runtime. Trace output can be tailored with the
TRACE_STYLE configuration variable. See Book 4,
Appendix H.

Trace output is sent to the same place that error output is
sent. So, to prevent the trace from overwriting your
application’s screen, be sure to use the runtime’s “-e”
command-line option (followed by a file name) to direct
error output to a file. See the runtime configuration
variable MAX_ERROR_LINES in Appendix H to
limit the size of the error file.

Some file systems can print extra information if a higher
level of tracing is enabled. This extra information is
mostly useful to the Technical Support department at
Micro Focus, and they may ask you to execute a “tf n” for
some integer “n”.

File trace example:

runcbl -de trace.fil program1

Make sure that the error file you designate (trace.fil in the
example above) does not exist in the current directory. If
it does, it will be emptied.

The keyboard form of this command is “TF [#]”.

**Trace Paragraphs Toggles paragraph tracing on or off.

Paragraph tracing is a listing of all paragraphs and sections
entered at runtime.

A paragraph trace is sent to the same place that error
output is sent. So, to prevent the trace from overwriting
your application’s screen, be sure to use the runtime’s “-e”
command-line option (followed by a file name) to direct
error output to a file.

The keyboard form of this command is “TP”.

Runtime Debugger 3-19
Shell Pulls up the operating system’s command processor,
allowing you to enter commands. Shell is not supported
for programs running in thin client mode. Attempts to use
the Shell command with programs running in thin client
mode will result in the error message: “Unable to start
shell in thin-client mode”.

Note: Under the default Windows setup, the command
processor will run as a full screen application.

The keyboard form of this command is “!”.

Record Script Turns on a recorder that saves all of your keyboard input
and menu selections to a file of your choice. Debugger
commands and input to the program being debugged are
both saved.

Play back the recording with the Run Script command.

See also the description of the W$KEYBUF routine in
Appendix I.

Stop Recorder When the recorder is running, the Record Script menu
option is replaced by a Stop Recorder option. Use this to
end your recording. If you do not end your recording
manually, the script information is saved when the
debugger closes.

While the recorder is active, you will not be able to use the
mouse for anything except selecting menu items. Mouse
actions are very position-dependent and are often difficult
to replay.

The recorder can save up to 4096 characters of
information. Normal keystrokes use one character.
Special keys such as function keys and menu selections
typically use up to four characters.

The keyboard form of this command is “> script-file”.
The runtime does not process the filename. To turn off the
recorder, use “>” by itself.

Run Script Runs a debugger script file. Control returns to the
keyboard when the script is finished.

The keyboard form of this command is “< script-file”.

Menu Option Description

3-20 Debugger and Utilities
3.1.3.6 View menu

The View menu contains commands related to viewing and monitoring your
program.

The View Menu (Windows)

Exit Debugger Turns off the debugger but continues execution of your
program.

The keyboard form of this command is “E”.

Quit Halts your application and exits the debugger.

The keyboard form of this command is “Q!”.

Menu Option Description

Menu Option Description

View Screen Displays your application’s current screen. Press any key
or click the left mouse button to return to the debugger.

The keyboard form of this command is “V”.

*View Perform
Stack

Lists all of the nested paragraphs leading up to the current
statement, starting from the beginning of the program (or
the beginning of the thread, if a new thread was started).
Double-clicking on one of the names in the list takes you
to that paragraph and highlights the current statement in
that paragraph. The trace also accounts for embedded
procedures and declaratives.

In order to use this command, you must have compiled for
source-level debugging (-Gd), and your program must
allow for recursive performs (-Zrl). Recursive performs
are the default.

The keyboard form of this command is “VP”.

Runtime Debugger 3-21
View Breakpoints Displays a dialog box that lists all of your breakpoints and
allows you to modify them, add new ones, view the next
line of code containing a breakpoint, disable a breakpoint,
and clear a breakpoint. It shows the location and skip
count for each breakpoint. For breakpoints that are
located in the current program, the paragraph they are
contained in is also listed.

The keyboard form of this command is “B”.

View Monitors Shows all monitored variables and their values. It also
displays a sequence number for each monitor. You need
the sequence number to clear an individual monitor. See
Data/Monitor/Clear.

The keyboard form of this command is “M”.

Memory Usage Displays the amount of dynamically allocated memory
currently used by the runtime system. There are five
types:

Program memory is the memory directly used by your
programs’ Data and Procedure Divisions. This includes
all programs in memory—not just the current program.

File memory is memory used by your open files,
including the indexed file cache.

Window memory is memory used by your pop-up
windows. This includes the debugger’s own pop-up
window.

Overhead memory is memory used directly by the
runtime system that is not controlled by your program.

Dynamic memory is memory allocated by the program
via the M$ALLOC library routine.

The keyboard form of this command is “U”.

Menu Option Description

3-22 Debugger and Utilities
3.1.3.7 Run menu

The Run menu contains commands related to executing your program.

The Run Menu (Windows)

Menu Option Description

Continue Resumes execution of your program from its current
location. The program returns to the debugger when it
reaches the next breakpoint.

The keyboard form of this command is “G”.

*Go to Cursor Line Sets a temporary breakpoint at the current cursor line and
continues execution of your program. Press the F3 key to
use this command from the keyboard. The F3 key works
on lines that do not contain verbs. The closest previous
line with a verb is the location used to set the breakpoint.

Go until Paragraph
Returns

Runs your program until the current paragraph returns to
the point from which it was performed.

The keyboard form of this command is “GP”.

Go until Program
Exits

Runs your program until the current program exits to its
calling program. If used from inside your main program,
this command runs the program until it finishes.

The keyboard form of this command is “GE”.

Runtime Debugger 3-23
Auto Step Causes your program to execute “step” commands
repeatedly until it reaches the end of the program. When
you select this mode, the debugger immediately begins
stepping through your program. The debugger will follow
new threads as they are created. (If you want to continue to
follow the original thread, use the Step Over command)
You can change the speed at which it is stepping by typing
a digit from “1” (slowest; approximately three seconds per
step) to “9” (fastest; several steps per second). Press the
spacebar to leave Auto Step mode and return to the
debugger prompt.

The keyboard form of this command is “SA”.

Step and P-Step Are not shown on the menu, but are available from the
keyboard. Windows users can find equivalent commands,
and others, on the toolbar provided with the debugger. The
toolbar is explained at the end of section 3.1.3.

Step executes one statement of your program and then
returns control to the debugger. New threads are followed
as they are created. (If you want to continue to follow the
original thread, use the Step Over command.)

The keyboard command is “S”. You may follow the
keyboard command with a number of steps to take.

P-Step executes a “perform step.” This is the same as a
normal Step command, except that it includes the entire
range of a PERFORM statement as a single statement. The
effect is to step to the end of the performed paragraph. Use
this command if you want to step through a program
following only the original thread.

The keyboard command is “P.” You may follow the
keyboard command with the number of “perform steps” to
take.

Menu Option Description

3-24 Debugger and Utilities
*Skip to Cursor Line Moves the current program location to the line containing
the cursor. Further execution of your program will proceed
from this line. The cursor line must contain a verb;
otherwise the current program location does not change.

Use this command with care, because the skipped lines are
not executed. You may skip important sections of code
and experience unexpected results.

The keyboard form of this command is “@!”.

Note: The “@!” command is not available for debugging a
native-code module.

Run all Threads Toggles or sets the “Run All Threads” setting. Once it is
set, all threads run simultaneously under the debugger.
Though all threads run simultaneously, only the
debugger’s current thread is traced when you are stepping
through a program. However, breakpoints in other threads
are active and can transfer control to the debugger, as can a
trapped error (such as a table boundary violation). When a
thread other than the current thread returns control to the
debugger, that thread becomes the current thread.

The keyboard form of this command is “RA [#]”.

Thread Shows the threads contained in the program, and places a
check mark next to the current thread.

Menu Option Description

Runtime Debugger 3-25
3.1.3.8 Source menu

The Source menu contains commands related to viewing your source code.
These commands are available with source-level debugging.

The Source Menu (Windows)

Menu Option Description

*Line 1 Positions the cursor at the first line of your program.

The keyboard form of this command is “WT”.

*Last Line Positions the cursor at the last line in your program.

The keyboard form of this command is “WB”.

*Current Line Positions the cursor at the current line in your program.

The keyboard form of this command is “W@”.

*Paragraph Prompts you for a procedure name and positions the cursor
there. The procedure must be located in the current
program.

The keyboard form of this command is “W procedure”.

3-26 Debugger and Utilities
*Find Forwards Prompts you for text to locate in the program’s source
code. The debugger searches forward, starting at the
cursor line. Case is not considered, so you do not have to
match the capitalization of the text you want to locate.

The default text for the search is shown in a dialog box.
This is the current selection (the currently highlighted
variable or procedure name). If nothing is selected, the
default is the last search string. If you do not want the
default, simply type over it.

Before you choose Find Forwards, you can highlight a
variable or procedure name by clicking on it. If you do not
have a mouse, use the arrow keys to move to the desired
line and then press the Tab key to highlight the desired
name.

The keyboard form of this command is “FF text”.

*Find
Backwards

Prompts you for text to locate in the program’s source
code. The debugger searches backwards, starting at the
cursor line. Case is not considered, so you do not have to
match the capitalization of the text you want to locate.

The default text for the search is shown in a dialog box.
This is the current selection (the currently highlighted
variable or procedure name). If nothing is selected, the
default is the last search string. If you do not want the
default, simply type over it.

Before you choose Find Backwards, you can highlight a
variable or procedure name by clicking on it. If you do not
have a mouse, use the arrow keys to move to the desired
line and then press the Tab key to highlight the desired
name.

The keyboard form of this command is “FB text”.

*Find from Top Prompts you for text to locate in the program’s source
code. The debugger searches for the text, starting at the
top of the current program source. Case is not considered,
so you do not have to match the capitalization of the text
you want to locate. This is usually a convenient way to
find the definition of a COBOL data item.

The keyboard form of this command is “FT text”.

Menu Option Description

Runtime Debugger 3-27
The Watch Window size dialog (actually titled “Window Size”) looks like
this:

*Repeat Find Repeats the last Find command, starting at the cursor line.

The keyboard form of this command is “F”.

Window Size Sets the number of lines to show in the command window.
This may be any integer from 2 to 14, inclusive.

The keyboard form of this command is “WS number”.

*Watch Size Displays a dialog box that allows you to specify the
number of lines to display in the Watch Window. The
number cannot exceed the total number of items being
monitored and watched. Specifying a larger number
results in no change.

The keyboard form of this command is “WW number”.

Menu Option Description

3-28 Debugger and Utilities
3.1.3.9 Data menu

The Data menu contains commands relating to your program’s variables.

The Data Menu (Windows)

You may use name qualification with the Display, Accept, and Monitor
commands. For example, you can use the syntax “FIELD-1 IN GROUP-1”
to refer to a field called FIELD-1 that belongs to group item GROUP-1.
Name qualification is not supported for on-screen commands (such as F7) or
for situations in which you double-click on the data name.

3-30 Debugger and Utilities
Menu Option Description

Display Shows the contents of a variable. With source-level
debugging, you can either click on the variable name in
the code before you select Display, or wait to be
prompted.) Numeric variables are converted to show
their value. Other variables are shown as text. The value
is shown in the debugger command window. The
keyboard form of this command is “D variable”.

Table elements cannot be highlighted with a mouse click.
Instead, use this keyboard command:

 d variable (index)

The variable’s name is followed by the desired index in
parentheses. The index must be a numeric literal.

To display a reference modified variable (that is, to view
some portion or substring of the data item), use the
syntax:

 d variable(x:y)

This shows y characters of variable, starting from
character x.

When you display a variable, and multiple fields with the
same name are defined in the program, the debugger lists
all instances of the field. For example, if the following
two group items were defined in Working-Storage:

 01 start-date.
 05 ws-day PIC XX.
 05 ws-month PIC XX.
 05 ws-year PIC X(4).
 01 end-date.
 05 ws-day PIC XX.
 05 ws-month PIC XX.
 05 ws-year PIC X(4).

and you entered the command “d ws-day”, you would see
the value for the field in both the “start-date” and
“end-date” group items.

Runtime Debugger 3-31
Reference modification and indexing are valid with
duplicate names. For example, all of the following are
valid:

 d field-1(1:1)
 d field-1(1)
 d field-1(1)(1:1)

If your display command contains multiple field names,
only the first name specified may be a duplicate. Using
the group definitions shown in a previous example, the

Shows the contents of a variable in hexadecimal. (With
source-level debugging, either click on the variable name
in the code before you select Display in Hex, or wait to be
prompted for the name.) command “d
ws-day(1:ws-month)” would fail, because there is more
than one “ws-month” defined.

Keep in mind that you must compile with “-Gd” or “-Gy”
in order to reference variables by name. If the program
was not compiled with one of these options, you must
refer to each variable by its absolute address from a
program listing, preceded by “.” (a period). For example:

 d .213.5

Display in
Hex

This option allows you to determine the data stored in
each byte of the variable. The value is shown in the
command window below the source code.

The keyboard form of this command is “D variable, X”.

Menu Option Description

3-32 Debugger and Utilities
Accept Allows you to modify the contents of a variable. (With
source-level debugging, either click on the variable name
in the code before you select Accept, or wait to be
prompted for the name.) For numeric variables, the value
entered is converted to the internal storage format of the
variable.

The keyboard form of this command is “A variable”.

When you accept a variable in the debugger, the current
value of the variable is shown as the default. To leave the
current value in place, press Enter.

Table elements cannot be highlighted with a mouse click.
To modify a table element, follow the variable’s name
with the desired index in parentheses, as shown here:

 a variable (index)

The index must be a numeric literal.

Keep in mind that you must compile with “-Gd” or “-Gy”
in order to reference variables by name. If the program
was not compiled with one of these options, you must
refer to each variable by its absolute address from a
program listing.

Accept in Hex Allows you to modify the contents of a variable in
hexadecimal format. You can enter or display up to 2048
hex characters (1024 bytes of data).

To accept a variable in hexadecimal format from the
command line, use the command:

 a variable x

 Monitor This submenu contains commands that relate to
monitored variables.

Set Displays a dialog that prompts you for the name of a
variable to be included in the Watch Window. (For
source-level debugging, either click on the variable name
in the code before you select Monitor, or wait to be
prompted for the name.)

The keyboard form of this command is “M variable”.

Menu Option Description

Runtime Debugger 3-33
The Monitor dialog looks like this:

The Monitor dialog box includes a check box labeled “Break when changed”.
When this box is checked, the selected variable becomes monitored, and if it
is unchecked, the variable is only watched. The default value of this check
box is On (checked).

If the “Break when changed” box is checked in the Monitor dialog box,
monitoring a variable suspends the program run. Any time a monitored
variable changes, the program stops executing and control returns to the
debugger, where the new value of the variable is displayed in the command
area of the debugger window and in the Watch Window.

If the “Break when changed” box is unchecked in the Monitor dialog box, the
item is watched. Though changes to a watched variable’s value are indicated
in the Watch Window like those of a monitored variable, these changes do
not cause the program to stop executing.

You can tell which variables in the Watch Window are monitored by the
phrase “(break)” following the variable name (i.e., those variables for which
the “Break when changed” check box was clicked on). The watched
variables do not have this phrase displayed after their names.

When any variables are set for monitor/watch, a new window is created as a
sub-window of the main debugger canvas, located at the top of the screen.
This window, called the “Watch Window”, shows all the monitored/watched
variables and their values, one name/value per line (values that exceed the
size of the window are truncated). By default, the Watch Window contains
as many lines as there are variables being monitored, up to a maximum of
three. If you set more than 3 variables, you can scroll through the Watch
Window to view them all, or you can make the Watch Window larger with
the Window Size option on the Source menu. If your system does not use the

3-34 Debugger and Utilities
mouse, you can scroll the Watch Window using Ctrl + P (for previous item)
and Ctrl + N (for next item) keys on your keyboard. The maximum number
of variables you can set is limited only by system memory. The Watch
Window looks like this:

To monitor a table element, follow the variable’s name with the desired index
in parentheses, as shown here (table elements cannot be highlighted with a
mouse click):
 m variable (index)

The index must be a numeric literal.

Keep in mind that you must compile with “-Gd” or “-Gy” in order to
reference variables by name. If the program was not compiled with one of
these options, you must refer to each variable by its absolute address from a
program listing.

Menu Option
(continued)

Description

List Shows all monitored variables and their values. Also
displays a sequence number for each monitor. You need
the sequence number to clear an individual monitor. See
Clear, below.

The keyboard form of this command is “M”.

Clear Clears a monitor from one variable. You will be
prompted to identify the variable by number. Use the List
option to display all monitors and their numbers.

The keyboard form of this command is “CM number”.

Clear All Clears all monitors.

The keyboard form of this command is “CMA”.

Runtime Debugger 3-35
3.1.3.10 Breakpoints menu

The Breakpoints menu contains commands for managing a program’s
breakpoints.

The Breakpoints Menu

A breakpoint is a location in your program’s code that you designate. It
causes control to return to the debugger. Control is returned before the code
at the breakpoint location is executed.

Breakpoints are displayed in the source. An enabled breakpoint shows as
“B” in column 1, a disabled breakpoint as “b” (lowercase) instead. The “@”
sign (showing the program’s current location) displays over the “B” if the
current line is also a breakpoint.

Breakpoints are saved between sessions. The breakpoints are stored in a file
that is named “username.adb”, where username is your login name, as
known by the runtime. This file is placed in the directory named by the
“ACUCOBOL” environment variable, or the current directory, if that
variable is not set. In addition to your breakpoints, the run-all-threads state is
recorded, as well as the last size of the debugger’s window. Keep in mind
that although breakpoints are saved between sessions, they are not saved
between compiles.

Menu Option Description

Set Allows you to set a breakpoint at a paragraph. Selecting
Set displays the Set Breakpoint dialog.

3-36 Debugger and Utilities

Set Breakpoint Dialog Box

Runtime Debugger 3-37
The Set Breakpoint dialog prompts you for a breakpoint Location,
Condition, and Skip count.

3-38 Debugger and Utilities
Set
Breakpoint
Field

Description

Location This field prompts you for a hexadecimal address and a
program name, although the current cursor location is supplied
as the default breakpoint address location. Hexadecimal
addresses are specified with a “.” (period) as the first character,
as described in section 3.1.7.2, “Program addresses.” A
breakpoint is set at that address in the program. If you omit the
program name, the current program is used. To obtain the
hexadecimal address of a line of code, use the compiler’s
program listing.

Suppose you want to set a breakpoint in a called program in the
run unit, but you do not know the exact address. First, make
sure you’ve compiled the called program with source-level
debugging. Then, from the current program, set the breakpoint
at address “0”, called-program-name. The debugger breaks as
soon as the called program is entered. You see the called
program’s source code on the screen, and the called program’s
name on the command line. The called program is now the
current program, and you can use Set or Toggle at Cursor to set
the desired breakpoint.

If you have compiled with line numbers, you can use an
alternate notation to set a breakpoint within a called program.
Instead of specifying an exact address, provide the file name for
the ACUCOBOL-GT source file or COPY file, followed by a
colon (“:”) and the line number. The syntax is:

 b [path/]filename.cbl:line

For example, in the command window, you could type:

 b invoice.cbl:559

or

 b /usr/copylib/mtrec.cpy:312

Note that when you use this method to set a breakpoint in a
COPY file, the line number should be relative to the specific
file, not to the main program. Also, if you set a breakpoint in an
object module that has not yet been loaded, you will see a
warning message, “Breakpoint saved for future COBOL
module.” When the object is loaded, the breakpoint is set
without further user intervention.

Runtime Debugger 3-39
Condition Breakpoints can have a condition, known as the “When
Condition,” specified for them. The condition is entered into
the Condition field. The breakpoint is activated only when the
condition is true. For breakpoints with a skip count (see below),
the skip count is decreased only when the condition is true.
Conditions are simple comparisons between two numeric or
alphanumeric data items or literals, including figurative
constants (exception: the ALL literal is not supported). The
allowed comparisons are “=”, “<“, “>”, “<=” and “>=”. You
may place the word “NOT” before any of these operators. The
comparisons are done according to the rules for COBOL. Any
data items referenced must exist in the program containing the
breakpoint. If the condition is not meaningful or is illegal
(including table boundary violations), then the breakpoint is
immediately activated when it is reached and an error message
follows.

Skip count In the Skip count field, enter the number of times to skip the
breakpoint. The breakpoint does not activate until the skip
count reaches zero. The keyboard form of this command is

b address, counter

This command can also be set from the command line with:

b address [,program] [,SKIP count] [,WHEN condition]

A second command that is also supported but does not allow
conditions to be set is:

b address [,program] [,count]

Set
Breakpoint
Field

Description

3-40 Debugger and Utilities
Menu Option
(continued)

Description

*Toggle at Cursor
Line

Sets or removes a breakpoint at the source line containing
the cursor.

To use this command from the keyboard, press F4. The
F4 key works on lines that do not contain verbs. The
closest previous line with a verb is the location used.

*Disable/enable at
Cursor Line

Allows you to keep a breakpoint location while turning off
the breakpoint. You can disable/enable breakpoints from
the menu or from the Breakpoint dialog box.

View Is the same as the “list breakpoints” command (“B”). It
displays a dialog box that lists all of your breakpoints and
allows you to modify them, add new ones, view the next
line of code containing a breakpoint, disable a breakpoint,
and clear a breakpoint. It shows the location and skip
count for each breakpoint. For breakpoints that are
located in the current program, the paragraph they are
contained in is also listed.

Clear Removes a breakpoint. At the prompt, you can enter
either the breakpoint’s paragraph name or hexadecimal
address. Hexadecimal addresses are specified with a “.”
(period) as the first character, as described in section
3.1.7.2, “Program addresses.” Exact addresses are
given in the View command described above.

To use this command from the keyboard, type “C
address”.

Clear All Removes all breakpoints.

To use this command from the keyboard, type “CA”.

Runtime Debugger 3-41
3.1.3.11 Selection menu

The Selection menu lists actions you can take on the current selection.

The Selection Menu (Windows)

A selection is a variable or procedure name that you have highlighted in the
source window. If you do not have a mouse, use the arrow keys to move to
the desired line and then press the Tab key to highlight the desired name.

Menu Option Description

*Display Shows the contents of the selected variable. Numeric
variables are converted from their internal formats to
show their values. Other variables are shown as text.

You can also perform this by double-clicking the left
mouse button on the desired variable.

3-42 Debugger and Utilities
This is what a Watch Window looks like.

 *Display in
Hex

Shows the contents of the selected variable in
hexadecimal notation. This allows you to view the
internal storage of every byte in the variable.

*Monitor Sets a monitor on the selected variable. Changes to a
monitored variable cause control to return to the
debugger. This feature gives you the option to have the
COBOL program stop executing, and the debugger to
activate, when the value of a monitored variable changes.
When this happens, the debugger window becomes the
active window, and the variable and its value are
displayed in the command area of the debugger.

When any variables are monitored (or watched), a new
window is created as a sub-window of the main debugger
canvas, located at the top of the screen. This window,
called the “Watch Window”, shows all the monitored and
watched variables and their values, one name/value per
line (values which exceed the size of the window are
truncated). By default, the Watch Window contains as
many lines as there are variables being monitored, up to a
maximum of three. If you select more than three variables
for monitoring, you can scroll through the Watch Window
to view them, or you can make the Watch Window larger
with the Window Size option on the Source menu. The
size of the Watch Window cannot exceed the total number
of monitored and watched items. Attempting to make the
window larger than that results in no change.

Menu Option Description

Runtime Debugger 3-43
Help for Windows users is discussed in the next section. In other
environments, you can get help by typing the letter “H” and pressing Enter at
the debugger prompt.

Menu Options
(continued)

Description

*Watch Sets a watch on the selected variable. Changes to a
watched variable do not cause control to return to the
debugger. See also *Monitor, above.

*Accept “Accepts” a new value for the selected variable. For
numeric variables, the value you enter is converted to the
variable’s internal storage format.

*Accept in Hex “Accepts” a new value for the selected variable in
hexadecimal format. Up to 1024 bytes of data (2048 hex
characters) can be entered or displayed.

*View Procedure Scrolls the source window to the start of the selected
procedure.

You can also perform this by double-clicking the left
mouse button on the desired procedure name.

*Run to Procedure Sets a temporary breakpoint at the selected procedure and
continues program execution. The program runs until it
reaches the selected procedure (or another breakpoint).

*Set Procedure
Breakpoint

Sets a permanent breakpoint at the selected procedure.

Up and Down Are available only for non-Windows environments.
Windows users can perform the same tasks by using the
scroll bar to the right of the debugger screen.

*Up scrolls up towards the top of the source code by
one-half screen.

*Down scrolls down towards the bottom of the source
code by one-half screen.

3-44 Debugger and Utilities
The following debugger commands are available but are not shown on the
debugger menus:

Debugger
Command

Description

*F1, Page Up Scrolls source up one page.

*F2, Page Down Scrolls source down one page.

*F5 (or the Up arrow) Moves the source cursor up one line.

*F6 (or the Down arrow) Moves the source cursor down one line.

*F7 Causes the cursor line to be searched for program
variables. If one is found, its name and current
contents are displayed. Press F7 multiple times to
cycle through all of the variables on the line.

F7 (display variable on current line) and the Tab key
(highlight variable on current line), as well as the
mouse, also pay attention to qualified and indexed
data items in the source. As long as a variable and
all of its qualifiers and indexes are on one line, the
entire expression is evaluated by these keys. If a
variable and all of its qualifiers and indexes span
multiple source lines, the entire expression is
ignored, but component items are still found.

*F8, Edit Command Causes the last command entered to be recalled for
editing. Useful for correcting typographical errors.

*H, Help Key Displays a screen of summary help information.

Runtime Debugger 3-45
3.1.3.12 Help menu

The Help menu is available only for Windows users. It provides access to a
Windows-style Help facility for the debugger.

The Help Menu (Windows)

The Toolbar

Windows users can use the debugger’s toolbar for a variety of operations. To
display a description of any button on the toolbar, place the mouse pointer
over the button and hold it there for a few seconds. Depending on the state of
the debugger, some of the icons may be disabled.

The Debugger Toolbar (Windows)

Menu Option Description

Contents Shows you the Debugger Help table of contents.

Search Allows you to search for specific words, as you would in a
book index.

Help on Help Opens the native Windows help file that explains how help
files can be used.

About the
Runtime

Gives you information regarding the runtime, such as the
runtime version number, serial number, copyright
information, and license number.

3-46 Debugger and Utilities
Toolbar Button Description

Step Into Executes one statement of the program and then returns
control to the debugger. It is the equivalent of the
keyboard command “S.” The debugger will follow new
threads as they are created. If you want to continue to
follow the original thread, use the Step Over command.

Step Over Allows you to “step over” a performed paragraph. It is the
same as Step Into except that it includes the entire range of
a PERFORM statement as a single statement. It is the
equivalent of the P-step command. Use this command if
you want to step through a program following only the
original thread.

Step Out Lets you run to a performed paragraph’s exit.

Run to Cursor (F3) Sets a temporary breakpoint at the current cursor line and
continues execution of your program.

Auto Step Causes your program to execute “step” commands
repeatedly until it reaches the end of the program. As with
the Step Into command, the debugger will follow new
threads as they are created. If you want to continue to
follow the original thread, use the Step Over command.

Find Brings up a dialog for entering a word or phrase you want
to locate.

Find from Top Locates the next occurrence of the last found word or
phrase.

Find Next Locates the next occurrence of the last found word or
phrase.

Find Previous Locates a previous occurrence of the last found word or
phrase.

Find Current Line Sets the source view to the current program location.

Go Runs the program to the next breakpoint.

Toggle Breakpoint
(F4)

Sets or removes a breakpoint at the source line containing
the cursor.

Disable Breakpoint Allows you to keep a breakpoint location while turning
off the breakpoint.

Runtime Debugger 3-47
3.1.4 File Tracing

File tracing is always available. Programs do not need to be compiled with
the debug options to use file tracing. File tracing can be especially helpful in
assessing the cause of a problem. File tracing provides valuable information
about file OPENs, READs, and WRITEs. File status codes for unsuccessful
I/O operations are also shown, and configuration variable settings can be
examined. For relative files, file trace includes record numbers.

To enable file tracing, type:
 runcbl -dlxe errfile myprog

where:

Remove All
Breakpoints

Clears all breakpoints from the program.

Perform Stack Displays the current Perform stack, listing all of the nested
paragraphs leading up to the current statement.

Toolbar Button Description

-d turns on the debugger

-l (optional) causes the contents of the runtime
configuration file to be included in the error output

-x causes the runtime system to display the operating
system’s corresponding error number for file error “30”
on the error output. This information may help in
determining the problem.

-e causes the error output to be placed in the file named
immediately after the option

3-48 Debugger and Utilities
After you press Enter you are at the debugger screen. To turn on file tracing,
type:
 tf [#]

“File trace” is echoed on the screen.

Some file systems can print extra information if a higher level of tracing is
enabled. This extra information is useful primarily to the Technical Support
department, and they may ask you to execute a “tf #” for some integer.

File tracing can also be enabled with the FILE_TRACE runtime
configuration variable. Some attributes of trace output can be tailored with
the TRACE_STYLE configuration variable. For more information about
both of these variables, see Appendix H of Book 4.

If you are writing to an error file, you can execute this debugger command:
 t flush

to cause the error file to be flushed to disk after each write. This can be useful
if your program terminates unexpectedly. It allows the error file to contain
everything that the runtime sent to it. Without this command, the error file
could be empty following an unexpected program termination, even though a
great deal of information had been written to it. Note that this option slows
down the processing but ensures that the error file is complete.

To start the program, enter:
 g

Proceed until you encounter the error condition, and then exit. Your error file
contains the error information, all COBOL configuration file variables that
you have set, and a record of every file operation.

errfile is the user-specified name of the error file. This file is
opened as an empty file when the runtime is initiated.
Do not forget to specify the error file name--if you run
with “-e”, immediately followed by your program name
instead of an error file name, your object code file will
be deleted and opened as an empty file.

myprog is the name of your object code file

Runtime Debugger 3-49
File trace timestamps

If you are directing file trace output to an error file, you can elect to include
timestamp information. When this option is enabled, a timestamp is placed
at the beginning of every line in the trace file. (When you are debugging a
problem, it is sometime helpful to know the exact time of each file operation.)
The format of the timestamp is: HH:MM:SS.mmmmmm, where
“mmmmmm” is the finest resolution that the runtime can obtain from the
system.

There are three ways to enable timestamps in the trace file.

1. In the debugger, before you start the program with the “g” command,
enter:

t timestamp

2. Before you start the program, in the runtime configuration file set the
FILE_TRACE_TIMESTAMP variable to “1” (on, true, yes). This
variable is set to “0” (off, false, no), by default.

When set in the appropriate server configuration file,
FILE_TRACE_TIMESTAMP can also be used with AcuServer and
AcuConnect (see the associated product documentation for more
information).

3. Before you start the program, in the runtime configuration file set the
TRACE_STYLE variable to TIMESTAMP.

Timestamp information is included only when file trace information is
directed to a file.

Timestamp output can add significant file I/O overhead and may have a
noticeable impact on performance.

3.1.5 Screen Tracing

The screen trace feature enables you to save information about DISPLAYs of
screen section items and CREATEs, DISPLAYs, MODIFYs, and INQUIREs
of ActiveX objects. You can use screen trace even if the program was
compiled without the debugging option.

3-50 Debugger and Utilities
To perform a screen trace, type:
runcbl -dle errfile myprog

Because you specified “-d” (for debugger) on your command line, you will
be at the debugger screen after you press Enter.

To turn on screen tracing, type:
ts

“Screen trace ON” is echoed on the screen.

The information output is useful primarily to the Technical Support
department.

If you are writing to an error file, you can execute this debugger command:
t flush

to cause the error file to be flushed to disk after each write. This can be useful
if your program terminates unexpectedly. Note that this option slows down
the processing but ensures that the error file is complete.

Type:
g

You will now be running your program normally. Proceed until you
encounter the error condition, and then exit. Your error file will contain the
error information, all COBOL configuration file variables that you have set,
and a record of every file operation.

This can be especially helpful as you assess the cause of the problem.

3.1.6 Macro Debugger

The debugger supports a simple macro processor. Twenty-six variables,
named “A” through “Z”, are available to be assigned to arbitrary strings. You
do this with the command:

variable = string

Runtime Debugger 3-51
where the “=” must appear in column two. After a variable is assigned, you
may use it in any command by specifying the variable name with a “$” in
front of it. This provides a convenient way to assign a long symbol name to
a shorter string.

For example, if the symbol “EMPLOYEE-NAME” is often referenced in a
debugging session, the following commands will assign this to the variable
“X” and display the contents of the name:
 x=employee-name
 d $x

Macros may not be nested.

3.1.7 Specifying Addresses

Program addresses and variables can be specified directly or with program
symbols. In order for a symbol to be used, the program containing the
symbol must be currently executing and must have been compiled with either
the “-Gy” or “-Gd” options.

3.1.7.1 Variables

Variables can be specified by their symbolic name or by their address. If they
are specified by address, both the starting address (in hexadecimal, preceded
by a “.” (period)) and the variable’s size (in decimal) must be specified, in
that order. These values can be found in the symbol table listing produced
when you compile with the “-Ls” compiler option. Any variable specified
directly by address is treated as if it were an alphanumeric variable.
Variables specified by name are treated as their correct type, except for
edited fields, which are treated as alphanumeric.

Either form of addressing may have an index specified for it. This index is a
number in parentheses following the address. Only constant values may be
used as table subscripts.

3-52 Debugger and Utilities
You may use name qualification with the Display, Accept, and Monitor
commands. For example, you may type “FIELD-1 IN GROUP-1” to refer to
FIELD-1 of GROUP-1. Name qualification is not supported for on-screen
commands (such as F7) and for situations in which you double-click on the
data name.

Data items may be qualified by a group name. Table indexes may be
specified with variables.

Note: For data items of variable size, the debugger always treats the data
item as if it were currently defined to be its maximum size.

Examples:

Configuration variables

You can display and accept configuration variables within the debugger. To
display a particular variable use the following command:

d %var-name

where var-name is the name of the variable you want to display. Up to 300
characters of the value are displayed. (This is equivalent to executing the
ACCEPT FROM ENVIRONMENT command, and can show the same types
of configuration variables.)

To accept a configuration variable, execute the command:
a %var-name

where var-name is the name of the variable you want to modify. In this case,
the debugger responds with a prompt. Enter the new value of the variable,
ACCEPT that variable within the COBOL program, and the runtime will use
the new value.

VAR-1 - Variable name

3A4, 5 - Address 3A4 for 5 bytes

ARRAY-1 (2,4) - Indexed variable

Runtime Debugger 3-53
3.1.7.2 Program addresses

Program addresses may be specified by paragraph name. They can also be
specified by a hexadecimal address, specified by a “.” (period) as the first
character. This allows the debugger to distinguish between the hex address
ABC and the paragraph name “ABC”. You can omit the period when there
is no ambiguity. Optionally, “.” (period) can be followed by the six-character
program name. The numeric form is the only way to specify an address that
is not at a paragraph, and the only way to specify an address in a program
other than the one that is currently running. The listing produced by the
compiler has the address of the start of each sentence along the left-hand side.
Usually it is more convenient to use the F3 and F4 commands of the source
debugger.

Note: Every program always starts at address zero. If you want to debug a
subprogram, you can always set a breakpoint at address zero of the
subprogram and run it until this point is reached. Then the subprogram will
be active and its symbols will be available (if it was compiled with “-Gd”
or “-Gy”). When specifying an address in a different program, use the
name contained in its PROGRAM-ID paragraph.

Examples:

3.1.8 Debugger Restrictions

Please note the following restrictions on the debugger:

1. If you have a paragraph (or section) and a data item with the same name,
that name will refer to the paragraph (section). If more than one
paragraph (or section) has that name, the last one will be the one used.
Other data items and paragraphs (sections) with that name can be
referenced only by their addresses.

MAIN-LOGIC - Paragraph name

3A7F - Numeric address

0, PROG2 - Start of program PROG2

3-54 Debugger and Utilities
There is one exception to this rule. If a variable has the same name as a
paragraph, you can still display (“d ambiguous-name”) and accept
(“a ambiguous-name”) that variable in the debugger if you compile with
at least “-Gs” and “-Gd”.

2. Although the compiler allows for up to 15 dimensions in a table, the
debugger will let you access only the first three dimensions.

3. Although ACUCOBOL-GT object files are portable across all
machines, an object file that contains debugging symbols or source
may not be. These files can be run on other machines, but may cause
errors if run with the debugger on the foreign machine.

4. You can use the debugger on a native-code module in the same fashion
as you do for a portable-code module. The only restriction is that you
may not begin execution at an arbitrary point in a native-code module
(the “@!” command).

5. The debugger identifies a program name by a match on the first 30
bytes. This limitation derives from the compiler behavior, which
reserves 30 bytes for the program name in the program object.

3.1.9 Using the Abend Diagnostic Report (ADR)

When you create an Abend Diagnostic Report to analyze the cause of an
abnormal program shutdown, the report is divided into three sections:

1. The first contains general information about the program, such as
command-line parameters, the reason for the shutdown, and the line
number of the operation that caused the shutdown.

This section of the report appears as follows:

Dump created: Tue Dec 28 15:00:32 2006

Reason for dump:
Index out of bounds, upper bound = 10, index = 11
COBOL error at 000014 in TwoTables.acu
("TwoTables.cbl", line 42)

Runtime version: 8.0.0 (2006-12-23)
Command line arguments: -c Cfg.txt TwoTables.acu

Runtime Debugger 3-55
2. The second section contains a call stack summary for each thread being
run, including information about inactive programs. Inactive programs
are those programs which have been loaded into memory but which are
not currently executing.

Process ID: 1128

1 thread(s) active

** Thread 487 **
Call stack:
000014 TwoTables.acu

Inactive programs:
(none)

3. The third and largest section contains detailed information about each
program, including the value of all data items. Programs are listed in
CALL order, starting with the program executing at the time of
shutdown and working backward to the start of the thread (usually the
main program).

• All data items and their values are listed in the order they are
declared in the program.

• Group items are named, but have the phrase “(group)” listed as their
value to avoid duplicate information in the report.

• Individual elements in a group are listed with their values.

• Table items are expanded to show each element of the table.

• Data is shown in both the appropriate numeric/non-numeric format
and as raw hexadecimal data.

• The compile options used to generate the object file.

*** DETAIL FOR THREAD 487 ***

*** PROGRAMS IN THE CALL STACK ***

*** PROGRAM "TwoTables.acu" ***

Current address: 000014

3-56 Debugger and Utilities
01 ONE-TOO-MANY = 11 h30303031 31

01 MY-TABLE = (group)
05 FILLER = " 1" h20202020 31
05 FILLER = " 2" h20202020 32
.
.
.
00 SPECIAL REGISTERS = "" h

*** END OF PROGRAM "TwoTables.acu" ***

*** END OF THREAD 487 ***

*** END OF DUMP ***

3.1.9.1 Generating a report

To generate an Abend Diagnostic Report, you must set the ACU_DUMP
configuration variable to “1” (on, true, yes). The default value for the
configuration variable is “0” (off, false, no). This variable also takes name
format specifiers that you can use to add additional identifier information to
the report name. See ACU_DUMP_FILE in Appendix H-2 for details on
using these name format specifiers.

In order to add detailed information to the report, programs must be compiled
with line number (“-Gl”) and symbol table (“-Gs”) information. The “-Ga”
compiler option may also be used, but since this includes full source
information in the compiled object, it results in a much larger object file on
disk.

Configuration variables

In addition to ACU_DUMP, there are three other configuration variables that
affect creation of an ADR.

ACU_DUMP_FILE

This configuration variable determines the name of the report file. It
allows two special parameters:

Runtime Debugger 3-57
• If the file name starts with a plus sign (“+”), the report is appended
to the specified file. By default, a new report overwrites the
specified file. Note that the “+” character does not actually appear
in the file name.

• If the name contains the string “%p”, when the report is generated,
that string is replaced with the process ID (PID) of the runtime from
which the report originates.

The default value for ACU_DUMP_FILE is “acudump.#”, where “#”
is an integer, starting at one and incrementing by one each time a new
ADR is created in the current directory (acudump.1, acudump.2, and so
on). Note that the first available filename is used, so if a directory
contains files called “acudump.1” and “acudump.5”, the next ADR file
created in that directory is automatically called “acudump.2”.

Because the runtime performs a linear search to determine the next
available filename to use, if a directory contains a large number of
ADR files, the search can take some time. For this reason, it is a good
idea to remove unneeded ADR files regularly.

ACU_DUMP_WIDTH

This configuration variable controls the width of the report and has a
default value of 80 characters. The minimum allowed value is 79 and
the maximum is 2048. Note that because the report uses dynamically
computed columns for its hexadecimal data, making the report very
wide can reduce readability by introducing excessive white space.

ACU_DUMP_TABLE_LIMIT

This configuration variable limits how many elements of each table
item to list. The default value is 1000. Note that if you increase this
value substantially, and if you have tables that allow for large numbers
of elements, you may get very large reports.

In the following example, ACU_DUMP_TABLE_LIMIT is set to 5:

01 MY-TABLE-R = (group)
05 TABLE-ENTRY(1) = 1 h20202020 31
05 TABLE-ENTRY(2) = 2 h20202020 32
05 TABLE-ENTRY(3) = 3 h20202020 33
05 TABLE-ENTRY(4) = 4 h20202020 34
05 TABLE-ENTRY(5) = 5 h20202020 35
Remaining table items suppressed due to ACU-DUMP-TABLE-LIMIT setting

3-58 Debugger and Utilities
3.1.9.2 ADR restrictions

You should note the following restrictions in the use of the ADR:

1. Tables are expanded up to only four dimensions. If you have a table with
more dimensions, then only the first element of the higher dimensions is
seen. This limitation comes from a limit in the object’s internal symbol
table.

2. Level 77 data items are listed as level 01 items. This is caused by the
way the compiler internally stores the symbol table.

3. Level 88 data items are listed, but show the actual data instead of the
true/false evaluation of the data.

4. The report does not show line numbers for programs in the call stack,
only for the aborting program. Addresses for calling programs are
shown, and these can be found in a listing of the program.

5. Programs must be compiled with line number information (“-Gl”) in
order to show line numbers, and symbol information (“-Gs”) to see
data items in detail.

3.2 Object File Utility — cblutil

ACUCOBOL-GT’s COBOL library utility, cblutil, works with
ACUCOBOL-GT object files to provide several valuable capabilities.
cblutil allows you to:

• place object files together to create object libraries

• output information about an object file or object library

• create native-code object files from machine-independent
ACUCOBOL-GT portable object files

Object File Utility — cblutil 3-59
3.2.1 Object Libraries

An object library is a file that contains one or more compiled
ACUCOBOL-GT programs. Object libraries can simplify the distribution of
an application by reducing the number of files involved. They can also help
improve performance by reducing the number of directory operations
performed by runcbl when it is loading object modules. The advantages are
particularly noticeable if the number of object files in a directory is large.

Each object library contains a primary module. The primary module is the
first (or only) module in the library. When the library is loaded by a CALL
statement (or is the first program of a run unit), the primary module is the
program that is loaded and run. Other modules in an object library can be
loaded by subsequent CALL statements.

In order for the runtime system to access other object modules in a library, the
primary module must be loaded. It may either be active or inactive, but it
must be physically present in memory. A program is loaded whenever it is
called; it is unloaded whenever it is canceled (or when it exits, if it has the
INITIAL attribute). See section 6.3, “Memory Management,” for a more
complete description of runtime memory management.

Assuming that the primary module is loaded, then the other modules in the
object library can be called if their name matches the name specified in a
CALL verb. Modules in an object library are identified by PROGRAM-ID.
If a matching name is found in an object library, that object module is then
loaded and executed. See section 2.10, “Calling Subprograms,” for more
information.

As suggested by these rules, you should place related object files together.
Usually this is done by specifying the main program of a run unit as the
primary module and then adding in some or all of the subprograms it calls.

Object libraries may also be pre-loaded. This is done with the “-y” option of
runcbl. When a library is pre-loaded, all of its modules are always available.
Note that pre-loading does not mean that the component object modules and
contained ENTRY points are physically loaded into memory. It just means
that the directory of the contained modules is loaded. More than one library
may be pre-loaded, and pre-loaded libraries may be used with dynamically
loaded libraries with no restrictions.

3-60 Debugger and Utilities
3.2.2 Creating Object Libraries

You can create object libraries with the cblutil program provided with the
ACUCOBOL-GT runtime system. This command line has the following
format:

cblutil -lib [options] modules

When you create a new object library, the first module specified becomes the
primary module. All other modules are simply added to the library. If no
options are specified, then the first module specified is converted from an
object file or resource into an object library, and the remaining modules are
added to it.

The first module may also be an object library. In this case, the remaining
modules are added to the library. Any module that has the same name as one
already contained in the library automatically replaces the one in the library.

The modules may be any type of file. If an input file is a COBOL object, then
cblutil includes it in the resulting library as a COBOL object. Any other type
of file is included as a resource. If an input file is another library, then each
component of that library is individually added to the resulting library. The
resulting library may consist entirely of COBOL objects, entirely of
resources, or a mixture of the two.

A total of 1024 modules can be placed in a single library.

Options can be one or more of the following:

-c Used to embed a comment in the object library. This flag
must be followed by the comment. Comments with
embedded spaces must either be between quotation marks, or
include the shell’s escape character before each space.

-o

This option must be followed (as the next separate argument)
by a file name. This file becomes the new object library. If a
file exists by that name, it will be deleted first.

Object File Utility — cblutil 3-61
Examples

The following sample command line creates a library called “mylib” that
consists of two ACUCOBOL-GT objects named “prog1.acu” and
“prog2.acu”:
cblutil -lib -v -o mylib prog1.acu prog2.acu

You can add a comment to the object library. The comment is visible when
you use the “-info” command to retrieve information about the object library:
cblutil -lib -o mylib -c "My comment" prog1.acu prog2.acu

Alternatively, you can add a comment using an escape character instead of
quotation marks as follows:
cblutil -lib -o mylib -c My\ new\ comment prog1.acu prog2.acu

Wild cards are permitted:
cblutil -lib -v -o mylib prog1.acu otherdir/*.*

To add modules to an existing library, do not use the “-o” argument. For
example, to add “prog3.acu” and “prog4.acu” to “mylib”, do this:
cblutil -lib -v mylib prog3.acu prog4.acu

Note: There is no way to remove an object module from a library. For this
reason, we recommend that you create object libraries after all of the
programs involved have been fully debugged.

-v Causes cblutil to be verbose about its progress.

-r Causes the separate modules to be deleted after they have
been added to the object library. If “-o” has not been
specified, then the first module (which becomes the new
library) is not deleted.

3-62 Debugger and Utilities
3.2.2.1 Creating remote object libraries

If AcuServer or AcuConnect is running on a remote machine, cblutil can
read remote objects and write a remote library. The syntax rules that apply to
specifying remote object libraries with cblutil are the same as those for
compiling to remote object libraries with the compiler. See section 2.2.18.1,
“Remote file name handling,” for details.

This capability allows you to create a remote library from local object files or
to create a local or remote library from remote object files.

With cblutil, you can also use the regular AcuServer syntax for referring to
the remote files. This syntax is not allowed with the compiler because the
“@” symbol is reserved for another purpose. See also, AcuServer User’s
Guide, section 7.2, “Accessing Remote Files,” for additional information.

Note: You cannot use wildcard characters to create a library from a
collection of remote object files.

In the process of creating a remote library, cblutil overwrites the named
library at the beginning of the operation. Then if something fails during the
process, the library is removed. For that reason, you may consider creating a
backup copy of the named library before executing the build library
command. (Incidentally, when creating a local library, cblutil creates a
temporary library first. Only after the new library has been successfully
compiled is the (existing) named library removed and replaced by the new
library.)

Examples

The following command creates a library in /myapp/obj on the UNIX server
myserver called “myapp.lib” from all the .acu files in the current directory.
cblutil -lib -o acurfap://myserver::/myapp/obj/myapp.lib *.acu

acurfap stands for “Acucorp Remote File Access Protocol.”

Object File Utility — cblutil 3-63
The following command creates a library in /myapp/obj on the Windows
server myserver where AcuServer is listening on port 6543. The library is
named “myapp.lib”. The files used to create the library are all in /myapp/obj
on myserver. Because you cannot use wildcard characters, you need to list
each file.
cblutil -lib -o
 acurfap://myserver:6543:c:/myapp/obj/myapp.lib \
 acurfap://myserver:6543:/myapp/obj/test1.acu \
 acurfap://myserver:6543:/myapp/obj/test2.acu \
 acurfap://myserver:6543:/myapp/obj/test3.acu \
 acurfap://myserver:6543:/myapp/obj/test4.acu

Note: The use of the backslash character (“\”) as line continuation
delimiter works only on UNIX systems. If you are entering a command for
Windows, you must type the entire command as a continuous string.

3.2.3 Getting Object Information

The cblutil program can output useful information stored in the header of an
object file or object library. The format of the command is:

cblutil -info [-x] files

The options used to compile a COBOL program are automatically embedded
in the program’s object file. The “-x” option to the “-info” command causes
cblutil to output all the options used to compile the object file.

Each file named on the command line is examined to determine if it is an
object module or object library. If it is an object module, its size and other
information is output. If the file is an object library, information is output for
each module the library holds.

In each report, cblutil includes information that indicates whether the module
is in debug-mode. Because programs compiled for source-level debugging
can be quite large, it can be helpful to run reports on a regular basis to see if
you have accidentally left any programs in debug-mode.

For example, the following could be run on a UNIX system every night:
cblutil -info /objects/* | grep "debug" > /tmp/debug

3-64 Debugger and Utilities
This command creates a file called “/tmp/debug” that lists every program in
the “/objects” directory that is in debug-mode.

The cblutil program also reports whether or not table-boundary checking is
enabled in an object file, and, if the object contains an embedded comment,
lists the comment.

3.2.4 Generating Native Code

The “-native” option of cblutil allows you to translate ACUCOBOL-GT
portable object modules into native-code object modules. The “-native”
option has the following format:

cblutil -native [options] object-files ...

options can be any of the following:

--intel
or
--ia-32

produces 32-bit native code for Intel-class
processors (386, 486, Pentium, Pentium II,
Pentium III or compatible processors).

--pa_risc
or
--pa

produces 32-bit native code for PA-RISC
version 1.0 running the HP-UX or MPE/iX
operating systems

--pa_risc_2.0
or
--pa2

produces 64-bit native code for PA-RISC
version 2.0 running the HP-UX operating system

--power produces code that is compatible with POWER
and POWER2 processors, as well as PowerPC and
later POWER series processors. This option
allows you to use a wide range of machines, but it
may affect performance.

--powerpc
or
--ppc

produces 32-bit native code for IBM pSeries
processors running AIX operating system

Note that you can compile native code only for
machines with a POWER3 or later chip, not with
POWER2 or earlier.

Object File Utility — cblutil 3-65
If you specify multiple object files, then each one is translated in turn. If
‘object file’ refers to an object library, then each module contained in the
library is translated. If an object file contains debugging information, that
information is retained.

If you do not specify a target processor, then cblutil translates for the
processor of the host machine, if native code for that processor is supported.
Once an object file has been translated to native code, it cannot be translated
again for a different instruction set.

If the object module does not contain ACUCOBOL-GT’s portable
instruction set, the “cblutil -info” command includes in its outputs the name
of the native instruction set used.

--powerpc_64
or
--ppc64

produces 64-bit native code for IBM pSeries
processors running AIX

--sparc produces 32-bit native code for SPARC (v7 - v9)
processors.

--sparc_v9 produces 64-bit native code for SPARC version 9
processors.

-o

names the output file. This option must be
followed (as a separate argument) by the name of
the file to produce. You may use “@” in this name
to stand for the base name of the input object file.
If you specify “-o” and multiple object files, then
you must use “@” in the name. If you omit “-o”,
then the output file replaces the input file.

-v causes cblutil to print the name of each object file
as it is being processed.

-Zc produces code that is more compact and somewhat
slower.

-Zn turns off the more involved optimizations.

3-66 Debugger and Utilities
3.3 Vision File Utility — vutil

On Windows, UNIX, and Linux systems, ACUCOBOL-GT uses the Vision
indexed file system to manage its indexed data files. For these systems,
ACUCOBOL-GT comes with an indexed file utility program called vutil that
contains several useful functions. (The full name of this 32-bit utility is
“vutil32”, but throughout this discussion, we refer to it simply as “vutil”.)
This section describes this program.

Note: Other file system interfaces have their own file utility packages. On
VMS systems, for example, ACUCOBOL-GT uses the RMS file system
that is native to VMS, and the vutil utility is not supplied. VMS-specific
programs such as ANALYZE/RMS and CONVERT can be used to
accomplish the same functions that vutil provides. See the manual for your
specific file utility package for details on its use.

vutil provides several functions in one package. It can be used to:

• display file information (-info, -size, -tree)

• test file integrity (-check)

• rebuild and repair files (-rebuild)

• reset the user count (-zero)

• reset the internal revision number (-fixvers)

• extract data records (-extract)

• create empty files (-gen)

• unload data to binary or line sequential files (-unload)

• load data from binary or line sequential files (-load)

• convert other index files to Vision (-convert)

• change the maximum record size (-augment)

• recover deleted records (-deleted)

Vision File Utility — vutil 3-67
• place text in the “comment” field of the header (-note)

Each of these functions is indicated by an initial keyword on the command
line (preceded by a hyphen). This keyword may be abbreviated to its first
letter. The functions are designed to allow you to specify all possible task
parameters up front, so that the utility can run unattended or with a minimum
of user interaction. Each function is discussed below.

3.3.1 Examining File Information

The “info” function of vutil returns some basic information about Vision
indexed files. The command syntax is:

vutil -info [-kpxq] [files]

If no files are specified on the command line, then vutil reads file names from
the standard input. Several options can be specified with “-info”:

The basic information provided by the “info” function consists of:

• text in the “comment” field (frequently empty)

• Vision file format (Version 2, 3, 4, or 5)

• total number of records

• total number of deleted records

-p This option causes vutil to pause between files and prompt the
user for a “return” key. Otherwise, all the reports are run
together.

-k

This option prints full details about each key, including the
exact layout of a multi-segment, or split, key. Each segment is
expressed as a pair of numbers--segment size (sz) and the offset
from the beginning of the record (of).

-q This option causes vutil to exit (with status 99) if user
interaction is required.

-x This option causes vutil to report additional (extended)
information.

3-68 Debugger and Utilities
• file size of each segment (Version 4 and 5 only)

• total size of all segments combined (Version 4 and 5 only)

• segment size (maximum possible; Version 4 and 5 only)

• record size (min/max)

• number of keys

• user count

If you request extended information with the “-x” option, the following
additional information is output:

• for each key: key size (total size and number of segments, if split); key
offsets; whether duplicates are allowed

• block size

• blocks per granule

• tree height (max/min/avg)

• number of nodes

• number of deleted nodes

• total node space

• node space used

The “tree height” is the number of levels in the B-tree and is directly related
to how efficient the file is. If the maximum number exceeds four or five, then
the file may benefit from rebuilding with a larger block factor (see section
3.3.3, “Rebuilding Files,” below).

An important piece of information is the user count. The user count is
initially set to zero, and is incremented each time the file is opened for I/O.
The number is decremented when the file is subsequently closed. Under
normal circumstances, the user count indicates the number of users who are
currently updating the file. Should runcbl terminate abnormally, the user
count may not be decremented. Therefore, if the user count is a non-zero

Vision File Utility — vutil 3-69
value when there are no active users, it indicates that there may have been a
sudden runtime failure and that corrective action may be required. At the
very least, the file should be checked for integrity (see section 3.3.2,
“Testing File Integrity”), but depending on the program that died, more
significant action may need to be taken. A non-zero user count indicates that
someone knowledgeable about the system should intervene and ensure that
everything is okay. By monitoring the user count, the user count can be used
as an early warning system to head off some types of file problems before
they surface in a more serious form. Note that because runcbl usually closes
all files when it detects an error, it is very unusual that a COBOL coding error
will cause a non-zero user count condition.

Note: Unlike RM/COBOL, a non-zero user count is not automatically an
indication of a corrupt file. It merely means that a program has died while
it had files open.

3.3.2 Testing File Integrity

The “check” option of vutil tests a file for internal consistency. The
command is:

vutil -check [-afkqx] [files]

3-70 Debugger and Utilities
With no options, vutil reads a list of files from the standard input and tests
each one for a non-zero user count and other quickly tested errors. Files with
errors or a non-zero user count are listed. You may place the list of files to
check on the command line instead of using the standard input.

-a

 (for “automatic”) This option causes vutil to do a thorough
test of each file that has a non-zero user count. It will read
every record in an attempt to see if the file is broken. Any
problems that are detected are printed. You can use this option
to test a large number of files for errors without exhaustively
reading every record from every file. Only those files that
appear to have potential problems (because of the non-zero
user count) are tested.

-f (full) This option forces a file to be checked (including files
with a user count of zero). When both “-a” and “-f” are
specified, “-f” takes precedence.

-k (key number) This option is used to specify the key to be used
to read the file. All the keys in the file are read sequentially by
the specified key during the check of the file. This option must
be used in combination with the “-a” or “-f” option. This
option has no effect when used with the “-x” option. “-k” must
be followed (as the next separate argument) by the number of
the key you want to use. Zero (“0”) indicates the primary key,
“1” indicates the first alternate, and so forth.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

-x (extended tests) This option causes vutil to run extended tests
in place of those that are normally run by the “-a” or “-f”
options. The extended tests include: reading every record with
every key, reading the records in their physical order in the file,
and checking the deleted records list. The filename is
displayed along with a message that indicates which test vutil
is currently working on. This option causes a write lock to be
placed on the file to ensure exclusive access during the tests.
You must specify the “-x” option with either “-a” or “-f” on the
same command line; used by itself, it does nothing. The “-x”
option disables the “-k” option when the two are specified on
the same command line.

Vision File Utility — vutil 3-71
Note: Although the “check” option tests the file thoroughly, it is possible
for a file to be corrupt and still pass the test. If you’re processing an
indexed file outside of vutil and you receive a file error “98,” that file is
corrupt even if it passed the “vutil -check” test.

For convenience in building scripts, the “check” option will not complain if
given a non-Vision file. This allows “check” to be run on an entire directory
without generating spurious errors from relative and sequential files.

When you perform “vutil -check”, one of the following status values is
returned to the host operating system when vutil quits:

If more than one file is checked, the highest status value that applies is
returned.

3.3.3 Rebuilding Files

The “rebuild” option is used to rebuild or recreate an indexed file. You
should rebuild a file that has become corrupt, or one that contains a large
number of deleted records that you want to remove from the file. The
command is:
vutil -rebuild [--slow] [-l] [-t tmpfile] [-b #]
 [-2345] [-ac] [+ce] [-k keynum] [-d dir]
 [-f factor] [-s spoolfile [-r] [-m size]]
 [-p pre_factor] [-g ext_factor] [-q] [files]

Each file listed on the command line will be rebuilt. If no files are listed, then
the standard input is read for the list. If, under UNIX, the named file is a
symbolic link, the link is removed and the restored file is put in its place.

 0 file passed all checks

 1 checks not fully performed because the file was in use

 2 non-zero user count found

 3 file is corrupt

 99 user interaction was required, and the “-q” switch was set

255 vutil fatal error or incorrect command line

3-72 Debugger and Utilities
This option by default applies a read lock to the file that is rebuilt. The “-l”
option applies a write lock instead.

When a file is rebuilt, a temporary file is created and each record from the
original file is written to it. The “-t” option allows you to specify the name of
the temporary file used during the rebuild. (You may not specify a directory,
just a file name.) When “-t” is not specified, the temporary file’s name
begins with “VTMP”, followed by a six-character system-generated
sequence. On Windows systems, the file’s name begins with “V”. The
rebuilding process reports the number of records found and the number of
deleted records that were skipped. After the rebuild is complete, you are
given the option of replacing the original file with the new one. If you do not
replace it, you can examine the temporary file for correctness and replace it
manually later. This is recommended if you suspect any difficulties.

When doing a rebuild, vutil places records that are rejected due to illegal
duplicate keys into a file. Should this happen, vutil will report the name of
the file that contains the rejected records. The format of this file is the same
as a COBOL binary sequential file with variable-size records.

-a

This option may be used to specify automatic
replacement of the original file by the newly
created one. This is useful when you are calling
vutil from a program or a script.

 When used once, this option causes automatic
replacement only if no records are skipped. If any
records are skipped, you are prompted before file
replacement takes place. When used more than
once, this option causes automatic replacement of
the file even if records were lost in the process.

 The multiple specification of option “-a” may be
given in the following syntax formats:

 -aa

-a -a

-a (other options) -a

Vision File Utility — vutil 3-73
-b # This option sets a new blocking factor for the file.
The blocking factor specifies the size of the blocks
to be used by the file. Blocks are sized in 512 byte
increments. Vision 5 files support blocking factors
from 1 to 16 (16 = 8192 bytes). Vision 2, 3, and 4
files support blocking factors from 1 to 2.

When you rebuild a file, if the file is very large, or
has a tree height of more than five, or key lengths
in excess of 40 bytes, you may want to experiment
with larger blocking factors. You will need to
perform some benchmarking to determine if a
larger block size improves performance. For more
about how block size can affect performance, see
section 6.1.3.7.

If you specify a blocking factor greater than 2 for a
Vision 2, 3, or 4 file, the factor is automatically and
silently reduced to the maximum of 2.

-c This option removes record compression from the
file.

+c This option adds record compression to the file.

-d dir This option specifies an alternate directory for
placing the rebuilt file. Dir should be the name of
a directory on the host machine other than the
directory containing the files to be rebuilt. When
this option is used, the original files are not
modified or destroyed. The rebuilt files are placed
in dir with the same base name as the original files.
This option can be useful if you do not have
enough disk space on the device holding the files to
rebuild them, but you do have space on another
disk. This option implies the “-a” option because
you are not prompted before the rebuild completes.

+e This option adds record encryption. It is not
possible to remove record encryption (this would
make encryption pointless).

3-74 Debugger and Utilities
 Record compression and encryption may be added
to a file, and compression may be removed from a
file, regardless of the presence or absence of the
WITH COMPRESSION and WITH
ENCRYPTION phrases in the file’s SELECT.

-f factor This option allows you to specify a compression
factor. The factor must be an integer that specifies
how much of the space saved by compression is
actually to be removed from the record. Zero
means no compression. A value of 1 means use the
default factor (70).

 For factors from 2 through 100, the factor is
considered to be a percentage. It specifies how
much of the space saved by compression is actually
to be removed from each record. For example,
suppose an 80-byte record is compressed to 30
bytes. Then the compression factor is used to
determine how much of the 50 bytes of saved space
is actually to be removed from the record. A
compression factor of 70 would mean that 70% of
the 50 bytes (35 bytes total) will be removed. This
leaves 15 bytes for future expansion, and results in
a compressed record size of 45 bytes (30
compressed size plus 15 extra for growth). The
larger the compression factor, the more of the
saved space is removed. A compression factor of
100 removes all saved space and allows no room
for expansion.

-g ext_factor This option sets a new extension factor for the file.
This is the number of blocks that are added to a
file’s size when the file needs to be expanded. The
default is one block. Specifying more than one
enables you to take advantage of contiguous disk
space, and thus may help to prevent fragmentation
of the file as it grows.

Vision File Utility — vutil 3-75
-k keynum This option specifies that you want to rebuild the
file in key order. The “-k” must be followed (as the
next separate argument) by the number of the key
that you want to use, with zero indicating the
primary key, one indicating the first alternate key,
and so forth. For example, to rebuild “file1” in
primary key order, you would specify:

 vutil -rebuild -k 0 file1

 There are two situations in which the “-k” option is
particularly valuable. If you are repeatedly
processing a file along a particular key, then you
can improve performance by rebuilding the file in
key order. This is particularly true if you do a great
deal of sequential processing (common in reports).
When you rebuild in key order, records that are
logically adjacent (according to their key values)
are placed next to each other on the disk. This
maximizes the runtime’s ability to improve
performance with its read caching capabilities. It
also minimizes the distance that the disk must seek
when you are reading records sequentially by that
key. Write performance also improves in
applications that write large numbers of records in
keyed sequence.

 A second situation in which the “-k” option is
valuable is when the default rebuild method fails to
recover a file fully. This can occur if the chain of
data records has been corrupted. When “-k” is
specified, vutil will use the index you provide to
try to locate the records, and will often find more
records this way.

3-76 Debugger and Utilities
-p pre_factor This option allows you to specify the number of
blocks that vutil is to pre-allocate to the file.
pre_factor must be a numeric value between one
and 2,097,152. The maximum pre-allocation
factor varies with Vision version. Vision 5 files
accept the upper limit of 2,097,152 blocks. Vision
2, 3, and 4 files are restricted to a maximum of
65,535 blocks. If a larger pre-allocation factor is
specified than the Vision version allows, the factor
is automatically and silently reduced to the
allowable limit.

-q This option causes vutil to exit (with status 99) if
user interaction is required.

-s spoolfile This option indicates that you want to use the
spooling form of rebuild. This is especially helpful
if you do not have adequate disk space to hold the
new file. This option spools the records to
removable media and then rebuilds the file over the
existing file. This keeps only one copy of the file
on disk and thus allows you to rebuild even when
free disk space is limited. Note that the spooled
file is not compressed.

 The “-s” option must be followed by the name of
the file to which you want to spool records. This
can be any file but is usually the name of a tape or
diskette device. For example, you might specify

 vutil -rebuild -s /dev/rmt0 badfile

 to rebuild the file “badfile” by spooling records to
the tape device “/dev/rmt0”.

 When “-s” is specified, vutil writes all the records
it can recover from the corrupt file to the spool file,
and then rebuilds the file using these records. You
will be prompted to change media if the spool file
gets full.

 There are two additional options that can be used
with the “-s” option:

Vision File Utility — vutil 3-77
When you perform “vutil -rebuild”, one of the following status values is
returned to the host operating system when vutil quits:

 -r allows you to recover an interrupted rebuild.
When “-r” is specified, vutil skips the step of
writing records to the spool device. Instead, it
prompts you to mount the first volume of the spool
file before it begins the rebuilding process.

 -m size allows you to specify the size of the spool
media. It is followed by the number of 1024-byte
records that can fit on the media. This is useful
when the spool device driver does not handle the
end-of-media condition correctly. For example, if
you were spooling to a 1.2 MB floppy disk, you
could specify:

 -m 1200

--slow This option causes vutil to open the file for “mass
update” instead of for “bulk addition.” This
usually causes vutil to run slower. The only reason
for using this option is as a possible work-around
to some difficulty with using bulk addition.

-# This option causes vutil to rebuild the file in the
Vision file format specified by the integer. Valid
values include 2, 3, 4, and 5. If the “-#” option is
not included, the file is rebuilt in the same format
as the original file.

 0 file successfully rebuilt

 1 rebuild not performed because the file is locked

 2 rebuild not fully performed because some records were not
recovered

 99 user interaction was required, and the “-q” switch was set

255 other errors

3-78 Debugger and Utilities
3.3.4 Resetting User Counts

This option resets the user count of each named file to zero. It is much faster
than rebuilding when you are certain there are no other problems with the
file. The command is:

vutil -zero [-q] [files]

The files may be listed on the command line, or may be read from the
standard input. For convenience in building scripts, non-Vision files are
ignored.

3.3.5 Resetting Internal Revision Number

This option resets the internal revision number of all segments in the
specified Vision file to the revision number of the first data segment. It does
this without rebuilding the entire file. To use this option, you must have
exclusive access to the file. The command is:

vutil -fixvers [-q] [file]

The files can be listed on the command line, or can be read from the standard
input. For convenience in building scripts, non-Vision files are ignored.

This option can be used to repair “98, 89” and “98, 90” conditions that can
result from improper shutdowns of a runtime or improper closure of a file.
Before using this option, you should be certain that the file is otherwise
internally correct (meaning that the data is not corrupted. See section 3.3.2,
“Testing File Integrity”). Improper use may lead to loss of data. After
using the “-fixvers” option, you should run “vutil -check -f file” to verify
internal consistency of the file.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

Vision File Utility — vutil 3-79
3.3.6 Extracting Records From a File

The “extract” option prints selected records on the standard output. The
command syntax is:

vutil -extract [-x] [-k#] [-n#]
 [-v value] [-q] file

When using the “extract” option, you may use command-line options to
specify the primary key, starting value, and the number of records. If you do
that, vutil does not interrupt the “extract” later (after printing a synopsis of
the file) to prompt for those parameters. vutil does a START NOT LESS
THAN on the desired key and proceeds to print records on the standard
output. Each record is printed on its own line.

Note: If the file contains binary or COMP-3 data, that data may contain
carriage returns (binary “0D”s). Each binary “0D” is interpreted as a
carriage return, and that is reflected in the display of the extracted record.

These options can be used with “-extract”:

vutil will not let you extract records from an encrypted file.

-k# This option specifies the key number to extract from.

-n# This option specifies the number of records to extract.

-v value This option specifies the key value from which to start
the extract.

-q

When you use this option, the key number defaults to
“0” (zero), the number of records defaults to “all”, and
the keyval defaults to low-values, unless you specify
these values with the “-k”, “-n”, and “-v” options.

-x This option allows record extraction to continue if an
error occurs. Records that generate errors are not
included in the output file.

3-80 Debugger and Utilities
3.3.7 Recovering Deleted Records

The “deleted” function recovers records that have been marked as deleted,
but which have not yet been overwritten by a new record. This function can
be used only with Vision 5 files.

The “-deleted” option looks for records marked as deleted and writes their
contents to a sequential file. For example:
vutil -deleted -vb infile.vis outfile.seq

reads through the list of deleted record areas in “infile.vis” and writes the data
to “outfile.seq” in the form of a sequential file with variable length records
and a portable record header that indicates the size of the record.

The file containing the deleted records may be loaded back into the Vision
file with “vutil -load”, or opened by the runtime like any other sequential file.

Note: The “deleted” function works only with Vision 5 files.

The command syntax is:
vutil -deleted [-v] [-b] [-t] [-q] source destination

-v creates a file that contains variable-length records.

-b creates a binary sequential file that is compatible with
the ACUCOBOL-GT runtime.

If the “-v” option is also specified, variable length
records are written. Otherwise, fixed-length records
are written.

-t creates a line sequential file. This option always writes
variable length records.

-q

tells vutil to perform all actions without prompting the
user for input. This is useful when running “vutil
-deleted” as a batch job.

source is the name of an existing Vision 5 file.

destination is the name of the file to be filled with the recovered
data.

Vision File Utility — vutil 3-81
By default, recovered records are written in a machine dependent binary
sequential file format that is not compatible with the runtime. To create a file
that is compatibility with the ACUCOBOL-GT runtime, include either the
“-b” or -t” option.

3.3.8 Creating Empty Files

The “gen” function creates empty Vision files. This is equivalent to doing an
OPEN OUTPUT on the files from COBOL and is supplied as an alternative
to writing a program explicitly to create empty data files. The command
syntax is:

vutil -gen [-2345]

or
vutil -gen [-2345] [-q] list directory

The first command format invokes a prompting program that asks you for the
name of the new file and each file attribute. The second command format
allows you to specify all of the file attributes in advance, and store them in a
file.

Whether you store the attributes in a file or respond to prompts at the
keyboard, the file attributes you provide are the same.

When you perform “vutil -gen”, one of the following status values is returned
to the host operating system when vutil quits:

-5 creates a file in Vision Version 5 format. This is the default.

-4 creates a file in Vision Version 4 format.

-3 creates a file in Vision Version 3 format.

-2 creates a file in Vision Version 2 format.

-q

This option causes vutil to exit (with status 99) if user
interaction is required.

 0 file successfully rebuilt

255 unsuccessful

3-82 Debugger and Utilities
3.3.8.1 Responding to vutil generated prompts

If you use the interactive version of the “gen” option, you are immediately
given the opportunity to store the session in a file, so that your responses can
be used again. (In fact, you can use the session file as the list file with the
non-interactive version of “gen”.) If you indicate that you do want to save the
session, you are prompted for a session file name.

Next you are prompted for the name of the new file, and for its attributes.
The exact prompts are shown here, and are described in section 3.3.8.2,
“Specifying file attributes in advance.” Default values are enclosed in
brackets.

Save this session [Y]?
Enter session filename:

Enter filename:
Enter the blocking factor [1]:
Enter the number of blocks to pre-allocate [1]:
Enter the # of blocks for extension [0]:
Enter the compression factor (0-100) [0]:
Enable record encryption [N]?
Enter the maximum record size:
Enter the minimum record size (1-maximum) [maximum]:

Enter the # of keys [1]:
-- Primary key --
Enter number of segments (1-6): (For generating Version 2 or 3 files)
Enter number of segments (1-16): (For generating Version 4 or 5 files)
Enter segment size:
Enter segment offset:(Segment size and offset repeat as a pair for each segment)
Duplicates allowed [N]?

-- Alternate key n -- (repeats for each alternate key)
Enter number of segments:
Duplicates allowed [N]?
Enter segment size:
Enter segment offset:(Segment size and offset repeat
 as a pair for each segment)

Enter translation table filename:
Enter file comment (30 char max):

Generate another file?

Vision File Utility — vutil 3-83
Collating Sequence

One of the attributes you may specify is the name of a file containing a
translation table. This enables you to create a custom collating sequence for
the new file, instead of using the standard ASCII collating sequence. The
exact format for the translation table is given here.

All white-space characters (space, tab, new line, etc.) are ignored, so the table
can have as many lines and spaces as you desire.

The sequence of the characters in the table determines the collating sequence
for keys. For example, a file which looks like this:

Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

would sort keys reverse alphabetically, for the values in the range A to Z.

You may enter special characters by typing a backslash (\) and then the
decimal value of the character desired. Thus, “\032” would be used to
specify the SPACE character.

Ranges can be specified with a dash (-). The sequence of the starting and
ending characters in the range is significant. The reverse-alphabetical table
shown above could be specified more concisely as:

Z - A

Finally, you can give two or more characters the same sort value by using an
ampersand (&) between them. For example, the file will not distinguish case
if you use a translation table with the following format:

a & A b & B c & C d & D e & E f & F g & G h & H i & I j & J
 k & K l & L m & M n & N o & O p & P q & Q r & R s & S
 t & T u & U v & V w & W x & X y & Y z & Z

Any characters in the native collating sequence that are not explicitly named
in the table assume a position greater than any of the explicitly named
characters. The relative order of these unnamed characters remains the same
as in the native collating sequence. In the last example, all digits,
punctuation, and control characters would be in their usual order, but after all
alphabetic characters.

3-84 Debugger and Utilities
3.3.8.2 Specifying file attributes in advance

vutil -gen [-2345] [-q] list directory

The non-interactive version of “gen” allows you to specify a file (list) that
contains the attributes for one or more new files. The format of list is
described below.

The directory parameter names the directory in which the new files are to be
created. Each file is tested to see if it exists before it is created. If it does
exist, and it is a Vision file, then it is left untouched. Thus, you can use the
“gen” function to generate missing files from a directory without having to
first save the ones that are there.

The file list consists of one or more file entries, one per line. Each entry
pertains to exactly one file and consists of a series of fields.

The list file can have one of three formats. There is a format for creating
relative and sequential files. A format for creating Vision Version 2 files
(support is provided for compatibility with older applications; the format is
not described here). And a format for creating Vision Version 3, 4, and 5
files (documented below).

For indexed files, the fields are divided into five groups, separated with
semicolons. Fields within each group are separated with commas.

For relative and sequential files, the fields are all separated with commas.

Indexed format

The fields for the indexed format are listed here and then described below.
filename,
blocking factor,
number of blocks to pre-allocate,
number of blocks for extension,
compression factor,
Enable record encryption?;

maximum record size,
minimum record size,
number of keys;

Vision File Utility — vutil 3-85
For primary key:
 number of segments,
 Duplicates allowed?, (always zero)
 segment size,
 segment offset, (repeat the segment size and offset
 pair for each segment)

For each alternate key:
 number of segments,
 Duplicates allowed?,
 segment size,
 segment offset, (repeat the segment size and offset
 pair for each segment);

translation table filename;
file comment

In the indexed format, the first field is the (physical) file name. The second
field is the blocking factor. For Vision 5 files, the value can range from one
to 16. For Vision 3 and 4 files, the value must be one or two (if a larger value
is specified, it is automatically reduced to two). All I/O to the disk is done in
blocks of one or two sectors. Depending on the file and the underlying disk
architecture, performance can be affected by this. Although performance is
difficult to predict, files that have very large keys may benefit from a larger
blocking factor. See section 6.1.3.7 for a more complete discussion.

The third field is the number of blocks to allocate to the file initially. This is
usually set to one. If you want to pre-allocate some disk to the file, then this
can be set to a higher number. Pre-allocation in no way limits the file, but
may help performance by reducing disk fragmentation.

The fourth field is the number of blocks for extension. This determines how
many blocks are allocated each time space needs to be added to the file. This
helps keep fragmentation to a minimum.

The fifth field is the compression factor. A compression factor of zero (0)
means no compression. A compression factor of one (1) is equivalent to the
default compression (70). For factors from 2 through 100, the factor is
considered to be a percentage. It specifies how much of the space saved by
compression is actually removed from the record. For example, suppose an
80-byte record is compressed to 30 bytes. Then the compression factor is

3-86 Debugger and Utilities
used to determine how much of the 50 bytes of saved space is actually
removed from the record. A compression factor of 70 means that 70% of the
50 bytes (35 bytes total) is removed. This leaves 15 bytes for future
expansion, and results in a compressed record size of 45 bytes (30
compressed size plus 15 extra for growth). The larger the compression
factor, the more of the saved space is removed. A compression factor of 100
removes all saved space and is advisable only if the file is rarely updated.

The sixth field is a flag that determines whether record encryption is enabled.
A value of one (1) enables encryption. A value of zero (0) disables
encryption. A semicolon should follow the encryption flag.

The next two fields specify maximum and minimum record size. If the two
numbers are identical, the records are fixed-length. If the two numbers are
not identical, records are variable-length. The maximum record size allowed
in Vision 5 files is 67,108,864 bytes. The maximum record size allowed in
Vision 2, 3, and 4 files is 32,767 bytes.

The ninth field is the number of keys in the file, to a maximum of 120. A
semicolon should follow the number of keys.

Next, you describe the primary key by at least four entries. The first entry is
the number of segments in the key. The second entry is always zero (0). For
each segment, you must then specify the segment size in bytes, and the
segment offset from the start of the record, in bytes. If there are no alternate
keys, a semicolon should follow the final segment offset. Otherwise, a
comma should be used.

If there are any alternate keys, describe each one by a series of at least four
entries. The first entry is the number of segments in the key. The second
entry should be one (1) if duplicate values are allowed, or zero (0) if they are
not. For each segment, you must then specify the segment size in bytes, and
the segment offset from the start of the record, in bytes. A semicolon should
follow the final segment entry of the last alternate key.

After the keys have been specified, enter the name of a file containing the
translation table (collating sequence), if you want anything other than
standard ASCII sorting. If the name is empty, ASCII sorting is assumed. The
format of the translation file is given in the preceding section. A semicolon
should follow the name of the translation file.

Vision File Utility — vutil 3-87
Finally, you may provide up to 30 bytes of comment. This comment is
printed by vutil when the “info” option is used.

Here’s a sample file entry. Suppose a file containing G/L account
descriptions has a record size of 80 and two keys. The primary key is at the
start of the record and is 15 bytes long. The alternate key has two segments;
the first is at record offset 40 and is 30 bytes long. The second segment of the
alternate key is at record offset 20 and is 5 bytes long (duplicates allowed). A
compression factor of 30 and ASCII sorting are desired. The corresponding
entry is:

glactfil,1,1,0,30,0;80,80,2;1,0,15,0,2,1,30,40,5,20; ;G/L account master

Sequential and Relative Files

For convenience, the non-interactive “gen” option can also create empty
sequential and relative files if they are missing. The entry contains only three
fields. The first field is the file name. The second field is the record size, and
the final field is an “S” for a sequential file or an “R” for a relative file. The
record size field is only comment, so it can be set to any numeric value.

Whether to use “gen” or a COBOL program to create the data files for an
application depends on which is more convenient. Creating the file list can
be painstaking, but the symbol table listing of the compiler can help to
compute the size information. Once the files are created, however, it is easier
to replace missing files this way than with a program that must explicitly test
for a file’s existence before creating it.

3.3.9 Unloading to Binary and Line Sequential Format

The “unload” option will create a binary sequential file or a line sequential
file from a Vision file. The command is:
vutil -unload [-v] [-b | -t] [-l] [-q] source destination

The source file is the Vision file to unload; the destination is the name of the
file to create. If a file with the name destination already exists, it is deleted
first. The records in the destination file are ordered by the primary key of the
source file. This can be used to export data to other applications. vutil will
not let you unload records from an encrypted file.

3-88 Debugger and Utilities
The source file is buffered according to the value in the
A_SEQ_DEFAULT_BLOCK_SIZE variable. The variable must be set in
the environment for vutil to use it. If the variable is not set, the default buffer
block size is 4096 bytes. If the variable is set to “0”, vutil -unload into a
sequential file will perform record-based I/O. If the variable is set to a
positive value, that value will be rounded up to the power of two equal to, or
greater than the value. This will be the buffer size in bytes. The maximum
buffer size is 1GB.

By default, the destination file is assumed to be a binary sequential file with
an alternate format that is not compatible with the ACUCOBOL-GT runtime.

These are the destination file format options:

-v

This option produces a file that has variable-length records.
Variable-length records occupy only as much disk space as
necessary. Two or four bytes indicating record size are
placed in front of each variable-length record when it is
written to disk. (Different machines generate different
prefixes. Thus, files produced with “vutil -unload -v” can be
loaded with “vutil -load -v” on the source machine but are
not necessarily portable to other machines.) The two- or
four-byte field that is added to the record is not specified in
your COBOL program, but some programs that access the
records need to be aware of the extra bytes.

If “-v” is not present, fixed-length records are written.

-b This tells “vutil -unload” to produce a binary sequential file
that is compatible with the ACUCOBOL-GT runtime.

If “-v” is not present, fixed-length records are produced.

The “-v” option causes vutil to produce variable-length
records. The record length is stored in a two-byte record
header.

-l This option places a read lock on the input Vision file. This
improves performance, because the records can be read
without needing to place and release locks on the individual
records.

Vision File Utility — vutil 3-89
3.3.10 Loading a File

The “load” option will create an indexed file from a binary sequential file, a
relative file, or a line sequential file. The command is:
vutil -load [-b|d|t] [-lnv(r|s)x] [-q] source destination

The source file is the name of the binary, relative, or line sequential file to
read. The destination file is the name of the Vision file to add to. This file
must already exist; it is used to determine the record size and key
information.

By default, records from the source file are added to the destination file. If
the “-n” flag (new file) is used, then any data in the destination file is
eliminated before the records are loaded from the source file.

When doing a load, vutil places records that are rejected due to illegal
duplicate keys into a file. Should this happen, vutil will report the name of
the file that contains the rejected records. The format of this file is the same
as a COBOL binary sequential file with variable-size records.

The input file is buffered according to the value in the
A_SEQ_DEFAULT_BLOCK_SIZE variable. The variable must be set in
the environment for vutil to use it. If the variable is not set, the default buffer
block size is 4096 bytes. If the variable is set to “0”, vutil -load into a
sequential file will perform record-based I/O. If the variable is set to a
positive value, that value will be rounded up to the power of two equal to, or
greater than the value. This will be the buffer size in bytes. The maximum
buffer size is 1GB.

-t This tells “vutil -unload” to produce a file that has line
sequential format. This means that the destination file is a
simple text file, with records separated by line feeds.

This option implies “-v” (variable-length records), so the
“-v” option is not necessary, although it is allowed.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

3-90 Debugger and Utilities
By default, the source file is assumed to be a binary sequential file with an
alternate format.

These are the source file format options:

-b This loads a binary sequential file that is compatible with the
ACUCOBOL-GT runtime into a Vision file.

If “-v” is not present, fixed-length records are read.

The “-v” option causes vutil to read variable-length records.
The record length is stored in a two-byte record header.

-d Records marked as deleted in the relative file are discarded.

The “-v” option is not allowed for relative files.

-l

You can use the “-l” flag to prevent vutil from locking the
file if you need to allow simultaneous access to the
destination file while vutil is operating. Normally, vutil
locks the destination file to improve the performance of the
load operation. When “-l” is not used, vutil adds records to
the file using “bulk addition” mode, which generally runs
faster.

-n If the “-n” flag (new file) is used, then any data in the
destination file is eliminated before the records are loaded
from the source file.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

-r This option causes any “duplicate key” write errors to be
retried as rewrites to the file. This option should be used with
caution, because duplicate key write errors often indicate that
an error exists in the target file description. Warnings about
this problem are not seen when you use the “-r” option.

This option is incompatible with the “-load -s” option.

-s This option indicates that duplicate records should be
skipped rather than written to a file. When this option is
used, any duplicate records found while loading the indexed
file will be discarded.

This option is incompatible with the “-load -r” option.

Vision File Utility — vutil 3-91
If you are creating this file for the first time, you can either use the “gen”
option of vutil or write a COBOL program to create the empty Vision file.
The “load” function can be used to import data from another application.

If an error occurs, an exit status of 255 is returned.

-t This loads a file that has line sequential format into a Vision
file. This means that the source file is a simple text file, with
records separated by line feeds. The source file may not
contain any line feeds within the data fields, because a line
feed denotes the end of a record.

 This option implies “-v” (variable-length records), so the
“-v” option is not necessary, although it is allowed. Line
sequential files are assumed to contain variable length
records. As such, they can only be loaded into Vision files
that have been generated to accommodate the needed range
of record sizes. If, however, the file contains records that are
uniformly fixed length, the Vision file can be generated to
accommodate only that fixed length. Should vutil attempt to
load variable length records into a fixed record-size Vision
file, an invalid record size error will occur. The error is
reported as a generic “parameter error.”

-v This option causes vutil to treat the source file as a file with
variable-length records. The record length is stored in the
record’s header. The length of the header is either two or
four bytes, depending on your machine type.

If “-v” is not present, fixed-length records are read.

-x The “-x” option is required when you are working with
binary sequential and relative files that contain
variable-length records larger than 65,535 bytes. (These
files store the record length in two additional bytes in the
record header. For “vutil -load” to read these files, it is
necessary to indicate that these extra header bytes exist.)

3-92 Debugger and Utilities
3.3.11 File Size Summary Report

The “size” option of vutil gives summary disk usage information for a set of
Vision files. This option is useful for quickly determining which files are
occupying the most disk space and for spotting files that contain a large
amount of unused space. The command is:
vutil -size [-n] [-q] [files]

If no files are requested, then the standard input is read for the list of files.
The printed information includes the total size of the file, the number of
records, and the number of deleted records the file contains. Also given is
the percentage of records in the file that are not deleted records. This
information is useful when you are trying to find candidates to rebuild when
disk space gets tight. Non-Vision files are ignored by this command.

3.3.12 Converting RM/COBOL-85 Indexed Files

vutil can convert an indexed file created by RM/COBOL-85 into a Vision
file. For a complete description, see section 2.4.4 in Transitioning to
ACUCOBOL-GT.

3.3.13 Converting C-ISAM Files

vutil can convert a C-ISAM® file into a Vision file. This is useful when you
are moving C-ISAM data to an ACUCOBOL-GT application. The command
is:

-n

This option shows all files, including non-Vision files.
Although vutil “-size” option normally ignores non-Vision
files, sometimes it may be useful to see which files are being
ignored. This option provides that capability.

Non-Vision files display as:

junkfile: not a vision file

-q This option causes vutil to exit (with status 99) if user
interaction is required.

Vision File Utility — vutil 3-93
vutil -convert [-a] [+c] [-2345] [-d dir]
 [-f #] [-q] [files]

You need not specify that the file is C-ISAM; vutil makes that determination.

The “convert” option starts with the same letter as the “check” option. You
must use at least two letters of the word “convert” in order to specify this
option. If you just use “-c”, vutil will assume that you are specifying the
“check” option.

The “convert” function will take each named file and convert it from a
C-ISAM file to a corresponding Vision file. If no files are specified, then the
standard input is read for a list of files to convert.

Each C-ISAM file actually occupies two files: an index file with the
extension “.idx” and a data file with the extension “.dat”. Specify only the
base name in the list of files (do not include any extension).

Specifying “+c” causes the resulting records to be compressed.

Normally vutil warns the user about the impending conversion and asks if the
user wants to continue. The “-a” (for “automatic”) option suppresses this
warning. This can be useful when you are calling vutil from another
program.

The “-5” option specifies that you want the resulting file to be in Vision
Version5. The “-4” option specifies a Vision Version 4 file. A “-3” means a
Version 3 file, and “-2” specifies a Version 2 file.

The “-d” option specifies that you want the converted files to be placed in a
new directory. Dir should be the name of a directory on the machine other
than the directory containing the files to be converted. The “-d” option
implies the “-a” option.

The “-f #” option sets the compression factor to be used when the file is
converted. This option does not force the use of compression, it merely sets
the compression factor if compression is used. The compression factor, a
numeric literal, specifies how much of the space saved by compression is
actually to be removed from the record.

3-94 Debugger and Utilities
The “-q” option causes vutil to exit (with status 99) if user interaction is
required.

There are a few types of files that cannot be converted due to restrictions in
Vision. Any of the following properties will cause vutil to print a message
and leave the file alone:

1. A record size or block size greater than 32 KB.

2. More than 120 keys.

3. An individual key with more than 250 bytes in it.

4. A single key with more than sixteen segments (Vision Version 4) or
more than six segments (Vision Version 2 or 3).

5. A primary key that allows duplicates.

vutil makes a copy of the file while it is converting it. You must have
adequate disk space for vutil to complete its conversion. Also, C-ISAM files
and Vision files differ in the amount of disk space that they use. This
difference is fairly unpredictable and can vary quite widely. Sometimes the
Vision files are smaller, and sometimes the C-ISAM files are smaller. You
should have some spare disk space when you start converting files to
accommodate the potential difference.

3.3.14 Converting Micro Focus Files

vutil can convert a Micro Focus file into a Vision file. This is useful when
you are moving Micro Focus data to an ACUCOBOL-GT application. The
command is:
vutil -convert [-ac] [+c] [-f #] [-2345]
 [-d dir] [-q] [mf-files]

You need not specify that the file is a Micro Focus file; vutil makes that
determination on its own.

The “convert” option starts with the same letter as the “check” option
described earlier. You must use at least two letters of the word “convert” in
order to specify this option. If you just use “-c”, vutil will assume that you
are specifying the “check” option.

Vision File Utility — vutil 3-95
The “convert” function takes each named mf-file and converts it from a
Micro Focus indexed file to a corresponding Vision file. If no mf-files are
specified, then the standard input is read for a list of files to convert.

Each Micro Focus file actually occupies two files: an index file with the
extension “.idx” and a data file. The resulting Vision file has the same name
as the data file, with the extension “.vis”. Specify only the base name in the
list of files (do not include any extension).

Normally vutil warns you about the impending conversion and asks if you
want to continue. The “-a” (for “automatic”) option suppresses this warning.
This can be useful when you are calling vutil from another program.

Specifying the “-c” option causes the resulting file to have uncompressed
records regardless of the original file; using “+c” causes the resulting records
to be compressed.

The “-f” option sets the compression factor used when the file is converted.
This option does not force the use of compression, it merely sets the
compression factor if compression is used. The compression factor, a
numeric literal, specifies how much of the space saved by compression is
actually to be removed from the record.

The “-5” option specifies that you want the resulting file to be in Vision
Version 5. The “-4” option specifies a Vision Version 4 file. A “-3” means
you want a Version 3 file, and “-2” means you want a Version 2 file.

The “-d” option specifies that you want the converted files to be placed in a
new directory. Dir should be the name of a directory on the machine other
than the directory containing the files to be converted. The “-d” option
implies the “-a” option.

The “-q” option causes vutil to exit (with status 99) if user interaction is
required.

vutil makes a copy of the file while it is converting it. You must have
adequate disk space for vutil to complete the conversion. Also, Micro Focus
files and Vision files differ in the amount of disk space that they use. This
difference is fairly unpredictable and can vary quite widely. Sometimes the

3-96 Debugger and Utilities
Vision files are smaller, and sometimes the Micro Focus files are smaller.
You should have some spare disk space when you start converting files to
accommodate the potential difference.

3.3.15 Changing Record Size

The “augment” option makes it possible to increase the maximum record size
of a Vision file. This is useful for adding fields to a record without having to
rebuild the entire data file. The new maximum record size and the file name
is specified as shown in the examples below. This command format is:
vutil -augment [-q] new_max_rec_size filename

For example:
vutil -augment -q 50 myfile.dat

or
cat vision_filelist | vutil -augment -q 100

If the Vision file originally had a fixed-length record size, and if the new
maximum record size is larger than the old maximum record size, the file
effectively has a variable-length record size after running this command.

You may specify a new maximum record size that is smaller than the current
maximum record size, but not smaller than the current minimum record size.
This enables you to correct for the case that the maximum was too large. Be
careful, however, because if any records were added while the maximum was
at the higher level, the file is marked as broken when those records are next
read. Vision detects that a record exists that is larger than the current
(reduced) maximum record size and raises an error. When you use
“vutil -augment” to reduce the maximum record size, vutil issues a warning.

Anytime you change the file record size with the “augment” option, you
should consider the need to modify existing FDs to reflect the new maximum
record size. Changing the characteristics of a file without making changes to
existing FDs will cause a mismatch to be detected at runtime when the file is
opened, resulting in a file-status error 39 (“Existing file conflicts with the
COBOL description of the file”).

Vision File Utility — vutil 3-97
Because this operation changes the logical structure of the file, exclusive file
access is required. vutil reports “File locked” if any other process has the file
open.

The “-q” option causes vutil to exit (with status 99) if user interaction is
required.

3.3.16 Setting the Comment Field

The “note” function allows you to set the comment field in the Vision file
header.

The usage is:
vutil -note [-q] "comment" [file ...]

“vutil -note” sets the comment field in the specified Vision file to “comment”.
If no file is listed on the command line, the filenames are read from standard
input (one per line).

A Vision file’s comment field can be viewed with the “vutil -info” command.
If the field is not empty, the comment is displayed, enclosed in parenthesis,
on the line immediately following the filename.

3.3.17 Miscellaneous Commands

The “tree” function produces a listing of the internal B-tree in a file called
“v_tree”. The command is:
vutil -tree [-q] file

This is primarily used by Micro Focus staff to help debug suspected problems
with Vision. Five columns of information are displayed, with these headings:

Left/Rec Uniq Size Pre Key

-q causes vutil to exit (with status 99) if user interaction
is required

“comment” is limited to 30 characters and is truncated if longer

3-98 Debugger and Utilities
The Left/Rec column displays the pointer from the entry to the next tree level
or to the actual record itself. The Uniq value is used to distinguish duplicated
keys. The Size field is the number of bytes in the key (as stored after key
compression). The Pre field is the number of bytes this key shares with the
preceding key. The Key field is the actual key value.

The “version” option of vutil tells you which version of the utility you are
running. The command is:
vutil [-q] -version

3.3.18 Default Settings of vutil

vutil uses the following default settings:

You can modify these settings if desired by placing the new settings in the
operating system’s environment.

Note: vutil does not use the runtime’s configuration file. Settings made
there have no effect on vutil.

3.4 File Transfer Utility — vio

vio is a file transfer utility similar to the UNIX program cpio. vio allows you
to collect a group of files together into archives, and allows you to extract
some or all of these files from these archives. Typically, an archive is some
external media such as a tape or a diskette, but the archive may also be
another disk file. vio is typically used to back up a set of files or to move files
from one machine to another.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

V_BUFFERS 128 blocks (1 block = 512 bytes)

V_BULK_MEMORY 1 megabyte

File Transfer Utility — vio 3-99
vio is particularly well suited for moving files to a different machine,
because:

1. vio is available on a wide-range of operating systems, including
Windows, UNIX, Linux, and VMS.

2. vio automatically adjusts for certain machine-dependent aspects such
as byte-swapping.

3. vio handles multiple volumes gracefully.

4. On any system where Vision is supported, vio can automatically
convert ACUCOBOL-GT indexed data files to the appropriate format
for the target machine.

vio runs in two modes, the input mode (-i) and the output mode (-o). The
syntax for each mode, with all possible options, is shown here:

vio -o [-b] [-f file] [-u] [-g] [-h headerfile]
 [-k][-l listfile] [-pr] [-s blocks] [-v]

vio -i [-cd] [-f file] [-g] [-h bytes]
 [-kmnstv2345] [files]

The input mode reads vio archives to extract files. The output mode creates
new vio archives.

In the output mode, vio reads its standard input for a list of files to place in
the archive. The archive is written to its standard output.

In the input mode, vio reads the archive from its standard input and extracts
all the files. The extracted files have the same names, permissions, and
owners that they had when the archive was created.

If files are specified, then only the named files are extracted. Note that each
file must exactly match the name of a file in the archive; no wild card
characters are allowed.

When vio encounters an ACUCOBOL-GT indexed data file, it treats that file
specially. When it’s running in output mode, it extracts each data record
from the file and writes that record to the archive along with some formatting
information. When that file is later read in the input mode, a new indexed

3-100 Debugger and Utilities
data file is created with the proper format, and each data record is loaded into
the file using the host’s indexed file system. Using this technique, vio is able
to transfer an indexed file so that it is ready for use on the target machine.

When it’s archiving files other than indexed files or ACUCOBOL-GT object
files, vio assumes that the files are text files. It performs any conversions
necessary to match the text file conventions on the host machine. For
example, if a file is transferred from a UNIX system to a Windows system,
new-line characters are translated into carriage-return, line-feed sequences.
The “-p” option described below can cause these files to be treated as binary
files instead, in which case no translation occurs. (If you are transferring
multiple files at one time, some ASCII and some binary, do not use the “-p”
option. Instead, add a space followed by a “b” or a “B” after the name of each
binary file in the filename list. The “<space> b” prevents translation from
occurring on an individual file.)

Note: ACUCOBOL-GT object files are automatically detected and written
out to an archive as binary files, even if you fail to specify “-p”.

3.4.1 vio Options

The following options can be used with the vio utility:

-b

Causes the archive to be blocked with 10 input records per
output record. Each input record is normally 512 bytes.
Blocking is specified only during output; vio automatically
determines whether or not an archive is blocked when it is
doing input.

-c Forces all files read from the archive to be placed in the
current directory. Any directory information in each file is
removed and the file is placed in the current directory using
just its base name. This is useful if someone sends you a file
with a full directory specification that does not match your
machine.

-d Allows vio to create directories as needed to read a file.

File Transfer Utility — vio 3-101
-f Allows you to specify the archive file directly. The next
separate command-line argument is the name of the archive
file. This is particularly useful when you are writing a
multi-volume archive, because vio will not need to prompt
you for the name of the archive when it has to change
volumes.

-g Rings the bell when a new volume is needed.

-h In the input mode, you may specify a number of bytes to skip
from the beginning of each archive volume. This value is
specified as the next separate argument. This is used to skip
headers on media that some machines produce.

 In the output mode, the next separate argument should
specify the name of a file. This file is exactly copied to the
beginning of each archive volume. This is used to simulate a
media header required by a target machine.

 For example, an AT&T 7300 diskette contains a header in
the first 8 sectors. If you write a diskette on another type of
machine, the 7300 will not recognize it. To get around this
problem, take a diskette written on a 7300 and extract the
header using this UNIX command: “dd if=disk-device
of=73header count=4096”. You can then specify “-h
73header” as part of a vio command to have this header
placed on each diskette of the archive. The 7300 will then be
able to read these diskettes. If you are coming from a 7300,
you can use “-h 4096” to cause vio to skip the first 8 sectors
of each diskette.

-k Changes vio’s notion of a record size from 512 bytes to 1024
bytes. All I/O is done using the record size, or a multiple of
the record size. This option is occasionally useful on some
machines that require 1K transfers to devices. If you use this
option on output, you must then also use it when reading the
created archive. This option should be used only if required.
You can improve performance better by using the “-b”
option instead.

3-102 Debugger and Utilities
-l Allows you to specify a list of files to output as the next
command-line argument. vio will then read this list instead
of using its standard input. Note that this list must reside in
a file, one line per entry.

 An optional flag (“<space> b” or “<space> B”) may be
placed after the filename. This specifies that the file should
be written to the archive without translation (same as the “-p”
option, except “-p” applies to all non-indexed files in the
list).

 For example, if the file “list” contains two lines “file1” and
“file2 b”, then specifying “-l list” will cause “file1” and
“file2” to be written to the archive, with “file2” written as a
binary file. This option is useful on machines that do not
allow standard input to be redirected.

-m Causes vio to restore the file’s modification time from the
archive along with the other file attributes.

-n Causes vio to assign a new owner (the current user) to
extracted files. This is particularly useful when you are
transferring files to another machine, because the original
user ID is probably not meaningful in this case.

-p Causes non-indexed files to be treated in a pure (binary)
form. This prevents any text file conversion from occurring.
vio stores its archives in a standardized format (similar to a
UNIX text file). When it’s creating archives, it converts any
non-indexed file to this format unless this option is specified.
(This option applies to all non-indexed files in the list and
thus behaves as if you had specified “<space> b” for every
non-indexed file in the list, even if you did not.)

-r Causes indexed files to be treated as raw data files. No
conversion is done when the file is written to the archive.
This should be done only if the archive is going to be read by
a binary-compatible indexed file system. Note that all
Vision Version 5, 4, and 3 files are binary-compatible, so
you can use this option to move Vision 5, 4, and 3 files.
Specifying this option will speed up vio, so it is a reasonable
option to use if you are doing backups.

File Transfer Utility — vio 3-103
-s In the output mode, this allows you to specify the size of the
media. This is useful on a few machines that do not detect
end-of-media correctly. The size is specified as the next
command-line argument. This should be the number of
blocks to place on the media. Normally, a block is 512 bytes,
but the “-k” option causes blocks to be 1024 bytes in size.
vio will not place more than this many blocks on the output
media before changing volumes. For example:
-s 2400

could be used to store 2400 blocks per diskette.

 In the input mode, this option allows you to skip volumes.
This is useful if vio dies due to a media error and you want to
recover files on successive volumes. This option causes vio
to start with whichever volume it finds physically mounted.

-t Causes vio to print the titles of the files in the archive rather
than extracting the files. If this is specified with the “-v”
option, long information is printed about each file.

-u Causes vio not to do a translation of filename directory
separators.

 vio by default changes all filenames to use forward slashes as
directory separators. This is done to avoid problems in cases
when an archive is made on a Windows machine with
filenames that use backslashes (\), and then extracted on a
Unix machine. The files extracted would not be stored in
directories, but would instead be created with the
backslashes in the names, causing problems for the user who
had to work with these files.

 For example,
vio -ovbulf listfile archive.vio

causes vio to not translate any backslashes in filenames listed
in listfile to forward slashes. Similarly,
vio -ivnduf archive.vio

causes vio to not translate any backslashes in filenames in the
archive to forward slashes.

3-104 Debugger and Utilities
vio recognizes UNIX-style names on non-UNIX environments. For
example, if you specify the name “../demo/compfile” on a VAX system, vio
will treat this name as “[-.DEMO]COMPFILE.”. For this reason, you should
use UNIX-style names if you want to move directory structures between
machines with different operating systems.

3.4.2 Windows Considerations

When you are using vio on an Windows machine, you can specify a diskette
drive with the “-f” option. If you do this, you must specify the type of
diskette you want to write. Specify one of the following letters immediately
after the drive-name’s colon:

 Windows versions of vio handle forward slashes just fine;
you do not need to use the “-u” switch on those systems to
have your filenames interpreted correctly. The main purpose
of providing this switch is backwards compatibility.

-v Causes vio to be verbose about its progress. Note that when
it’s extracting files from an archive, vio prints each name as
it starts to work each file. If vio dies for some reason, the last
name printed will not have been completely extracted.

-2 Specify this option when you are reading an archive and
want to produce an indexed file in Vision Version 2 format,
rather than a Version 5 file (the default).

-3 Specify this option when you are reading an archive and
want to produce an indexed file in Vision Version 3 format,
rather than Version 5 file (the default).

-4 Specify this option when you are reading an archive and
want to produce a Vision Version 4 file.

-5 Specify this option when you are reading an archive and
want to produce an indexed file in Vision Version 5 format
(the default).

H 1.2 MB High-density 5.25”

3 1.44 MB High-density 3.5”

File Transfer Utility — vio 3-105
If you leave this letter off, vio will assume a low-density, 360 KB diskette
(which can be either 3.5” or 5.25”).

You may not specify a diskette drive with redirection. If you write directly
to a drive, all pre-existing files on that drive are lost. In addition, all directory
information is lost. In addition, the diskette will not be usable by Windows
until it is reformatted.

3.4.3 vio Examples

Suppose that you have a list of files that you want to move to another machine
using some compatible media. You could use the following vio command to
create the media:

vio -ovblf listfile device

For each line inside the “listfile” there cannot be any spaces before or after
the file name. The correct form for this file is:
filename(newline)
filename(newline)
filename(newline)

Do not include lines with spaces (initial or in the middle), such as:
filename (newline)

or with leading spaces, such as:
 filename(newline)

On the target machine, you can read the archive you just created with:
vio -ivndf device

Assuming that this archive was on a 1.2 MB floppy, you could read this on a
Windows machine with:

vio -ivndf a:h

9 720 KB, 9-sector, low density 3.5”

8 320 KB, 8-sector, low density 5.25”

3-106 Debugger and Utilities
Now let’s assume that you want to move a set of Vision indexed files to
another machine, but you do not have any common media. You plan to use
a network or modem-transfer to get the files to the target machine, but you
have a problem because the indexed file format on the two machines is
different. You can use vio to help you in this case by writing the archive to a
disk file with this command:

vio -ovblf listfile diskfile

The “listfile” must not have spaces before or after the file names.

Then you move “diskfile” to the target machine and use vio to create new
indexed files in the correct format with this command:

vio -ivndf diskfile

3.4.4 Known Limitations

If you attempt to write to a write-protected diskette on a Windows system,
vio incorrectly believes that 10 records are written to the diskette, and then it
prompts for a new diskette. When this happens, the archive is incorrect and
you must start over. Reading from write-protected diskettes works correctly.

vio will transfer indexed data files to/from VMS, but it will not convert them.
If you must do this, you will have to unload and reload the records yourself.

On VMS, the “-n” option is always implied.

Be careful when using full path names. Some operating systems do not
translate them in the way you might expect. You should always use relative
path names when transferring files to a different operating system. Always
make sure you have permissions to create files, and subdirectories if
necessary, when you are transferring archives.

When using the “-s” option, you can suggest up to a maximum of 99999
blocks. This number corresponds to 50 MB if the block size is 512 bytes, and
100 MB if the block size is 1024 bytes.

Indexed File Record Editor (alfred) 3-107
3.5 Indexed File Record Editor (alfred)

As of Version 8.0, the Indexed File Record Editor (alfred) is provided as a
sample program and is located in the “sample” folder under “AcuGT”. You
can download detailed information on using alfred in PDF format from the
Support > Examples & Utilities > Acucorp Technical Articles and Tips
section of the Micro Focus website (www.microfocus.com).

3.6 logutil

You can use the utility program logutil to examine and edit an
ACUCOBOL-GT transaction log file. This utility is used only with log files
built for the Vision file system. You can run logutil from the operating
system command line with the following usage:

3.6.1 Syntax and Options

Syntax
logutil[-filv] [-d begin_date [end_date]]
 [-t begin_time [end_time]] [-u user]
 [-r begin_location [end_location]] [-h num]
 [-e new_log_file_name] log_file_name

Options

-f full listing, lists selection on standard output (implies -i).

-i prints summary information at end of listing.

-l report location information.

-v verbose option, includes record images (implies -f).

-d limits selection by date.

-t limits selection by time. Uses 24-hour clock.

-u selects transactions for a particular user only.

-r selects transactions within the two locations you provide

3-108 Debugger and Utilities
If you do not specify any options on the command line, logutil acts as if “-i”
were specified and prints only summary information.

-v option

If the “-v” option is used, record images are displayed in a format similar to
the following:

Record Image:
0015 0001 2ce2 dffc 0000 55dd0000 646f ...,.....U...do
7669 6400 6163 7563 6f62 6f6c 00 vid.acucobol.

-i option

logutil may be used to monitor transaction log activity. If you run it with
only the “-i” option, or with no options, it sends a summary report to standard
output. This report contains statistics, version information, and warning
messages. One or both of the two warning messages below may appear, as
shown in the following report:
logutil corruptlog
Log File : corruptlog
WARNING: COMMIT BEGIN WITHOUT MATCHING COMMIT END IN LOG FILE
WARNING: START TRANSACTIONS WITHOUT MATCHING ROLLBACKS
 OR COMMITS
Total Size : 2366 bytes
Number of Records : 79
Mean Record Size : 29 bytes
Number of Transactions : 17
Mean Transaction Size : 139 bytes
Record Version(s) : 1

The warning “COMMIT BEGIN WITHOUT MATCHING COMMIT END
IN LOG FILE” means that the last record in the log file is not a type CE
(Commit End) record. This means that, during a commit:

• the log file was being updated at the time logutil was run

• or a process was killed with an uncatchable signal

-h num is the frequency with which header lines will be printed.

-e extracts selected section into a new log file.

logutil 3-109
• or a system failure occurred

In the case of a killed process with an uncatchable signal, or a system failure,
the next START TRANSACTION using the corrupted log file will return
TRANSACTION-STATUS 12.

The warning “2 START TRANSACTIONS WITHOUT MATCHING
ROLLBACKS OR COMMITS” means that there are two transactions that
have yet to be committed or rolled back. This could indicate a problem if
there are no runtime processes currently using the log file.

-d option

The logutil utility date filter, “-d” command-line option, requires you to
specify years in the 4-digit format. If you enter a year value less than “1900”,
logutil reports “logutil: use 4 digit year specification”.

logutil example #1

To list all records for a user named “randy” that were written on
November 11th between 4:50 P.M. and 5:00 P.M. to a log file called
“mylog”, you would use the following command:

logutil -fu randy -d 11/11 -t 16:50 17:00 mylog

You will see something similar to the following report:

TY PID Term Client User Date/Time File ID Filename
ST 21981 tty0 acucobol randy 11/11 16:50:12
CB 21981 tty0 acucobol randy 11/11 16:50:12
MA 21981 tty0 acucobol randy 11/11 16:50:12 test.dat
OP 21981 tty0 acucobol randy 11/11 16:50:12 07700001 test.dat
CE 21981 tty0 acucobol randy 11/11 16:50:12
ST 21981 tty0 acucobol randy 11/11 16:56:40
CB 21981 tty0 acucobol randy 11/11 16:56:40
WR 21981 tty0 acucobol randy 11/11 16:56:40 07700001
DE 21981 tty0 acucobol randy 11/11 16:56:40 07700001
CE 21981 tty0 acucobol randy 11/11 16:56:41
ST 21981 tty0 acucobol randy 11/11 16:59:20
CB 21981 tty0 acucobol randy 11/11 16:59:20
WR 21981 tty0 acucobol randy 11/11 16:59:20 07700001
RE 21981 tty0 acucobol randy 11/11 16:59:21 07700001
CE 21981 tty0 acucobol randy 11/11 16:59:21
-

3-110 Debugger and Utilities
End of log.
Total Size : 580 bytes
Number of Records : 15
Mean Record Size : 38 bytes
Number of Transactions : 3
Mean Transaction Size : 193 bytes
Record Version(s) : 1

In a transaction log report, path and file names are limited to 17 characters
without the “-l” option, or 21 characters with the “-l” option. Should the path
and file name exceed that limit, the report will attempt to display all of the file
name. If room permits, this will be followed by the file’s parent directory,
root directory, and subdirectories. Path name components that must be
omitted are represented by an ellipsis (…).

logutil example #2

To create a new log file called “newlog” that will contain the records reported
above, use the “-e” option as follows:

logutil -u randy -d 11/11 -t 16:50 17:00 -e newlog mylog

3.6.2 logutil Report Headings

The first column of the standard report has the heading “TY”. Its value is the
record type, taken from the following list:

ST Start Transaction

CB Commit Begin

CE Commit End

RO Rollback Transaction

DE Delete (record)

RW Rewrite

WR Write

OP Open (Opens an existing file)

MA Make (Creates or Recreates a file during an OPEN operation)

CL Close

The Profiler 3-111
The other columns are as follows:

The PID is usually less than six characters on UNIX machines. On Windows,
however, the PID can be a long negative number. In order for the output file
to fit within 80 columns, all PID numbers are truncated to show only the
right-most six characters.

If the “-l” option is used:

3.7 The Profiler

To help you tune application performance, the runtime includes an execution
profiling facility. This built-in facility is activated when a properly prepared
program is executed with the “-p” flag, prompting the runtime to collect
information about I/O operations and CALLs, and to install a timer to track
the amount of time spent in different parts of the code. All of this information
is placed into an output file called “acumon#.xml”. (The “#” is an

CP Copy

RN Rename

RM Remove (file)

PID ID of process which wrote the record

Term Name of terminal used by the runtime

User User name of owner of the runtime

Client Host name of machine running the runtime, the client machine
when using AcuServer

Date/Time Date and Time the event occurred

File ID Unique identifier of the file

File Name Name of file being opened, created, recreated, deleted, renamed, or
copied

Location Byte offset of the record in the log file

Length Length of the log record

3-112 Debugger and Utilities
automatically incremented number, starting at 1, appended to the filename to
ensure that the profile data is not accidentally overwritten by another
execution of the profiler.)

Note: Because the runtime performs a linear search to determine the next
available filename to use, if a directory contains a large number of profiler
output files, the search can take some time. For this reason, it is a good idea
to remove unneeded XML profiles regularly.

The raw data in “acumon#.xml” can be processed by the acuprof utility to
create a text-based performance report, “acumon.rpt”. In all environments,
the report summarizes the amount of processor time used by each program in
an application and each paragraph in a program, as well as detailing the file
I/O operations performed by each program. When the “acumon#.xml” file is
created by a UNIX/Linux runtime, the final report also contains information
about the amount of user time spent in each program and paragraph.

3.7.1 Using the Profiler

The profiler is optimized for batch programs, and is especially useful with
batch programs that run large numbers of transactions. It is more difficult to
get good information from interactive programs. If user wait times are the
issue you’re trying to solve, trace files are more likely to return useful
information than the profiler.

When you prepare to use the profiler, you should make an effort to run your
application as cleanly as possible. This means making sure that your system
isn’t overloaded with large numbers of users, heavy system traffic, and so on.
The cleaner the run, the more useful the information returned by the profiler.

The following steps describe how to perform profiling using default profiler
and acuprof behavior. Options for configuring both the profiler and acuprof
appear in the next section.

1. Compile your COBOL programs for debugging.

The Profiler 3-113
You must compile with at least the “-Gy” option (to include at least
minimal symbol information in the object file) for the profile to contain
paragraph information. It is preferable to compile for full symbol
information (“-Gs”) or for full source debugging (“-Gd”).

2. Execute the program with the “-p” runtime option to create the
“acumon1.xml” file.

If a file called “acumon1.xml” already exists in the program directory,
the profiler automatically changes the file name to create a file called
“acumon2.xml”, “acumon3.xml”, and so on. This is intended to make it
easier to compare multiple profiles of the same program.

Note that the automatic naming scheme uses the first unused number
when naming the file. This means that if a directory contains files called
“acumon1.xml”, “acumon2.xml”, and “acumon6.xml”, the next profile
created in that directory is called “acumon3.xml”.

3. Use the command runcbl acuprof -a pathname (where pathname is
the full path and file name of the XML file created by the profiler) to
launch acuprof and process the profiler data.

By default, acuprof creates a report file called “acumon.rpt” in the
execution directory, then displays a message to indicate that the report
was created successfully.

4. Click OK to end acuprof execution, then open the newly created
report file in the text editor of your choice.

3.7.2 Configuring the Profiling Tools

Using a combination of runtime flags, acuprof flags, and configuration
variables, you can customize the behavior of both the profiler and the
acuprof utility. This section describes the various configuration options.

PROFILE_TYPE runtime configuration variable

This configuration variable provides an optional method of profiling
ACUCOBOL-GT on Windows called “COUNTER”. The counter method
uses the debugger to perform counting and appears to provide the most
accurate results in Windows environments.

3-114 Debugger and Utilities
Set the PROFILE_TYPE configuration variable to either “ASYNCH” or
“COUNTER”. When set to the default value of “ASYNCH”, the runtime
performs profiling the way it historically has. When set to the value
“COUNTER”, the runtime uses this method of profiling. Note that your
COBOL programs must be compiled with “-Gd” as well as “-Gs” options to
use the counter method.

The counter method is also available on UNIX and can be used if profiling
your COBOL results in a message similar to “profile timer expired”. This
method doesn’t completely solve that problem, but does substantially
mitigate it.

Configuring profiler behavior

In order to reduce file size and processing time for the “acumon#.xml” file,
the profiler does not create records for paragraphs that have a zero execution
count and zero execution time. If you would like to have these zero count
paragraphs recorded, use the “-p0” runtime flag in place of “-p”.

To specify a name other than “acumon#.xml” for the XML output file, use
the configuration variable ACU_MON_FILE. This variable also takes the
following specifiers for adding additional information to the name:

For example:
ACU_MON_FILE profile%p.xml

%p

If the name contains the string “%p”, that string is replaced with
the process ID (PID) of the runtime.

%d

If the name contains the string “%d”, that string is replaced with
the current date in the form YYYYMMDD where YYYY is the
year, MM month and DD day.

%t

If the name contains the string “%t”, that string is replaced with
the current time in the form HHMMSSTTT where HH is the
hour, MM minute, SS second and TTT milliseconds.

%u

If the name contains the string “%u”, that string is replaced with
the username.

%h

If the name contains the string “%h”, that string is replaced with
the hostname.

The Profiler 3-115
would produce a file called something like “profile314.xml”, where “314” is
the runtime process ID.

Configuring acuprof

The acuprof utility takes the following flags:

For example:
runcbl acuprof -a profile.114 -o report.114 -n

Here, acuprof parses a profiler output file called “profile.114” and produces
a report called “report.114”, sorted by program and paragraph name.

3.7.3 Understanding the Report

The report is divided into three sections:

1. The first section contains general information about when the program
was run, which version of the runtime was used, and general system
capabilities.

Flag

Description

-a or
--call-name

If you have specified a name other than “acumon#.xml”
for the profiler output file, use this flag to pass the correct
name to the acuprof utility.

-o or
--output

To give the report file a name other than the default,
“acumon.rpt”, use this flag.

-c or
--sort-count

Sort data in the report file by the entry count for each
program and paragraph. (By default, the report is sorted
by time.)

-n or
--sort-name

Sort data in the report file alphabetically by program and
paragraph name. (By default, the report is sorted by
time.)

-q or
--quiet

This flag is used to suppress the “report complete”
message used to indicate that acuprof has run
successfully.

3-116 Debugger and Utilities
Profile run on Fri Feb 06 10:05:15 2006, sorted by name
ACUCOBOL-GT version 8.0.0 (2006-05-10)
Timer interval = 10.029 milliseconds

Note that the runtime uses the best timer that it can get from the system,
which generally means an interval around ten milliseconds (100 “ticks”
per second). As a result, it’s best to run the application for at least ten
seconds (not counting time waiting in an ACCEPT loop for user
interaction) to get a useful number of data points.

2. The second section contains information about the programs executed.

 Pct Secs Count I/O Program
==
 36.7% 8.35 57927 0 PDM0425
 32.8% 7.47 1 38950 TRP140
 15.2% 3.46 41947 0 TRA050A
 14.2% 3.24 57927 0 TRS130B
 0.7% 0.15 2 8 PCM1800
 0.3% 0.07 14 15 TRZCG01B
 0.0% 0.00 1 0 PCM1520

This condensed information gives you an easy way to see which
programs to focus your attention on. In general, you will want to start by
tuning the programs in which the most time is being spent.

Because this example was generated on a Windows system, it doesn’t
show a comparison of system time (time spent performing I/O
operations and doing memory management) and user time (time spent in
the application, running PERFORMs, etc.). On UNIX systems, this
additional information is included and can be used to help you figure out
where to focus.

3. The third section (which contains the bulk of the information in the
report) has information about the paragraphs executed by each
program.

In this section, the paragraph totals are per program, not per application,
so the total for all paragraphs in each program should add up to 100%.

TRP140

 Opens: 1
 Reads: 38949

 Pct Secs Count Total Paragraph

The Profiler 3-117
==
52.1% 3.89 41947 17.1% Z70-CALL-TRA050A
40.5% 3.03 38949 13.3% Z10-READ-FTR013A
 5.6% 0.42 38948 1.9% B20-PROCESS-ECR
 0.5% 0.04 2996 0.2% B20-PROCESS-EO
 0.4% 0.03 14 0.1% Z40-CALL-TRZCG01B
 0.3% 0.02 1 0.1% A00-MAINLINE
 0.3% 0.02 1 0.1% A10-DEBUT-PROG
 0.3% 0.02 0 0.1% Z99-END

In most COBOL programs, one or two paragraphs use the lion’s share of
the time. There may be another paragraph or two that takes up a
moderate amount of time, but most paragraphs use a very small
percentage of the total program time.

Note that you may find very small paragraphs (like the EXIT paragraph)
getting a very large number of counts (CALLs). Because the time spent
counting each CALL is added to the paragraph time, it may appear that
such paragraphs are taking a large amount of time, when in fact the
behavior of the timer is artificially inflating the paragraph time.

3.7.4 Understanding the XML Data File

The acuprof utility takes the raw data in “acumon#.xml” and combines the
individual data points to create useful aggregates in the report file. acuprof
is an ACUCOBOL-GT program that is located in the “tools” subdirectory.

Because “acumon#.xml” is a straightforward XML file, any tool that can
parse XML can parse the raw report. This means that you can bring the
report into recent versions of Microsoft Excel, for example, or create your
own parsing tool using the C$XML routine to return the information most
useful to you.

This section contains the basic information that you need to understand the data collected
in “acumon#.xml”. The “ticks” timer

In the final report, program time is reported in seconds, or fractions of a
second. The raw XML file, however, counts user and processor time in
“ticks”. The length of a tick is system-dependent, but usually equals about
(10-milliseconds). The precise amount of time in each “tick” is reported at
the beginning of the XML file (as described below). Each time the timer

3-118 Debugger and Utilities
starts, the runtime examines the current program location and records a tick
for the current program and current paragraph. By looking at how many ticks
a program or paragraph accumulates, you get a real-time sampling of where
the run spent its time.

If a program is running multiple threads and there is only one timer, when the
timer expires, a tick is given to the current program and current paragraph,
regardless of which thread is running.

The timer runs in “process time” on machines that support the concept
(UNIX). Process time is CPU time spent for the particular process and bears
little relationship to real time. On other machines (Windows NT), a real-time
timer is used instead. For these machines, it is important to run as few other
tasks as possible while collecting profile data.

Structure of the raw report file

The structure of the XML file is similar to that of the final report. It contains
general information about a specific execution of the application, followed
by information about each program and each paragraph in the program.
Because, however, the XML file contains raw data instead of aggregate
information, it is more useful to think of the file as divided into “levels”
rather than sections. The top level (outermost set of XML tags) contains
general execution information. The next level (middle set of XML tags)
contains program information. The last level (innermost set of XML tags)
contains information about paragraphs in each program.

The runtime level

The following table defines the HTML tags at the runtime level.

<Runtime-Version> Shows the version number of the runtime used by
this particular profiling run. The value is the full
version number (including any information seen in
“runcbl -v” such as build dates or patch numbers).

<Run-Date> Marks the date and time of the run that produced the
profile data.

The Profiler 3-119
The program level

The <Program> tag marks the root of a subtree of information for each
program used by the profiled run. Each time a program leaves memory, it
produces one of these subtrees. Because of this architecture, a particular
program can appear in the “acumon#.xml” file more than once.

If a particular program appears many times in a run, it may be getting
canceled too often. This can present performance issues, because each cancel
causes the program to be reloaded from disk the next time it is called.

Each program sub-tree contains the following tags:

<Has-Timer> Is set to “1” if the runtime has support for profiling
timers, “0” if not. If support is not available, the
various ticks fields below will all be zero.
Currently, timer support is available under Windows
NT and UNIX machines that have “setitimer” and
“siginterrupt” routines.

<Usecs-Per-Tick> Contains the number of microseconds
represented by each tick of the timer. The
runtime normally asks for a 10-millisecond
timer (a value of 10000 for this field).

<User-Time-Msecs> When available, this tag shows the number of
milliseconds of CPU time spent processing user
code for this run.

<System-Time-Msecs>

When available, this tag shows the number of
milliseconds of CPU time spent processing system
code on behalf of the profiled process.

<Program-Name>

Contains the program’s ID.

<Call-Name> Shows the name the program was called by. This is
useful if more than one program has been given the
same program ID.

3-120 Debugger and Utilities
<Object-Code> Gives the name that describes the object code
instruction set. The name “AcuCode” is used for
machine-independent object files. If the object was
compiled for native code, the name of the relevant CPU
type is given.

<Call-Count> Indicates the number of times this program was
entered.

<Program-Ticks> Shows the number of times the timer went off in this
program. Time spent waiting for the user to respond is
counted only on Windows NT systems.

<Has-Symbols> Is set to “1” if the program was compiled for debugging
and had section/paragraph symbols available. When
this is “0”, no paragraph data is included for this
program.

<File-Opens> Lists the number of times this program opened any file
using the OPEN statement or I$IO. Note that this
counts opens, not files (so if you open the same file ten
times in the course of a run, that counts as “10” and not
“1”). Some machines open files much more slowly
than others, so a large number here usually suggests a
potential performance issue.

<File-Reads> Lists the number of record read attempts. READ,
READ NEXT, and READ PREVIOUS all count here
and are not distinguished.

<File-Writes> Indicates the number of records written.

<File-Rewrites> Gives the number of records rewritten by the program.

<File-Deletes> Shows the number of records deleted by the program.

<File-Starts> Lists the number of file positions made using the
START statement or the I$IO subroutine.

Note: Attempted reads, writes, rewrites, deletes, and
starts that failed are counted along with the successful
file operations.

<File-Commits> and
<File-Rollbacks>

Show the number of COMMIT and ROLLBACK
statements performed by the program, regardless of
outcome.

<Records-Sorted> Gives the number of records sorted by this program via
the SORT statement.

External Sort Utility — AcuSort 3-121
The paragraph level

<Paragraph> indicates the root of a subtree of information about a paragraph
contained in the program. If the program has been compiled with debugging,
there will be one of these for each Procedure Division section or paragraph in
the program.

Each paragraph sub-tree contains the following tags:

3.8 External Sort Utility — AcuSort

The AcuSort utility enables you to sort or merge Vision indexed, relative,
binary sequential, and line sequential files. An alternative to using the SORT
verb, this external sort function is invoked from the command line. AcuSort
instructions may appear directly on the command line, or they may be
included in a separate text file. This section outlines AcuSort utility
functions. Details on the SORT verb may be found in section 6.6, “Procedure
Division Statements,” in Book 3, ACUCOBOL-GT Reference Manual.

3.8.1 AcuSort Command Format

You can specify AcuSort instructions in one of two ways. You can include
them on the AcuSort command line, as follows:

acusort parameters

<Name> Gives the name of the paragraph or section. This
appears in uppercase, regardless of the case seen in the
actual source code.

<Count> Shows the number of times this paragraph was entered,
by any means.

<Ticks> Indicates the number of times the timer went off while
in this paragraph. Time spent waiting for the user to
respond is counted only on Windows NT systems.
Time spent in between paragraphs or programs may
count for either the caller or the called routine,
depending on the timing.

3-122 Debugger and Utilities
where parameters are the various AcuSort utility options that control such
operations as SORT and MERGE. This format is appropriate if you want to
execute a simple sort with few parameters. Note that if you choose this
method, you must ensure that the command line size and contents do not
violate any operating system or shell limits.

If you need to execute a sort that is often repeated or one with a large number
of options, you may find it easier to store and use sort instructions in a text,
or take, file. In this case, the AcuSort command line format is

acusort take filename

where filename is the file that contains the options to use when AcuSort is
executed.

The take file would contain all the instructions for your sort or merge process.
The text file may also contain comments (indicated by an asterisk at the
beginning of a line). An example of a take file appears in section 3.8.3,
“Code Sample.”

Specifying the “-v” option on the AcuSort command line as shown below
causes the utility to display version and copyright information.

acusort -v

3.8.2 AcuSort Instructions

Several options are available for use with the AcuSort utility, including
various instructions to sort or merge files, specify the name of an input or
output file, or define conditions under which certain records are included or
excluded from a sort or merge process. An exit status of zero indicates
success; non-zero indicates failure.

The following sections provide details on these functions. Refer to section
3.8.3, “Code Sample,” for AcuSort sample code.

3.8.2.1 CHAR-ASCII and SIGN-ASCII

The CHAR-ASCII instruction tells AcuSort that the data should be
interpreted as ASCII characters. SIGN-ASCII instructs AcuSort to use the
ASCII sign convention. These keywords mirror the operation of the

External Sort Utility — AcuSort 3-123
CHAR-EBCDIC and SIGN-EBCDIC keywords (described in the next
section) and enable you to switch back and forth between the different
modes. This means you can put multiple SORT/MERGE operations in a
single “take” file, which use different character sets or sign modes. AcuSort’s
defaults are CHAR-ASCII and SIGN-ASCII mode.

3.8.2.2 CHAR-EBCDIC and SIGN-EBCDIC instructions

The CHAR-EBCDIC instruction tells AcuSort to expect data that is encoded
in the EBCDIC character set rather than ASCII. SIGN-EBCDIC tells
AcuSort that numeric DISPLAY types that include signs should be
interpreted according to the EBCDIC convention. The use of
CHAR-EBCDIC implies SIGN-EBCDIC.

For example, if your data is EBCDIC, you should use CHAR-EBCDIC. If
you have ASCII data with EBCDIC sign encoding, you should use
SIGN-EBCDIC. If you have ASCII data with ASCII sign encoding, you
would not use either instruction.

CHAR-EBCDIC and SIGN-ASCII are incompatible options. If
CHAR-EBCDIC is specified and AcuSort is in SIGN-ASCII mode, the sign
mode will be forced to SIGN-EBCDIC. If SIGN-ASCII is specified and
AcuSort is in CHAR-EBCDIC mode, the char mode will be forced to
CHAR-ASCII.

3.8.2.3 SORT/MERGE instructions

The SORT and MERGE instructions specify whether to perform a sort or
merge operation. These two functions are mutually exclusive. A SORT or
MERGE instruction must be followed by a FIELDS phrase that indicates the
fields on which a file is to be sorted or merged. You specify the start position,
the length, the type, and the order for each sort field. Use a comma to
separate field attributes and a comma before starting to describe a new field.
A merge operation combines records from files that are already sorted on the
specified fields. The syntax for these functions follows:

acusort sort fields(start, length, type, order)

acusort merge fields(start, length, type, order)

3-124 Debugger and Utilities
where

The following data field types are supported in AcuSort:

In the following example:
acusort sort fields (1, 10, ch, a)

the sort operation begins at position 1 in a 10-byte sort field, and the
alphanumeric data are sorted in ascending order. Refer to section 3.8.3,
“Code Sample,” for more sample code.

start is the offset of the field in the record (in bytes, starting at position 1).

length is the size of the field in bytes.

type is a two-letter code indicating the type of data in the field (see the data
field type descriptions below).

order is the order of output, either ascending (A) or descending (D).

BI Unsigned numeric, USAGE COMP

C5 Unsigned numeric, USAGE COMP-5

C6 Unsigned numeric, USAGE COMP-6

CH Alphanumeric

CX Usage COMP-X

FL Usage floating point

LI Signed numeric, SIGN IS LEADING

LS Signed numeric, SIGN IS LEADING SEPARATE

NU Unsigned numeric

PD Signed numeric, USAGE COMP-3

SB Signed numeric, USAGE COMP

S5 Signed numeric, USAGE COMP-5

TS Signed numeric, SIGN IS TRAILING SEPARATE

TI Signed numeric, SIGN IS TRAILING

External Sort Utility — AcuSort 3-125
Note: When using LI or TI data types, you should be aware of the sign
storage for your data. The AcuSort utility supports both IBM and Micro
Focus sign storage. In ACUCOBOL-GT, use the “-Dci” compile option to
specify IBM sign storage, or the “-Dcm” option to specify Micro Focus
sign storage. If you use IBM sign storage and your data is ASCII, use the
SIGN-EBCDIC instruction in your take file of AcuSort options. See
Section 2.2.10 in Book 1, ACUCOBOL-GT User's Guide for more
information about data storage compile options. See Section 5.7.1.8 in
Book 3, ACUCOBOL-GT Reference Manual, for details on how signs are
stored when the various compile options are used.

3.8.2.4 USE/GIVE instructions

The USE and GIVE instructions specify the name and characteristics of the
input file and output file, respectively, of a sort or merge process. Note that
you must specify all USE instructions before any GIVE instructions. The
input and output file descriptions include ORG, RECORD, and KEY phrases,
which define the file’s characteristics. The syntax for these instructions is as
follows:

use input-file
 org file-type
 record format, record-length [, max-length]
 key(key-structure)

give output-file
 org file-type
 record format, record-length [, max-length]
 key(key-structure)

3-126 Debugger and Utilities
where

Note: If the input and output files have the same organization and/or
record information, you need not specify these options for each file. The
AcuSort utility applies the most recent RECORD and ORG options to
subsequent files when these options are not specified for the files.

KEY structure

For each key or key segment, you must specify the start position, the length,
and the key type, as defined below. Use a comma to separate field attributes
and a comma before starting the description of a new key or key segment.

input-file is the pathname of the input file. For file names containing
spaces, surround the filename with double quotes (“ “). If the
filename contains double-quote characters, specify these by
doubling the double-quote characters (““ ““.

Examples:

filename: Work File

notation: "Work File"

filename: Embedded"Quote

notation: "Embedded""Quote"

output-file is the pathname of the output file. the same rules regarding
input-file names with spaces applies to output-file names.

file-type specifies the type of input or output file: indexed (IX), relative
(RL), line sequential (LS), or binary sequential (SQ).

format indicates that the file contains fixed length records (F) or
variable length records (V).

record-length specifies the record length for a fixed length record or the
minimum record length for a variable length record.

max-length specifies the maximum record length for a variable length
record.

key-structure specifies the key structure for an indexed file. Refer to the
following section for information about key structure.

External Sort Utility — AcuSort 3-127
The following command specifies the key structure for an indexed file:
key (start, length, key-type, ...)

where

You can specify one of the following key types in the KEY statement:

The following sample describes the key structure for an indexed file with
three keys:

key (502, 98, PD, 1, 18, A, 95, 18, AD, 337, 18, C)

In this example, the primary key allows duplicates. Its offset is 502 and its
length is 98. The first alternate key has an offset of 1 and a length of 18. The
second alternate key allows duplicates, and consists of two segments. The
first segment starts at offset 95 and has a length of 18. The second segment
starts at offset 337 and has a length of 18.

The AcuSort utility always sorts duplicate records in the order in which they
are encountered in the input file, a process known as a “stable sort.”

USE/GIVE example

In the following sample code:
use c:\acuprod\data\ordrdetl org ix
 record f 143
 key (1, 36, p)
 give c:\acuprod\data\ordrdet_sorted

start is the offset of the record key (in bytes, starting at position 1).

length is the size of the key in bytes.

key-type is a code indicating the key type (see the list of key types below).

P Primary key

PD Primary key with duplicates allowed

A Alternate key

AD Alternate key with duplicates allowed

C Key segment belonging to the primary or alternate key previously
described

3-128 Debugger and Utilities
the input file is “ordrdetl” and the output file is “ordrdet_sorted”. They are
both indexed files with a fixed record length of 143. The primary key is 36
bytes long, starting at position 1. Complete sample code can be found in
section 3.8.3, “Code Sample.”

3.8.2.5 INCLUDE/OMIT instructions

The INCLUDE and OMIT instructions specify conditions under which
individual records may be included in or excluded from, respectively, a sort
or merge process. As with SORT and MERGE, these instructions are
mutually exclusive. Each SORT or MERGE instruction may have a single
optional INCLUDE or OMIT conditional (COND) phrase. Syntax for these
instructions is as follows:

omit cond (start, length, type, comparison expression)

include cond (start, length, type, comparison
expression)

where start, length, and type are as defined for the SORT/MERGE
instructions, and comparison expression sets the conditions for a specified
comparison.

Conditional constants ALL and NONE match all or none of the records,
respectively. As an example, each of the following statements would result
in the inclusion of all records:
include cond = all

or
omit cond = none

To omit all records, you would use one of the following statements:
omit cond = all

or
include cond = none

A default record field type may be specified for an INCLUDE/OMIT
instruction by setting FORMAT to the desired type. (Refer to the table of
data field types in section 3.8.2.3, “SORT/MERGE instructions.”) This
assignment can appear either before or after the COND phrase. Record field

External Sort Utility — AcuSort 3-129
specifications without the type inherit the default type specified by
FORMAT. A warning is issued if the default format is specified but never
used.

The INCLUDE or OMIT instruction comparison expression may compare a
record field against another record field or against a constant. The size of an
expression is not limited. Comparison operators are:

INCLUDE/OMIT samples

If you want to include records in which the first four bytes are greater than
1000 when interpreted as USAGE DISPLAY data, you could use one of the
following code statements:
include cond = 1 4 nu gt 1000

or
omit cond (1 4 nu le 1000)

To include records in which the first four bytes are the same as the second
four bytes when interpreted as characters, you could use one of the following
statements:
include cond = 1 4 ch eq 5 4 ch

or
omit cond 1 4 ch ne 5 4 ch

As another example, if you want to omit any record in which the first four
bytes (COMP-6) are greater than the second four bytes (COMP-4), you could
use one of the following statements (note the use of the FORMAT phrase in
this example):

EQ Equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

NE Not equal to

3-130 Debugger and Utilities
omit format=c6 cond = (1 4 gt 5 4 bi)

or
include cond 1 4 c6 le 5 4 format bi

In addition to the data types already available with SORT/MERGE, the
INCLUDE/OMIT instructions may have a substring search (SS) type, which
indicates that a search should be performed for the specified character
constant. Only the equal to (EQ) or not equal to (NE) operators may be used
in conjunction with the SS type. The designated string is either found or not
found with this comparison. As an example, each of the following code
statements would result in the omission of records in which the first 10
characters contain the substring “data”:
omit cond 1 10 ss eq c'data'

or
include cond = (1 10 ss ne c'data')

Constant types can be decimal, hexadecimal, or character. Decimal constants
match the pattern

[+-]?[0-9]+

that is, an optional sign character followed by a number of digits. Decimal
constants may be up to 76 digits long.

Hexadecimal constants match the pattern
x'([0-9A-F]{2})+'

that is, a leading “x” indicating a hex constant and then groups of two
hexadecimal digits in single quotation marks. Hexadecimal constants are
unsigned and may be up to 64 hexadecimal digits long (32 bytes). For
example, either of the following statements results in the inclusion of records
in which the first 10 characters (USAGE DISPLAY) equal 0xFFFF:
include cond = (1 10 nu eq x'FFFF')

or
omit cond 1 10 nu ne x'FFFF'

Character constants match the pattern

External Sort Utility — AcuSort 3-131
c'.+'

that is, a leading “c” indicating a character constant and then a number of
characters in single quotation marks. Single quotation marks may be
represented within the character constant by specifying two single quotation
marks in a row.

In general, numeric types may be compared against each other or against a
constant. Floating point data may only be compared against other floating
point data. Strings may be compared against each other, a string, or a
hexadecimal constant. Strings may also be used in substring searches.

Specifically, data types BI, C5, C6, CX, LI, LS, NU, PD, S5, SB, TI, and TS
may be compared against each other, or against a hexadecimal or decimal
constant. BI and CH may be compared against each other or a string
constant. CH may be compared against a hexadecimal constant.

The AND and OR operators may be used to join comparison expressions.
The AND operator takes precedence over OR. Note that the characters “&”
and “|” may be used to represent AND and OR, respectively. As an example,
either of the following statements results in the omission of any record in
which the first character does not equal the second or the third character:
omit cond = (1 1 ne 2 1) & (1 1 ne 3 1) format ch

or
include format=ch cond ((1 1 eq 2 1) or (1 1 eq 3 1))

Parentheses may be used to determine the evaluation order of an expression.
An expression is evaluated only as far as necessary to determine the inclusion
or exclusion of the record. For example, if a conditional is a list of
expressions joined by AND operators, and the first expression evaluates as
false, the remainder of the expressions is not evaluated for this record.

3.8.3 Code Sample

The following sample code describes the SELECT and FD for an
“orders-detail” indexed file:
SELECT OPTIONAL Orders-Detail
 ASSIGN TO DISK "ORDRDETL"

3-132 Debugger and Utilities
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 LOCK MODE IS AUTOMATIC
 FILE STATUS IS ORDERS-DETAIL-STATUS
 RECORD KEY IS Prime = ORDERS-DETAIL-PRIMARY-KEY

 FD ORDERS-DETAIL.
 01 ORDERS-DETAIL-RECORD.
 05 ORDERS-DETAIL-PRIMARY-KEY.
 10 ORDETL-CUSTOMER PIC X(10).
 10 ORDETL-DATE.
 15 ORDETL-DT-YYYY PIC 9(4).
 15 ORDETL-DT-MM PIC 99.
 15 ORDETL-DT-DD PIC 99.
 10 ORDETL-TIME.
 15 ORDETL-HR PIC 99.
 15 ORDETL-MIN PIC 99.
 15 ORDETL-SEC PIC 99.
 15 ORDETL-TH-SEC PIC 99.
 10 ORDETL-PROD-NO PIC X(10).
 05 ORDETL-DESCRIPTION PIC X(80).
 05 ORDETL-QTY PIC 9(5).
 05 ORDETL-PRICE PIC 9(9)v99.
 05 ORDETL-TOTAL-PRICE PIC 9(9)v99.

In this sample, we illustrate the sort of the “orders-detail” file based on three
fields: orderl-customer, ordetl-price, and ordetl-description. Each field is to
be sorted in ascending order, and the resulting output file includes only
records in which ordetl-date is equal to or greater than May 3, 2006.

The AcuSort take file “paramfile1” contains the following options:
sort fields (1, 10, ch, a, 122, 11, nu, a, 37, 80, ch, a)
use c:\acuprod\data\ordrdetl org ix
 record f 143
 key (1, 36, P)
give c:\acuprod\data\ordrdet_sorted
 include cond = 11 8 nu ge 20060503

If we include our AcuSort instructions in a take file named “paramfile1”, our
command line would be
acusort take paramfile1

External Sort Utility — AcuSort 3-133
3.8.4 AcuSort Environment Variables

The following environment variables affect AcuSort behavior:

A_TMPDIR, TMPDIR

These variables control the location of any temporary AcuSort files.
A_TMPDIR is checked first, and then TMPDIR. Temporary files
created by AcuSort are placed in this directory. The default value is
the current working directory.

ACUSORT_FILE_MEMORY

This variable allows you to set the maximum amount of memory in
megabytes to be used for buffering I/O data with the temporary file.
The default value is “1”.

The default value should be adequate for most situations. However, if
very large records are in use, you may want to increase this value in
order to hold several records. The higher setting allows the buffer
layer to avoid doing I/O for record comparisons during a
SORT/MERGE process.

Tip: The number of file buffer blocks is controlled by the
ACUSORT_FILE_MEMORY environment variable. It is set in units
of megabytes. The buffer block size is 4096 bytes; therefore, for each
MB, you get 256 buffer blocks. One buffer block will be reserved for
each sorted region in the temporary file. The number of sorted regions
in the temporary file will depend on the size of the records being
operated on and the amount of memory allocated for sorting with the
ACUSORT_MEMORY environment variable. Buffers remaining
after this reservation may be used for read-ahead. Up to eight buffers
per region will be used for read ahead.

ACUSORT_MEMORY

This variable sets the number of megabytes of memory allowed for
sorting records. Sort performance may improve as more memory is
allocated for this purpose. The default value is “2”.

3-134 Debugger and Utilities
ACUSORT_TRACE

This variable controls the type of information written to the AcuSort
log file. The following values determine which sets of log messages
appear:

Set ACUSORT_TRACE to the sum of the numbers corresponding to
the sets of information you want written to the log file.

Please note that much of this information is intended only for
diagnostic use. You should not rely on the content of the information
written to the log file, as it is subject to change without notice.

Tip: For time-critical SORTs, examine the AcuSort trace output
(specifically the “buffer” and “import/export” categories) to see
various statistics about sorted region counts and buffer usage. Adjust
the memory configuration variables as appropriate.

dd_SYSOUT

This configuration variable specifies the name of the AcuSort log file.
Various information about AcuSort functions is written to this file.
The default value is “SYSOUT”.

USE_LARGE_FILE_API

On UNIX systems, setting this variable to “1” causes AcuSort to use
the large file API. The default value of “0” uses the normal file API,
which cannot access files larger than 2GB. This variable applies to
both the USE and GIVE files, and the temporary AcuSort file. If the

1 general program

2 record import/export

4 numeric values comparison

8 numeric values conversion

16 temporary file buffer

32 command structure

64 modes

128 parser

256 lexer

Remote Preprocessing Utility — Boomerang 3-135
total size of input records is less than 2GB, leave this variable set to the
default of “0”. Otherwise, set it to “1”. (Note that the system must
support the large file API in order for this variable to have any effect.)
Windows versions of AcuSort can always access large files, so it is not
necessary to set this variable on Windows platforms.

3.9 Remote Preprocessing Utility — Boomerang

The Boomerang utility program includes client and server technologies that
enable you to automatically transfer files to a remote server, invoke and
perform preprocessing on that server, then return the preprocessed files to
your client machine where additional compiling can occur. Many proprietary
or third party preprocessors have machine-specific functions that require
preprocessing to occur in their native environments. Boomerang makes
accessing these types of preprocessors easier and more efficient.

With Boomerang you can:

• Send source files, COPY files, and user INCLUDE files from a
Windows or UNIX/Linux client to a UNIX/Linux server.

• Invoke and run popular third-party preprocessors such as those used with
Oracle, DB2, UniKix, and IBM TXSeries CICS, or invoke custom-built
preprocessors.

• Have preprocessed output files, error files, and status returned to your
client machine.

• Use Boomerang with the ACUCOBOL-GT compiler's “-Pg” option to
perform single or multiple preprocessing steps.

3.9.1 License Requirements and Installation

To use Boomerang, the client machine must have an ACUCOBOL-GT
development system and corresponding compiler license. On the server, a
standard runtime license and server access file is required. You can use

3-136 Debugger and Utilities
Boomerang to create an access file or you can use an existing access file. For
instructions on setting up a server access file, refer to either the AcuConnect
or AcuServer User's Guide, section 3.3.2 and 5.4.1 respectively.

The Boomerang client and server program (boomerang.exe) requires no
special installation steps, and is automatically installed in the same directory
as the runtime.

3.9.2 Server Setup and Configuration

Boomerang server setup and configuration involves four main steps:

Step 1: Creating an Alias File that contains aliases for each preprocessor
you wish to invoke from your client machine.

Step 2: Creating a Configuration File and setting configuration variables
accordingly.

Step 3: Creating an Access File to establish system security and access.

Step 4: Starting the Server.

3.9.2.1 Step 1: Creating an Alias File

To accomplish its preprocessing tasks, Boomerang references an alias file
that contains preprocessor-specific commands and instructions.

To create an alias file for a preprocessor, perform the following steps on the
server:

1. From a command line, navigate to where boomerang.exe is installed, type
“boomerang” and press return.

Remote Preprocessing Utility — Boomerang 3-137
The following usage information appears:

2. Access the alias menu by typing the following command:
 boomerang -alias

The following alias menu options appear:

Server usage:
 boomerang -alias
 boomerang -access
 boomerang -kill [-n portnum]
 boomerang -start [-c config] [-e error] [-t #]
[-f] [-n portnum]

Client usage:
 boomerang -server server[:port]
 -alias alias
 -COPY
 -include pattern [pattern ...]
 [-Po preprocessor-output-file]
 [-Pe preprocessor-error-file]
 -Sf source-file

Enter the name of the alias file:
[/etc/boomerang_alias.ini] boomerang_alias.ini

Boomerang Alias file options
1 - Add an alias entry
2 - Remove an alias entry
3 - Modify an alias entry
4 - Display alias entries
5 - Exit

Enter choice [4]: 1

3-138 Debugger and Utilities
3. Select option “1” create an alias file. The following menu appears:

The alias creation fields are defined as follows:

Add an alias
Enter the alias name:
Enter the name of the precompiler:
Enter precompiler options:
Enter precompiler directives:
Enter required precompiler extension if any:
Press <Return> to continue...

Field Description

Alias name The name you wish to give your alias.

Name of precompiler The precompiler that should be used by this alias. You
can also specify the name of a shell script to run instead
of the precompiler name. This is necessary for some
precompilers like DB2 where certain setup instructions
are required before precompiling can commence. See the
DB2 Alias Example provided later in this section for
more details.

Remote Preprocessing Utility — Boomerang 3-139
Precompiler options Instructions you wish to give to the preprocessor.
Boomerang includes several keywords you can use to
specify several basic files:

• B_INPUT: Input to the preprocessor. This is
replaced with the name specified by the “-Sf”
option from the Boomerang client command. If
you are executing Boomerang from the
ACUCOBOL-GT compiler, the compiler
automatically calls the Boomerang Client with the
“-Sf” option and the name of the program to be
preprocessed.

• B_OUTPUT: Output from the preprocessor. This
is replaced with the name specified by the “-Po”
Boomerang client command. By default, the
ACUCOBOL-GT compiler expects the output
from the preprocessor to be named “acu_ _pp1.out”
with two underscores. If you do not specify the
“-Po” option, Boomerang will replace this
keyword with the default name “acu_ _pp1.out”.

• B_ERROR: Error output from the preprocessor.
This is replaced with the name specified by the
“-Pe” Boomerang client command. If you do not
specify the “-Pe” option, Boomerang will replace
this keyword with the default name
“acu_ _pp1.std” with two underscores. The
ACUCOBOL-GT compiler automatically displays
the contents of this file to the screen.

Precompiler
directives

Used to specify any keywords that the preprocessor
recognizes as directives. Boomerang will automatically
insert ACUCOBOL-GT line directives before and after
these keywords. In cases involving compilation errors,
this makes it easier for you to identify the offending line
of code in the source file.

Field Description

3-140 Debugger and Utilities
Pro*COBOL Alias Example

Since Pro*COBOL has the following options to specify the input and output
files:

iname=
oname=

Required precompiler
extension

Your COBOL program can have any extension you want,
but some precompilers require a specific extension. If
your precompiler requires a specific extension on the
source file, specify it here rather than changing the
extension name of your source files. Boomerang creates
a temporary file on the server with the extension you
specify so that preprocessing can be performed.
Boomerang will then remove this temporary file. If you
do not specify an extension here, it will use the extension
of the source file. There is a case where the extension of
the source file is not used - when you are calling two or
more preprocessors. Refer to the ACUCOBOL-GT
User’s Guide, section 2.13.1.2 for more information on
calling two or more preprocessors. In this case, the
output of the first preprocessor is called “acu_ _pp1.out”
and is used as input to the second preprocessor. If the
second preprocessor requires a specific extension, you
can specify the expected extension here. For example, if
the precompiler requires a source file extension of “.ccp”,
you would need to specify “.ccp” as the required
precompiler extension. Otherwise, the precompile will
fail.

Field Description

Add an alias
Enter the alias name: alias-procob
Enter the name of the precompiler: procob
Enter precompiler options: iname=B_INPUT
oname=B_OUTPUT >B_ERROR 2>&1
Enter precompiler directives: EXEC SQL
Enter required precompiler extension if any:
Press <Return> to continue...

Remote Preprocessing Utility — Boomerang 3-141
the name of the Pro*COBOL input file can be specified by the B_INPUT
keyword and the name of the output file can be specified by the B_OUTPUT
keyword. Since Pro*COBOL does not have an option to specify an error
output file, the “>B_ERROR 2>&1” redirects the output that normally would
be displayed on the screen to the file associated with the B_ERROR
keyword.

“EXEC SQL” is specified as the precompiler directive since Pro*COBOL
uses this phrase to begin its Pro*COBOL statements.

 CICS Alias Example

The “-l ACUCOB” option is required with CICS. This parameter tells
cicstran to precompile the source file in a manner that is compatible with
ACUCOBOL-GT.

Since CICS uses the “-o” option to specify the output file, it can be specified
by the B_OUTPUT keyword. The name of the input file is specified by the
B_INPUT keyword. CICS does not have an option to specify an error output
file, the “>B_ERROR 2>&1” redirects the error output from the screen to the
file associated with the B_ERROR keyword.

“EXEC SQL” is specified as the precompiler directive since CICS uses this
phrase to begin its CICS statements.

CICS requires that the source file have an extension of “.ccp” so it is
specified as the required precompiler extension.

Add an alias
Enter the alias name: alias-cicstran
Enter the name of the precompiler: cicstran
Enter precompiler options: -l ACUCOB -O B_OUTPUT
B_INPUT >B_ERROR 2>&1
Enter precompiler directives: EXEC CICS
Enter required precompiler extension if any: .ccp
Press <Return> to continue...

3-142 Debugger and Utilities
UniKix Alias Example

Since UniKix uses the “-o” option to specify the output file, it can be
specified by the B_OUTPUT keyword. The name of the input file is
specified by the B_INPUT keyword. UniKix does not have an option to
specify an error output file, the “>B_ERROR 2>&1” redirects the error
output from the screen to the file associated with the B_ERROR keyword.

“EXEC SQL” is specified as the precompiler directive since UniKix uses this
phrase to begin its CICS statements.

UniKix requires that the source file have an extension of “.cl2” so it is
specified as the required precompiler extension.

If there are COBOL COPY statements in the source file UniKix requires
these files to exist on the server where kixclt is run. You can use the
Boomerang “-COPY” command on the client side to instruct Boomerang to
copy the COPY files to the server and to use them in the preprocessing phase.

UniKix requires that you have the following three environment variables set:

UNIKIX

PATH

COPYPATH

See your UniKix documentation for information on setting these variables.
Boomerang requires setting these variables before starting the Boomerang
server. If you use the “-Sf” or “-COPY” client commands to send COPY
files from the client to the server, be sure you add the directory where the
Boomerang server resides to the server COPYPATH environment variable so

Add an alias
Enter the alias name: alias-unikix
Enter the name of the precompiler: kixclt
Enter precompiler options: -O B_OUTPUT B_INPUT
>B_ERROR 2>&1
Enter precompiler directives: EXEC CICS
Enter required precompiler extension if any: .cl2
Press <Return> to continue...

Remote Preprocessing Utility — Boomerang 3-143
that these COPY files can be found by the preprocessor. The files specified
by the “-Sf” or “-COPY” commands get copied into the directory where the
Boomerang server resides.

DB2 Alias Example
:

DB2 requires some setup before running its precompiler. You can perform
the necessary setup by specifying a shell script file (db2prep.sh in this
example) to run instead of specifying the name of the precompiler. The shell
script performs the necessary setup and then starts the precompiler. The
Boomerang keywords beginning with “B_” are passed to the shell script by
specifying them at the precompiler options line. “EXEC SQL” is specified as
the precompiler directive since DB2 users “EXEC SQL” to begin its DB2
statements. The DB2 precompiler requires that the input file have an
extension of “.sqb” so this is specified at the required precompiler extension
line.

Using the example above, when the Boomerang server runs the shell script it
looks something like this:
db2prep.sh database ACCT01.sqb acu__pp1.out acu__pp1.std

Note that the precompiler options must be specified in the order that the shell
script expects. The following is an example of a DB2 shell script used by the
Boomerang server:

#!/bin/ksh

db2prep.sh - This script is designed to be called from the
Boomerang server. For this script the Boomerang server alias
file would need to have the following precompiler options
using the Boomerang file keywords:
#

Add an alias
Enter the alias name: alias-db2
Enter the name of the precompiler: db2prep.sh
Enter precompiler options: database B_INPUT B_OUTPUT
B_ERROR
Enter precompiler directives: EXEC SQL
Enter required precompiler extension if any: .sqb
Press <Return> to continue...

3-144 Debugger and Utilities
Precompiler-Options: database B_INPUT B_OUTPUT B_ERROR
#
In this script the Boomerang keywords get mapped to the
following script variables:
#
database = $1 the name of the database to connect to
B_INPUT = $2 the precompiler input file
B_OUTPUT = $3 the precompiled output file
B_ERROR = $4 the precompiler error file

Execute the DB2 configuration file
. /home/db2inst1/sqllib/db2profile

DB2 precompile -- takes .sqb as input, outputs .cbl
echo ==
echo Begin output from \"db2 prep\" SQL precompiler:
echo ==

Connect to the database
db2 connect to $1 >$4 2>&1

Execute the precompiler on $2 sending any error output to $4
capture the return code in $returnCode
db2 prep $2 target ansi_cobol >>$4 2>&1
returnCode=$?

Boomerang expects the precompiled output file to be the name
specified by $3. The precompiled output file created by DB2
is the name as the source file but with an extension of .cbl.
We need to remove the extension from the input file, $2, and
add a .cbl extension so that we can copy it to $3.
The following command removes the "." and everything past it
to create the prefix.
prefix=`echo $2 | sed -e "s/\..*$//"`

Copy the precompiled output file to the name that Boomerang
is expecting, $3.
cp $prefix.cbl $3

the db2 CLP returns 2 for warnings; treat as if a 0 was
returned
if [$returnCode -eq 2]; then
 returnCode=0
fi
if [$returnCode -eq 0]; then

Remote Preprocessing Utility — Boomerang 3-145
 db2 connect reset >>$4 2>&1
 db2 terminate >>$4 2>&1
else
 echo \"db2 prep\" failed: return code: $returnCode >>$4
2>&1
fi
exit $returnCode

3.9.2.2 Step 2: Creating a Configuration File

Using a text editor, create a configuration file named “boomerang.cfg” and
include the configuration variables that can be specified for the Boomerang
server. (Note: you can specify your own filename if desired). A sample file
showing these variables and their default settings appears below:

3.9.2.3 Step 3: Creating an Access File

The server access file for Boomerang is named and structured the same as
the server access file for AcuServer and AcuConnect. If you are using either
of these servers for UNIX, you can use your existing Access file in
conjunction with Boomerang, or you can set up a separate file for
Boomerang. For instructions on setting up a server access file refer to either
the AcuConnect or AcuServer User’s Guide, section 3.3.2 and 5.4.1
respectively.

boomerang.cfg
This file should be owned by root and only
writeable by root:
chown root boomerang.cfg
chmod 644 boomerang.cfg

Default port is 7770
BOOMERANG_PORT 7770

Default alias file is /etc/boomerang_alias.ini
BOOMERANG_ALIAS_FILE boomerang_alias.ini

#Default AcuAccess file is /etc/AcuAccess
ACCESS_FILE AcuAccess

3-146 Debugger and Utilities
3.9.2.4 Step 4: Starting the Server

To start the server, issue the following command:
boomerang -start -c boomerang.cfg -e boomerang.err

3.9.3 Server commands

The following table describes the Boomerang server commands.

-access Used to create an access file. Refer to either the
AcuConnect or AcuServer User’s Guide, section 3.3.2
and 5.4.1 respectively.

-alias Used to create an alias. See Section 3.9.1, step 3 for
details on this command.

-c <configuration-
filename>

Specifies the configuration file that should be used by
Boomerang. If the “-c” option is not specified,
Boomerang will use the file specified by the
environment variable, A_BOOMERANGCFG. If neither
the -c or A_BOOMERANGCFG are specified, the
default “boomerang.cfg” file is used.

-e <error-filename> Specifies the error file for the Boomerang server.

-f Runs the Boomerang server in the foreground.

-kill [-n <port>] Stops the Boomerang server. You can optionally specify
the port.

-start [-n <port>] Starts the Boomerang server. You can optionally specify
the port.

Remote Preprocessing Utility — Boomerang 3-147
3.9.4 Client-side Operation – Remote Precompiling

The Boomerang client does not require any special setup or configuration.
Once you have set up and configured your Boomerang server, use the
Boomerang client to enter and carry out your remote preprocessing
commands. Boomerang sends the specified source file to the server and
invokes the preprocessor using the alias file that you created on the server.
The preprocessed output file and status are then returned to the
ACUCOBOL-GT compiler. If the precompile was successful, normal
compiling occurs. If the precompile was not successful, the compiler will
display the status.

-t # Turns on the tracing function. When combined with the
“-e” option, trace information is placed in the named error
file. The “#” represents the type of tracing or logging to
be performed.

“1” provides information about access file match
attempts. The trace information buffer is flushed to the
error file when the buffer is filled or Boomerang
terminates.

“2” provides information about client requests. The
buffer is flushed to the error file when the buffer is filled
or Boomerang terminates.

“3” provides the information described for “1” and “2”.

“5” is equivalent to “1”, but the tracing buffer is flushed
to the error file each time an access file match is
requested. (File trace flushing can also be controlled with
the FILE_TRACE_FLUSH server configuration
variable.)

“6” is equivalent to “2”, but the tracing buffer is flushed
to the error file each time a client connection is requested.

“7” provides the information described for “5” and “6”.

3-148 Debugger and Utilities
Remote precompiling

Boomerang operates as either a standalone program, or as a preprocessor to
the ACUCOBOL-GT compiler. To perform remote preprocessing, invoke
Boomerang from the ACUCOBOL-GT compiler using the “-Pg” option.
For example:
ccbl32 -Pg boomerang -server <myserver>[:<port>] -alias
<alias-name> source-filename

A list of all available commands appears below.

Note: Boomerang is also integrated with AcuBench. Refer to Section
9.5.3 of the AcuBench User’s Guide for information on precompiling with
Boomerang from AcuBench. Refer to the table below for a description of
all available client-side commands.

3.9.5 Client Commands

The following table describes the Boomerang client commands and
arguments.

-alias <alias-name> Tells Boomerang to pass this alias name to the
server, which the server will then use to look up
preprocessor-specific instructions.

-include <pattern> Instructs Boomerang to copy INCLUDE files to the
server and to use them in the preprocessing phase.
Refer to section 3.9.6 for details on using this
command.

-Pe <preprocessor-
error-filename>

Writes preprocessor error messages to the specified
filename.

-Po <output-
filename>

Writes the preprocessed output to the specified
filename.

-server < myserver>
[:<port>]

Tells Boomerang which server to connect to, and if
specified, which port.

Remote Preprocessing Utility — Boomerang 3-149
-Sf <source-filename> Instructs Boomerang to copy the specified file to the
server if needed by the preprocessor on the server.
If no pathname is specified the file is expected to be
in the current directory. If you are using AcuBench,
the current directory is the directory above the
Copylib and Source directories. This is a way to
move files to the server that would not normally get
moved by the “-include” or “-COPY” options. For
example, if the preprocessor expands an EXEC
statement into a COBOL COPY statement and the
COPY file is on the client but not on the server, you
can use this option to move the file to the server so it
can be found by the preprocessor. These files are
copied into the directory where the Boomerang
server resides and are removed after preprocessing.
Some preprocessors require that you add the
Boomerang server directory to a server environment
variable like COPYPATH so that it can locate these
COPY files.

-COPY Some preprocessors require COBOL COPY files to
reside on the server. This option instructs
Boomerang to copy the COPY files specified by
COBOL COPY statements to the server and to use
them in the preprocessing phase. If you execute
Boomerang from the ACUCOBOL-GT compiler,
use the compiler “-Sp” option to tell Boomerang
where to find the COPY files on the client. If the
“-Sp” option is not specified, Boomerang will look
for the COPY files in the current directory. If you
are using AcuBench, the current directory is the
directory above the Copylib and Source directories.
These files are copied into the directory where the
Boomerang server resides and are removed after
preprocessing. Some preprocessors require that you
add the Boomerang server directory to a server
environment variable like COPYPATH so that it can
locate the COPY file.

3-150 Debugger and Utilities
3.9.6 Working with INCLUDE files

With Boomerang, you can specify the “-include” option to tell Boomerang
to send any preprocessor INCLUDE files that exist on the client to the server
in case they are needed during the precompile. Do this by specifying the
following command:
-include <pattern> <pattern…>

Since each preprocessor may have different syntax for specifying a
preprocessor INCLUDE file, “pattern” is a sequence of case-insensitive
strings that precede the name of the preprocessor INCLUDE file. The name
of the INCLUDE file in the source file does not have to be enclosed in quotes,
but if it is, it may be enclosed in single or double quotes.

For example, Pro*COBOL has the following syntax for a preprocessor
INCLUDE file:
EXEC SQL
 INCLUDE SQLCA
END-EXEC.

You specify the following Boomerang option:
-include EXEC SQL INCLUDE

4
 Terminal Manager
Key Topics

How the Terminal Manager Works ... 4-2
Getting Your Terminals Ready .. 4-5
The Keyboard Interface.. 4-9
The Display Interface.. 4-42
Restricted Attribute Handling ... 4-61
The Terminal Database File .. 4-65

4-2 Terminal Manager
4.1 How the Terminal Manager Works

Terminal Manager is the name we give to the Runtime System module that
handles the input from the keyboard and the output to the screen. The
Terminal Manager interprets the keys that the user presses, translating each
keystroke into a function, such as a backspace. It also manages translation of
attributes from your ACUCOBOL-GT application program to the screen.

The Terminal Manager provides a consistent interface between
ACUCOBOL-GT programs and the particular machines on which they are
running. The manager minimizes any differences among the various
machines, operating systems, and terminals for which ACUCOBOL-GT is
available.

The Terminal Manager also provides support for the emulation of graphical
user interface components such as floating windows (modal and modeless)
and controls on text-mode systems. For information regarding how to
customize the characters used to emulate graphical components, see section
4.6.7, “Graphical Window and Control Emulation.”.

This chapter describes how the Terminal Manager handles your program’s
interaction with terminals, including both the screen display and the
keyboard. This chapter also explains how you can configure the Terminal
Manager and how it interacts with end users.

For example, in this chapter you’ll see how to specify what terminal you
have, and how to make choices like:

• Designating a special action key

• Changing the on-screen prompt character

• Adding or changing colors

• Controlling data display and entry format

• Sounding error alarms

How the Terminal Manager Works 4-3
Sometimes features built into a COBOL program can override the effects of
the values and variables described in this chapter. These situations can be
important to application program developers and to end users, and are
highlighted by notes at the appropriate places in this chapter.

4.1.1 Terminal Manager Functions

This diagram depicts how the Terminal Manager relates to hardware and
other software in your system:

Many Terminal Manager functions depend on the data in two files:

• The terminal database file, a text file that maps screen and keyboard
hardware signals of different terminals to common codes. The file
contains signal-to-code sets for many popular terminals. In this chapter,
the codes for screen and keyboard signals will generally be called
terminal function codes. The term key codes will be used to refer to the
subset of terminal function codes that deals with the keyboard.

COBOL program

runtime

system

Terminal

Manager

Terminal database

and

runtime config files

Screen

Keyboard

DISPLAY

statement
ACCEPT

statement

Screen/key

mapping instructions

4-4 Terminal Manager
Terminal function codes enable the Terminal Manager to handle I/O
between application programs and a variety of terminals without any
program changes; you only need to tell the Terminal Manager what
terminal you will be using. Some of the codes can also be used to
customize terminal actions, as described throughout this chapter.

• The runtime configuration file, a text file which includes variables that
help define how the screen, the keyboard, and the user’s keystrokes will
be handled. Relevant runtime configuration variables are described in
detail later in this chapter. They are often used in conjunction with the
key codes and terminal function codes mentioned above.

4.1.2 Alternate Terminal Manager (ATM)

The Alternate Terminal Manager (ATM) runtime is a special 32-bit Windows
runtime that allows you to use a 32-bit Windows server in much the same
way that many UNIX servers are used. With the ATM runtime, you can
telnet to the Windows server (with a third-party telnet service) to execute
character-based ACUCOBOL-GT programs in the telnet window. However,
the ATM runtime does not support program execution in the console window
of the Windows server. The ATM runtime is licensed and installed
separately from the standard ACUCOBOL-GT Windows (graphical)
runtime.

All major runtime functionality, except graphical support, is available with
the ATM runtime. Because it is for character-based programs, certain
Windows-specific features, such as pop-up dialog boxes, are not supported.
Note that the ATM runtime automatically detects and uses Acu4GL DLLs, if
present, and it supports calls to other DLLs.

Note: Should you need to relink the ATM runtime, see the instructions in
section 6.3.6 of A Guide to Interoperating with ACUCOBOL-GT.

Getting Your Terminals Ready 4-5
4.2 Getting Your Terminals Ready

This chapter describes your options as you prepare to use specific terminals
with your application. Your computer’s operating system and the
ACUCOBOL-GT software will handle communication with most terminals
without your doing anything. With some terminals, you will need or want to
specify some choices.

Before running a program that uses the Terminal Manager, you may need to
identify the type of terminal that will be used, and you may wish to customize
the interface. The process of setting up a specific terminal involves these
major steps:

4.2.1 Step One: Terminal Identification

The ACUCOBOL-GT runtime opens the terminal database file. Each entry
in the file consists of the name of a terminal, followed by its screen and
keyboard attributes, definitions and codes. (Runtimes for some systems,
such as Windows, typically do not use a terminal database file. Check with
your Micro Focus Customer Service representative if your terminal is
non-standard, to determine if you require the terminal database file.)

Identify the terminal

Inspect the terminal
definition; edit or build

entry if necessary

Check configuration
variables; edit if

necessary

4-6 Terminal Manager
The runtime first looks for the system variable A_TERMCAP; if that variable
is present, the runtime opens the file named in it as the terminal database file.
If the system variable A_TERMCAP is not present, the runtime opens the file
name shown in the table below. The file name varies with the operating
system (note that file names on UNIX systems are case-sensitive):

You must tell the Terminal Manager what terminal database file to use with
your ACUCOBOL-GT application. Either:

a) use the path and name specified in the table above, and do not set
A_TERMCAP (this approach works fine in most cases),

or

b) use a path and name of your choosing, and specify that path and name in
A_TERMCAP.

After the terminal database file is opened, the Terminal Manager needs to
know what terminal type is to be used, and where to locate the entry that
describes it. One of the system variables A_TERM or TERM holds the name
of the entry that is to be used.

The Terminal Manager looks first for the variable A_TERM. If it is present,
the Terminal Manager searches the terminal database file for the terminal
named in A_TERM. If A_TERM is not present, the Terminal Manager looks
for the variable TERM and then searches the terminal database file for the
terminal named in TERM. Setting TERM to the correct terminal name will
handle most situations; see section 4.2.2 in this chapter for exceptions. If
neither TERM nor A_TERM is present, the Terminal Manager terminates the
runtime with an error message.

The various operating systems handle TERM and A_TERM in different
ways:

System Terminal database file

UNIX /etc/a_termcap

MPE/iX /etc/a_termcap

VMS SYS$LIBRARY:A_TERMS.DAT

Getting Your Terminals Ready 4-7
• On VMS systems, TERM and A_TERM are symbols.

• On UNIX systems, they are environment variables; most UNIX systems
set the TERM variable at login time.

• The Windows console (character-mode) runtime does not use the
terminal database file, and so does not need to know the value of TERM.

• Graphical runtimes do not use the terminal database file, and so do not
need to know the value of TERM.

• The ATM runtime uses TERM and A_TERM as environment variables,
just like UNIX.

The terminal database file shipped with the ACUCOBOL-GT runtime
contains definitions of the characteristics of most popular terminals; you will
probably find yours listed. If the entry named in A_TERM or TERM
describes the terminal you will use with your ACUCOBOL-GT application,
then nothing more need be done.

4.2.2 Step Two: Terminal Definition

If the terminal database file entry named in A_TERM or TERM does not
describe the terminal you will use, you probably will not want to change the
value of TERM, because other software may rely on that value. Instead, take
these two steps:

1. Locate the terminal database file entry that correctly describes your
terminal, or create a new one and give it a new name (see Section 4.6,
“The Terminal Database File,” for details).

2. Set A_TERM to the name of that entry.

4.2.2.1 Windows special considerations

Neither the ACUCOBOL-GT graphical or console runtimes for Windows
use a terminal database file when a standard Windows monitor is used. If you
choose to use a character-based terminal (such as the VT-100), you will need
both the alternate terminal manager runtime and a terminal database file.
These can be requested from your Customer Service Representative at Micro

4-8 Terminal Manager
Focus. Be aware that your programs will execute less efficiently with this
combination than with the standard Windows runtime and a standard
Windows monitor.

4.2.3 Step Three: Configuration Variables

Some behaviors of the terminal can be controlled by entries (variables) in the
runtime configuration file. The default name of this file, like that of the
terminal database file, varies according to the host operating system:

Options on naming and accessing the runtime configuration file, and
descriptions of many of the entries in it, are discussed in the “Compiler and
Runtime” chapter of this manual. That chapter also discusses the relationship
between the runtime configuration file and the host computer’s environment.
This chapter discusses entries in the terminal database file and the runtime
configuration file which are of particular importance to the Terminal
Manager.

System Runtime Configuration File

Windows \etc\cblconfi

UNIX and Linux /etc/cblconfig

MPE/iX /etc/cblconfig

VMS SYS$LIBRARY:A_CONFIG.DAT

The Keyboard Interface 4-9
Entries in both the terminal database file and the runtime configuration file
are described throughout this chapter, grouped according to the functions that
they control. These are the basic areas of functionality that you will need to
consider in deciding what you need to modify or define:

4.3 The Keyboard Interface

The Terminal Manager handles both the screen display and keyboard input.
See section 4.4 for more information about the display interface.

This section addresses keyboard-related functions. The Terminal Manager
provides certain conventions for entering and editing data; these conventions
are described here.

Required
functions

Other screen
functions

Video
attributes

Color

Function
keys

Line
drawing

Initialization

Print
functions

4-10 Terminal Manager
4.3.1 Key Mapping

The mapping of keys to functions is one of the main activities of the Terminal
Manager. If you understand what happens when a user presses a key, you’ll
have a good feel for how you can control the interaction between the
keyboard and the COBOL application. The next diagram depicts the overall
process, from keystroke to COBOL program.

The following section describes in detail the steps shown above.

4.3.1.1 Key interpretation

When the user presses a key, the keyboard sends a signal to the computer.
This signal needs to be interpreted and translated into a value, or
functionality, that the COBOL program can understand. This process begins
with the terminal database file.

Key
interpretation

Key
translation

Final
result

ACTION EXAMPLE

User presses key

Keyboard sends
hardware signal

Terminal database
file maps hardware
signal into key code

Runtime configuration
file translates key code

into functionality

COBOL program can
sometimes override
configuration setting

Key function
is executed

F1

\EOP

k1

Configuration file entry:
KEYSTROKE EDIT=Next Terminate=13k1

COBOL statement:
SET ENVIRONMENT "KEYSTROKE" TO

"Edit=End Terminate=13k1"

The cursor is moved to the end of the current
field and the ACCEPT terminates with a

CONTROL KEY value of 13

The Keyboard Interface 4-11
The terminal database file equates hardware signals to logical values. Unless
you are running on a system such as Windows, where the key interpretation
is built into the runtime, your terminal needs to be listed in the terminal
database file. Keystrokes at the terminal generate hardware signals, and each
hardware signal must be equated to a logical value if the application program
is to respond to the associated keystroke. These logical values, called key
codes, are listed in the Table of Keys in section 4.3.2.3.

We provide the definitions for many popular terminals in the terminal
database file that we send you. If the name of your terminal is included, you
will not need to change anything unless your particular terminal is different
from the standard configuration for its type. If that is the case, you may need
to change the entry.

Each entry in the terminal database file consists of the name of the terminal
(including all names by which you might typically refer to this terminal type),
followed by a series of character strings. Some of these strings are equations
that assign hardware signals from the keyboard to key codes that we provide.
Some of the strings consist of functional instructions to the terminal.

Terminal database file entries and the syntax rules that govern them are
described in section 4.6, “The Terminal Database File.”

4.3.1.2 Key translation

After the hardware signal has been equated to a key code, the runtime system
checks the runtime configuration file to determine if any special values or
functions have been attached to the key code.

This is the point at which statements in a COBOL program can override what
is specified in the runtime configuration file.

4-12 Terminal Manager
4.3.1.3 Keyboard configuration

Each terminal has several keys that are available to be used for special
purposes. Some of these keys are used as field termination keys, others are
used as editing keys. ACUCOBOL-GT supports a large number of special
keys, but in the default configuration, only these are used:

The Backspace and Line-Kill keys are whichever keys provide these
functions for your operating system. The Backspace key is the one that
erases individual characters from a command line; the Line-Kill key is the
one that can cancel a command line. On most systems, the key that performs
the Backspace function is the one labeled either “backspace” or “delete.”

The keyboard interface can be easily configured to meet a variety of needs.
The default configuration has the following characteristics:

1. The range of legal input characters is ASCII values 32 through 255.
Other characters outside this range are ignored unless covered by one of
the cases below.

2. The range of exception characters is ASCII values 1 through 31. If any
of these characters is typed, an exception condition exists and input to
the field is terminated. The exception key value is identical to the
ASCII value of the key. For example, if Control-E is typed, then the
exception key value returned would be “5”. This rule does not apply to
characters specifically listed in rule 3.

3. The following table outlines the actions of other keys. In this table,
Action is the special action performed by the key. If a number is
present here, then this key terminates the field and returns that number

Function Keys 1-20 Help

Arrow Keys Do

Page Up Page Down

Backspace Line-Kill

Home End

Insert Delete

Clear Clear to End

Carriage Return Control Keys

The Keyboard Interface 4-13
as its termination key value. If the number is starred (*), then this key
also causes an exception condition. If there are both a number and an
action, then the key acts as a termination key when the action cannot
be applied.

The Windows column names the keycap on the IBM-PC keyboard that
is used for this key. The Termcap column names the terminal database
file entry that corresponds to this key for UNIX and VMS systems.

Key Action

Windows Termcap

Carriage Return 13 Enter

Tab Next Field (9) Tab

Host’s Backspace Backspace BkSp

Host’s Line-Kill Erase Field

Backtab Previous Field Shft-Tab kB

Home First Field Home kh

End Last Field End KE

Insert Auto-Insert Mode Ins KI

Delete Delete Character Del KX

Clear Erase Field Ctl-Home KC

Clear-to-End Erase Remainder Ctl-End kE

Left Arrow Left Left kl

Right Arrow Right Right kr

Up Arrow Previous-All (52*) Up ku

Down Arrow Next-All (53*) Down kd

Page Up Page-Up (67*) PgUp kP

Page Down Page-Down (68*) PgDn kN

Do (Command) 40* KD

Help 90* K?

F1 - F10 1 - 10* F1 - F10 k1 - k0

F11 - F20 11 - 20* Shft F1 - F10 K1 - K0

4-14 Terminal Manager
Note: Keys that terminate input with an exception condition are ignored by
ACUCOBOL-GT if the ACCEPT statement does not have an EXCEPTION
clause or a CONTROL KEY clause. However, if you use the “-Vx”
compile-time option, exception keys will be recognized even if the
ACCEPT statement does not contain an EXCEPTION or CONTROL KEY
clause.

When accepting data from the keyboard, the Terminal Manager runs in one
of two modes: “standard” mode or “auto” mode. In “standard” mode, the
only way to finish input is by typing one of the allowed termination keys; the
cursor may not leave the field. In “auto” mode, the cursor can leave the field;
when the user fills the field with data, it is immediately accepted and the
cursor moves on. The setting of “auto” mode or “standard” mode is
determined by the various clauses specified on the ACCEPT statement. For
details, see Chapter 6 of the Reference Manual, ACCEPT verb.

There are four methods for accepting a field (ACCEPT verb, Format 1),
depending on the mode and the presence of either the CONTROL KEY
clause or the ON EXCEPTION clause. These methods are:

Standard mode, no CONTROL KEY or ON EXCEPTION clause:

the field can be accepted only by a termination key. In the default
keyboard configuration, these are the Carriage Return and Tab keys.

Standard mode, with CONTROL KEY or ON EXCEPTION clause:

the field can be accepted by a termination key or by one of the
exception keys.

Auto mode, no CONTROL KEY or ON EXCEPTION clause:

the field can be accepted by a termination key or by filling the field
with data.

Auto mode, CONTROL KEY or ON EXCEPTION clause:

the field can be accepted by filling it with data, or by a termination key
or an exception key.

The Terminal Manager can control more than one field when the program is
doing an ACCEPT that refers to a Screen Section item (ACCEPT verb,
Format 2). In the course of this ACCEPT, the user can move between the

The Keyboard Interface 4-15
fields by using the Tab, Backtab, Left, Right, Up, Down, Home and End
keys; the Tab key acts as a terminate key only in the last field. A Format 2
ACCEPT statement does not support the use of the CONTROL KEY clause;
the CRT STATUS phrase of the Special-Names paragraph may be
substituted. Data entry for a Screen otherwise falls into four categories much
like the above.

The termination and exception keys may be changed by runtime
configuration options as described in section 4.3.2, “Redefining the
Keyboard.”

Note to RM/COBOL-85 users:

 The ACUCOBOL-GT default keyboard layout is very similar to that used by
RM/COBOL-85, but it is not identical. Consider these points:

1. Under MS-DOS, RM/COBOL-85 defines the Command key to be
Alt-C. When you are typing this key it is easy to accidentally type
Control-C instead, which is the interrupt key in DOS. For this reason,
ACUCOBOL-GT uses Alt-D (for “Do”) instead.

2. ACUCOBOL-GT defines more editing keys than RM/COBOL-85
does. In particular, the Home, End, Clear, Clear-to-End and Line-Kill
keys return exception values under RM/COBOL-85, while under
ACUCOBOL-GT they perform various field-editing functions.

3. ACUCOBOL-GT defines Page Up, Page Down, and Help keys that are
not defined under RM/COBOL-85. These keys are used by the
ACUCOBOL-GT debugger.

4. The default RM/COBOL-85 keyboard includes the following keys as
exception keys: Attention, Home, New Line, Tab Left, Erase Right,
Tab Right, Insert Line, Delete Line, and Send. Under
ACUCOBOL-GT, these keys either act as editing keys or are ignored.
Because these keys are generally not available on most keyboards (or,
in the case of the Tab Right and New Line keys, are ambiguous with
control keys), most applications do not use them. If you need to use
any of these keys, you can alter the ACUCOBOL-GT keyboard
configuration as described in section 4.3.2, “Redefining the
Keyboard.”

4-16 Terminal Manager
5. The RM/COBOL-85 layout varies from machine to machine. In the
interest of portability, the default ACUCOBOL-GT keyboard interface
is the same for all machines.

4.3.2 Redefining the Keyboard

The ACUCOBOL-GT keyboard interface may be modified via two variables
in the runtime configuration file. The KEYBOARD variable defines global
keyboard attributes. The KEYSTROKE variable defines the interpretation of
a particular key or key combination. These two variables enable you to tailor
the keyboard interface to your application.

4.3.2.1 The KEYBOARD variable

You can specify one or more KEYBOARD variables. Attributes that you can
set are identified by one or more sets of keywords and associated values,
separated from each other by spaces or tabs. The syntax is:

KEYBOARD keyword=value [keyword=value]...

Keywords are:

AUTO-RETURN=value

Some ACCEPT statements terminate automatically when the input
field is filled. When this occurs, the termination key value is the value
(a decimal number) defined by the AUTO-RETURN keyword. This
value is returned in the CONTROL KEY clause of the ACCEPT
statement. The default value is zero. You may also specify this option
with the configuration variable KBD_AUTO_RETURN.

CASE=value

The CASE option on the KEYBOARD configuration entry allows you
to cause all entries to be automatically converted to upper or
lowercase. Value may be set to “Upper”, “Lower” or “Both”:

Upper: all ACCEPT statements convert keystrokes to upper case.

Lower: all ACCEPT statements convert keystrokes to lowercase.

Both: (default) causes no translation.

The Keyboard Interface 4-17
CASE may be overridden with the settings of the “UPPER” and
“LOWER” keywords on individual ACCEPT statements. See Book 3,
Reference Guide, section 6.4.9, “Common Screen Options.”

The configuration variable KBD_CASE is also supported.

Note: The value of KEYBOARD CASE does not affect controls. To
effect the same result on controls, use the UPPER or LOWER phrase
on the ACCEPT statement.

CHECK-NUMBERS=value

Normally, ACUCOBOL-GT requires that numeric data be entered for
numeric and numeric-edited fields that have the CONVERT phrase
specified for them. If value is “No”, then any data can be entered and
the runtime system will remove the non-numeric data from the user’s
input prior to converting. If value is set to “Yes” (the default), then a
non-numeric entry will cause an error message to print and will force
the user to re-enter the field. If value is set to “Validate”, the runtime
also checks to make sure that the numbers entered are valid, as
described by the PICTURE clause for that field. The configuration
variable KBD_CHECK_NUMBERS can also be used to set this value.

CURSOR-PAST-END=value

By default, ACUCOBOL-GT does not let the cursor leave the field
where data is being entered. When the final position is entered, the
cursor remains there and further entry is inhibited except for editing
keys. Setting value to “Yes” allows the cursor to move one character
past the end of the field instead. Input is still inhibited. The difference
between the two modes is essentially cosmetic and
CURSOR-PAST-END can be set to suit the user’s taste. The default
value is “No”. This value may also be specified with
KBD_CURSOR_PAST_END.

DATA-RANGE=value

Value defines the range of legal ASCII input values. Any character
received that falls outside of this range will not be accepted into the
input field, but may define other actions such as field editing or input
termination. Two decimal numbers, separated by a comma, express
the lower and upper bounds of the range. The maximum range is

4-18 Terminal Manager
“1,255”. The default range is “32,255”. This value may also be set
using the configuration variables KBD_DATA_RANGE_HIGH and
KBD_DATA_RANGE_LOW.

Note: If the same number(s) is included in both the DATA-RANGE
and EXCEPTION-RANGE, then DATA-RANGE takes precedence.

EXCEPTION-RANGE=value

This is similar to the DATA-RANGE keyword except that value
defines the range of characters that generate default exception
handling. A key whose ASCII value falls within that range will
terminate input with an exception condition value which matches the
ASCII value of the key. That value is returned in the EXCEPTION
clause or the CONTROL KEY clause of the ACCEPT statement. The
default range is “1,31”. A character in this range that is also defined by
a KEYSTROKE variable acts as defined by that KEYSTROKE
variable, and may or may not terminate the input. The configuration
variables KBD_EXCEPTION_RANGE_HIGH and
KBD_EXCEPTION_RANGE_LOW may also be used to set this
value.

Note: If the same number(s) is included in both the DATA-RANGE
and EXCEPTION-RANGE, then DATA-RANGE takes precedence.

IMPLIED-DECIMAL=value

If value is “Yes”, an implied decimal point is inserted in certain fields
when the user does not explicitly type a decimal point. The last n digits
of the user’s input will be to the right of the decimal point, where n is
the number of decimal places specified in the receiving field. For
example, if the program is accepting a field with two decimal places,
and the user types “1535”, the value accepted (and echoed to the
screen) will be “15.35”. This is only done for numeric or
numeric-edited fields that are input with conversion, either explicit or
implicit. It never occurs for floating-point items. The default value is
“No”. The configuration variable KBD_IMPLIED_DECIMAL is also
supported.

The Keyboard Interface 4-19
RM-2-DEFAULT-HANDLING=value

RM/COBOL versions 2.1 and 2.2 have a configuration option that
allows for ACCEPT fields that do not receive any input (e.g., the user
just types Return) to leave the receiving field unchanged. Normally,
the receiving field would be filled with spaces. If the
RM-2-DEFAULT-HANDLING value is “Yes”, then
ACUCOBOL-GT will behave in this alternate fashion. You may also
set this value using the variable
KBD_RM_2_DEFAULT_HANDLING.

Note: This option is recommended only if you are converting
programs written using this feature of RM/COBOL. Note that RM/
COBOL-85 does not contain this feature, so only programs written for
RM/COBOL version 2 should need to use it.

SCREEN-DEFAULT=value

If value is “Yes”, default data is taken from the screen for any
ACCEPT statement that does not have a default value specified for it
(either explicitly or implicitly). This will also allow for updating of the
current screen contents. The default value is “No”. This option can
also be specified using the configuration variable
KBD_SCREEN_DEFAULT.

4.3.2.2 The KEYSTROKE variable

The KEYSTROKE variable defines the actions to be taken for a single
keystroke. You need to add one KEYSTROKE line for each key that you
wish to redefine. The maximum number of allowed KEYSTROKE entries is
170.

KEYSTROKE entries consist of keywords and associated values that
describe the action to be taken, plus the key code (a two-character name) of
the key, or key combination, being defined. All definable keys have such a
name. The key code is case sensitive, although the rest of the KEYSTROKE
line is not. The ASCII value of the key (decimal) may be used instead of the
key code. Note that this is the only way to assign a value to the DEL key
(ASCII value 127). The syntax of the KEYSTROKE line is:

KEYSTROKE keyword=value [keyword=value] key-code

4-20 Terminal Manager
The key-code argument is one of the two-character codes shown in section
4.3.2.3, “Table of keys.” Keywords are separated from each other by spaces
or tabs. For example:

KEYSTROKE EDIT=Next TERMINATE=13 ^M

The following keywords may be used:

AT-END=value

If value is “Yes”, the key becomes a termination key that also causes
the AT END condition. This keyword may not be specified along with
either the TERMINATE or EXCEPTION keywords. The AT END
condition always returns a termination value of “-1” in the CONTROL
KEY clause. AT-END keystrokes are always allowed, but will cause
no action unless an AT END, EXCEPTION, or CONTROL KEY
clause is present in the ACCEPT verb. The default keyboard defines
no AT-END keys. See also the AT END phrase of the ACCEPT verb
in the ACUCOBOL-GT Reference Manual, Procedure Division.

DATA=value

This keyword is used to assign special characters to keys. DATA
associates a decimal ASCII value with a key; the Terminal Manager
will return this value to the COBOL program when the key is pressed.
If the DATA keyword is used, no other keywords may be specified for
this key.

EDIT=value

EDIT is used to define an editing action for a key. It must be assigned
one of the following values:

Alt Left

Auto-Insert Menu

Backspace Next

Default-Entry Next-All

Default-Next Next-Line

Delete Numeric-Default

Down Numeric-Next

End Page-Down

The Keyboard Interface 4-21
The EDIT keyword values specify various editing functions, described
below. EDIT keys may also be designated as termination keys. When
they are, the EDIT is applied and then the input is terminated. This rule
is slightly changed for the actions that move the cursor. With these
actions, the field terminates only if the cursor cannot be moved farther
in the requested direction. This is detailed in the descriptions of each
of the EDIT values.

In the following descriptions, the order of fields is the order in which
they appear in the Screen Section. Thus, the “next” field may not
necessarily be the next one on the physical display. This feature can be
used to design special purpose screens.

Erase-All Page-Up

Erase-EOS Previous

Erase Field Previous-All

Erase-Next Previous-Line

Erase-to-End Right

First Switch-Window

Home System-Menu

Insert-Off Toggle-Edit-Mode

Insert-On Toggle-Insert

Insert-Space Up

Last

4-22 Terminal Manager
EDIT keyword values can be:

Alt When edit=alt is defined, the user must press the Alt
key and the key letter in order to activate the desired
control.

The character-based version of the runtime supports
the use of key letters for operating controls. By
default, if the program has key letters defined for its
controls and if the program is currently accepting a
control that doesn’t allow user input, such as a
push-button, checkbox or radio button, the user can
move to the control by simply pressing its key letter
key. When this happens the accept will be terminated.
This default behavior can be changed by setting the
runtime configuration variable
NO_BARE_KEY_LETTERS to “TRUE”.

Auto-Insert Auto-Insert causes all following characters to be
entered in insert mode. Auto insert mode is
automatically reset when the input terminates, or when
any other editing key is typed. This style of insertion is
the RM/COBOL-85 default method.

Backspace The Backspace function moves the cursor to the left
one character and deletes the character found there. If
the Backspace function occurs at the left-most field
position, it is ignored unless a TERMINATE or
EXCEPTION value has been assigned to the key, in
which case it is treated as a termination key.

Default-Entry The Default-Entry action erases the remainder of the
field starting at the cursor position provided that the
cursor is not in the first position of the field. If the
cursor is in the first position, this action does nothing.
This editing action is intended to be tied to a
termination key (such as the “Return” key or the “Tab”
key), and to be used as a reasonable method of
handling fields that contain default values. If the
default is correct, then this key is typed (which does
nothing to the field). If the default is wrong, then the
correct value is entered and this key is typed (erasing
the part of the old field after the new input).

Default-Next Default-Next combines the Default-Entry action and
the Next (described below) action.

The Keyboard Interface 4-23
Delete Deletes the character that the cursor is on (if any).

Down If there are fields below the current cursor location, the
cursor moves to the one on the closest lower line. If
there is more than one field on this line, the cursor will
move to the one closest to its current horizontal
location. The cursor will try to stay in the same
column. If there are no fields beneath the current line,
then this action does nothing unless an EXCEPTION
or TERMINATE value has been assigned to it, in
which case it acts as a termination key.

End The cursor is moved to the end of the current field,
excluding any trailing prompt characters. If the cursor
is already at the end of the field, then this key is
ignored unless it has a TERMINATE or EXCEPTION
value, in which case it is treated as a termination key.

Erase-All All fields controlled by the ACCEPT statement are
erased and the cursor is moved to the home position of
the first field. This key may not be assigned a
TERMINATE or EXCEPTION value.

Under Windows, the field in which the cursor is
currently positioned is erased, instead of all fields
controlled by the ACCEPT statement being erased.

Erase-EOS The current field is erased from the cursor location to
the end of the field, and all fields following the current
one are erased. The definition of “following field” is
based on the order of fields in the Screen Section. This
action may not be assigned a TERMINATE or
EXCEPTION value.

Under Windows, the current field is erased from the
cursor location to the end of the field, but the fields
following the current one are not erased.

Erase-Field The field is erased, and the cursor is moved to the first
position of the field.

Erase-Next This action combines the functions of the Erase-to-End
action and the Next (described below) action.

Erase-to-End This function erases the field from the current cursor
position to the end of the field.

4-24 Terminal Manager
First The cursor is moved to the beginning of the first field
controlled by the ACCEPT statement. If the cursor is
already in the first field, and the key has been assigned
a TERMINATE or EXCEPTION value, then the
ACCEPT terminates.

Home The cursor is moved to the beginning of the field. If
the cursor is already at the beginning and this key has
been assigned a TERMINATE or EXCEPTION value,
the ACCEPT terminates.

Insert-Off If insertion mode is currently in effect, it is turned off;
otherwise does nothing.

Insert-On This causes all following characters to be entered in
insert mode. This causes any trailing characters to be
moved one space to the right before the added
character is printed. Insertion mode stays in effect
until explicitly reset by an Insert-Off, an Auto-Insert,
or a Toggle-Insert action. Note that insertion mode
stays in effect across multiple ACCEPT statements.

Insert-Space A space character is inserted at the cursor position,
moving trailing characters over one position.

Last The cursor moves to the end of the last field controlled
by the ACCEPT statement. Trailing prompt characters
in the last field are ignored in determining the end of
the field. If this key has been assigned a TERMINATE
or EXCEPTION value and the cursor is already in the
last field, the ACCEPT terminates.

Under Windows, with TERMINATE and
EXCEPTION value, if the cursor is at the last field, the
ACCEPT does not terminate and the cursor stays at the
current field.

The Keyboard Interface 4-25
Left The cursor is moved one position to the left; if it is
already in the left-most field position, it moves to the
end of the previous field. If the cursor is in the
left-most position of the first field, the key is ignored
unless it also has been assigned a TERMINATE or
EXCEPTION value, in which case the ACCEPT
terminates.

In the case of Windows, the left and right arrow keys
move the cursor inside a field but do not act as
terminators. Without TERMINATE and
EXCEPTION value, if the cursor is in the leftmost
position of the first field, the key is not ignored and the
cursor is moved to the last field.

Menu The key is defined as a Menu key. Pressing this key
will cause a program-defined menu to appear on the
screen.

Next Under Windows, without TERMINATE and
EXCEPTION value, if the cursor is in the last field, it
moves to the first field, instead of moving to the end of
the field.

Next-All The cursor moves to the beginning of the next field
regardless of whether or not the next field has a
Tab-Stop. Thus a key with the “Next” action will skip
controls with the NO-TAB style, while a key with the
“Next-All” action will not.

By default, the Down key is assigned the Next-All
action. This makes the Down key behave more like it
does in a common Windows program. Assign the
Down keyword (described above) for a more
traditional, text-mode behavior.

Next-Line Next-Line functions the same as the Down action,
except that the cursor always moves to the beginning
of the left-most field on the new line (instead of
maintaining the current cursor column).

4-26 Terminal Manager
Numeric-Default If the field is numeric, then this key acts just like the
Default-Entry key. Typing this key at the first
character position of a numeric field leaves the field
unchanged and accepts the default value. Typing this
key when the cursor is not in the first position causes
erasure of the field from the cursor position to the end.
This key allows the user either to accept the default or
type over it without having to worry about blanking out
the trailing portion of the field.

If the field is alphanumeric, then this action does not
affect the field. Numeric-Default is usually made a
termination key, so that typing it causes the ACCEPT
to finish.

Numeric-Next If the field is numeric, then this key acts just like the
Default-Next key. Typing this key at the first character
position of a numeric field leaves the field unchanged,
accepts the default value, and advances to the
beginning of the next field. Typing this key when the
cursor is not in the first position causes erasure of the
field from the cursor position to the end. The cursor is
then advanced to the beginning of the next field. This
key allows the user either to accept the default or type
over it without having to worry about blanking out the
trailing portion of the field.

If the field is alphanumeric, then this key acts just like
the Next key. It advances the cursor to the beginning
of the next field and does not affect the current field.

Page-Down This keyword sets the key that pages down a multiline
entry field, list box, and combo box.

Page-Left This keyword sets the key that scrolls left one page.

Page-Right This keyword sets the key that scrolls right one page.

Page-Up This keyword sets the key that pages up a multiline
entry field, list box, and combo box.

Previous The cursor moves to the beginning of the previous
field. If the cursor is in the first field, it moves to the
beginning of the field unless the key has been assigned
a TERMINATE or EXCEPTION value, in which case
it acts as a termination key instead.

The Keyboard Interface 4-27
Previous-All The cursor moves to the beginning of the previous field
regardless of whether or not the previous field has a
Tab-Stop. Thus a key with the “Previous” action will
skip controls with the NO-TAB style, while a key with
the “Previous-All” action will not.

By default, the Up key is assigned the Previous-All
action. This makes the Up key behave more like it
does in a common Windows program. Assign the Up
keyword (described below) for a more traditional,
text-mode behavior.

Under Windows, without TERMINATE and
EXCEPTION value, if the cursor is in the first field, it
moves to the last field, instead of moving to the
beginning of the field.

Previous-Line The cursor moves to the beginning of the left-most
field on the next higher line. If there are no fields
above the current one, this action does nothing unless it
has an EXCEPTION or TERMINATE value, in which
case it acts as a termination key.

Right This function moves the cursor one position to the
right. This will not move the cursor onto any trailing
prompt characters (exception: if the prompt character
is a space and the field is being updated, the cursor will
move over the trailing spaces).

If the cursor is as far right as it is allowed to go, it will
move to the beginning of the next field. If there is no
following field, this key is ignored unless a
TERMINATE or EXCEPTION value has been
assigned, in which case the ACCEPT terminates.

In the case of Windows, the left and right arrow keys
move the cursor inside a field but do not act as
terminators. Without TERMINATE and
EXCEPTION value, if the cursor is as far right as it is
allowed to go, the key is not ignored and moves to the
first field. (See Book 2, User Interface Programming,
section 11.4, “Regarding Configuration Variables”)

Scroll-Left This keyword sets the key that scrolls left one column.

Scroll-Right This keyword sets the key that scrolls right one
column.

4-28 Terminal Manager
EXCEPTION=value

The purpose of this keyword is to create an exception key.
EXCEPTION assigns a decimal ASCII value to a key; the key becomes
a termination key that also causes an exception condition. The
assigned value is returned in the EXCEPTION clause or the
CONTROL KEY clause of the ACCEPT statement. See the
TERMINATE keyword below if you want to terminate input without
causing an exception condition. Note that ACUCOBOL-GT inhibits
exception keys when no EXCEPTION or CONTROL KEY clause is
present in the ACCEPT statement, unless the program was compiled
with the “-Vx” option.

HOT-KEY=value

ACUCOBOL-GT offers two methods for assigning hot keys: the
KEYSTROKE keyword HOT-KEY described here, and the HOT-KEY
runtime configuration variable described in Appendix H. Either or

Switch-Window This keyword defines the key that, when pressed,
causes the system to enter “switch window mode.” In
this mode, the user can press any key to cycle through
the modeless windows, with each window border
highlighted until the “Return” key is pressed. Window
switching order is from top to bottom.

System-Menu Use the System-Menu function to define the key used
to activate a floating window’s system menu on a
text-mode system.

Toggle-Edit-Mode This keyword defines the key that can be used to toggle
the presence of the combo box’s drop-down list and the
paged list box’s search box.

Toggle-Insert If insertion mode is currently in effect, it is turned off.
Otherwise, insertion mode is turned on.

Up If there are fields above the current cursor location, the
cursor moves to the one on the closest higher line. If
there is more than one field on this line, the cursor
moves to the field closest to its current location. The
cursor will try to stay in its current column. If there are
no lines above the current line with active fields, then
this key is ignored unless it has a TERMINATE or
EXCEPTION value, in which case it acts as a
termination key.

The Keyboard Interface 4-29
both may be used, but the results are undefined if you assign the same
key using both formats. The total number of hot-key entries defined by
both methods cannot exceed 16.

A hot key is a key that is associated with a program, so that when the
key is pressed, the corresponding program is run. Value is the program
name, which must be specified in single or double quotes if it is
lowercase. The full configuration file entry looks like this:

KEYSTROKE HOT-KEY=program-name key-code

Pressing the key specified in key-code initiates execution of the
program just as if it were named in a CALL statement. The key-code
argument is one of the two-character key codes shown in section
4.3.2.3, “Table of keys.”

For example, there is a screen printing sample program named
PRNTSCRN provided with ACUCOBOL-GT. If you want to be able
to initiate that program just by pressing the keyboard’s “F11” key, add
the following line to your configuration file:

KEYSTROKE HOT-KEY=PRNTSCRN U1

Hot keys are active only during Format 1 and Format 2 ACCEPT
statements (these are the forms of the ACCEPT verb that allow the user
to enter data at the keyboard). When the user presses a hot key, the
current program status is saved, and the program associated with the
hot key is run. When the hot-key program exits (via the EXIT
PROGRAM statement), control is returned to the program that was
running when the hot key was pressed. The hot-key function does not
save the original contents of the screen. You can accomplish this by
popping up a window in your hot-key program, and then closing the
window just before you exit the hot-key program.

A hot-key program is automatically passed two parameters. The first
parameter is PIC X(200). It contains an image of the data in the field
that was being entered at the time the hot key was pressed. The second
parameter is a COMP-1 field that contains the length of the field being
entered. You can define the first parameter as a table that depends on
the second parameter like this:

LINKAGE SECTION.
01 CURRENT-FIELD.
 03 OCCURS 1 TO 200 TIMES
 DEPENDING ON FIELD-SIZE PIC X.

4-30 Terminal Manager
01 FIELD-SIZE PIC S9(4) COMP-1.

You are not required to declare or use either of these parameters in
your hot-key program--they are provided for convenience.

The hot-key program may modify its first parameter. Any
modifications made are reflected in the field that was being entered
when the hot-key program was called. You might use this capability to
perform a look-up function and then return the value found to the field
being entered. If you want to pass additional data to the hot-key
program, use EXTERNAL DATA ITEMS.

When a hot-key program is started, the value of the RETURN-CODE
special register is saved and then set to zero. The hot-key program may
alter this value. When the hot-key program exits, the value of
RETURN-CODE is checked. The following table shows the possible
values and the action that the calling program will take:

If the value of RETURN-CODE is zero, then the calling program
continues to a normal completion of the ACCEPT statement that was
active when the hot key was pressed.

If the value is greater than zero, then the calling program acts as if an
exception key (with that value) was pressed. This will terminate the
ACCEPT statement if it is of a format that allows exception keys.

If the value is “-1”, then the ACCEPT statement will act as if a “next
field” key were pressed by the user. This will cause the ACCEPT
statement to proceed to the next field. If there are no more fields (or if
there is only one field), then the ACCEPT statement will terminate
with a termination value of zero. The hot-key program should not set
RETURN-CODE to any negative value other than “-1”. Other
negative values are reserved for future use by ACUCOBOL-GT.

Value Action

0 continue ACCEPT

>0 generate exception if allowed

-1 activate “next field” logic

The Keyboard Interface 4-31
In any case, after the RETURN-CODE value established by the
hot-key program has been acted upon by the calling program,
RETURN-CODE is restored to the value it held before the hot-key
program was called.

If a hot-key program cannot be executed, an error message is displayed
to the user, and control returns to the ACCEPT statement.

Up to two hot-key programs per process may be active at once.

INVALID=value

If value is “Yes”, the key is ignored when it is typed. This keyword
may not be specified with any other keywords.

TERMINATE=value

This keyword is used to create a termination key. TERMINATE
assigns a decimal ASCII value to a key; when the key is pressed, the
ACCEPT is terminated and the assigned value is returned in the
CONTROL KEY clause of the ACCEPT statement. TERMINATE
does not cause the key to generate an exception condition when
pressed; to define an exception key, use the EXCEPTION keyword
instead.

4.3.2.3 Table of keys

The following tables list all of the keys that can be redefined. The tables list
the key’s full name, its two-character name (called the “key code”), and the
corresponding key used on a Windows keyboard (not all keys listed can be
redefined under Windows; see Note below). The key code is used in the
terminal database file on UNIX and VMS systems to identify the
corresponding key-sequence.

Note: On Windows systems, the alt key sequences, PrtSrcn, and F10 keys
are directly handled by Windows and cannot be referenced in COBOL. A list
of additional keys that can be redefined in Windows environments follows
the table below.

Key Key Code
 (terminal db file)

Windows
Keyboard

Host’s Backspace ZB BkSp

4-32 Terminal Manager
Host’s Line-Kill ZK -

Cntrl-A - Cntrl-Z ^A - ^Z Ctl A-Z

Escape ^[Esc

Control-\ ^\ Ctl-\

Control-] ^] Ctl-]

Control-^ ^^ Ctl-^

Control-_ ^_ Ctl-_

DEL 127 Ctl-BkSp

F1 - F10 k1 - k0 F1 - F10

F11 - F20 K1 - K0 Shft F1 - F10

Down Arrow kd Down

Home kh Home

Left Arrow kl Left

Right Arrow kr Right

Up Arrow ku Up

Insert Line kA Ctl-Ins

Tab Left kB Shft-Tab

Clear-to-End kE Ctl-End

Delete Line kL Ctl-Del

Page Down kN PgDn

Page Up kP PgUp

Cancel Kc -

Next Paragraph Kd Ctl-Down

Word Left Kl Ctl-Left

Word Right Kr Ctl-Right

Previous Paragraph Ku Ctl-Up

Exit Kx -

Key Key Code
 (terminal db file)

Windows
Keyboard

The Keyboard Interface 4-33
The following table lists mouse-action “keys” that can be referenced by a
KEYSTROKE entry; this table has meaning only for graphical systems such
as Windows. The table lists the mouse action, the corresponding key code,
and the default exception value returned. See Book 2, User Interface
Programming, Chapter 7, “Using the Mouse,” for details on mouse handling.

Attention KA -

Bottom KB Ctl-PgDn

Clear KC Ctl-Home

Command (Do) KD -

End KE End

Find KF -

Insert Character KI Ins

Page Left KL -

Mark (Select) KM -

Print KP -

Page Right KR -

Send KS -

Top KT Ctl-PgUp

Save KV -

Delete Character KX Del

Help K? -

User-defined
keys 1 - 10
(1-6 on Windows)

U1 - U0
(U1-6 on Windows)

F11-F12;
Shft-F11-F12;
Ctl-F11-F12

User-defined
keys 11-20

A1 - A0 Ctl-1 - Ctl-0

Action Key Code Exception Value

Mouse moved Mv 80

Key Key Code
 (terminal db file)

Windows
Keyboard

4-34 Terminal Manager
The Host’s Backspace and Line-Kill keys are not identified in the terminal
database file. They are defined, instead, at the operating system level. The
Backspace key is the key used to back up while you are typing command
lines (usually either “backspace” or “delete”). The Line-Kill key is the one
that is used to cancel an entire command line.

Control keys (Control plus another key) are not defined in the terminal
database file. They are directly mapped by the runtime system to the
corresponding control-key ASCII value. They can be referred to by either
their ASCII value or by the key code listed. The DEL key does not have a
key code; it can be referred to only by its ASCII value (127).

Some keys may have more than one name. When this occurs, the names have
the following precedence:

1. Host name

2. Terminal database file name

3. Control-key name (if applicable)

For example, if a terminal whose left arrow key produces a Control-H is
being used, and Control-H is the system’s backspace key, that key would be
treated as a Host’s Backspace key (ZB). If the host’s backspace were
redefined (by operating system command) to be some other key, then this key

Left button pushed Ml 81

Left button released ML 82

Left button double-clicked M1 83

Middle button pushed Mm 84

Middle button released MM 85

Middle button double-clicked M2 86

Right button pushed Mr 87

Right button released MR 88

Right button double-clicked M3 89

Action Key Code Exception Value

The Keyboard Interface 4-35
would be considered a Left Arrow key (kl). It would be considered a
Control-H (^H) only if the terminal database file were edited and the “kl”
definition changed or removed.

4.3.2.4 Additional Windows keys

In addition to the keys listed in section 4.3.2.3, these extra keys are available
for 32-bit Windows systems:

User-defined keys

User-defined keys 1 - 6 (U1 - U6):

User-defined keys 11 - 20 (A1 - A0):

Key Key code

Ctl-Ins (Insert Line) kA

Ctl-Del (Delete Line) kL

Key Key code

F11 U1

F12 U2

Shft-F11 U3

Shft-F12 U4

Ctl-F11 U5

Ctl-F12 U6

Key Key code

Ctl-1 A1

Ctl-2 A2

Ctl-3 A3

Ctl-4 A4

Ctl-5 A5

4-36 Terminal Manager
Several function key combinations can also be redefined. These keys have no
specified default action and the key combinations are recognized by the
Windows keyboard driver only after they are assigned a definition.

Ctl-6 A6

Ctl-7 A7

Ctl-8 A8

Ctl-9 A9

Ctl-0 A0

Key Key code

Alt-F1 a1

Alt-F2 a2

Alt-F3 a3

Alt-F5 a5

Alt-F7 a7

Alt-F8 a8

Alt-F9 a9

Alt-F10 a0

Alt-F11 U7

Alt-F12 U8

Shift-Ctl-F1 S1

Shift-Ctl-F2 S2

Shift-Ctl-F3 S3

Shift-Ctl-F4 S4

Shift-Ctl-F5 S5

Shift-Ctl-F6 S6

Shift-Ctl-F7 S7

Shift-Ctl-F8 S8

Key Key code

The Keyboard Interface 4-37
Note: Alt-F4 and Alt-F6 are reserved for use by Windows and are not
included in the table. Shift-Ctl-F10 may be used only if the configuration
option F10_IS_MENU is set to “false”. When F10_IS_MENU is set to the
default of “true”, then Shift-Ctl-F10 activates context menus (for example,
a control’s pull-down menu).

Keys that cannot be defined

Alt key sequences (except as noted in the preceding table), PrtSrcn, and F10
are directly handled by 32-bit Windows and cannot be referenced in COBOL.
You can free the F10 key to act as a user defined key by using a configuration
variable. Setting the F10_IS_MENU variable to “0” inhibits the standard
menu activation capability for the F10 key. See Appendix H for more details.

4.3.2.5 Special keys

The following keys deserve special attention.

Arrow keys

The left and right arrow keys can be configured to meet a variety of needs.

1. As exception keys only. In this case, typing an arrow key will cause an
ACCEPT to terminate immediately with the arrow-key exception value.
The program can then take the appropriate action (such as moving a
highlight in the requested direction). To configure an arrow in this
manner, define an EXCEPTION value for it with the KEYSTROKE
runtime configuration variable.

Shift-Ctl-F9 S9

Shift-Ctl-F10 S0

Shift-Ctl-F11 U9

Shift-Ctl-F12 U0

Key Key code

4-38 Terminal Manager
2. As edit keys only. In this case, the arrows will move the cursor within
the ACCEPT field, but will not move outside the boundaries of the
field. In this mode, the arrow key will never terminate the ACCEPT.
To configure an arrow in this manner, define the appropriate EDIT
value for it with the KEYSTROKE runtime configuration variable.

3. As both exception keys and edit keys. In this mode, the arrows will
act as edit keys within the ACCEPT field, but will act as exception
keys when the user tries to move outside the field. This can be useful
if you are writing a “fill-in-the-form” style of application. To
configure an arrow in this manner, define both an EXCEPTION and an
EDIT value for it.

By default, the left and right arrows act as edit keys, and the up and down
arrows act as both edit and exception keys. You can change the behavior of
the arrows at runtime to switch between different modes if you need to. You
do this via the SET ENVIRONMENT verb and the appropriate
KEYSTROKE settings. For example, to configure the left arrow to act as an
editing key from within a program, use:

SET ENVIRONMENT “KEYSTROKE” TO “EDIT=Left kl”

Backspace vs. Left Arrow

On some terminals, the Backspace and Left Arrow keys send the same
hardware signal. If so, ACUCOBOL-GT’s key naming rules will treat both
as a (destructive) Backspace, because the host name takes precedence. You
can deal with this situation in one of several ways; some possibilities are:

1. If you do not use the Left Arrow key as anything other than an edit key,
you can probably just use the defaults. You will not have the Left Arrow
capability, but most users prefer to have destructive Backspace instead.
Alternatively, if you prefer to have Left Arrow instead of destructive
Backspace you can, with a KEYSTROKE variable, define the
Backspace key to have the “Left” edit action.

2. If you use the Left Arrow as an exception key, then you can leave the
destructive backspace action on the Backspace key and also give it an
exception code value. This will cause the Backspace key to act as a
destructive backspace while the cursor is in an ACCEPT field. The
Left Arrow exception value will be returned when the user backspaces
off the left edge of the field.

The Keyboard Interface 4-39
3. Finally, you can use operating system commands to assign the host’s
Backspace key to another key. This will then cause the Backspace key
to be recognized as a Left Arrow key while the other key will take on
the characteristics of the Backspace key. If you wish to do this, a
common key to use as the alternate Backspace key is the Rub Out (or
DEL) key.

Other combinations exist, but this should give you a general idea of ways to
address this issue.

Interrupt key

ACUCOBOL-GT has no way of defining a key to be the asynchronous
interrupt key. ACUCOBOL-GT makes use of the host’s definition for this
key. This has two effects:

1. If you want to define a special asynchronous interrupt key, you must do
so at the operating system level.

2. Whichever key is used as the Interrupt key will be unavailable to you
as a normal key. This is because the host operating system acts on this
key prior to ACUCOBOL-GT’s ever receiving it. ACUCOBOL-GT
“sees” an interrupt when this key is typed; it never receives a character
for it.

4.3.2.6 Default keyboard

The default ACUCOBOL-GT keyboard is defined below in the language of
the KEYBOARD and KEYSTROKE runtime configuration variables.

KEYBOARD Data-range=32,255

KEYBOARD Exception-range=1,31

KEYBOARD Auto-Return=0 Screen-Default=No

KEYBOARD RM-2-Default-Handling=No

KEYBOARD Check-Numbers=Yes

KEYBOARD Cursor-Past-End=No

KEYSTROKE Terminate=13 ^M

KEYSTROKE Edit=Next Terminate=9 ^I

4-40 Terminal Manager
KEYSTROKE Edit=Previous kB

KEYSTROKE Edit=Backspace ZB

KEYSTROKE Edit=Erase-Field ZK

KEYSTROKE Edit=First kh

KEYSTROKE Edit=Last KE

KEYSTROKE Edit=Auto-Insert KI

KEYSTROKE Edit=Delete KX

KEYSTROKE Edit=Erase-Field KC

KEYSTROKE Edit=Erase-to-End kE

KEYSTROKE Edit=Left kl

KEYSTROKE Edit=Right kr

KEYSTROKE Edit=Up Exception=52 ku

KEYSTROKE Edit=Down Exception=53 kd

KEYSTROKE Exception=67 kP

KEYSTROKE Exception=68 kN

KEYSTROKE Exception=40 KD

KEYSTROKE Exception=90 K?

KEYSTROKE Exception=1 k1

KEYSTROKE Exception=2 k2

KEYSTROKE Exception=3 k3

KEYSTROKE Exception=4 k4

KEYSTROKE Exception=5 k5

KEYSTROKE Exception=6 k6

KEYSTROKE Exception=7 k7

KEYSTROKE Exception=8 k8

KEYSTROKE Exception=9 k9

KEYSTROKE Exception=10 k0

KEYSTROKE Exception=11 K1

KEYSTROKE Exception=12 K2

The Keyboard Interface 4-41
4.3.2.7 Modification examples

Following are examples of some common modifications to the default
keyboard settings.

In the default keyboard, the “Tab” key is used to move from one field to the
next. The “Return” key is used to terminate the ACCEPT. If you want the
“Return” key to move the user to the next field instead of immediately
terminating the ACCEPT, the following entry in the runtime configuration
file will cause that to happen:

KEYSTROKE EDIT=Next TERMINATE=13 ^M

Alternately, you might want the “Return” key to clear the part of the field that
follows the cursor. If you want to do this along with the previous
modification, you can use either of these entries:

KEYSTROKE EDIT=Erase-Next TERMINATE=13 ^M
KEYSTROKE EDIT=Default-Next TERMINATE=13 ^M

These two lines have slightly different methods of handling how the field is
cleared. The first version always erases the field from the current cursor
location to the end. The second form does this only if the cursor is not in the
home position of the field. You can also use the actions “Erase-to-End” or
“Default-Entry” if you do not want the “Return” key to act as a “next field”
key.

KEYSTROKE Exception=13 K3

KEYSTROKE Exception=14 K4

KEYSTROKE Exception=15 K5

KEYSTROKE Exception=16 K6

KEYSTROKE Exception=17 K7

KEYSTROKE Exception=18 K8

KEYSTROKE Exception=19 K9

KEYSTROKE Exception=20 K0

4-42 Terminal Manager
4.4 The Display Interface

The Terminal Manager’s keyboard interface has been discussed above. The
display interface can also be configured. Its task is to implement, for a
particular terminal, those program instructions that specify display attributes.
You can accomplish most desired display options by defining, in the terminal
database file, the actions that terminal function codes will take. You can
specify some other display options by assigning values to special keywords
in the ACUCOBOL-GT runtime configuration file.

The steps listed below describe, in a simplified way, the overall process from
COBOL statement to screen display:

Function code generation

• The COBOL program sends output to the screen. (For example, the
COBOL statement might be: DISPLAY data-item HIGH.)

• The runtime configuration file may specify an attribute for the
DISPLAY keyword. (Continuing with the example, the configuration
file might include this entry: COLOR-MAP High=Blue.)

• The Terminal Manager maps the COBOL attributes to terminal function
codes. (High=HI Blue=C2)

Function code interpretation

• The terminal database file maps the function codes to a hardware signal.
(HI=\E[0;1m C2=\E[34m)

• The Terminal Manager sends a hardware signal to the screen. (\E[0;1m
\E[34m)

Final result

• The display function is executed. (The data item characters are
displayed at high intensity in blue.)

This section and section 4.5 describe the runtime configuration file options.
The terminal database file function codes and values are described in section
4.6.

The Display Interface 4-43
4.4.1 Adding Color

ACUCOBOL-GT allows you to add color, without reprogramming, to
programs that were originally written for black-and-white terminals. You
accomplish this by assigning color values to the runtime configuration
variable COLOR-MAP. The COLOR-MAP keyword is followed by one of
the following single attributes:

 High, Low, Reverse, Blink, Underline, Default, or Exit;

or by one of the following hyphenated combinations of attributes:

The single attribute, or attribute combination, is then followed by an equals
sign and one of the following color names:

Black, Blue, Green, Cyan, Red, Magenta, Brown, White

The named color becomes the foreground color that is displayed whenever
the corresponding attribute is used in a DISPLAY statement. For example, if
you want fields that are displayed as low-intensity to appear green, use the
following configuration file entry:

COLOR-MAP Low=Green

You can also assign a background color value. It follows the foreground
color and is separated from it by a comma. For example, to assign white
characters on a blue background for high-intensity fields, you would use the
following:

COLOR-MAP High=White,Blue

Note: No spaces should appear within the assignment.

High-Reverse Low-Reverse

High-Blink Low-Blink

High-Reverse-Blink Low-Reverse-Blink

High-Underline Low-Underline

High-Reverse-Underline Low-Reverse-Underline

Reverse-Blink Reverse-Underline

4-44 Terminal Manager
You may specify more than one attribute in a single COLOR-MAP line.
Simply separate the attributes from each other by spaces. For example:

COLOR-MAP High=Green Low=Red Reverse=Blue

The following points should be noted:

1. The named video attribute is still used by the ACCEPT or DISPLAY.
For example, “Reverse=Blue” will result in a reverse-video blue field
while “High=Brown” will use high-intensity brown (on some terminals,
specifying High=Brown will cause yellow to be generated by any
DISPLAY HIGH phrase).

2. If a particular ACCEPT or DISPLAY statement has a COLOR phrase,
that phrase will be used instead of the COLOR-MAP attributes in the
runtime configuration file. Note, however, that the COLOR-MAP will
apply to fields that use the FCOLOR or BCOLOR options of the
CONTROL phrase.

3. The attributes HIGH, LOW, and REVERSE are treated in a special
manner. If a statement uses more than one of the three, then the
attribute/color used will be in this order of preference:

1) REVERSE

2) HIGH

3) LOW

For example, a DISPLAY statement specifying both REVERSE and
HIGH will use the color associated with REVERSE.

Also, any one of these settings is used for all applicable cases, except
where specifically overridden by another setting. For example:

COLOR-MAP REVERSE=Red LOW-REVERSE=Blue

will use red for all statements that specify REVERSE except for
statements that explicitly specify REVERSE,LOW.

In all other cases, the configuration variable must exactly match the
COBOL statement. For example, a configuration file attribute
HIGH-REVERSE would not apply to a program statement that included
HIGH,REVERSE,UNDERLINE.

The Display Interface 4-45
Note that compiler options “-Vl” and “-Vh” cause LOW and HIGH
respectively to be implied for program statements; create your
COLOR-MAP as though LOW or HIGH were explicitly coded in the
program.

4. The DEFAULT attribute works a little differently. It is used to assign
the initial default colors for the screen. Its effect is the same as having
a DISPLAY WINDOW COLOR statement as the first statement of
your program.

5. The EXIT attribute determines which colors ACUCOBOL-GT will set
when it terminates. These colors are also set when a call is made to the
“SYSTEM” library routine. On some machines these colors are
immediately changed by the operating system prompt and thus have no
effect.

6. You can assign values to the color map from within a COBOL program
through use of the SET ENVIRONMENT verb. You can turn off the
color map with the following statement:

SET ENVIRONMENT “COLOR-MAP” TO “OFF”

7. Note that on a XENIX console, if you use the XENIX command
“setcolor” to establish a high-intensity background color, you may get
unexpected results from ACUCOBOL-GT. This is because the
implementation of high-intensity background colors causes XENIX to
treat the “blink” bit as a background intensity bit instead. In addition,
because ACUCOBOL-GT can select only 8 background colors, all of
the background colors used will be high-intensity, including black
(which shows up as a light gray).

For these reasons, we recommend that you avoid using a high-intensity
background color if you are using the XENIX console. As an
alternative, you may create a shell script to run ACUCOBOL-GT. This
script could set a low-intensity background color, run ACUCOBOL-GT,
and then reset the desired high-intensity background color.

4.4.2 The SCREEN Option

There is a runtime configuration variable called “SCREEN” that controls
many features of the video sub-system. This option works in the same
manner as the “KEYBOARD” variable. You can specify one or more

4-46 Terminal Manager
SCREEN variables. Attributes that you can set are identified by one or more
sets of keywords and associated values, separated from each other by spaces
or tabs; the syntax is:

SCREEN keyword=value [keyword=value]...

The following keywords are supported:

ALPHA-UPDATES=value

This option affects how alphanumeric fields with a default value are
displayed prior to entry. It works just like the EDITED-UPDATES
option (described below) except that it applies to alphanumeric fields
instead of numeric edited fields. The only acceptable value is
Unchanged.

Placing “Auto-Prompt” immediately after this option, using a comma
as a separator, allows the user to decide whether to change or replace
the default value. When Auto-Prompt is specified, the default value
will be displayed, and then the program will wait for the user to enter a
character. If the character entered is a data character,
ACUCOBOL-GT will fill the field with prompt characters (erasing
what was there) and then accept data as if this were a new field. If the
character entered is an editing character (such as an arrow key), then
ACUCOBOL-GT allows the user to edit the data normally. Sample
syntax is shown here:

SCREEN ALPHA-UPDATES=Unchanged, Auto-Prompt

ALPHA-UPDATES=value CONVERT-OUTPUT=value

EDITED-UPDATES=value ERROR-BELL=value

ERROR-BOX=value ERROR-COLOR=value

ERROR-LINE=value FORM-FEED=value

INPUT-DISPLAY=value INPUT-MODE=value

JUSTIFY=value NUMERIC-UPDATES=value

PROMPT=value PROMPT-ALL=value

PROMPT-ATTR=value REFRESH-LINES=value

REFRESH-MODE=value SHADOW-STYLE=value

SIZE=value WINDOW=value

The Display Interface 4-47
This option can also be specified as SCRN_ALPHA_UPDATES. The
Auto-prompt value can be specified with
SCRN_ALPHA_AUTO_PROMPT. For example, to set the above
syntax using these variables, you would enter:

SCRN_ALPHA_UPDATES Unchanged
SCRN_ALPHA_AUTO_PROMPT on

CONVERT-OUTPUT=value

This option affects only Screen Section DISPLAY statements. If this
keyword is set to “Yes”, then all output fields will act as if the WITH
CONVERSION phrase were specified for them. This has two effects.
The first is that numeric fields will be converted from the internal
storage format to a readable form (including suppression of leading
zeros). The second is that the action of the JUSTIFY keyword (see
below) takes effect. This option is normally set to “No”, but is
provided as an alternate method of displaying numeric data in the
Screen Section. The configuration variable
SCRN_CONVERT_OUTPUT is synonymous with this option.

EDITED-UPDATES=value

This option affects how numeric edited fields with a default value are
displayed prior to the user making an entry. The four possible values
are: Converted, Unchanged, Left-Adjust, and Formatted.

Converted is the default setting. When this setting is used, the default
value is displayed in a standardized format. This format has
an optional leading minus sign, followed by the number, with
no leading zeros and no internal formatting characters.

Unchanged is an alternate setting. When this setting is used, the default
value is displayed without any changes. All of the editing
characters appear, and leading spaces are shown. Note that
the LEFT, RIGHT, or CENTER phrase will affect the display.
After the value has been displayed, the user can edit it
normally.

4-48 Terminal Manager
There is one exception to the rule that the number will always be
formatted just as described by the PICTURE clause. This is when “Z”
or “*” characters are placed after the decimal point in the PICTURE.
In this case, the entered characters will be treated like “9” characters
instead. This is necessary in order to allow the user to enter values
between zero and 1 when the default value is zero. If this rule did not
exist, then when the user tried to enter the decimal point, the
reformatter would keep removing it. The same applies to any zero
digits between the decimal point and the first non-zero digit.

When the “Formatted” option is used with left justification, the entry
action is also left justified. When it is used with the centering option,
the entry occurs as if the field were right justified, and the final result
is centered when the user leaves the field.

Place “Auto-Prompt” immediately after this option, using a comma as
a separator, to allow the user to decide whether to change or replace the
default value. When Auto-Prompt is specified, the default value will
be displayed, and then the program will wait for the user to enter a
character. If the character entered is a data character,
ACUCOBOL-GT will fill the field with prompt characters (erasing
what was there) and then accept data as if this were a new field. If the
character entered is an editing character (such as an arrow key), then
the program allows the user to edit the data normally. Sample syntax
is shown here:

SCREEN EDITED-UPDATES=Converted, Auto-Prompt

Left-Adjust is identical to Unchanged, except that any leading spaces are
removed before the value is displayed.

Formatted is fundamentally different from the other options in that it
affects the way the number is entered, not just the format of
the default value. When “Formatted” entry is selected, the
number is continuously reformatted by the ACCEPT
statement to match the editing specification of the item being
entered. This means that the value will always appear to the
user in its “final” form. This is similar to the way numbers are
entered on most calculators. Selecting this option has many
minor affects on the actions of various editing keys. These
are not detailed here, but the actions of the editing keys are
analogous to their actions on non-formatted fields.

The Display Interface 4-49
This option can also be specified as SCRN_EDITED_UPDATES. The
Auto-prompt value can be specified with
SCRN_EDITED_AUTO_PROMPT.

ERROR-BELL=value

This option determines when the error bell will be sounded. Possible
values are:

For example, to use the “All” setting, add the following line to your
runtime configuration file:

SCREEN ERROR-BELL=All

You may also use the configuration variable SCRN_ERROR_BELL to
set these values. The variable SCRN_WARN is synonymous with
SCREEN ERROR-BELL=All.

ERROR-BOX=value

This option affects whether an error box appears when an entry error
has occurred. Examples of entry errors are entering a letter in a
numeric field or entering a number in the wrong format. When value
is set to “yes” (the default), the error message is displayed in a box. If
value is set to “no”, the error is reported based on the entry in the
SCREEN ERROR-LINE variable (below). The configuration variable
SCRN_ERROR_BOX may also be specified.

Yes: ring the bell on an entry error, but not on field-full. This is the
default setting.

No: do not ring the bell on entry error or field-full.

All: ring the bell whenever the user makes an entry error or attempts to
enter data into a full field.

4-50 Terminal Manager
ERROR-COLOR=value

This keyword is given a numeric value that represents the colors used
in error messages generated by the runtime system. Value is the
arithmetic sum of the numbers representing the colors and other
attributes used in error messages generated by the runtime system. The
following color values are accepted:

You may specify other video attributes by adding the following values:

Only one foreground color and one background color may be specified.
If either is missing, the corresponding default for the current terminal
window is used. High intensity and low intensity may not both be
specified. If neither is specified, the default intensity is used.

For example, to get a blinking white foreground on a blue background,
you would specify:

SCREEN ERROR-COLOR=16456

(16456 = 8+64+16384)

Color Foreground Background

Black 1 32

Blue 2 64

Green 3 96

Cyan 4 128

Red 5 160

Magenta 6 192

Brown 7 224

White 8 256

Reverse video 1024

Low intensity 2048

High intensity 4096

Underline 8192

Blink 16384

Protected 32768

The Display Interface 4-51
The default value is “4096”, which causes the error messages to use the
current colors with a high-intensity foreground. The configuration
variable SCRN_ERROR_COLOR is also supported.

ERROR-LINE=value

Value is the line number you wish error messages to appear on. The
runtime system pops up a one-line window on this line to display the
message, and then removes it after the user responds. If this is set to a
negative value, then the line used will be that many lines up from the
bottom of the screen. For example, “Error-Line=-2” implies that the
next-to-last line should be used. The default value is “-1”. You may
also specify the configuration variable SCRN_ERROR_LINE to set
this value.

FORM-FEED=value

This option lets you use “Control-L” for a form feed. Setting this
variable to “yes” and putting “Ctl-L” in a DISPLAY statement allows
a form feed to occur. In effect, this clears the screen and puts the
cursor at screen position (0,0). Setting this variable to “no” disallows
a form feed. The default value is “no”. This can also be specified as
SCRN_FORM_FEED instead of SCREEN FORM-FEED.

INPUT-DISPLAY=value

This option determines what happens when the DISPLAY verb
operates on an input field described in a Screen Section entry. There
are four choices: “None”, “Value”, “Spaces”, and “Prompt”.

The configuration variable SCRN_INPUT_DISPLAY is also supported.

None: The field is not displayed.

Prompt: The field is displayed with the field’s prompt character (usually
underscore).

Spaces: The field is displayed as spaces. This is the default value.

Value: The current value of the field is displayed. This will be zero for
numeric and numeric-edited fields, and spaces for other fields.

4-52 Terminal Manager
INPUT-MODE=value

This option affects pre-display of data in a Screen Section ACCEPT.
The options are “Predisplay”, “Update”, and “Normal”.

You may also specify the configuration variable
SCRN_INPUT_MODE.

JUSTIFY=value

The JUSTIFY setting determines the default justification of converted
numeric and numeric-edited fields. If “Left” is chosen, then leading
spaces are removed from these fields when they are displayed. If
“Right” is chosen, then the leading spaces are retained. Finally, if
“Auto” is chosen (the default), then left justification is used if the
program was compiled in RM/COBOL compatibility mode, otherwise
right justification is used. Note that justification affects only fields that
have the CONVERT phrase specified or implied for them. The
configuration variable SCRN_JUSTIFY is also supported.

NUMERIC-UPDATES=value

This option affects how numeric fields with a default value are
displayed prior to entry. This option works just like the
“EDITED-UPDATES” option described above except that it applies to
numeric fields instead of numeric edited fields. The possible values
are Converted and Unchanged.

Place the phrase Auto-Prompt immediately after this option, using a
comma as a separator, to allow the user to decide whether to change or
replace the default value. When Auto-Prompt is specified, the default
value will be displayed, and then the program will wait for the user to
enter a character. If the character entered is a data character,

Predisplay: A Screen Section ACCEPT statement will cause the current
value of each input and update field to be displayed.
(Whatever is present in the Screen Section is displayed; this is
not necessarily the same as the contents of Working-Storage).
Each field is then entered as an update field (i.e., the value can
be edited).

Update: Each input field is treated as an update field. This causes the
field’s current value to echo on the screen when the field is
visited.

Normal: Causes no echoing of input-only fields.

The Display Interface 4-53
ACUCOBOL-GT will fill the field with prompt characters (erasing
what was there) and then accept data as if this were a new field. If the
first character entered is an editing character (such as an arrow key),
then ACUCOBOL-GT allows the user to edit the data normally.
Sample syntax is shown here:

SCREEN NUMERIC-UPDATES=Converted, Auto-Prompt

This option can also be specified as SCRN_NUMERIC_UPDATES.
The Auto-prompt value can be specified with
SCRN_NUMERIC_AUTO_PROMPT.

PROMPT=value

The value of the PROMPT setting determines the default prompt
character. The default value is underscore. To specify an alternate
prompt, place the character immediately after the equals sign. To
specify a space as the prompt character, leave the value empty (e.g.,
“Prompt= “). You may also specify the configuration variable
SCRN_PROMPT to set this value. The variable
SCRN_PROMPT_DEFAULT is equivalent to setting SCREEN
PROMPT to the default value.

PROMPT-ALL=value

By default, a prompt character is shown only in the field containing the
cursor. If value is “Yes”, then the prompt character is shown in every
field managed by the ACCEPT statement. The prompt characters are
removed when the ACCEPT is terminated. Prompts never appear in
SECURE fields. Default is “No”. The configuration variable
SCRN_PROMPT_ALL is synonymous with this option.

Note: Setting the SCREEN keyword PROMPT-ALL to the value
“Protected” will have the same effect as setting PROMPT-ALL to
“Yes”, except that prompt characters will not be displayed in protected
fields.

PROMPT-ATTR=value

You may specify a prompt attribute. This attribute is used whenever
the PROMPT is specified or implied for a Screen Section ACCEPT
statement. The PROMPT-ATTR keyword is followed by a single
attribute: High, Low, or Reverse. For example:

SCREEN PROMPT-ATTR=HIGH

4-54 Terminal Manager
The configuration variable SCRN_PROMPT_ATTR is also supported.
The usage is:

SCREEN_PROMPT_ATTR HIGH

REFRESH-LINES=value

Value specifies the number of screen lines to redisplay after the user
has finished entering data into a field. This option is useful when the
terminal or terminal emulator can accept Asian phonetic characters and
translate them into ideograms. The entered characters will often
overflow the displayed input field, but after translation, the resultant
ideogram(s) will not. This option will “clean up” the screen by
redisplaying the affected lines with the ideograms in place. For
example:

SCREEN REFRESH-LINES=3

After accepting input data, the Terminal Manager will redisplay the
contents of the input field, the remainder of the line, and the two lines
below it.

If the CODE_SYSTEM runtime configuration variable (see section
4.4.4) is non-zero, specifying an Asian double-byte character system,
the default value of REFRESH-LINES is “1”. If the CODE_SYSTEM
runtime configuration variable is set to “0”, indicating a single-byte
ASCII or EBCDIC character system, the default value of
REFRESH-LINES is “0”. You may also use the configuration variable
SCRN_REFRESH_LINES to set these values.

REFRESH-MODE=value

This option, like REFRESH-LINES, supports double-byte character
sets. Value specifies when lines should be refreshed after an ACCEPT.
Setting this variable to a value of “0” means that the lines are never
refreshed, “2” indicates that lines are always refreshed. The default
value of “1” specifies that lines are refreshed only if double-byte
characters are entered. For example:

SCREEN REFRESH-MODE=1

The configuration variable SCRN_REFRESH_MODE is synonymous
with this option.

The Display Interface 4-55
SHADOW-STYLE=value

This option determines the way window shadows are displayed. It may
have one of the following four values:

The configuration variable SCRN_SHADOW_STYLE is also
supported.

SIZE=value

This keyword has meaning only on graphical systems such as
Windows. It is used to change the default virtual screen size. Value is
the desired number of rows and columns, separated by a comma.

For example, to set the initial virtual screen size to 30 rows by 80
columns, you would make the following entry:

SCREEN SIZE=30,80

None: When this setting is used, shadows are not displayed.

Dim: This setting displays a one-character border around the right and
bottom edges of the window. This border displays the underlying
data in low-intensity with a white foreground and a black
background; in effect, the border is translucent. This border looks
best when the shadowed window and the window it overlays do
not both have black backgrounds.

Black: This setting displays a black border on the right and bottom edges
of the window. On the right edge, this border is one character
wide. On the bottom edge, the border is one-half character high.
This gives a fairly uniform appearance to the border. The border
depends on the existence of an “upper-half” block character on the
display device. For machines that use a terminal database file, this
character should be specified as the 12th character in the GM code
in the terminal database file (GM defines the various graphics
characters). Also, we recommend that you specify a “lower-half”
character as the 13th GM character. If such characters do not exist,
then the bottom border is a full character high. The Black setting
is the default shadow style.

Lines: This setting causes the right and bottom edges to be shown with a
border made from the line drawing set. This setting is not as
appealing as the Dim or Black settings when color or reverse-video
backgrounds are being used. When the background is black,
however, this setting is preferable to the other two.

4-56 Terminal Manager
The comma is required.

The size of your virtual screen is independent of the size of the
application window or the underlying hardware. In other words, the
virtual screen can be larger than the physical screen. You may set any
screen size up to a maximum of 100 rows and 200 columns. If you do
not specify a size, the default is 25 rows and 80 columns. You may also
use the configuration variables SCRN_SIZE_COLS and
SCRN_SIZE_ROWS to set this option.

The SIZE option sets only the initial screen size. After the application
begins, the screen size can be changed with the DISPLAY SCREEN
SIZE verb.

If the virtual screen is too large to be fully displayed on the physical
screen, the user will have to scroll to view all of the rows and columns.

WINDOW=value

This keyword has meaning only on graphical systems such as
Windows. Normally, the initial size of an application’s window is
determined by the host. You can change this initial size with the
WINDOW keyword. Value is the desired number of rows and
columns, separated by a comma.

For example, if you wanted your initial window to contain 10 rows and
70 columns, you would enter:

SCREEN WINDOW=10,70

The WINDOW configuration option has several special values that it
recognizes. If either the row or column is set to a negative number, then
the initial window is minimized (turned into an icon). If either value is
set to “999” or larger, then the initial window is maximized instead.
Finally, if either value is zero, then the initial window size is determined
by the host system (this is the default).

The application window size may never be bigger than the virtual screen
size, nor may the window size be larger than what can be physically
displayed on the user’s screen. This physical limit will change
depending on the resolution of the user’s screen and the size of the font
you are using. The ACUCOBOL-GT runtime will automatically reduce
the requested window size to meet these limits.

The Display Interface 4-57
You may enter the SIZE and WINDOW options on the same line. For
example, if you wanted your application to be able to use 30 lines by 80
columns, and you wanted to start with the window maximized (thus
showing the entire virtual screen), you would enter:

SCREEN SIZE=30,80 WINDOW=999,999

Note: The SIZE and WINDOW options set only the initial screen and
window size. After the application begins, the user is free to change
the window size with various system controls, and the application is
free to change the screen size with the DISPLAY SCREEN SIZE verb.

The configuration variables SCRN_WINDOW_X and
SCRN_WINDOW_Y are also supported for this option.

4.4.2.1 SCREEN examples

The following sample recaps the default settings and provides an example of
how to specify SCREEN configuration entries.

4.4.3 Additional Configuration Variables

Several miscellaneous runtime configuration variables affect the Terminal
Manager. These are described below.

SCREEN Convert-Output=No

SCREEN Edited-Updates=Converted, Auto-Prompt

SCREEN Error-Bell=Yes

SCREEN Error-Color=4096 Error-Line=-1

SCREEN Input-Display=Spaces Input-Mode=Normal

SCREEN Prompt=_ Justify=Auto

SCREEN Numeric-Updates=Converted, Auto-Prompt

SCREEN Alpha-Updates=Unchanged

SCREEN Shadow-Style=Black

4-58 Terminal Manager
Note that for the variables AUTO_PROMPT, BELL, MONOCHROME,
SCROLL and WRAP, the settings 1, on, true, and yes are synonymous, as
are the values 0, off, false and no.

AUTO_PROMPT

When set to a non-zero value, the AUTO-PROMPT runtime
configuration variable causes every ACCEPT statement without a
PROMPT phrase to be treated as if PROMPT SPACES were specified.
This has the effect of erasing the field where the data is about to be
entered. This is provided primarily for compatibility with
ACUCOBOL-85 version 1.1, which behaved this way. The default
setting for this variable is zero.

BELL

When set to a zero value, the BELL variable suppresses all bells
generated by ACCEPT and DISPLAY statements. This will make
ACUCOBOL-GT totally quiet even if WITH BELL phrases are used
on DISPLAY statements. The default setting is one.

HOT_KEY

This variable associates an exception value or values with a program.
When a key with a specified exception value is pressed, the
corresponding program is run. This variable is described in detail in
Appendix H.

MONOCHROME

When set to a non-zero value, this variable disables color output for
Windows machines with graphics video cards.

ACUCOBOL-GT assumes that all Windows machines with graphics
video cards have color monitors (because the card has color abilities).
If you have a monochrome monitor attached to such a machine, the
results can be difficult to see. You can tell ACUCOBOL-GT to disable
color output for these monitors through the Monochrome option.
When this is set to a non-zero value, ACUCOBOL-GT will use only
black and white. The default value is zero. Note that you may change
this in your program by using the SET ENVIRONMENT verb;
ACUCOBOL-GT examines the MONOCHROME setting each time it
does screen output.

The Display Interface 4-59
RESTRICTED_VIDEO_MODE

This variable controls the rules ACUCOBOL-GT uses when
displaying data on a terminal with “non-hidden” attributes (sometimes
called “magic cookies”). See section 4.5, “Restricted Attribute
Handling,” later in this chapter for a discussion.

SCROLL

When set to zero, the SCROLL variable inhibits screen scrolling,
except scrolling caused by explicit SCROLL phrases in ACCEPT and
DISPLAY statements. If a line wraps on the bottom line of the screen,
the screen will not be scrolled if SCROLL is set to zero, but the line
wrapping will still occur; it will overwrite the bottom line. Normally,
ACUCOBOL-GT will scroll the screen to bring a DISPLAY line onto
the screen if its line number is past the bottom edge of the screen.
When SCROLL is set to zero, this does not occur and the cursor
location becomes undefined (see the Note at the end of this section).

WRAP

The WRAP variable controls whether line wrapping is allowed.
Normally, a DISPLAY statement that does not fit onto one line will
wrap around to the next line. When WRAP is set to zero, this does not
occur and the DISPLAY statement is truncated at the end of the line.
Also, ACUCOBOL-GT normally wraps around to bring the column
position specified for an ACCEPT or DISPLAY statement onto the
screen. If WRAP is set to zero, the cursor location becomes undefined
(see the Note at the end of this section).

Note: If WRAP or SCROLL is set to zero, the screen cursor location can
be placed into an undefined state. This can occur, for example, if the
WRAP setting causes a DISPLAY statement to truncate. This would leave
the cursor conceptually just off the right edge of the screen. When this
occurs, ACUCOBOL-GT inhibits further DISPLAY statements until the
cursor is placed back on the screen via one of the normal positioning rules
(ACUCOBOL-GT continues to track the cursor’s logical location). Should
an ACCEPT statement execute in an undefined location, ACUCOBOL-GT
places the ACCEPT field in the home position of the current window.

4-60 Terminal Manager
4.4.4 Double-Byte Character Handling

Asian character sets contain large numbers of ideographic characters that
represent an entire or partial word or concept. They may also contain
interspersed phonetic characters. They may therefore consist of tens of
thousands of characters. Because one 8-bit byte can hold only 256 unique
codes, these languages require at least two bytes to represent each character,
in order to accommodate the full range.

Most double-byte characters occupy two full character screen positions (each
byte corresponds to one screen position). Such data may be entered into and
displayed from USAGE DISPLAY data items. Most COBOL applications
can therefore accept and store double-byte data without modification.

Problems can arise when double-byte data is displayed on the screen. For
example, during an ACCEPT, one byte of a double-byte character may be
deleted or overwritten. When a window is displayed, the edge of the window
might cover one byte of a double-byte character. In these circumstances, the
pairing of bytes can change, and the resulting codes may represent entirely
different characters. On most machines this confuses the operating system’s
display driver. To overcome these potential problems, the runtime must
follow two rules:

1. Always display both bytes of a double-byte character together (never
display only part of a double-byte character).

2. Always overwrite, or change the attributes of, both bytes of a
double-byte character together (never overwrite, or change the
attributes of, only part of a double-byte character).

These rules must be obeyed when an ACCEPT handles cursor movement,
cursor placement, text selection, delete, backspace, and character overtyping.

The rules must also be followed when the edges of windows are displayed, to
avoid covering parts of double-byte characters.

To implement these rules, the runtime needs to know which of several
double-byte character encoding schemes is being used. It gets this
information from the value of the configuration variable “CODE-SYSTEM.”
See Appendix H for a detailed discussion of this variable.

Restricted Attribute Handling 4-61
4.5 Restricted Attribute Handling

The ACUCOBOL-GT Terminal Manager assumes that video attributes can
be applied individually to each character on the screen. This is the way most
personal computers work with ANSI-conforming terminals. Several popular
terminals, however, do not behave this way. This section discusses how
ACUCOBOL-GT treats these terminals and what restrictions they impose.

Note: The rest of this section does not apply to Windows implementations
of ACUCOBOL-GT except those using the alternate runtime with a
terminal database file. If you are a Windows user and plan to move your
programs to UNIX or VMS systems, you may want to read this section to
familiarize yourself with the restrictions these environments impose.

Some terminals implement video attributes by a method that conflicts with
the assumptions of the Terminal Manager. These terminals have special
characters that show on the screen as a space, but set a display attribute for
succeeding characters. That attribute is applied until another attribute-setting
character is found. If one of these special characters is overwritten, its
attribute will not be set.

UNIX documentation calls these attribute characters “magic cookies.” They
are also sometimes called “non-hidden attributes.” Two terminals that use
this style of attribute handling are the Televideo 925 and the Wyse 50.

This type of terminal poses special problems. One issue is where to place the
attribute character. If it is placed in the first location of the field, the data in
the field will be moved over one character position, resulting in a different
display than on other types of terminals or personal computers. If it is placed
just before the field, it might overwrite some valid data. Combining attribute
characters with windows is even more intricate. The next section describes
the rules ACUCOBOL-GT follows when accessing this type of terminal.

4-62 Terminal Manager
4.5.1 Restricted Video Modes

The action of ACUCOBOL-GT on a terminal with “non-hidden” attributes is
determined by the setting of the RESTRICTED_VIDEO_MODE runtime
configuration variable. This variable can take several different settings to
control the rules ACUCOBOL-GT uses for these terminals.

Note: The following rules do not apply to intensity. These terminals can
apply intensity attributes individually to each screen position. The
Terminal Manager treats high and low intensity in the normal manner for
these types of terminals.

By default, the RESTRICTED-VIDEO-MODE value is zero, which causes
the Terminal Manager to ignore attributes other than intensity; the
application will run correctly, but without any video attributes. This is
convenient when you are running a program that has not been written to
conform to the following rules.

To use video attributes with these terminals, you must set
RESTRICTED-VIDEO-MODE to a non-zero value; the syntax is:

RESTRICTED-VIDEO-MODE value

Restricted Attribute Handling 4-63
Optional values are:

1 When the variable is set to “1”, the Terminal Manager uses rules that tend to
emphasize getting the fields in the right location over getting all the attributes
correct. These rules are as follows:

• Every ACCEPT and DISPLAY is preceded by the appropriate
attribute-setting character.

• This character is placed immediately to the left of the beginning of the
field. Note that this may overwrite existing data.

• If the field position is column 1 of the current window, and the
attribute is normal white on black, then the attribute-setting character
is not displayed.

• If the field position is column 1 of the current window, and the
attribute is other than white on black, the field is moved over to
column 2 to allow space for the attribute character.

• The field is then accepted or displayed using the normal rules.
• If the screen location immediately after the end of the field does not

contain an attribute-setting character, a normal white-on-black
attribute character is placed there. If this statement is an ACCEPT
statement, this is done before the ACCEPT occurs. The current cursor
location is then set according to the normal ACUCOBOL-GT rules
(this will cause the cursor location to be where this terminating
attribute character is located).

3 When RESTRICTED-VIDEO-MODE is set to “3”, the Terminal Manager
follows all the rules listed under value “1” except for rule (c). This causes all
ACCEPT and DISPLAY statements that reference column 1 to be placed in
column 2. This setting prevents you from placing data in column 1, but
causes all fields placed in column 1 to line up vertically regardless of which
attributes they use.

5 When RESTRICTED-VIDEO-MODE is set to “5”, the Terminal Manager
follows all the rules listed under “1” except for rule (b). The attribute
character is placed in the first position of the field, and the field is moved to
the right one character. This setting will cause all fields to shift to the right
by one, but will not overwrite data if two fields are adjacent.

7 When RESTRICTED-VIDEO-MODE is set to “7”, the Terminal Manager
follows all the rules listed for “1” except for rules (b) and (c). Thus, every
ACCEPT and DISPLAY will always be preceded by an attribute character,
and this character will always occupy the first field position. This value
emphasizes getting the attributes correct over getting the fields in the correct
screen location.

4-64 Terminal Manager
These rules give a certain amount of flexibility, but also have restrictions.
These are discussed in the next section.

4.5.1.1 Restrictions

The following restrictions apply to programs that plan to use “non-hidden
attribute” terminals. The restrictions are largely based on physical attributes
of these terminals. In essence, by setting RESTRICTED-VIDEO-MODE to
a non-zero value, you are declaring to ACUCOBOL-GT that you are willing
to work with some restrictions beyond those imposed by other types of
terminals. The end user should be aware that moving an application to this
type of terminal from a “normal” type may result in unexpected effects.

The following restrictions apply:

1. Under the current version of ACUCOBOL-GT, this style of attribute
handling may be applied only at the field and Screen Section levels. If
you are using one of these types of terminals, the REVERSED and
COLOR phrases of the DISPLAY WINDOW, DISPLAY LINE, and
DISPLAY BOX verbs will be ignored.

2. The Terminal Manager makes no attempt to control the screen
attributes present when a window is created. If you create a pop-up
window over one-half of a reverse-video field, and then you clear that
window, the reverse-video field will suddenly extend across the screen
when the terminating attribute character is erased. You should keep
fields either wholly contained in a window or wholly outside a
window.

3. The various RESTRICTED-VIDEO-MODE settings can interact with
SCROLL and WRAP settings in unexpected ways. For example, if
you have a field wrap-around, the video attribute used for that field
will also wrap around for some terminals, but not for others. On the
other hand, if you set WRAP to zero and cause a field to be truncated,
then the terminating attribute character will not be placed on the
screen, and the video attribute may wrap around to the next line on
some terminals. Care should be taken with fields that wrap around or
scroll the screen.

The Terminal Database File 4-65
4. If you position one field within another, you will affect the attributes of
the characters that follow the contained field. Keep your fields
separate from each other and supply enough space between fields to
hold the attribute characters.

These restrictions are relatively easy to work with until you start working
extensively with windows. When working with windows, try to keep the use
of attributes to a minimum (particularly reverse-video) in order to avoid
difficulties. You can use high and low intensity or boxes to organize your
screen. Just use reverse-video for special highlighting.

If you intend to use video attributes on these types of terminals, then you
should make sure that you fully test your programs on one of them.

4.6 The Terminal Database File

The terminal database file, which is similar to the termcap file supplied with
many UNIX systems, may be edited to add new terminals to the ones it
currently supports. Existing entries in the file may also be edited, if needed,
to describe your terminal.

Each line of this file is either blank, a comment (marked by a “#” in column
1), or a definition of a terminal. You can continue a “line” on following lines
by ending the line to be continued with a “\” (see below for an example). The
“\” character must be the last character on the line.

A terminal definition consists of several fields, separated by colons. The end
of the line marks the end of the definition. The first field is always the name
of the terminal. Several names can be placed here, separated by a vertical bar
(“|”). The rest of the fields consist of codes that describe various terminal
functions. Most of these codes are followed by an equals sign and a coded
string that describes how to operate that particular function.

Here is a generic representation of a terminal database file entry, where TNn
is a terminal name, tf is a terminal function code, and cs is a coded string to
accomplish the function (some terminal function codes are self-defining and
do not need a coded string):

TN1|TN2|TN3:\
:tf[=cs]:tf[=cs]:tf[=cs]:\

4-66 Terminal Manager
:tf[=cs]:tf[=cs]:

The coded string that describes a function is just a representation of the
control-sequence (or sequences) that the terminal uses to activate that
function. These strings consist of the literal characters used in the
control-sequence. Several special forms are recognized to aid in describing
the control-sequence. The following abbreviations are supported:

The following is a list of all of the supported function codes. The most
commonly used codes will be treated in detail in the following sections.

\E an escape character

\n a newline (control-J)

\r a carriage return (control-M)

\t a tab (control-I)

\b a backspace (control-H)

\f a form-feed (control-L)

^X X is any character, treated as control-X

\nnn three digits treated as an octal value

AC Attributes used by clear screen

AT Special color for IBM 3164 terminal

B1 - B8 Background color 1-8

BL Blink

C1 - C8 Foreground color 1-8

DI De-initialization string

DL Default intensity is low

DP Disable print mode

EP Enable print mode

GA Graphics on and off are characters

GE Graphic escape

GF Graphics off

GM Graphics map

The Terminal Database File 4-67
GO Graphics on

GX Graphics movement glitch

HI High-intensity, normal video

LO Low-intensity, normal video

NM Normal Video (only if ìsgî set)

NS Screen does not scroll when corner is used

OC One color can be displayed at a time

RA Reverse video, alternate intensity

RB Reverse video, blink

RU Reverse video, underline

RV Reverse video

UL Underline

W3 Set terminal width to 132 columns

W8 Set terminal width to 80 columns

al Insert (add) line

bc Backspace cursor (defaults to ^H)

cd Clear to end-of-screen

ce Clear to end-of-line

cl Clear screen

cm Cursor positioning

co Number of screen columns (default 80)

dl Delete line

do Down one line (defaults to ^J)

is Initialization string

is1 Additional initialization string

is2 Additional initialization string

li Number of screen lines (default 24)

nd Non-destructive space

sg Standout-mode glitch (uses magic cookies)

4-68 Terminal Manager
The following codes are also available to represent various keys. Most
terminals have only a subset of this full set.

tc Continue description with another entry

up Cursor up one line

ve Set cursor to normal

vi Set cursor to invisible

vs Set cursor to bright

K1 - K0 Function keys 11 - 20

K? Help

KA Attention

KB Bottom

KC Clear

KD Do (command)

KE End

KF Find

KI Insert character

KL Page left

KM Mark (select)

KP Print

KR Page right

KS Send

KT Top

KV Save

KX Delete character

Kc Cancel

Kl Word left

Kr Word right

Kx Exit

The Terminal Database File 4-69
All of the function codes described with lower-case characters are identical to
ones found in the UNIX termcap file. These sequences can be taken
verbatim from termcap and included in the ACUCOBOL-GT terminal
database file when you are adding a new terminal entry.

To help with this discussion, an example of an entry for a DEC VT-100 will
be developed. At each step of the example, the new portion of the entry will
be in bold type. Initially, we need to assign a set of names that we want to
use to refer to the terminal. For example:
vt100|vt-100|DEC VT-100:

This allows for any of the names “vt100”, “vt-100” or “DEC VT-100” to be
used for the TERM or A_TERM variable. By convention, the last name in
the list is a long, descriptive name.

k1 - k0 Function keys 1 - 10

kA Insert line

kB Tab left

kE Clear to end

kL Delete line

kN Page Down

kP Page Up

kd Down arrow

kh Home

kl Left arrow

kr Right arrow

ku Up arrow

U1 - U0 User defined key 1 - 10

A1 - A0 User defined key 11 - 20

4-70 Terminal Manager
4.6.1 Required Functions

In order for the Terminal Manager to run, four functions must be defined for
the terminal; all of the remaining functions are optional. These required
functions are Cursor-positioning (cm), Clear-screen (cl),
Clear-to-end-of-line (ce), and Clear-to-end-of-screen (cd). If these
functions are not present when the Terminal Manager tries to run, an error
will be printed and the program halted.

The Clear-screen function should clear the entire screen and home the cursor.
The clear-to-end-of-line function should clear from the cursor position to the
end of the current line. The clear-to-end-of-screen function should clear from
the cursor position to the end of the screen.

The Terminal Manager starts by establishing a window that is the size of the
screen. By default, a screen size of 24 by 80 is assumed. If this is not correct,
you can set the Lines (li) and Columns (co) fields to the correct size. These
settings are made with a “#” instead of an “=“. For example, if you have a
25-line terminal, the proper setting is “li#25”.

Continuing with our example, the DEC VT-100 clears the screen by sending
an “ESC[2J”. Unfortunately, this does not home the cursor. This can be
accomplished by sending “ESC[;H”. These can be sent in either order.
Clearing to the end of line is done by sending “ESC[K” and clearing to the
end of the screen by “ESC[J”. The terminal has the default screen
dimensions, so we do not need to add the “co” or “li” options. Our entry now
reads:
vt100|vt-100|DEC VT-100:\

:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:

Cursor positioning is accomplished by a special encoded form. The program
must specify varying information in the control-sequence (the row and
column numbers). Special abbreviations are allowed to encode this
information. These abbreviations and their meanings are:

%d Inserts the row or column number here in ASCII. For example,
row 5 would be inserted here as “5”.

%2 Acts like “%d” except that it always prints as two digits. Row 5 is
inserted as “05”.

The Terminal Database File 4-71
For example, the ADM-3A terminal positions the cursor by sending an
“ESC=“ followed by the row and column offset by a space character. The
code for this is “\E=%+ %+ ” (note spaces).

The VT-100 positions the cursor by sending an “ESC[“ followed by the row,
a semicolon, the column and then an “H”. The row and column are sent as
ASCII strings and the home position is row 1, column 1. The correct string
is “\E[%i%d;%dH”.
vt100|vt-100|DEC VT-100 :\

:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:\
:cm=\E[%i%d;%dH:

4.6.2 Additional Screen Functions

Several additional functions are available to manipulate the screen display.
These should be included if the terminal supports these features. The
functions are: insert-line (al), delete-line (dl), non-destructive-space (nd),
backspace-cursor (bc), cursor-down (do), cursor-up (up), set-width-132
(W3) and set-width-80 (W8).

%3 Acts like %2 except that three digits are used.

%. Inserts the row or column number here literally. Row 5 would be
inserted here as a decimal 5 (ASCII control-E). Note that if this
type is used, then Cursor-up (up) and Backspace-cursor (bc) must
also be defined.

%+x

Acts like “%.” except that x is added to the row or column number
first. If the sequence were “%+ ” (note the trailing space), then
row 5 would be inserted here as the sum of the space character and
5, “%” in ASCII. This form is quite common.

%>xy This does not insert anything in the string. If the row or column
number is greater then x, then y is added, otherwise this has no
effect.

%r Normally the row is inserted first, and then the column. This
reverses the order.

%i Normally the row and column numbers are relative to zero.
Including this causes them to be relative to 1.

%% Sends a literal “%”.

4-72 Terminal Manager
The four cursor movement commands are available to optimize cursor
motion. The non-destructive-space function should move the cursor to the
right one column; the backspace-cursor function should move the cursor left
one column. Finally, the cursor-down function should move the cursor down
one line and cursor-up should move it up one line. If omitted, cursor-down
defaults to a line-feed character, and backspace-cursor defaults to a
backspace character. There are no defaults for non-destructive-space and
cursor-up.

The insert-line function should insert a blank line at the cursor line, moving
the cursor line and all following lines downward. The delete-line function
should delete the cursor line, moving all following lines up and inserting a
blank line at the bottom of the screen.

NS should be added to the terminal database file entry for a terminal that does
not scroll if the lower right corner of the screen is filled. This tells the
ACUCOBOL-GT program that it is all right to use this position. NS is the
complete sequence (... :NS: ...).

The set-width functions should change the display between 132-column
mode and 80-column mode. Both must be specified to use this feature.

You can also specify when the cursor should be visible. These entries should
handle cursor modification:

ve = set cursor to normal
vs = set cursor to bright
vi = set cursor to invisible

After “vi” has rendered the cursor invisible, “ve” is used to make it visible.

If your terminal does not have both a normal and a bright cursor, then set the
“ve” entry to turn the cursor on and do not use the “vs” entry.

The VT-100 supports only one of these functions: Non-destructive-space.
This is accomplished by sending “ESC[C”. Our current entry is now:
vt100|vt-100|DEC VT-100 :\

:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:\
:cm=\E[%i%d;%dH:\
:nd=\E[C:

The Terminal Database File 4-73
4.6.3 Video Attributes

To correctly configure attributes for a terminal, you must first determine
which style of attribute setting--ANSI or “magic cookie”--it uses. You can
do this most easily by typing the sequence to turn on reverse video at your
terminal. If the cursor moves one character and a reverse-video bar appears,
then you have a “magic cookie” style of terminal. If nothing happens, then
type some characters. These should show up in reverse video. If they do,
then you have an ANSI style terminal that allows for independent attributes
for each screen position. If you do not get reverse-video at all, then you did
something wrong.

If you include RV, UL, BL, RU, or RB in your terminal database file entry,
then the HI and LO functions must be included. These two functions set the
terminal to normal video/high intensity and normal video/low intensity,
respectively. If intensity is not being used, then these should both just set
normal video.

On all machines except Windows, the runtime system ignores the difference
between high-intensity spaces and low-intensity spaces when the background
color is black. If your terminal is set up to run with black-on-white characters
(reverse video) as its default, you should add the entry VB (visible
background) to the description of that terminal. This causes spaces to be
handled consistently.

If a “magic cookie” style terminal is being used, then HI and LO should not
set normal video, but should just set the appropriate intensity. The function
NM should be added to set normal video instead. Also, the function sg must
be included to tell the Terminal Manager that this is a “magic cookie” type
terminal. The sg setting does not take a value, it just has to be present.

A few “magic cookie” terminals ignore HI and LO, so that reverse video
fields appear the same regardless of which intensity is used. If you are
experiencing this situation, add RA to the terminal’s description. This sets
the terminal into reverse video using the terminal’s alternate intensity
(usually low intensity). If RA is used, then RV sets reverse video in the
terminal’s default intensity.

The function DL should be included in a definition if the default intensity for
the terminal is low-intensity. This function is not set to a value, it is just
included in the terminal definition.

4-74 Terminal Manager
On some terminals, a clear screen operation uses the currently selected video
attribute. For example, if reverse-video were the current attribute, then a
clear screen would cause the entire screen to become reverse-video. If the
terminal has this property, then AC should be included to indicate this.
ACUCOBOL-GT will use this to optimize certain screen displays.

Continuing the example, the VT-100 allows the independent setting of each
attribute. It cannot independently reset the attributes, but that is not required
by the Terminal Manager. Low-intensity, normal-video can be set with
“ESC[m”. High-intensity can be set with “ESC[1m”. Reverse video is
initiated by sending “ESC[7m”, underline with “ESC[4m” and blink with
“ESC[5m”. The terminal normally runs in low-intensity, so the DL flag is
used. All of these modes can be combined by placing the appropriate
attribute numbers together in one command string and separating them with
semicolons. Our new entry becomes:
vt100|vt-100|DEC VT-100 :\

:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:\
:cm=\E[%i%d;%dH:nd=\E[C:\
 :LO=\E[m:HI=\E[0;1m:RV=\E[7m:\
 :UL=\E[4m:BL=\E[5m:RU=\E[4;7m:\
 :RB=\E[5;7m:DL:

Note the setting of “\E[0;1m” for HI. The initial zero ensures that the
terminal is set to normal modes before the high-intensity mode is set.

4.6.4 Color

The Terminal Manager can support terminals that support ANSI-style
attribute handling. This style allows for independent setting of the
background and foreground colors and does not interfere with the setting of
other video attributes such as underlining. Color terminals that meet these
criteria can enable color by adding entries to turn on the various foreground
and background colors. Use the following table of attribute codes to set the
correct color entries; if your terminal has fewer than eight colors, you should
still make all eight entries for both foreground and background, repeating
colors as necessary:

Foreground Background Color

C1 B1 Black

The Terminal Database File 4-75
Terminal definitions for color terminals do not need the RV, RB, and RU
entries, because the Terminal Manager sends the appropriate foreground and
background color codes instead.

4.6.4.1 One-color terminals

Some terminals can display text in only one color at a time. On these
terminals it is impossible to display text with separate foreground and
background colors, unless one of the colors is black. The termcap code OC
(one color) tells the runtime to use special color handling to accommodate a
terminal of this type.

If this code is present in the terminal’s database entry, the runtime displays
text using the correct color combinations set from COBOL, so long as either
the foreground or background color is set to black. If neither the foreground
nor the background is set to black, the runtime displays text using the
foreground color (the background color is disregarded).

To use this code, add it to the terminal database entry preceded and followed
by a colon (:OC:).

4.6.5 Function Keys and Other Keys

Function keys and other special keys are simple to deal with. The various key
entries are set to the values that those keys send when they are pressed. All
of the key entries are optional. The table at the beginning of this section lists
all of the available key codes.

C2 B2 Blue

C3 B3 Green

C4 B4 Cyan

C5 B5 Red

C6 B6 Magenta

C7 B7 Brown

C8 B8 White

Foreground Background Color

4-76 Terminal Manager
As a minimum, you should define the arrow keys and some function keys.
Most programs use these keys.

4.6.5.1 User-defined keys

The User-defined keys (“U1” - “U0”) are available for any keys that are not
defined in the table above. These can be used for special purposes.

The VT-100 has the four arrow keys and function keys 1 through 4. The
function keys send “ESCO” followed by a distinguishing character, and the
arrow keys send “ESC[“ and a distinguishing character. The new entry is:
vt100|vt-100|DEC VT-100 :\

:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:\
:cm=\E[%i%d;%dH:nd=\E[C:\
:LO=\E[m:HI=\E[0;1m:RV=\E[7m:\
:UL=\E[4m:BL=\E[5m:RU=\E[4;7m:\
:RB=\E[5;7m:DL:\
:k1=\EOP:k2=\EOQ:\
:k3=\EOR:k4=\EOS:ku=\E[A:\
:kd=\E[B:kr=\E[C:kl=\E[D:

4.6.6 Line Drawing

Some terminals support a line drawing set. This is used by the Terminal
Manager when boxes are drawn around windows. The Terminal Manager
turns on the “graphics” mode by sending the GO code, then sends normal
characters that correspond to the lines, and then sets the terminal back to
normal mode with GF.

The GM function lists the normal characters that draw the line segments.
This is either a six- or eleven- or thirteen-character string. The characters
listed in the GM function correspond, in order, with the following line
segments:
1. horizontal line
2. vertical line
3. upper left corner
4. upper right corner
5. lower left corner
6. lower right corner

The Terminal Database File 4-77
This is the six-character set. If the terminal has the following line segments,
the characters that correspond to them should be included (in order) to make
the eleven-character set:

four three-way intersections:
7. missing bottom line
8. missing left line
9. missing top line
10. missing right line
11. the four-way intersection

This is the eleven-character set. If the terminal has the following block
characters, the characters that correspond to them should be included (in
order) to make the thirteen-character set:
12. upper-half block
13. lower-half block

On a few terminals, the graphics-on and graphics-off sequences are treated as
character attributes. In particular, turning off graphics also sets the terminal
to its default video attributes. If this is the case, then the code GA (graphics
are attributes) should be included in the terminal description. A few
terminals also cannot move the cursor while in graphics mode. If this is the
case, the code GX (graphics movement glitch) should be included.

Some terminals do not need to send a graphics-on or a graphics-off sequence.
For these terminals, the line-drawing characters are available in the default
character set. If this applies to your terminal, then just give the GM setting
without the GO or GF settings.

4.6.6.1 Multi-character sequences for graphics

Some terminals require more than one character in the escape sequence that
draws a graphical line segment. For example, the two-character sequence
“\E\202” might be required to draw a single horizontal line character.

ACUCOBOL-GT permits up to three characters to be specified in an escape
sequence that draws a single line segment. The three characters are stored
separately and “assembled” into a single sequence by the Terminal Manager.

4-78 Terminal Manager
When these multiple-character sequences are used, the GO (graphics on) and
GF (graphics off) codes serve special purposes. GO is used to store the first
character in the sequence, and GF is used (if needed) to store the third
character.

You tell the runtime (by including the GE code) that GO should be sent to the
terminal before each GM graphical character that is sent, and GF should be
sent after each GM graphical character.

Also you must make sure that the GM character list contains the appropriate
characters. To handle the example mentioned above, in which a horizontal
line segment requires the two-character sequence “\E\202”, you would add
two codes to the terminal database entry: “:GE:” and “:GO=\E:”, and also add
“\202” to the GM character list in position one (horizontal line character).

Some VT-100 emulators support line drawing by using alternate character
sets. They turn on graphics by sending “ESC(0” and turn it off by sending
“ESC(B”. The entry is:
vt100|vt-100|DEC VT-100 :\

:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:\
:cm=\E[%i%d;%dH:nd=\E[C:\
:LO=\E[m:HI=\E[0;1m:RV=\E[7m:\
:UL=\E[4m:BL=\E[5m:RU=\E[4;7m:\
:RB=\E[5;7m:DL:k1=\EOP:k2=\EOQ:\
:k3=\EOR:k4=\EOS:ku=\E[A:\
:kd=\E[B:kr=\E[C:kl=\E[D:\
:GO=\E(0:GF=\E(B:GM=qxlkmjvtwun:

4.6.7 Graphical Window and Control Emulation

The character-based version of the runtime emulates graphical windows and
controls by displaying characters with particular attributes that approximate
the look and feel of a graphical system.

The following standard characters are used by default to represent various
graphical components:

“-”, “|”, “+”, “=“, “*”, “.”,

“^”, “v”, “<“, “>“, “ “, “#”

The Terminal Database File 4-79
Terminals that support a line drawing set or a special extended character set,
or both, can be configured to use these special characters. The configuration
method is similar to the one used for line drawing, described in section 4.6.6,
“Line Drawing.”

To support the substitution of line drawing characters and extended
characters, there are two terminal database (“a_termcap”) functions:
GO-GUI-MAP and GF-GUI-MAP.

The GO-GUI-MAP function uses a list of standard characters that
correspond to line segments and other special characters when displayed in
the terminal’s graphics mode. This is similar to the GM function used for
line drawing. The Terminal Manager turns the terminal’s graphics mode on
by sending the GO code. The GO code is followed by normal characters
which are interpreted by the terminal into their corresponding special
characters. When all of the special character elements have been displayed,
the terminal is set back to normal mode with GF.

The GF-GUI-MAP function provides a method for specifying substitute
standard characters for some or all of the graphical components. When these
characters are used, they are displayed in normal (not graphics) mode. The
Terminal Manager gives preference to the characters specified in
GO-GUI-MAP. If a character in the list is preceded with “\0” (backslash,
zero), the Terminal Manager uses the corresponding character in the
GF-GUI-MAP. If the character cannot be determined from the
GO-GUI-MAP or GF-GUI-MAP functions (either list may be incomplete or
there may be a “\0” in the same position in both lists), the Terminal Manager
uses the default character. For more information about defining the list of
special characters, see the entry for GUI_CHARS in Book 4, Appendices,
Appendix H.

The characters listed in the GO-GUI-MAP and GF-GUI-MAP correspond, in
order, to the following graphical components. The character in parentheses
is the default character:

1. System menu button (*)

2. Floating window title left corner (+)

3. Floating window title right corner (+)

4. Floating window title fill character (=)

4-80 Terminal Manager
Note: Some of these graphic components may not be used in the current
version of ACUCOBOL-GT.

When a program executes, the runtime evaluates the terminal’s display
capabilities and determines the special display attributes to apply to select
control elements. These control elements include the control’s key letter,
push-button text, and a key letter that is part of the push-button text when the
user presses the button with the mouse. The runtime applies the first
supported capability to each element as follows.

Key letter:

1. Underline

2. Intensity toggle (opposite intensity - for example, if the control is
displayed in high intensity, the key letter is displayed in low intensity)

3. Reverse video

Selected push-button text:

1. Reverse video

2. Underline

3. Intensity toggle

5. Minimizer (.)

6. Maximizer (^)

7. Scroll bar up button (^)

8. Scroll bar down button (v)

9. Scroll bar left button (<)

10. Scroll bar right button (>)

11. Scroll bar page area ()

12. Scroll bar thumb (#)

13. Left entry field box and check box character ([)

14. Right entry field box and check box character (])

The Terminal Database File 4-81
Key letter in selected push-button text:

If the selected push-button text attribute is reverse video, apply to the key
letter:

1. Intensity toggle

2. Underline

3. Reverse video (the key letter is indistinguishable from the other text)

If the selected text attribute is underline, apply to the key letter:

1. Intensity toggle

2. Underline (the key letter is indistinguishable from the other text)

If the selected text attribute is intensity toggle, apply to the key letter:

Intensity toggle (key letter is indistinguishable from the other text)

Reconstructing the screen

On a character-based system, during program execution when a control is
resized, moved, hidden, or removed (destroyed), the runtime applies the
following procedure to reconstruct and display the screen:

1. The screen is reconstructed in memory, in a virtual screen, before being
displayed to the physical screen.

2. The portion of the screen underneath the affected control is redrawn to
the virtual screen with the attributes and colors of the owning window
(this usually results in that area of the screen being filled with the
owning window’s background color).

3. Any controls that overlap the affected area are redrawn in the order in
which they were originally created.

4. The changed portions of the screen (constructed in memory) are
displayed to the physical screen.

4-82 Terminal Manager
4.6.8 Mouse Support for X Terminals

The Terminal Manager allows for limited mouse support for X terminals if
you are using a curses-compatible mouse. To make mouse events available
to your COBOL program, you need to do the following to your termcap file:

• use an escape sequence in the “is” termcap entry to enable mouse events

• use an escape sequence in the “DI” termcap entry to disable mouse
events at exit, and

• create a new entry, “km”, which is the lead-in sequence for a mouse
event. When the escape sequence for “km” is detected, the next three
characters are the event and character position of the mouse at the time
of the event.

Currently, the support is limited. In particular, the termcap file will return
information about which button was pressed, and where the mouse was at the
time the button was pressed. Though it will return information when a button
was released, it cannot tell which button was released. The runtime assumes
that the button last pressed is the button released. This assumption may, of
course, be incorrect. Double-clicks and information about motion are never
returned.

The a_termcap entry for “xterm-mouse” is:
xterm-mouse|xterm emulator with mouse support (X window system):\
:cr=^M:do=^J:nl=^J:bl=^G:le=^H:ho=\E[H:\
:co#80:li#56:cl=\E[H\E[2J:bs:am:cm=\E[%i%d;%dH:nd=\E[C:up=\E[A:\
:ce=\E[K:cd=\E[J:UL=\E[4m:DL:\
:HI=\E[1m:RV=\E[7m:LO=\E[m:\
:ku=\EOA:kd=\EOB:kr=\EOC:kl=\EOD:kb=^H:\
:k1=\E[11~:k2=\E[12~:k3=\E[13~:k4=\E[14~:\
:k5=\E[15~:k6=\E[17~:k7=\E[18~:k8=\E[19~:\
:k9=\E[20~:k0=\E[21~:ta=^I:pt:sf=\n:sr=\EM:\
:al=\E[L:dl=\E[M:ic=\E[@:dc=\E[P:\
:kh=\EO\000:kN=\E[6~:kP=\E[5~:\
:km=\E[M:\
:w8=\E[?3l:w3=\E[?3h: \
:ks=\E[?1h\E=:ke=\E[?1l\E>:\
:is=\E7\E[?47h\E[r\E[m\E[2J\E[H\E[?7h\E[?1;3;4;6l\E[?1h\E=\E[?1000h:\
:DI=\E[2J\E[?47l\E8\E[?1000l:\
:DI=\E[2J\E[?47l\E8:NS:\
:KX=\177:KI=\E[2~:\
:GO=\E(0:GF=\E(B:GM=qxlkmjvtwun:\

The Terminal Database File 4-83
:W8=\E[?3l:W3=\E[?3h:\
:hs:ts=\E[?E\E[?%i%dT:fs=\E[?F:es:ds=\E[?E:

4.6.9 Initialization

Initialization strings can be sent at the beginning of the session to ensure that
the terminal is in the proper state, or to program special function keys. This
is primarily used to program function keys and function key labels with
application specific information. The codes is, is1, and is2 are always sent at
the beginning of each session. You can specify a sequence to send at the end
of the session with DI.

Numeric mode

With the VT-100, it is useful to set the numeric keypad to numeric mode (as
opposed to application mode). This is done by sending “ESC>“. The new
entry is then:

vt100|vt-100|DEC VT-100:\
:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:\
:cm=\E[%i%d;%dH:nd=\E[C:\
:LO=\E[m:HI=\E[0;1m:RV=\E[7m:\
:UL=\E[4m:BL=\E[5m:RU=\E[4;7m:\
:RB=\E[5;7m:DL:k1=\EOP:k2=\EOQ:\
:k3=\EOR:k4=\EOS:ku=\E[A:\
:kd=\E[B:kr=\E[C:kl=\E[D:\
:GO=\E(0:GF=\E(B:GM=qxlkmjvtwun:\
:is=\E>:

4.6.10 Print Functions

The Terminal Manager also allows for limited support of a printer attached
directly to the terminal. You must ensure that communications between the
printer and terminal meet all the restrictions that the devices require (some
terminals, for example, require that the printer and the terminal run at the
same baud rate). The Terminal Manager supports two printer functions. The
Enable-print function (EP) causes data sent to the terminal to be also sent to
the printer; EP mode remains in effect until turned off by the Disable-print
function (DP).

4-84 Terminal Manager
Pass through mode

The VT-100 supports an attached printer. It has several print modes, but the
only one that the Terminal Manager supports is the “pass through” mode
where data sent to the terminal is passed through to the printer. This is
enabled by sending “ESC[5i” and disabled by sending “ESC[4i”. The
completed VT-100 entry is:

vt100|vt-100|DEC VT-100:\
:cl=\E[;H\E[2J:\
:ce=\E[K:cm=\E[%i%d;%dH:cd=E[J:\
:nd=\E[C:LO=\E[m:HI=\E[0;1m:RV=\E[7m:\
:UL=\E[4m:BL=\E[5m:RU=\E[4;7m:\
:RB=\E[5;7m:DL:k1=\EOP:k2=\EOQ:\
:k3=\EOR:k4=\EOS:ku=\E[A:\
:kd=\E[B:kr=\E[C:kl=\E[D:GO=\E(0:\
:GF=\E(B:GM=qxlkmjvtwun:is=\E>:\
:EP=\E[5i:DP=\E[4i:

4.6.11 Continued Entries

The tc function allows you to include, by reference, all the functions from
another terminal database file entry. The syntax is tc=entry, where entry is
the name of the database file entry whose functions are to be included.

For purposes of explanation, let us say the terminal database file entry you
are working on is called “entryA” and the one you wish to reference is called
“entryB”. Then, as the last function in entryA, you would write tc=entryB.
This will include all the functions from entryB in entryA. If there are
conflicts between the functions specified by entryA and entryB, the entryA
functions take precedence.

Also, any function in entryB can be “turned off” by naming it, followed by an
@ sign, in entryA. For example, if there is an AL function in entryB and you
wish to turn it off, simply say :AL@: in entryA.

For example, some VT-100s come with an “Advanced Editing” option that
includes, among other things, an add-line and delete-line function. The
complete entry for this might be:

vt100a|DEC VT-100 w/Advanced Editing:\
 :al=\E[L:dl=\E[M:tc=vt100:

5
 File Processing
Key Topics

Transaction Management ... 5-2
AcuServer... 5-16
XFD Files.. 5-19
International Character Handling.. 5-63

This chapter describes several special file processing issues. Included are:

• transaction management

• client/server implementation with remote file access services

• generation of data dictionaries (also known as extended file descriptors
or XFDs)

• translation of international character sets between machines that use
different codes for the same characters

General file handling capabilities are covered in section 6.1, “Handling
Files.”

5-2 File Processing
5.1 Transaction Management

ACUCOBOL-GT extends standard COBOL to provide a complete
transaction management system. A transaction is a group of related file
operations that are treated as an indivisible unit. The purpose of defining
such transactions is to ensure that related files can be restored to a consistent
state when errors occur.

The transaction management requirements of business applications vary
widely and can be quite complex. ACUCOBOL-GT provides a basic
transaction management facility (described in detail in the sections that
follow). Specialized transaction management middleware frequently offers
sophisticated capabilities not included in ACUCOBOL-GT, such as multi
phase commit, nested, concurrent and distributed transactions, transaction
queuing, automatic rollback on startup, and dynamic load balancing, to name
a few. Before selecting a transaction management facility, you should
carefully assess the needs of your business systems.

Note: ACUCOBOL-GT’s transaction management facility can sometimes
interfere with programs that use a separate transaction management
facility, such as an online transaction processing (OLTP) facility. To
disable ACUCOBOL-GT’s transaction management, set the
NO_TRANSACTIONS configuration variable (see Appendix H of
Book 4). For information about using ACUCOBOL-GT with OLTP
systems, see Chapter 9 in A Guide to Interoperating with ACUCOBOL-GT.

5.1.1 Overview of Transaction Management

Standard COBOL contains a weakness in its handling of file operations in
that it does not provide a method of defining transactions. This section
describes the special features of ACUCOBOL-GT that allow the security of
transaction management.

The benefits of a transaction management system are best illustrated by an
example. A COBOL application that handles order entry might perform
these steps to accept an order:

1. Write an invoice record.

Transaction Management 5-3
2. Update a customer record.

3. Write a payroll record for sales commissions.

4. Update an inventory record.

This series of four file operations is a logical unit. If the program were
interrupted, and completed only some of the four file operations, then the
files would be in an inconsistent state. For example, if the program died after
it updated the customer record, but before it updated the inventory record,
then a subsequent run might access non-existent inventory.

The solution to this problem is to provide a method where the programmer
can define a set of operations that should either all occur or all not occur.
Then, if the program encounters an error or dies, the files are left in a
consistent state.

Note: Sites using transaction management should ensure that all users are
referring to the same files by the same names. For example, all users
should map the same network directory to the same drive letter.

5.1.1.1 Transaction logging

ACUCOBOL-GT solves this problem by providing a transaction logging
facility. All file operations that are part of a transaction are logged. Once
logged, they can either be committed or rolled back (undone) by the program.

If a program dies, or the system fails, the log file can be used to reconstruct
complete transactions, thus returning all files to a consistent state.

Transaction logging thus offers these two facilities:

• It provides the programmer with the ability to define transactions, and
the ability to commit them or “undo” them (usually in response to an
error condition). This “undo” facility is called a “rollback.”

• It provides the ability to reconstruct files into a consistent state after a
program dies or system failure occurs. This operation is called
“recovery.”

5-4 File Processing
5.1.1.2 File types

In general, transactions apply to relative and indexed files. Transaction
operations apply for indexed Vision, C-ISAM, and BTRIEVE files, as well
as for Acu4GL database files (which are treated as indexed files).

Each transaction operation is executed on the file systems linked with the
ACUCOBOL-GT runtime. Each file system uses its own mechanism to
handle the transaction operations, and some have their own log files. The
general rules for the Vision file system and for relative files are listed in the
ACUCOBOL-GT Reference Manual under the COBOL verbs that are used
with transaction management. If you use an alternate file system that does
not support transaction management, the facility is not available for programs
that access those files.

5.1.1.3 Features

Transaction logging provides the following:

• A method of indicating that transaction logging is wanted and
identifying which log files to use.

• A means of deciding which file operations to log and which files have
rollback capability.

• The ability to start, commit, and rollback transactions in COBOL.

• A utility routine to perform the recovery function.

• A utility program to examine and edit log files.

5.1.2 The Transaction Logging Process

Transaction logging provides the programmer with a COBOL verb that can
roll back or “undo” file operations performed during a transaction. A
rollback is typically invoked when the program detects a file error or other
error condition.

Transaction Management 5-5
Outside of the application, transaction log files can be used for another
purpose: to recover files after a program failure or system crash. The
recovery process is performed by an ACUCOBOL-GT library routine that
accesses the latest backup and the log files. It is the site’s responsibility to
clear the log files when a backup is made, so that the logs always contain
precisely those transactions that have occurred since the last backup. The
logs and the backup can then be used to reconstruct files into a consistent
state after a crash.

To make rollback and recovery operations possible, the runtime records
information about how to “redo” and “undo” each file update that occurs
within a transaction. After the transaction starts, each Vision or relative file
update operation is recorded until the transaction is committed or rolled back.
At that point:

• If the transaction is committed, the commit operation writes the “redo”
information to the log file. The “undo” information is not recorded in the
log file.

• If the transaction is rolled back, the rollback operation scans the record
of changes in reverse order and performs the operations needed to undo
the file updates done during the transaction.

All programs that operate on the same set of data files must also use the same
set of transaction log files.

In transaction management, the log files must be synchronized to the backup
procedure for the files being managed. When the files are backed up, the log
files must be cleared (or deleted). The next time a transaction occurs, the
runtime creates new log files (or begins writing to the cleared files). Thus,
the logs contain precisely those transactions that have occurred since the last
backup.

If the log files and backups are synchronized, when a program dies in
mid-transaction, you can reconstruct the files into a consistent state. To do
this, you restore the backup, then run a program that calls the C$RECOVER
utility routine (see section 5.1.10). This routine reads a log file and performs
each update operation that was part of a completed transaction. Operations
that were not part of a completed transaction are not performed.

5-6 File Processing
By using transaction logging, you ensure logically consistent files. In
addition, you never need to do a rebuild operation on a broken data file,
because you can always recover files by restoring the backup and running a
program that calls C$RECOVER.

Note: You can use the utility program logutil to examine and edit an
ACUCOBOL-GT transaction log file. The logutil utility supports large
(>2GB) transaction log files. The host operating system must allow such
large files. For UNIX, the “USE_LARGE_FILE_API” configuration
variable must be set. For details, see section 3.6, “logutil.”

Though a transaction logging system provides a high degree of file security,
it does impose extra overhead. Backups are essential, and there is increased
disk I/O, more memory use, and more record locks.

Going to your backups and using the recovery procedure usually takes more
time than just checking the data files and restarting the program. On the other
hand, if the system dies, you do not need to worry about examining the files
for problems.

5.1.3 Transaction Management Verbs

There are three verbs used in ACUCOBOL-GT transaction management.
These are:

START TRANSACTION

COMMIT TRANSACTION

ROLLBACK TRANSACTION

Note: TRANSACTION, ROLLBACK, START, and COMMIT are
reserved words.

START TRANSACTION identifies the beginning of a transaction. The
COMMIT TRANSACTION statement indicates the end of a transaction and
commits the changes made. The ROLLBACK verb causes the transaction to
be rolled back or “canceled.”

Transaction Management 5-7
There is an implicit COMMIT before a STOP RUN or before the end of the
program. However, the runtime performs an implicit ROLLBACK before a
STOP RUN if the STOP-RUN-ROLLBACK configuration variable is set. If
the runtime system is killed by the user or encounters a fatal error prior to
completing a transaction, then an automatic rollback occurs. For more
information on START Statement, COMMIT Statement, and
ROLLBACK Statement, see their respective entries in Book 3, Reference
Manual, section 6.6.

5.1.4 Extended Locking Rules

In order to prevent another process from updating the records in a way that
might make it impossible to do a rollback, the system locks any records
modified during a transaction. This is done only for files that allow rollbacks.
ACUCOBOL-GT offers some flexibility in record locking procedures in its
transaction management system. You can enable multiple locking rules or
single locking rules as the default locking mode for files that allow rollbacks.

To indicate which files will have record locks held, use the following syntax
in the LOCK MODE phrase of the FILE-CONTROL entry for each affected
file:

WITH ROLLBACK

When rollback is enabled, record and file locking rules are extended. Every
record updated as part of a transaction is locked until that transaction is
committed or rolled back. The COMMIT and ROLLBACK verbs remove
these locks. Record locks that are applied when the file is read are also kept
until the end of the transaction. Multiple record locking rules are in effect by
default.

Use of the compiler option, “-Fl”, enables single locking rules rather than
multiple locking rules as the lock mode default. Normally, “WITH
ROLLBACK” causes multiple locking rules to be in effect for a file. When
“-Fl” is used, the “WITH ROLLBACK” clause does not affect whether single
or multiple record locking rules are followed. Single locking becomes the
default. You may enable multiple locking either by specifying “WITH
LOCK ON MULTIPLE RECORDS” in a file’s SELECT statement or by
using “APPLY LOCK-HOLDING ON file” in the I-O CONTROL
paragraph.

5-8 File Processing
Record locks are held during a transaction in order to prevent another process
from updating the records in a way which might make rollback impossible.
Note, however, that a record may be deleted during a transaction, and another
process is allowed to write a record with the same record key to the file. If
this happens, the ROLLBACK will fail with a duplicate key error. See
section 5.1.5, “Logging and Rollback of File Update Operations.”

Note: During a transaction, the UNLOCK statement affects only files for
which rollback is not enabled. In the case where the UNLOCK statement
is ineffective because rollback was enabled for the file, the file status will
be set to 00 (success).

During a transaction with a Vision or relative file, a CLOSE is postponed if
any updates (WRITE, REWRITE, or DELETE) are performed on the file
during the transaction, regardless of whether any records are locked. This
function permits the file to remain open for ROLLBACK.

If the same physical file is OPENed again within the same transaction, even
if the program is using a different logical file (different SELECT), the
postponed CLOSE is canceled. Note that the mode of the original OPEN is
retained. (For example, if the file were originally OPEN OUTPUT, and if the
CLOSE were canceled, then an OPEN I-O on the same file within the same
transaction would not enable the program to read the file.) When the second
OPEN is encountered, the file position is reset to the beginning so that a
READ NEXT would read the first file in the record.

Caution: While a CLOSE action is delayed until the transaction is
committed, a DELETE FILE action is performed immediately. If the
DELETE FILE statement is contained within a transaction (before the
COMMIT) following its associated CLOSE statement, the result will not be
what is expected. Because the CLOSE is delayed but the DELETE FILE is
executed right away, the program will attempt to delete the open file. The
result of the attempted DELETE FILE action is host system dependent (for
example, under Microsoft Windows, attempting to delete an open file will
cause an error 37, 07 to be returned, while under UNIX, where there is no
restriction on deleting an open file, the action will succeed). The safest
programming practice is to not code a DELETE FILE action inside a
transaction.

Transaction Management 5-9
5.1.4.1 Special handling of implicit transactions

There are conditions in which transactions are automatically defined by the
runtime to ensure that all file operations are logged, such as when the “-Ft”
compiler flag is used (see section 2.2.7, “File Options”) or when an OPEN
or CLOSE is performed outside of a defined transaction on a file that has
rollback enabled. In these situations, the implicit COMMIT does not unlock
any records associated with the file. This ensures that the runtime defined
transaction is recorded without interfering with the existing program logic (or
locking).

5.1.5 Logging and Rollback of File Update Operations

The record update operations WRITE, REWRITE, and DELETE can be
rolled back. However, file operations which open, create, recreate, rename,
delete, or close files cannot be rolled back. Therefore, OPEN, CLOSE,
DELETE FILE, RENAME, and COPY operations cannot be rolled back.

When a transaction is committed, all of the file update operations are written
to the default log file defined by the LOG-FILE configuration variable.
However, if instead the transaction is rolled back, those file operations that
cannot be rolled back are written to the default log file and then committed.

If a file that was opened during a transaction is closed outside of a
transaction, the CLOSE will be treated as its own transaction and will be
logged. If a file that has rollback enabled (using the WITH ROLLBACK
syntax; see section 5.1.4) is opened outside of a transaction, the OPEN will
be treated as its own transaction and will be logged.

If, during a transaction, a record is deleted from a file not allowing duplicates
on a particular key, the delete may be rolled back only if the record key does
not exist in the file at the time of the rollback.

This means that if another process writes a record with the same key to the
file after the delete, then the delete will not be rolled back, and the rollback
will fail with a duplicate key error. (See section 5.1.8, “Transaction Error
Handling.”)

5-10 File Processing
5.1.6 Multiple Log Files

The transaction management facility allows the program to use multiple log
files. Different types of transactions can be logged in separate log files,
giving you quicker access to a particular type of transaction. Each log file
records the information that is necessary to recover a particular file or set of
files.

The application administrator or programmer can specify an individual log
file to use with any given set of data files. The specified log file is updated
whenever a transaction is committed in its associated data files. Log file
names are specified with configuration variables of the format:

filename-LOG logfilename

where filename is the base name of the data file, and logfilename is the name
of the log file. filename should not include any directory names, nor should
it include a file extension. logfilename can include the absolute or relative
directory path ending with the name of the log file. If the log file is not
found, a new file is created there with the specified name. Note that
logfilename can have remote name notation. A configuration file entry for
multiple log files might look like:
#transaction temporary file directory
LOG-DIR /usr/transaction-tmp/
#log file definitions
file1-LOG file1.log
file2-LOG file2.log
file3-LOG file3.log
#default log file definition
LOG-FILE default.log

In the example above, during a commit, all of file1’s updates are written to
“file1.log”, all of file2’s updates are written to “file2.log”, and so forth. If
other data files are updated during a transaction, their updates are written to
“default.log”. Operations performed with the “RENAME” or “C$COPY”
(Appendices manual, section H) library routines are also written to
“default.log”.

A default log file must be specified in the LOG-FILE variable. The runtime
creates that log file, or opens the existing one, as part of the first START
TRANSACTION statement. Log files specified with filename-LOG
variables are created or opened when the file whose base name is filename is

Transaction Management 5-11
opened OUTPUT or I/O for the first time in the program. Note that this
means that any error that can be returned from a START TRANSACTION
can also be returned as a secondary code of an error 9E on an OPEN
statement. See section 5.1.8, “Transaction Error Handling.”

Multiple log files can be used only with Vision indexed files and relative
files. Transaction management for other file systems is dependent on the
specific file system’s transaction management facility.

5.1.7 Configuration Variables

There are seven configuration file variables used to configure the logging
system. For details, see the configuration variable’s listing in Appendix H:

• filename_LOG - specify the name of a log file

• LOGGING - enable or disable logging

• LOG_FILE - specify the name of the default log file

• LOG_BUFFER_SIZE - set the log file buffer size

• LOG_DIR - specify an alternate directory for temporary files

• LOG_DEVICE - enable or disable special device handling for the log
file

• LOG_ENCRYPTION - enable or disable log encryption

5.1.8 Transaction Error Handling

Error codes associated with transaction management are stored in a special
register called TRANSACTION-STATUS. These codes tell you the status of
the last transaction and are documented in Appendix E.4. Transaction
management errors fall into two categories:

5-12 File Processing
1. For errors that occur during a START TRANSACTION, COMMIT,
ROLLBACK, or call to C$RECOVER (see section 5.1.10,
“Recovery”), use TRANSACTION-STATUS to determine the type of
error that occurred.

2. After the execution of any file operation during a transaction, the file’s
FILE-STATUS variable will contain 9E if an error occurred in the
transaction system. The exact nature of the error will be shown by the
contents of TRANSACTION-STATUS.

A subcategory of these errors are “intermediate” runtime errors that call
installed error procedures. They are:

• “File error #”

• “File error # on #”

• “Transaction error #”

• “Transaction error # on #”

where the # signs are replaced at run time by error names, numbers, or
other information. See Book 4, Appendix I, “Library Routines,” for
detailed discussion of the error and exit procedures.

The TRANSACTION-STATUS variable has the same format as a file’s
status variable. It is automatically created by the compiler, and is implicitly
shared by all programs of a run unit. TRANSACTION-STATUS is a
reserved word.

You can specify procedures for transaction error handling with the USE
statement and the reserved word TRANSACTION. The syntax is:
USE AFTER STANDARD {EXCEPTION} PROCEDURE ON TRANSACTION
 {ERROR }

If TRANSACTION is specified, the procedure executes when an error occurs
during a START TRANSACTION, COMMIT, ROLLBACK, or call to
C$RECOVER. See section 5.1.10, “Recovery.”

Transaction Management 5-13
Note: A transaction error “10” is returned by a START TRANSACTION
statement when the LOG-FILE configuration variable (that specifies the
default log file) is undefined. The COBOL program may choose to ignore
this error in the cases where the filename-LOG variables are used.

5.1.9 Compiler File Options

There are three compiler options that can simplify the addition of transaction
management facilities to existing programs that use the Vision file system.
The “-Ft” option causes implied transactions for every OPEN, CLOSE,
WRITE, REWRITE, or DELETE operation that is not part of an explicit
transaction. In other words, single file operations that are not part of a
transaction are preceded by an implied START TRANSACTION and
followed by an implied COMMIT. This makes it easier to convert existing
applications to a transaction system.

The “-Fs” option causes an implied START TRANSACTION verb before
the first OPEN, CLOSE, WRITE, REWRITE, or DELETE operation and
after each COMMIT or ROLLBACK. This, in effect, makes every file
operation part of a transaction. If this option is enabled, and the compiler
encounters a START TRANSACTION verb, it reports a warning and does
not generate any code for the START TRANSACTION. The “-Fs” option
provides an alternate way to program transactions and is often useful when
you are converting from other COBOL or SQL implementations.

A third compiler file option, “-Fl”, enables single locking rules rather than
multiple locking rules as the lock mode default. Normally, “WITH
ROLLBACK” causes multiple locking rules to be in effect for a file. When
“-Fl” is used, the “WITH ROLLBACK” clause does not affect whether single
or multiple record locking rules are followed. Single locking becomes the
default. You may enable multiple locking either by specifying “WITH
LOCK ON MULTIPLE RECORDS” in a file’s SELECT statement or by
using “APPLY LOCK-HOLDING ON file” in the I-O CONTROL
paragraph.

5-14 File Processing
5.1.10 Recovery

If a program dies, or there is some other system failure, files may become
corrupted, destroyed, or left in an inconsistent state. If this occurs, the files
may be recovered with the built-in library routine, C$RECOVER.

Note: For any Vision files or relative files, C$RECOVER can be
successful only if every operation on the files, including file OPEN, was
done within a transaction.

To use the recovery function, you need the most recent backup copy of all the
files that record their transactions. You also need all of the log files that were
started immediately after the backup was created. Here’s one way to
perform a recovery:

1. Get everyone off the system.

2. Restore backup files to original locations.

3. Run a program that calls the C$RECOVER library routine (for
example, CALL “C$RECOVER”). Use the same configuration file
that the applications use. Note that the log files specified with the
filename-LOG variables are not used.

The C$RECOVER library routine only recovers the updates recorded in the
log file specified by the configuration variable LOG-FILE. To recover
updates recorded in multiple log files, specify each log file in the LOG-FILE
variable and call C$RECOVER for each one. For example:
 SET CONFIGURATION “LOG-FILE” TO “default.log”.
 CALL “C$RECOVER”.
 SET CONFIGURATION “LOG-FILE” TO “file1.log”.
 CALL “C$RECOVER”.
 SET CONFIGURATION “LOG-FILE” TO “file2.log”.
 CALL “C$RECOVER”.
 SET CONFIGURATION “LOG-FILE” TO “file3.log”.
 CALL “C$RECOVER”.

To ensure that your data can be recovered, you should:

1. Make sure all transactions are committed before you do a backup.

Transaction Management 5-15
2. Clear or delete the log files only after your backup is complete.

3. Make sure there is no file activity between the time the backup is made
and the time you clear or delete the log files.

4. In between backups, you can periodically archive log files, then clear
or delete them.

5. If you use archived log files, make sure you recover using the logs in
the chronological order in which they were written.

6. Make sure there is no other activity on the files during recovery.

7. Make backups and start new log files immediately if any log file gets
corrupted or destroyed.

8. Make sure you have good log files.

The backup data files should have the same absolute or relative pathname as
when the original programs were run. If there are any cases where relative
pathnames are used for the log or data files, run the program that calls the
C$RECOVER routine from the same directory as the original programs. For
the program that calls the C$RECOVER routine, specify the log file in the
configuration file or in the environment.

If the recovery process terminates prematurely due to an error, and files are
left open, they are automatically closed before the call to C$RECOVER
returns.

If a failure occurs during the recovery process, and no other copies of the
backup files are available, then automatic recovery is not possible. This
means that you should make sure to have an extra backup copy of your data
files.

5.1.10.1 Transaction logging and recovery with AcuServer

Transaction logging and recovery are possible on a network using AcuServer
(see Section 5.2, “AcuServer”). Transaction logging and recovery of
operations on remote files are also supported.

5-16 File Processing
Such recovery is possible only if each client runtime uses the same log file.
To accomplish this, specify a host name, according to AcuServer rules, in
each client’s runtime configuration file. For example, to specify a single log
file on a server with the host name “sun”, add the following line to each client
runtime’s configuration file:

LOG-FILE @sun:/usr2/users/cobol/mylogfile

Each client runtime with this configuration file entry will use the single
server log file during its START TRANSACTION, ROLLBACK, and
COMMIT processing. Temporary files used for rollback are created in the
working directory, or in the directory specified by the LOG-DIR
configuration variable of the client runtime.

5.2 AcuServer

AcuServer is an add-on module that provides remote file access services to
ACUCOBOL-GT applications. AcuServer is available for applications
running on UNIX, Linux, and Windows TCP/IP based networks and
executing with ACUCOBOL-GT runtime Version 5.0 or higher.

With AcuServer, your applications gain:

• the ability to create and store data files on any UNIX or Windows NT/
Windows 2000 server equipped with AcuServer

• full function remote access from UNIX, Linux, and Windows clients to
all Vision, relative, sequential and object files stored on an AcuServer
server

• full record locking support of all Vision and relative files

• transparent access of remote and local files

AcuServer does not require any changes to your existing application code.
(Some applications that contain hard coded paths to files must be modified to
use the FILE_PREFIX environment variable, or to include the name of the
file server in the path.)

AcuServer 5-17
AcuServer does not require that you recompile your existing programs.
Programs compiled with any version of ACUCOBOL-GT can be executed
ACUCOBOL-GT runtime version 5.0 or higher. Contact your Micro Focus
extend Sales Professional for a current list of supported platforms.

The AcuServer User’s Guide contains installation instructions and a
complete description of each AcuServer feature.

UNIX or Windows NT file server running AcuServer

Above is an illustration of a simple AcuServer network. ACUCOBOL-GT
applications running on UNIX and PC client systems access and store data
files on a common UNIX or Windows NT/Windows 2000 file server running
AcuServer. More complex networks might incorporate multiple AcuServer
file servers supporting dozens of client machines running multiple
applications.

5.2.1 System Requirements

To use AcuServer:

• Each server machine must be networked to UNIX, Linux, and Windows
clients with TCP/IP. (TCP/IP is not sold or supplied by Micro Focus.)

• All servers must have a copy of the AcuServer license management file.

• Windows clients can run any TCP/IP software that uses a WINSOCK
compliant WSOCK32.DLL.

LAN, WAN, or
Internet

Data server

Vision

AcuServer

Windows or
UNIX client

ACUCOBOL-GT
application

5-18 File Processing
• Client machines must have an ACUCOBOL-GT AcuServer-enabled
runtime. All Windows runtimes Version 5.0 and later are
AcuServer-enabled. To verify that your UNIX runtime is
AcuServer-enabled, type “runcbl -v” and look for the line:

AcuServer client

On SCO UNIX and NCR Tower systems, you will also need their optional
NFS software package.

5.2.2 Remote Name Notation

Accessing remote files requires that your application refer to them with
remote name notation. The ACUCOBOL-GT runtime looks for remote
name notation to identify requests to AcuServer. Remote name notation has
the following format:

@server-name:path-name

I/O requests to files prepended with “@server-name:path-name” are routed
to AcuServer on the host specified by server-name. AcuServer looks for the
named file in the directory specified by path-name, for example:

@condor:/usr/acct/inventory

To add a remote path to FILE_PREFIX or CODE_PREFIX, use the
format:

FILE_PREFIX @server-name:path-name
CODE_PREFIX @server-name:path-name

As an alternative to FILE_PREFIX, you can define file name aliases in the
runtime configuration file. A file name alias is a string that will replace the
literal name in the ASSIGN TO clause of a SELECT statement. For
example:
input-output section.
file-control.
 select idx-file
 assign to disk “IDXDAT”
 binary sequential
 status is idx-status.

XFD Files 5-19
To define an alias for “IDXDAT” you could add the following line to your
runtime configuration file:

IDXDAT @condor:/usr/data/index_data

5.3 XFD Files

The ACUCOBOL-GT compiler is capable of generating data dictionaries
that store a map of COBOL record structures. These dictionaries are also
called eXtended File Descriptors (XFDs) because they’re based on the
standard COBOL file descriptors (FDs).

XFDs are used by Acu4GL to interface to database management systems and
by AcuXML to interact with data in XML files. They are also used by Micro
Focus’s alfred, indexed record editor, and by AcuXDBC, database
management system for Vision. In addition, they are used to help guide the
mapping of international character sets between machines that use different
underlying character codes.

The compiler creates an XFD for each indexed file in the compiled program
when you specify the “-Fx” compile-time option. The “-Fa” option generates
XFD files for all indexed, relative, and sequential files in the compiled
program. Ordinarily, XFDs are generated in flat text file format. Use the
“-Fe” option to generate XFD files in XML format instead. See Chapter 2,
section 2.2.7, “File Options” for details on these compiler options.

Acu4GL, AcuXDBC, and alfred can all read the XFD files in either format.
XFDs are fully portable, and thus no recompilation is necessary if you change
hardware.

The effects of all compile-time options, COPY REPLACING, and
source-code control lines are reflected correctly in the XFDs.

ACUCOBOL-GT

compiler

with -Fx option

Extended FDs

(XFDs)
COBOL FDs

5-20 File Processing
Understanding how the XFD file is formed

Micro Focus’s data dictionaries (XFDs) enable the Acu4GL and AcuXML
interfaces to create a table (or access an existing one) in a database for each
indexed, relative, or sequential file. Each column in the table contains the
values for one field. The column names are essentially the field names.

XFDs also allow the alfred record editor to display and accept data in an
indexed file at the field level, instead of character-by-character. If an XFD is
available to alfred, it has enough information to display fields on the screen,
instead of just groups of characters. This makes the screen easier to read, and
helps make editing more efficient.

Each XFD file is based on the largest record in the COBOL file, and
contains the fields from that record, plus any key fields (key fields are those
which are named in KEY IS phrases of SELECT verbs in the File-Control
section). This ensures that data from all COBOL records will fit within
database tables, and simplifies the storage and retrieval process. If you were
to examine the XFD file, only the fields from the largest record, and the key
fields, would appear.

Note: If the field named in the KEY IS phrase is a group item, it will not
be named as a field in the XFD file. This means it will not be used as a
column in a database table, if you are using an Acu4GL interface, and it
will not appear on the screen if you use the alfred editor. Instead, all
elementary items subordinate to the named group item will be named in the
XFD. You can force the group item to be a named field by using the USE
GROUP directive (see Section 5.3.3.11, “USE GROUP directive”).

With multiple record formats (level 01), not all COBOL fields are named in
the XFD file, but all fields are storable and retrievable. The data dictionary
maps fields from all records of a file to the corresponding locations in the
master (largest) record of the file. Since Acu4GL and alfred have access to
the data dictionary, they know where the data from a given COBOL record
fits. This activity is invisible to the COBOL application.

For example, if your program has one file with the three records shown
below, the underlined fields will be included as fields in the XFD file by
default (this example assumes that ar-codes-key is named in a KEY IS

XFD Files 5-21
phrase). Some fields will not appear by name in the file, but will be mapped
to the master field names. The interface thus will eliminate redundancies and
give you optimum performance.
01 ar-codes-record.
 03 ar-codes-key.
 05 ar-code-type pic x.
 05 ar-code-num pic 999.

01 ship-code-record.
 03 filler pic x(4).
 03 ship-weight pic s999v9.
 03 ship-instruct pic x(15).

01 terms-code-record.
 03 filler pic x(4).
 03 terms-rate-1 pic s9v999.
 03 terms-days-1 pic 9(3).
 03 terms-rate-2 pic s9v999.
 03 terms-descript pic x(15).

5-22 File Processing
The following diagram shows how Acu4GL creates database columns for
some of the fields in the COBOL record, while other fields are mapped to
those columns by the data dictionary; this means that all the fields are
accessible to the COBOL program.

The next section describes the rules that the interface follows as it builds the
XFD file, and explains how you can override those rules when necessary.

Database column

and XFD entry

Character

position

XFD entry only

(mapped to DB)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

ar_code_type

ar_code_num

terms_rate_1

terms_days_1

terms_rate_2

terms_descript

ship_weight

ship_instruct

XFD Files 5-23
5.3.1 Defaults Used in XFD Files

There are several elements of COBOL that require special handling when
data dictionaries are built. These include multiple record definitions,
REDEFINES, FILLER, and OCCURS. This section describes how
ACUCOBOL-GT handles each of these situations.

Note: In many instances you can override the default behavior described
below by placing special comment lines in the FDs of your COBOL code.
These comments are called directives, and are described in section 5.3.2.
For example, the WHEN directive allows you to use multiple definitions
for a single set of data by specifying when each definition should be used.

Databases generally do not support the notion of multiple definitions for the
same column. (In a similar sense, when you are editing a data file, it makes
sense to see and change only one view of the data, rather than multiple
views.) As the following paragraphs explain, whenever a COBOL program
gives more than one definition for the same data, the compiler makes a choice
about which definition to use in the data dictionary. Then it disregards the
rest.

5.3.1.1 KEY IS phrase

Fields named in KEY IS phrases of SELECT statements are included as
fields in the XFD. Other fields that occupy the same areas as the key fields
(by either explicit or implicit redefinition) are not included by name, but are
mapped to the key field column names by the data dictionary.

Remember, if the field named in the KEY IS phrase is a group item, it will
not become a named field in the XFD unless a USE GROUP directive is used
(see “Understanding how the XFD file is formed”).

5.3.1.2 RENAMES clause

You may not use the RENAMES clause when creating data dictionaries. If
you do, a file error results and the XFD is not created for that file. Instead of
using the RENAMES clause, we recommend that you name the data
segments in the usual ACUCOBOL-GT manner. For example:

ALTERNATE RECORD KEY K1-CUSTOMER =

5-24 File Processing
 company-name,
 company-address2,
 company-zipcode2
ALTERNATE RECORD KEY K2-CUSTOMER
ALTERNATE RECORD KEY K3-CUSTOMER WITH DUPLICATES
ALTERNATE RECORD KEY K4-CUSTOMER =
 company-contact,
 k-customer
ALTERNATE RECORD KEY K5-CUSTOMER WITH DUPLICATES
ALTERNATE RECORD KEY K6-CUSTOMER =
 company-address3,
 company-zipcode3,
 company-country
 WITH DUPLICATES

5.3.1.3 REDEFINES clause

Fields contained in a redefining item occupy the same positions as the fields
being redefined. The compiler needs to select only one of the field
definitions to use. The default rule that it follows is to use the fields in the
item being redefined as column names; fields that appear subordinate to a
REDEFINES clause are mapped to column names by the data dictionary.

5.3.1.4 Multiple record definitions

This same rule extends to multiple record definitions. In COBOL, multiple
record definitions are essentially redefinitions of the entire record area. This
leads to the same complication that is encountered with REDEFINES:
multiple definitions for the same data. So the compiler needs to select one
definition to use.

Because the multiple record types can be different sizes, the compiler needs
to use the largest one, so that it can cover all of the fields adequately. Thus,
the compiler’s rule is to use the fields in the largest record defined for the file.
If more than one record is of the “largest” size, the compiler uses the first one.

XFD Files 5-25
5.3.1.5 Group items

 Group items are, by default, never included in a data dictionary for the same
reason that REDEFINES are excluded: they result in multiple names for the
same data items. You can, however, choose to combine grouped fields into
one data item by specifying the USE GROUP directive, described in section
5.3.3.11, “USE GROUP directive.”

5.3.1.6 FILLER data items

In a COBOL FD, FILLER data items are essentially place holders. FILLER
items are not uniquely named and thus cannot be uniquely referenced. For
this reason, they are not placed into the Micro Focus data dictionary. The
dictionary maintains the correct mapping of the other fields, and no COBOL
record positional information is lost.

Sometimes you need to include a FILLER data item, such as when it occurs
as part of a key. In such a case, you could include it under a USE GROUP
directive or give it a name of its own with the NAME directive, described in
section 5.3.3.7, “NAME directive.”

5.3.1.7 OCCURS clauses

An OCCURS clause requires special handling, because the Acu4GL runtime
system must assign a unique name to each database column. The runtime
accomplishes this by appending sequential index numbers to the item named
in the OCCURS.

For example, if the following were part of a file’s description:
03 employee-table occurs 20 times.
 05 employee-number pic 9(3)

then these column names would be created in the database table:
employee_number_1
employee_number_2
.
.
.
employee_number_10
employee_number_11
.

5-26 File Processing
.
employee_number_20

Note: The hyphens in the COBOL code are translated to underscores in
database field names, and the index number is preceded by an extra
underscore.

AcuXDBC users can make use of the SUBTABLE directive to modify how
OCCURS clauses are handled. See Section 5.3.3.10 for information on this
directive. The alfred record editor shows only the names of the fields,
without subscripts or indexes.

5.3.1.8 Summary of dictionary fields

Fields defined with an OCCURS clause are assigned unique sequential
names. Fields without names are disregarded.

When multiple fields occupy the same area, the compiler chooses only one of
them unless you have a WHEN directive to distinguish them. To choose:

• The compiler preserves fields mentioned in KEY IS phrases.

• It discards group items unless USE GROUP is specified.

• It discards REDEFINES.

• It uses the largest record if there are multiple record definitions.

5.3.1.9 Identical field names

In COBOL you distinguish fields with identical names by qualification. For
example, there are two fields named RATE in the following code, but they
can be qualified by their group items. Thus, you would reference RATE OF
TERMS-CODE and RATE OF AR-CODE in your program:
01 record-area.
 03 terms-code.
 05 rate pic s9v999.
 05 days pic 9(3).
 05 descript pic x(15).
 03 ar-code.
 05 rate pic s9v999.

XFD Files 5-27
 05 days pic 9(3).
 05 descript pic x(15).

However, database systems consider duplicate names an error. Thus, if more
than one field in a particular file has the same name, the data dictionary will
not be generated for that file.

The solution to this situation is to add a NAME directive (see section 5.3.3.7)
that associates an alternate name with one or both of the conflicting fields.

5.3.1.10 Long field names

The compiler determines whether field names are unique within the first 18
characters. This is because some RDBMSs truncate longer field names to 18
characters. (In the case of the OCCURS clause described above, the
truncation is to the original name, not the appended index numbers.) If the
field names are not unique within 18 characters, the XFD file is generated,
but a warning message is issued.

You can, instead of allowing default truncation, use the NAME directive to
give a shorter alias to a field with a long name. Note that within the COBOL
application you will continue to use the original name. The NAME directive
affects only the data dictionary.

5.3.1.11 Naming the XFD

The compiler needs to give a name to each XFD file (data dictionary) that is
built. It attempts to build the name from your COBOL code, although there
are some instances where the name in the code is nonspecific, and you must
provide a name.

Each XFD name is built from a starting name that is derived (if possible)
from the SELECT statement in your COBOL code. The following
paragraphs explain how that occurs.

ASSIGN name is a variable

If the SELECT for the file has a variable ASSIGN name (ASSIGN TO
filename), then you must specify a starting name for the XFD file via a
FILE directive in your code. This process is described in section
5.3.3.6, “FILE directive.”

5-28 File Processing
ASSIGN name is a constant

If the SELECT for the file has a constant ASSIGN name (such as
ASSIGN TO “COMPFILE”), then that name is used as the starting
name for the XFD name.

ASSIGN name is generic

If the ASSIGN phrase refers to a generic device (such as ASSIGN TO
“DISK”), then the compiler uses the SELECT name as the starting
name.

Forming the final XFD name

From the starting name, the final name is formed as follows:

1. The compiler removes any extensions from the starting name.

2. It constructs a “universal” base name by stripping out directory
information that fits any of the formats used by the operating systems
that run ACUCOBOL-GT.

3. It converts the base name to lower case.

4. It appends the letters “.xfd” to the base name.

Note: The FD can specify the file name using the “VALUE OF FILE_ID
IS xxx” clause. (See Book 3, Reference Manual, Chapter 5, section 5.4.8,
“VALUE OF FILE-ID Clause”) This phrase has a similar effect to the
ASSIGN phrase of the SELECT statement, but when this phrase is used it
overrides the ASSIGN phrase. So all of the above rules that relate to the
ASSIGN phrase also relate to the FILE_ID phrase, when that phrase is
used. (Technically, the ASSIGN phrase and the FILE_ID phrase are
supposed to be identical, but the compiler silently overrrides the ASSIGN
with the FILE_ID phrase.)

5.3.1.12 Examples of XFD names

COBOL code File name

ASSIGN TO “usr/ar/customer.dat” customer.xfd

SELECT TESTFILE, ASSIGN TO DISK testfile.xfd

XFD Files 5-29
5.3.2 Using Directives

Micro Focus’s data dictionaries are based on your COBOL FDs. For this
reason we call them Extended FDs or XFDs. Each dictionary describes all of
the fields for one file.

Directives are optional comments that you can use in your FDs to control
how things look in the XFD file. Many applications will not use directives at
all. They’re most commonly used when a site intends to do a lot of work with
a database management system outside of the COBOL application, and wants
to control how the database table is built. They are also used to customize
how fields are displayed by the record editor, alfred.

Directives are special comments placed into an FD in your COBOL source
code. They guide the building of the data dictionaries, which in turn guide
the building of the database table (and the display of data in the record
editor).

Each directive includes the letters XFD. These three letters indicate to the
compiler that the comment is to be used in data dictionary generation.

Directives offer you a great deal of control over how the XFD file is built.
Among other things, they enable you to:

• specify a field name to be used in the XFD, in place of a COBOL field
name

• map elementary items of a group item together into a single field

ASSIGN TO “-D SYS$LIB:HELP” help.xfd

ASSIGN TO FILENAME (you specify)

COBOL code File name

ACUCOBOL-GT

compiler

with -Fx option

Extended FDs

(XFDs)
COBOL FDs

5-30 File Processing
• cause numeric COBOL data to be treated as a text string in the XFD

• cause the fields from a specific record in a file to appear in the XFD
(rather than just the fields from the largest record)

• mark specific fields as candidates for a secondary database table, if all of
the data will not fit into a single table

• cause a fixed-length field to be designated as variable-length

• assign a column the DATE type, so that it will have the built-in
functionality that dates have in an RDBMS

• give a name to the data dictionary file itself

• include comments in XFD files

Directives are always placed within a COBOL FD. They do not affect
Procedure Division I/O statements, and they do not change your COBOL
fields in any way. Rather, they guide the building of the data dictionaries,
giving you a measure of control over the way COBOL data is mapped to
XFD fields.

5.3.2.1 Important for Acu4GL and AcuXML sites

Each data item in your COBOL FD must correspond to a field in the
database. You may have columns in a table for which no data item exists in
the COBOL FD, but not vice versa. You may not have data items in your FD
with no counterpart in the database.

This correspondence happens automatically when the database is newly
generated by the Acu4GL or AcuXML interface. If the database is
pre-existing, you should check for the correspondence, and use directives if
necessary to make it complete.

Data dictionaries may be built directly from your source code with no
directives if the default mapping rules described earlier are sufficient for your
situation. If you would like to override the default mapping behavior, or map
a field to a different name, then you would add directives to your COBOL
code.

XFD Files 5-31
5.3.3 Syntax

Place each directive on a line by itself, immediately before the COBOL line
to which it pertains.

Introduce each directive with a “$” in the Indicator Area (column 7 in
standard ANSI source format), followed immediately by the letters “XFD”,
then the directive itself. There should be no space between the $ and the
XFD. Spaces are permitted elsewhere on the line as separators. For example,
the NAME directive looks like this:

$XFD NAME = EMP-NUMBER

An alternate ANSI-compliant way to introduce a directive is with an asterisk
(*) in the Indicator Area. In this case, you begin the directive with the letters
“XFD” and enclose the entire comment in double parentheses. For example:

*((XFD NAME = EMP-NUMBER))

There should be no space between the asterisk and the double left
parentheses. Spaces are permitted elsewhere on the line as separators.

You may use either form of the directive syntax (or both) in your
applications.

Two or more directives that pertain to the same line of COBOL code may be
combined on one comment line. The directives should be separated by a
space or a comma. For example, to specify both USE GROUP and
NUMERIC at the same time, you would add this line:

$XFD USE GROUP, NUMERIC

or
*((XFD USE GROUP, NUMERIC))

The following pages describe each of the directives, in alphabetical order.

5-32 File Processing
5.3.3.1 ALPHA directive

The ALPHA directive allows you to treat a data item as alphanumeric text in
the database, when it is declared as numeric in the COBOL program. Also,
ALPHA causes the alfred record editor to edit the field as alphanumeric
instead of as numeric.

Syntax
$XFD ALPHA

or
*((XFD ALPHA))

This is especially useful when you have numeric keys in which you
occasionally store non-numeric data, such as LOW-VALUES or special
codes. In this situation, treating the field as alphanumeric allows you to move
any kind of data to it.

Example

Suppose you have specified KEY IS code-key. Then assume the
following record definition:
01 code-record.
 03 code-key.
 05 code-num pic 9(5).

In a database, group items are disregarded, so CODE-NUM is the actual key
field. Suppose you needed to move a non-numeric value to the key:

MOVE "C0531" TO CODE-KEY.
WRITE CODE-RECORD.

In this case, the results are not well-defined, because a non-numeric value has
been moved into a numeric field. The database might very well reject the
record.

One way to solve this problem is to use the ALPHA directive. This causes
the corresponding database field to accept alphanumeric data:
01 code-record.
 03 code-key.
$XFD ALPHA

XFD Files 5-33
 05 code-num pic 9(5).

As an alternative, you could specify the USE GROUP directive (see section
5.3.3.11) on the line before “code-key”. The USE GROUP directive implies
that the field is alphanumeric.

5.3.3.2 BINARY directive

The BINARY directive is used to specify that the data in the field could be
alphanumeric data of any classification. Absolutely any data is allowed.

The method of storing fields declared as binary is database-specific. For
example, with Informix databases, binary data is stored in “char” fields with
an extra leading character. This character always contains a space.

Syntax
$XFD BINARY

or
*((XFD BINARY))

Example

You might use this directive when you need to store a key that contains
LOW-VALUES; COBOL allows a numeric field to contain LOW or HIGH
values, but these are invalid for a numeric field in the RDBMS:
01 code-record.
 03 code-key.
 05 code-indic pic x.
*((XFD BINARY))
 05 code-num pic 9(5).
 05 code-suffix pic x(3).
 .
 .
 .
move low-values to code-num.

5.3.3.3 COBOL-TRIGGER directive

Use this directive to indicate that a COBOL trigger is to be executed.

5-34 File Processing
Syntax
$XFD COBOL-TRIGGER=program name

or
*((XFD COBOL-TRIGGER=program-name))

This XFD must be immediately before the FD of the file for which the trigger
is defined.

Three parameters are passed to the COBL program:
01 OPCODE.
 88 READ-BEFORE VALUE "r".
 88 READ-AFTER VALUE "R".
 88 WRITE-BEFORE VALUE "w".
 88 WRITE-AFTER VALUE "W".
 88 REWRITE-BEFORE VALUE "u".
 88 REWRITE-AFTER VALUE "U".
 88 DELETE-BEFORE VALUE "d".
 88 DELETE-AFTER VALUE "D".

01 FILE-RECORD PIC X(MAX-RECORD-SIZE).

01 ERROR-CODE PIC 99.

You can use C$PARAMSIZE to determine the size of the record passed, in
case you have variable-length records. (See Appendix I, “Library Routines,”
in Book 4 of the ACUCOBOL-GT documentation set for more information
on C$PARAMSIZE.) In cases where the record size is known, the actual
record is passed (READ-AFTER (all), WRITE-BEFORE, WRITE-AFTER,
REWRITE-BEFORE, REWRITE-AFTER). In cases where the record size is
not known, the maximum record size is passed (READ-BEFORE (all),
DELETE-BEFORE, DELETE-AFTER). The contents of this field will be
identical to the record area given to the file operation. The BEFORE images
will have the value before the file operation, and the AFTER images will
have the value after the file operation.

Use the ERROR-CODE parameter to signal to Acu4GL that an error
occurred. Setting this in a BEFORE trigger causes the actual file operation to
not execute. Setting this in an AFTER trigger causes the runtime to treat the
file operation as an error, though in fact the file operation did execute. This
means that, for sequential access (next or previous), the file position has

XFD Files 5-35
changed and a subsequent next or previous will act as if the prior file
operation succeeded. Also, setting an error in the REWRITE-AFTER or
DELETE-AFTER will not actually return the record to its prior state—the
record will be modified or deleted in the database. We suggest using
transactions if this behavior is not acceptable.

If the COBOL program can not be called (for any reason), it is treated as
having succeeded.

5.3.3.4 COMMENT directive

The COMMENT directive allows you to include comments in an XFD file.
Comments enable you to embed information in the XFD file that might be
useful to other applications that access the data dictionary. Because the
information is embedded in a comment, it does not interfere with processing
by the alfred record editor or by the Acu4GL database interfaces. A
comment is any line in the XFD file that starts with “#” in column 1.

Syntax
$XFD COMMENT comment

or
*((XFD COMMENT comment))

The text following the directive is copied into the XFD file as a comment.
For example:

$XFD COMMENT This is a comment

5.3.3.5 DATE directive

The DATE directive instructs the runtime to store a field in the database as a
date. Because there’s no COBOL syntax that identifies a field as a date, you
may want to add this directive to differentiate dates from other numbers, so
that they enjoy the properties associated with dates in the RDBMS. Note that
the record editor alfred, does not validate the data you enter into date fields.

Syntax
$XFD DATE=date-format-string

5-36 File Processing
or
*((XFD DATE=date-format-string))

The date-format-string is a description of the desired date format in the
COBOL program, composed of characters from the following list:

Any other characters cause the date format string to be invalid, and result in
a “corrupt XFD” error or a compile-time warning.

Each character in a date format string can be considered a place holder that
represents the type of information stored at that location. The characters also
determine how many digits will be used for each type of data.

For example, although you would typically represent the month with two
digits, if you specify MMM as part of your date format, the resulting date will
use three digits for the month, left-zero-filling the value. If the month is
given as M, the resulting date will use a single digit, and will truncate on the
left.

If you do not specify a date-format-string, the default is YYMMDD if the
field has six digits, or YYYYMMDD if the field has eight digits.

M month (01 - 12)

Y year (2 or 4-digit)

D day of month (01 - 31)

J Julian day (00000000 - 99999999)

E day of year (001 - 366)

H hour (00 - 23)

N minute

S second

T hundredths of a second

XFD Files 5-37
Julian dates

Because the definition of Julian day varies, the DATE directive offers a great
deal of flexibility for representing Julian dates. Many source books define
the Julian day as the day of the year, with January 1st being 001, January 2nd
being 002, and so forth. If you want to use this definition for Julian day,
simply use EEE (day of year) in your date formats.

Other reference books define the Julian day as the number of days since some
specific “base date” in the past. This definition is represented in the DATE
directive with the letter J (for example, a six-digit date field would be
preceded with the directive “$XFD DATE=JJJJJJ”). The default “base date”
for this form of Julian date is 12/31/4714 BC.

You may define your own base date for Julian date calculations by setting the
runtime configuration variable “4GL-JULIAN-BASE-DATE.” The value of
this variable must have the format “YYYYMMDD”. See the Acu4GL
User’s Guide for more information.

Using group items

You may place the DATE directive in front of a group item, so long as you
also use the USE GROUP directive (see Example 2 below).

Example 1
$xfd date
 03 date-hired pic 9(8).
 03 pay-scale pic x(3).

The column date_hired will have eight digits and will be type DATE in the
database, with a format of YYYYMMDD.

Example 2
*((XFD DATE, USE GROUP))
 03 date-hired.
 05 yyyy pic 9(4).
 05 mm pic 9(2).
 05 dd pic 9(2).

5-38 File Processing
This also will produce a column named date_hired with eight digits and type
DATE in the database, format YYYYMMDD.

Example 3
*((XFD DATE=EEEYYYY))
 03 date-sold pic 9(7).
 03 sales-rep pic x(30).

This will produce a column named date_sold with seven digits and type
DATE in the database. The date will contain the day of the year (for
example, February 1st would be 032), followed by the four-digit year, such
as 1999.

FY and RY date formats

The FH and RY date format characters have very precise requirements and
are used to handle a specific case where eight digit dates are expressed in six
characters.

Instead of YYYY or YY, you can specify FY to mean that the first character
of the year specifies the decade instead of the “tens” year. The decade can
be a character between space (“ “) and “I” (inclusive). For the characters “0”
through “9” to be treated as decades in the 20th century, the decade
characters have the following meaning:

This means that a date of ?70210 is converted to 20570210, or February 10,
2057. The range of valid dates is 00101 (Jan 1, 1740) through I91231 (Dec
31, 2159).

00 10 20 30 40 50 60 70 80 90

1700 spc ! “ # $ %

1800 & ' () * + , - . /

1900 0 1 2 3 4 5 6 7 8 9

2000 : ; < = > ? @ A B C

2010 D E F G H I

XFD Files 5-39
Instead of YYYY or YY, you can also specify RY to mean that the first
character of the year specifies the decade and that the entire date is to be 9s
complement (to be able to sort dates in reverse order). Note that the entire
date and time is treated as a 9s complement number in this case. The decade
characters have the following meaning:

The date 20570210 is now specified with *29789. The range of valid dates
is I99898 (Jan 1, 1740) through 08768 (Dec 31, 2159), the same valid range
as when using F instead of R.

While using F and R before month, day, hour, or any other format specifier
does not generate a compile error for the XFD, the results are undefined at
runtime.

Note that if you use these format specifiers with Acu4GL, the actual date is
written to the database, not the encoded date. That means that the R specifier
is not very useful in this scenario (you won't be able to read forward through
a file in reverse date order). This format specifier is more useful with
AcuXDBC where the data is in Vision format.

5.3.3.6 FILE directive

The FILE directive supplies a starting name from which the data dictionary
file name is formed. This directive is required only when the file name in the
COBOL code is nonspecific. For example, you would use this directive
when the SELECT for the file has a variable ASSIGN name (ASSIGN TO
variable_name). In this situation, the interface cannot form a file name
automatically, and you must provide a name.

00 10 20 30 40 50 60 70 80 90

1700 I H G F E D

1800 C B A @ ? > = < ; :

1900 9 8 7 6 5 4 3 2 1 0

2000 / . - , + *) (' &

2010 % $ # “ ! spc

5-40 File Processing
A starting name is simply a short file name that serves as the basis for the
dictionary name.

Syntax
$XFD FILE=name

or
*((XFD FILE=name))

This directive must appear on the line immediately preceding the file’s FD.

Special characters (such as $) can be included within the filename if the name
is surrounded by either single or double quotes. (Example: $XFD
FILE=“f$test”) No quotes are required if the filename does not include
special characters.

Example

Suppose your SELECT statement has a variable ASSIGN name such as the
one shown here:
select my-file
 assign to my-variable.

Then you would need to add the FILE directive as shown here:
 select my-file
 assign to my-variable.
 .
 .
 .
$xfd file=payroll
 fd my-file

Note: This directive must appear immediately before the file’s FD.

5.3.3.7 NAME directive

The NAME directive assigns a field name to the field defined on the next
line.

XFD Files 5-41
Syntax
$XFD NAME=fieldname

or
*((XFD NAME=fieldname))

This directive has several uses, as shown in the following examples.

Example 1

Within a database file, all field names must be unique. (Multiple database
tables may include the same field name, but duplicates may not exist within
a single table.) Unique field names are not required in COBOL, because
names can be qualified by group items. For example, in COBOL this is done:
01 employee-record.
 03 date-hired.
 05 yy pic 99.
 05 mm pic 99.
 05 dd pic 99.
 03 date-last-paid.
 05 yy pic 99.
 05 mm pic 99.
 05 dd pic 99.

You need not change the field names in your COBOL program to access a
database. Instead, you use the NAME directive to provide unique database
names for the fields. For example:
 01 employee-record.
 03 date-hired.
 05 yy pic 99.
 05 mm pic 99.
 05 dd pic 99.
 03 date-last-paid.
*((xfd name=year-paid))
 05 yy pic 99.
$xfd name=month-paid
 05 mm pic 99.
$xfd name=day-paid
 05 dd pic 99.

5-42 File Processing
The dates portion of the resulting database table will look like:

Example 2

Some SQL-based databases require that names be no more than 18 characters
long. For those systems, the Acu4GL runtime will automatically truncate
longer COBOL names after the eighteenth character.

If you have names that are identical within the first 18 characters, or that
would not be meaningful to you if shortened to the first 18 characters, you
can use the NAME directive to assign them different database field names.

For example, a portion of your database might contain:
01 acme-employee-record.
 03 acme-employee-record-date-hired
 pic x(6).
 03 acme-employee-record-date-last-paid
 pic x(6).

You could add two NAME directives to differentiate the two item names by
making them meaningful within 18 characters:
 01 acme-employee-record.
$xfd name=date-hired
 03 acme-employee-record-date-hired
 pic x(6).
$xfd name=date-last-paid
 03 acme-employee-record-date-last-paid
 pic x(6).

Note: Your COBOL names have not changed. The new names are used
only for the XFD fields.

Each time you compile your program and specify “-Fx” to create data
dictionaries, any field names longer than 18 characters will be checked for
uniqueness within the first 18. If any field names are identical for the first 18

yy mm dd year_paid month_paid day_paid

88 02 15 94 04 30

XFD Files 5-43
characters, a compiler warning message will be issued. A warning of this
type does not prevent the program from compiling and does not prevent the
data dictionary from being generated.

Example 3

You may want to use the NAME directive to assign shorter names than those
used in your COBOL programs. This makes the formation of interactive
SQL queries easier and quicker. For example:
*((XFD NAME=EMPNO))
 03 employee-number pic x(8).

This directive causes the data dictionary to map EMPLOYEE-NUMBER to
EMPNO in the database.

Example 4

If your database already exists, and a field name in the database does not
match the name used in your COBOL FD, you can use a NAME directive to
associate the two names. For example:
$xfd name=employee-no
 03 employee-number pic x(8).

This directive causes the data dictionary to map EMPLOYEE-NUMBER in
the COBOL program to EMPLOYEE-NO in the database.

Example 5

If your COBOL program uses field names that begin with a numeric
character, use the NAME directive to assign a different name for use with
your database. SQL will typically generate a syntax error when it encounters
a column name that begins with a numeric character. For example:
 03 12-months-sales pic 9(5)V99.

could be renamed this way:
$xfd name=twelve-months-sales
 03 12-months-sales pic 9(5)V99.

5-44 File Processing
5.3.3.8 NUMERIC directive

The NUMERIC directive allows you to treat a data item as an unsigned
integer when it is declared as alphanumeric. You might use this when the
data stored in the item is always numeric.

Syntax
$XFD NUMERIC

or
*((XFD NUMERIC))

Example
$xfd numeric
 01 student-code pic x(7).

5.3.3.9 SECONDARY-TABLE directive

Some RDBMSs such as Sybase permit subordinate tables. When this is the
case, you can use the SECONDARY-TABLE directive to indicate that the
next data item may be placed into a subordinate table, if more than one table
is necessary to accommodate the data.

Up to 16 subordinate tables can be created from a single record description.
Each table name is based on the original table name, with a letter from “A” to
“P” appended. For example, if the original table were named “my-table,”
then subsequent subordinate tables would be given these names:
 my-tableA
 my-tableB
 my-tableC
 my-tableD

When the runtime accesses the data dictionary, it makes an initial pass
through the data, taking all eligible data items for which the
SECONDARY-TABLE directive is not specified.

SECONDARY-TABLE is ignored for certain data items. These include:

• any field that is part of a key

XFD Files 5-45
• any field that is referenced in a WHEN directive

If the table size is not exceeded in the first pass, then, in a second pass, the
runtime appends to the original table all items marked
SECONDARY-TABLE that can be accommodated.

When the first table reaches a limit (either in total number of columns or total
number of characters), that table is created, and a new table is begun. Items
that did not fit into the previous table are placed into a subordinate table, in
the order in which they are encountered.

The process repeats until all items have been accommodated.

It’s permissible to place the SECONDARY-TABLE directive just before a
level 01 record definition. In this case, it applies to all fields underneath the
level 01.

Syntax
$XFD SECONDARY-TABLE

or
*((XFD SECONDARY-TABLE))

Example
$xfd secondary-table
 01 description pic x(80).

5.3.3.10 SUBTABLE directive (AcuXDBC use only)

This directive modifies the way fields that appear in an OCCURS clause are
processed resulting in the creation of subtables (see the Section 5.3.1.7 for
more information on the OCCURS clause). This directive instructs the XFD
parsing routines not to append the occurrence number to the field name, as
would normally take place with OCCURS clauses, but instead store just the
base name along with the name of the subtable as written in the XFD file.

Syntax
$XFD SUBTABLE=name

or

5-46 File Processing
*((XFD SUBTABLE=name))

Example
*((XFD SUBTABLE=subtab1))
 03 employee-table occurs 10 times.
 05 employee-numberpic 9(3).

Note: AcuXDBC is the only product that currently makes use of this
directive. Using this directive with other products such as Acu4GL will
result in errors.

5.3.3.11 USE GROUP directive

The USE GROUP directive allows you to enter a group item into the XFD as
a single field, instead of using the elements contained in the group. This is
necessary if the item is stored in a pre-existing database as a group, rather
than as individual fields.

Combining fields of data into meaningful groups for database storage also
improves I/O efficiency.

Syntax
$XFD USE GROUP

or
*((XFD USE GROUP))

By default, the USE GROUP directive implies that the consolidated field is
alphanumeric. If you want a numeric field, simply add the word NUMERIC
at the end of the directive.

Example 1

For example, the directive in the following code combines the functions of
the USE GROUP and DATE directives, and indicates that the date should be
entered into the XFD as a single date-formatted data item instead of three
distinct fields:
*((XFD USE GROUP, DATE))
 03 date-entered.

XFD Files 5-47
 05 yy pic 99.
 05 mm pic 99.
 05 dd pic 99.

Either a comma or a space (or both) may separate the word DATE from the
words USE GROUP.

Example 2

Other fields with which you might use this directive include multi-part
account numbers or department numbers, or keys that are referenced as a unit
but not by their individual pieces. Here’s an example of an item that might
be grouped:
$xfd use group
 01 gl-acct-no.
 03 main-acct pic 9(4).
 03 sub-acct pic 9(3).
 03 dept-no pic 9(3).

If you are using a pre-existing database in which certain fields are grouped,
they must also be grouped in your COBOL FD.

If the database does not yet exist, keep in mind that combining fields into
groups typically improves execution speed. Whether to group fields or not
also depends on how you want to process them. Do you always store and use
the fields together? Someone who really knows how the data is being used
might help to identify groups of fields that can be combined to speed
processing.

5.3.3.12 VAR-LENGTH directive

By default, the compiler generates fixed-length fields in the XFD. The
VAR-LENGTH directive requests that the data item that immediately
follows the directive be assigned a type that implies variable length, if
possible. This can save considerable space in your database.

The precise variable type that is assigned to the data item depends on which
DBMS is in use.

Possible variable types that might be assigned are VARCHAR and
VARBINARY.

5-48 File Processing
Syntax
$XFD VAR-LENGTH

or
*((XFD VAR-LENGTH))

Example

For example, the directive in the following code indicates that the
employee-name field should be entered into a Sybase database as a
VARCHAR data item.
*((XFD VAR-LENGTH))
 03 employee-name pic x(45).

5.3.3.13 WHEN directive

The WHEN directive is used when you want to include multiple record
definitions or REDEFINES in the XFD file. It’s typically used when you
want to force certain database columns to be built that would not be built by
default (because you want to use them from the RDBMS side). It can also
force certain fields to be displayed in the alfred record editor.

Note: You cannot use the WHEN directive in an OCCURS clause.

Recall that the key fields and the fields from the largest record are
automatically included as explicit fields in the XFD file. All fields are stored
and retrieved, whether they appear as explicit fields or not. So you do not
need to use WHEN unless you want to ensure that some additional fields are
explicitly listed by name in the XFD.

WHEN declares that the field (or subordinate fields, if it is a group item) that
immediately follows the directive must appear as a field (or fields) in the
XFD. It also states one condition under which the fields are to be used.
WHEN thus guarantees you that the fields will be explicitly included in the
XFD (as long as they are not FILLER and do not occupy the same area as key
fields).

XFD Files 5-49
A WHEN directive may also be assigned an optional tablename. If you
assign a tablename, then the data that immediately follows the WHEN
directive and meets the specified condition will be considered as a separate
table.

Syntax
$XFD WHEN field=value [TABLENAME=name] (equals)
$XFD WHEN field=OTHER [TABLENAME=name] (equals)
$XFD WHEN field<=value [TABLENAME=name] (is less than or equal)
$XFD WHEN field<value [TABLENAME=name] (is less than)
$XFD WHEN field>=value [TABLENAME=name] (is greater than or equal)
$XFD WHEN field>value [TABLENAME=name] (is greater than)
$XFD WHEN field!=value [TABLENAME=name] (is not equal to)

or
*((XFD WHEN field=value [TABLENAME=name])) (also <, <=, >, >=, !=)

The value may be an explicit data value (in quotes). The word OTHER,
which can be used only with “=”, means “use the field(s) that are subject to
the WHEN OTHER condition only if none of the other WHEN conditions
listed for this field is met.”

Note: Keep in mind the distinction between a field subject to a condition
and a field in a WHEN condition (i.e., the field for which a condition is
listed). A field subject to a WHEN condition is one that immediately
follows the WHEN directive or is subordinate to a group item that
immediately follows the WHEN directive. The field in a WHEN condition
is the field before the arithmetic operator and is a part of the directive itself.

In other words, a WHEN OTHER condition is true if all other WHEN
conditions with the same field in them are false. If a WHEN condition is
false, the fields subject to it are not written.

For example:
 01 ar-code-type.
*((xfd when ar-code-type = "s"))
 03 ship-code-record pic x(4).
*((xfd when ar-code-type = "b"))
 03 backorder-code-record redefines
 ship-code-record.
*((xfd when ar-code-type = other))

5-50 File Processing
 03 obsolete-code-record redefines
 ship-code-record.

OTHER may be used before one record definition, and may be used once at
each nesting level within each record definition.

Note: A WHEN directive with condition OTHER must be used if there is
a possibility that the data in the field will not meet any of the explicit
equality conditions specified in the other WHEN directives; if this is not
done, results are undefined.

Example 1

If the following code were compiled without directives, the underlined fields
would appear explicitly in the XFD file. Note that the key fields, and the
fields from the longest record, would be included automatically. FILLER
would be ignored:
01 ar-codes-record.
 03 ar-codes-key.
 05 ar-code-type pic x.
 05 ar-code-num pic 999.
01 ship-code-record.
 03 filler pic x(4).
 03 ship-instruct pic x(15).
01 terms-code-record.
 03 filler pic x(4).
 03 terms-rate-1 pic s9v999.
 03 terms-days-1 pic 9(3).
 03 terms-rate-2 pic s9v999.
 03 terms-descript pic x(15).

If you added the WHEN directive as shown below, it would cause the fields
from the SHIP-CODE-RECORD to be included in the XFD file, and would
determine when specific fields would be used. The underlined fields would
appear as columns in a database table if you were using Acu4GL:
 01 ar-codes-record.
 03 ar-codes-key.
 05 ar-code-type pic x.
 05 ar-code-num pic 999.
$xfd when ar-code-type = "s"
 01 ship-code-record.

XFD Files 5-51
 03 filler pic x(4).
 03 ship-instruct pic x(15).
$xfd when ar-code-type = "t"
 01 terms-code-record.
 03 filler pic x(4).
 03 terms-rate-1 pic s9v999.
 03 terms-days-1 pic 9(3)
 03 terms-rate-2 pic s9v999.
 03 terms-descript pic x(15).

FILLER data items do not have unique names and are thus not used to form
field names in the XFD. You could use the NAME directive to give them a
name if you really need to have them in the XFD. However, in this example
the FILLER data items implicitly redefine key fields. Thus, they would be
disregarded even if you provided a name for them.

Example 2

In the following code, in which no WHEN directives are used, the underlined
fields will be explicitly named in the XFD. (Key fields have the suffix “key”
in their names in this example.)

Note: REDEFINES records simply re-map the same data area and are not
explicitly included in the XFD by default.

01 archive-record.
 03 filler pic x(33).
 03 archive-code pic 9(6).
 03 archive-location pic 9(2).
 03 filler pic x(10).
01 master-record.
 03 animal-id-key.
 05 patient-id pic 9(6).
 05 species-code-type pic 9(5).
 05 species-name pic x(6).
 03 service-code-key.
 05 service-code-type pic 9(6).
 05 service-name pic x(10).
 03 billing-code.
 05 billing-code-type pic 9(4).
 05 plan-name pic x(8).
 03 office-info.
 05 date-in-office pic 9(8).

5-52 File Processing
 05 served-by-name pic x(10).
 03 remote-info redefines office-info.
 05 van-id pic 9(4).
 05 proc-code pic 9(8).
 05 vet-name pic x(6).

If you added the WHEN directives shown below, you would add several
fields to the XFD. The fields that would appear are underlined:
*((xfd when animal-id-key = "00000000000000000"))
 01 archive-record.
 03 filler pic x(33).
 03 archive-code pic 9(6).
 03 archive-location pic 9(2).
 03 filler pic x(10).
*((xfd when animal-id-key = other))
 01 master-record.
*((xfd use group))
 03 animal-id-key.
 05 patient-id pic 9(6).
 05 species-code-type pic 9(5).
 05 species-name pic x(6).
 03 service-code-key.
 05 service-code-type pic 9(6).
 05 service-name pic x(10).
 03 billing-code.
 05 billing-code-type pic 9(4).
 05 plan-name pic x(8).
*((xfd when billing-code-type = "1440"))
 03 office-info.
 05 date-in-office pic 9(8).
 05 served-by-name pic x(10).
*((xfd when billing-code-type = other))
 03 remote-info redefines office-info.
 05 van-id pic 9(4).
 05 proc-code pic 9(8).
 05 vet-name pic x(6).

XFD Files 5-53
Example 3

If your application has a REDEFINES whose field names are more
meaningful than the fields they redefine, you might consider switching the
order of your code, rather than using a WHEN directive. Use the less
significant field names in the REDEFINES. For example, you might change
this:
 03 code-info.
 05 filler pic 9(8).
 05 code-1 pic x(10).
 03 patient-info redefines code-info.
 05 patient-id pic 9(4).
 05 service-code pic 9(8).
 05 server-name pic x(6).

to this:
 03 patient-info.
 05 patient-id pic 9(4).
 05 service-code pic 9(8).
 05 server-name pic x(6).
 03 code-info redefines patient-info.
 05 filler pic 9(8).
 05 code-1 pic x(10).

The fields that would appear in the XFD by default are underlined above.
This shows how the XFD field names might become more meaningful when
the order is reversed. Your application operates the same either way.

Note: When a WHEN directive condition is met, COBOL record
definitions or REDEFINES records that are subordinate to other WHEN
directives are not used. Database columns in rows which correspond to
those records are set to the special database value “NULL”. This means
that there is no value provided for those columns. “NULL” is not
equivalent to zero, and it has special properties in the RDBMS. For
example, you can select all rows for which a given column is NULL.

Example 4

This COBOL code:
 01 example4-record.

5-54 File Processing
 03 col-type pic x.
$xfd when col-type = "a"
 03 def1 pic x(2).
$xfd when col-type = "b"
 03 def2 redefines def1 pic 9(2).

will result in this database table:

5.3.3.14 XSL directive

If you are using the “-Fe” compiler option to generate XML-style XFD files,
the XSL directive allows you to include a stylesheet reference in the XML
header.

Syntax
$XFD XSL=stylesheet

or
*((XFD XSL="stylesheet"))

where stylesheet is an alphanumeric literal indicating the appropriate
stylesheet. The compiler includes the following line in all generated
XML-style XFD files:

<?xml-stylesheet type="text/xsl" href="stylesheet"?>

For example:
*((XFD XSL="myxsl.xsl"))

generates this line:

<?xml-stylesheet type="text/xsl" href="myxsl.xsl"?>

col_type def1 def2

a xx null

b null 10

a yy null

XFD Files 5-55
5.3.4 XFD Format

An XFD file may be created either as a simple text file or as an XML file. In
either case, the XFD contains a description of a COBOL indexed, sequential,
or relative file based on its fields.

5.3.4.1 Identification section

The identification section describes the data file described by the XFD. It
contains information about the version of XFD created and the data file type
(indexed, relative, or sequential). It also lists the data file’s SELECT and
base file name, as well as basic record information (minimum and maximum
record size, number of keys).

Consider the following SELECT statement:
SELECT clients ASSIGN TO DISK "clients.dat"
ORGANIZATION IS INDEXED
...
RECORD KEY IS cl-client-id
ALTERNATE RECORD KEY IS key01 = cl-first-name, cl-last-name
 WITH DUPLICATES.

In a simple text XFD, the identification section appears similar to the
following:
[Identification Section]
XFD,06,CLIENTS,CLIENTS,12
0000000197,0000000197,002
000,18,046,044,00

Here, “XFD,06” specifies that the XFD file was created in version 6 format.
The SELECT and base file name are both “CLIENTS”, and the data file is in
indexed format (“12”). The other available file formats are relative (“08”),
and sequential (“04”).

The minimum and maximum record length for the file described in the XFD
are the same (“0000000197”), and there are “002” keys.

The next line of digits are derived from various compile options and program
settings that may be used when creating the XFD. The first three-digit
sequence (“000”) indicates sign compatibility. The possible values are:

5-56 File Processing
FLG_ACU_SIGNS = 000
FLG_IBM_SIGNS = 004
FLG_MF_SIGNS = 008
FLG_NCR_SIGNS = 020
FLG_VAX_SIGNS = 036
FLG_MBP_SIGNS = 072
FLG_REA_SIGNS = 128

The above values are set by the “-Dc” compiler options. See Chapter 2,
section 2.2.10, “Data Storage Options” for details on using these options.

The next two-digit sequence (“18”) indicates the maximum numeric digits.
The possible values are “18” and “31”. This is set by the “-Dd31” compiler
option.

The next three-digit sequence (“046”) indicates the decimal value of the
character used as the program period.

The next three-digit sequence (“044”) indicates the decimal value of the
character used as the program comma.

The last two-digit sequence (“00”) is a UNICODE indicator.

In XML format, the same information is presented as follows:
<xfd:identification xfd:version="6">
 <xfd:select-name>CLIENTS</xfd:select-name>
 <xfd:table-name>CLIENTS</xfd:table-name>
 <xfd:file-organization>Indexed</xfd:file-organization>
 <xfd:maximum-record-size>197</xfd:maximum-record-size>
 <xfd:minimum-record-size>197</xfd:minimum-record-size>
 <xfd:number-of-keys>2</xfd:number-of-keys>
 <xfd:sign-compatibility>0</xfd:sign-compatibility>
 <xfd:maximum-numeric-digits>18</xfd:maximum-numeric-digits>
 <xfd:period-character>.</xfd:period-character>
 <xfd:comma-character>,</xfd:comma-character>
 <xfd:alphabet>ASCII</xfd:alphabet>
</xfd:identification>

XFD Files 5-57
5.3.4.2 Key section

The key section contains an entry for each key in the file. The following
example refers to the SELECT cited in the previous section, and shows the
key information in a simple text format:
[Key Section]
01,0,005,0000000000
01
CL-CLIENT-ID
02,1,015,0000000005,015,0000000020
02
CL-FIRST-NAME
CL-LAST-NAME

For each key, there is a line describing the number of segments in the key,
whether or not the key allows duplicates, and the size and offset for each
segment in the key. Segment size and offset are repeated as necessary to
describe each segment in the key.

In the example given, the primary key (CL-CLIENT-ID), is defined as
having one segment and being a unique key (“01,0”). The size of the
segment is 5 (“005”), and the offset is 0.

The alternate key is defined as having two segments and allowing alternates
(“02,1”). The first segment is described as having a size of 15 and an offset
of 5; the second segment also has a size of 15, but its offset is 20.

The next line in each key description contains the number of elementary field
definitions defined in the key. For the primary key in the example, there is
one elementary field. In the alternate key, there are two.

The remaining lines in the key section give the name of each elementary field
contained in the key.

In XML format, the key section appears as follows:
<xfd:keys>
 <xfd:key xfd:segment-count="1" xfd:duplicates-allowed="false">
 <xfd:segments>
 <xfd:segment xfd:segment-size="5" xfd:segment-offset="0"/>
 </xfd:segments>
 <xfd:key-columns xfd:key-column-count="1">
 <xfd:key-column xfd:key-column-name="CL-CLIENT-ID"/>

5-58 File Processing
 </xfd:key-columns>
 </xfd:key>
 <xfd:key xfd:segment-count="2" xfd:duplicates-allowed="true">
 <xfd:segments>
 <xfd:segment xfd:segment-size="15" xfd:segment-offset="5"/>
 <xfd:segment xfd:segment-size="15" xfd:segment-offset="20"/>
 </xfd:segments>
 <xfd:key-columns xfd:key-column-count="2">
 <xfd:key-column xfd:key-column-name="CL-FIRST-NAME"/>
 <xfd:key-column xfd:key-column-name="CL-LAST-NAME"/>
 </xfd:key-columns>
 </xfd:key>
</xfd:keys>

5.3.4.3 Condition section

Condition definitions identify fields that are not present in every record. This
section of the XFD specifies the number of condition definitions set,
followed by the actual definitions. Each definition appears on its own line,
and contains the condition number and type. A table of condition types
appears at the end of this section.

In a simple text XFD, the condition section appears as follows:
[Condition Section]
001
001,4,CL-CLIENT-ID,200

Here, there is one condition (“001”). Condition number “001” is a type “4”
(greater than, “>”) condition specifying that the field “CL-CLIENT-ID” is
greater than “200”.

In XML format, the same condition section would appear as follows:
<xfd:conditions xfd:condition-count="1" >
 <xfd:condition xfd:condition-number="1">
 <xfd:condition-comparison>gt</xfd:condition-comparison>
 <xfd:condition-variable>CL-CLIENT-ID</xfd:condition-variable>
 <xfd:condition-value>200</xfd:condition-value>
 </xfd:condition>
</xfd:conditions>

XFD Files 5-59
The recognized condition types are:

5.3.4.4 Field section

The final section of the XFD is the field section. This is the longest section
of the file, because it describes all of the fields contained in the data file.

The file begins with a line describing the number of elementary fields defined
for inclusion in the XFD (four digits), the total number of elementary fields
in the file (five digits), the number of group and elementary fields listed in the
FD (five digits), and the total number of group and elementary fields listed in
the FD (five digits).

These last two items—the number and total number of group and elementary
fields—may be different if the FD contains an OCCURS clause. Although
the total number is increased by the number of times the item OCCURS, the
item still has only one listing in the field section of the XFD. Total number
is also affected by redefines, group items, and multiple FD descriptions, but
it excludes filler fields.

Following the summary line, the field section contains a line for each field
definition, listing:

• The field offset, in bytes (10 digits)

• The field size, in bytes (10 digits)

Type Description

1 Equal to (=)

2 And

3 Other

4 Greater than (>)

5 Greater than or equal to (>=)

6 Less than (<)

7 Less than or equal to (<=)

8 Not equal to (!=)

9 Or

5-60 File Processing
• The field type, as described in the following table:

Type
Values

Description

0 Numeric edited

1 Unsigned numeric

2 Signed numeric (trailing separate)

3 Signed numeric (training combined)

4 Signed numeric (leading separate)

5 Signed numeric (leading combined)

6 Signed computational

7 Unsigned computational

8 Positive packed-decimal

9 Signed packed-decimal

10 Computational-6

11 Signed binary

12 Unsigned binary

13 Signed native-order binary

14 Unsigned native-order binary

16 Alphanumeric

17 Alphanumeric (justified)

18 Alphabetic

19 Alphabetic (justified)

20 Alphanumeric edited

22 Group

23 Float or double

24 National

25 National (justified)

26 National edited

27 Wide

XFD Files 5-61
• For numeric fields, this holds the number of digits in the field. For
non-numeric fields, the number shown is the same as the size of the field
(10 digits).

• The scale of the field (+ or - and a two-digit number), expressed as a
power of 10. The scale for non-numeric fields is “0”.

• The field’s “user type”. This is “000” for no user type, “001” for date
fields, “002” for binary fields, and “003” for variable-length character.
If “secondary table” is used, 16 is added to the value. So “017” would be
the entry for a date in the secondary table.

• The condition number to apply to this field. This is “000” if the field
appears in every record, or “999” if the field is a group item.

• The field level number (2 digits)

• The field name (30 characters)

• An optional date format if the field is a date (only included if you put a
date_format_string in your COBOL program)

When a field uses the OCCURS phrase, two special entries appear in the list
of field definitions. These entries are designated by offsets of “90001” and
“90002”. The START-OCCURS entry is defined as follows:
90001,num-occurs,size,START-OCCURS

The END-OCCURS entry is defined as follows:
90002,END-OCCURS

The fields contained in the OCCURS clause are listed between these markers
using normal field notation.

Fields that are not defined for actual use but that occur in the FD are indicated
by the special condition marker “999”.

28 Wide (justified)

29 Wide edited

Type
Values

Description

5-62 File Processing
A simple text field section would appear as follows:
[Field Section]
0010,00010,00011,00011
0000000000,0000000197,16,0000000197,+00,000,999,01,CLIENT-RECORD
0000000000,0000000005,01,0000000005,+00,000,000,05,CL-CLIENT-ID
0000000005,0000000015,16,0000000015,+00,000,000,05,CL-FIRST-NAME
0000000020,0000000015,16,0000000015,+00,000,000,05,CL-LAST-NAME
0000000035,0000000040,16,0000000040,+00,000,000,05,CL-STREET-ADDR
0000000075,0000000030,16,0000000030,+00,000,000,05,CL-CITY
0000000105,0000000020,16,0000000020,+00,000,000,05,CL-STATE-PROV
0000000125,0000000006,16,0000000006,+00,000,000,05,CL-POST-CODE
0000000131,0000000013,16,0000000013,+00,000,000,05,CL-COUNTRY
0000000144,0000000013,16,0000000013,+00,000,000,05,CL-TEL
0000000157,0000000040,16,0000000040,+00,000,000,05,CL-EMAIL

In an XML-format XFD, the field section description appears as follows:
 <xfd:fields
 xfd:elementary-items="10"
 xfd:elementary-items-with-occurs="10"
 xfd:total-items="11"
 xfd:total-items-with-occurs="11">
 <xfd:field
 xfd:field-offset="0"
 xfd:field-bytes="197"
 xfd:field-type="16"
 xfd:field-length="197"
 xfd:field-scale="0"
 xfd:field-user-flags="0"
 xfd:field-condition="999"
 xfd:field-level="1"
 xfd:field-name="CLIENT-RECORD"
 />
 <xfd:field
 xfd:field-offset="0"
 xfd:field-bytes="5"
 xfd:field-type="1"
 xfd:field-length="5"
 xfd:field-scale="0"
 xfd:field-user-flags="0"
 xfd:field-condition="0"
 xfd:field-level="5"
 xfd:field-name="CL-CLIENT-ID"
 />
 .
 .
 .
 </xfd:fields>

International Character Handling 5-63
5.4 International Character Handling

This section explains how to exchange data between different types of
hardware that use different character code sets. Not all machines use the
same codes for the characters that are outside of the standard ASCII character
set (those whose underlying decimal values are 128 or larger). But you can
overcome these differences by setting up a simple character map file and then
pointing to your map file with a runtime configuration variable. Character
mapping is triggered by the presence (on the client machine) of a
configuration variable that points to the map file. Only single-byte
alphanumeric characters are mapped.

Mapping might be essential for sites using the AcuServer product to retrieve
and store data on a remote server. Sites that use AcuConnect to launch
programs on a remote server might need character mapping to ensure that
parameter values returned for their CALL statements are correctly translated.
Sites using AcuODBC to access Vision data files on a remote machine may
need to provide a map file for the client.

The map file is a simple text file that you create with any text editor. You can
choose any name for it that you like. It should contain two values on each
line. The first value on the line indicates the decimal or hexadecimal value of
the character on the client machine. The second value on the line indicates
the decimal or hexadecimal value of the corresponding character on the
server machine. Hexadecimal values use the standard “0x” notation. For
example:

0x90 0xC9

maps “E” (acute) in the IBM PC character set to “E” (acute) in the ISO8859-1
character set.

Only those character codes that differ between the two machines need to be
included in the map file. This might include characters with a grave accent,
acute accent, circumflex, tilde, umlaut, and so forth.

You can check the values of specific characters by using the Windows
Character Map accessory in the PC environment, or by referring to your
UNIX man pages in the UNIX environment.

5-64 File Processing
As data moves from the client machine to the server, each alphanumeric
character that appears in the first position of a map file entry is mapped to the
corresponding second character in that entry. A character coming from the
server to the client is mapped in reverse: from the second value listed to the
first value listed. Each line in the map file thus sets up a one-to-one mapping.

The map is used to translate only single-byte alphanumeric fields. All group
items are treated as alphanumeric, so you may want to restructure them to
eliminate numeric fields within the group. Data items that are subject to a
REDEFINES clause need to be examined with care. For example, if the data
looks like this:
03 customer-info pic x(150).
03 customer-detail redefines customer-info.
 05 customer-name pic x(30).
 05 customer-code pic 9(20).
 05 customer-address1 pic x(25).
 05 customer-address2 pic x(25).
 05 customer-address3 pic x(25).
 05 customer-address4 pic x(25).

then you might need to reorganize or restructure the data definition to ensure
that numeric fields are not translated.

5.4.1 Files Required for Translation

International character mapping makes use of three files: your map file of
corresponding character codes (explained above), an XFD file that the
compiler creates to describe the structure of data files, and a runtime
configuration file that points to the location of both the map file and the XFD
file. This section provides more details about each of these files. Note that
file names are not translated, so remote files should use only standard ASCII
characters in their file names.

Map File: Your map file of corresponding character codes may be stored on
either the client or the server machine. One advantage of storing it on a
server is that many clients can access the same map file. If it needs to be
changed, a single update benefits all clients. To make a remote map file
accessible to a client, you need to run the AcuServer remote file access
product on the server.

International Character Handling 5-65
XFD File: In order to determine whether a data item is alphanumeric, the
mapping process for AcuServer and AcuODBC makes use of a data
dictionary (also known as an XFD file). (AcuConnect does not require this
file.) The XFD file stores the structure of the COBOL records in a format
that the runtime can access. An XFD file must be created at compile-time for
each program that will use the mapping process. It is created with the “-Fx”
or “-Fa” compile-time option. The XFD files may be stored on either the
client machine or the server machine. If they are located on the server, you
must have the AcuServer product on that server, to enable client access. If an
XFD file cannot be found, no error message is generated, but no character
translation occurs.

Runtime Configuration File: The runtime configuration file on the client
machine must identify the location of the character map file and the XFD
files. Remote name notation can be used to specify remote locations.

Set XFD_DIRECTORY to specify the directory for the XFD files (the
default is the current directory). AcuConnect does not require XFD files.

Set DEFAULT_MAP_FILE to specify the name and location of the
character map file.

If you have more than one map file (because you have different types of
servers), you can associate a map file with a particular server by using the
configuration variable server_MAP_FILE to point to a map file on a
particular server machine. For example, if you are using AcuServer to access
remote files on a machine named sun3, you would use remote name notation
to specify the directory that contains the data files. It might look like this:

@sun3:/user/acct/inventory

Then, use this configuration variable to point to the map file:
sun3-map-file @sun3:/user/acct/inventory/map.txt

If the map file is local, your value might look like this:
sun3-map-file C:\user\utility\map.txt

5-66 File Processing
Note: The server specified in the configuration variable name must match
the server specified in the remote file name. The map file may be stored on
either the client machine or the server machine. If it is located on the
server, you must have the AcuServer product on that server, to enable client
access.

The runtime looks first for <server>-MAP-FILE. If that variable is not set,
the runtime looks for DEFAULT-MAP-FILE. If that variable is also not set,
no translation is done.

6
 Programmer’s Guide
Key Topics

Handling Files .. 6-2
Terminal I/O .. 6-34
Memory Management... 6-37
Memory Testing and Error Handling.. 6-41
Screen Section .. 6-45
Data Validation .. 6-54
Exiting From ACUCOBOL-GT Programs ... 6-55
Multiple Execution Threads ... 6-56
Working with External Sort Modules (UNIX) 6-70

6-2 Programmer’s Guide
6.1 Handling Files

Managing files forms the central focus of most COBOL applications. This
section discusses the implementation and special features of the three types
of files: sequential, relative, and indexed.

ACUCOBOL-GT supports variable-length records in accordance with ANSI
standards for all file types. A file’s records are variable-length whenever any
one of these conditions is true:

• The RECORD CONTAINS clause contains the VARYING phrase.

• The RECORD CONTAINS clause contains both a minimum and
maximum size.

• There is no RECORD CONTAINS clause but the file’s FD specifies
more than one record, and those records have different sizes.

A file’s records are fixed-length whenever:

• The RECORD CONTAINS clause specifies only a maximum record
size.

• There is no RECORD CONTAINS clause, and the file’s FD does not
specify multiple records having different sizes.

Note: ACUCOBOL-GT automatically closes all of its files if it is killed by
the user. However, a power failure, turning off the computer, or issuing a
“kill -9“ from the console are catastrophic exits. In these cases,
ACUCOBOL-GT cannot close its files.

6.1.1 Sequential Files

ACUCOBOL-GT treats sequential files in one of two ways. One form is
called binary sequential; the other form is called line sequential. Note that
RECORD SEQUENTIAL is synonymous with BINARY SEQUENTIAL.

Handling Files 6-3
Binary sequential files are designed to contain non-ASCII information and
are easy to move to foreign systems. A binary sequential file consists of
either fixed-length or variable-length records grouped together into blocks.

Variable-length binary sequential records occupy only as much disk space as
necessary. If the maximum record size is equal to or less than 65,535 bytes,
two bytes indicating record size (VLI) are placed in front of each
variable-length record when it is written to disk. If the record size is larger
than 65,535 bytes, four bytes are placed in front of each variable-length
record. This two- or four-byte field is not specified in your COBOL
program, and non-COBOL programs that access the records need to be
aware of the extra bytes.

All I/O on the physical device is done using the block size, except for the last
block. Only that portion of the last block that contains records is read. The
default block size is one record. You can change block size with the BLOCK
CONTAINS clause.

On VMS systems, binary sequential files are sequential RMS files with
fixed-length or variable-length records.

Line sequential files contain variable-sized records. These files are
designed to be printed and to be used with other programs, such as editors.
The exact form of these files depends on the host system, and thus they
should not generally be treated as portable files. On many machines, these
files consist of variable-length lines delimited by carriage-control characters.
These files should contain only USAGE DISPLAY data so as not to
inadvertently introduce stray carriage-control characters.

On Windows systems, a line sequential file contains each data record
followed by a carriage-return/line-feed pair. On UNIX systems, these files
use just a line feed as the delimiter. On VMS systems, a line sequential file is
a sequential RMS file with variable-length records.

ACUCOBOL-GT performs all of its I/O on line sequential files according to
the following rules. If the file is blocked (i.e., it has a BLOCK CONTAINS
clause), then all I/O is done by blocks. Otherwise, all output is done one
record at a time. Input, on the other hand, is internally blocked by runcbl.
This provides an efficient interface while still providing line-by-line control
over a print device (which may be needed to do form alignment, for
example).

6-4 Programmer’s Guide
Line sequential files further break into two types, print files and
variable-length files. Print files are similar to variable-length files except
that different line-delimiting characters are used. These characters are
chosen so that the resulting file will print correctly. Print files may not be
opened for INPUT or I-O. Print files are designed to be efficiently printed.

When a line sequential file is read, the default behavior is that any
carriage-return, line-feed, or form-feed characters in the record are removed
before the record is made available to the program. To change this default
behavior, see section 2.8, “Runtime Configuration.”

Some line sequential files have automatic blank stripping. This causes
records written to the file to have any trailing spaces in the record removed
before it is written to the file. All print files have automatic blank stripping.
You can specify blank stripping for other line sequential files by choosing
one of the following device types in the file’s ASSIGN phrase:
CARD-PUNCH, CARD-READER, CASSETTE, INPUT,
INPUT-OUTPUT, MAGNETIC-TAPE or OUTPUT. See the
ACUCOBOL-GT Reference Manual for details on the ASSIGN phrase.

When reading from a variable-length sequential file, runcbl treats short
records in one of two ways. If blank-stripping is specified for the file, then
the short records are padded with spaces to fill out to the maximum record
size. If blank-stripping is not specified, then the trailing portion of the record
is left unchanged (from the most recent contents of the record area).

The runtime system allows a sequential file to be opened for input when the
user does not have write-access to the file.

6.1.2 Relative Files

Relative files are generally used to store data where low overhead is required.
Records are available by record number. On machines that directly support
relative files (such as VMS), relative files are used.

On other machines (Windows, UNIX, and MPE/iX systems), relative files
are treated the same as binary sequential files. Each record is physically
located at its record number, and writing record 1 and record 1000 causes 999
blank records to be written. Block sizes are ignored, and each I/O uses the
record size to determine how many bytes to transfer.

Handling Files 6-5
Records may be either fixed-length or variable-length. With variable-length
records, if the maximum record size is equal to or less than 65,535 bytes, two
bytes indicating record size (VLI) are placed in front of each variable-length
record when it is written to disk. If the record size is larger than 65,535 bytes,
four bytes are placed in front of each variable-length record. This two- or
four-byte field is not specified in your COBOL program, but other
non-COBOL programs that access the records need to be aware of the
extra bytes. Each record is padded to the maximum size so that records can
be retrieved randomly in an efficient fashion.

When a record is deleted, the physical record is filled with up to 256 null
characters (LOW-VALUES in ACUCOBOL-GT). (This deleted record
marker can be changed through the use of the REL_DELETED_VALUE
configuration variable. See Book 4, Appendix H.) Note that
ACUCOBOL-GT checks only the first 256 characters of the record to
determine if it is deleted.

Relative files may be assigned only to disk files.

On many (but not all) systems, the runtime system allows a relative file to be
opened for input when the user does not have write-access to the file.

6.1.3 Indexed Files - Vision

Vision is ACUCOBOL-GT's native indexed sequential file system. It
provides fast, flexible, and reliable data storage to ACUCOBOL-GT
applications in all environments except VMS where ACUCOBOL-GT uses
the native RMS file system. Vision handles small or large amounts of data
with equal efficiency and provides rapid access to data via optimized indexes,
sequential reading, or a combination of indexed START and sequential
READ statements. Vision handles all ANSI standard COBOL data types.
The Vision file system is described here.

6-6 Programmer’s Guide
Vision Version 5 and 4

Vision Version 5 and 4 use a dual file format. One file, or segment, holds the
data records and another segment holds the key information. When a
segment approaches the file size limit (configurable up to nearly 2 GB),
Vision creates a new data or index segment in which to store more
information. The dual file format provides several key benefits:

1. The maximum size of Vision 5 and 4 files is virtually unlimited.
Individual data and index segments can be up to 2 GB in size.

2. Separating data and key information provides a higher degree of
reliability when files must be rebuilt.

3. Permanent data loss due to memory-related problems is less likely to
impact two files.

Vision Version 5 is a superset of Version 4. The rules that apply to Version 4
segment file naming also apply to Version 5.

ACUCOBOL-GT uses Vision Version 5 by default. Vision Version 5 is the
most recent and advanced Vision version. Version 5 supports the following
capabilities that Version 4 does not:

• records up to 64 megabytes in size

• block sizes up to 8192 bytes

• very large pre-allocate and extension factors

• the ability to recover deleted records (that have not yet been overwritten
by subsequent writes)

Vision Version 3

Vision Version 3 files are generated in a single file that contains both the data
records and the key information. A separate linked list is maintained and
used to rebuild corrupted files. A linked list of deleted records is also
maintained so that new records first reuse space held by deleted records
before new space is consumed. The single file format supports a maximum
file size of 2 GB.

Handling Files 6-7
Note: On many (but not all) systems, the runtime system allows an indexed
file to be opened for input when the user does not have write-access to the
file.

Indexed files may be assigned only to disk files.

6.1.3.1 Segment naming of Vision 4 and 5 files

File segments generated for Vision Version 5 and 4 files can be given
customized extensions.

The naming rules described below do not apply to the first data segment. The
name of the first segment is set in the same way that the name of any other
data file is set. In this discussion, the name of the first segment is referred to
as the “regular” name.

Tip: Turning on level 3 or higher file tracing in the debugger (“tf 3”) causes
the output of file diagnostics that show the names used for active segments
of a Vision Version 5 or 4 file. Also, “vutil -info” displays the names of all
segments of a Vision Version 5 or 4 file.

Vision Versions 5 and 4 use two methods to determine the file names of
additional index and data segments (after the first segment).

• The first method allows the user to specify a “format” from which Vision
generates the names of additional segments.

• The second method (the default) automatically generates the names of
additional segments using the base name as a template.

Both methods allow specific generated file names to be overridden.

The first method takes precedence over the second. That is, if circumstances
allow Vision to use the first method, it is used. If not, the second method is
used.

6-8 Programmer’s Guide
In both methods, environment variables are used to indicate how Vision is to
determine the names of additional segments. You form the names of these
environment variables by taking the regular name of the file, converting all
the alphabetic characters to upper case, leaving numeric characters alone, and
converting all other characters to underscores (“_”). Thus, “gl42.dat”
becomes “GL42_DAT”. This name is typically suffixed with another string,
depending upon which method you are using, as described below. The
runtime looks for these variables in the runtime configuration file. Utilities
such as vio and vutil look for them in the operating system’s environment.

6.1.3.2 Method one: The format method

This method allows the user to specify a format that Vision will use to
determine the file names of additional segments. Two formats must be
specified: a format for data file extensions and a format for index file
extensions. The resulting variables have this general look:
filename_DATA_FMT and filename_INDEX_FMT. Each of these
variables must be equated with a format code that includes an escape
sequence. The valid escape sequences are defined below.

Example for method one

Suppose the regular name of your COBOL file is “/usr1/gl.dat”. The
variables you would use to set the segment naming formats for this file are
GL_DAT_DATA_FMT and GL_DAT_INDEX_FMT.

Each of these variables must be set equal to a pattern that shows how to create
the segment names. The pattern shows how to form the base name and how
to form the extension for each segment. Part of this pattern is a special
character (such as %d) that specifies how the segment number should be
represented. Choices include %d (decimal segment numbers), %x (lower
case hexadecimal numbers), %X (uppercase hexadecimal numbers), and %o
(octal numbers).

For example, setting environment variables
GL_DAT_DATA_FMT=gl%d.dat and GL_DAT_INDEX_FMT=gl%d.idx
would result in data segments named /usr1/gl.dat (remember that the first
data segment is not affected), /usr1/gl1.dat, /usr1/gl2.dat, and so forth. The
index segments would be named /usr1/gl0.idx, /usr1/gl1.idx, /usr1/gl2.idx,
and so forth.

Handling Files 6-9
Escape sequence definitions

The %d in the values of the filename-DATA-FMT and
filename-INDEX-FMT variables above is a printf-style escape sequence.
Most reference books on the C language contain an in-depth explanation of
these escape sequences, and UNIX systems typically have a man page (“man
printf”) that explains them in detail. Here are the basics:

• “%d” expands into the decimal representation of the segment number.

• “%x” expands into the hexadecimal representation (with lower case a-f)
of the segment number.

• “%X” expands into the hexadecimal representation (with upper case
A-F) of the segment number.

• “%o” expands into the octal representation of the segment number.

• You can add leading zeros to the number (to keep all the file names the
same length) by placing a zero and a length digit between the percent
sign and the following character. “%02d” would result in “00”, “01”,
“02”, and so forth when expanded.

• To embed a literal “%” in the file name, use “%%”.

The escape sequence can be positioned anywhere in the file name, including
the extension.

Note: The runtime checks for these segment naming variables in the
runtime configuration file. Utilities such as vutil and vio check in the
operating system’s environment.

6.1.3.3 Method two: The default method

The default method uses the regular file name to determine the file names of
additional segments. This method stores the segment number in the
extension of the file name. If you use the extension of the file name to
distinguish files that are otherwise named the same, you should not use this
method.

6-10 Programmer’s Guide
This method takes the regular file name and removes the extension (if any)
from that name. It then adds “.vix” to generate the name for the first index
segment. Subsequent index segments are named with “.v01” through “.vff”
(hexadecimal representation) for the first 255, and “.v0100” through “.vffff”
for segments 256 through 65536. The data segments are named using a
similar numbering scheme, but use “d” instead of “v” before the segment
number. You should avoid using file name extensions that can be considered
as “d” or “v” followed by a hexadecimal number. For example, the extension
“.dae” is not safe, because that is the name of the 175th data segment. The
common extension “.dat” is safe because “t” is not a hexadecimal digit.

6.1.3.4 Overriding individual segment names

You can override an individual generated segment file name by setting an
environment variable named by the generated file name of the segment
(converted as described above) to the full path of the desired file name. As
an example, suppose the regular name of your file is /usr1/gl.dat, and you
have GL_DAT_DATA_FMT=gl%d.dat set, but you want to place the second
data segment on /usr2. Setting GL1_DAT=/usr2/gl1.dat will override the
originally determined name. This feature works with both methods. Using
the file names generated by the default method as environment variables
(converted as described above) works, too.

6.1.3.5 Selecting the Vision version

You can control what Vision file format is applied to new Vision files
through the V_VERSION and filename_VERSION configuration variables.
The value of V_VERSION specifies the default format for new Vision files.
The filename_VERSION variable allows you to set the file format on a
file-by-file basis. Filename is replaced by the base name of the file (the
filename minus directory and extension). These variables take an integer
value that corresponds to the Vision Version that you want applied (5, 4, 3,
2). For more information about these configuration variables, see Appendix
H of Book 4, Appendices.

Handling Files 6-11
6.1.3.6 Keys

Vision files allow up to 120 keys for sorting. One key is the primary key, all
others are alternates. In a record, a key may not occupy physical space that
exceeds the minimum record length. Thus, a 10-byte key cannot occupy
positions 20-29 in a record with a minimum record length of 28.

You can specify whether duplicates are allowed for the primary key and for
each alternate key. If duplicates are allowed for a particular key, it is possible
to write a record whose key fields contain exactly the same data as the key
fields of an existing record. In this case, the records are stored in
chronological order.

Note: It is generally recommended that you not allow duplicate primary
keys unless the file is processed only in ACCESS SEQUENTIAL mode.
Allowing duplicate primary keys in files that are processed in DYNAMIC
and RANDOM access modes could generate unanticipated results. The
rules that govern the treatment of duplicate primary key values are
presented in General Rule 16 of section 4.3.1, “File-Control Paragraph”
in Book 3, Reference Manual.

Every alternate key causes significant additional overhead. (Keys have the
least amount of overhead when duplicates are allowed to occur.) The keys
for a data file are automatically stored in a compressed form.

A key may be a contiguous part of the records, or it may be split into as many
as 16 segments. If you are compiling for compatibility with versions earlier
than Vision Version 4, you can have no more than six segments. You must
use Vision Version 4, or later, if you want more than six segments.

Suppose you have the following record structure in a file called
AJAX-SUPPLIES:
01 CUSTOMER-RECORD.
 03 CUSTOMER-NO PIC 9(6).
 03 CUSTOMER-BALANCE PIC S9(9)V99.
 03 CUSTOMER-NAME PIC X(30).
 03 CUSTOMER-CONTACT PIC X(30).

To use CUSTOMER-NAME as the primary key, you would use the syntax
shown in the last line below:

6-12 Programmer’s Guide
FILE-CONTROL.
 SELECT AJAX-SUPPLIES
 ASSIGN TO DISK “INDEX.DAT”
 RECORD KEY IS CUSTOMER-NAME.

If data elements are contiguous and defined in the order that would be used
for sorting, they may be grouped and defined together as a key. For example,
suppose you wanted to use CUSTOMER-BALANCE, CUSTOMER-NAME
as an alternate key. Because these two fields are contiguous and are defined
in the same sequence they will be used for sorting, the most efficient way to
define the alternate key is to establish a group item that includes both fields.
For example:
01 CUSTOMER RECORD
 03 CUSTOMER-NO PIC 9(6).
 03 CUSTOMER-BALNAME.
 05 CUSTOMER-BALANCE PIC S9(9)V99.
 05 CUSTOMER-NAME PIC X(30).
 03 CUSTOMER-CONTACT PIC X(30).

Then, to define CUSTOMER-BALNAME as an alternate key, you would use
the syntax shown in the last line below:
FILE-CONTROL.
 SELECT AJAX-SUPPLIES
 ASSIGN TO DISK “INDEX.DAT”
 RECORD KEY IS CUSTOMER-NAME
 ALTERNATE KEY IS CUSTOMER-BALNAME.

Suppose now that you want to define a sort sequence that uses fields that are
not contiguous, or are defined in a different order from the sorting order. In
this case, you could either:

• move the fields around, or duplicate them, so that they are contiguous
and are in the same sequence in which they will be used for sorting

• define a split key

Split keys allow you to specify up to 16 segments of data elements as the
components of a key. (Note that if you compile for compatibility with
versions earlier than Vision Version 4, you can have no more than six
segments.) The data segments need not be contiguous and need not be listed

Handling Files 6-13
in the order they appear within the record. The composite length of a split
key cannot exceed 250 bytes, and no key can be defined beyond the
minimum record length.

For example, to define an alternate key consisting of
CUSTOMER-BALANCE, CUSTOMER-NAME, and CUSTOMER-NO,
use the syntax shown in the last two lines below:
FILE-CONTROL.
 SELECT AJAX-SUPPLIES
 ASSIGN TO DISK “INDEX.DAT”
 RECORD KEY IS CUSTOMER-NAME
 ALTERNATE RECORD KEY IS CUSTOMER-BALNAME
 ALTERNATE RECORD KEY IS BAL2-KEY =
 CUSTOMER-BALANCE, CUSTOMER-NAME, CUSTOMER-NO.

In this example, BAL2-KEY is a user-defined word and is the name you
would use in your READ and START statements. Note that BAL2-KEY is
not defined in Working-Storage. This is the only definition of the key.

6.1.3.7 Other Vision features

Block size

Vision files have a block size (physical record size) of between 512 and 8192
bytes (in 512-byte increments). The block size specifies how large a node is
in the Vision index tree. The block size of Vision Version 2, 3, or 4 files is
restricted to 1024 bytes. The block size is specified by the BLOCK
CONTAINS clause (see section 5.4.4, “BLOCK CONTAINS Clause” in
Book 3, Reference Manual). If the BLOCK CONTAINS clause is omitted,
the file will have 512-byte blocks.

Each index node holds a number of key entries and pointers to other nodes or
record data. The larger the block size, the more key entries each node can
store. Also, larger block sizes produce shorter index trees. However, larger
index nodes can cause Vision to spend more time performing linear searches
of each node to find the desired key entry. Therefore, it is important to
determine the optimal block size for your particular key and data structure. If
you have very large keys, a larger block size can help keep the tree height
manageable. If you have smaller keys, a large block size will produce a short
tree, but performance may be lost in the time it takes Vision to scan each of
the large nodes.

6-14 Programmer’s Guide
Some experimentation will help you determine the optimal block size for
your application and hardware. In the past, Vision has used 512- and
1024-byte block sizes. Users have reported good results with these values. If
your keys are small or medium size, try using the 512 or 1024 block sizes. If
you have a file with large keys and you are using Vision 5 files, you might
want to experiment with a larger block size.

Compression and encryption

Vision can optionally compress and/or encrypt records. Record compression
uses a simple run-length compression algorithm. Encryption uses a byte
transformation algorithm that is unique to every byte in the file. Encrypted
files may not have records extracted by the Vision utility program vutil.
Records are stored internally in the least amount of space required.
Furthermore, they are packed together and span block boundaries, so no disk
space is wasted. Compression is discussed in more detail in section 6.1.6.1,
“Compression.”

User count

Vision maintains a user count for each file. This count is normally zero.
When a file is opened for update, the user count is incremented; when the file
is closed, the user count is decremented. The user count is thus the number
of currently updating processes for the file. If a program dies
catastrophically, however, the user count will not get decremented. (For a
definition of “catastrophic,” see section 6.7, “Exiting From
ACUCOBOL-GT Programs.”) This results in the count never reaching
zero. Thus, if the value is non-zero when there are no active users, it
indicates a catastrophic program failure and suggests that corrective action
may need to be taken. At the very least, the file should be checked for
integrity, but depending on the program that died, perhaps more significant
action should be taken. Basically a non-zero user count indicates that
someone knowledgeable about the system should intervene and ensure that
everything is okay. This can be used as an early warning system to head off
some problems. Note that a non-zero user count is not a fatal error to Vision.
It is used only as an indicator of potential problems.

Handling Files 6-15
6.1.4 Record Locking

Record locking for indexed and relative files is used for all machines.
Currently, record locking is not supported for sequential files. Only files
opened in the I/O mode will actually lock records; input-only files will not
lock records they read. Record locking occurs in one of two modes:
automatic (the default) and manual. In automatic mode, a record is locked
when it is read (unless the WITH NO LOCK or ALLOWING UPDATES
phrase of the READ statement is used). In manual mode, records are locked
only when WITH LOCK is specified on the read statement. Both modes
support single and multiple record locks. When single record locks are used
(the default), the currently locked record is released whenever any I/O
statement is executed for the file. When multiple record locks are used,
records become unlocked only when an UNLOCK or CLOSE statement is
executed for the file (or a COMMIT is executed for a transaction file).

It is possible to get a record locked condition when you are doing a READ,
REWRITE, or DELETE on a file.

On most machines, a READ performed without locking will not get a
record-locked condition even if another process has the record locked. This
allows report programs to run without hindrance. Note, however, that on
some older UNIX machines, non-locking READs will receive the
record-locked condition if another process has the record locked. This is
because on these machines, UNIX enforces the record locks. Most UNIX
systems do not enforce record locks (the current system V standard does not
allow for it) so this should not continue to be a problem for long. PC-based
environments (i.e., LANs, Windows) also enforce record locks, introducing a
portability issue. For unenforced locks in a PC-based environment, you
should use indexed files rather than relative files.

runcbl behaves in one of two fashions when a locked record is encountered.
Normally, the return is immediate and the file status variable is set to the
locked condition. When this happens, the I/O fails. Unlike most errors, the
current record pointer is not changed by a locked condition. This allows
multiple READ NEXTs to be performed in a loop until the lock condition
disappears, without losing track of the current record position.

In RM/COBOL compatibility mode, however, this rule changes if the file
does not have a Declarative associated with it. In this case, locked records on
REWRITE and DELETE statements are handled as described above. On

6-16 Programmer’s Guide
READ statements, however, runcbl automatically waits until the record
becomes unlocked. This is identical to the behavior of RM/COBOL
version 2. The programmer should beware when using this technique,
however. Deadlocks can occur if two programs end up waiting for each other
to unlock a desired record. For this reason, we recommend against using this
technique.

When ROLLBACK is enabled in a file’s FILE-CONTROL entry, record and
file locking rules are extended for that file. Every record updated as part of a
transaction is locked until that transaction is committed or rolled back. The
COMMIT and ROLLBACK verbs remove these locks. For more
information, see section 5.1.4, “Extended Locking Rules.”

6.1.5 Device Locking Under UNIX

On UNIX machines, handling devices poses a special problem. The
difficulty is that UNIX does not in any way limit access to a device, so that it
is possible for two programs to intermix reports on the same printer. This is
usually not a problem with printers, because the output is usually directed to
the UNIX spooler. However, for special-form printing, or writing to other
types of devices, it is necessary to write directly to the device.

On UNIX systems, runcbl can control concurrent access to a device by
automatically performing file locking for all files identified as devices. You
must enable this feature if you want to use it. When it is enabled, runcbl will
create a lock file whenever a device file is opened. If the lock file exists when
the open is made, then the open will fail and a file-locked condition will be
returned to the program. When an open device file is closed, its lock file will
be removed.

You identify a device to runcbl by using the “-D” flag in its name. For
information about this, see section 2.9, “File Name Interpretation.” The
lock file will be called “LOCK.name” where name is the base file name of
the UNIX device (for example, “lp” or “mt0”).

You enable automatic device locking by specifying a lock directory. Set the
configuration variable LOCK_DIR to the desired directory.

Handling Files 6-17
For example, if you wanted to enable device locking and place the lock files
in the directory “/usr/locks”, you could use the following configuration
variable:

LOCK-DIR /usr/locks

Note: If a program that has established a device lock dies in a catastrophic
fashion (e.g., a power failure), the lock file will be left around and should
be removed manually.

Also note that enabling device locking will not prevent the UNIX spooler
from printing to the device. When you are using a printer as a special-form
printer, the spooler should first be disabled (see the “disable” UNIX
command) and then the program should be run that will print the special
forms. It will prevent other special-form printing programs from using that
printer. Programs that print through the spooler, meanwhile, will continue to
run, because the UNIX spooler accepts queued reports when disabled. After
the special forms are printed, the spooler can be enabled and the queued
reports will start printing.

6.1.6 Indexed File Considerations

This section describes the impact of ACUCOBOL-GT’s special indexed file
features. It covers how they work and when they should (and should not) be
used.

6.1.6.1 Compression

File compression can be used on indexed files to save disk space. The Vision
file system supports compression, but not all file systems do. Compression is
enabled by specifying the WITH COMPRESSION phrase in the ASSIGN
clause of a file’s SELECT statement. Compression must be specified when
the file is initially created to have any effect. However, the vutil “-rebuild”
option allows you to apply or remove compression during the file rebuilding
process. See section 3.3.3, “Rebuilding Files.”

File compression uses a simple run-length compression scheme. This
replaces “runs” of identical bytes with a shorter sequence. Files using
compression may contain any type of data.

6-18 Programmer’s Guide
Some files will compress better than others. Generally speaking, files that
contain text compress the best due to repeated space characters. Results can
vary significantly, however. Experimentation is the best way to tell how
much space may be saved.

Each compressed record usually retains some extra, unused space for future
expansion. This is advisable especially if the records are frequently changed.
You can specify via a compression factor how much of the space saved by
compression should be retained to allow for future growth. When no
compression factor is specified, WITH COMPRESSION uses the default
compression factor (70). The following paragraphs explain how the factor is
used.

A compression factor other than the default may be specified via the
COMPRESSION CONTROL VALUE IS clause in the SELECT statement.
The factor must be a numeric literal within the range zero (no compression)
to 100 (maximum compression). A factor of one (1) causes Vision to
examine the COMPRESS_FACTOR configuration variable. If
COMPRESS_FACTOR is not set, the default compression factor is used
(70).

For factors from two through 100, the factor is considered to be a percentage.
It specifies how much of the space saved by compression is actually removed
from the record. For example, suppose an 80-byte record is compressed to 30
bytes. Then the compression factor is used to determine how much of the 50
bytes of saved space is to be removed from the record. A compression factor
of 70 would mean that 70% of the 50 bytes (35 bytes total) will be removed.
This leaves 15 bytes for future expansion, and results in a compressed record
size of 45 bytes (30 compressed size plus 15 extra for growth). The larger the
compression factor, the more of the saved space is removed. A compression
factor of 100 removes all saved space and is advisable only if the file is rarely
updated.

An alternate way to specify the compression factor is to set the
COMPRESS_FACTOR configuration variable. COMPRESS_FACTOR is
used when the COMPRESSION CONTROL VALUE IS clause is either
omitted or set to a value of one. See the entry for COMPRESS_FACTOR
in Book 4, Appendix H. As noted earlier, the compression factor for a file is
established when the file is created. Subsequent changes to
COMPRESS_FACTOR do not affect existing files.

Handling Files 6-19
The selection of the compression factor should be based on the amount of
updating that the file undergoes. If rewrites and deletes are rarely or never
done on the file, then a high compression factor is most efficient. We
recommend 100 for files that are rarely updated, 70 for average files, and 50
(or less) for files that are frequently updated.

6.1.6.2 Mass update

The MASS-UPDATE option of the OPEN verb can provide significant
performance benefits under some circumstances. Several issues come into
play, however, when you are deciding whether or not to use
MASS-UPDATE. Currently, the MASS-UPDATE clause affects only the
systems that use Vision.

Normally, when Vision updates a file, it immediately writes all of the
changed information to disk. This is done for two reasons: to allow current
information to be accessed by other concurrent processes, and to ensure that
the file will be accurate should the program die suddenly without closing the
file (e.g., when a machine’s power goes out or the operating system crashes).
Note that a Vision file is really only at risk of being damaged during an
update to the file.

The MASS-UPDATE option changes this strategy. It allows Vision to retain
information in memory until the file is closed. This allows Vision to be much
more efficient, particularly on Windows systems. However, using this option
means that the file is at risk from the time the first update is made until the
time the file is closed. Should the machine die during this period, the file will
almost certainly be corrupt. To mitigate this issue, Vision writes enough
information to disk to ensure that the file can be rebuilt using vutil.

The MASS-UPDATE option also requires that the entire physical file be
locked against other updaters, because the disk version of the file is not
always accurate. This somewhat limits the opportunities in which
MASS-UPDATE can be used.

Generally, programs might use MASS-UPDATE if they heavily update a file.
For many such programs, the fact that the file is at greater risk is not really an
issue. For example, many posting programs cannot recover from an
incomplete run. This is because the program cannot tell where it left off in
the process. This is particularly true for programs that update several files at
once, because it is usually not clear which file got updated last. For these

6-20 Programmer’s Guide
programs, it is usually necessary to go to a backup of the affected files when
the program dies. These programs are obvious candidates for
MASS-UPDATE because it does not matter if the files are corrupt after a
program failure, since they are just going to be restored from backup.
Furthermore, these programs benefit the most from MASS-UPDATE
because they do a lot of updating.

Interactive programs, however, make poor candidates for MASS-UPDATE.
Usually the volume of updates is low (at least for the time frame the program
runs in). Furthermore, interactive programs are often killed or left running
overnight by their operators, thus increasing both the risk to the file and the
inconvenience of the file lock that MASS-UPDATE implies.

To summarize, MASS-UPDATE is appropriate for programs where the
implied file lock is useful, the volume of updates is large, and where a system
failure would usually require special attention for recovery (either restoring
from backup or rebuilding the files).

Note: For convenience when you are converting programs written with
other COBOL compilers, ACUCOBOL-GT can treat files opened WITH
LOCK as if they were opened with MASS-UPDATE. This is controlled by
the MASS_UPDATE runtime configuration variable. Configuration
variables are described in Appendix H.

6.1.6.3 Bulk addition mode for Vision

When Vision writes a record to a file, its normal algorithm is to first add the
record, then add the primary key, then add the first alternate key, and so on
until all the keys have been added. This is the algorithm one expects and is
generally required to correctly support the WRITE verb.

Vision also has another technique that it can use to add records to a file. This
technique does not write the keys to the file when it adds the record. Instead,
it adds many records to the file first, then it gathers all the primary keys for
those records and adds them, then it gathers all the first alternate keys and
adds them, and so on. By adding many keys at once, Vision can be much
more efficient in its handling. This has two benefits:

1. The time it takes to add a large number of records using this technique is
generally much smaller than using the normal technique; and

Handling Files 6-21
2. The resulting file is more efficiently organized, with all of the blocks
associated with a particular key near each other on disk.

This technique of adding records to a file is called “bulk addition” mode. It
is available only for Vision files. It may be used with any format Vision file.

You can use bulk addition mode in your programs. This is most useful in
programs that add a large number of records to a file at once. It is less useful
in programs that do operations other than WRITE on a file, or programs that
do not write many records. Some typical applications for bulk addition mode
are:

• Programs that load externally supplied data into a file. For example, a
program that adds to an indexed file from the data contained in a
sequential file.

• File conversion programs, such as programs that change a record format.
These programs read from one file and write to a new one.

• Archiving programs.

• Programs that post transactions to permanent log files.

While bulk addition mode has fairly specialized uses, its benefits are high in
these cases.

Bulk addition mode can provide substantial performance improvements over
other techniques, including MASS-UPDATE mode. These improvements
become more noticeable as the file grows and in files with a large number of
alternate keys. For files with few records, bulk addition mode can be slightly
less efficient than the normal WRITE technique.

Using bulk addition affects some of the standard COBOL file handling rules.
These are described in a separate section below.

Using bulk addition

To use bulk addition on a file, open that file with the BULK-ADDITION
phrase. For example:

OPEN OUTPUT MY-FILE FOR BULK-ADDITION

6-22 Programmer’s Guide
A file opened for bulk addition is locked for exclusive use by the program.
This is necessary because the file becomes internally inconsistent when the
first WRITE occurs and does not become consistent again until the file is
closed.

You may use BULK-ADDITION with the OUTPUT, EXTEND and I-O
open modes.

If you specify BULK-ADDITION for a file other than a Vision file, the effect
is the same as if you had specified MASS-UPDATE instead.

Vision allocates a memory buffer for each file opened for bulk addition. The
size of this buffer is controlled by the V_BULK_MEMORY configuration
variable. The default size of this buffer is 1 MB. The default size is fairly
large because it is assumed that only a few files will be open for bulk addition
on a system at any one time. If this buffer cannot be allocated, the OPEN
fails with a status indicating inadequate memory.

When a WRITE occurs for a file opened for bulk addition, only the record is
actually written to the file. The keys for the record are not written out until
later. When an operation occurs on the file other than a WRITE, that
operation is suspended and all of the records with missing keys have their
keys added. After this completes, the suspended file operation resumes.

The process of adding keys uses the memory buffer allocated when the file
was opened. The algorithm is to fill the buffer with keys, sort them, and then
add them to the file. This is repeated until all the missing keys have been
added. The larger the memory buffer, the more efficient this process is.

When adding records to the file, Vision always places the records at the end
of the file when using bulk addition. It does not re-use deleted record areas
in this case. It does this to make the process of gathering the missing keys
efficient. If you need to recover the deleted record disk space, you can
rebuild the file with vutil to do this.

Handling Files 6-23
Note: Any operation on the file other than WRITE will trigger the addition
of the keys. Ideally, this operation will be the final CLOSE of the file. In
this case, all of the newly added records are keyed at once and efficiency is
maximized. In the worst case, each WRITE is followed by some other
operation (such as a READ). In this case, each record is keyed
individually. This is less efficient than just updating the file normally.

This process of delaying the keying of the records has several effects besides
improving performance. It affects the rules of COBOL, especially the
handling of duplicate keys. In addition, it makes it harder to report the
program’s progress to the user, since much of the program’s time may be
spent in a single COBOL statement (the file’s CLOSE, for example, may take
the majority of the program’s running time as it adds all the missing keys).
These issues are discussed in the following sections.

Effect on COBOL rules

When you open a file for bulk addition, the regular rules of COBOL file
handling are changed for that file, until that file is closed. The following
changes apply:

1. File status “02” (record written contains an allowed duplicate key value)
is never returned by WRITE.

2. File status “22” (record not written because it contained a disallowed
duplicate key value) is not returned by WRITE. See the next section
for a discussion of how illegal duplicate keys are handled.

3. File status “24” (disk full) may occur on file verbs that normally cannot
produce this status. This occurs because the verb (for example,
READ) triggered writing of the keys to the file and the disk became
full while doing this.

4. Records may be rejected as having illegal duplicate keys that would
not normally be rejected. The circumstance under which this occurs is
described in the next section.

6-24 Programmer’s Guide
Duplicate key handling

Because keys are not written at the time a new record is written, the WRITE
statement never gets a duplicate key error status (status 22). When you are
using bulk addition, illegal duplicate keys are handled in a different manner.

When the keys are added to the file, any illegal duplicates are detected then.
Should a record be found that contains an illegal duplicate key value, that
record is deleted. Your program is informed of this only if it contains a valid
declarative for the file. If there is no declarative available, the record is
quietly deleted. Otherwise, the file status data item is set to “22”, the file’s
record area is filled with the contents of the rejected record, and the
declarative executes. When the declarative finishes, the file record area is
restored to its previous contents so that it contains the correct data when the
suspended file operation resumes.

When the file’s declarative executes in this way, the program may not
perform any file operations in the declarative. This is because the program is
in the middle of doing a file operation already, the one that triggered the
addition of the keys. In addition, the declarative may not start or stop any run
units (including chaining), nor may it do an EXIT PROGRAM from the
program that contains the declarative. Finally, note that the declarative runs
as a locked thread — no other threads execute while the declarative runs.

You can configure Vision to write any rejected records to a file. This gives
you a way to log the rejected records even though you may not perform a file
operation from within your declarative. To create this log, set the
DUPLICATES_LOG configuration variable to the name of the file in which
you want to store the records. Vision will erase this file first if it already
exists. You must use a separate log file for each file opened with bulk
addition. You can do this by changing the setting of DUPLICATES_LOG
between OPEN statements. For example:
SET ENVIRONMENT “DUPLICATES-LOG” TO “file1.rej”
 OPEN OUTPUT FILE-1 FOR BULK-ADDITION

SET ENVIRONMENT “DUPLICATES-LOG” TO “file2.rej”
 OPEN EXTEND FILE-2 FOR BULK-ADDITION

If DUPLICATES_LOG has not been set or is set to spaces, then no log file is
created.

Handling Files 6-25
In addition, the duplicate-key log file may not be placed on a remote machine
using AcuServer. The log file must be directly accessible by the machine that
is running the program.

Any record that Vision rejects due to an illegal duplicate key value is written
to the log file. The format of the file is a binary sequential file with
variable-size records. You can read this file with a COBOL file that has the
following layout:

FILE-CONTROL.
 SELECT OPTIONAL LOG-FILE
 ASSIGN TO DISK file-name
 BINARY SEQUENTIAL.

FILE SECTION.
FD LOG-FILE
 RECORD IS VARYING IN SIZE DEPENDING ON REC-SIZE.
01 LOG-RECORD.
 <<indexed record layout goes here>>

WORKING-STORAGE SECTION.
77 REC-SIZE PIC 9(5).

If no duplicate records are found, the log file is removed when the Vision file
is closed.

There is an unusual circumstance that can cause a file opened for bulk
addition to reject a record that would not have been rejected if the file had
been opened normally. This occurs only when the file has at least one
alternate key that does not allow duplicates. This happens due to the changed
order in which the keys are written to the file.

Consider a case where a file has two numeric keys, the primary key and one
alternate that does not allow duplicates. Now suppose the following three
records were written to this newly created file:

Primary key Alternate key

1 1

2 1

2 2

6-26 Programmer’s Guide
In a file opened normally, the first record would be written to the file, the
second record would be rejected because of an illegal duplicate on the
alternate key, then the last record would be written. The result would be a
two-record file, the records (1,1) and (2,2).

If the file is opened for bulk addition, the three records are added, then the
primary keys are added, then the alternate keys are added. First the three
records are added. Then the first and second record’s primary keys are
added. The third record’s primary key is rejected because it duplicates the
second record’s key. The third record is removed as a result of this. Then the
alternate keys are processed. The first record’s key adds fine. The second
record’s key is rejected because it is a duplicate, and the second record is
removed. The third record’s alternate key is not processed because that
record has already been removed. The result is a one-record file, the record
(1,1).

To summarize, as a result of bulk addition, you may end up with records
rejected because of the duplicate key conflict with other (eventually) rejected
records and not necessarily with any accepted records.

This difference would not occur if the keys were added “row-wise” instead of
“column-wise,” but doing so would sacrifice much of the efficiency gained
by bulk addition mode.

In most practical applications, this scenario is not very likely. If need be, you
can adjust for this difference by logging the rejected records and then trying
to add them to the file normally after leaving bulk-addition mode. The
second attempt at writing out the records will still reject the records with
illegal duplicates, but take any records that conflict only with other rejected
records.

Because of the various issues surrounding illegal duplicate key values, it is
best to use bulk addition in cases where illegal duplicates are rare.
Processing records with a great many illegal keys significantly reduces the
performance benefits of using bulk addition.

Progress reporting

Programs that use bulk addition are frequently the types of programs where it
is desirable to report the program’s progress to the user. For example, a
program that reformats a file would typically display its percentage complete

Handling Files 6-27
while running. However, a single COBOL statement may represent the
majority of the running time, so progress reporting is difficult to do. The file
reformatting program, for example, could spend 20% of its time writing out
the reformatted records and 80% of its time in the CLOSE statement while
the records are having their keys written.

You can use a special declarative section to do progress reporting. This
section is called directly by Vision in a periodic fashion while the keys are
being added to the file. To create the declarative, use the following form of
the USE statement:

USE FOR REPORTING ON file-name.

Vision executes this section at regular intervals. This reporting period is
approximately once for each percentage point completed per key.

Because the declarative is called from within a file operation, the declarative
section’s code may not execute any file operations. In addition, the
declarative may not start or stop any run units (including chaining), nor may
it do an EXIT PROGRAM from the program that contains the declarative.
Finally, note that the declarative runs as a locked thread — no other threads
execute while the declarative runs.

To determine how far along Vision is in adding the keys, you can call the
library routine “C$KEYPROGRESS”. You pass this routine a single
parameter, which has the following layout:
01 KEYPROGRESS-DATA, SYNC.
 03 KEYPROG-CUR-KEY PIC XX COMP-N.
 03 KEYPROG-NUM-KEYS PIC XX COMP-N.
 03 KEYPROG-CUR-REC PIC X(4) COMP-N.
 03 KEYPROG-NUM-RECS PIC X(4) COMP-N.

A copy of this group item can be found in the COPY library “keyprog.def”.

When C$KEYPROGRESS returns, the group item is filled with current data.
The individual items contain the following:

• KEYPROG-CUR-KEY — this is the current key being worked on by
Vision. The primary key is key “1”, the first alternate is key “2”, and so
on.

• KEYPROG-NUM-KEYS — this is the total number of keys in the file.

6-28 Programmer’s Guide
• KEYPROG-CUR-REC - this is the number of the last record written
for the current key, ranging from 1 to the total number of records to
write.

• KEYPROG-NUM-RECS - this is the total number of records to be
keyed.

You may report this information in any fashion. If you want to report the
actual percentage complete, the formula is the following:
total-operations = keyprog-num-recs * keyprog-num-keys

operations-complete =
 (keyprog-cur-key - 1) * keyprog-num-recs + keyprog-cur-rec

pct-complete =
 (operations-complete / total-operations) * 100

That formula computes the percentage complete for just adding the keys. If
you want to treat the original record writes and the adding of the keys in a
single percentage scale, the formula is slightly different:
total-operations = keyprog-num-recs * (keyprog-num-keys + 1)

operations-complete =
 keyprog-cur-key * keyprog-num-recs + keyprog-cur-rec

pct-complete =
 (operations-complete / total-operations) * 100

Here is an example of a typical reporting declarative:
77 PROGRESS-BAR-1 HANDLE OF FRAME.

DECLARATIVES.
MYFILE-REPORTING SECTION.
 USE FOR REPORTING ON MYFILE.
MYFILE-REPORT.
 CALL “C$KEYPROGRESS” USING KEYPROGRESS-DATA
 MODIFY PROGRESS-BAR-1, FILL-PERCENT =
 ((((KEYPROG-CUR-KEY - 1) * KEYPROG-NUM-RECS
 + KEYPROG-CUR-REC) / (KEYPROG-NUM-RECS
 * KEYPROG-NUM-KEYS)) * 100).
END DECLARATIVES.

Handling Files 6-29
Note: As mentioned above, the progress reporting code in the Declaratives
Section tracks only the bulk addition of keys to the file. To also indicate the
time spent writing records, similar code should be added to the
corresponding WRITE statements in the Procedure Division.

Bulk addition and AcuServer

You may not use bulk addition mode with files that you are accessing via
AcuServer. If you attempt to do so, AcuServer will open the file in
MASS-UPDATE mode instead.

Programs that are appropriate targets for bulk addition mode are generally
much more efficient when run directly on the server. You can arrange to do
this directly by manually starting the job on the server, or you can use
AcuConnect from a workstation to remotely start the job on the server.

In addition, the duplicate-key log file may not be placed on a remote machine
using AcuServer. The log file must be directly accessible by the machine that
is running the program.

Using bulk addition with transactions

You may use bulk addition for files that use transaction management. No
transaction management rules are affected by bulk addition.

The START TRANSACTION, COMMIT and ROLLBACK verbs are not
treated as operations that trigger the bulk addition of keys. However, a
ROLLBACK can cause the bulk addition of keys if it has to delete or rewrite
a record as part of its operation. Note that a file’s declaratives will not
execute as part of a ROLLBACK process. This applies to both the error
handling declarative and the progress reporting declarative.

Performance tips

Using bulk addition can provide very substantial performance gains in
appropriate cases. Generally, it is best used when you are adding a large
number of records to a file and has a more noticeable effect on files with a
large number of records.

6-30 Programmer’s Guide
The following chart shows one set of execution times for creating a new file
with eight 10-byte keys generated in random order and a 130-byte record
size. These were run on a Windows 98 machine.

Note that the times will vary widely from machine to machine and between
different file organizations; use these numbers just as a comparison between
techniques:

Notice how the run times for MASS-UPDATE mode rise at a much steeper
rate than those for bulk addition mode as the number of records grows.

You get best performance from bulk addition when you maximize the
number of records being keyed at once. This means that you want to WRITE
as many records as possible to the file without performing any other
intervening operations on the file.

There are two configuration variables that have an important effect on the
bulk addition performance. The first of these is V_BUFFERS, which
determines the number of 512-byte blocks in the Vision cache. Besides
having its usual caching effect, the Vision cache is especially important when
you are doing bulk addition, because the cache is used to gather file blocks
together into larger groups that are written out in a single call to the operating
system. While the cache always does this, the bulk addition algorithm tends

Handling Files 6-31
to produce very large sets of adjacent modified blocks, which can all be
written out at once. By increasing the cache size, you can increase the
number of blocks written out at once.

For this reason, you should use a cache size of at least 64 blocks. Note that
this is the default cache size for most systems. If memory is plentiful, then a
cache size of 128 or 256 blocks is recommended. You can go higher if you
want; however, there is usually little benefit seen after about 512 blocks
(256K of memory).

The other important factor is the memory buffer used to hold the keys
(V_BULK_MEMORY). Unlike V_BUFFERS, this is most useful when it
is large. The default size is 1 MB. Larger settings will improve performance
when you are adding many records to a file. Essentially, this buffer is used
to hold record keys. The more keys that it can hold, the better the overall
performance. For runs that will write out between 250,000 and 500,000
records, a setting of 4 MB generally works well. For more than 500,000
records, we recommend at least an 8 MB setting. Be careful that you do not
set this too large, however. If you set it so large that the operating system
must do significantly more memory paging to disk, you could lose more
performance than you gain. You will need to experiment to see which setting
works best for your system.

Finally, the process of removing records due to illegal duplicate keys is
expensive. You should try to arrange it so that bulk addition is used in cases
where illegal duplicate keys are rare.

Summary

Using bulk addition can provide very significant performance gains in certain
cases. These cases involve writing a very large number of records to a file.
In order to optimize performance, certain rules of COBOL are changed and
some other restrictions apply. Here are the key points to remember:

1. Files open for bulk addition are locked for exclusive use.

2. WRITE does not add keys to the file. The keys are added when some
other file operation occurs.

6-32 Programmer’s Guide
3. Duplicate record errors (status “22”) are not returned by WRITE.
Instead, they are reported to the file’s declarative procedure only
during some other file operation.

4. The declarative must not perform any file operations or start or stop
any run units when processing status “22”.

5. You may log records rejected due to illegal duplicated keys by setting
the option DUPLICATES_LOG to the name of the desired log file.

6. Disk space occupied by deleted records is not re-used when you are
adding records with bulk addition.

7. You can report on the progress of adding the keys in a USE FOR
REPORTING declarative. This declarative may not perform any file
operations or start or stop any run units.

8. You may not use bulk addition on files you are accessing via
AcuServer. Use AcuConnect or some other technique to start the job
directly on the machine with the files.

Avoid doing an abnormal shutdown on a job running with bulk addition. If
the job aborts without completing its “close” operation, the file will almost
certainly have keys missing and need to be rebuilt.

6.1.7 Performance Considerations

File performance varies considerably from machine to machine and from
program to program. This section discusses general measures that can be
taken to improve file handling performance for most situations.

Generally speaking, sequential files are fastest and indexed files are slowest.
Relative files are usually in between in performance, but are generally close
to sequential files in speed.

When designing indexed files, you should try to keep the size and number of
keys to a minimum. Each key added to a file significantly increases the
processing time required. The key size is important because it affects how
many keys can be stored in one disk block. If you are faced with a decision
that trades off making a new key or making an old key larger, it usually is
better to make the old key larger.

Handling Files 6-33
One important and often overlooked aspect of file performance is file
locking. Generally speaking, the more restrictive the access to a file, the
more efficiently that file can be processed. On some machines, the difference
can be quite dramatic. For example, under RMS, writes to a sequential file
are usually at least five times faster if that file is locked for exclusive use. If
this is a report file, there is no reason not to lock the file, and the report
program will run much faster if you do so.

As a general rule of thumb, you should lock files as restrictively as you can,
given the needs of your application. Note that if you have a file that is read
by many programs, but rarely or never written to, you can open the file for
INPUT ALLOWING READERS. This allows many users to access the file,
but also tells the runtime system that it is not being updated by anyone. The
runtime system can use this knowledge to buffer the file more effectively.
One common form of file where this technique can be used is a file that
contains menu options or screen layouts.

On the other hand, you should lock records only when you need to. While
locking a record is generally fairly fast, the time to do so increases
proportionally to the number of locks you are holding. Also, on networked
file systems, locking records can be fairly slow because the networked
machines must all be informed of the lock. Note that this is another reason to
lock files when possible: when the file is locked, the runtime does not need to
establish locks on individual records.

If you have enough memory, you can also increase your indexed file
performance by increasing the V-BUFFERS configuration option described
in Appendix H. This will increase the number of disk buffers used by the
runtime system to hold key information.

Finally, you should read the information on the MASS-UPDATE option
described in section 6.1.6.2, as well as that on the Bulk Addition option
described in section 6.1.6.3. Using these options can significantly improve
performance on some machines.

6.1.8 Limits on Open Files

Because Vision Versions 5 and 4 generate files in a dual file format, a
COBOL application registers at least two open files for each Vision file.
(Versions 2 and 3 use a single file format.) For large files with data

6-34 Programmer’s Guide
extensions, the number of open files per Vision file can be greater than two.
Various techniques exist for controlling the number of files that can be open
at one time:

1. The COBOL configuration variable MAX_FILES sets the maximum
number of files that can be opened by the runtime system. The default
value is “32”. You can set this to any value up to “32767”. Keeping this
value small conserves memory.

2. Many operating systems limit the number of files that can be opened
by a single process, so you may need to make some adjustments. On
UNIX systems, file limits are controlled by kernel parameters. On
VMS, file limits are controlled by process parameters.

3. If you are using an external file system or database instead of (or in
conjunction with) Vision, limits may be imposed by the external file
system or by the interface. See the ACUCOBOL-GT document for the
specific interface that you are using.

6.2 Terminal I/O

ACUCOBOL-GT uses a sophisticated Terminal Manager that can provide
many screen functions and improve terminal performance. To get the most
out of the Terminal Manager, it helps to understand how it works. (For
details on the Terminal Manager, see Chapter 4, “Terminal Manager.”)

6.2.1 Performance Considerations

ACUCOBOL-GT comes with a built-in window-oriented Terminal Manager.
Efficient use of windows partially depends on the hardware characteristics of
the host machine and terminal. Machines with memory-mapped screens
(such as most personal computers) will run efficiently in any case. Machines
with attached terminals, however, can significantly benefit from careful use
of the windows.

As an example of an unwise choice of a window, consider trying to scroll a
window that is almost the size of the screen. Without any hardware support,
the Terminal Manager might have to move 1000 characters or so. On a

Terminal I/O 6-35
memory-mapped machine, this will happen quickly, but on a machine with a
terminal that is running at 9600 baud, this will take about one second. If
several lines are being scrolled onto the screen, the entire operation will take
several seconds to complete. This might be acceptable on occasion, but is
very tedious if used regularly.

The Terminal Manager attempts to minimize screen I/O by keeping track of
every character on the screen. Characters that do not need to be displayed
(because they are already on the screen) are not sent to the terminal. Because
much of a screen is often empty, substantial savings are achieved when you
are clearing a window. Other general optimizations are done which result in
generally faster screen I/O.

Special hardware characteristics of most terminals are used for
time-consuming operations. The following guidelines will help you use
windows efficiently on most machines by taking advantage of these
characteristics.

• Large windows that will be cleared regularly should extend to the right
edge of the screen. This allows the use of the terminal’s “clear to
end-of-line” function.

• Large windows that will be scrolled regularly should be the width of the
screen and extend to the bottom edge. This case will use the “insert-line”
and “delete-line” functions of most terminals.

• Reverse-video windows should be kept small. Creating a large
reverse-video window is time-consuming because each location of the
window must be initially written to. If you want a large window to stand
out, consider making it boxed instead.

6.2.2 Terminal Manager Restrictions

Because of the windowing capabilities of the Terminal Manager, the
programmer must abide by certain restrictions. This section describes these
restrictions and how to work with them.

6-36 Programmer’s Guide
The primary restriction is that the Terminal Manager must retain control of
the terminal. It needs to do this in order to implement the windowing
functions. Also, by doing this, it can significantly improve screen
performance over a “dumb” screen interface.

The main effect of this restriction is that you may not send arbitrary “escape”
sequences to the terminal. Sending “escape” sequences that command the
terminal in a hardware-specific fashion will confuse the Terminal Manager
because it will not know what effect the “escape” sequence had on the screen.
This will result in the Terminal Manager’s making incorrect assumptions
about the screen and, eventually, will cause it to display incorrect data.

This restriction is not too serious, however, because the Terminal Manager
can perform most functions that are normally accomplished through these
“escape” sequences. Using the Terminal Manager to perform these functions
has the added benefit of making them terminal-independent. This allows you
to run the same application on any kind of terminal without having to keep a
database of terminal capabilities maintained by the program.

The following points outline the Terminal Manager’s solution to various
functions that are usually implemented via “escape” sequences.

Line Drawing Many programs draw special-forms on the
user’s screen using the terminal’s line drawing
characters. This works fine if the line drawing
characters are part of the terminal’s default
character set (such as on a PC), but does not
work if you need to send an “escape” sequence
to switch character sets.

 With ACUCOBOL-GT, you can use DISPLAY
BAR, DISPLAY LINE, and DISPLAY BOX to
perform line drawing. These verbs have the
advantage that you can simply draw the form
using screen coordinates without having to
worry about different character sets on different
terminals or using special characters to handle
the intersections.

Memory Management 6-37
6.3 Memory Management

This section discusses how ACUCOBOL-GT manages runtime memory, the
tools available to you to help manage program memory, and the facilities
available to help find and correct memory management problems.

When runcbl initiates, it loads the main program into memory and begins
execution. As other programs are called they are also loaded into memory.
Once loaded, a program remains in memory until it is canceled (typically
with the CANCEL statement). Canceling a program:

• places the program in its initial state

• closes its open files

132-Column Handling Some programs send “escape” sequences to
switch between 80-column and 132-column
mode on the terminal. This can be
accomplished with the DISPLAY SCREEN
verb in ACUCOBOL-GT.

Attached Devices ACUCOBOL-GT can send data to a device
attached to the terminal. For example, a printer
or a cash register might be attached. The
built-in library routine “C$LOCALPRINT”
can send data to the attached device with a
variety of line spacing options. This routine is
described in Book 4, Appendix I.

Scrolling ACUCOBOL-GT directly supports scrolling
with the SCROLL option of the DISPLAY
verb.

Function Key Labels you can program function key labels by
providing the appropriate command string in
the “is” entry in “a_termcap”. For details, see
section 4.6.9, “Initialization.” Currently,
ACUCOBOL-GT does not provide a way to
program function key labels at run time.

6-38 Programmer’s Guide
• ensures that any VALUE clauses are in effect when the program is called
again

• removes the program from memory, by default

This handling allows for a full ANSI implementation of subprograms
(variables retain their previous values when a subprogram is re-entered, files
can be left open in a subprogram, and so forth).

If subprograms are never canceled, a large system can eventually occupy
very substantial amounts of memory. This is a common problem with large
menu driven applications where the master menu calls programs for the
various menu selections.

There are several mechanisms for managing runtime memory, including the
CANCEL verb and the INITIAL and RESIDENT clauses of the
PROGRAM-ID paragraph. To provide more flexibility, you can also enable
a caching system in which canceled programs are not removed from memory
until a specified memory limit is reached (see CANCEL below).

CANCEL

The CANCEL statement places the specified program in its initial state (see
above). By default, the program is removed from memory. Subsequent calls
to the program cause it to be reloaded from disk. This type of cancel, in
which the program is removed from memory, is called a physical cancel.
Alternatively, as an aid to tuning system performance, you can set up a
system in which canceled programs are placed in their initial state but are left
in memory until a specified memory limit is reached. Such cancels are called
logical cancels. Subsequent calls to these programs start very quickly
because the programs are already in memory. When the memory limit is
reached, all logically canceled programs are removed from memory. Two
runtime configuration variables are used to set up this system. See the entries
for DYNAMIC_MEMORY_LIMIT and LOGICAL_CANCELS in
Appendix H of Book 4. See also the CANCEL Statement in section 6.6 of
Book 3.

Memory Management 6-39
When using logical cancels, replacing an object file on disk does not
necessarily mean that subsequent calls to the program will use the new
object. To force a subsequent call to load the new object file from disk, you
must configure ACUCOBOL-GT to perform a physical cancel on that
program.

Also, the use of logical cancels has some implications on debugging. The
ACUCOBOL-GT debugger periodically reads source code from the object
file on disk. When program code is cached by a logical cancel, the object file
is closed and could be replaced or deleted. For the debugger to function
correctly, it needs to keep the object file open and ensure that the object code
in the disk file is identical to the code in memory. If the program is cached,
the debugger accomplishes this by unloading the program from the cache,
reopening the object file, and reloading the object code into memory.
Because this effectively turns off logical cancels and the code caching feature
when the debugger is active, the runtime configuration variable
DEBUG_NEWCOPY can be used to control the runtime’s behavior. See
Book 4, Appendix H.

CANCEL ALL

Because it can be inconvenient to individually CANCEL every subprogram,
ACUCOBOL-GT includes an extension to the CANCEL verb: CANCEL
ALL. When executed, CANCEL ALL cancels every subprogram that is not
active. (A program is active if it is either the main program or it has been
called, but not yet exited.) Executing a CANCEL ALL after a menu selection
completes is an easy way to free the memory used by that program.

INITIAL clause

The INITIAL clause in the PROGRAM-ID paragraph causes a subprogram
to be automatically canceled whenever it exits. The program is removed
from memory, regardless of whether the logical cancel feature is enabled.
This can be used to help manage memory or to ensure that VALUE clauses
are set whenever a subprogram is called. Note that the compiler will
automatically apply this clause to a program compiled with the "-Zi" option.
This can be particularly useful when you are converting programs from RM/
COBOL version 2.

6-40 Programmer’s Guide
In RM/COBOL, the status of a program that exits is not precisely defined.
Subprograms remain in memory until either their caller exits or until
inadequate memory remains to load another subprogram. This occurs at
fairly unpredictable times. Because their fate in memory is unclear, most
RM/COBOL subprograms are treated as if they have been canceled when
they exit. By applying the "-Zi" option at compile time, the
ACUCOBOL-GT programmer can simulate this behavior. Note, however,
that utility subprograms that are called repeatedly should not be compiled
with "-Zi", because this introduces extra overhead each time they are called.
Also, any subprogram that depends on retaining variables between calls
should not be compiled with "-Zi".

Note: RM/COBOL treats spooled print files specially in that they are not
closed when a subprogram exits (all other files are closed).
ACUCOBOL-GT does not treat spooled files specially, so if this feature of
RM/COBOL is used, the subprogram that does this should not be compiled
with "-Zi".

RESIDENT clause

The RESIDENT clause in the PROGRAM-ID paragraph causes the program
to remain resident in memory after its first execution. A program with the
RESIDENT clause is not affected by a CANCEL or CANCEL ALL
statement. Should the condition occur where there isn’t enough system
memory available to load a program, the CALL will fail with a “Inadequate
memory available” error.

Other memory management tools

The CHAIN Statement (section 6.6 in Book 3) and the C$CHAIN library
routine (Appendix I in Book 4) can be used to replace the running program
with another program. This can conserve substantial amounts of memory.
Segmentation (overlays) can be used to reduce the size of a single program.
This is described in section 6.5 of Book 3. Finally, you can adjust the size of
ACUCOBOL-GT's runtime buffers with the V_BUFFERS and
SORT_MEMORY configuration options described in Appendix H of Book
4.

Memory Testing and Error Handling 6-41
6.3.1 External Data Items

ACUCOBOL-GT manages external data items by allocating them in “pools”.
The minimum size of each pool is set by the EXTERNAL_SIZE
configuration option.

When a new external data item is needed, it is allocated from an existing
pool. If it does not fit in any of the allocated pools, a new pool is allocated.
The size of this pool is the same as the size of the data item, but never smaller
than the value specified by the EXTERNAL_SIZE option. This reduces
memory fragmentation. There are 32 pools available altogether.

Because external data items remain allocated after programs are canceled, it
is best to allocate the external data items together so they do not break up the
memory space. The default value for EXTERNAL_SIZE is “8192”.

6.4 Memory Testing and Error Handling

This section discusses techniques for recovering from common runtime
errors. It also describes several mechanisms for tracking, testing, and
debugging memory in the runtime, including linked C programs.

(Compiler error messages are listed alphabetically in Appendix D, List of
Errors.)

6.4.1 Memory Access Violations

If your program tries to access a portion of memory that is protected by the
operating system, ACUCOBOL-GT generates a memory access violation
message and shuts down.

The most common cause of this violation is indexing beyond the legal range
of a table. Often this sort of error is difficult to detect, because it can be
data-dependent, as shown in this example:
PERFORM UNTIL IDX > NO-OF-EMPLOYEES
 DISPLAY “EMPLOYEE NAME: “, EMP-TABLE(IDX)
 ADD 1 TO IDX

6-42 Programmer’s Guide
END PERFORM.

If NO-OF-EMPLOYEES ever exceeds the size of EMP-TABLE, or if IDX is
ever set to zero, you could get a memory access violation when the program
is run.

To uncover this type of memory access violation, use the “-Za” compile-time
option while you are debugging your program. When you run a program that
has been compiled with “-Za”, ACUCOBOL-GT prints a subscript out of
bounds error message, detailing the legal range of indexes for any
table-indexing error that it encounters. (Note that the subscript out of bounds
error appears when you run the program, not when you compile it.) You can
then correct the program as necessary.

A memory access violation can also occur if there is a bug in any C routine
linked into the runtime. Because of the nature of C, the violation can occur
long after the called C function executes. Techniques for debugging these
problems are discussed in section 6.4.3 and in section 6.7 of A Guide to
Interoperating with ACUCOBOL-GT.

6.4.2 Logging Errors to the Runtime’s Error File

The code fragment below shows how to log permanent file errors into the
runtime’s error file. Normally, you would also use the “+e” runtime flag to
name the error file and cause new messages to be appended to the end of the
file.

Example:
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
 SYSERR IS ERROR-LOG.

PROCEDURE DIVISION.
DECLARATIVES.
CUSTOMER-ERROR-PROCEDURE.
 USE AFTER STANDARD ERROR PROCEDURE ON CUSTOMER-FILE.
CUSTOMER-ERROR.
 IF CUSTOMER-FILE-STATUS = “30” OR “98”
 CALL “C$RERR” USING EXTENDED-STATUS

Memory Testing and Error Handling 6-43
 DISPLAY “CUSTOMER FILE ERROR”, EXTENDED-STATUS
 UPON ERROR-LOG.

6.4.3 Runtime Memory Tracking and Testing

There are several mechanisms available for tracking, testing, and debugging
memory in extend products and linked C programs. For information about
using these facilities from a C program, see section 6.7 in A Guide to
Interoperating with ACUCOBOL-GT.

All extend products have the ability to monitor, test, and debug memory
allocations in three ways. They can:

1. Track memory boundaries, so that if the boundaries are corrupted a
report is generated. This facility is called memory bounds checking.

2. Track how much memory is allocated in each of six subsystems. This
facility is called memory tracking.

3. Output a description of each memory allocation, reallocation, and free
by file and line, including a text message. This facility is called
memory handling descriptions.

6.4.3.1 Memory handling descriptions

Memory handling descriptions report detailed information about memory
allocation, reallocation, and frees. To turn on memory handling descriptions
in the ACUCOBOL-GT runtime, simply specify the “-m value file”
command-line option. When “-m value file” is specified, description and
tracking information is written to the file named by the file argument.
Exactly what information is included in the report is determined by the value
argument as follows:

If value is odd, a final memory dump, showing all blocks still allocated, is
performed.

If (value / 2) is odd, each allocation, reallocation, and free is written to the
file.

6-44 Programmer’s Guide
If (value / 4) is odd, a full memory dump is written for each allocation,
reallocation, and free.

For example, if value equals 3, each allocation, reallocation, and free is
reported and a final memory dump is performed when the runtime shuts
down. This is because value is odd and value / 2 is also odd.

You can also enable memory handling descriptions for any extend product by
setting two environment variables prior to product startup: A_MEM_DESC
and A_MEM_DESC_FILE.

A_MEM_DESC must be set to value.

A_MEM_DESC_FILE specifies the name of the output file.

Both environment variables must be set to enable memory handling
descriptions. Note that these are environment variables, not configuration
variables. Also note that when memory descriptions are enabled with
environment variables, the output does not (and for technical reasons cannot)
include a final memory dump.

6.4.3.2 Memory tracking

The memory tracking feature is similar to the debugger “U” command, which
displays the amount of dynamically allocated memory currently used by the
runtime system. You can turn on memory tracking by setting the
environment variables TRACE or A_DEBUG to positive numeric values.
Apart from writing some C code (see 6.7.4 in A Guide to Interoperating with
ACUCOBOL-GT), or running in the debugger (which turns this feature on
automatically), there is no way to get the values stored for memory tracking.

6.4.3.3 Memory bounds checking

Memory bounds checking in COBOL programs is easily performed by
compiling with the “-Za” option. See section 6.4.1 and the entry for “-Za” in
section 2.2.16.

A second method can be helpful when the problem may be in a linked C
routine. (See, also, section 6.7.5 in A Guide to Interoperating with
ACUCOBOL-GT.)

Screen Section 6-45
There is a simple method of testing allocated memory bounds errors in any
extend product. On Windows systems, the method is turned on and off with
a registry entry. On other systems, the method is turned on and off with an
environment variable. When an array bounds error is detected, a message is
written to the file “dbgmalloc.log” in the current working directory.

To enable memory bounds checking on Windows, you must create a registry
value “Test Allocated Memory Bounds” in the
HKEY_CURRENT_USER\Software\Acucorp hive, with a type of DWORD
and a value of non-zero. To turn memory bounds checking off, you must set
the value to zero.

To enable memory bounds checking on UNIX, Linux, and other
non-Windows platforms, you must set an environment variable named
TEST_ALLOCATED_MEMORY_BOUNDS to a non-zero value. To turn
memory bounds checking off, removed the environment variable or set its
value to zero.

When memory bounds checking is enabled, messages are printed whenever
the memory checking routines detect that allocated memory bounds have
been overwritten.

Note: Application performance can be adversely impacted by memory
bounds checking.

6.5 Screen Section

The ACUCOBOL-GT Screen Section uses data structures that are similar to
the record descriptions in Working-Storage. However, the Screen Section
offers an alternate method for displaying information to the user’s screen and
accepting data from the keyboard. It lets you display and update data items
in groups, rather than as individual fields.

The Screen Section enables a non-intelligent terminal to emulate an
intelligent one by acting as if it were displaying and accepting an entire
screen of data at one time.

6-46 Programmer’s Guide
Intelligent terminals can readily accept and transmit an entire terminal
screen. The user moves around the screen and fills in a form consisting of
several fields. The intelligent terminal stores all of the entries for the form in
a buffer, and then transmits an entire screen full of information at one time.

Non-intelligent terminals are not designed to process data in this way.
Instead, data is displayed and entered on a field-by-field basis. However, the
ACUCOBOL-GT Screen Section lets non-intelligent terminals emulate
intelligent terminals by acting as if they are displaying and accepting an
entire screen of data at one time.

Although the data is actually handled behind the scenes on a field-by-field
basis, the COBOL programmer can display or accept either individual fields
or entire screens with one COBOL statement. Although it’s common for a
screen entry in the Screen Section to describe an entire screen, it need not do
so. The language is so flexible that the programmer can decide whether to
include one field, a few fields, or a screen full of fields in a Screen Section
entry. Information about the Screen Section can be found in section 5.8,
“Screen Section” in Book 3, Reference Manual.

6.5.1 Advantages

The Screen Section lets you display or accept a screen full of items with only
one COBOL statement. In addition, a significant amount of cursor handling
is built in, so that end users move easily among the fields on the screen. Entry
of tables of data becomes very simple, as shown in the table example later in
this section. End users gain the flexibility of entering and validating a screen
full of related data at one time.

6.5.2 Structure

A screen description entry is similar to a data description entry. Just as a
record’s data description typically consists of

• a level number

• a data-name

• a Picture Clause

Screen Section 6-47
so a screen description entry typically consists of

• a level number

• a screen-name

• a Picture Clause

Because the programmer decides how many fields to group together, the
screen-name may not actually refer to a full screen of data items. It might
refer to a single field, a few fields, or an entire screen. In any case, each
group or subgroup must be given a screen-name.

To place a screen or form on the terminal and receive data into that form, you
need two different COBOL statements. The literals in a screen description
entry are displayed by a DISPLAY Statement.

These are the prompting words that guide the end user. The information
entered into the data items is accepted from the keyboard by an ACCEPT
Statement. So, first you DISPLAY the screen, and then you ACCEPT the
end user’s entries for that screen.

6.5.3 Syntax

Each screen description entry must start with a level-number from level 01
through level 49. At the top level (01), the screen is given a name. For
example:
01 employee-info-screen.

The other levels of a screen description entry (level 03 and so forth) can
either name subscreens within the top-level screen, or:

• provide literals that prompt the end user for entries

• position the cursor

• identify the data items that will store the information the end user types
into each field

6-48 Programmer’s Guide
A complete description of Screen Section screen description entry formats,
their syntax and general rules can be found in section 5.9, “Screen
Description Entry,” in Book 3, Reference Manual.

When your program DISPLAYs a screen or ACCEPTs entries for a screen,
the screen-name you reference in the DISPLAY or ACCEPT statement
determines which fields are included. Everything subordinate to the
screen-name is affected. For example, if you display a screen-name that’s
defined as a level 03 with two subscreens defined as level 05s below it, then
all of the fields subordinate to the level 03 are displayed, and both of the
subordinate level 05 screens and their attributes are also displayed.

Here are some examples.

This is an entry that names the screen and provides one literal:
01 employee-info-screen.
 03 emp-number-prompt value is “EMPLOYEE NUMBER: ”.

This entry positions the cursor:
 03 column plus 1
 line plus 2.

This entry identifies a data item to receive a typed entry:
 03 PIC 9(9) to emp-number.

This defines a subscreen:
 03 pay-period-dates.
 05 PIC 9(6) USING period-start.
 05 PIC 9(6) USING period-end.

Here’s a complete program example for a table. It accepts a simple table on
one line:
IDENTIFICATION DIVISION.
PROGRAM-ID. TABLE-SAMPLE-1.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 TABLE-1.
 03 TABLE-ITEM OCCURS 5 TIMES PIC X(5).

Screen Section 6-49
SCREEN SECTION.

01 SCREEN-1.
 03 “TABLE ITEMS:”.
 03 OCCURS 5 TIMES USING TABLE-ITEM, COLUMN + 2.

PROCEDURE DIVISION.

MAIN-LOGIC.

 DISPLAY WINDOW ERASE.
 DISPLAY SCREEN-1.
 ACCEPT SCREEN-1.
 STOP RUN.

For additional examples that use tables, see Book 3, Reference Manual,
section 5.9.3, “OCCURS Clause.”

The name that you give to a screen or subscreen in your Data Division must
be referenced by the DISPLAY and ACCEPT statements that use the screen.
Here’s how that works.

First, you display the screen with a Format 2 DISPLAY statement. When this
type of DISPLAY is executed, the screen-name in the DISPLAY statement
tells which group of literals and data items should be displayed at the
terminal. All of the literals in and subordinate to that screen-name definition
are displayed in their appropriate positions. These typically serve as the
prompts on the screen, guiding the end user. So the end user sees a form on
the terminal, with multiple locations to enter data. That’s why a Format 2
DISPLAY is said to be a form-level DISPLAY. Typical literals in a payroll
program might be “Employee Name: “, “Employee Number: “, and “Pay
Period Ending Date: “. The DISPLAY statement ignores the data items in
the screen definition that are entry-only (TO) fields.

Second, you accept data into the screen with a Format 2 ACCEPT statement.
When an ACCEPT statement of this type is executed, the screen-name that it
references tells which screen of data items will be accepted. The ACCEPT
statement ignores the literals in the screen definition as well as display-only
(FROM) fields. The cursor moves to the position you’ve assigned to the first
(non-literal) data item in the group, and waits for an entry. The end user can
move around on the screen, from field to field and back again, with the tab

6-50 Programmer’s Guide
and arrow keys (or other keys if you have customized the keyboard). When
all items have been entered, the user presses a termination key to indicate that
the screen is complete.

There are three types of screen description entries:

• If a VALUE clause is specified, then the entry is a display literal. The
word VALUE may or may not appear in a Screen Section VALUE
clause.

• If a PICTURE clause is specified, then the entry is a data field. The word
PICTURE may or may not appear in a Screen Section PICTURE clause.

• If neither a VALUE nor a PICTURE clause is specified, the entry is
either a screen-name or an attribute.

6.5.4 Comparison to Field-level

The following paragraphs compare a field-level DISPLAY and ACCEPT to
a form-level DISPLAY and ACCEPT for the same data. Both examples
display a simple name and address form, and prompt the user to enter data.

Field-level ACCEPT & DISPLAY
DISPLAY-AND-ACCEPT-ADDRESS.
 DISPLAY “Name:”, ERASE SCREEN, LINE 1.
 DISPLAY “Address 1:”, LINE 2.
 DISPLAY “Address 2:”, LINE 3.
 DISPLAY “City:”, LINE 4, “State:”, COLUMN 25.
 ACCEPT NAME, LINE 1, COLUMN 12.
 ACCEPT ADDRESS-1, LINE 2, COLUMN 12.
 ACCEPT ADDRESS-2, LINE 3, COLUMN 12.
 ACCEPT CITY, LINE 4, COLUMN 12.
 ACCEPT STATE, LINE 4, COLUMN 32.

Form-level DISPLAY and ACCEPT (Screen Section)
SCREEN SECTION.
01 ADDRESS-SCREEN.
 03 ERASE SCREEN.
 03 “Name:”.
 03 TO NAME, COLUMN 12.

Screen Section 6-51
 03 “Address 1:”, LINE + 1.
 03 TO ADDRESS-1, COLUMN 12.
 03 “Address 2:”, LINE + 1.
 03 TO ADDRESS-2, COLUMN 12.
 03 “City:”, LINE + 1.
 03 TO CITY, COLUMN 12.
 03 “State:”, COLUMN 25.
 03 TO STATE, COLUMN 32.
DISPLAY-AND-ACCEPT-ADDRESS.
 DISPLAY ADDRESS-SCREEN.
 ACCEPT ADDRESS-SCREEN.

There are three primary advantages of the Screen Section:

• The centralized screen definition is easier to maintain, especially when
screen processing occurs in more than one place in the program.

• Automatic handling of arrow keys allows the user to move between
fields without specialized programming.

• Users gain improved automatic mouse handling on systems where the
mouse is supported.

6.5.5 Using Screen Section Embedded Procedures

The following example shows how to use embedded procedures to provide
an automatic look-up function plus field validation on a key field. In this
example, an ellipsis in braces indicates omitted code.
IDENTIFICATION DIVISION.
PROGRAM-ID. SCREEN-EXAMPLE.
REMARKS.

This program shows how to use embedded procedures
in the Screen Section to:
(a) show a field-specific legend when the user
 arrives at that field,
(b) perform validation of a key field and,
(c) perform a look-up procedure when a special
 function key is pressed.
In this example, a customer-number field is included
in an order-entry screen. When the user enters a
customer number, the program validates that it’s an
existing customer and, if so, displays the customer’s

6-52 Programmer’s Guide
name. If it’s not valid, the user must re-enter the
field. If the user presses the F1 key, a look-up
procedure locates the desired customer.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
 CRT STATUS IS CRT-STATUS
 SCREEN CONTROL IS SCREEN-CONTROL.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
 { . . . }

DATA DIVISION.
FILE SECTION.
 { . . . }

WORKING-STORAGE SECTION.
01 CRT-STATUS PIC 9(3).
 88 F1-KEY VALUE 1.

01 SCREEN-CONTROL.
 03 ACCEPT-CONTROL PIC 9.
 88 GOTO-FIELD VALUE 1.
 03 CONTROL-VALUE PIC 999.
 03 CONTROL-HANDLE HANDLE.
 03 CONTROL-ID PIC XX COMP-X.

{ . . . }

SCREEN SECTION.
01 ORDER-SCREEN.
 { . . . }
 03 “Cust #: ”.
 03 USING CUSTOMER-NO
 BEFORE PROCEDURE IS SHOW-CUST-LEGEND
 AFTER PROCEDURE IS TEST-CUSTOMER
 EXCEPTION PROCEDURE IS CHECK-FOR-LOOKUP.
 03 SHOW-CUSTOMER-NAME, PIC X(30) FROM
 CUSTOMER-NAME, COLUMN + 3.
 { . . . }

Screen Section 6-53
PROCEDURE DIVISION.
MAIN-LOGIC.
 { . . . }
 DISPLAY ORDER-SCREEN.
 ACCEPT ORDER-SCREEN
 ON EXCEPTION CONTINUE
 NOT ON EXCEPTION WRITE ORDER-RECORD
 END-ACCEPT.
 { . . . }
 STOP RUN.

* SHOW-CUST-LEGEND executes whenever the user
* arrives at the customer number field. It
* displays a legend. This legend is removed by
* both the AFTER and EXCEPTION procedures
* associated with the customer-number field.

SHOW-CUST-LEGEND.
 DISPLAY “F1 = Customer Lookup”, LINE 24,
 ERASE TO END OF LINE.

* TEST-CUSTOMER checks for a valid customer number
* entry by reading the customer file. If it finds a
* customer record, it displays the customer’s name.
* If it does not find a record, it forces the user
* to re-enter the field by setting the SCREEN-
* CONTROL condition, GOTO-FIELD, to TRUE. Since
* the ACCEPT statement initializes CONTROL-VALUE to
* the field number of the customer number field,
* setting GOTO-FIELD to TRUE will cause the ACCEPT
* statement to return to the customer-number field.

TEST-CUSTOMER.
 DISPLAY SPACES, LINE 24, ERASE TO END OF LINE.
 READ CUSTOMER-FILE RECORD
 INVALID KEY
 DISPLAY “CUSTOMER NOT ON FILE - PRESS RETURN”,
 LINE 24, BOLD
 ACCEPT OMITTED
 SET GOTO-FIELD TO TRUE

 NOT INVALID KEY
 DISPLAY SHOW-CUSTOMER-NAME.

6-54 Programmer’s Guide
* CHECK-FOR-LOOKUP executes when the user types a
* function key when in the customer-number field.
* It erases the legend and then checks to see if
* Function Key 1 was pressed. If it was, it
* executes a look-up procedure. If the procedure
* returns with a valid customer selected, it
* displays the customer’s name and causes control
* to pass to the next field. Otherwise, it forces
* the user to re-enter the customer-number field.
* It does this by setting GOTO-FIELD to TRUE while
* leaving CONTROL-VALUE unchanged.

CHECK-FOR-LOOKUP.
 DISPLAY SPACES, LINE 24, ERASE TO END OF LINE.
 IF F1-KEY
 PERFORM CUSTOMER-LOOKUP-PROCEDURE
 IF HAVE-CUSTOMER-NUMBER
 DISPLAY SHOW-CUSTOMER-NAME
 ADD 1 TO CONTROL-VALUE
 END-IF
 SET GOTO-FIELD TO TRUE.

A complete description of the rules that govern the execution of embedded
procedures can be found in section 5.9.6 of Book 3, Reference Manual.
Rules covering the use of event procedures, a variant of embedded
procedures, are also found in this discussion of the PROCEDURE clause.

6.6 Data Validation

ACUCOBOL-GT includes several mechanisms that instruct the runtime to
perform specific types of validation on user supplied data. In instances
where an input field is marked for validation, the runtime typically performs
data validation when the user attempts to leave the data entry field. Data
validation mechanisms include:

• the REQUIRED (EMPTY-CHECK) and FULL (LENGTH-CHECK)
phrases of the ACCEPT and Screen Section Screen Description Entry
statements (see their respective entries in Book 3, Reference Manual,
section 6.4.9, “Common Screen Options.”

Exiting From ACUCOBOL-GT Programs 6-55
• the SCREEN CHECK-NUMBERS=Validate option of the
KEYBOARD variable (see section 4.3.2.1, “The KEYBOARD
variable,” in this book).

Although validation is usually performed when the user attempts to leave the
field, this is not always the case. Validation is not performed when the
ACCEPT terminates as a result of the following:

• an event, except CMD-GOTO and CMD-TABCHANGED

• an exception key, except for keys that move the cursor from field to field
in a Screen Section, such as the arrow keys

• a message

The special exceptions noted above (CMD-GOTO, CMD-TABCHANGED,
and the arrow keys) are treated as normal termination with regards to
validation (they trigger validation), but they also generate their usual
exception conditions.

6.7 Exiting From ACUCOBOL-GT Programs

If an application written in ACUCOBOL-GT is aborted, the following exit
techniques produce different results:

• Catastrophic exit: A power failure, turning off the computer, or issuing
a “kill -9” from the console are all examples of catastrophic exits. The
runtime cannot trap exits of this kind. Any files open at the time of a
catastrophic exit may be corrupted.

• Graceful abort: A “kill” (not a “kill -9”) from the console and a
Control-C from the keyboard are forms of program abort that
ACUCOBOL-GT tries to detect. If the abort signal is intercepted by the
runtime system, the runtime will close any open files and set the user
count back.

• Safe mode exit: The runtime option “-s” instructs the runtime to trap
graceful abort signals such as Control-C and prevent the abort from
occurring. Only normally coded exit paths are allowed in safe mode.

6-56 Programmer’s Guide
Note: Even in safe mode, the runtime cannot trap a catastrophic exit.
So even if you run with “-s”, turning off the computer or issuing a “kill
-9” will risk corrupting the file.

6.8 Multiple Execution Threads

ACUCOBOL-GT includes support for the specification and control of
multiple execution paths in the program (multithreading). This means that
you can define separately executing program threads and control their
execution.

A thread is an execution path through a program. All programs have at least
one thread, the thread (execution path) that starts when the program starts and
ends when the program ends. In a program that has multiple threads, more
than one thread may be active at a time.

When more than one thread is active, the runtime monitors and switches
among threads, dividing processing time in accordance to program activity
and thread priority (thread priorities are described below). In this way,
threads can be thought of as running in parallel. Although conceptually they
run in parallel, keep in mind that your program is still executing one
statement at a time. The runtime controls the movement among active
threads in response to a variety of conditions, such as computational activity,
file I/O, user input, and programmatic controls, such as messages and locks
(described below).

While most programs do not need multiple execution paths, there are some
cases where threads can be helpful.

1. Threads can be used to simplify modeless window handling. By tying
threads to modeless windows you simplify the task of managing multiple
windows. If each modeless window has its own thread, the runtime can
automatically activate or suspend each window (via its associated
thread). The code within each thread can then focus solely on managing
its own window. This approach is much easier than the alternative, in
which the program must be made to handle requests from any window at
any time.

Multiple Execution Threads 6-57
2. Threads can improve system throughput. There are times when you
can improve system throughput by performing tasks in one thread
while waiting for user input in another thread. For example, you could
do your program initialization while the user enters his or her
password. Or, you could allow the user to edit the first item found by a
complex search while your program continues searching for additional
items.

3. Threads can be used to control program actions. For example a
program can present and accept a “cancel” dialog box in one thread
while running a report in another. If the user clicks on the cancel
button, that thread stops the report by terminating the report’s thread.

4. Threads can be used to perform periodic updates. Any periodic effect,
such as updating an on-screen clock or performing animation, can
easily be accomplished in a thread by placing that thread in a loop that
sleeps for some period of time, wakes and performs the update, and
then loops back to the sleep cycle. This allows the rest of your
program to be written without concern about performing the periodic
update.

6.8.1 Thread Fundamentals

Threads are created with either the PERFORM statement or the CALL
statement. You simply add the word “THREAD” after the verb. The thread
runs the target of the PERFORM or CALL statement. When the target
completes, the thread is destroyed.

For example, to run the paragraph “OPEN-FILES” in a thread, you would
code:
PERFORM THREAD OPEN-FILES

The main thread continues to execute at the statement following the
PERFORM, while the OPEN-FILES code begins execution in a separate
thread. When OPEN-FILES finishes, the thread is destroyed.

Threads are identified by thread handles. When you create a thread, you can
optionally store its handle. Thread handles are used to communicate among
threads. The next example demonstrates how this works.

6-58 Programmer’s Guide
There are times when you will want to ensure that a thread is complete before
continuing in the program. For example, if one thread is used to open an
application’s files while another thread gets the user’s password, you will not
want to continue in the program until both tasks are complete, otherwise you
might try to look up the password in a file that is closed. You can use the
WAIT verb to make sure that both threads are complete before continuing.
The WAIT verb causes the thread to wait for the specified thread to finish or
send a message. The following example illustrates this process:
77 THREAD-1 USAGE HANDLE OF THREAD.

PERFORM THREAD OPEN-FILES, HANDLE IN THREAD-1
PERFORM GET-PASSWORD
WAIT FOR THREAD THREAD-1
PERFORM VALIDATE-PASSWORD

In this example, the paragraphs OPEN-FILES and GET-PASSWORD run in
parallel. The WAIT statement ensures that OPEN-FILES is finished before
the main thread goes on to validate the password.

6.8.1.1 LAST THREAD

The need to synchronize threads is so common that there is an optional
phrase, LAST THREAD, that can be used to simplify coding. Note that the
thread that LAST THREAD refers to is dynamic, so some care must be taken
in its use. LAST THREAD refers to:

1. the last thread created by the current thread, or the last thread that the
current thread communicated with, whichever was the last action

2. or, if neither of the actions described in (1) has occurred, the parent
thread (the thread that created the current thread)

You can use the LAST THREAD phrase to eliminate the need to store a
thread handle. For example, the preceding example could also be written as:
PERFORM THREAD OPEN-FILES
PERFORM GET-PASSWORD
WAIT FOR LAST THREAD
PERFORM VALIDATE-PASSWORD

Multiple Execution Threads 6-59
A thread normally ends when the PERFORM or CALL statement that created
it completes. You can end a thread earlier in the execution path with the
STOP THREAD statement. Used by itself, STOP THREAD terminates the
current thread. You can also specify a thread handle to stop another thread.
If there is only one thread running, stopping that thread is equivalent to doing
a STOP RUN.

6.8.2 Data Sharing Among Threads

In the program that created it, a thread and its parent thread share the same
data. This includes both working-storage and files (including the file’s open
state and record position). Thus any changes made in one thread will be seen
by the other thread. The only data that are not shared are those items
internally generated by the compiler that are related to the flow of control
within a thread, such as a paragraph’s return address or an internal counter
associated with PERFORM “N” TIMES.

When a thread CALLs a program, any data local to that program are private
to that thread (and its child threads). As a result, you can write utility routines
that many threads can call, without having to worry about data sharing issues
in the utility. Note that any data passed (BY REFERENCE) to the called
program are shared if they are shared in the program passing the data.

External data items and external files are always shared by all threads.

ACUCOBOL-GT ensures that any one logical operation on a data item is
fully completed before control switches between threads. Consider the
following example:
77 DATA-1 PIC X(3).

PERFORM THREAD
 MOVE “ABC” TO DATA-1
END-PERFORM
MOVE “DEF” TO DATA-1
WAIT FOR LAST THREAD
DISPLAY DATA-1

6-60 Programmer’s Guide
The last DISPLAY will either print “ABC” or “DEF” depending on the order
in which the threads execute. It will not, however, print something like
“AEF” or “DEC” because each MOVE that affects DATA-1 is performed in
its entirety before control switches between threads.

6.8.2.1 LOCK THREAD and UNLOCK THREAD

There may be times when you want to be sure that a group of operations is
performed without switching threads. For example, if you have a utility
paragraph that does a series of math operations on a data item, you will not
want to begin that paragraph and then switch to another thread if another
thread uses that data item. In this case, you can use the LOCK THREAD
statement to ensure that a series of operations are all accomplished together.
For example:
PARA-1.
 LOCK THREAD
 ADD DATA-1 TO DATA-2
 IF DATA-2 > DATA-2-DIV-LIMIT
 MOVE DATA-2-DIV-LIMIT TO DATA-2
 COMPUTE DATA-2 = DATA-2 / DATA-3
 UNLOCK THREAD.

The LOCK THREAD statement ensures that no other thread executes. This
condition remains in effect until the thread is unlocked (with UNLOCK
THREAD) or the thread terminates. In the preceding example, if the LOCK
THREAD was omitted, another thread referencing DATA-2 could see its
value after the ADD but before the COMPUTE. This could be a value that is
not meaningful.

A thread can have more than one lock. Each time a LOCK THREAD
statement executes in the thread, the number of locks held by that thread
increases by one. To allow other threads to run again, an equal number of
UNLOCK THREAD statements must also execute. Each UNLOCK
THREAD statement removes the last lock applied to the thread. This
capability allows a thread to lock itself, call a subroutine that also locks itself,
and remain locked after that subroutines unlocks itself.

The data sharing aspect of threads is very powerful. However, ensuring that
the data are always consistent can be a difficult programming problem.
When writing multithreaded programs, you should strive to share data in a

Multiple Execution Threads 6-61
well-defined manner to minimize this problem. The best way to do this is to
share as little data as possible and to be clear when each thread is allowed to
use that data.

6.8.3 Thread Communication

As noted in the previous section, you can share data items among threads.
This is the easiest form of communication among threads. The drawback to
this form of data sharing is that you must carefully code the program so as to
ensure that data is accessed and updated in a consistent manner. A second
drawback is that there is no efficient way for one thread to wait for another to
update a particular data item. You could arrange a set of data items to act as
semaphores, but it is inefficient for a thread to loop until a data item reaches
a particular value. It would be much better for the thread to sleep until the
data item it needs is available.

To solve this problem, ACUCOBOL-GT provides a way for threads to send
messages to each other. A message can be any data item. You decide in your
program how you want to format messages.

6.8.3.1 SEND and RECEIVE

A thread sends a message to another thread with the SEND statement. A
thread receives a message from another thread with the RECEIVE statement.
Messages can either be broadcast, in which case they are sent to all threads,
or directed, in which case the message is sent to a particular thread or set of
threads.

For example, suppose you have a thread that updates a complicated display
in response to a message. Another thread receives user input and sends
messages to the update thread. The code might look like this:
77 H-DISPLAY-THREAD HANDLE OF THREAD.
77 RECORD-NUMBER PIC 9(5).
77 UPDATE-RECORD-NO PIC 9(5).

MAIN-LOGIC.
 PERFORM INITIALIZE
 PERFORM CREATE-MAIN-SCREEN
 PERFORM THREAD DISPLAY-THREAD,
 HANDLE IN H-DISPLAY-THREAD

6-62 Programmer’s Guide
 PERFORM UNTIL DONE
 PERFORM ENTER-MAIN-SCREEN
 IF NOT DONE
 SEND RECORD-NUMBER TO
 THREAD H-DISPLAY-THREAD
 END-IF
 END-PERFORM
 PERFORM SHUT-DOWN
 STOP RUN.

DISPLAY-THREAD.
 PERFORM CREATE-STATUS-SCREEN
 PERFORM UNTIL 1 = 0
 RECEIVE UPDATE-RECORD-NO FROM ANY THREAD
 PERFORM UPDATE-STATUS-SCREEN
 END-PERFORM.

The thread that updates the screen sits in an infinite loop waiting for
messages. It will terminate when the runtime shuts down. Because it uses
the RECEIVE statement, this thread is very efficient even though it contains
an infinite loop. Note that the program includes two copies of the “record
number”: one sent by the main thread, and one to hold the value received by
the update thread. This isolates the data sharing to the SEND and RECEIVE
statements. If the main thread goes on to change RECORD-NUMBER while
the update thread is performing its screen updates, the action will not affect
the update thread because it has its own copy in STATUS-RECORD-NO.

The following example expands on the previous one to make the code more
robust. In particular, the new code handles the case where other threads may
be sending different types of messages, as well the case where all the sending
threads die for some reason. Note that some of the code from the first
example has been omitted for brevity:
77 H-DISPLAY-THREAD HANDLE OF THREAD.
77 RECORD-NUMBER PIC 9(5).

78 UPDATE-MSG-TYPE VALUE 1.

01 SENDING-RECORD.
 03 SENDING-MSG-TYPE PIC 99.
 03 SENDING-REC-NO PIC 9(5).

01 UPDATE-RECORD.
 03 FILLER PIC 99.

Multiple Execution Threads 6-63
 88 IS-UPDATE-MSG VALUE UPDATE-MSG-TYPE.
 03 UPDATE-RECORD-NO PIC 9(5).

MAIN-LOGIC.
 PERFORM THREAD DISPLAY-THREAD,
 HANDLE IN H-DISPLAY-THREAD
 PERFORM UNTIL DONE
 PERFORM ENTER-MAIN-SCREEN
 IF NOT DONE
 MOVE UPDATE-MSG-TYPE TO SENDING-MSG-TYPE
 MOVE RECORD-NUMBER TO SENDING-REC-NO
 SEND SENDING-RECORD TO
 THREAD H-DISPLAY-THREAD
 END-SEND
 END-IF
 END-PERFORM.

DISPLAY-THREAD.
 PERFORM CREATE-STATUS-SCREEN
 PERFORM UNTIL 1 = 0
 RECEIVE UPDATE-RECORD FROM ANY THREAD
 ON EXCEPTION
 PERFORM SENDING-THREADS-DIED-ERROR
 END-RECEIVE
 IF IS-UPDATE-MSG
 PERFORM UPDATE-STATUS-SCREEN
 END-IF
 END-PERFORM.

The preceding example assumes that all messages in the program will be
formatted with a two-digit type code as the first element. The update thread
checks the message received to see if it contains a type that it knows how to
respond to. If it does not, it simply ignores the message. This check is a good
idea because the update thread uses the ANY THREAD option in its
RECEIVE statement. If some other thread broadcasts a message (SEND TO
ALL THREADS), the update thread would receive the message even though
it might not be an “update” message. Adding the message-type code resolves
this issue. It also makes debugging easier if you have more than one message
type in your program.

6-64 Programmer’s Guide
Messages can also interrupt a thread that is in an ACCEPT statement.
However, to allow that you must declare that the ACCEPT statement may be
interrupted. This is specified with the ALLOWING MESSAGES phrase in
the ACCEPT statement. The next section includes an example that illustrates
when this capability may be useful.

6.8.4 Thread Priorities

In a multithreaded program, it is likely that many threads will be active at the
same time. To ensure that each active thread gets its proper share of CPU
time, the runtime tracks certain types of operations, such as DISPLAY, file
IO and basic computation operations, and periodically switches the executing
thread. Each of these opportunities to change threads is called a switch point.
The execution priority of each thread helps to determine which thread gets
control at each switch point.

A thread’s execution priority is an integer value. By default, all threads start
with a priority value of 100. You use a Format 12 SET statement to change
a thread’s priority value.

Threads receive control in proportion to their priority. The higher the
priority, the more often that thread gets control at a switch point. Thus, a
thread with a priority of 50 gains control half as often as a thread with a
priority of 100. Of course, if a thread is paused for any reason, such as
waiting for input, the thread does not gain control. The minimum priority for
a thread is one (1), the maximum is 32767.

Three runtime configuration variables, SWITCH_PERIOD,
DISPLAY_SWITCH_PERIOD, and IO_SWITCH_PERIOD, can be
used to affect how the runtime manages thread switching.

6.8.5 Threading Rules That Affect Windows and ACCEPT
Statements

There are a number of special rules that govern how and when threads can
receive user input. In the following discussion, the phrase “ACCEPT
statement” refers specifically to formats 1, 2, and 7 of the ACCEPT
statement. These are the forms that retrieve the user’s input.

Multiple Execution Threads 6-65
When a thread attempts to execute an ACCEPT statement, two rules
determine if that thread is allowed to proceed:

1. The thread may proceed if no other thread is in an ACCEPT statement.
This rule ensures that threads do not compete for a single piece of input.
It prevents the possibility, for example, of alternate keystrokes going to
different threads.

2. The thread may proceed if the window in which the ACCEPT will
occur is active, or if the active window is controlled by the current
thread. A window is controlled by the thread that created it or the last
thread that did an ACCEPT statement in it. A window can be
controlled by only one thread at a time. This rule ensures that
windows do not activate arbitrarily.

If an ACCEPT does not meet both of these conditions at the time that it would
normally execute, its thread is suspended. The thread will remain suspended
until both conditions are met (at which time the thread resumes and the
ACCEPT executes).

Note: Even if the thread is suspended and the ACCEPT is not started, the
ACCEPT may still be timed out with ACCEPT BEFORE TIME. It can also
be terminated with a message, if ACCEPT ALLOWING MESSAGES is
specified.

These rules apply only if there is more than one thread. If a suspended thread
becomes the only remaining thread, then it automatically resumes execution.

If a thread suspends due to rule (2), it will suspend forever unless its window
becomes active. This can happen in one of two ways: (a) another thread
activates the window, or (b) the user activates the window. Arranging for the
latter is much more common. It is the case where you want to give the user
the ability to work in multiple windows at once, freely switching between
them.

To create windows that the user can activate at will, you describe the
windows as MODELESS when you create them. A modeless window allows
the user to activate another window (the other type of window, called modal,
does not allow the user to activate another window). When the user activates
a modeless window, by clicking on it or using the host’s method, the runtime

6-66 Programmer’s Guide
generates a CMD-ACTIVATE event. In a single-threaded program, the
program must detect this event and ACCEPT something in the appropriate
window in order to activate that window. In a multithreaded program, there
is a second option. To use this option you code your program in such a way
that each modeless window runs in a separate thread, and you use the phrase
LINK TO THREAD or BIND TO THREAD when you create each window.
This phrase instructs the runtime to handle the CMD-ACTIVATE events on
its own. In this arrangement, when a CMD-ACTIVATE event occurs, the
runtime suspends the current thread and activates the new window. The
thread controlling the newly active window then resumes execution.
Technically speaking, the thread running the ACCEPT in the newly active
window can leave the suspended state because it meets rules (1) and (2)
described above.

This automatic runtime handling allows you to easily manage multiple
windows. Each window is contained in a thread that need only manage that
one window. The threads do not need to be aware of each other or know
which window is active. If the threads have some need to communicate
among themselves, they can do so with messages (see Section 6.8.3,
“Thread Communication”).

Here is an example. The following program presents a maintenance screen
for a data file. It also pops-up a window that has a list of all the records in the
file. The user can update a record on the maintenance screen, and can select
records from the list. When the user selects a record, the maintenance screen
is updated with the selected record.
MAIN-LOGIC.
 PERFORM INITIALIZE
 DISPLAY STANDARD GRAPHICAL WINDOW,
 LINK TO THREAD
 PERFORM THREAD SEARCH-THREAD,
 PERFORM UNTIL DONE
 PERFORM DISPLAY-RECORD
 ACCEPT MAINTENANCE-SCREEN
 ALLOWING MESSAGES FROM LAST THREAD
 ON EXCEPTION
 IF KEY-STATUS = W-MESSAGE
 PERFORM SAVE-CURRENT-RECORD
 RECEIVE RECORD-NUMBER
 FROM LAST THREAD
 END-IF
 END-ACCEPT

Multiple Execution Threads 6-67
 END-PERFORM
 PERFORM SHUT-DOWN
 STOP RUN.

SEARCH-THREAD.
 DISPLAY FLOATING GRAPHICAL WINDOW,
 MODELESS, LINK TO THREAD
 HANDLE IN H-SEARCH-WINDOW
 PERFORM DISPLAY-SEARCH-LIST
 PERFORM UNTIL 1 = 0
 PERFORM ACCEPT-SEARCH-LIST
 SEND RECORD-NUMBER-SELECTED TO LAST THREAD
 END-PERFORM.

This example shows how using threads can simplify managing multiple
windows. In it, one thread manages the main window, and one manages the
search window. The search window is very simple, its thread sits in an
infinite loop fetching a list item from the user and sending it to the main
thread. The main thread sits in a loop accepting the main screen. If a
message arrives from the search thread, it saves the current record and
retrieves the record sent from the search window. By using multiple threads,
each piece of your window-handling code stands alone. If it were written as
a single-threaded program, the two loops accepting the windows would have
to be combined into a single loop, with a state variable tracking which
window is currently active.

Tip: The use of modeless windows and threads to provide the ability to
switch between screens by pressing Taskbar buttons is demonstrated in an
AcuBench sample project located in the Support area of the Micro Focus
Web site. To download the project, go to: http://
supportline.microfocus.com/examplesandutilities/index.asp. Select
Acu samples > Graphical User Interface Sample Programs >
Threadds.zip.

6.8.6 Thread Pausing

There are some conditions in which all of the threads in your program will
pause. One reason this occurs is when some event in the system causes the
entire runtime to suspend. The pause ends when the runtime regains control.
The main cases where this occurs are:

http://supportline.microfocus.com/examplesandutilities/index.asp
http://supportline.microfocus.com/examplesandutilities/index.asp
http://supportline.microfocus.com/examplesandutilities/index.asp

6-68 Programmer’s Guide
1. when moving any of the application’s windows with the mouse. The
host system manages this task.

2. when a message box is displayed (by calling the “MESSAGE” utility
program or DISPLAY MESSAGE BOX). The message box is
managed by the host system. You can use this to your advantage by
using message boxes to report critical errors. The message box requires
that the user respond to the box before any part of the application will
resume.

Although the host system does not handle these tasks in character-based
versions of the runtime, architectural similarities between the character and
graphical versions cause these tasks to produce the same effect on character
systems.

Another reason for all threads in your multithread program to pause is
waiting for locked records. You can configure the runtime to automatically
wait for locked records by either setting the WAIT-FOR-LOCKS
configuration option, or by compiling with the RM/COBOL compatibility
(“-cr” option) and omitting a declarative for this particular file. When you do
this in a multi-threaded program, all threads are frozen while waiting for a
locked record to unlock. This occurs because the runtime employs a very
tight wait loop that does not allow other threads to continue running.

Note: You can avoid this by writing your own wait loop. Simply turn off
the runtime option and perform the affected file operations in a loop until
the file status is not “99”. For efficiency, we recommend calling
“C$SLEEP” for at least one second between file operations when waiting
for a lock.

6.8.7 Multithreading and Multiprocessor Systems

ACUCOBOL-GT implements multithreading in a machine-independent
fashion. It neither needs nor uses any multithreading capabilities of the host
system. This has several advantages:

1. You can run multithreaded programs in environments that do not
otherwise support multithreading.

Multiple Execution Threads 6-69
2. Multithreaded programs run the same way under different
environments.

3. ACUCOBOL-GT can provide features not universally available in
multithreaded systems, such as the link between windows and threads.

There are, however, a few disadvantages to this implementation. Chief
among these is that the operating system is not aware that there are multiple
threads running in the runtime’s process. This is primarily an issue on
systems that have multiple processors. Some of these systems can allocate
additional processors to a task if they know that the task contains more than
one thread--up to one processor per thread. But because these systems do not
see the runtime as a multithreaded entity, multiprocessor allocation does not
happen.

Typically, multiprocessor systems are used to provide support for more users.
By having more processors in the system, the system can run more processes
at once, and in this way increase the number of users the machine can
effectively support. But the system will not increase performance for a single
process (assuming that the process gets 100% of the CPU’s time--an
unrealistic assumption in a production environment). In practice, a
multiprocessor machine will usually not benchmark any better than a single
processor machine for single-task benchmarks, but they will provide much
better total throughput in a multi-user production environment.

In summary, multithreading an ACUCOBOL-GT program will not affect its
performance in any special way on a multiprocessor machine. Any gain, or
loss, will be the same as for a single processor system.

6.8.8 Thread Interaction With Run Units

The following rules apply to the interaction of threads with run units:

1. The CHAIN and CALL PROGRAM statements normally act as if the
program does a STOP RUN followed by the beginning of a new run unit.
The implied STOP RUN destroys all threads other than the one
executing the CHAIN or CALL PROGRAM statement.

2. If you have more than one thread running, you may not start a nested
run unit (accomplished with the CALL RUN statement).

6-70 Programmer’s Guide
6.9 Working with External Sort Modules (UNIX)

The ACUCOBOL-GT runtime on UNIX platforms can call most third-party
sort modules that support the EXTSM interface to perform SORT and
MERGE operations. The EXTSM call interface allows you to substitute other
sort modules that may enhance performance or offer more flexibility for sort
features.

Sort modules can perform file handling using the EXTFH interface, which
the ACUCOBOL-GT Runtime makes available to third-party sort modules.
The sort module may also interface directly with the Vision library.

6.9.1 Before Using an External Sort Module

Depending on the sort and merge results you want to achieve, you may need
to recompile programs and set a new environment variable:

• To use Micro Focus-style sign representation for data items, compile
your programs with the “-Dcm” switch.

• To obtain the behavior of SORT...WITH DUPLICATES IN ORDER, set
the following environment variable:

COBSW=+S

Note: You must set COBSW even if the COBOL program already
specifies the WITH DUPLICATES IN ORDER phrase.

6.9.2 Linking in a Third-Party Sort Module

In order to use a third-party sort module with the ACUCOBOL-GT Runtime,
you must relink the runtime using the following steps:

1. Install the third-party sort software.

2. Refer to the documentation for the EXTSM interface to understand its
operation and use.

Working with External Sort Modules (UNIX) 6-71
3. Make a copy of the lib/Makefile file in your ACUCOBOL-GT
installation. You can use this backup copy to ensure that the relink of
the runtime works before you make the changes to support the EXTSM
interface.

4. Edit lib/Makefile to enable linking with the third-party sort library, as
instructed in the Makefile section, “EXTSM configuration.”

5. Execute the make command to relink the runtime. For information on
using the make command, see section, 6.3.6, “Creating a New
Runtime System”, in A Guide to Interoperating with
ACUCOBOL-GT.

After creating the new runtime, which includes the third-party sort module,
set the USE_EXTSM configuration variable to “1” and then run programs as
usual. For more information, refer to Appendix H, “Configuration
Variables.”

You can then run programs with SORT and MERGE verbs run as they
normally would. For information on these verbs, refer to the Procedure
Division Statements section of the ACUCOBOL-GT Reference Manual.

Index

Symbols
$ in Indicator Area 5-31
$SET 2-70
%TMP%, using in place of a file name 2-109

Numerics
132-column mode, using escape sequences to switch 6-37
32-bit Windows, user-defined keys 4-35
88/Open COBOL specification 2-37

required data storage option 2-40

A
-a option 3-70
A_SEQ_DEFAULT_BLOCK_SIZE configuration variable, and vutil 3-88, 3-89
A_TERM and TERM variables, on different systems 4-6
a_termcap 4-6
A_TMPDIR environment variable 1-22, 3-133
Abend Diagnostic Report

configuration variables 3-56
description 3-54
generating 3-56
restrictions 3-58

abort, graceful 6-56
About the Runtime, debugger menu option 3-45
ACCEPT

ALLOWING MESSAGES 6-64, 6-66
and DISPLAY video, compiler options 2-47
and DISPLAY, example using Screen Section 6-51
BEFORE TIME 6-66

Index-2
color 4-44
debugger command 3-43
menu selection command 3-43
methods of accepting a field (Format 1) 4-14
Screen Section 4-14, 4-51

example 6-49
undefined location 4-59

ACCEPT IN HEX
menu selection and debugger command 3-43

ACU_DUMP configuration variable 3-56
ACU_DUMP_FILE configuration variable 3-56
ACU_DUMP_TABLE_LIMIT configuration variable 3-57
ACU_DUMP_WIDTH configuration variable 3-57
ACU_MON_FILE configuration variable 3-114
Acu4GL 1-12
ACU-CBLFLAGS 2-71
ACUCOBOL-GT documentation overview 1-14
acuprof 3-112

flags 3-115
sorting report data 3-115

acurfap, described 2-66
AcuServer 1-13, 5-16

requirements 5-17
with transaction management 5-15

acushare 2-119
indicating programs to share 2-121
kill 2-124
license error messages 2-126
runtime errors 2-126
starting 2-123

AcuSort utility 3-121
command-line format 3-122
comparison expressions 3-129
conditional constants 3-128
data field types 3-124
designating input file and output files 3-125
environment variables 3-133

 Index-3
key types 3-127
log file 3-134
substring search 3-130
take file format 3-122
version information 3-122

AcuSort utility instructions 3-123
CHAR-EBCDIC instruction 3-123
GIVE instruction 3-125
INCLUDE instruction 3-128
MERGE instruction 3-124
OMIT instruction 3-128
SIGN-EBCDIC instruction 3-123
SORT instruction 3-124
USE instruction 3-125

AcuSort utility phrase
FIELDS phrase 3-124
KEY phrase 3-127

ACUSORT_FILE_MEMORY environment variable 3-133
ACUSORT_MEMORY environment variable 3-134
ACUSORT_TRACE environment variable 3-134
AcuSQL calling options 2-134
AcuXML, Internet file mapping 2-100
addresses, specifying in the debugger 3-51
alfred, indexed file record editor 3-107
alias file

CICS and Boomerang 3-141
creating with Boomerang 3-137
DB2 and Boomerang 3-143
Pro*COBOL and Boomerang 3-140
UniKix and Boomerang 3-142

alias for file name 2-99
allocating dynamic memory 3-21
ALLOWING MESSAGES phrase, ACCEPT statement 6-64
ALPHA directive 5-32
alternate ENTRY points in a program 2-118
Alternate Terminal Manager (ATM) runtime 4-4
ANSI

Index-4
compatibility options, compiler 2-15
source format 2-90

compiler options 2-29
ANSI/terminal format 2-70
ANSI-compliant directive 5-31
apostrophe and QUOTE literal 2-37
APPLY_CODE_PATH configuration variable 2-115
array references, compiler option to test 2-58
arrow keys 4-37
Asian character sets 4-59
ASSIGN phrase 2-17

file name interpretation 2-106
reassigned with configuration variable 2-99
WITH COMPRESSION 6-17

assigning files to local printers 2-113
ATM runtime 4-4
auto step 3-23, 3-46

debugger 3-14
AUTO_PROMPT configuration variable 4-57, 4-58
automatic blank stripping, in sequential files 6-4

B
background color, compiler option 2-48
backspace key 4-12, 4-34, 4-38
backup, vio archive utility 3-98
backwards compatibility, compiler options 2-18
BELL runtime configuration variable 4-57, 4-58
BELL, compiler option to inhibit 2-48
BINARY data item storage, compiler option 2-33
BINARY data item, treating as COMPUTATIONAL-5 2-40
BINARY directive 5-33
binary sequential files

block size, and 6-3
compatibility options, compiler 2-15
creating an indexed file from 3-89

 Index-5
uploading from Vision files 3-87
binary sequential records 6-3
block size, Vision files 6-13
blocking factor, setting with vutil 3-73
Boomerang 3-135

alias file 3-137
CICS alias creation 3-141
client-side commands 3-148
client-side operation 3-147
configuration 3-145
DB2alias creation 3-143
INCLUDE files 3-150
Pro*COBOL alias 3-140
server commands 3-146
server setup 3-136
UniKix alias 3-142

breakpoints 3-6
conditional 3-39
menu in debugger 3-35
saving 3-35
threads 3-24
viewing 3-12, 3-21

bulk addition, described 6-21

C
C$KEYPROGRESS routine 6-27
C$LOCALPRINT routine 6-37
C$RECOVER routine 5-5, 5-13
CALL

loading object libraries 3-59
runtime resolution process 2-114

CALL THREAD 6-58
calling preprocessors 2-130

without the compiler 2-132
calling subprograms 2-113

Index-6
calling the AcuSQL pre-compiler 2-134
CANCEL statement

effects described 2-117
to free memory 2-114

CARRIAGE_CONTROL_FILTER configuration variable 2-105
case, lower/upper in command line 2-65
catastrophic exit 6-56
cblconfig, runtime configuration file 2-98
CBLFLAGS environment variable 2-68
cblutil program 3-60

-native option 3-64
object file information command 3-63
object library options 3-60

--char2gui runtime option 2-75
character-based emulation of windows and controls 4-78
characters, double-byte 4-59
Character-to-GUI Wizard 2-61, 2-75
CHAR-EBCDIC instruction 3-123
CHECK-NUMBERS=Validate 6-55
CICS, Boomerang alias creation 3-141
C-ISAM files, converting with vutil 3-92
clear all breakpoints debugger command 3-12
clear all variable monitors debugger command 3-12
clear all watches debugger command 3-12
clear breakpoint debugger command 3-12, 3-40
clear variable monitor debugger command 3-12
CLOSE statement, effects on record locking 6-15
CLOSE_ON_EXIT configuration variable 2-104
CMD-ACTIVATE event 6-66
CMD-GOTO event 6-55
CMD-TABCHANGED event 6-55
COBOL dialect compatibility modes 2-89
COBOL-Trigger directive 5-33
COBSW environment variable 6-71
code and data file search paths 2-102
code generation

host processor, compiler option 2-7

 Index-7
Intel processor, compiler option 2-7
Sparc processor, compiler option 2-9
Sparc_v9 processor, compiler option 2-9

code sharing 2-120
CODE_CASE configuration variable 2-115
CODE_PREFIX configuration variable 2-102, 2-115, 2-116
CODE_SUFFIX configuration variable 2-102, 2-116
color

adding to monochrome displays 4-43
disabling on MS-DOS 4-58
map, and SET ENVIRONMENT 4-45
setting foreground and background 4-74
terminal can display only one color at a time 4-75

COLOR_MAP configuration variable 2-98, 4-43
COLOR_TABLE configuration variable 2-98
columns, and horizontal scroll 4-55
commands, notation of 1-22
COMMENT directive 5-35
comment field in a Vision file 3-97
COMMIT TRANSACTION, implicit 5-6
comparison expressions 3-129
compatibility modes, compiler 2-89
compatibility options, compiler

ANSI 2-15
binary sequential 2-15
compatibility with prior versions 2-18
default extension 2-16
HP COBOL 2-17
IBM DOS/VS COBOL 2-18
IBM/COBOL, ASSIGN phrase of SELECT 2-17
ICOBOL 2-16
key number generation 2-17
pre-85 compiler 2-16
RM/COBOL 2-18

compiler data storage options
alignment boundary 2-33
alignment of SYNCHRONIZED data items 2-37, 2-71

Index-8
BINARY 2-33
BINARY STORAGE 2-41
COMP-1 and COMP-2 treatment 2-35
COMPUTATIONAL-2 2-40
COMPUTATIONAL-5 2-40
different numeric format 2-34
floating point 2-35
IBM 2-34
initializing Working-Storage by type 2-36
LINKAGE data item alignment 2-33
Micro Focus 2-34
minimum bytes 2-37
modifying definition of data types 2-38
one byte 2-40
PACKED-DECIMAL 2-41
reference modification 2-44
RM/COBOL 2-37
SIGN clause 2-37
size checking rule modification 2-40
treating binary as SYNCHRONIZED 2-40
VAX COBOL 2-34

compiler debugging options
all-level 2-50
by line-number 2-50
extra symbol 2-51
list of 2-50
minimal symbol 2-51
source-level 2-50

compiler directives. See directives
compiler file name handling options

@ character in file names 2-65
abbreviation of file names 2-65
See also compiler remote file name handling options

compiler introduction 2-2
compiler mapping options

COPY file list 2-54
data items, report 2-54

 Index-9
list of 2-52
list of special styles and properties 2-53
lowercase text 2-53
map report 2-53
mixed-case text 2-53
Procedure Division report 2-53
report of reserved words 2-53
source file list 2-54
uppercase text 2-54

compiler native code options
for host machine 2-7
for Intel-class processors 2-7
for Sparc v9-class processors 2-9
for Sparc-class processors 2-9

compiler options
ANSI 2-15
array references test 2-58
as if INITIAL PROGRAM 2-59
binary sequential 2-15
CENTURY-DATE, DAY 2-62
compatibility with prior versions 2-18
creating a cross-reference 2-9
creating XFD files 2-23
data dictionaries 2-23

building XFD 2-27
data items larger than 64 KB 2-59
default extension 2-16
directory for data dictionary files 2-26
error output 1-23
errors, write to file 2-4
extended statistics 2-13
file handle size 2-28
full listing, create 2-11
HP COBOL 2-17
IBM DOS/VS COBOL 2-18
IBM/COBOL, ASSIGN phrase of SELECT 2-17
ICOBOL 2-16

Index-10
identifier and statement internal tables 2-14
ignore CBLFLAGS environment variable 2-5
include source lines 2-96
indexing tables 2-60
key number generation 2-17
matching field names, XFD files 2-23
miscellaneous options, list of 2-58
no recursive PERFORMs 2-60
object file name 2-4
output file for listings 2-12
page length of listings 2-11
pre-85 compiler 2-16
recursive PERFORMs 2-60
reference modifcation 2-44
remote object file name 2-4
RM/COBOL 2-18
runtime, backward compatibility 2-63
screen import utility 2-61
segmentation in source 2-59
single locking 2-24
START TRANSACTION, implied 2-26
subscript statement internal tables 2-14
summary listing, create 2-11
symbol tables 2-13
tab stops 2-29
transaction files 2-23
transaction management 5-13
transaction, implied 2-27
treating spaces as zero 2-62
turning off local optimizer 2-59
USAGE DISPLAY 2-62
verbose 2-5
warning message suppression 2-5, 2-79
wide format 2-13
XFD files, creating 2-23

compiler options, listed
compatibility options 2-15

 Index-11
file options 2-23
internal tables options 2-14
listing options 2-9
native code options 2-7
preprocessor options 2-131
source options 2-29

compiler preprocessors 2-127
compiler remote file name handling options

@ character in remote file names 2-66
abbreviation of remote file names 2-66
See also compiler file name handling options

compiler reserved words options
changing 2-31
ignoring 2-32
list of 2-31
suppressing 2-32

compiler source format options
ANSI 2-29
compiler directive 2-71
terminal 2-31

compiler source options
ANSI 2-29
COPY library directories 2-30
debugging lines 2-30
exclude source lines 2-31
include source lines 2-30
input source, encoding scheme 2-29
RM/COBOL tab stops 2-30
tab stops, RM/COBOL 2-30

compiler truncation options 2-44
compiler video options

background color 2-48
BLANK EOL 2-46
exception keys 2-47, 2-48, 2-49
high intensity 2-47
inhibiting bell 2-48
intensity 2-46

Index-12
low intensity 2-48
ON EXCEPTION 2-47
treating as if CONVERT specified 2-46

compiler, using 2-2
examples 2-65
handling problems 1-23

COMPRESS_FACTOR configuration variable 6-18
compression

configuration file option 6-18
described 6-17
using WITH COMPRESSION 6-18
Vision files 6-14

compression factor, option to set 3-93, 3-95
COMPUTATIONAL 2-33
COMPUTATIONAL-1 2-35
COMPUTATIONAL-2 2-35, 2-40
COMPUTATIONAL-2 data items, compiler option 2-40
COMPUTATIONAL-5 2-40
COMPUTATIONAL-6 2-41
COND phrase 3-128
conditional compiling

compiler options 2-55
config85.c 2-118
configuration file 1-2

embedded in an object 2-78
format of 2-98
information 2-69
names 2-98
rules 2-98
runtime option for listing of 2-82
specifying an alternate 2-75
versus user’s environment 2-106

configuration options that can affect file operations and performance 2-105
configuration variables 2-97, 2-107

defining and displaying in the debugger 3-52
display related 4-57
runtime 2-97

 Index-13
configuration variables, list of
ACU_DUMP_FILE 3-56
ACU_DUMP_TABLE_LIMIT 3-57
ACU_DUMP_WIDTH 3-57
ACU_MON_FILE 3-114
APPLY_CODE_PATH 2-115
AUTO_PROMPT 4-57, 4-58
BELL 4-57, 4-58
CARRIAGE_CONTROL_FILTER 2-105
CLOSE_ON_EXIT 2-104
CODE_CASE 2-115
CODE_PREFIX 2-102, 2-115
CODE_SUFFIX 2-102, 2-116
CODE-PREFIX 2-116
COLOR_MAP 2-98, 4-43
COLOR_TABLE 2-98
COMPRESS_FACTOR 6-18
DEFAULT_MAP_FILE 5-65
DEFAULT_PROGRAM 2-72
ERRORS_OK 2-104
EXPAND_ENV_VARS 2-107
EXTEND_CREATES 2-104
F10_IS_MENU 4-37
FILE_ALIAS_PREFIX 2-106
FILE_CASE 2-107
FILE_CONDITION 2-98
FILE_PREFIX 2-102, 2-110
FILE_STATUS_CODES 2-103
FILE_SUFFIX 2-103, 2-107
filename_LOG 5-11
HOT_KEY 2-98
IO_CREATES 2-104
KBD_AUTO_RETURN 4-16
KBD_CASE 4-17
KBD_CHECK_NUMBERS 4-17
KBD_CURSOR_PAST_END 4-18
KBD_DATA_RANGE_HIGH 4-18

Index-14
KBD_DATA_RANGE_LOW 4-18
KBD_EXCEPTION_RANGE_HIGH 4-18
KBD_EXCEPTION_RANGE_LOW 4-18
KBD_IMPLIED_DECIMAL 4-19
KBD_RM_2_DEFAULT_HANDLING 4-19
KBD_SCREEN_DEFAULT 4-19
KEYBOARD 2-98, 4-16
KEYSTROKE 2-98, 4-16, 4-19
LOCK_DIR 2-106
LOG_BUFFER_SIZE 5-11
LOG_DEVICE 5-11
LOG_DIR 5-11
LOG_ENCRYPTION 5-11
LOG_FILE 5-9, 5-11
LOGGING 5-11
MAKE_ZERO 2-86
MASS_UPDATE 2-105
MENU_ITEM 2-98
MONOCHROME 4-57, 4-58
MOUSE 2-98
RESTRICTED_VIDEO_MODE 4-58, 4-62
SCREEN 2-98, 4-45
SCRN_ALPHA_AUTO_PROMPT 4-47
SCRN_ALPHA_UPDATES 4-47
SCRN_CONVERT_OUTPUT 4-47
SCRN_EDITED_AUTO_PROMPT 4-48
SCRN_EDITED_UPDATES 4-48
SCRN_ERROR_BELL 4-49
SCRN_ERROR_BOX 4-49
SCRN_ERROR_COLOR 4-50
SCRN_ERROR_LINE 4-51
SCRN_FORM_FEED 4-51
SCRN_INPUT_DISPLAY 4-51
SCRN_INPUT_MODE 4-52
SCRN_JUSTIFY 4-52
SCRN_NUMERIC_AUTO_PROMPT 4-52
SCRN_NUMERIC_UPDATES 4-52

 Index-15
SCRN_PROMPT 4-53
SCRN_PROMPT_ALL 4-53
SCRN_PROMPT_ATTR 4-53
SCRN_PROMPT_DEFAULT 4-53
SCRN_REFRESH_LINES 4-54
SCRN_REFRESH_MODE 4-54
SCRN_SHADOW_STYLE 4-55
SCRN_SIZE_COLS 4-55
SCRN_SIZE_ROWS 4-55
SCRN_WARN 4-49
SCRN_WINDOW_X 4-57
SCRN_WINDOW_Y 4-57
SCROLL 4-57, 4-59
server_MAP_FILE 5-65
SORT_DIR 2-105, 2-110
STOP_RUN_ROLLBACK 5-7
TEMP_DIR 2-110
transaction logging, used with 5-11
V_BULK_MEMORY 6-22
WARNINGS 2-86
WRAP 4-57, 4-59
XFD_DIRECTORY 5-65

console runtime 1-7
contents command 3-45
continue command 3-22
CONTROL KEY clause 4-14, 4-16, 4-18, 4-28, 4-31
control keys, how to define 4-34
controls

character-based emulation, default characters 4-78
key letter, treatment in text mode 4-80
properties and styles, compiler listing 2-53
redisplaying a moved control 4-81
removing runtime support for 2-118

CONVERT phrase, compiler/video option 2-46
converting

C-ISAM files 3-92
Micro Focus Files 3-94

Index-16
COPY file list, compiler option 2-54
COPY libraries 2-92

directories, compiler option 2-30
excluding a library from a COPY statement 2-94
specifying the name of 2-93

COPY REPLACING with XFDs 5-19
COPY RESOURCE statement 2-93
COPYPATH environment variable 2-93
creating

empty files 3-81
object libraries 3-60
remote object libraries 3-62
XFD files, compiler option 2-23

cross-reference list, compiler option 2-9
current line command 3-25
cursor

mouse handling in source-level debugging 3-7
undefined state 4-59

D
-d runtime option, to start debugger 3-5
data

alignment modulus 2-33
alternate data alignment 2-71
data items report, compiler option 2-54
large data items, compiler option 2-59
validation 6-55

when not performed 6-55
data alignment 2-70
data dictionaries 5-19

file name 5-39
XFD, file options, compiler 2-27

data execution protection, Windows 2-7
data field types 3-124
data item alignment 2-33

 Index-17
data items, 31-digit support 2-35
Data menu in debugger 3-28
data sharing among threads 6-60
data storage

alignment of SYNCHRONIZED data items 2-37
BINARY 2-33
BINARY STORAGE 2-41
COMP-1 and COMP-2 treatment 2-35
COMPUTATIONAL-2 2-40
COMPUTATIONAL-5 2-40
data alignment modulus 2-33
different numeric format for 2-34
floating-point 2-35
IBM 2-34
initializing Working-Storage by type 2-36
Micro Focus 2-34
minimum bytes 2-37
modifying definition of data types 2-38
one byte 2-37, 2-40
PACKED-DECIMAL 2-41
Realia 2-34
SIGN clause 2-37
size checking rule modification 2-40
SYNCHRONIZED, for treating binary data as 2-40
VAX COBOL 2-33, 2-34

DATE directive 5-35
FY and RY formats 5-38

date format, -Zy option 2-62
DB2, Boomerang alias creation 3-143
DBCS 4-59
dd_SYSOUT environment variable 3-135
debugger 3-2

activating the System menu 3-9
command function keys 3-44
configuration variables, setting and displaying 3-52
cursor position in source code 3-25
entering 3-5

Index-18
example 1-25
exiting 3-20
file tracing option 3-49
low-level debugging 3-4
macros 3-50
multithreading issues 3-15
name qualification 3-52
running under windows 3-5
screen tracing option 3-49
scrolling 3-43
searches 3-26
source debugging 3-3
specifying addresses 3-51
specifying program addresses 3-53
specifying variables 3-51
symbolic debugging 3-4
three modes 3-3
toolbar 3-45

debugger commands 3-8
debugger file tracing option 3-47
debugger menus

breakpoints 3-35
data 3-28
file 3-17
help 3-45
Monitor submenu 3-32
run 3-22
selection 3-41
source 3-25
view 3-20

debugger restrictions 3-53
debugger scroll bar 3-3
debugger window 3-5
debugger, using

in background mode 3-4
mouse with 3-7
with application servers 3-4

 Index-19
debugging mode 2-76
debugging options 2-50
decimal ASCII 4-28
Declarative 2-104
default extension, compatibility options, compiler 2-16
DEFAULT_MAP_FILE configuration variable 5-65
DEFAULT_PROGRAM configuration variable 2-72
-defines compiler option 2-69
DELETE and record locking 6-15
deleted records, recovering 3-80
DEP 2-7
device locking 2-106

under UNIX 6-16
device naming conventions 2-100
devices 2-109
directives 2-70

>>IMP 2-70
Alpha 5-32
binary 5-33
COBOL-trigger 5-33
comment 5-35
date 5-35
file 5-39
line and file with preprocessor 2-136
name 5-40
numeric 5-44
secondary-table 5-44
subtable 5-45
syntax 5-31
use group 5-46
var-length 5-48
when 5-48
xsl 5-54

disable at cursor line debugger command 3-40
DISPLAY

color 4-44
Screen Section and CONVERT-OUTPUT 4-47

Index-20
undefined location 4-59
display

attributes, order of precedence 4-44
configuring 4-42

DISPLAY BOX 6-37
display command

data menu 3-12, 3-30
selection menu 3-41

display in hex debugger command
data menu 3-31
selection menu 3-42

display interface 4-42
DISPLAY LINE 6-37
display, debugger command 3-30, 3-41
DISPLAY_SWITCH_PERIOD configuration variable 6-65
DOUBLE, floating-point precision compiler option 2-35
double-byte character handling 4-59
Down, in debugger 3-43
duplicate records, loading with vutil 3-91
dynamic memory 3-21
DYNAMIC_FUNCTION_CALLS configuration variable 2-114

E
--embedded-config-file compiler option 2-78
embedded procedures 6-52
emulating graphical controls on character-based systems 4-78
enable at cursor line debugger command 3-40
encoding input source, scheme assumed by compiler 2-29
encryption 6-14
ENTRY points, call resolution 2-115
ENTRY statement 2-118
environment variables 1-21

CBLFLAGS 2-68
in the path-name 2-93
to define a path 2-92

 Index-21
environment, file name search in 2-107, 2-108
error file, compiler options 2-4
error handling 6-42
error messages, preprocessors 2-139
error output 2-77

compiler option 1-23
errors

acushare 2-126
logging to runtime’s error file 6-43

ERRORS_OK configuration variable 2-104
escape sequences, terminal manager 6-36
examining file information 3-67
EXCEPTION clause 4-18, 4-28
exception keys 4-14

compiler option 2-48, 2-49
exclude source lines, compiler option 2-31
Exit Debugger debugger command 3-20
exiting from ACUCOBOL-GT programs 6-56
EXPAND_ENV_VARS configuration variable 2-107
EXTEND_CREATES configuration variable 2-104
extended statistics listing options, compiler 2-13
external data item 6-41
external sort function 3-121
EXTFH interface, external sort modules 6-71
extracting records from a file 3-79
EXTSM interface

linking into the runtime 6-71
support for 6-70

F
-f option 3-70
F10_IS_MENU configuration variable 4-37
FIELDS phrase 3-124
FILE directive 5-39
file error 30, runtime option 2-87

Index-22
file integrity 3-69
file locks

-fn compiler option 2-25
File memory, debugger command 3-21
File menu in debugger 3-17
file name

abbreviation when compiling 2-65
aliasing 2-99
assignments 2-99
case of 2-65
dynamic reassignment 2-106
examples 2-110
FILE_NAME_PREFIX configuration variable 2-106
handling of 2-65
interpretation of 2-106
remote, handling of 2-66
starting with hyphen 2-107, 2-109

file options, compiler
data dictionaries 2-23
directory for data dictionary files 2-26
matching field names, XFD files 2-23
single locking 2-24
START TRANSACTION, implied 2-26
transaction, implied 2-27
transactions 2-23
XFD files 2-23
XFD, building data dictionaries 2-27

file size, summary report 3-92
file tracing 1-26, 3-47, 3-49

flushing output 3-48
timestamps 3-49

file utilities
vio 3-98
vutil 3-66

FILE_ALIAS_PREFIX configuration variable 2-106
FILE_CASE configuration variable 2-107
FILE_CONDITION configuration variable 2-98

 Index-23
FILE_PREFIX configuration variable 2-102, 2-110
FILE_STATUS_CODES configuration variable 2-103
FILE_SUFFIX configuration variable 2-103, 2-107
FILE_TRACE configuration variable 3-48
FILE_TRACE_TIMESTAMP configuration variable 3-49
File-Control paragraph 5-20
--fileIdSize compiler option 2-28
filename_LOG configuration variable 5-11
files

binary sequential
creating an indexed file from 3-89
uploading from Vision files 3-87

C-ISAM, converting with vutil 3-92
compression 6-14, 6-17
encryption 6-14
examining file information 3-67
handling 2-104, 6-2
improving performance 6-32
limits on open files and control of 6-34
locking, performance considerations 6-33
Micro Focus, converting with vutil 3-94
preventing fragmentation with vutil 3-74
rebuilding 3-71
recovery routine for 5-5, 5-13
reducing number of 3-59
resource, adding to an object library with cblutil 3-60
runtime option for input from 2-80
sequential 6-2
status codes 2-103
translation, examples of rules 2-110
vutil integrity check 3-69

FILLER data items and XFDs 5-25
Find Backwards debugger command 3-26
Find debugger command 3-46
Find Forwards debugger command 3-26
Find from Top debugger command 3-26
Find Next debugger command 3-46

Index-24
Find Previous debugger command 3-46
fixed length records, compiler option 2-16
FLOAT 2-35
format

compiler option for ANSI source 2-29
compiler option for terminal source 2-31
of source code 2-90

form-level ACCEPT and DISPLAY 6-51
fragmentation of files, preventing with vutil 3-74
FULL phrase 6-55
function codes for terminals, list of 4-66
function keys

debugger 3-44
defining 4-75

G
general preprocessor interface 2-127
generating MOVE code for LINKAGE data items 2-33
GF-GUI-MAP 4-79
GIVE instruction 3-125
Go debugger command 3-46
Go to cursor line debugger command 3-13, 3-22
Go until paragraph returns debugger command 3-22
Go until program exits debugger command 3-22
GO-GUI-MAP 4-79
graphical window and control emulation 4-78
graphics on terminals requiring multiple-character escape sequences 4-77
group items 5-25

H
hang up signal, blocking on UNIX 2-75
hardware supported 1-20
help automation, mapping context IDs 2-70
help command 2-69

 Index-25
help on help command 3-45
help with debugger 3-16
high-intensity video, compiler option 2-47
hot keys 4-29

assigning 4-28
PRNTSCRN 4-29

HOT_KEY configuration variable 2-98, 4-58
HP COBOL compatibility, compiler option (-Cp) 2-17
hyphens, special treatment of file names with 2-109

I
I/O efficiency 5-46
IBM data storage, compiler option 2-34
IBM DOS/VS COBOL

ASSIGN phrase of SELECT, compatibility options, compiler 2-17
compatibility options, compiler 2-18
using SUPPRESS in a COPY statement 2-94

ICOBOL
compatibility, compiler options 2-16
file status codes, and 2-103
reserved words option 2-32
terminal source format 2-91

identifier and statement, internal tables options, compiler 2-14
ignore CBLFLAGS environment variable, standard options, compiler 2-5
importing screens and controls 2-81
INCLUDE instruction 3-128
index values, reusing 2-59
indexed file record editor (alfred) 3-107
indexed file utility (vutil) 3-66
indexed files 6-5

features 6-17
-info options, listed 3-67
initialization strings, for terminals 4-83
input from a file, runtime option for 2-80
input source, encoding scheme assumed by compiler 2-29

Index-26
intermediate runtime errors 5-12
internal tables options, compiler

explained 2-13
identifier and statement 2-14

interrupt key 4-39
IO_CREATES configuration variable 2-104
IO_SWITCH_PERIOD configuration variable 6-65
IS INITIAL PROGRAM phrase, compiler option 2-59

J
--javaclass compiler option 2-21
JUSTIFIED, with formatted and centering option 4-48

K
-k option 3-67, 3-70
KBD_AUTO_RETURN configuration variable 4-16
KBD_CASE configuration variable 4-17
KBD_CHECK_NUMBERS configuration variable 4-17
KBD_CURSOR_PAST_END configuration variable 4-18
KBD_DATA_RANGE_HIGH configuration variable 4-18
KBD_DATA_RANGE_LOW configuration variable 4-18
KBD_EXCEPTION_RANGE_HIGH configuration variable 4-18
KBD_EXCEPTION_RANGE_LOW configuration variable 4-18
KBD_IMPLIED_DECIMAL configuration variable 4-19
KBD_RM_2_DEFAULT_HANDLING configuration variable 4-19
KBD_SCREEN_DEFAULT configuration variable 4-19
key codes 4-31
key fields 5-20

by either explicit or implicit redefinition 5-23
key interpretation 4-10
key letter

designating on character based systems 4-22
treatment in text mode 4-80

key mapping 4-10

 Index-27
key number generation, compatibility options, compiler 2-17
KEY phrase 3-125, 3-127, 5-20

XFDs, and 5-23
key translation 4-11
KEYBOARD

AUTO-RETURN keyword 4-16
CASE keyword 4-17
CHECK-NUMBERS keyword 4-17
CURSOR-PAST-END keyword 4-17
DATA-RANGE keyword 4-18
EXCEPTION-RANGE keyword 4-18
IMPLIED-DECIMAL keyword 4-18
RM-2-DEFAULT-HANDLING keyword 4-19
SCREEN-DEFAULT keyword 4-19

keyboard
additions under 32-bit Windows 4-35
configuration, default 4-12
default, ACUCOBOL-GT 4-39
functions, and Terminal Manager 4-9
interface 4-9
modification examples 4-41
redefining 4-16

KEYBOARD configuration variable 2-98, 4-16
keys 6-11

code example 6-11
information, retrieving with C$KEYPROGRESS 6-27
list of function codes to represent 4-65
performance considerations 6-33
sample code 6-11
split 6-12
table of actions 4-12
table of redefinable keys 4-31
with more than one name 4-34

KEYSTROKE
AT-END keyword 4-20
DATA keyword 4-20
EDIT keyword 4-20

Index-28
values for 4-22– 4-28
EXCEPTION keyword 4-28
HOT-KEY keyword 4-28
INVALID keyword 4-31
table of redefinable keys 4-31
TERMINATE keyword 4-31

KEYSTROKE configuration variable 2-98, 4-16, 4-19
keystroke, playback of keystroke file 2-82
kill -9 6-2, 6-56

L
large data items, compiler option 2-59
last line debugger command 3-25
LAST THREAD 6-59
library routines

C$KEYPROGRESS 6-27
C$LOCALPRINT 6-37
C$RECOVER 5-5, 5-13
M$ALLOC 3-21
W$BITMAP 2-95
WIN$PLAYSOUND 2-95

license error messages, displaying with LICENSE_ERROR_MESSAGE_BOX 2-126
license files, AcuServer 5-17
limits on open files 6-34
line 1 debugger command 3-25
line drawing 4-76

and terminal manager 6-37
line number, reported when abnormal termination 2-50
line segments requiring multiple-character escape sequences 4-77
line sequential files

ACUCOBOL-GT rules 6-3
creating indexed files from 3-89
two types 6-4
uploading from Vision files to 3-87

line wrapping 4-59

 Index-29
LINK TO THREAD 6-66
linking the runtime 2-118
listing options, compiler

cross-reference, create 2-9
extended statistics 2-13
full listing, create 2-11
output file for 2-12
page length of listings 2-11
summary listing, creating 2-11
symbol tables 2-13
wide format 2-13

loading a file 3-89
local printers 6-37

assigning files to 2-113
LOCALPRINT 2-113
Location, debugger command 3-38
LOCK THREAD statement 6-61
LOCK_DIR configuration variable 2-106, 6-16
locked records, RM/COBOL compatibility mode 6-15
locking

rules for transaction management 5-7
threads 6-60

locking files, -fn compiler option 2-25
log files, multiple 5-10
LOG_BUFFER_SIZE configuration variable 5-11
LOG_DEVICE configuration variable 5-11
LOG_DIR configuration variable 5-11
LOG_ENCRYPTION configuration variable 5-11
LOG_FILE configuration variable 5-9, 5-11
logging

configuration file variables used with 5-11
rollback of file update operations, and 5-9
specifying log files for 5-10

LOGGING configuration variable 5-11
logutil

log file editor 3-107
options 3-107

Index-30
report headings 3-110
syntax 3-107

lost records 3-71
low-intensity video, compiler option 2-48
low-level debugging 3-4

M
M (monitor) debugger variable 3-13
M$ALLOC routine 3-21
macro debugger 3-50
magic cookie terminals, and attribute settings 4-58, 4-73
MAKE_ZERO configuration variable 2-86
mapping options 2-52
MASS_UPDATE configuration variable 2-105
MASS-UPDATE phrase, described 6-19
MBP COBOL sign storage 2-34
memory

shared 2-119
types of 3-21

memory access violations 6-42
memory usage debugger command 3-21
MENU_ITEM configuration variable 2-98
MERGE instruction 3-124
MERGE statement, external sort modules 6-70
merging records 3-124
messaging, among threads 6-61
Micro Focus

data storage, compiler option 2-34
files, converting with vutil 3-94
reserved word option 2-32

minimizing the application window 4-56
modeless window

managing with threads 6-57, 6-66
sample project 6-68

monitor variables, in debugger 3-32

 Index-31
monitor option 3-42
stop when value changes 3-13
versus watch 3-33

MONOCHROME configuration variable 4-57, 4-58
mouse

support for X terminals 4-82
using with debugger 3-7

MOUSE configuration variable 2-98
mouse-action keys 4-33
multiple execution threads 6-57
multiple log files 5-10
multiple record definitions and XFDs 5-23
multithreading 6-57, 6-69

N
name aliasing for files 2-99
NAME directive 5-40
naming the XFD 5-27
native code

generating for Intel-class processors 2-7
generating for Sparc v9-class processors 2-9
generating for Sparc-class processors 2-9
list of options 2-7
option in cblutil 3-64
options, explained 2-5
overview 1-5
supported processors 1-20

--netdll compiler option 2-22
--netexe compiler option 2-22
no recursive PERFORMs compiler option 2-60
notation for commands 1-22
NUMERIC directive 5-44

Index-32
O
object file

cblutil 3-58
command to get information 3-63
library, runtime option for 2-88
name, standard options, compiler 2-4
native code 3-64
utility 3-58

object library 3-59
creating 3-60
remote 3-62

object module, three states 2-114
object-code file 2-2
OCCURS clause, and XFDs 5-25
OMIT instruction 3-128
ON EXCEPTION phrase, compiler option to alter rules for 2-47
open files, limits on and control of 6-34
OPEN statement, MASS-UPDATE option 6-19
operating systems supported 1-20
optimizer, compiler option to turn off local 2-59
optimizing data storage 2-38
OPTIONAL phrase 2-26
options

compiler, introduction 2-2
runtime 2-73

ORG phrase 3-125
OTHER 5-49, 5-50
output file for listing options, compiler 2-12
overhead memory, debugger command 3-21
overlays in source, compiler option 2-59

P
-p option 3-67
PACKED-DECIMAL data items, treating as COMPUTATIONAL-6 2-41
page length of listings, listing options, compiler 2-11

 Index-33
paragraph command 3-25
perform stack command, debugger 3-11, 3-20
perform step, in debugger 3-23
PERFORM THREAD 6-58
performance

improving 3-59, 3-68, 6-19, 6-32, 6-35
with shared memory 2-119

V-BUFFER considerations 6-33
PICTURE clause, 31-digit support 2-35
pipe 2-109
portability

of XFDs 5-19
option for maximizing 2-39

pre-85 compiler, compatibility options, compiler 2-16
pre-compiler

AcuSQL, calling options 2-134
invoking 2-134
invoking from ACUCOBOL-GT 2-134
options 2-134
remote processing with Boomerang 3-135

preprocessed output 2-12
preprocessor, remote processing with Boomerang 3-135
preprocessors

calling the AcuSQL pre-compiler 2-134
calling two or more 2-130
calling without the compiler 2-132
command-line options 2-135
compiler options 2-131
error messages 2-139
general interface 2-127
line and file directives 2-136
pre-compiler options 2-134
use of 2-129
writing a preprocessor 2-135
written in ACUCOBOL-GT 2-130
written in C/C++ 2-129

print files 6-4

Index-34
print functions, and Terminal Manager 4-84
printers 2-106

accessing 2-111
ASSIGN clause, and 2-101
assigning files to local 2-113
attaching to terminal 4-84
file name assignments 2-101
machine-independent access of 2-111
sending data to local device 6-37

printing, and UNIX 6-17
PRNTSCRN 4-29
Pro*COBOL Boomerang alias 3-140
Procedure Division report, compiler option 2-53
processors, native code supported 1-20
product overview 1-2
profiler utility 2-83
profiler, configuration 3-114
profiling tool 3-111
program execution problems 1-25
program failure, and non-zero user count 3-68
Program Memory, debugger command 3-21
P-step, debugger command 3-23, 3-46

Q
-q option 3-67, 3-70, 3-71, 3-79, 3-80
Quit command, debugger 3-20
QUOTE literal 2-37

R
RA, Run All Threads debugger command 3-15
READ NEXT statement, and locked records 6-15
READ statement, and record locking 6-15
Realia, data storage option 2-34
rebuilding files 3-71

 Index-35
record editor (alfred) 3-107
record locking 6-15

performance considerations 6-33
transaction management, with 5-7

RECORD phrase 3-125
record script command 3-11
Record Script debugger command 3-19
RECORD SEQUENTIAL 6-2
record size, changing 3-96
records

adding, modifying, deleting from an indexed file 3-107
variable-length and fixed-length 6-2

recovery of files through transaction management 5-4
recovery routine for file 5-5, 5-13
recursive PERFORM statements, compiler option 2-60
REDEFINES, and XFDs 5-24
redefining the keyboard 4-16
reducing the size of the runtime 2-118
refernce modification, compiler switch 2-44
relative files 6-4

creating an indexed file from 3-89
relinking the runtime 2-118
remote file access with AcuServer 5-16
remote file names, handling of 2-66
remote name notation

alternate configuration file 2-75
defined 5-18
error output file 2-77
object file library 2-88
specifying file aliases 2-100

remote object file name, standard options, compiler 2-4
remote object library 3-62
remote preprocessing 3-135
Remove All Breakpoints, debugger command 3-47
RENAMES clause, and XFDs 5-23
repeat find command 3-27
required functions, terminal manager 4-70

Index-36
REQUIRED phrase 6-55
reserved words

compiler options 2-31
compiler options for listing 2-53

reserved words list, where to find 2-31
resetting

internal revision numbers 3-78
user counts 3-78

RESIDENT 6-41
resource files

adding to an object library with cblutil 3-60
defined 2-94
rules for 2-95

resources, accessing with W$BITMAP and WIN$PLAYSOUND 2-95
restricted attribute handling 4-61
restricted video modes 4-62
RESTRICTED_VIDEO_MODE configuration variable 4-58, 4-62
retrieving key information with C$KEYPROGRESS 6-27
revision numbers, resetting 3-78
REWRITE statement, and record locking 6-15
RM/COBOL

compatibility mode
compiler options 2-18
locked records 6-15

configuration option and ACCEPT fields 4-19
data storage options 2-37
file status codes, and 2-103
reserved words option 2-32
RM/COBOL-85 (ANSI 85) 2-105

Auto-Insert 4-22
keyboard layout 4-15

tab stops, compiler option 2-30
version 2 (ANSI 74)

CONVERT 2-46
file handling 2-104

rollback 5-4
ROLLBACK statement, implicit 5-6

 Index-37
run all threads 3-14, 3-15
debugger command 3-24

Run menu, debugger 3-22
Run Script debugger command 3-11, 3-19
Run to Procedure debugger command 3-43
runcbl

-d option 3-5
introduction 2-72
running the debugger 3-2

running programs with a hot key 4-29
runtime

CALL resolution steps 2-114
configuration file 4-4
configuration variables 2-97
debugger 3-3
introduction 2-72
relinking 2-118
removing optional components 2-118
serial number 2-86
size, reducing 2-118
system 2-2
terminal-related configuration variables 4-8
timer 2-85

runtime errors, intermediate 5-12
runtime options

alternate runtime configuration file 2-75
basic version information 2-86
collecting application information with the profiler 2-83
collecting zero count paragraph information with the profiler 2-84
converting character screens to graphical 2-75
debugging 2-76
debugging mode 2-84
debugging with commands from a file 2-84
display output file 2-83
--embedded-config-file 2-78
error output file 2-77, 2-82
file error 30 2-87

Index-38
generating memory location output 2-89
ignore hang-up signals 2-80
information 2-86
inhibiting terminal initialization 2-74
input from file 2-80
keystroke file playback 2-82
measuring an application’s real-time execution 2-85
memory access violation 2-89
object file library 2-88
profiler 3-111
redirecting display output to a file 2-83
safe mode 2-84
SPECIAL NAMES switches 2-74
suppression of warning messages 2-79
terminal output file 2-85
warning messages 2-86

S
safe mode exit 6-56
SCREEN

ALPHA-UPDATES keyword 4-46
configuration examples 4-57
CONVERT-OUTPUT keyword 4-47
EDITED-UPDATES keyword 4-47
ERROR-BELL keyword 4-49
ERROR-BOX keyword 4-49
ERROR-COLOR keyword 4-49
ERROR-LINE keyword 4-50
FORM-FEED keyword 4-51
INPUT-DISPLAY keyword 4-51
INPUT-MODE keyword 4-51
JUSTIFY keyword 4-52
NUMERIC-UPDATES keyword 4-52
PROMPT keyword 4-53
PROMPT-ALL keyword 4-53

 Index-39
PROMPT-ATTR keyword 4-53
REFRESH-LINES keyword 4-53
SHADOW-STYLE keyword 4-54
SIZE keyword 4-55
WINDOW keyword 4-56

SCREEN configuration variable 2-98
screen functions 4-71
screen import utility 2-81

case of text 2-53
compiler option 2-61

SCREEN runtime configuration variable 4-45
Screen Section

ACCEPT/DISPLAY statements 6-48
advantages 6-47, 6-52
comparison to field-level 6-51
CONVERT-OUTPUT, and 4-47
embedded procedures example 6-52
example code 6-49
introduction to 6-46
reserved words suppression option 2-32
structure of 6-47
syntax 6-48
three types of screen description entries 6-48

screen tracing 3-49
screen, scrolling 4-59
scripts

recording in the debugger 3-19
running in the debugger 3-20

SCRN_ALPHA_AUTO_PROMPT configuration variable 4-47
SCRN_ALPHA_UPDATES configuration variable 4-47
SCRN_CONVERT_OUTPUT configuration variable 4-47
SCRN_EDITED_AUTO_PROMPT configuration variable 4-48
SCRN_EDITED_UPDATES configuration variable 4-48
SCRN_ERROR_BELL configuration variable 4-49
SCRN_ERROR_BOX configuration variable 4-49
SCRN_ERROR_COLOR configuration variable 4-50
SCRN_ERROR_LINE configuration variable 4-51

Index-40
SCRN_FORM_FEED configuration variable 4-51
SCRN_INPUT_DISPLAY configuration variable 4-51
SCRN_INPUT_MODE configuration variable 4-52
SCRN_JUSTIFY configuration variable 4-52
SCRN_NUMERIC_AUTO_PROMPT configuration variable 4-52
SCRN_NUMERIC_UPDATES configuration variable 4-52
SCRN_PROMPT configuration variable 4-53
SCRN_PROMPT_ALL configuration variable 4-53
SCRN_PROMPT_ATTR configuration variable 4-53
SCRN_PROMPT_DEFAULT configuration variable 4-53
SCRN_REFRESH_LINES configuration variable 4-54
SCRN_REFRESH_MODE configuration variable 4-54
SCRN_SHADOW_STYLE configuration variable 4-55
SCRN_SIZE_COLS configuration variable 4-55
SCRN_SIZE_ROWS configuration variable 4-55
SCRN_WARN configuration variable 4-49
SCRN_WINDOW_X configuration variable 4-57
SCRN_WINDOW_Y configuration variable 4-57
scroll bar, debugger 3-2
SCROLL configuration variable 4-57, 4-59
scrolling in Terminal Manager 6-38
search

debugger 3-26
debugger, Windows Help menu 3-45

search command 3-45
search paths

for code and data files 2-102
for COPY libraries 2-92

SECONDARY-TABLE directive 5-44
segmentation in source, compiler option 2-59
SELECT statement 5-20, 5-27
Selection

item in debugger menu 3-8
menu in debugger 3-41

sequential files 6-2
automatic blank stripping 6-4

server_ MAP_FILE configuration variable 5-65

 Index-41
set breakpoint command 3-35
SET ENVIRONMENT 1-21

and color map 4-45
set procedure breakpoint command 3-43
SET statement, to set priority value of a thread 6-65
setting variables in the debugger 3-32
shared memory 2-119
shared object library 2-114
sharing, indicating programs to share 2-121
shell command 3-11
Shell debugger command 3-19
SIGN clause, data storage compiler option 2-37
SIGN-EBCDIC instruction 3-123
sign-storage convention 2-37
single and double precision 2-35
single locking, file options, compiler 2-24
size checking rules, modification 2-40
Skip count, debugger Set command 3-39
skip to cursor line command 3-10, 3-24
sort files, external sort modules 6-70

application preparation 6-71
linking the module 6-71

SORT instruction 3-124
SORT statement 2-105

external sort modules 6-70
SORT_DIR configuration variable 2-105, 2-110
sorting records 3-124
source file options

default source name extension 2-16
list of 2-29
setting tab stops 2-29

source format 2-90
ANSI compiler option 2-29
terminal compiler option 2-31

source-code
control and XFDs 5-19
control of 2-96, 2-97

Index-42
debugging 3-3
excluding or including lines at compile time 2-96
format of 2-90

spaces, treating as zero 2-62
SPECIAL-NAMES, runtime switches 2-74
split keys 6-12
standard options, compiler

errors, write to file 2-4
ignore CBLFLAGS environment variable 2-5
object file name 2-4
remote object file name 2-4
verbose 2-5
warning message suppression 2-5

START TRANSACTION, implied 2-26
starting and using acushare 2-122
Step, debugger commands 3-15, 3-23, 3-46
Stop Recorder debugger command 3-19
STOP THREAD 6-59
STOP_RUN_ROLLBACK configuration variable 5-7
subprogram calls 2-114
subprograms 3-59

calling 2-113
subscripting, compiler options for internal tables 2-14
substring search 3-130
subtable directive 5-45
summary list, creating, listing options, compiler 2-11
support, what we need if you call us 1-27
supported hardware 1-20
suppressing reserved words, compiler option 2-32
suspended thread 6-66
SWITCH_PERIOD configuration variable 6-65
switches, SPECIAL-NAMES 2-74
symbol tables, listing options, compiler 2-13
symbolic debugging 2-52, 3-4
SYNCHRONIZED

alternate data alignment 2-71
compiler option for treating binary data as 2-40

 Index-43
data items, compiler option 2-37
synonyms for reserved words 2-32
syntax, logutil 3-107
System Menu, activating in the debugger 3-9
System-Menu function, activation key on character-based systems 4-28

T
tab key 4-41
tab stops, source options, compiler 2-29
tables, indexing, compiler option 2-60
Televideo 925 4-61
TEMP_DIR configuration variable 2-110
temporary files, specifying a directory for 1-22
termcap 4-65, 4-69
terminal

characteristics, by reference 4-84
configuration variables 4-8
database file 4-3, 4-6

by reference entry 4-84
editing 4-65
on different systems 4-5
systems that do not use 4-5

definition 4-7
format 2-90
function codes 4-3, 4-42
handling options 2-104
identification 4-5
source format, compiler option 2-31

Terminal Manager
132-column handling 6-37
attached devices 6-37
functions 4-2
guidelines to improve performance 6-35
introduction 4-2
line drawing 6-37

Index-44
mouse support, and 4-82
performance and screen I/O 6-34
required functions 4-70
restrictions 6-36
scrolling 6-38
solutions for escape sequences restrictions 6-37

Terminal Manager modes, standard and auto 4-14
terminal source, compiler options 2-31
terminals

initialization strings 4-83
list of function codes for 4-66
non-ANSI conforming 4-61
preparing for use with ACUCOBOL-GT programs 4-5
restrictions imposed by special 4-62

termination key, standard and auto modes 4-14
testing file integrity 3-69
thread fundamentals 6-58
thread, debugger command 3-24
Threadds.zip sample project 6-68
threads

and threading 6-57
issues, debugger 3-15
starting 6-57
suspending 6-66

communication among 6-61
creating 6-58
effects on windows 6-65
fundamentals 6-58
interaction with run units 6-70
locking 6-60
logical operations preserved 6-60
messages, messaging among 6-61
modeless windows

managing 6-57
sample project 6-68

multiple locks 6-61
multiprocessor issues 6-69

 Index-45
pausing 6-68
priorities 6-64
sharing data 6-60
stopping 6-59
switch point 6-65
synchronizing 6-58
to manage modeless windows 6-66

timestamp, file trace option 3-49
timing program execution 2-85
TMPDIR environment variable 1-22, 3-133
toggle at cursor line command 3-40
Toggle Breakpoint debugger command 3-46
toolbar, debugger 3-45
Trace Files debugger command 3-18
Trace Paragraphs debugger command 3-18
TRACE_STYLE configuration variable 3-48
transaction error codes 5-11
transaction log file

how to edit 3-107
logutil 3-107

transaction logging 5-3, 5-4, 5-6
configuration file variables used with 5-11
recovery with AcuServer, and 5-15
specifying log files 5-10

transaction management 5-1
compiler options used with 5-13
features and file types supported 5-4
overview 5-2
verbs 5-6

transactions
file options, compiler 2-23
implied, file options, compiler 2-27

TRANSACTION-STATUS register 5-11
trigger 5-33
truncation of XFD names 5-42
truncation options 2-44

Index-46
U
UniKix Boomerang alias 3-142
UNIX

command to check modules for debug mode 3-63
device locking, and 6-16

unloading to binary and line sequential format 3-87
UNLOCK 6-15
UNLOCK THREAD 6-61
Up, in debugger 3-43
upper and lower case in command-line arguments 2-65
URLs, mapping XML files to 2-100
USE GROUP directive 5-46
USE instruction 3-125
USE_LARGE_FILE_API environment variable 3-135
user count 3-70, 3-71, 6-14

action if non-zero 3-68
resetting 3-78

user-defined keys 4-35
user-defined words 2-31
using shared memory 2-120
utilities

acuprof 3-112
alfred 3-107
cblutil 3-58
logutil 3-107
vio 3-98
vutil 3-66

V
V_BULK_MEMORY configuration variable 6-22
validating data 6-55

when not performed 6-55
variable-length records 6-2

binary sequential records 6-3
sequential files, and short records 6-4

 Index-47
variables
clearing watches 3-12
debugger, and 3-51
displaying in debugger 3-30

VAR-LENGTH directive 5-48
VAX COBOL 2-15

CONVERT 2-47
data storage option 2-33, 2-34
file names 2-109
file status codes, and 2-103
line sequential files 6-3
reserved words option 2-32
sequential files 6-3
terminal source format 2-91

VAX/VMS
file names 2-109
line sequential files 6-3
sequential files 6-3

V-BUFFERS, performance considerations 6-33
verbose, standard options, compiler 2-5
version command 2-69
video

background color, compiler options 2-48
BLANK EOL, compiler option 2-46
control with SCREEN variable 4-45

video attributes 4-73
terminals with non-hidden 4-62

video compiler options
exception keys, -Ve 2-47
exception keys, -Vx 2-48, 2-49
high intensity 2-47
inhibiting bell 2-48
intensity 2-46
low intensity 2-48
ON EXCEPTION phrase 2-47
treating as if CONVERT specified 2-46

view breakpoints command 3-21, 3-40

Index-48
view monitors command 3-21
view perform stack command 3-20
view procedure command 3-43
view screen command 3-20
vio

examples 3-105
file transfer utility 3-98
known limitations 3-106
options 3-100
Windows considerations 3-104

Vision file system
described 6-5
Versions 5 and 4, and 3 6-6

Vision file utility 3-66
Vision files

block size 6-13
comment field, setting 3-97
recovering deleted records (Vision 5) 3-80
segment naming 6-7

VMS file utilities 3-66
VMS operating systems 2-105
vutil

changing record size 3-96
checking for file integrity 3-69
collating sequence 3-83
converting a C-ISAM file 3-92
converting a Micro Focus file 3-94
creating empty files 3-81

indexed format 3-84
interactive version 3-82
non-interactive version 3-84
sequential and relative 3-87

examining file information 3-67
extracting records 3-79
loading a file 3-89

with large records 3-91
resetting revision numbers 3-78

 Index-49
resetting user counts 3-78
setting the comment field 3-97
specifying a compression factor 3-74
unloading to binary and sequential format 3-87
utilities 3-66

vutil options
-augment option 3-96
-note option 3-97
tree option 3-97
version option 3-98

vutil options, listed 3-70, 3-72
vutil, rebuilding files 3-71

automatic placement 3-72
blocking factor 3-73
default method fails 3-75
directory specification 3-73
extension factor, setting a new one 3-74
from an interrupted rebuild 3-77
in key order 3-75
latest Vision format 3-77
limited disk space and 3-74, 3-76
locking options 3-72
naming temporary files 3-72
record compression 3-73
slow rebuild 3-77
specifying size of spool media 3-77
spooling 3-76

Vx compile-time option 4-14

W
W$BITMAP routine, accessing resources 2-95
WA variable 3-15
WAIT statement 6-58
warning messages

compiler option 2-5

Index-50
runtime option 2-79
WARNINGS configuration variable 2-86
watch 3-15

clearing all 3-12
watching a variable 3-15

watch size command 3-15, 3-27
watch variable vs. monitor variable 3-33
watch variables in debugger, watch option 3-43
Watch Window 3-32
WHEN directive 5-48
wide format listing options, compiler 2-13
WIN$PLAYSOUND routine 2-95
Window Memory, debugger command 3-21
window size 3-5

command window 3-15, 3-27
window text-mode, reconstructing 4-81
Windows

extra keys 4-35
keys that cannot be re-defined 4-37
line sequential files 6-3
running the debugger under 3-5

Windows console runtime 1-7
Windows DLL 2-114
WRAP configuration variable 4-57, 4-59
write to error file, standard options, compiler 2-4
WRITE, bulk addition 6-21
writing a preprocessor 2-135
Wyse 50 4-61

X
-x option 3-67, 3-70
X/Open COBOL Standard 2-34
XENIX and setcolor 4-45
XFD 5-20

file format 5-55

 Index-51
file options, compiler 2-23
name 5-27
XML stylesheet directive 5-54

XFD data dictionaries, file options, compiler 2-23, 2-27
XFD files 5-19

defaults used 5-23
XML format 2-24

XFD_DIRECTORY configuration variable 5-65
XML documents, XFD files 2-24
XSL directive 5-54

Y
year format, -Zy option 2-62

	ACUCOBOL-GT®
	Introduction
	1.1 ACUCOBOL-GT Documentation
	1.2 Product Overview
	1.2.1 Portability and Compatibility
	1.2.2 Native Instructions
	1.2.3 The ACUCOBOL-GT Runtime
	1.2.3.1 Windows console runtime

	1.2.4 Runtime Configuration
	1.2.5 Graphical Technology
	1.2.6 File System Flexibility
	1.2.7 Complementary Technologies

	1.3 Document Overview
	1.3.1 User’s Guide
	1.3.2 User Interface Programming
	1.3.3 Reference Manual
	1.3.4 Appendices
	1.3.5 Getting Started
	1.3.6 Transitioning to ACUCOBOL-GT
	1.3.7 A Guide to Interoperating with ACUCOBOL-GT
	1.3.8 A Programmer’s Guide to the Internet
	1.3.9 Related Documents

	1.4 Supported Hardware
	1.4.1 Native Code Supported Processors

	1.5 Environment Variables
	1.6 Notation
	1.7 How to Get Help
	1.7.1 Handling Compilation Problems
	1.7.2 Handling Program Execution Problems

	Compiler and Runtime
	2.1 Introduction
	2.2 Using the Compiler
	2.2.1 Standard Options
	2.2.2 Native Code Options
	2.2.3 Listing Options
	2.2.4 Internal Tables Options
	2.2.5 Compatibility Options
	2.2.6 Interoperability Options
	2.2.7 File Options
	2.2.8 Source Options
	2.2.9 Reserved Word Options
	2.2.10 Data Storage Options
	2.2.10.1 Truncation Options

	2.2.11 Video Options
	2.2.12 Warning and Error Options
	2.2.13 Debugging Options
	2.2.14 Mapping Options
	2.2.15 Conditional Compilation Options
	2.2.16 Miscellaneous Options
	2.2.17 Upper and Lower Case
	2.2.18 File Name Handling
	2.2.18.1 Remote file name handling

	2.2.19 Compiler Command-Line Examples
	2.2.20 CBLFLAGS Environment Variable
	2.2.21 Help, Version Information, and Communication With C Programs
	2.2.22 The “>>IMP” Directive

	2.3 Using the Runtime System
	2.3.1 Runtime Options

	2.4 Compatibility Modes
	2.5 Source Formats
	2.6 COPY Libraries
	2.6.1 Resource Files
	2.6.1.1 General Rules for Resources

	2.7 Source Code Control
	2.8 Runtime Configuration
	2.8.1 File Name Assignments
	2.8.2 Code and Data File Search Paths
	2.8.3 File Status Codes
	2.8.4 Terminal Handling Options
	2.8.5 File Handling Options
	2.8.5.1 Sort files
	2.8.5.2 Carriage control
	2.8.5.3 Device locking

	2.9 File Name Interpretation
	2.9.1 File Names Starting With a Hyphen
	2.9.2 File Name Examples
	2.9.2.1 Example 1: Default name handling
	2.9.2.2 Example 2: Accessing printers

	2.9.3 Assigning Files to Local Printers

	2.10 Calling Subprograms
	2.10.1 CALL
	2.10.2 CANCEL
	2.10.3 CHAIN
	2.10.4 Alternate ENTRY Points

	2.11 Reducing the Size of the Runtime
	2.12 acushare Utility Program
	2.12.1 Using Shared Memory
	2.12.1.1 Indicating programs to share

	2.12.2 Using acushare
	2.12.2.1 acushare -start
	2.12.2.2 acushare -kill
	2.12.2.3 acushare -clean
	2.12.2.4 acushare -version
	2.12.2.5 acushare (with no options)

	2.12.3 acushare errors

	2.13 General Preprocessor Interface
	2.13.1 Use of Preprocessors
	2.13.1.1 Calling a preprocessor
	2.13.1.2 Calling two or more preprocessors
	2.13.1.3 Compiler options forwarded to preprocessors
	2.13.1.4 Calling a preprocessor without the compiler

	2.13.2 AcuSQL Pre-compiler
	2.13.2.1 Compatibility with ACUCOBOL-GT general preprocessor interface
	2.13.2.2 Calling the AcuSQL pre-compiler

	2.13.3 Writing a Preprocessor
	2.13.3.1 Command-line options
	2.13.3.2 Line and file directives
	2.13.3.3 Error messages

	Debugger and Utilities
	3.1 Runtime Debugger
	3.1.1 Entering the Debugger
	3.1.2 Cursor and Mouse Handling in Source-level Debugging
	3.1.3 Debugger Commands
	3.1.3.1 Source-level commands
	3.1.3.2 Other commands
	3.1.3.3 Multithreading Issues
	3.1.3.4 Getting help
	3.1.3.5 File menu
	3.1.3.6 View menu
	3.1.3.7 Run menu
	3.1.3.8 Source menu
	3.1.3.9 Data menu
	3.1.3.10 Breakpoints menu
	3.1.3.11 Selection menu
	3.1.3.12 Help menu

	3.1.4 File Tracing
	3.1.5 Screen Tracing
	3.1.6 Macro Debugger
	3.1.7 Specifying Addresses
	3.1.7.1 Variables
	3.1.7.2 Program addresses

	3.1.8 Debugger Restrictions
	3.1.9 Using the Abend Diagnostic Report (ADR)
	3.1.9.1 Generating a report
	3.1.9.2 ADR restrictions

	3.2 Object File Utility - cblutil
	3.2.1 Object Libraries
	3.2.2 Creating Object Libraries
	3.2.2.1 Creating remote object libraries

	3.2.3 Getting Object Information
	3.2.4 Generating Native Code

	3.3 Vision File Utility - vutil
	3.3.1 Examining File Information
	3.3.2 Testing File Integrity
	3.3.3 Rebuilding Files
	3.3.4 Resetting User Counts
	3.3.5 Resetting Internal Revision Number
	3.3.6 Extracting Records From a File
	3.3.7 Recovering Deleted Records
	3.3.8 Creating Empty Files
	3.3.8.1 Responding to vutil generated prompts
	3.3.8.2 Specifying file attributes in advance

	3.3.9 Unloading to Binary and Line Sequential Format
	3.3.10 Loading a File
	3.3.11 File Size Summary Report
	3.3.12 Converting RM/COBOL-85 Indexed Files
	3.3.13 Converting C-ISAM Files
	3.3.14 Converting Micro Focus Files
	3.3.15 Changing Record Size
	3.3.16 Setting the Comment Field
	3.3.17 Miscellaneous Commands
	3.3.18 Default Settings of vutil

	3.4 File Transfer Utility - vio
	3.4.1 vio Options
	3.4.2 Windows Considerations
	3.4.3 vio Examples
	3.4.4 Known Limitations

	3.5 Indexed File Record Editor (alfred)
	3.6 logutil
	3.6.1 Syntax and Options
	3.6.2 logutil Report Headings

	3.7 The Profiler
	3.7.1 Using the Profiler
	3.7.2 Configuring the Profiling Tools
	3.7.3 Understanding the Report
	3.7.4 Understanding the XML Data File

	3.8 External Sort Utility - AcuSort
	3.8.1 AcuSort Command Format
	3.8.2 AcuSort Instructions
	3.8.2.1 CHAR-ASCII and SIGN-ASCII
	3.8.2.2 CHAR-EBCDIC and SIGN-EBCDIC instructions
	3.8.2.3 SORT/MERGE instructions
	3.8.2.4 USE/GIVE instructions
	3.8.2.5 INCLUDE/OMIT instructions

	3.8.3 Code Sample
	3.8.4 AcuSort Environment Variables

	3.9 Remote Preprocessing Utility - Boomerang
	3.9.1 License Requirements and Installation
	3.9.2 Server Setup and Configuration
	3.9.2.1 Step 1: Creating an Alias File
	Pro*COBOL Alias Example
	CICS Alias Example
	UniKix Alias Example
	DB2 Alias Example
	3.9.2.2 Step 2: Creating a Configuration File
	3.9.2.3 Step 3: Creating an Access File
	3.9.2.4 Step 4: Starting the Server

	3.9.3 Server commands
	3.9.4 Client-side Operation - Remote Precompiling
	3.9.5 Client Commands
	3.9.6 Working with INCLUDE files

	Terminal Manager
	4.1 How the Terminal Manager Works
	4.1.1 Terminal Manager Functions
	4.1.2 Alternate Terminal Manager (ATM)

	4.2 Getting Your Terminals Ready
	4.2.1 Step One: Terminal Identification
	4.2.2 Step Two: Terminal Definition
	4.2.2.1 Windows special considerations

	4.2.3 Step Three: Configuration Variables

	4.3 The Keyboard Interface
	4.3.1 Key Mapping
	4.3.1.1 Key interpretation
	4.3.1.2 Key translation
	4.3.1.3 Keyboard configuration

	4.3.2 Redefining the Keyboard
	4.3.2.1 The KEYBOARD variable
	4.3.2.2 The KEYSTROKE variable
	4.3.2.3 Table of keys
	4.3.2.4 Additional Windows keys
	4.3.2.5 Special keys
	4.3.2.6 Default keyboard
	4.3.2.7 Modification examples

	4.4 The Display Interface
	4.4.1 Adding Color
	4.4.2 The SCREEN Option
	4.4.2.1 SCREEN examples

	4.4.3 Additional Configuration Variables
	4.4.4 Double-Byte Character Handling

	4.5 Restricted Attribute Handling
	4.5.1 Restricted Video Modes
	4.5.1.1 Restrictions

	4.6 The Terminal Database File
	4.6.1 Required Functions
	4.6.2 Additional Screen Functions
	4.6.3 Video Attributes
	4.6.4 Color
	4.6.4.1 One-color terminals

	4.6.5 Function Keys and Other Keys
	4.6.5.1 User-defined keys

	4.6.6 Line Drawing
	4.6.6.1 Multi-character sequences for graphics

	4.6.7 Graphical Window and Control Emulation
	4.6.8 Mouse Support for X Terminals
	4.6.9 Initialization
	4.6.10 Print Functions
	4.6.11 Continued Entries

	File Processing
	5.1 Transaction Management
	5.1.1 Overview of Transaction Management
	5.1.1.1 Transaction logging
	5.1.1.2 File types
	5.1.1.3 Features

	5.1.2 The Transaction Logging Process
	5.1.3 Transaction Management Verbs
	5.1.4 Extended Locking Rules
	5.1.4.1 Special handling of implicit transactions

	5.1.5 Logging and Rollback of File Update Operations
	5.1.6 Multiple Log Files
	5.1.7 Configuration Variables
	5.1.8 Transaction Error Handling
	5.1.9 Compiler File Options
	5.1.10 Recovery
	5.1.10.1 Transaction logging and recovery with AcuServer

	5.2 AcuServer
	5.2.1 System Requirements
	5.2.2 Remote Name Notation

	5.3 XFD Files
	5.3.1 Defaults Used in XFD Files
	5.3.1.1 KEY IS phrase
	5.3.1.2 RENAMES clause
	5.3.1.3 REDEFINES clause
	5.3.1.4 Multiple record definitions
	5.3.1.5 Group items
	5.3.1.6 FILLER data items
	5.3.1.7 OCCURS clauses
	5.3.1.8 Summary of dictionary fields
	5.3.1.9 Identical field names
	5.3.1.10 Long field names
	5.3.1.11 Naming the XFD
	5.3.1.12 Examples of XFD names

	5.3.2 Using Directives
	5.3.2.1 Important for Acu4GL and AcuXML sites

	5.3.3 Syntax
	5.3.3.1 ALPHA directive
	5.3.3.2 BINARY directive
	5.3.3.3 COBOL-TRIGGER directive
	5.3.3.4 COMMENT directive
	5.3.3.5 DATE directive
	5.3.3.6 FILE directive
	5.3.3.7 NAME directive
	5.3.3.8 NUMERIC directive
	5.3.3.9 SECONDARY-TABLE directive
	5.3.3.10 SUBTABLE directive (AcuXDBC use only)
	5.3.3.11 USE GROUP directive
	5.3.3.12 VAR-LENGTH directive
	5.3.3.13 WHEN directive
	5.3.3.14 XSL directive

	5.3.4 XFD Format
	5.3.4.1 Identification section
	5.3.4.2 Key section
	5.3.4.3 Condition section
	5.3.4.4 Field section

	5.4 International Character Handling
	5.4.1 Files Required for Translation

	Programmer’s Guide
	6.1 Handling Files
	6.1.1 Sequential Files
	6.1.2 Relative Files
	6.1.3 Indexed Files - Vision
	6.1.3.1 Segment naming of Vision 4 and 5 files
	6.1.3.2 Method one: The format method
	6.1.3.3 Method two: The default method
	6.1.3.4 Overriding individual segment names
	6.1.3.5 Selecting the Vision version
	6.1.3.6 Keys
	6.1.3.7 Other Vision features

	6.1.4 Record Locking
	6.1.5 Device Locking Under UNIX
	6.1.6 Indexed File Considerations
	6.1.6.1 Compression
	6.1.6.2 Mass update
	6.1.6.3 Bulk addition mode for Vision

	6.1.7 Performance Considerations
	6.1.8 Limits on Open Files

	6.2 Terminal I/O
	6.2.1 Performance Considerations
	6.2.2 Terminal Manager Restrictions

	6.3 Memory Management
	6.3.1 External Data Items

	6.4 Memory Testing and Error Handling
	6.4.1 Memory Access Violations
	6.4.2 Logging Errors to the Runtime’s Error File
	6.4.3 Runtime Memory Tracking and Testing
	6.4.3.1 Memory handling descriptions
	6.4.3.2 Memory tracking
	6.4.3.3 Memory bounds checking

	6.5 Screen Section
	6.5.1 Advantages
	6.5.2 Structure
	6.5.3 Syntax
	6.5.4 Comparison to Field-level
	6.5.5 Using Screen Section Embedded Procedures

	6.6 Data Validation
	6.7 Exiting From ACUCOBOL-GT Programs
	6.8 Multiple Execution Threads
	6.8.1 Thread Fundamentals
	6.8.1.1 LAST THREAD

	6.8.2 Data Sharing Among Threads
	6.8.2.1 LOCK THREAD and UNLOCK THREAD

	6.8.3 Thread Communication
	6.8.3.1 SEND and RECEIVE

	6.8.4 Thread Priorities
	6.8.5 Threading Rules That Affect Windows and ACCEPT Statements
	6.8.6 Thread Pausing
	6.8.7 Multithreading and Multiprocessor Systems
	6.8.8 Thread Interaction With Run Units

	6.9 Working with External Sort Modules (UNIX)
	6.9.1 Before Using an External Sort Module
	6.9.2 Linking in a Third-Party Sort Module

	Index

