
Appendices

ACUCOBOL-GT®

Version 8.1

Micro Focus
9920 Pacific Heights Blvd

San Diego, CA 92121
858.790.1900



© Copyright Micro Focs (IP) Ltd. 1998-2008. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC, 
AcuXUI, extend, and “The new face of COBOL” are registered trademarks or registered service 
marks of Micro Focus.   “COBOL Virtual Machine” is a trademark of Micro Focus.  Acu4GL is 
protected by U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States 
and/or other countries.   UNIX is a registered trademark of the Open Group in the United States and 
other countries.   Solaris is a trademark of Sun Microsystems, Inc., in the United States and other 
countries.  Other brand and product names are trademarks or registered trademarks of their 
respective holders.

E-01-AP-080924-Appendix-8.1



Contents

Appendix  A: Specifications
A.1 COBOL Modules ........................................................................................................... A-2
A.2 Limits and Ranges.......................................................................................................... A-2
A.3 Extensions ...................................................................................................................... A-4
A.4 Restrictions .................................................................................................................. A-10

Appendix  B: ACUCOBOL-GT Reserved Words
B.1 Conventions.................................................................................................................... B-1
B.2 Reserved Word List........................................................................................................ B-2

Appendix  C: Changes Affecting Previous Versions
C.1 Changes Affecting Version 8.1 ...................................................................................... C-2
C.2 Changes Affecting Version 8.0 ...................................................................................... C-2
C.3 Changes Affecting Version 7.2 ...................................................................................... C-3
C.4 Changes Affecting Version 7.1 ...................................................................................... C-4
C.5 Changes Affecting Version 7.0 ...................................................................................... C-5
C.6 Changes Affecting Version 6.2 ...................................................................................... C-5
C.7 Changes Affecting Version 6.1 ...................................................................................... C-8
C.8 Changes Affecting Version 6.0 ...................................................................................... C-9
C.9 Changes Affecting Version 5.2 .................................................................................... C-10
C.10 Changes Affecting Version 5.1 .................................................................................. C-14
C.11 Changes Affecting Version 5.0 .................................................................................. C-17
C.12 Changes Affecting Version 4.3 .................................................................................. C-19
C.13 Changes Affecting Version 4.2 .................................................................................. C-21
C.14 Changes Affecting Version 4.1 .................................................................................. C-23
C.15 Changes Affecting Version 4.0 .................................................................................. C-23
C.16 Changes Affecting Version 3.2 .................................................................................. C-24
C.17 Changes Affecting Version 3.1 .................................................................................. C-27
C.18 Changes Affecting Version 2.4 .................................................................................. C-28
C.19 Changes Affecting Version 2.3 .................................................................................. C-29
C.20 Changes Affecting Version 2.1 .................................................................................. C-30
C.21 Changes Affecting Version 2.0 .................................................................................. C-33
C.22 Changes Affecting Version 1.5 .................................................................................. C-33
C.23 Changes Affecting Version 1.4 .................................................................................. C-36
C.24 Changes Affecting Version 1.3 .................................................................................. C-39



Contents-ii
Appendix  D: Compiler Error Messages
D.1 Introduction ....................................................................................................................D-2
D.2 List of Errors ..................................................................................................................D-2

Appendix  E: File Status Codes
E.1 Introduction .................................................................................................................... E-2
E.2 Table of Codes................................................................................................................ E-2
E.3 Vision Secondary Error Codes for Error 98s.................................................................. E-8
E.4 Transaction Error Codes ............................................................................................... E-10

E.4.1 Primary Error Codes........................................................................................... E-11
E.4.2 Secondary Error Codes for Error 01................................................................... E-12

E.5 IBM DOS/VS Error Codes ........................................................................................... E-13

Appendix  F: Intrinsic Functions
F.1 Introduction......................................................................................................................F-2
F.2 Function Definitions and Returned Values......................................................................F-3

F.2.1 Function Definitions ..............................................................................................F-4
F.3 ABSOLUTE-VALUE (ABS) Function ...........................................................................F-7
F.4 ACOS Function................................................................................................................F-8
F.5 ANNUITY Function ........................................................................................................F-9
F.6 ASIN Function ...............................................................................................................F-10
F.7 ATAN Function .............................................................................................................F-10
F.8 CHAR Function .............................................................................................................F-11
F.9 COS Function ................................................................................................................F-11
F.10 CURRENT-DATE Function........................................................................................F-12
F.11 DATE-OF-INTEGER Function...................................................................................F-13
F.12 DAY-OF-INTEGER Function.....................................................................................F-14
F.13 FACTORIAL Function................................................................................................F-15
F.14 INTEGER Function .....................................................................................................F-15
F.15 INTEGER-OF-DATE Function...................................................................................F-16
F.16 INTEGER-OF-DAY Function.....................................................................................F-16
F.17 INTEGER-PART Function..........................................................................................F-17
F.18 LENGTH Function ......................................................................................................F-18
F.19 LOG Function ..............................................................................................................F-19
F.20 LOG10 Function ..........................................................................................................F-19
F.21 LOWER-CASE Function ............................................................................................F-20
F.22 MAX Function.............................................................................................................F-21
F.23 MEAN Function ..........................................................................................................F-22



 Contents-iii
F.24 MEDIAN Function ......................................................................................................F-22
F.25 MIDRANGE Function ................................................................................................F-23
F.26 MIN Function ..............................................................................................................F-24
F.27 MOD Function.............................................................................................................F-24
F.28 NUMVAL Function ....................................................................................................F-25
F.29 NUMVAL-C Function ................................................................................................F-26
F.30 ORD Function..............................................................................................................F-28
F.31 ORD-MAX Function ...................................................................................................F-28
F.32 ORD-MIN Function ....................................................................................................F-29
F.33 PRESENT-VALUE Function......................................................................................F-30
F.34 RANDOM Function ....................................................................................................F-31
F.35 RANGE Function ........................................................................................................F-32
F.36 REM Function .............................................................................................................F-32
F.37 REVERSE Function ....................................................................................................F-33
F.38 SIN Function................................................................................................................F-33
F.39 SQRT Function............................................................................................................F-34
F.40 STANDARD-DEVIATION Function .........................................................................F-34
F.41 SUM Function .............................................................................................................F-35
F.42 TAN Function..............................................................................................................F-36
F.43 UPPER-CASE Function ..............................................................................................F-37
F.44 VARIANCE Function .................................................................................................F-37
F.45 WHEN-COMPILED Function ....................................................................................F-38

Appendix  G: Reserved for Future Use

Appendix  H: Configuration Variables
H.1 Introduction.................................................................................................................... H-2

H.1.1 Variable Syntax.................................................................................................... H-2
H.1.2 Variable Usage..................................................................................................... H-3
H.1.3 Nested configuration files.................................................................................... H-4

H.2 Configuration variables.................................................................................................. H-5
3D_LINES ..................................................................................................................... H-5
4GL_COLUMN_CASE ................................................................................................ H-6
7_BIT............................................................................................................................. H-7
A_CHECKDIV.............................................................................................................. H-7
A_DEBUG..................................................................................................................... H-8
A_DISPLAY.................................................................................................................. H-8
A_EXTFH_FUNC......................................................................................................... H-8
A_EXTFH_LIB ............................................................................................................. H-9



Contents-iv
A_EXTFH_SIMPLE_OPEN_OUTPUT .....................................................................H-10
A_EXTFH_VARIABLE_IDX, A_EXTFH_VARIABLE_REL, 
A_EXTFH_VARIABLE_SEQ....................................................................................H-10
A_JAVA_CHARSET ..................................................................................................H-11
A_JAVA_GC_COUNT ...............................................................................................H-11
A_JAVA_TRACE_FILENAME .................................................................................H-12
A_JAVA_TRACE_VALUE........................................................................................H-12
A_LICENSE_RETRIES..............................................................................................H-13
A_OPERATING_SYSTEM ........................................................................................H-14
A_REMOVE_EMPTY_ERROR_FILE ......................................................................H-14
A_RETRY_DELAY....................................................................................................H-14
A_SEQ_DEFAULT_BLOCK_SIZE...........................................................................H-15
A_SYSLOG_HOSTNAME.........................................................................................H-15
A_SYSLOG_ON_RUNTIME_ERROR......................................................................H-15
ACCEPT_AUTO .........................................................................................................H-16
ACCEPT_TIMEOUT ..................................................................................................H-16
ACTIVE_BORDER_COLOR .....................................................................................H-16
ACU_DUMP, ACU_DUMP_FILE, ACU_DUMP_WIDTH, 
ACU_DUMP_TABLE_LIMIT ...................................................................................H-17
ACU_USER_DIR........................................................................................................H-18
ACUCOBOL ...............................................................................................................H-19
AGS_MAX_SEND_SIZE ...........................................................................................H-19
AGS_RECEIVE_BUFFER_SIZE ...............................................................................H-19
AGS_SEND_BUFFER_SIZE .....................................................................................H-20
AGS_SOCKET_COMPRESS .....................................................................................H-20
AGS_SOCKET_ENCRYPT........................................................................................H-21
AGS_TCP_NODELAY...............................................................................................H-21
alfred Configuration variables .....................................................................................H-22
ALLOW_FS_OVERRIDE ..........................................................................................H-22
ANSI_OUTPUT_IN_DEBUG ....................................................................................H-22
APPLY_CODE_PATH ...............................................................................................H-23
APPLY_FILE_PATH..................................................................................................H-23
AUTO_DECIMAL ......................................................................................................H-24
AUTO_PROMPT ........................................................................................................H-24
AXML_CREATE_SCHEMA .....................................................................................H-24
AXML_CREATE_STYLE..........................................................................................H-25
AXML_ENCODING...................................................................................................H-25
AXML_EXACT_TABLE_MATCH ...........................................................................H-26
AXML_IGNORE_EMPTY_DATA............................................................................H-26
AXML_SCHEMA_DOC.............................................................................................H-27



 Contents-v
AXML_SCHEMA_NAME ......................................................................................... H-28
AXML_SCHEMA_NAMESPACE_DATA................................................................ H-28
AXML_STYLESHEET_HREF and AXML_STYLESHEET_TYPE........................ H-29
BACKGROUND_INTENSITY .................................................................................. H-29
BELL ........................................................................................................................... H-30
BOXED_FLOATING_WINDOWS............................................................................ H-30
BTRV_MASS_UPDATE............................................................................................ H-30
BTRV_NOWRITE_WAIT.......................................................................................... H-31
BTRV_USE_REPEAT_DUPS.................................................................................... H-31
BUFFERED_SCREEN ............................................................................................... H-31
CALL_HASH_SIZE.................................................................................................... H-32
CANCEL_ALL_DLLS................................................................................................ H-32
CARRIAGE_CONTROL_FILTER ............................................................................ H-32
CBLHELP ................................................................................................................... H-33
CGI_AUTO_HEADER ............................................................................................... H-34
CGI_CLEAR_MISSING_VALUES ........................................................................... H-34
CGI_CONTENT_TYPE.............................................................................................. H-34
CGI_NO_CACHE ....................................................................................................... H-36
CGI_STRIP_CR .......................................................................................................... H-36
CHAIN_MENUS......................................................................................................... H-37
CHECK_USING.......................................................................................................... H-37
CISAM_COMPRESS_KEYS ..................................................................................... H-38
CLOSE_ON_EXIT...................................................................................................... H-38
COBLPFORM ............................................................................................................. H-39
CODE_CASE .............................................................................................................. H-39
CODE_MAPPING ...................................................................................................... H-40
CODE_PREFIX........................................................................................................... H-42
CODE_SUFFIX........................................................................................................... H-42
CODE_SYSTEM......................................................................................................... H-43
COLOR_MAP ............................................................................................................. H-44
COLOR_MODEL........................................................................................................ H-44
COLOR_TABLE......................................................................................................... H-46
COLOR_TRANS......................................................................................................... H-48
COLUMN_SEPARATION ......................................................................................... H-49
COMPRESS_FACTOR............................................................................................... H-49
COMPRESS_FILES.................................................................................................... H-49
CONTROL_CREATION_EVENTS........................................................................... H-50
CURRENCY ............................................................................................................... H-50
CURSOR_MODE ....................................................................................................... H-50
CURSOR_TYPE ......................................................................................................... H-51



Contents-vi
DEBUG_NEWCOPY..................................................................................................H-51
DECIMAL_POINT .....................................................................................................H-52
DEFAULT_FILESYSTEM .........................................................................................H-52
DEFAULT_FONT.......................................................................................................H-53
DEFAULT_HOST.......................................................................................................H-54
DEFAULT_MAP_FILE ..............................................................................................H-55
DEFAULT_PROGRAM .............................................................................................H-55
DEFAULT_TIMEOUT ...............................................................................................H-55
DISABLED_CONTROL_COLOR .............................................................................H-56
DISPLAY_SWITCH_PERIOD...................................................................................H-56
DLL_CONVENTION .................................................................................................H-57
DLL_SUB_INTERFACE............................................................................................H-57
DLL_USE_SYSTEM_DIR .........................................................................................H-58
DOS_BOX_CHARS....................................................................................................H-58
DOS_SYS_EMULATE ...............................................................................................H-59
DOUBLE_CLICK_TIME ...........................................................................................H-59
DUPLICATES_LOG...................................................................................................H-60
DYNAMIC_FUNCTION_CALLS .............................................................................H-61
DYNAMIC_MEMORY_LIMIT .................................................................................H-62
EDIT_MODE...............................................................................................................H-62
EF_UPPER_WIDE......................................................................................................H-63
EF_WIDE_SIZE..........................................................................................................H-63
EOF_ABORTS ............................................................................................................H-63
EOL_CHAR.................................................................................................................H-64
ERRORS_OK ..............................................................................................................H-64
EXIT_CURSOR ..........................................................................................................H-65
EXPAND_ENV_VARS ..............................................................................................H-65
EXTEND_CREATES..................................................................................................H-66
EXTFH_KEEP_TRAILING_SPACES .......................................................................H-66
EXTERNAL_SIZE......................................................................................................H-66
EXTRA_KEYS_OK....................................................................................................H-66
F10_IS_MENU............................................................................................................H-67
FAST_ESCAPE...........................................................................................................H-67
FIELDS_UNBOXED ..................................................................................................H-68
FILE_ALIAS_PREFIX ..............................................................................................H-68
FILE_CASE.................................................................................................................H-70
FILE_CONDITION.....................................................................................................H-71
FILE_IO_PEEKS_MESSAGES..................................................................................H-71
FILE_IO_PROCESSES_MESSAGES........................................................................H-71
FILE_PREFIX .............................................................................................................H-72



 Contents-vii
FILE_STATUS_CODES............................................................................................. H-73
FILE_SUFFIX ............................................................................................................. H-73
FILE_TRACE.............................................................................................................. H-73
FILE_TRACE_FLUSH ............................................................................................... H-74
FILE_TRACE_TIMESTAMP..................................................................................... H-74
filename .................................................................................................................. H-74
filename_DATA_FMT................................................................................................ H-75
filename_FILESYSTEM ............................................................................................. H-77
filename_HOST........................................................................................................... H-77
 filename_INDEX_FMT.............................................................................................. H-78
filename_LOG............................................................................................................. H-80
FILENAME_SPACES ................................................................................................ H-80
filename_VERSION.................................................................................................... H-81
filesystem_DETACH................................................................................................... H-82
FLUSH_ALL............................................................................................................... H-83
FLUSH_COUNT......................................................................................................... H-85
FLUSH_ON_ACCEPT ............................................................................................... H-85
FLUSH_ON_CLOSE .................................................................................................. H-86
FLUSH_ON_COMMIT .............................................................................................. H-86
FLUSH_ON_OPEN .................................................................................................... H-86
FONT........................................................................................................................... H-86
FONT_AUTO_ADJUST............................................................................................. H-87
FONT_SIZE_ADJUST................................................................................................ H-88
FONT_WIDE_SIZE_ADJUST ................................................................................... H-89
FOREGROUND_INTENSITY ................................................................................... H-90
FREEZE_AX_EVENTS.............................................................................................. H-90
FULL_BOXES ............................................................................................................ H-91
GRID_BUTTONS_CAUSE_GOTO........................................................................... H-91
GRID_NO_CELL_DRAG .......................................................................................... H-92
GUI_CHARS............................................................................................................... H-92
HELP_PROGRAM ..................................................................................................... H-93
HINTS_OFF ................................................................................................................ H-93
HINTS_ON.................................................................................................................. H-94
HOT_KEY................................................................................................................... H-94
HP_TERMINAL_ATTRIBUTE_HANDLING .......................................................... H-96
HTML_TEMPLATE_PREFIX ................................................................................... H-96
ICOBOL_FILE_SEMANTICS ................................................................................... H-97
ICON............................................................................................................................ H-97
IMPORT_USES_CELL_SIZE.................................................................................... H-98
INACTIVE_BORDER_COLOR................................................................................. H-99



INCLUDE_PGM_INFO..............................................................................................H-99
INPUT_STATUS_DEFAULT ....................................................................................H-99
INSERT_MODE........................................................................................................H-100
INTENSITY_FLAGS................................................................................................H-100
IO_CREATES ...........................................................................................................H-102
IO_FLUSH_COUNT.................................................................................................H-102
IO_READ_LOCK_TEST..........................................................................................H-102
IO_SWITCH_PERIOD .............................................................................................H-102
ISOLATE_FILE_CREATES.....................................................................................H-103
JAVA_LIBRARY_NAME........................................................................................H-103
JAVA_OPTIONS ......................................................................................................H-104
JUSTIFY_NUM_FIELDS .........................................................................................H-104
KBD ...........................................................................................................................H-104
KEY_MAP.................................................................................................................H-105
KEYBOARD .............................................................................................................H-105
KEYSTROKE............................................................................................................H-105
LC_ALL.....................................................................................................................H-105
LICENSE_ERROR_MESSAGE_BOX.....................................................................H-109
LISTS_UNBOXED ...................................................................................................H-110
LITERAL_ENTRY ...................................................................................................H-110
LOCK_DIR................................................................................................................H-110
LOCK_OUTPUT.......................................................................................................H-110
LOCK_SORT ............................................................................................................H-111
LOCKING_RETRIES ...............................................................................................H-111
LOCKS_PER_FILE...................................................................................................H-111
LOG_BUFFER_SIZE................................................................................................H-111
LOG_DEVICE...........................................................................................................H-112
LOG_DIR ..................................................................................................................H-112
LOG_ENCRYPTION................................................................................................H-112
LOG_FILE.................................................................................................................H-112
LOGGING .................................................................................................................H-113
LOGICAL_CANCELS..............................................................................................H-113
MAKE_ZERO ...........................................................................................................H-114
MASS_UPDATE.......................................................................................................H-114
MAX_ERROR_AND_EXIT_PROCS ......................................................................H-115
MAX_ERROR_LINES .............................................................................................H-115
MAX_FILES .............................................................................................................H-115
MAX_LOCKS ...........................................................................................................H-116
MENU_ITEM............................................................................................................H-116
MESSAGE_BOX_COLOR.......................................................................................H-117



 Contents-ix
MESSAGE_QUEUE_SIZE....................................................................................... H-117
MIN_REC_SIZE ....................................................................................................... H-117
MONOCHROME...................................................................................................... H-117
MOUSE ..................................................................................................................... H-118
MOUSE_FLAGS....................................................................................................... H-121
NO_CONSOLE ......................................................................................................... H-122
NO_LOG_FILE_OK ................................................................................................. H-122
NO_TRANSACTIONS ............................................................................................. H-122
NT_OPP_LOCK_STATUS....................................................................................... H-123
NESTED_AX_EVENTS........................................................................................... H-123
NO_BARE_KEY_LETTERS.................................................................................... H-124
NUMERIC_VALIDATION...................................................................................... H-125
OLD_ARIAL_DIMENSIONS .................................................................................. H-125
OPEN_FILES_ONCE ............................................................................................... H-125
OPTIMIZE_CONTROL_RESIZE ............................................................................ H-126
OPTIMIZE_INDIVIDUAL_LINKAGE ................................................................... H-126
PAGE_EJECT_ON_CLOSE..................................................................................... H-126
PAGED_LIST_SCROLL_BAR................................................................................ H-127
PARAGRAPH_TRACE............................................................................................ H-127
PERFORM_STACK ................................................................................................. H-127
PRELOAD_JAVA_LIBRARY ................................................................................. H-128
PROFILE_TYPE ....................................................................................................... H-128
PROMPTING ............................................................................................................ H-128
QUEUE_READERS.................................................................................................. H-129
QUIT_MODE............................................................................................................ H-129
QUIT_ON_FATAL_ERROR.................................................................................... H-131
QUIT_TO_EXIT ....................................................................................................... H-131
RECURSION............................................................................................................. H-131
RECURSION_DATA_GLOBAL ............................................................................. H-133
REL_DELETED_VALUE ........................................................................................ H-133
REL_LOCK_READ_THROUGH ............................................................................ H-133
RENEW_TIMEOUT ................................................................................................. H-134
RESIZE_FRAMES.................................................................................................... H-134
RESIZE_FREELY..................................................................................................... H-134
RESTRICTED_VIDEO_MODE............................................................................... H-135
RMS_NATIVE_KEYS.............................................................................................. H-135
SCREEN.................................................................................................................... H-136
SCREEN_COL_PLUS_BASE.................................................................................. H-136
SCREEN_TRACE..................................................................................................... H-136
SCRIPT_STATUS..................................................................................................... H-137



Contents-x
SCRN .........................................................................................................................H-137
SCROLL ....................................................................................................................H-137
server_MAP_FILE ....................................................................................................H-138
server_PASSWORD .................................................................................................H-139
server_port_PASSWORD.........................................................................................H-139
SHARED_CODE.......................................................................................................H-140
SHARED_LIBRARY_EXTENSION .......................................................................H-141
SHARED_LIBRARY_LIST .....................................................................................H-141
SHARED_LIBRARY_PREFIX ................................................................................H-143
SHUTDOWN_MESSAGE_BOX .............................................................................H-143
SORT_DIR ................................................................................................................H-143
SORT_FILES.............................................................................................................H-144
SORT_MEMORY .....................................................................................................H-144
SPACES_ZERO ........................................................................................................H-145
SPOOL_FILE ............................................................................................................H-145
STD_FIXED_FONT..................................................................................................H-146
STOP_RUN_ROLLBACK........................................................................................H-146
STRIP_TRAILING_SPACES ...................................................................................H-147
SWITCH_PERIOD....................................................................................................H-147
SYSINTR_NAME .....................................................................................................H-147
TC_AUTO_UPDATE_FAILED_MESSAGE...........................................................H-148
TC_AUTO_UPDATE_FAILED_TITLE ..................................................................H-148
TC_AUTO_UPDATE_NOTIFY_FAIL....................................................................H-148
TC_AUTO_UPDATE_QUERY................................................................................H-149
TC_AUTO_UPDATE_QUERY_MESSAGE ...........................................................H-149
TC_AUTO_UPDATE_QUERY_TITLE...................................................................H-150
TC_AX_EVENT_LIST .............................................................................................H-150
TC_CHECK_ALIVE_INTERVAL...........................................................................H-151
TC_CHECK_INSTALLER_TIMESTAMP..............................................................H-151
TC_CONTINUITY_WINDOW ................................................................................H-151
TC_CONTROL_SYNC_LEVEL ..............................................................................H-152
TC_DELAY_ACTIVATE.........................................................................................H-153
TC_DELAY_PRE_EVENT_OPS .............................................................................H-154
TC_DISABLE_AUTO_UPDATE.............................................................................H-154
TC_DISABLE_SERVER_LOG................................................................................H-154
TC_DOWNLOAD_CANCEL_MESSAGE ..............................................................H-155
TC_DOWNLOAD_DESCRIPTION.........................................................................H-155
TC_DOWNLOAD_DIALOG ...................................................................................H-156
TC_DOWNLOAD_DIALOG_TITLE ......................................................................H-156
TC_EVENT_LIST.....................................................................................................H-156



 Contents-xi
TC_EXCLUDE_EVENT_LIST................................................................................ H-157
TC_INSTALLER_ARGS.......................................................................................... H-157
TC_INSTALLER_CLIENT_FILE............................................................................ H-157
TC_INSTALLER_RUN_ASYNC ............................................................................ H-158
TC_INSTALLER_SERVER_FILE........................................................................... H-158
TC_INSTALLER_TARGET_DIR............................................................................ H-159
TC_INSTALLER_UI_LEVEL.................................................................................. H-159
TC_MAP_FILE ......................................................................................................... H-160
TC_NESTED_AX_EVENTS.................................................................................... H-160
TC_QUIT_MODE..................................................................................................... H-160
TC_REQUIRES_BUILD_NUMBER ....................................................................... H-161
TC_RESTRICT_AX_EVENTS ................................................................................ H-161
TC_SERVER_LOG_FILE ........................................................................................ H-162
TC_SERVER_TIMEOUT......................................................................................... H-162
TC_TV_SELCHANGING ........................................................................................ H-163
TEMP_DIR................................................................................................................ H-164
TEMPORARY_CONTROLS ................................................................................... H-164
TEXT ......................................................................................................................... H-164
TRACE_STYLE........................................................................................................ H-167
TRANSLATE_TO_ANSI ......................................................................................... H-167
TREE_ROOT_SPACE.............................................................................................. H-168
TREE_TAB_SIZE..................................................................................................... H-169
TRX_HOLDS_LOCKS............................................................................................. H-169
UPPER_LOWER_MAP............................................................................................ H-170
USE_CICS................................................................................................................. H-171
USE_EXECUTABLE_MEMORY............................................................................ H-171
USE_EXTSM ............................................................................................................ H-172
USE_LARGE_FILE_API.......................................................................................... H-172
USE_LOCAL_SERVER ........................................................................................... H-172
USE_MPE_REDIRECTION..................................................................................... H-172
USE_MQSERIES...................................................................................................... H-173
USE_SYSTEM_QSORT........................................................................................... H-173
USE_WINSYSFILES................................................................................................ H-173
V_BASENAME_TRANSLATION .......................................................................... H-174
 V_BUFFERS ............................................................................................................ H-175
V_BUFFER_DATA .................................................................................................. H-175
V_BULK_MEMORY................................................................................................ H-175
V_FORCE_OPEN ..................................................................................................... H-176
V_INDEX_BLOCK_PERCENT............................................................................... H-176
V_INTERNAL_LOCKS ........................................................................................... H-177



Contents-xii
V_LOCK_METHOD.................................................................................................H-177
V_MARK_READ_CORRUPT .................................................................................H-180
V_NO_ASYNC_CACHE_DATA.............................................................................H-180
V_OPEN_STRICT ....................................................................................................H-181
V_READ_AHEAD....................................................................................................H-181
V_SEG_SIZE.............................................................................................................H-181
V_STRIP_DOT_EXTENSION .................................................................................H-182
V_VERSION .............................................................................................................H-182
V23_GRAPHICS_CHARACTERS ..........................................................................H-183
V30_MEASUREMENTS..........................................................................................H-183
V31_FLOATING_POINT.........................................................................................H-183
V42_FLOATING_POINT.........................................................................................H-184
V43_PRINTER_CELLS............................................................................................H-184
V52_BITMAP_BUTTONS .......................................................................................H-184
V52_BITMAPS .........................................................................................................H-185
V52_GRID_GOTO....................................................................................................H-185
V60_LIST_VALUE...................................................................................................H-185
V62_MAX_WINDOW..............................................................................................H-186
V71_ALIGNED_ENTRY_FIELD ............................................................................H-187
V71_FONT_WIDTHS...............................................................................................H-187
WAIT_FOR_ALL_PIPES .........................................................................................H-188
WAIT_FOR_FILE_ACCESS....................................................................................H-188
WAIT_FOR_LOCKS ................................................................................................H-189
WARNINGS..............................................................................................................H-190
WARNING_ON_RECURSIVE_ACCEPTS.............................................................H-191
WHITE_FILL ............................................................................................................H-191
WIN_ERROR_HANDLING .....................................................................................H-192
WIN_F4_DROPS_COMBOBOX .............................................................................H-192
WIN_SPOOLER_PORT ...........................................................................................H-193
WIN3_CLIP_CONTROLS........................................................................................H-193
WIN3_EF_PADDED.................................................................................................H-194
WIN3_GRID..............................................................................................................H-194
WIN32_3D.................................................................................................................H-195
WIN32_CTL_INPUT_STATUS ...............................................................................H-196
WIN32_NATIVECTLS.............................................................................................H-196
WINDOW_INTENSITY ...........................................................................................H-197
WINDOW_TITLE.....................................................................................................H-198
WINPRINT_NAMES_ONLY...................................................................................H-198
WRAP........................................................................................................................H-200
XFD_DIRECTORY...................................................................................................H-200



 Contents-xiii
XFD_PREFIX ........................................................................................................... H-201
XTERM_PROGRAM ............................................................................................... H-201

Appendix  I: ACUCOBOL-GT Library Routines
I.1 General Syntax and Library List .......................................................................................I-2

ASCII2HEX.....................................................................................................................I-2
ASCII2OCTAL................................................................................................................I-3
CBL_AND.......................................................................................................................I-3
CBL_CLEAR_SCR.........................................................................................................I-4
CBL_CLOSE_FILE ........................................................................................................I-5
CBL_COPY_FILE ..........................................................................................................I-6
CBL_CREATE_DIR .......................................................................................................I-7
CBL_CREATE_FILE .....................................................................................................I-8
CBL_DELETE_DIR......................................................................................................I-10
CBL_DELETE_FILE....................................................................................................I-10
CBL_EQ ........................................................................................................................I-11
CBL_ERROR_PROC....................................................................................................I-12
CBL_EXIT_PROC........................................................................................................I-15
CBL_FLUSH_FILE ......................................................................................................I-17
CBL_GET_CSR_POS...................................................................................................I-18
CBL_GET_EXIT_INFO ...............................................................................................I-19
CBL_GET_SCR_SIZE..................................................................................................I-21
CBL_NOT .....................................................................................................................I-22
CBL_OPEN_FILE.........................................................................................................I-23
CBL_OR........................................................................................................................I-24
CBL_READ_FILE ........................................................................................................I-25
CBL_READ_SCR_ATTRS ..........................................................................................I-27
CBL_READ_SCR_CHARS..........................................................................................I-28
CBL_READ_SCR_CHATTRS.....................................................................................I-30
CBL_SET_CSR_POS ...................................................................................................I-31
CBL_SUBSYSTEM......................................................................................................I-32
CBL_SWAP_SCR_CHATTRS.....................................................................................I-34
CBL_WRITE_FILE ......................................................................................................I-35
CBL_WRITE_SCR_ATTRS.........................................................................................I-37
CBL_WRITE_SCR_CHARS........................................................................................I-38
CBL_WRITE_SCR_CHARS_ATTR ...........................................................................I-39
CBL_WRITE_SCR_CHATTRS ...................................................................................I-41
CBL_WRITE_SCR_N_ATTR......................................................................................I-42
CBL_WRITE_SCR_N_CHAR .....................................................................................I-43



Contents-xiv
CBL_WRITE_SCR_N_CHATTR................................................................................ I-44
CBL_WRITE_SCR_TTY............................................................................................. I-46
CBL_XOR .................................................................................................................... I-47
C$ASYNCPOLL .......................................................................................................... I-48
C$ASYNCRUN............................................................................................................ I-49
C$CALLEDBY ............................................................................................................ I-49
C$CALLERR................................................................................................................ I-50
C$CHAIN ..................................................................................................................... I-51
C$CHDIR ..................................................................................................................... I-53
C$CODESET................................................................................................................ I-55
C$CONFIG................................................................................................................... I-56
C$COPY ....................................................................................................................... I-57
C$DELETE................................................................................................................... I-59
C$DISCONNECT ........................................................................................................ I-60
C$EXCEPINFO............................................................................................................ I-61
C$EXITINFO ............................................................................................................... I-68
C$FILEINFO ................................................................................................................ I-69
C$FILESYS .................................................................................................................. I-70
C$FULLNAME ............................................................................................................ I-71
C$GETCGI ................................................................................................................... I-73
C$GETERRORFILE .................................................................................................... I-75
C$GETEVENTDATA.................................................................................................. I-75
C$GETEVENTPARAM............................................................................................... I-77
C$GETLASTFILEOP .................................................................................................. I-79
C$GETNETEVENTDATA .......................................................................................... I-80
C$GETPID.................................................................................................................... I-82
C$GETVARIANT ........................................................................................................ I-82
C$JAVA........................................................................................................................ I-84
C$JUSTIFY .................................................................................................................. I-94
C$KEYMAP................................................................................................................. I-95
C$KEYPROGRESS ..................................................................................................... I-96
C$LIST-DIRECTORY ................................................................................................. I-97
C$LOCALPRINT....................................................................................................... I-101
C$LOCKPID .............................................................................................................. I-103
C$MAKEDIR ............................................................................................................. I-104
C$MEMCPY (Dynamic Memory Routine)................................................................ I-105
C$MYFILE................................................................................................................. I-106
C$NARG .................................................................................................................... I-107
C$OPENSAVEBOX .................................................................................................. I-107
C$PARAMSIZE ......................................................................................................... I-116



 Contents-xv
C$PARSEXFD ............................................................................................................I-118
C$RECOVER..............................................................................................................I-131
C$REDIRECT .............................................................................................................I-133
C$REGEXP .................................................................................................................I-135
C$RERR ......................................................................................................................I-142
C$RERRNAME ..........................................................................................................I-144
C$RESOURCE............................................................................................................I-144
C$RUN ........................................................................................................................I-147
C$SETERRORFILE....................................................................................................I-147
C$SETEVENTDATA .................................................................................................I-149
C$SETEVENTPARAM ..............................................................................................I-150
 C$SETVARIANT.......................................................................................................I-152
C$SLEEP.....................................................................................................................I-154
C$SOCKET .................................................................................................................I-155
C$SYSLOG .................................................................................................................I-164
C$SYSTEM.................................................................................................................I-166
C$TOUPPER and C$TOLOWER...............................................................................I-171
C$XML........................................................................................................................I-172
DISPLAY_REG_* ......................................................................................................I-191
Error and Exit Procedures............................................................................................I-191
HEX2ASCII.................................................................................................................I-192
I$IO..............................................................................................................................I-193
LIB$GET_SYMBOL ..................................................................................................I-212
LIB$SET_SYMBOL ...................................................................................................I-212
Routines to Handle Dynamic Memory ........................................................................I-213
M$ALLOC (Dynamic Memory Routine)....................................................................I-214
M$COPY (Dynamic Memory Routine) ......................................................................I-215
M$FILL (Dynamic Memory Routine).........................................................................I-216
M$FREE (Dynamic Memory Routine) .......................................................................I-217
M$GET (Dynamic Memory Routine) .........................................................................I-217
M$PUT (Dynamic Memory Routine) .........................................................................I-218
OCTAL2ASCII............................................................................................................I-219
Routines to Handle the Windows Registry..................................................................I-220
REG_CLOSE_KEY, DISPLAY_REG_CLOSE_KEY...............................................I-222
REG_CREATE_KEY, DISPLAY_REG_CREATE_KEY.........................................I-223
REG_CREATE_KEY_EX, DISPLAY_REG_CREATE_KEY_EX ..........................I-225
REG_DELETE_KEY, DISPLAY_REG_DELETE_KEY..........................................I-228
REG_DELETE_VALUE, DISPLAY_REG_DELETE_VALUE ...............................I-229
REG_ENUM_KEY, DISPLAY_REG_ENUM_KEY ................................................I-231
REG_ENUM_VALUE, DISPLAY_REG_ENUM_VALUE......................................I-232



Contents-xvi
REG_OPEN_KEY, DISPLAY_REG_OPEN_KEY .................................................. I-236
REG_OPEN_KEY_EX, DISPLAY_REG_OPEN_KEY_EX.................................... I-237
REG_QUERY_VALUE, DISPLAY_REG_QUERY_VALUE................................. I-239
REG_QUERY_VALUE_EX, DISPLAY_REG_QUERY_VALUE_EX .................. I-241
REG_SET_VALUE, DISPLAY_REG_SET_VALUE .............................................. I-244
REG_SET_VALUE_EX, DISPLAY_REG_SET_VALUE_EX................................ I-245
RENAME.................................................................................................................... I-248
R$IO............................................................................................................................ I-249
SYSTEM..................................................................................................................... I-258
S$IO ............................................................................................................................ I-260
W$BITMAP................................................................................................................ I-266
W$BROWSERINFO .................................................................................................. I-281
W$FLUSH .................................................................................................................. I-283
W$FONT .................................................................................................................... I-285
W$FORGET ............................................................................................................... I-296
W$GETC .................................................................................................................... I-297
W$GETURL............................................................................................................... I-298
$WINHELP ................................................................................................................ I-300
W$KEYBUF............................................................................................................... I-305
W$MENU................................................................................................................... I-309
W$MOUSE................................................................................................................. I-320

Mouse Handling: Sample Code ........................................................................... I-326
W$PALETTE ............................................................................................................. I-328
W$PROGRESSDIALOG ........................................................................................... I-335
W$STATUS................................................................................................................ I-341
W$TEXTSIZE ............................................................................................................ I-342
WIN$PLAYSOUND .................................................................................................. I-344
Printing with theWindows Print Spooler (-Q and -P)................................................. I-347

-Q <printername> ............................................................................................... I-350
-P SPOOLER....................................................................................................... I-356
Direct Control ...................................................................................................... I-356
Printing Multiple Jobs Simultaneously................................................................ I-357

WIN$PRINTER.......................................................................................................... I-359
WIN$PRINTER op-codes ................................................................................... I-365
Printer Information op-codes............................................................................... I-365
WINPRINT-GET-SETTINGS-SIZE................................................................... I-366
WINPRINT-SETUP ............................................................................................ I-366
WINPRINT-SETUP-USE-MARGINS................................................................ I-368
WINPRINT-SUPPORTED.................................................................................. I-368
WINPRINT-GET-SPOOL-ERR.......................................................................... I-369
WINPRINT-SET-JOB......................................................................................... I-370



 Contents-xvii
WINPRINT-UPDATE-PRINTERS .....................................................................I-372
WINPRINT-DATA op-codes...............................................................................I-373
WINPRINT-GET-CAPABILITIES .....................................................................I-373
WINPRINT-GET-MARGINS..............................................................................I-374
WINPRINT-GET-PAGE-LAYOUT....................................................................I-375
WINPRINT-GRAPH-DRAW ..............................................................................I-376
WINPRINT-GRAPH-BRUSH.............................................................................I-382
WINPRINT-GRAPH-PEN...................................................................................I-384
WINPRINT-PRINT-BITMAP .............................................................................I-387
WINPRINT-SET-CURSOR.................................................................................I-392
WINPRINT-SET-TEXT-COLOR........................................................................I-396
WINPRINT-SET-FONT ......................................................................................I-398
WINPRINT-SET-LINES-PER-PAGE.................................................................I-399
WINPRINT-SET-MARGINS ..............................................................................I-401
WINPRINT-SET-STD-FONT .............................................................................I-403
WINPRINT-SET-BKMODE ...............................................................................I-405
WINPRINT-SELECTION op-codes ....................................................................I-406
WINPRINT-GET-CURRENT-INFO...................................................................I-406
WINPRINT-GET-CURRENT-INFO-EX ............................................................I-408
WINPRINT-GET-NO-PRINTERS ......................................................................I-410
WINPRINT-GET-PRINTER-INFO.....................................................................I-412
WINPRINT-GET-PRINTER-INFO-EX ..............................................................I-414
WINPRINT-GET-PRINTER-STATUS...............................................................I-416
WINPRINT-SET-PRINTER ................................................................................I-418
WINPRINT-SET-PRINTER-EX .........................................................................I-421
WINPRINT-SETUP-EX ......................................................................................I-423
WINPRINT-COLUMN op-codes ........................................................................I-425
WINPRINT-SET-DATA-COLUMNS.................................................................I-426
WINPRINT-CLEAR-DATA-COLUMNS...........................................................I-427
WINPRINT-SET-PAGE-COLUMN....................................................................I-428
WINPRINT-CLEAR-PAGE-COLUMNS ...........................................................I-440
WINPRINT-GET-PAGE-COLUMN...................................................................I-440
WINPRINT-COLUMN-ALIGN-VERT ..............................................................I-442
WINPRINT-JOB-STATUS op-codes ..................................................................I-443
WINPRINT-GET-JOB-STATUS.........................................................................I-443
WINPRINT-SET-JOB-STATUS .........................................................................I-446
WINPRINT-MEDIA op-codes.............................................................................I-448
WINPRINT-GET-PRINTER-MEDIA.................................................................I-448
USER-DATA op-codes ........................................................................................I-449
WINPRINT-GET-SETTINGS .............................................................................I-450
WINPRINT-SET-SETTINGS..............................................................................I-451

WIN$VERSION..........................................................................................................I-451





A
 Specifications
Key Topics

COBOL Modules.................................................................................... A-2
Limits and Ranges .................................................................................. A-2
Extensions ............................................................................................... A-4
Restrictions ..........................................................................................  A-10



A-2  Specifications
A.1 COBOL Modules

ACUCOBOL-GT is an ANSI-85 COBOL compiler and runtime system 
(ANSI X3.23-1985 and the ANSI X3.23-1989 supplement).  ANSI COBOL 
is divided into a series of required and optional modules, each of which has 
various levels of implementation.  ACUCOBOL-GT conforms to the 
following levels for each of the required modules (range of levels in 
parentheses):

ACUCOBOL-GT does not support the optional modules: Report Writer, 
Communication, or Debug.

The following sections summarize various extensions and limitations 
ACUCOBOL-GT has with respect to the standard.  

A.2  Limits and Ranges

ACUCOBOL-GT has the following limits:

Nucleus (1-2) Level 2

Sequential I-O (1-2) Level 2

Relative I-O (0-2) Level 2

Indexed I-O (0-2) Level 2

Inter-Program Communication (1-2) Level 2

Sort-Merge (0-1) Level 1

Source Text Manipulation (0-2) Level 2

Segmentation (0-2) Level 1

Maximum Program Size: 
(compilation unit)

16 MB code, 2 GB data

Maximum Program Size:
(run unit)

Limited only by machine memory

Maximum Record Size: 64 MB (67,108,864)

Number of Indexed Keys: Primary + 119 alternates



Limits and Ranges  A-3
Number of Segments per Key: 16

Maximum Indexed Key Size: 250 bytes

Maximum Sort Key Size: 32767 bytes

Maximum Number Sort Keys: 255

Maximum duplicate keys: No limit (Vision)

Maximum File Size: Host system dependent

Logical limit: 128 terabytes, if Vision 
Version 5 or 4 is used; for all other 
Vision versions, the logical limit is 
2048 MB

Maximum Data Item Size
-     Alphanumeric:

-     Numeric:

-     Edited

2 GB

31 digits (default is 18, but can be set to 
31 by using the “-Dd31” compiler 
option.  See Section 2.2.10 of the 
ACUCOBOL-GT User’s Guide for 
details). 

255 bytes

Maximum Table Indexes: 15

Maximum Open Files/Process: 32767

Maximum Literal Size: 32767 characters

Maximum Paragraph Size: 32767 bytes

Maximum Picture String: 100 Characters

SPECIAL-NAMES Switches: 26

Maximum number of OCCURS: 2147483647

Maximum recursive CALL depth: 32767

Maximum number of parameters in a 
CHAIN statement 

50

Maximum number in a “PERFORM 
number TIMES” statement

2,147,483,647



A-4  Specifications
A.3  Extensions

ACUCOBOL-GT contains many extensions to the ANSI standard.  These are 
summarized below:   

• Terminal-oriented source format

• Compile-time modification of source by Identification Area flags

• The Identification Division is optional

• IS RESIDENT PROGRAM clause

• An index item may subscript a table other than the one it is associated 
with.  Index data items may be used any place a numeric data item is 
allowed

• Apostrophes may be used to delimit nonnumeric literals.  Hexadecimal 
literals are allowed

• A procedure name may be the same as a data item name

• Initial paragraph name not required

• Paragraph names allowed in Area B

• Multiple-word SOURCE-COMPUTER and OBJECT-COMPUTER 
names

• Data Division FILE SECTION header is optional

Maximum number of Linkage Section 
level-01 data items per program

255

Maximum number of ENTRY points 
per program

65536

Maximum number of characters in an 
alphanumeric data item used in a 
DISPLAY statement 

2048



Extensions  A-5
• The word ALPHABET is optional when you are declaring an 
alphabet-name in the SPECIAL-NAMES paragraph

• The ASSIGN TO clause may have a data item specified for the external 
file name.  Also, the external file name is optional in the clause

• An optional device type may be specified in an ASSIGN clause

• WITH COMPRESSION, WITH ENCRYPTION added to ASSIGN 
clause

• LINE and BINARY options in ORGANIZATION clause

• COLLATING SEQUENCE clause

• COMPRESSION CONTROL clause

• LOCK MODE clause

• LENGTH OF clause for data literals

• RECORD-POSITION clause for data items

• RESERVE clause with the NO or ALTERNATE options

• Split key specification for indexed files

• FILE STATUS clause for sort files

• REDEFINES can reference an item that is itself a redefinition of an area

• Additional SPECIAL-NAMES clauses: CONSOLE IS CRT, CRT 
STATUS, CURSOR IS, EVENT STATUS, and NUMERIC SIGN 
SEPARATE

• SEGMENT-LIMIT clause (level 2 segmentation feature)

• VALUE OF FILE-ID clause

• USAGE COMP-1, COMP-2, COMP-3, COMP-4, COMP-5, COMP-6, 
COMP-N, COMP-X, FLOAT, DOUBLE, and HANDLE



A-6  Specifications
• USAGE types:

• ADDRESS OF phrase in arithmetic expressions

• Tables may contain up to 15 dimensions

• A PICTURE string may contain up to 100 characters

• Level 78 constant names

• WHEN SET TO FALSE phrase for level 88 condition-names.  A FALSE 
phrase added to the SET statement

• SCREEN SECTION

• SCREEN SECTION BEFORE, AFTER, and EXCEPTION embedded 
procedures

• SCREEN SECTION EVENT procedures

• IS SPECIAL-NAMES phrase in record description entry

• CHAINING phrase added to Procedure Division header

• Non-display data items may be specified in a NUMERIC class condition

• USE statements may reference sort files

• RETURN-CODE special register

• ACCEPT with screen control

• ACCEPT FROM SYSTEM-INFO, TERMINAL-INFO, INPUT 
STATUS, LINE NUMBER, COMMAND-LINE, ESCAPE KEY, 
CENTURY-DATE, CENTURY-DAY, STANDARD OBJECT, and 
WINDOW HANDLE

• ACCEPT FROM SCREEN

      SIGNED-SHORT     UNSIGNED-SHORT     

      SIGNED-INT UNSIGNED-INT

      SIGNED-LONG UNSIGNED-LONG



Extensions  A-7
• ACCEPT CONTROL statement

• ACCEPT ALLOWING messages phrase

• ACCEPT external-form-item statement

• ADD TABLE statement

• CALL RUN statement

• CALL PROGRAM statement

• CALL THREAD statement

• Literals allowed in the USING portion of a CALL statement.  Also, 
non-level 01 group items may be listed in the USING phrase

• BULK-ADDITION phrase for OPEN statement

• BY VALUE phrase for CALL statement

• OMITTED/NULL phrase for CALL statement

• NOT ON OVERFLOW accepted for CALL statement

• ALL option for CANCEL statement

• CHART option for CANCEL statement

• CHAIN statement

• CLOSE WINDOW statement

• COMMIT statement

• COPY RESOURCE statement

• CREATE statement

• DELETE FILE statement

• DESTROY statement

• DISPLAY with screen control



A-8  Specifications
• DISPLAY SUBWINDOW/WINDOW statement

• DISPLAY FLOATING WINDOW statement

• DISPLAY SCREEN statement

• DISPLAY LINE statement

• DISPLAY BOX statement

• DISPLAY UPON WINDOW TITLE statement

• DISPLAY UPON COMMAND-LINE statement

• DISPLAY INITIAL WINDOW statement

• DISPLAY INDEPENDENT WINDOW statement

• DISPLAY TOOL-BAR statement

• DISPLAY control-type statement

• DISPLAY MESSAGE BOX statement

• DISPLAY external-form-item statement

• DRAW CHART statement

• ENTER CHART DATA statement

• ENTRY statement

• GOBACK statement

• INQUIRE CONTROL statement

• INQUIRE WINDOW statement

• LOCK THREAD statement

• TRAILING option on INSPECT statement

• MODIFY statement

• NEXT SENTENCE statement



Extensions  A-9
• WITH LOCK and ALLOWING phrases added to OPEN statement

• MASS-UPDATE option on OPEN statement

• WITH NO LOCK and ALLOWING phrases on READ statement

• PERFORM THREAD statement

• PREVIOUS option on READ statement

• Literal allowed in FROM phrase of REWRITE and WRITE statements

• SEND message statement

• RECEIVE message statement

• SET CHART ATTRIBUTE statement

• SET FILE-PREFIX statement

• SET ENVIRONMENT statement

• SET EXCEPTION statement

• SET TO ADDRESS OF statement

• SET TO SIZE OF statement

• SET HANDLE statement

• SET THREAD statement

• SET WINDOW statement

• STOP THREAD statement

• SUBTRACT TABLE statement

• LESS THAN and LESS THAN OR EQUAL options on START 
statement

• UNLOCK statement



A-10  Specifications
• DECLARATIVE procedures may reference procedures outside of 
DECLARATIVES

• Recursive CALLs 

• Dynamically determined SORT keys

• EXIT PERFORM, EXIT PARAGRAPH and EXIT SECTION

• ROLLBACK clause for LOCK MODE phrase, on SELECT statement in 
FILE-CONTROL paragraph

• COMMIT statement may indicate end of transaction and cause changes 
to be written to transaction log file

• ROLLBACK statement

• SET statement with ADDRESS OF clause sets address of linkage data 
item to specified value

• START TRANSACTION statement

• SUPPRESS clause for the COPY statement

• USE active_x_control_item and USE ole_object_item statements

• USE FOR REPORTING statement

• UNLOCK THREAD statement

• WAIT statement

A.4  Restrictions

The current version of ACUCOBOL-GT has the following restrictions with 
respect to the standard.  Many of these will be lifted in future versions of 
ACUCOBOL-GT.   

• The Procedure Division is required.

• The ENTER statement is unsupported (obsolete feature).  



Restrictions  A-11
• The RERUN clause is unsupported (obsolete feature).  

• The COMMON clause of the PROGRAM-ID is unsupported.

• Nested source programs are unsupported.





B
 ACUCOBOL-GT Reserved 
Words
Key Topics

Conventions.............................................................................................  B-2
Reserved Word List................................................................................ B-3



B-2  ACUCOBOL-GT Reserved Words
B.1 Conventions

This appendix lists all the reserved words used by ACUCOBOL-GT.  Words 
that are reserved by ACUCOBOL-GT but not by the 1985 standard are 
indicated as follows:

(a) Indicates that the word is reserved by a special feature of 
ACUCOBOL-GT

(b) Indicates that the word is reserved by IBM DOS/VS.  They are 
treated as reserved words by ACUCOBOL-GT only if you 
compile with the “-Cv” compiler option.  

(h) Indicates that the word is reserved by HP COBOL.  They are 
treated as reserved words by ACUCOBOL-GT only if you 
compile with the “-Cp” compiler option.  

(i) Indicates that the word is reserved by both ACUCOBOL-GT and 
Data General ICOBOL

(r) Indicates that the word is reserved by both ACUCOBOL-GT and 
RM/COBOL

(s) Indicates that the word is reserved by ACUCOBOL-GT for use in 
the Screen Section

(v) Indicates that the word is reserved by both ACUCOBOL-GT and 
VAX COBOL

(8) Indicates that the word is reserved by the 1985 standard, but not 
by the 1974 standard 

(*) Indicates that the word is reserved by the 1985 standard but not 
used by ACUCOBOL-GT.  These words are treated as user 
symbols by the compiler.  They may become reserved in the 
future as more features of the 1985 standard are implemented, so 
their use is not advised. 



Reserved Word List  B-3
B.2  Reserved Word List

This section lists each reserved word in alphabetical order.A
ACCEPT ACCESS

ACTUAL(b,h) ADD

ADDRESS(a) ADVANCING

AFTER ALL

ALLOWING ALPHABET(8)

ALPHABETIC ALPHABETIC-LOWER(8)

ALPHABETIC-UPPER(8) ALPHANUMERIC(8)

ALPHANUMERIC-EDITED(8) ALSO

ALTER ALTERNATE

AND ANY(8)

APPLY(v) ARE

AREA AREAS

ASCENDING ASSEMBLY-NAME(a)

ASSIGN AT

ATTRIBUTE(a) AUTHOR

AUTO(i,s) AUTO-MINIMIZE(a)

AUTO-RESIZE(a) AUTO-SKIP(s)

AUTOMATIC(a) AUTOTERMINATE(v)



B-4  ACUCOBOL-GT Reserved Words
B

C

BACKGROUND-COLOR(s) BACKGROUND-COLOUR(s)

BACKGROUND-HIGH(a) BACKGROUND-LOW(a)

BACKGROUND-STANDARD(a) BACKWARD(i)

BEEP(r,s) BEFORE

BELL(v,s) BIND(a)

BINARY(8,r) BLANK

BLINK(i,r,s) BLINKING(v)

BLOCK BOLD(v)

BOTTOM BOX(a)

BOXED(a) BULK-ADDITION(a)

BY

CALL CANCEL

CCOL(a) CD(*)

CELL(a) CELLS(a)

CENTERED(a) CENTURY-DATE(a)

CENTURY-DAY(a) CF(*)

CH(*) CHAIN(a)

CHAINING(a) CHARACTER

CHARACTERS CHART(a)

CLASS(8) CLASS-NAME(a)

CLINE(a) CLINES(a)

CLOCK-UNITS(*) CLOSE

COBOL(*) CODE(*)

CODE-SET COL(i,s)

COLLATING COLOR(a)



Reserved Word List  B-5
COLOUR(a) COLUMN

COM-REG COMMA

COMMAND-LINE(a) COMMIT(a)

COMMUNICATION(*) COMP

COMP-1(r,v) COMP-2(a)

COMP-3(r,v) COMP-4(r)

COMP-5(a) COMP-6(r)

COMP-N(a) COMP-X(a)

COMPRESSION(a) COMPUTATIONAL

COMPUTATIONAL-1(r,v) COMPUTATIONAL-2(a)

COMPUTATIONAL-3(r,v) COMPUTATIONAL-4(r)

COMPUTATIONAL-5(a) COMPUTATIONAL-6(r)

COMPUTATIONAL-N(a) COMPUTATIONAL-X(a)

COMPUTE CONFIGURATION

CONSOLE(s) CONSTRUCTOR(a)

CONTAINS CONTENT(8)

CONTINUE(8) CONTROL

CONTROLS(a) CONVERSION(v)

CONVERT(r) CONVERTING(8)

COPY CORE-INDEX(b)

CORR CORRESPONDING

COUNT CREATE(a)

CRT(s) CSIZE(a)

CULTURE(a) CURRENCY

CURRENT-DATE(b,h) CURSOR(r)

CYCLE(a) CYL-INDEX(b)

CYL-OVERFLOW(b)



B-6  ACUCOBOL-GT Reserved Words
D

E

DATA DATE

DATE-COMPILED DATE-WRITTEN

DATE 
YYYYMMDD(a)

DAY

DAY-OF-WEEK(8) DAY YYYYDDD(a)

DE(*) DEBUG-CONTENTS(*)

DEBUG-ITEM(*) DEBUG-LINE(*)

DEBUG-NAME(*) DEBUG-SUB-1(*)

DEBUG-SUB-2(*) DEBUG-SUB-3(*)

DEBUGGING DECIMAL-POINT

DECLARATIVES DEFAULT(v)

DELETE DELIMITED

DELIMITER DEPENDING

DESCENDING DESCRIPTOR(v)

DESTINATION(8) DESTROY(a)

DETAIL(*) DISABLE(*)

DISPLAY DISPLAY-ST(b)

DIVIDE DIVISION

DOUBLE(a) DOWN(a)

DRAW(a) DUPLICATES

DYNAMIC

ECHO(r,v) EGI(*)

EJECT(b) ELSE

EMI(*) EMPTY-CHECK(s)

ENABLED ENCRYPTION(a)

END END-ACCEPT(a,r,v)



Reserved Word List  B-7
END-ADD(8) END-CALL(8)

END-CHAIN(a) END-COMPUTE(8)

END-DELETE(8) END-DISPLAY(a)

END-DIVIDE(8) END-EVALUATE(8)

END-IF(8) END-MODIFY(a)

END-MOVE(a) END-MULTIPLY(8)

END-OF-PAGE END-PERFORM(8)

END-READ(8) END-RECEIVE(8)

END-RETURN(8) END-REWRITE(8)

END-SEARCH(8) END-START(8)

END-STRING(8) END-SUBTRACT(8)

END-UNSTRING(8) END-USE(a)

END-WAIT(a) END-WRITE(8)

ENDING(a,b) ENTER

ENTRY(a, b) ENVIRONMENT

EOL(r,s) EOP

EOS(r,s) EQUAL

ERASE(r,v) ERROR

ESCAPE(i,s) ESI(*)

EVALUATE(8) EVENT(a)

EVERY(*) EXAMINE(b,h)

EXCEPTION EXCLUSIVE(h,i)

EXIT EXTEND

EXTENDED-SEARCH(r) EXTERNAL(8)

EXTERNAL-FORM(a)



B-8  ACUCOBOL-GT Reserved Words
F

G

H

FALSE(8) FD

FILE FILE-CONTROL

FILE-ID(v) FILE-LIMIT(r)

FILE-LIMITS(r) FILE-PATH(a)

FILE-PREFIX(a) FILLER

FINAL(*) FIRST

FLOAT(a) FLOATING(a)

FONT(a) FOOTING

FOR FOREGROUND-COLOR(s)

FOREGROUND-COLOUR(s) FREE(h)

FROM FULL(i,s)

FUNCTION

GENERATE(*) GIVING

GLOBAL(8) GO

GOBACK(r) GRAPHICAL(a)

GREATER GRID(s)

GROUP(*)

HANDLE(a) HEADING(*)

HEIGHT(a) HELP-ID(a)

HIGH HIGH-VALUE

HIGH-VALUES HIGHLIGHT(s)



Reserved Word List  B-9
I

J
JUST

JUSTIFIED

K
KEPT(a)

KEY

L

I-O I-O-CONTROL

ICON(a) ID

IDENTIFICATION IDENTIFIED(a)

IF IN

INDEPENDENT(a) INDEX

INDEXED INDICATE(*)

INITIAL INITIALIZE(8)

INITIATE INPUT

INPUT-OUTPUT INQUIRE(a)

INSPECT INSTALLATION

INTO INVALID

IS

LABEL LAST

LAYOUT-DATA(a) LAYOUT-MANAGER(a)

LEADING LEFT

LEFTLINE(s) LENGTH

LENGTH-CHECK(s) LESS

LIMIT(*) LIMITS(*)



B-10  ACUCOBOL-GT Reserved Words
M

N

LINAGE LINAGE-COUNTER

LINE LINE-COUNTER(*)

LINES LINK(a)

LINKAGE LOCK

LOCK-HOLDING(v) LOW(r)

LOW-VALUE LOW-VALUES

LOWER(a) LOWLIGHT(s)

MANUAL(a) MASS-UPDATE(a)

MASTER-INDEX(b) MEMORY

MENU(a) MERGE

MESSAGE(a) MESSAGES(a)

MODAL(a) MODE

MODELESS(a) MODIFY(a)

MODULE(a) MODULES

MOVE MULTIPLE

MULTIPLY

NAMESPACE(a) NATIONAL

NATIONAL-EDITED NATIVE

NEGATIVE NEXT

NO NO-ECHO(s)

NOLIST(h) NOMINAL(b)

NOT NOTE(b)

NULL(a) NULLS(a)



Reserved Word List  B-11
O

NUMBER NUMERIC

NUMERIC-EDITED(8) NUMERIC-FILL(a)

OBJECT(a) OBJECT-COMPUTER

OCCURS OF

OFF OMITTED

ON ONLY(a)

OPEN OPTIONAL(8)

OR ORDER(8)

ORGANIZATION OTHER(8)

OTHERS(v) OTHERWISE(b)

OUTPUT OVERFLOW

OVERLAPPED(a) OVERLINE(s)



P

Q
QUEUE(*)
QUOTE
QUOTES

R

PACKED-DECIMAL(8) PADDING(8)

PAGE PAGE-COUNTER(*)

PARAGRAPH(a) PASSWORD(b)

PERFORM PF(*)

PH(*) PIC

PICTURE PIXEL(a)

PIXELS(a) PLUS

POINTER POP-UP(a)

POS(s) POSITION

POSITIONING(b) POSITIVE

PREVIOUS(a,i) PRINT-CONTROL(v)

PRINTING(*) PRIORITY(a)

PROCEDURE PROCEDURES(*)

PROCEED PROCESSING(b)

PROGRAM PROGRAM-ID

PROMPT(r,s) PROPERTY(a)

PROTECTED(i,v) PURGE(*)

RANDOM RD(*)

READ READERS(v)

RECEIVE RECORD

RECORD-POSITION(a) RECORDING(i)



Reserved Word List  B-13
S

RECORDS REDEFINES

REEL REFERENCE(8)

REFERENCES(*) RELATIVE

RELEASE REMAINDER

REMARKS(a) REMOVAL

RENAMES REPLACE(8)

REPLACING REPORTING

REQUIRED(i,s) REPORT(*)

REPORTING(*) REPORTS(*)

RERUN(*) RESERVE

RESET(*) RESIDENT(a)

RESIZABLE(a) RETURN

RETURNING RETURN-CODE

RETURN-UNSIGNED REVERSE(r)

REVERSE-VIDEO(s) REVERSED

REWIND REWRITE

RF(*) RH(*)

RIGHT ROLLBACK

ROUNDED RUN

SAME SCREEN(i,s,v)

SCROLL(a) SD

SEARCH SECTION

SECURE(i,s) SECURITY

SEEK(r,h) SEGMENT(*)

SEGMENT-LIMIT SELECT

SEND SENTENCE

SEPARATE SEQUENCE



B-14  ACUCOBOL-GT Reserved Words
T

SEQUENTIAL SET

SHADOW(a) SIGN

SIGNED-INT(a) SIGNED-LONG(a)

SIGNED-SHORT(a) SIZE

SKIP1(b) SKIP2(b)

SKIP3(b) SORT

SORT-CORE-SIZE(b) SORT-FILE-SIZE(b)

SORT-MERGE SORT-MODE-SIZE(b)

SORT-RETURN(b) SOURCE(*)

SOURCE-COMPUTER SPACE

SPACES SPECIAL-NAMES

STANDARD STANDARD-1

STANDARD-2(8) START

STATUS STOP

STRING STRONG-NAME(a)

STYLE(a) SUB-QUEUE-1(*)

SUB-QUEUE-2(*) SUB-QUEUE-3(*)

SUBTRACT SUBWINDOW(a)

SUM(*) SUPPRESS(b)

SYMBOLIC(8) SYNC

SYNCHRONIZED SYSTEM(a)

SYSTEM-INFO(a)

TAB(r) TABLE(a)

TALLY(a) TALLYING

TAPE TERMINAL(*)

TERMINAL-INFO(a) TERMINATE(*)



Reserved Word List  B-15
U

V
VALUE
VALUES
VARYING
VERSION(a)

TEST(8) TEXT

THAN THEN(8)

THREAD(a) THREADS(a)

THROUGH THRU

TIME TIME-OF-DAY(b,h)

TIMES TITLE(a)

TITLE-BAR(a) TO

TOOL-BAR(a) TOP

TRACK-AREA(b) TRACKS(b)

TRAILING TRANSACTION(a)

TRANSACTION-STATUS(a) TRANSFORM(b)

TRUE(8) TYPE(a,*)

UN-EXCLUSIVE(h) UNDERLINE(s)

UNDERLINED(v) UNIT

UNLOCK(i,r,v) UNSIGNED-INT(a)

UNSIGNED-LONG(a) UNSIGNED-SHORT(a)

UNSTRING UNTIL

UP UPDATE(r,v)

UPDATERS(v) UPON

UPPER(a) USAGE

USE USING



B-16  ACUCOBOL-GT Reserved Words
VISIBLE(a)

W

Y
YYYYDDD(8)
YYYYMMDD(8)

Z
ZERO
ZERO-FILL(s)
ZEROES
ZEROS

WAIT(a) WHEN

WHEN-COMPILED(b) WIDE(a)

WIDTH(a) WINDOW(a)

WITH WORDS

WORKING-STORAGE WRAP(a)

WRITE WRITE-ONLY(b)

WRITE-VERIFY(b) WRITERS(v)



C
 Changes Affecting Previous 
Versions
Key Topics

Changes Affecting Version 8.1 ..............................................................  C-2
Changes Affecting Version 8.0 ..............................................................  C-2
Changes Affecting Version 7.2 ..............................................................  C-3
Changes Affecting Version 7.1 ..............................................................  C-4
Changes Affecting Version 7.0 ..............................................................  C-5
Changes Affecting Version 6.2 ..............................................................  C-5
Changes Affecting Version 6.1 ..............................................................  C-8
Changes Affecting Version 6.0 ..............................................................  C-9
Changes Affecting Version 5.2 ............................................................  C-10
Changes Affecting Version 5.1 ............................................................  C-14
Changes Affecting Version 5.0 ............................................................  C-17
Changes Affecting Version 4.3 ............................................................  C-19
Changes Affecting Version 4.2 ............................................................  C-21
Changes Affecting Version 4.1 ............................................................  C-23
Changes Affecting Version 4.0 ............................................................  C-23
Changes Affecting Version 3.2 ............................................................  C-24
Changes Affecting Version 3.1 ............................................................  C-27
Changes Affecting Version 2.4 ............................................................ C-28



C-2  Changes Affecting Previous Versions
ACUCOBOL-GT is generally backwards compatible with prior versions of 
ACUCOBOL-GT and ACUCOBOL-85.  There are, however, some changes 
that can affect existing programs.  These changes are detailed in this 
appendix. 

C.1  Changes Affecting Version 8.1

In Version 8.1, COBOL source code can now contain lines with a dollar sign 
($) in the indicator area, which may be used with the IF, ELSE, END, 
DISPLAY,  and SET statement to support conditional compiling.    

The $ symbol is also a valid comment character.  If a program uses $ as a 
comment, and it is immediately followed by IF, ELSE, END, DISPLAY an 
error will most likely be generated.

C.2  Changes Affecting Version 8.0

Compiler

In previous versions, an END-PERFORM was required when the PERFORM 
was nested in an EVALUATE statement.  With Version 8.0, the compiler 
accepts the WHEN verb as an implied END-PERFORM. 

Interoperability

Comments in C$XML no longer include the expression:
 '.* - generated by ACUCOBOL-GT v.*\n*'

If you depend on having those comments, you will need to rework your 
application in some way.

For .NET, the type checking rules for using overloaded methods in a COBOL 
program are more stringent now.  You must use COBOL types that match the 
NETDEFGEN COPY file method declaration.
SIGNED-INT - int32.
   UNSIGNED-INT - uint32.



Changes Affecting Version 7.2  C-3
   SIGNED-LONG  - long.
   SIGNED-SHORT - int16.
   UNSIGNED-SHORT  - uint16.
PIC X(nn)- BSTR
pic 9- BOOLEAN
PIC X- BYTE

C.3  Changes Affecting Version 7.2

Compiler changes

In previous versions, ACUCOBOL-GT has performed the majority of its 
arithmetic operations using a 40-digit decimal format (68 digits if using the 
“-Dd31” compiler option).  Starting with Version 7.3, ACUCOBOL-GT uses 
a binary math package as its default.  The decimal package remains in place 
to handle certain high-precision cases and to maintain compatibility with 
existing programs.  Users of ACUCOBOL-GT can choose which package 
they use: the binary package for enhanced performance or the decimal one for 
compatibility with prior compilers.  Use the “--decimalMath” (or “--dec”) 
compiler option to use the decimal math format.  Refer to section 2.1.13, 
“Miscellaneous Options,” in ACUCOBOL-GT User’s Guide for more 
information about these compiler options.  

Prior to Version 7.3, cblutil produced instructions that ran under both 
POWER and PowerPC architectures when generating PowerPC native code.  
Starting with Version 7.3, this is no longer true.  The reason is that the code 
generator started using multiply and divide instructions in some important 
cases, and some of these instructions changed.  The existing “--ppc” compiler 
option now produces 32-bit PowerPC code that is also compatible with 
POWER3, POWER4, and POWER5 processors.  This code does not run 
correctly on POWER- or POWER2-based machines.  A new “--power” 
option produces code that is compatible with POWER and POWER2 
processors, as well as PowerPC and later POWER series processors.  This 
code can be significantly slower than code generated with “--ppc”, but it does 
run on a wider range of machines.  Please refer to section 2.1.2, “Native Code 
Options,” in ACUCOBOL-GT User’s Guide for more information about 
native code generation.  



C-4  Changes Affecting Previous Versions
Two compilation switches provide compatibility with Version 7.2:

C.4  Changes Affecting Version 7.1

Compiler and runtime changes

Beginning with Version 7.2, the wheel mouse can be used for scrolling in a 
center- or right-aligned entry field.  To preserve the pre-7.2 behavior and 
prevent scrolling in these situations, set the 
V71_ALIGNED_ENTRY_FIELD configuration variable to “1” (on, true, 
yes) or compile your code for compatibility with a version older than Version 
7.2.  The default value of this variable is “0” (off, false, no).  

In Version 7.2, the runtime uses a different font measuring algorithm when it 
computes font widths in Windows.  With this change, the runtime now 
validates the data returned by the Windows GetTextMetrics function and 
corrects it when it is too large.  The V71_FONT_WIDTHS configuration 
variable setting allows you to use the pre-Version 7.2 rules.  This variable can 
have one of the following values:

Two compilation switches provide compatibility with Version 7.1:

-C72 Causes the compiler to generate code according to the rules used 
by Version 7.2. 

-Z72 Creates object code that can be run with a Version 7.2 runtime.

-1 (default) The change is enabled for programs using Version 7.2 or later 
semantics.  In other words, the program has been compiled with Version 
7.2 or later and the command line does not contain a compiler option for 
pre-7.2 semantics.

0 The change is enabled.

1 The change is disabled and the Version 7.1 and earlier font measuring 
code is used.

-C71 Causes the compiler to generate code according to the rules used 
by Version 7.1. 

-Z71 Creates object code that can be run with a Version 7.1 runtime.



Changes Affecting Version 7.0  C-5
C.5  Changes Affecting Version 7.0

The following sections describe changes that can affect programs originally 
written with ACUCOBOL-GT Version 7.0.

Compiler and runtime changes

Two compilation switches provide compatibility with Version 7.0:

In Version 7.1, the total size of parameters passed BY CONTENT is 
increased to 2GB.  For Version 7.0 and earlier, the total size limit is 64K.  If 
you compile with “-Z70”, your program has the 64K limit for parameters 
passed BY CONTENT.  

The maximum number of REPLACING elements in an INSPECT statement 
is increased to 256.  For Version 7.0 and earlier, the limit is 30.  

C.6  Changes Affecting Version 6.2

The following sections describe changes that can affect programs originally 
written with ACUCOBOL-GT Version 6.2.

UNIX: New default installation directory 

On UNIX systems, the ACUCOBOL-GT development system (compiler, 
runtime, utilities, etc.) has a new default directory location.  The new location 
is: “/opt/acucorp/720”.  This change has been made to conform with the 
Version 2.3 Filesystem Hierarchy Standard (FHS).  Installing into the FHS 
standard location provides consistency and improves system integration.  For 
more information about the FHS standard, please visit “www.pathname.com/
fhs/pub/fhs-2.3.html”.

-C70 Causes the compiler to generate code according to the rules used 
by Version 7.0. 

-Z70 Creates object code that can be run with a Version 7.0 runtime.



C-6  Changes Affecting Previous Versions
Initialization of external data items

Versions of  ACUCOBOL-GT prior to Version 7.0 had the behavior of 
initializing external data items to LOW-VALUES, even when the rest of 
Working-Storage was initialized to spaces.  Beginning with Version 7.0, all 
Working-Storage data items are initialized to spaces or the value specified 
with the “-Dv” compile option.  This includes external data items. 

To maintain compatibility with programs that rely on the old behavior, you 
can compile for semantic compatibility with Version 6.2 or earlier.  Use the 
“-C##” compile option to do this (for example, “-C62” for Version 6.2 
compatibility).  When you compile for compatibility with Version 6.2 or 
earlier, external data items are initialized to null bytes, regardless of how the 
rest of Working-Storage is initialized. 

C functions

Starting with Version 7.0, ACUCOBOL-GT has added significant new 
features to the C interface, allowing you greater flexibility for calling 
COBOL programs from C and C++.  

For existing programs, this means:

• The cobol() and cobol_no_stop() functions are still supported but have 
been deprecated.  The new function, acu_cobol(), extends the options 
available in the C interface.

• Information on the deprecated cobol() and cobol_no_stop() functions is 
not documented in Version 7.0.  Refer to Appendix F in previous 
versions of the ACUCOBOL-GT documentation set for this information.

Detailed descriptions of the current C functions are available in Chapter 6 of 
A Guide to Interoperating with ACUCOBOL-GT.



Changes Affecting Version 6.2  C-7
Compiler changes

Two compilation switches provide compatibility with Version 6.2:

Runtime changes

• The runtime now automatically corrects most reference modification 
range errors.  It applies the following rules:

a. A start reference less than 1 is treated as 1.  For example, var(0:3) 
is treated as var(1:3).

b. A length reference less than 0 is treated as 0.  Moving a zero-byte 
item is equivalent to moving spaces to the destination item.  A 
zero-byte destination is not affected by the move.  In a STRING 
statement, a length of zero for a string source is treated as 1, not 0. 

c. A start plus length reference that is past the end of the item is 
treated as meaning to the end of the item.  For example, if the var 
is a PIC X(5) item, var(4:23) is treated as var(4:2).

The WARNINGS runtime configuration variable provides some control 
over how reference modification range errors are handled.  See its entry 
in Appendix H.

• The behavior of the character-based tree view control has changed.  In 
previous versions, the MSG-TV-SELCHANGE message was not sent if 
the COBOL program deleted an item.  Nor was it sent when the COBOL 
program first ACCEPTed a tree view control.  Beginning with Version 
7.0, the MSG-TV-SELCHANGE message is now sent in both cases. 

• Beginning with Version 7.0, when the runtime reduces the size of a 
window to fit the screen, it includes any fractional lines and columns that 
fit, provided the COBOL program attempted to create a window with 
fractional lines and columns.  For example, if the program creates a 70.0 
line window, but only a 66.4 line window fits on the display, the runtime 
detects that no fractional lines were attempted, and truncates the number 
of lines to 66.0.  However, if you attempt to create a 70.1 line window, 

-C62 Causes the compiler to generate code according to the rules used 
by Version 6.2. 

-Z62 Creates object code that can be run with a Version 6.2 runtime.



C-8  Changes Affecting Previous Versions
the runtime recognizes the fractional measurement and displays a 66.4 
line window.  In prior versions, the runtime always reduced the size of 
the window to a whole number.  To preserve the old behavior, set the 
configuration variable V62_MAX_WINDOW to “1” (on, true, yes). 

• Beginning with Version 7.0, the Web runtime uses 
ANSI_FIXED_FONT as the standard font.  Because some systems may 
depend on the old font, this change is configurable.  To use the font 
standard from Versions 6.2 and earlier (SYSTEM_FIXED_FONT), 
adjust the setting of the configuration variable STD_FIXED_FONT, 
described in Appendix H.   

C.7  Changes Affecting Version 6.1

The following paragraphs describe changes that can affect programs 
originally written with ACUCOBOL-GT Version 6.1.

Compiler changes

Programs that will be deployed on 64-bit Windows systems and that have 
USAGE POINTER data items must be recompiled with Version 6.1.1 or 
later.  This is because, beginning with Version 6.1.1 (the introduction of 
ACUCOBOL-GT for 64-bit Windows), the compiler and runtime 
differentiate between USAGE LONG and USAGE POINTER data items.  
This is necessary for 64-bit Windows.  

Two compilation switches provide compatibility with Version 6.1:

-C61 Causes the compiler to generate code according to the rules 
used by Version 6.1. 

-Z61 Creates object code that can be run with a Version 6.1 runtime.



Changes Affecting Version 6.0  C-9
Runtime changes

• Beginning with Version 6.2, on the HP e3000, if a program is compiled 
with the “-Cp” option, OPEN OUTPUT statements create temporary 
files.  This is consistent with the behavior of native HP COBOL on the 
platform.  Prior to Version 6.2, OPEN OUTPUT statements created 
permanent files.

• Beginning with Version 6.2, C$OPENSAVEBOX makes use of the 
OPNSAV-FLAGS field of OPENSAVE-DATA.  Prior versions ignored 
the field.

C.8  Changes Affecting Version 6.0

The following paragraphs describe changes that can affect programs 
originally written with ACUCOBOL-GT Version 6.0.

Compiler changes

Two compilation switches provide compatibility with Version 6.0:

Alignment of literals

The compiler uses a new algorithm for aligning literals in memory.  The 
alignment is the smaller of the alignment specified by the “-Da” option 
(which has a default value of “4”) or the largest power of 2 that is less than or 
equal to the literal’s size.  For example, a literal that requires 3 bytes of 
memory will have an alignment of 2.  You can use the “--noAlignLit” option 
to turn off the new algorithm.  See section 2.1.9, “Data Storage Options,” in 
Book 1, ACUCOBOL-GT User’s Guide, for additional information on 
“--noAlignLit.”

-C60 Causes the compiler to generate code according to the rules 
used by Version 6.0. 

-Z60 Creates object code that can be run with a Version 6.0 
runtime.



C-10  Changes Affecting Previous Versions
Runtime changes

• In Version 6.0 and earlier, the WIN$PRINTER functions 
WINPRINT-PRINT-BITMAP, WINPRINT-SET-CURSOR, and 
WINPRINT-GRAPH-DRAW, ignored the form feed status of a pending 
print job, causing images or text to print on the wrong page.  In Version 
6.1 and later, calls to these functions automatically test for a pending 
form feed before printing. 

• In Version 6.1, when a program is compiled with the “-Cp” switch and 
run on an HP e3000, all OPEN OUTPUT statements create MPE files.  
In prior versions, byte stream files were created.

• In Version 6.0 and earlier, if a program argument was preceded by a 
double dash (two dashes) it was effectively treated as if preceded by a 
single dash.  For example, “runcbl --dle errfile iobench” was executed as 
if it were “runcbl -dle errfile iobench”.  Beginning with Version 6.1, an 
argument preceded by two dashes generates a runtime startup error, 
unless you specifically modify exam_args (in “sub.c”) to ignore 
command-line errors. 

C.9  Changes Affecting Version 5.2

The following paragraphs describe changes that can affect programs 
originally written with ACUCOBOL-GT Version 5.2.

Vision Version 5

Version 6.0  introduces a new Vision file format: Vision Version 5.  Vision 
Version 5 supports records up to 64 megabytes in size, block sizes up to 8192 
bytes, very large pre-allocate and extension factors, and a virtually 
unrestricted number of records that allow duplicates.  Version 5 files cannot 
be read by ACUCOBOL-GT Version 5.2.1 or earlier runtimes.  For a 
complete description of Vision Version 5, see section 6.1.3, “Indexed Files - 
Vision” in Book 1, ACUCOBOL-GT User’s Guide. 



Changes Affecting Version 5.2  C-11
Windows console runtime

Version 6.0 introduces a new runtime for the Windows operating 
environment that may be used to run applications originally deployed in the 
Extended DOS environment, as well as other character-based applications.  
The new runtime is called the console runtime.  The name of the executable 
is “crun32.exe”.  The console runtime uses the Windows Console API and 
runs in a virtual DOS window.  The console runtime replaces the Extended 
DOS runtime and is sold separately.  

The console runtime can run ACUCOBOL-GT applications developed for 
the Extended DOS environment provided that some minor changes are made.   
For example, the console runtime supports printing capabilities based on the 
Windows model.  Program code that relies on DOS printing functions must 
be modified.

The following runtime configuration variables are MS DOS-specific and are 
not supported in Version 6.0:
132_MODE
A_WAIT_FOR_LICENSE
AUTO_BUFFER
DOS_OUTPUT_METHOD
DOS_WATCOM_10
LOCKED_RECORD_DELAY
USE_MOUSE

Web Plug-in discontinued

The browser industry has shifted away from its support of Internet plug-ins in 
favor of ActiveX controls.  For this reason, we developed and released an 
ActiveX-based Web Runtime in ACUCOBOL-GT Version 5.2.1.  Due to 
lack of browser support, the ACUCOBOL-GT Web Plug-in is not offered or 
supported in Version 6.0.  For information on migrating from the Web 
Plug-in to the Web Runtime, see section 5.11 of A Programmer’s Guide to 
the Internet.



C-12  Changes Affecting Previous Versions
List box and combo box handling of VALUE

In Version 5.2 and earlier, setting the VALUE of a combo box or list box 
caused the first item in the list that started with the value of VALUE to be 
selected, regardless of case.  Beginning with Version 6.0, when a box’s 
VALUE is set, the list is searched for an exact, case sensitive match with the 
specified value.  If the value is found, it is selected.  If an exact match is not 
found, the list is searched for an exact match regardless of case.  If a match is 
still not found, the list is searched again, this time for the first string that 
contains the passed VALUE as a leading substring, regardless of case.

This change could affect the behavior of an existing application.  The 
configuration variable V60_LIST_VALUE allows you to select which search 
algorithm, new or old, to use.  See V60_LIST_VALUE in Appendix H.

Area A in RM COBOL compatibility mode 

Starting with Version 6.0,  when you compile for RM COBOL compatibility 
(“-Cr”), in the Identification Division, Area A can start in either column 8 or 
9 (ANSI format) or column 1 or 2 (terminal format).  In prior versions, Area 
A in the Identification Division started precisely in column 8 (ANSI format) 
or column 1 (terminal format).

This change may cause warnings in programs that previously compiled 
without warnings.  To revert to the old rule, you can use the “--noRmMargin” 
compiler option.

Image rendering for BITMAP controls

The image processing code used by Version 6.0 (and later) for BITMAP 
controls is device-dependent. This may affect image rendering in some 
programs, written for Version 5.2 or earlier, which rely on 
device-independent bitmaps. If BITMAP controls are displaying incorrectly, 
adjust the setting of the configuration variable, V52_BITMAPS, described 
in Appendix H.



Changes Affecting Version 5.2  C-13
Bitmap push button behavior change

If some event in the system forces the focus away from a text-based push 
button after a click has been initiated but not finished, the click is voided.  
Starting with Version 6.0, bitmap push buttons void the click just like a 
text-based push button.  This change applies only to programs compiled for 
6.0 semantics or later.  

Changes to data items used by C$REDIRECT

The definitions of the HANDLER-PRE-ALLOCATE-AMOUNT,  
HANDLER-EXTENSION-AMOUNT, HANDLER-MAX-LREC-SIZE, 
HANDLER-MIN-LREC-SIZE, and HANDLER-SEGMENT-OFFSETdata 
items in “sample/handler.cpy” have changed.

Changes to data items used by I$IO

The definitions of the PRE-ALLOCATION-AMOUNT, 
EXTENSION-AMOUNT, MAX-REC-SIZE, MIN-REC-SIZE, and 
KEY-OFFSET data items in “sample/def/filesys.def” have changed.

Compiler changes

• Two compilation switches provide compatibility with Version 5.2:

• When compiling for Version 6.0 or later format, table indexes and 
USAGE INDEX data items are treated as 32-bit signed native binary 
data items. In versions prior to 6.0, the default for indexes is to act as 
16-bit unsigned portable binary data items.  In rare cases, this change 
from 16-bit to 32-bit indexes may cause problems with an existing 
program.  One case where this could be a problem is if you place 
USAGE INDEX items in a data file.  Another case would be if you rely 
on undefined overflow behavior with arithmetic on 16-bit indexes. 

-C52 Causes the compiler to generate code according to the rules 
used by Version 5.2. 

-Z52 Creates object code that can be run with a Version 5.2 
runtime.



C-14  Changes Affecting Previous Versions
If you need to preserve indexes as 16-bit items, you can either compile 
for an object format prior to Version 6.0, or you can compile using the 
“--nodata32bit” option.  This option inhibits the new data addressing 
features of 6.0 and causes indexes to be kept as 16-bit data items.  

C.10  Changes Affecting Version 5.1

The following paragraphs describe changes that can affect programs 
originally written with ACUCOBOL-GT Version 5.1.

Licensing changes

The licensing mechanism changed with the release of Version 5.0.  In 
Version 5.2, this mechanism has been simplified:

• Node IDs are no longer used.

• When the license is installed, the Windows version of the Activator 
creates a separate license file for each product, in the same manner as 
UNIX.  

• The Activator utility is not backwards compatible.  You must use the 
version of the Activator utility that corresponds to the version of the 
product you are installing in order to create a proper license file. 

A complete description of the current licensing mechanism is available in the 
Getting Started book.

Compiler changes

• Two compilation switches provide compatibility with Version 5.1:

• Compiler switch “-Zt” is not supported in Version 5.2.

-C51 Causes the compiler to generate code according to the rules used by 
Version 5.1. 

-Z51 Creates object code that can be run with a Version 5.1 runtime.



Changes Affecting Version 5.1  C-15
• In versions prior to 5.2, the grid would not pass a 
MSG-GOTO-CELL-MOUSE event to the program when the user 
clicked on the cell containing the grid cursor.  This was done to prevent 
extraneous messages from being sent to the program.  However, this 
message can be useful in some cases, for example, to allow a user to 
deselect something that is already selected.  Therefore, in Version 5.2 
and later, the runtime no longer filters out MSG-GOTO-CELL-MOUSE 
messages just because the destination cell is the same as the current cell.  

Note: This change is active only for programs compiled for Version 
5.2 or later.  This means that the Version 5.2 runtime will use the old 
behavior when executing programs compiled with versions prior to 
5.2, or compiled with the “-C51” or the “-Z51” switch.   You can 
disable the new behavior by setting the configuration variable 
“V52_GRID_GOTO” to “0”. 

• Version 5.2 introduces “ENTRY” as a new reserved word in 
ACUCOBOL-GT.  A program that compiled with a previous version of 
the compiler will not compile with Version 5.2 if it uses “entry” in 
certain places.  For example:

If “entry” appears in a paragraph name in your program, the compiler 
returns the error:

“Identifier expected, ENTRY found” 

If “entry” appears in a variable in your program, the compiler returns the 
error:

“syntax error scanning ENTRY”

See Book 3, ACUCOBOL-GT Reference Manual, section 6.6, 
“Procedure Division Statements,” ENTRY Statement, for usage syntax 
and rules.

Runtime changes

• The ACUCOBOL-GT Version 5.2 runtime on SCO UNIX systems runs 
in the ELF binary format.  Prior to Version 5.2, the runtime ran in the 
COFF format, but COFF does not support calling shared libraries so it 



C-16  Changes Affecting Previous Versions
was changed to ELF.  If you have your own C routines that you used to 
link to the runtime, you will need to recompile those C routines to create 
ELF objects to link to the 5.2 runtime.  For details on calling shared 
library routines in UNIX environments, see Chapter 6 of A Guide to 
Interoperating with ACUCOBOL-GT.

• In versions prior to 5.2, the runtime would eliminate requests to resize a 
screen control if the new size and position matched the control’s current 
size and position on the screen.  With the current version, the runtime 
optimizes the control resize request using the SIZE and LINES indicated 
(or implied) by your program instead of the current size and position.  

These two ways of optimizing control resize requests produce nearly 
identical results.  However, there are a few cases where the results can 
differ.  For example, if you change the size of the subwindow that 
contains the control in such a way that the control would crop differently, 
then a comparison of the “actual” size shows a difference, while a 
comparison of the “requested” size does not.  In this case, earlier 
versions of the runtime would resize the control, while the current 
version will not.  

This change was made to provide more predictable behavior and to 
improve efficiency when the display service is on a remote machine.  

If necessary, you can disable this behavior by setting 
OPTIMIZE_CONTROL_RESIZE to “0” (off, false, no).  This prevents 
any optimization of control resizing operations.  Note that this can result 
in additional screen painting (in which controls may appear to flicker) 
and should be used only as a short-term fix while any required coding 
changes are made.  

• The way the runtime handles mouse click events in COBOL programs 
that contain both bitmap push buttons and multiple windows under the 
control of a single thread has changed.

In Version 5.1 and earlier, in some cases, simply clicking down on the 
mouse button when a bitmap push button was selected, generated a 
CMD-CLICK event.  This was not consistent with the way Microsoft 
Windows handles these events.



Changes Affecting Version 5.0  C-17
In Version 5.2 and later, clicking down on a bitmap pushbutton on a 
non-active window running in the same thread will cause the current 
ACCEPT to terminate with CMD-ACTIVATE event.  The pushbutton is 
not considered clicked until the COBOL program performs some action 
that allows it to activate, such as ACCEPTing some control in the newly 
activated window.  For self-activating pushbuttons, this allows the 
pushbutton to self activate.  For non-self-activating pushbuttons, the new 
ACCEPT will terminate with a CMD-GOTO so that the COBOL 
program can ACCEPT the correct control.

This change is only available in COBOL objects compiled for Version 
5.2 or later and run with a Version 5.2 or later runtime.  COBOL objects 
compiled with Versions 5.1 or earlier will still exhibit the old behavior, 
even if they are run with a Version 5.2 or later runtime.

• The resolution of the ACCEPT BEFORE TIME timer has been 
substantially increased in Version 5.2.  In rare cases, this could affect 
existing programs.  To forestall any such problems, the runtime 
automatically uses the pre-5.2 resolution when running pre-5.2 objects 
and objects compiled for pre-5.2 compatibility (e.g. “-C51”).

C.11  Changes Affecting Version 5.0

The following paragraphs describe changes that can affect programs 
originally written with ACUCOBOL-GT Version 5.0.

Compiler changes

Two compilation switches provide compatibility with Version 5.0:

-C50 Causes the compiler to generate code according to the rules used by 
Version 5.0. 

-Z50 Creates object code that can be run with a Version 5.0 runtime.



C-18  Changes Affecting Previous Versions
Runtime changes

• In versions prior to 5.1, a CMD-ACTIVATE event would be generated 
only if there was an active ACCEPT statement running to receive it.  
Under some (unusual) circumstances, this could cause the runtime to 
enter a state where it believed the wrong window was active.  

In Version 5.1, this rule is modified so that CMD-ACTIVATE events 
are generated unless the window generating the event is in the process 
of being built.  It no longer matters whether or not an ACCEPT statement 
is running.  The new rule is needed to prevent the first ACCEPT in each 
window from immediately terminating due to a queued 
CMD-ACTIVATE event (generated by the window's own creation). 

Note: This is a change in the rules for when CMD-ACTIVATE  is 
generated.  As a result, it is possible for CMD-ACTIVATE  events to 
occur in cases where they did not previously.   In order to prevent this 
change from adversely affecting a working  program, the new rule is 
used only for programs compiled for 5.1 semantics.  This means that 
the 5.1 runtime will not behave any differently in this regard when 
executing programs compiled with 5.0 or earlier (or compiled with the 
“-C50” switch).  You can explicitly enable this rule by setting the 
configuration variable “ECN-1660” to “1” or disable it by setting it to 
“0”. When the variable is set to “-1” (the default), the program 
semantics apply as described above. 

• In Version 5.1, you can assign pop-up menus to labels.  This change has 
the side-effect that labels are now aware of mouse-clicks where 
previously they were not.  This matters only if you happen to have a label 
and another control (like a push button) that overlap.  Previously, the 
push button would always get all the mouse events.  In Version 5.1, the 
label could start getting them.  This can prevent the push button from 
working (because it is not “seeing” the mouse clicks).  Normally, you 
would not overlap controls, but it can happen unintentionally if the label 
contains only spaces.  



Changes Affecting Version 4.3  C-19
To correct this situation, make the controls not overlap or make label 
invisible instead of setting it to spaces if you want to hide it.  You can 
inhibit this change by compiling for 5.0 or earlier semantics (this also 
means that you must compile for 5.1 or later semantics if you want to 
attach a pop-up menu to a label).

• The configuration variable V42_TRANSPARENT is now obsolete.  
Transparent labels always appear transparently.  If this variable is set in 
your environment or in the runtime configuration file, it is simply 
ignored.

C.12  Changes Affecting Version 4.3

Version 5.0 of ACUCOBOL-GT contains significant changes in the internal 
workings of both the compiler and runtime.  The following paragraphs 
describe changes that can affect programs originally written with 
ACUCOBOL-GT Version 4.3.  

Licensing changes

With the Version 5.0 release, the licensing procedure for extend products has 
been changed.   All products still require a license file, but you no longer need 
a separate license disk to install your products.  Instead, you will receive a 
pair of alphanumeric strings (keys) that must be entered to activate your 
software.  See your Getting Started book for details.

Compiler changes

Two compilation switches provide compatibility with Version 4.3:

• Prior to Version 5.0, the width of a printer cell was based on the average 
width of the selected printer font.  Now, the width of a printer cell is 
computed in the same way that cells are computed for the screen, based 
on the width of the “0” (zero) character.  Note that proportional fonts 

-C43 Causes the compiler to generate code according to the rules used by 
Version 4.3. 

-Z43 Creates object code that can be run with a Version 4.3 runtime.



C-20  Changes Affecting Previous Versions
may contain wider characters.  This may affect the horizontal placement 
of a bitmap on the page, the width of bitmaps and margins if they are 
specified in cells, and the number of columns reported by the 
WINPRINT-GET-PAGE-LAYOUT call.  See the WIN$PRINTER in 
Appendix I, “Library Routines”, for details.

• The Arial font shipped with Windows 98 Version 2 is different from the 
Arial font shipped with earlier versions of Windows and Windows NT.  
The new font has a character width of 35 pixels, instead of the previous 
23 pixel width.  This can cause field overlap or screen distortions in 
programs that rely on the size of the Arial font.  If you do not want to 
adjust your applications to accommodate the new wider version of the 
Arial font, a new configuration variable, 
OLD_ARIAL_DIMENSIONS will force the runtime to use the 23 
pixel measurement.  See Appendix H, “Configuration Variables,” for 
details. 

• In previous versions, the command-line option for the logutil utility date 
filter “-d” had problems comparing dates when the specified 2-digit year 
was “00” or greater.  Now, logutil requires that years be specified in a 
4-digit format.  If you enter a year less than 1900, logutil will report 
“logutil: use 4 digit year specification.”

• Starting with ACUCOBOL-GT 5.0 release, the compiler no longer 
automatically assigns the “MULTILINE” style to an entry field with 
LINES value of “2” or greater.  Although Version 5.0 correctly handles 
cases compiled with 4.x versions, in order for that to happen you need to 
specify an appropriate source-compatibility flag (such as “-Z43”).  Note 
that the flag is not required if you had explicitly set the “MULTILINE” 
style in your 4.x-version program.

Runtime changes

• In previous versions, the UNIX runtime would use the name of the user 
that started a runtime process to identify the user to acushare and count 
the number of processes a user was executing simultaneously.  In 
Version 5.0, the user is defined as a unique terminal name.  Each 
terminal is counted as a unique user and requires one user license.  
Background processes adopt the name of the terminal which started 
them.  There are 1024 processes per user allowed for each terminal 
name.  



Changes Affecting Version 4.2  C-21
acushare 5.0 can be used with older runtimes and will report the 
maximum processes and processes per user settings for those runtimes as 
long as they have different serial numbers from the 5.0 runtime installed 
on the machine.  If a Version 4.3 and a Version 5.0 runtimes on the same 
machine have the same serial number, acushare 5.0 supports both but 
does not report maximum processes or processes per user.  

• Microsoft has changed standard input stream handling in Internet 
Information Server 4.0.  When you are running with the “-f” option or 
when the A_CGI environment variable is set, the runtime reads only the 
number of bytes set in the CONTENT_LENGTH environment variable 
by the web server.  The runtime no longer waits for an end of file 
condition. 

• The runtime no longer differentiates between “UNIX-4” and “UNIX-V” 
in the OPERATING-SYSTEM field of the SYSTEM-INFORMATION 
structure.  Instead, it reports “UNIX” for all UNIX operating systems.  

C.13  Changes Affecting Version 4.2

The following paragraphs describe changes that can affect programs 
originally written with ACUCOBOL-GT Version 4.2. 

Compiler changes

Two compilation switches provide compatibility with Version 4.2:

The following paragraphs describe changes that can affect programs 
originally written with ACUCOBOL-GT Version 4.2.  

• The default ACCEPT size for a numeric-edited field now includes a 
space for the sign only if the field is signed. You can set the program to 
include a space for an implied sign by compiling for semantic 
compatibility with an earlier version of ACUCOBOL-GT using a 
compilation switch in the command line.

-C42 Causes the compiler to generate code according to the rules used by 
Version 4.2. 

-Z42 Creates object code that can be run with a Version 4.2 runtime.



C-22  Changes Affecting Previous Versions
• One of the general rules for screen control entry has been modified: Prior 
to Version 4.3, an ACCEPT statement used to set ACCEPT-CONTROL 
to “1” if the event was a “message” (“MSG-…”) event.  Starting with 
version 4.3, if the reason for entry is a “notify” (“NTF-…”) event, 
ACCEPT-CONTROL is set to “1”; otherwise it defaults to “0”).

• The “-Fo” option has replaced the “-Zo” option. Both compiler options 
produce the same results, but the “-Zo” option should be considered 
obsolete.

• The compiler option “- Rw” has been expanded to allow, in addition to 
reserved words, the suppression of some non-reserved words, such as 
control names (e.g., “entry-field”, “label”) or property names (e.g., 
“max-text”, “bitmap-number”).   If you tell the compiler to suppress a 
non-reserved word, however, it will do so with the following warning:  
“Unknown reserved word: non-reserved word.”

Runtime changes

The following paragraphs describe changes that can affect programs 
originally written with ACUCOBOL-GT Version 4.2.  

• If a program is in the event procedure for an active control, and the 
control activates and subsequently destroys another control, the control 
whose event procedure is executing is reactivated.  In previous versions, 
the “active” control was left in an undefined state.

• When using the library routine WIN$PRINTER with the 32-bit runtime, 
the newer Windows PageSetup dialog box will appear by default. If you 
wish to use the old 16-bit PrintSetup dialog box, you must use the 
operation code WINPRINT-SETUP-OLD.

• In all releases up to and including the ACUCOBOL-GT 4.2 release, 
anytime you created an Entry-Field control with a LINES value of “2” or 
greater, it was treated as a multiline entry field.  In version 4.3, this rule 
is modified so that a LINES value of “2” or greater implies MULTILINE 
only if the “CELLS” phrase is not also used or implied.



Changes Affecting Version 4.1  C-23
Calling COBOL from other languages

• Windows  95/98 and NT sites that are calling COBOL routines from C 
with the “cobol” routine need to be aware of a change to the calling 
convention.  The calling convention has changed from “__cdecl” (the C 
calling convention) to “__stdcall” (the Pascal calling convention, used 
by Windows API routines).  This was done to make integration with 
Visual Basic and Delphi more straightforward.

Programs that call the “cobol” routine must be sure to include “sub.h” 
(included with ACUCOBOL-GT in the “lib” directory).  This includes a 
declaration of the “cobol” routine for all platforms.  This ensures that 
you use the correct calling convention when calling the “cobol” routine.  
If you have established routines that call “cobol”, these must be 
recompiled in order to use the new calling convention.  

C.14  Changes Affecting Version 4.1

Two compilation switches provide compatibility with Version 4.1:

C.15  Changes Affecting Version 4.0

Two compilation switches provide compatibility with Version 4.0:

The following paragraphs describe changes that can affect programs 
originally written with ACUCOBOL-GT Version 4.0.  

-C41 Causes the compiler to generate code according to the rules used by 
Version 4.1. 

-Z41 Creates object code that can be run with a Version 4.1 runtime.

-C40 Causes the compiler to generate code according to the rules used by 
Version 4.0. 

-Z40 Creates object code that can be run with a Version 4.0 runtime.



C-24  Changes Affecting Previous Versions
• The compiler option “-Zx” (while still supported) has been replaced with 
“-Fx”.  Both options cause the compiler to generate XFD files in a new 
format (XFD Version 4).  Version 4 XFD files include a list of all of the 
fields contained in a file’s record description, including group items and 
REDEFINES items.  Items that are excluded from use by the rules of 
XFD generation are marked with a condition number of 999.  Versions 
of Acu4GL and alfred prior to Version 4.1 require the old format of XFD 
files.  If you want to generate XFDs in the old format, use the new 
compiler option “-Fx3” or use “-Z40”.

• The compiler option “-Za” now causes the compiler to test table indexes 
against the upper bound of the current table size when you compile for 
Version 2.4 or later semantics.  Thus, if you have an OCCURS 
DEPENDING ON table that could hold 20 elements physically, but 
whose current size is 10 elements, the runtime will produce an error if 
you access elements 11--20 when compiling with “-Za”.

Compiling for Version 2.3 or earlier (“-C23”) causes the compiler to test 
against the physical upper bound.

C.16  Changes Affecting Version 3.2

Two compilation switches provide compatibility with Version 3.2:

The following paragraphs describe changes that can affect programs 
originally written with ACUCOBOL-GT Version 3.2.  

• Under 32-bit Windows, the user name returned in ACCEPT FROM 
SYSTEM-INFO is now retrieved from the system instead of from the 
USER environment setting.  The name retrieved is the user’s login name.  
This change could affect installed programs in that a user’s name may 
appear differently than it did with earlier runtimes.  The runtime does not 
provide a way to override this change, because doing so would present a 
security hole under Windows NT.  

-C32 Causes the compiler to generate code according to the rules used by 
Version 3.2. 

-Z32 Creates object code that can be run with a Version 3.2 runtime.



Changes Affecting Version 3.2  C-25
• The default compile output file has been changed from “cbl.out” to 
“{source-name}.acu”.  This could affect the behavior of scripts used to 
compile programs.  Also, if no CODE-SUFFIX is specified, the runtime 
tries a suffix of “.acu” before trying a blank suffix.  This could affect 
programs if you happen to use a blank suffix for objects and have files 
named with the “.acu” extension in the same directory as your objects.  
To work around this, simply set CODE-SUFFIX explicitly in your 
configuration file.  To specify a blank extension, simply add 
“CODE-SUFFIX” with no value.  

• AUTO termination on a graphical screen now acts as if the “Tab” key 
had been pressed.  

Suppose a user is interacting with a screen that has an entry field 
followed by a radio button group.  Normally, when the user tabs to the 
radio button group, control passes to the “group leader” (that is, the 
button that is selected, or the first button in the group, if none is 
selected).  Prior to Version 4.0, if the entry field were defined with the 
AUTO style, then when the field was full, control passed to the very next 
item in the Screen Section.  This might be a radio button that was not the 
“group leader.”

The Version 4.0 runtime has been enhanced to treat this AUTO 
termination case as if the “Tab” key had been pressed, so that control 
passes to the “group leader” when the entry field becomes full.

If the program is compiled with the “-C##” option, where “##” is a 
number less than 40 (such as “-C32” or “-C31”), this enhancement is 
disabled, and the behavior reverts to that of earlier versions.

• Starting with Version 4.0, the compiler uses a new rule when moving 
LOW-VALUES or HIGH-VALUES to a numeric item.

Under standard COBOL, a MOVE of LOW-VALUES or 
HIGH-VALUES to a numeric item has undefined effects.  Prior to 
Version 3.0, ACUCOBOL would treat these items as if they had legal 
numeric values, convert them accordingly, and move the result.  This 
often results in a meaningless value, but can be useful for some numeric 
data items.  



C-26  Changes Affecting Previous Versions
USAGE DISPLAY types, for example, would end up with 
LOW-VALUES in their storage.  Non-DISPLAY types ended up with 
odd values.  Some other COBOL systems would produce a value of zero 
in binary numeric items when LOW-VALUES were moved to them.  

In order to improve compatibility with these systems, ACUCOBOL-GT 
was changed in Version 3.0 so that a MOVE of LOW-VALUES to a 
numeric item moved ZERO to that item.  There were two concerns with 
this: (a) the compiler did not do this in every case, and (b) this changed 
the behavior of some programs that were functioning under prior 
versions of the runtime.

Starting with Version 4.0, the compiler uses the following rule when 
moving LOW-VALUES or HIGH-VALUES to a numeric item:

When the constant LOW-VALUES or HIGH-VALUES is the source of 
a MOVE statement whose destination is numeric, the move is treated as 
if the destination were defined as class alphanumeric.  This results in the 
memory occupied by the numeric item being filled with LOW/
HIGH-VALUES.  

This rule tends to produce the best results of both the pre-3.0 and 
post-3.0 behavior--the useful cases work out the same.  Also, this rule 
expresses what most programmers believe should happen.  

This new rule is used only for programs compiled for 4.0 semantics (this 
is the default).  If you use the “-C##” or “-Z##” option to compile for 
earlier semantics, the compiler does not use this rule, and the runtime 
adjusts to use the semantics that were in place for version “##”.  For 
example, if you compile with “-C24”, then the runtime will use the 
pre-3.0 semantics for the meaning of MOVE LOW-VALUES to a 
numeric item.  



Changes Affecting Version 3.1  C-27
C.17  Changes Affecting Version 3.1

Two compilation switches provide compatibility with Version 3.1:

The following section describes changes that can affect programs originally 
written with ACUCOBOL-GT Version 3.1.  

• The Vision Version 4 indexed file system uses a dual file format.  
Version 4 files cannot be read by ACUCOBOL-GT Version 3.1 or 
earlier runtimes.  For a complete description of Vision Version 4, see 
section 6.1.3, “Indexed Files - Vision” in Book 1, ACUCOBOL-GT 
User’s Guide.  Note that runtimes beginning with Version 3.2 are able to 
read any version of Vision file.  To continue to use Vision Version 3 
indexed files, see the entry for the V_VERSION configuration variable 
in Appendix H.

• Recursive PERFORMs are automatically enabled when you compile 
your programs with Version 3.2 or later.  Recursive PERFORMs are 
required for the use of EVENT PROCEDURES.  In very rare cases, this 
can affect the flow of control in a program.  A program would be 
affected, for example, if it performs paragraph “A”, which performs 
paragraph “B” and then returns from “A” before returning from “B”.  If 
you want, you can disable recursive PERFORMs with either the “-C31” 
(or earlier) flag or the “-Zr0” flag.  

• Beginning with Version 3.2, data in a list box column can no longer 
overflow into the adjacent column (causing all columns to shift to the 
right).  Instead, the data is truncated if it doesn’t fit in the allotted space 
for that column.  There is no way to prevent this change.  

• Beginning with Version 3.2, list box columns have a small buffer 
between them, so that the columns do not merge together when they are 
full.  This can cause partial loss of the last character in a column if your 
columns are very close together.  To correct this, set the configuration 
variable COLUMN-SEPARATION to zero.  

-C31 Causes the compiler to generate code according to the rules used by 
Version 3.1. 

-Z31 Creates object code that can be run with a Version 3.1 runtime.



C-28  Changes Affecting Previous Versions
• Beginning with Version 3.2, in environments that use system messages, 
such as Microsoft Windows, message processing during file I/O 
operations is no longer performed by default.  This is due to problems 
that can occur in programs that use multithreading, modeless windows, 
or event procedures.  To restore the old behavior, use the 
FILE-IO-PROCESSES-MESSAGES configuration variable.  Enabling 
message processing should only be done under certain conditions.  For a 
complete description, see the entry for 
FILE_IO_PROCESSES_MESSAGES in Appendix H.

• The IS NUMERIC test for COMP-3 fields is more rigorous beginning 
with Version 3.2.  In prior versions, any bit pattern was allowed in the 
sign field.  The runtime treated any bit pattern, other than 0x0D, as 
indicating a positive value.  Starting with Version 3.2, only signs of 
0x0C, 0x0D and 0x0F are treated as legal values in the IS NUMERIC 
test.  These values are the normal values for signs (there are two positive 
values to match various other COBOLs).  You can suppress this change 
by compiling for compatibility with Version 3.1 (i.e. “-C31”).  

• Beginning with Version 3.2, the DESTROY handle-1 statement now 
sets the value of handle-1 to NULL if the statement succeeds.  In prior 
versions the value of handle-1 was not changed.  You can prevent the 
setting of handle-1 to NULL by compiling for compatibility with 
Version 3.1 (i.e. “-C31”).  

C.18  Changes Affecting Version 2.4

The following section details changes that can affect programs originally 
written with ACUCOBOL-85 Version 2.4.  

• Support for 16-bit MS-DOS compilers and runtimes has been 
eliminated.  Support remains for 32-bit (Extended) DOS systems and for 
32-bit and 16-bit Windows systems.  This change does not affect the 
formal capabilities of ACUCOBOL-GT, but it does have some practical 
consequences.  

Primary among these is that ACUCOBOL-GT no longer supports the 
dynamic loading and linking of assembly language routines.  Version 2.4 
runtimes (and earlier) for 16-bit MS-DOS provided support for calling 
assembly language routines directly with the CALL verb.  In 



Changes Affecting Version 2.3  C-29
ACUCOBOL-GT Version 3.1 and later, if you want to use an assembly 
language routine you must link it directly into the ACUCOBOL-GT 
runtime in the same way that C routines are included.  

Users who require 16-bit DOS support should use Version 2.4.

C.19  Changes Affecting Version 2.3

The following section details changes that can affect programs originally 
written for the Version 2.3 ACUCOBOL-85 compiler.  

Compiler changes

New directory structure

Beginning with Version 3.0, a new directory structure is created when you 
load your media.  See the “READ_ME” file for the location of all extend 
files.  Note that the new directory structure may not be compatible with 
scripts you have in use at your site.  

Runtime changes

Relinking the runtime

If you relink the runtime, be aware that the Makefile in the “lib” subdirectory 
leaves the rebuilt runtime in the “lib” subdirectory.  This change allows you 
to rebuild the runtime system and test it without overwriting the original 
runtime, and without renaming it.  However, be sure to move the rebuilt 
runtime to the “bin” subdirectory, or move it to a directory in your path.

Alternate file systems

Check the “RELEASE” notes to verify the compatibility of older versions of 
extend interfaces to alternate file systems such as Btrieve and INFORMIX.



C-30  Changes Affecting Previous Versions
C.20  Changes Affecting Version 2.1

The following section details changes that can affect programs originally 
written for the Version 2.1 ACUCOBOL-85 compiler.

Compiler changes

MS-DOS requirements

For machines using MS-DOS, ACUCOBOL-GT Version 3.0 requires 
MS-DOS version 3.0 or later.  ACUCOBOL-85 Version 2.1 required only 
MS-DOS version 2.0.

Support for 64-bit architectures

Beginning with Version 3.0, ACUCOBOL-GT fully supports 64-bit 
machines without restriction.  At the current time, the only machine that fits 
this classification is the DEC Alpha machine running OSF (Open/VMS also 
runs on the Alpha machine, but it runs in 32-bit mode).  Version 2.1 of 
ACUCOBOL-85 also runs on 64-bit machines, but it contains some 
restrictions.  

In Version 2.1, the following items are restricted:

• Since RETURN-CODE is only 32 bits in size, it cannot hold a “long” 
value properly.  This makes it inappropriate for receiving “pointer” or 
“long” return values from a C subroutine.

• USAGE POINTER data items are also 32 bits, and so cannot actually 
hold a real machine address.

• The direct C interface cannot be used for “pointer” or “long” parameters 
since the 2.1 compiler does not allow you to pass a 64-bit item BY 
VALUE.  

Beginning with Version 3.0, these restrictions do not apply.  We made certain 
changes to the rules of ACUCOBOL-85, beginning with Version 2.3.  These 
changes affect only a few existing COBOL programs, but they have the 



Changes Affecting Version 2.1  C-31
potential of causing a working program to stop working.  Because of this, 
there is a method available to inhibit these changes.  See the “-Dw” option in 
section 2.1.9 of the ACUCOBOL-GT User’s Guide. 

The specific changes are:

• USAGE POINTER data items now occupy 8 bytes instead of 4 bytes.  
This allows a USAGE POINTER item to hold a full address on any 
machine architecture.  On a machine that is smaller than 64-bits, only the 
first 32 bits of the POINTER item are used.  The rest of the item is 
treated as FILLER.  

This is the change that is most likely to affect existing programs.  You 
can be affected if you have POINTER data items as part of a group item, 
since the group item’s size will change.  If you have this case, then either 
allow the size of the group to change and adjust any external references 
or redefinitions of it, or use the option described below to keep 
POINTER items in 4 bytes.  

• The special register RETURN-CODE was changed from PIC S9(9) 
COMP-5 to USAGE SIGNED-LONG.  For a description of 
SIGNED-LONG, see the ACUCOBOL-GT Reference Manual section 
5.7.1.8, “USAGE clause.”  This change allows RETURN-CODE to hold 
64-bit values on 64-bit machines, and so it can be used to hold any return 
value from a called routine.  This change should not affect any existing 
program.  

• You may now pass 8-byte data items BY VALUE to a called routine.  If 
you are on a 16- or 32-bit machine, then only the low-order 32 bits are 
actually passed.  On a 64-bit machine, all 64 bits are passed.  This 
provides a portable solution to the problem of passing “long” data.  This 
change does not affect any existing programs.  

For related topics, see the

• “-Dw” option in section 2.1.9 of the ACUCOBOL-GT User’s Guide. 

• “USAGE clause,” section 5.7.1.8 of the ACUCOBOL-GT Reference 
Manual.

• CALL RETURNING syntax in the entry for the CALL statement in 
section 6.6 of the ACUCOBOL-GT Reference Manual.



C-32  Changes Affecting Previous Versions
• next section on “RETURN-CODE Changes.”

RETURN-CODE changes

As discussed in the previous section, the special register RETURN-CODE 
has changed.  In versions of ACUCOBOL-85 prior to 2.3, RETURN-CODE 
was implicitly defined as:

77  RETURN-CODE   PIC S9(9)  COMP-5, EXTERNAL.

In Version 2.3 and later, it is defined as:
77  RETURN-CODE   SIGNED-LONG, EXTERNAL.

This change should have no noticeable effect on existing code, but it allows 
RETURN-CODE to be used sensibly on 64-bit machines.  This change is 
inhibited if you compile for compatibility with a prior version of 
ACUCOBOL-85.  For example, if you use “-C21” to maintain source 
compatibility with Version 2.1, then this change does not take place.

There is also a special register that redefines RETURN-CODE called 
RETURN-UNSIGNED.  Its definition is:

77  RETURN-UNSIGNED 
    REDEFINES RETURN-CODE  UNSIGNED-LONG, EXTERNAL.

You should use RETURN-UNSIGNED when handling pointer or “unsigned 
long” data types that are returned from an external routine.  If you use 
RETURN-CODE in these cases, you can get errors if the value is large 
enough to set the high-order bit of RETURN-CODE.  The problem is that 
these values are negative when interpreted as signed values, therefore 
COBOL will remove the sign if you move them to an unsigned destination.  

The RETURN-UNSIGNED special register is not defined if you compile for 
compatibility with prior versions of ACUCOBOL-85.

Runtime changes

For machines using MS-DOS, ACUCOBOL-GT Version 3.1 and later 
versions do not run under standard 16-bit DOS but do support 32-bit 
Extended DOS.  Version 3.0 requires MS-DOS version 3.0 or later.  
ACUCOBOL-85 Version 2.1 required only MS-DOS version 2.0.



Changes Affecting Version 2.0  C-33
C.21  Changes Affecting Version 2.0

The following section details changes that can affect programs originally 
written for the Version 2.0 ACUCOBOL-85 compiler.  

Compiler changes

The “-Ca” compiler flag was still available in Version 2.0, but was not 
documented.  (It was synonymous with the “-Va” flag.)  Since Version 2.1, 
“-Ca” has a new and different meaning.   So, you must now use “-Va” to 
cause opposite video intensities to be used for ACCEPT and DISPLAY 
statements.

C.22  Changes Affecting Version 1.5

The following sections detail changes that can affect programs compiled with 
the Version 1.5 ACUCOBOL-85 compiler.

Compiler changes

Note: All of the changes described in this section can be inhibited with the 
“-C5” compile-time option, which causes the compiler to use 
ACUCOBOL-85 Version 1.5 semantics.  The “-Z5” option (which 
produces object files compatible with Version 1.5) will also inhibit these 
changes.

• Since the release of Version 2.0, indexed, relative, and binary sequential 
files can have variable-length records.  You might have syntax in your 
existing programs that implies variable-length records, even though your 
files on disk are fixed-length.  If this is the case, you will receive error 
“39” when you try to open your existing files after recompiling your 
programs.  This type of error will occur most frequently with files that 
have multiple records declared for them (more than one “01” entry in the 
file’s FD).  In order to prevent the error, compile with either the “-C5” or 
“-Cf” compile-time option.  The “-Cf” option causes the compiler to 
assume fixed-length records for these kinds of files.



C-34  Changes Affecting Previous Versions
• The function of the RETURN-CODE special register was expanded in 
Version 2.0.  This register is used to return a status value to the operating 
system or calling program.  The return status of the SYSTEM library 
routine is also stored here.  This can cause an existing program to behave 
differently if you set RETURN-CODE to a particular value and then call 
the SYSTEM routine.  This can also cause programs that return zero to 
the operating system (the default value of RETURN-CODE) to return a 
non-zero value if they call SYSTEM.  Note that this change affects 
programs only after they have been recompiled with Version 2.0 or later.  
You can inhibit the change with the “-C5” compile-time option.

• The CALL PROGRAM verb behaves differently since Version 2.1.  If 
you used CALL PROGRAM under Version 1.5, use the “-C5” option to 
maintain compatibility when you compile with Version 3.0.  Also note, 
that since Version 2.1 the “-Ci” option implies the recursive PERFORM 
switch “-Zr”.

• Under Version 1.5, the “-Vc” compile-time option caused ACCEPT 
statements that entered numeric fields to be treated as if the CONVERT 
phrase were specified for them.  Since Version 2.1, this option also 
implies the CONVERT phrase for numeric edited fields. 

• Under Version 1.5, the WRITE and REWRITE verbs did not check the 
length of the record for legality.  Since Version 2.1, an illegally sized 
record returns error “44”.

• The option “-Zz” causes spaces in a USAGE DISPLAY numeric item to 
be treated as the value zero.  Because this action was formerly handled 
by the SPACES-ZERO runtime option, if you have a mix of object files 
from Version 3.0 or later and from any versions prior to Version 2.0, 
then you should use “-Zz” to create the new objects and should also add 
the SPACES-ZERO option to your runtime configuration file to handle 
prior versions.

Runtime changes

The changes described in this section take effect when you install the latest 
runtime system.

• Important: Beginning with Version 2.0 and continuing through Version 
3.1, the ACUCOBOL-GT runtime was delivered with Version 3 of the 
Vision file system.  Version 3.2 and later versions are delivered with 



Changes Affecting Version 1.5  C-35
Vision Version 4.  The Vision file system is used on all 
ACUCOBOL-GT implementations except VAX systems running VMS 
and Alpha Micro systems running AMOS.  Vision Version 3 introduced 
a new file format that is portable across all machines, and is (generally) 
smaller. Vision Version 4 introduced a dual file format, in which the 
indexes are kept in a separate file from the data.  When you are installing 
the latest version of the runtime system, you have three choices:

a. You can leave your existing data files in place.  ACUCOBOL-GT 
will continue to use them.  However, any new data files created by 
Version 3.2 or later will have the new Vision Version 4 format.  
This is the default behavior.

b. You can convert all of your files to the new format with the 
“rebuild” option of “vutil”.  In particular, running “vutil -rebuild 
-3” on your data files will convert them to the Vision Version 3 
format, and running “vutil -rebuild -4” on your data files will 
convert them to the Vision Version 4 format.

c. You can continue to use the old format for all of your data files, 
including any newly created ones.  To do this, add the line:

V-VERSION 2

to your “cblconfig” file.  This will ensure that any newly created 
files use the old format.

• The default method of editing numeric and numeric edited fields on the 
screen changed slightly when Version 2.0 was released.  In Version 1.5, 
when a user was editing an existing value, the user could type over the 
value.  This left any trailing digits in place, and sometimes caused 
confusion.  Beginning with Version 2.0, if the user starts typing over an 
existing field, the current contents are erased first.  If the user instead 
starts by editing the field (by using an arrow key or an editing key), then 
the default value remains on the screen and the user can modify it.  

This behavior is controlled by the “NUMERIC-UPDATES” and 
“EDITED-UPDATES” configuration options.  If you already have the 
following entries in your configuration file, then the default change will 
not affect you.  If you do not have these entries and want to maintain 
exact compatibility with Version 1.5, then you should add the following 
to your configuration file:



C-36  Changes Affecting Previous Versions
SCREEN  Numeric-Updates=Converted
Edited-Updates=Converted

C.23  Changes Affecting Version 1.4

The following sections describe changes that can affect programs compiled 
with the Version 1.4 ACUCOBOL-85 compiler.  These are the same changes 
that occur when you move from Version 1.4 to Version 1.5.

Compiler changes

The following changes can affect programs when they are re-compiled.  Note 
that all of these changes can be suppressed by the “-C4” compile-time 
option, which causes the compiler to use Version 1.4 semantics.  Also note, 
that the “-Z4” compile-time option (which produces 1.4 compatible object 
files) will also inhibit these changes.  Note that there are several important 
changes, especially if you are using VAX COBOL compatibility mode.  You 
should use “-C4” until you can evaluate the extent to which these changes 
affect your programs.  

• Important: Under Version 1.4, USAGE BINARY data items are treated 
as identical to USAGE COMP-1 data items.  Since Version 2.1, USAGE 
BINARY items are treated as defined by the ANSI standard.  This results 
in data items that are different except for data items described as PIC S9, 
S9(2), S9(3) or S9(4).  If you have any USAGE BINARY data items in 
files, you will need to specify “-C4” to maintain compatibility with your 
existing files until you can change your programs.

• Important: The internal format of COMPUTATIONAL data items is 
different under the following circumstances:

a. You are using VAX COBOL compatibility mode; or

b. You use the “-Zb” or “-Db” compile-time options.

Under previous versions, a data item that fit one of these conditions is 
stored as a COMP-1 data item if it is small enough (PIC S9(4) or 
smaller), otherwise, it is stored as a COMP-2 data item.  Since Version 
2.1, these items are stored as BINARY.  This is the same as COMP-1 for 
the small data items, but is different for the larger ones.  If either of these 



Changes Affecting Version 1.4  C-37
cases applies to your programs, and you store COMPUTATIONAL data 
items in files, then you should use “-C4” to maintain compatibility with 
your files until you can modify your programs.  

• In previous versions of ACUCOBOL-85, COMP-3 data items are 
always treated as signed.  They are also rounded up to an odd number of 
digits.  Beginning with Version 2.0, they act as described by their picture 
clauses.  

• In Version 1.4, COMP-6 data items always have an even number of 
digits.  Since Version 2.1, they have the number of digits specified in 
their picture clauses.  

• Since the release of Version 2.1, specifying CONVERT on a DISPLAY 
of a numeric edited data item causes that item to have its leading spaces 
stripped and causes the item to be justified according to the rules applied 
to numeric data items.  Under Version 1.4, output conversion of numeric 
edited items has no effect.

• In Version 1.4, specifying the CONTROL KEY phrase or the ON 
EXCEPTION Key-Name phrase for an ACCEPT statement implies 
automatic termination of a field when that field is filled.  Since the 
release of Version 2.1, this behavior is specified by the AUTO phrase.  
Because of the nature of the ACCEPT rules, this change does not affect 
programs using RM/COBOL compatibility mode.  

• Versions of ACUCOBOL-85 prior to 2.1 do not support file errors 14 or 
24 for relative files when the relative key data item is too small to hold 
the relative record number.  Version 2.1 and all later versions return the 
appropriate error in this case.  

• Since Version 2.1, assigning a file to the device name PRINTER without 
explicitly assigning an external file name causes the file to be assigned to 
“PRINTER” when you are using VAX COBOL compatibility mode.  
Under previous versions, the file is assigned to the same name as its 
internal file name.  

• In Version 1.4, the SYNCHRONIZED clause has no effect.  Since 
Version 2.1, data item synchronization occurs.



C-38  Changes Affecting Previous Versions
• The rules for the meaning of the ON EXCEPTION phrase of the 
ACCEPT statement have changed.  For versions prior to Version 2.0, 
this phrase catches numeric conversion errors.  If the Key-Name option 
is used, it also catches exception keys.  Since Version 2.0, it always 
catches exception keys and does not catch numeric conversion errors 
(these errors are handled automatically by the terminal manager).  
Specifying “-C4” or “-Ve2” retains the original meaning of this phrase.  
Programs using RM/COBOL compatibility mode are unlikely to be 
affected by this change.  

• Since Version 2.0, closing a window moves the cursor to the position it 
occupied when that window was created.  Before Version 2.0, the cursor 
moved to the home position of the restored window.  

• Many new reserved words have been added since Version 2.0.  Most of 
these can be treated as user-defined words through use of the new “-Rs” 
and “-Ri” compile-time options.  A few new words not covered by these 
options have also been added.  If they conflict with your current 
programs, you can individually treat them as user-defined words with the 
“-Rw” option.

• Several compile-time options were renamed in Version 2.0.  The original 
names are still supported, however, so this change does not affect 
existing programs or compile scripts, except for the “-Ca” option 
described earlier.  

Runtime changes

The following changes occur when the latest runtime is installed.  

• The default meaning of the Tab key has changed.  Under Version 1.4, the 
Tab key is an exception key that has a key value of “9”.  Beginning with 
Version 2.0, the Tab key is a termination key with a key value of “9”.  
The only difference is that under the previous version, the Tab key is 
allowed only when exception keys are allowed and it causes the ON 
EXCEPTION phrase to execute.  If you depend on this behavior, you can 
add the following line to your configuration file:

     KEYSTROKE Exception=9 ^I

This change was made so that the Tab key could function as a “next 
field” key when you are using the Screen Section.



Changes Affecting Version 1.3  C-39
• Several other keys were redefined in Version 2.0 for use with the Screen 
Section.  These changes do not affect existing programs, however, 
because the new defaults have the same effects as the old ones when used 
with field-level ACCEPT statements.  

• The maximum number of files that can be opened by the runtime was 
reduced from 64 to 32 in Version 2.0.  This was done to save memory.  
If you need more than 32 files, you can set the maximum to any value 
you want (up to 255) with the MAX_LOCKS configuration option.  See 
Appendix H for details.  

• A subtle change has been made in the processing of the user’s 
environment.  In previous versions, an entry in the user’s environment 
always takes precedence over an entry in the runtime’s local 
environment.  Beginning with Version 2.0, an entry in the user’s 
environment takes precedence at the time the local environment is 
initially created.  This change allows the SET ENVIRONMENT verb to 
have an affect on an entry initially defined in the user’s environment.  

• Since Version 2.1 the cursor does not leave the field when the field is 
filled.  Instead, it stays in the last character position and inhibits further 
data entry.  This difference is cosmetic, but if you prefer the method used 
by previous versions, you can add the following line to your 
configuration file:

KEYBOARD  Cursor-Past-End=Yes

C.24  Changes Affecting Version 1.3

If you are upgrading directly from Version 1.3, then several changes affect 
you.  These changes are the same as those you encounter when you move 
from Version 1.3 to Version 1.4, except that the current runtime does not 
support linked object files produced by the Version 1.3 compiler.



C-40  Changes Affecting Previous Versions
Compiler changes

The following changes affect programs when they are re-compiled.  You can 
specify the “-C3” option to suppress these differences.  Note that 
specifying “-C3” also implies the “-C4” flag discussed above.  You can also 
produce Version 1.3 object files with the “-Z3” compile-time option.  

• Under Version 1.3, a line sequential file accessed by a program compiled 
with RM/COBOL compatibility mode automatically has short records 
padded with spaces to fill the record area.  Beginning with Version 2.0, 
only line sequential files with automatic trailing space removal have 
their records padded with spaces.  This change was made to 
accommodate the behavior of RM/COBOL-85.  

• A numeric data item that is the object of a DISPLAY statement with the 
CONVERT option is left-justified when RM/COBOL compatibility 
mode is used under any version since 2.1.  In Version 1.3, the data item 
is right-justified.  This change was made to accommodate the behavior 
of RM/COBOL-85.  

• Under Version 1.3, the default SIZE of an ACCEPT field is always equal 
to the number of assignable character positions in the data item, plus 1 if 
the data item is signed, and plus another 1 if the data item contains digits 
to the right of the decimal point.  Beginning with Version 2.0, this 
amount is used only if the destination is numeric or edited and the 
CONVERT phrase is used.  Otherwise, the default SIZE is the physical 
size of the receiving field.  The difference is subtle and is unlikely to 
affect any current programs.  This change was made to better simulate 
the behavior of RM/COBOL.  

• In RM/COBOL compatibility mode, a field accepted with the ECHO 
phrase is redisplayed in a converted form only if the UPDATE phrase is 
also used.  In Version 1.3, the field is redisplayed in a converted form 
only if the CONVERT phrase is used.  This change was made to better 
simulate the behavior of RM/COBOL.  

• Certain line sequential files now have automatic trailing-space removal 
applied to them.  This depends on the device type specified in the file’s 
ASSIGN clause.  This will generally not affect existing programs except 
that files with automatic trailing space removal may not be opened for I/
O (due to the unpredictable record size).  This affects only those 
programs that do REWRITEs on sequential files.  If you have a program 



Changes Affecting Version 1.3  C-41
that does REWRITEs on a sequential file, you should check to make sure 
that the device type is not one that specifies automatic trailing space 
removal.  For more information, see Book 3, ACUCOBOL-GT 
Reference Manual, section 4.3.1, “FILE-CONTROL Paragraph,” under 
General Rules.

Runtime changes

The following changes occur when the latest runtime is installed.  These 
changes can generally be compensated for by various configuration options.

• Since Version 3.0, the runtime does not support linked object files 
produced by the Version 1.3 compiler.  If you have any linked object 
files, then you must convert them to the library format introduced in 
Version 1.4.  Note that the normal object files produced by the 1.3 
compiler are still supported.  

• The default keyboard configuration has changed.  The new default is 
very similar to the default RM/COBOL configuration.  Also, the 
KEY-MAP and EDIT-MODE configuration variables are no longer 
supported.  These have been replaced by the more powerful 
KEYBOARD and KEYSTROKE entries.  Most users of Version 1.3 
ACUCOBOL-85 reconfigured the keyboard with the KEY-MAP 
variable to simulate the RM/COBOL keyboard.  Most will not need to 
make any changes since this is the new default.  

• Users who used the default ACUCOBOL-85 keyboard under Version 
1.3 will have to reconfigure the keyboard to meet the Version 1.3 
standard.  Other users may need to make minor changes to match their 
previous configuration.  For details on the new default configuration and 
the KEYBOARD and KEYSTROKE variables, see the 
ACUCOBOL-GT User’s Guide, section 4.3.2, “Redefining the 
keyboard.”  Also, see the sample configuration file supplied with the 
compiler.  

• Under Version 1.3, files opened with the EXTEND phrase are 
automatically created if they do not exist.  Beginning with Version 2.1, 
they are not.  This change was made to match the ANSI standard.  You 
can maintain the Version 1.3 behavior by setting the configuration 
variable “EXTEND-CREATES“ to “1” in the configuration file.



C-42  Changes Affecting Previous Versions
• In VAX COBOL compatibility mode, a missing file opened for I/O is not 
automatically created.  Under Version 1.3, it was.  This change was 
made because the most recent release of the VAX COBOL compiler was 
changed this way.  

• Several VAX COBOL file status codes have been changed.  This change 
was made to match changes made to the VAX COBOL compiler.  

• When you are using the RM/COBOL-85 or RM/COBOL version 2 file 
status codes, a corrupted indexed file is now returned as file error “98” 
instead of file error “30”.  

• A single DISPLAY may now wrap around more than one screen row.  
Under Version 1.3, lines are truncated.  If the 1.3 behavior is desired, set 
the configuration variable “WRAP“ to the value “0”.  

• An ACCEPT or DISPLAY statement that references a row past the 
bottom edge of the window now causes that window to scroll.  Under 
Version 1.3, the statement is (largely) ignored.  You can cause a similar 
effect by setting the configuration variable “SCROLL“ to “0”.  

• The syntax of the COLOR-MAP configuration variable has changed 
slightly.  See the ACUCOBOL-GT User’s Guide, section 4.4.1, “Adding 
Color.”

• Object files produced by versions of ACUCOBOL-85 prior to Version 
1.3 may not be executed by the latest runtime system.  These programs 
must be recompiled with a 1.3 (or later) compiler.  This change was 
made to reduce the size of the runtime system and to improve its 
performance.  You can use the “-info” option of “ccbl” to locate object 
files created by a pre-1.3 version of ACUCOBOL-85.  These will be 
object files that contain a “vers” value of “2” or less.



D
 Compiler Error Messages
Key Topics

Introduction ............................................................................................ D-2
List of Errors .........................................................................................  D-2



D-2  Compiler Error Messages
D.1 Introduction

The ACUCOBOL-GT compiler produces a wide range of informative 
messages, including both Errors and Warnings.  An Error message is more 
severe than a Warning and, unlike a Warning, inhibits production of an object 
file by the compiler.

The following list contains the Error messages produced by the compiler.  In 
many cases, the meaning of an error message is clear from the message itself.  
Where this is not the case, a brief explanation follows the message.  In this 
listing, the term “%s” represents some string that will replace the “%s” before 
you see the message.  In most cases, the string will be a user-defined value, 
such as a file name, a record name or an item name.

The listing is in alphabetical order.  Note, however, that the first few pages 
list messages that begin with dynamically generated strings.  The 
alphabetical ordering ignores the string (which replaces the “%s” in the 
listings).  Therefore, if an error message starts with a dynamic string, look it 
up in this list by using the generic portion of the message that follows the 
string.

D.2  List of Errors

$

“$ELSE without a corresponding $IF”

“$END without a corresponding $IF”

Either $ELSE or $END was encountered, and there is no 
corresponding $IF.

%

“%s: a section and a paragraph have the same name” 

A section name may be the same as a data name, but must otherwise be 
a unique user-defined word.

“%s and %s must be the same size” 



List of Errors  D-3
“%s cannot be moved to ALPHABETIC” 

“%s cannot be moved to ALPHANUMERIC” 

“%s cannot be moved to ALPHANUMERIC EDITED” 

“%s cannot be moved to NUMERIC” 

“%s cannot be moved to NUMERIC EDITED” 

“%s contains no input fields” 

You have attempted to ACCEPT a screen item that includes no TO or 
USING phrase.

“%s: Data item > 64K illegal here” 

“%s: data item exceeds 2GB” 

The maximum data item size in ACUCOBOL-GT is 2 GB.  See Section 
5.1.6, “Large Data Handling,”,  in Book 3, ACUCOBOL-GT 
Reference Manual.  For a list of compiler limits, see Section A.2, 
“Limits and Ranges”.

“%s expected, %s found” 

“%s: File record exceeds 64MB”

The maximum record size allowed in ACUCOBOL-GTprograms 
compiled to Version 6.0 object format or later is 64 megabytes.  See 
Section A.2, “Limits and Ranges”.

“%s: File record exceeds 32K” 

The maximum record size allowed in ACUCOBOL-GT programs 
compiled to Version 5.2 or earlier object format is 32 kilobytes.

“%s ignored for OPEN INPUT”

“%s: illegal level 77” 

Level-number 77 entries may not have subordinate items except for 
level 88 items.

“%s: incorrect number of arguments” 

“%s: incorrect size for KEY AREA” 

The KEY AREA must be in multiples of seven.



D-4  Compiler Error Messages
“%s is ambiguous” 

The name here could be interpreted to be more than one thing.

“‘%s’ is an invalid destination”

Data cannot be stored in a literal value.

“%s is not a KEY of %s” 

SEARCH ALL requires that the compared item be referenced in the 
KEY IS phrase in the OCCURS clause of the searched table.

“‘%1’ is not a property or method of ‘CLASS %2’ “

“%s is not a START key of %s” 

“%s is not numeric” 

“%s: key must not be in a table” 

The data item specified in the KEY phrase of a SORT or MERGE 
statement may not be subordinate to an OCCURS clause.

“%s may not be used as a CODE-SET” 

A Format 2 Alphabet entry may be used in a COLLATING 
SEQUENCE phrase, but not in a CODE SET phrase.

“%s may not belong to %s” 

Key-table of the KEY AREA phrase of the SORT verb must name a 
data item that is not located in the record for sort-file.

In an INSPECT CONVERTING statement, the convert-string must be 
the same length as the compare-string.

“‘%1’ must be a ‘get’ property of ‘%2’”

“‘%1’ must be a ‘put’ property or method of ‘%2’”

“%s must belong to %s” 

The data item specified in the KEY phrase of a SORT or MERGE 
statement must be a data item in the record description associated with 
sort-file.

“%s: must have only one value for SEARCH ALL” 

A level 88 referenced in a SEARCH ALL statement may not specify a 
series or a range in its VALUE clause.



List of Errors  D-5
“%s: needs INDEXED BY phrase in declaration” 

The subject of a SEARCH statement must be a data item that contains 
an OCCURS clause including an INDEXED BY phrase.

“%s: no FALSE value defined” 

You cannot SET cond-name TO FALSE unless cond-name has a 
WHEN SET TO FALSE phrase associated with its defining level 88 
entry.

“%s not a key of %s”  

“%s: not a table” 

The subject of a SEARCH statement must be a data item that contains 
an OCCURS clause including an INDEXED BY phrase.

“%s not allowed here”

“%s not an ALPHABET name” 

You have attempted to use something in a place where an ALPHABET 
name must be specified.  It has not been defined to be an ALPHABET 
name.

“%s: not defined”

%s was used in a $IF, but is not defined either with a level 78 item or 
with a “/CONSTANT” compile switch.

“%s not unique in first 18 characters”

You have compiled with the “-Fx” option.  The object file was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  

This message occurs if a field name is not unique within the first 18 
characters.  The “%s” is the name found.  You can either change the 
field name or apply the NAME directive.

“%s: Procedure name not unique” 

The paragraph or section you are trying to ALTER, GO TO, or 
PERFORM has been defined more than once in the program.



D-6  Compiler Error Messages
“%s record larger than %s record” 

In the USING phrase of the SORT or MERGE statement, in-file 
records may not be larger than sort-file records.  In the GIVING 
phrase, sort-file records may not be larger than out-file records.

“%s: requires version %s runtime”

Some compiler options (like “-Z4” and “-Z5”) cause the compiler to 
generate an object file that can be run on a version of the runtime that 
is older than the compiler you are using.  These compiler options won’t 
allow you to compile new features that the old runtime can’t handle.  
When you attempt to compile such features into an object file for an 
older runtime, this error will be produced.

“%s: Screen name not allowed in this context” 

You have attempted to use a form of the ACCEPT or the DISPLAY 
verb that does not allow the use of a screen name from the Screen 
Section.

“%s subject to DEPENDING ON phrase” 

If the source or receiving item for a screen entry has an OCCURS 
clause, it may not include the DEPENDING phrase.

“%s: unknown XFD directive”

You have compiled with the “-Fx” option.  The object file was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  

The compiler did not recognize the directive you used.  The “%s” is the 
directive found.  Check for a typographical error.  

“*** %s overflow ***” 

“This table currently allows %s entries” 

“Sorry, you cannot make this table any bigger!” 

or

“You can increase this with the “-T%s” option” 

“For example, you might try “-T%s %s”” 



List of Errors  D-7
The compiler uses several internal tables to which it has given an 
arbitrary maximum size.  Your code requires a greater table size than 
the default.  This message tells you which table maximum has been 
exceeded and whether you can try recompiling with an increased size.  
The tables are:

The compiler always suggests double the default value in the error 
message.  Because higher values increase table size (using more 
memory), the values should not be set any bigger than they need to be.

A

“ACCEPT FROM DATE only returns two-digit year data”

“ACCEPT FROM DAY only returns two-digit year data” 

“ALL expected” 

“ALL ignored here” 

“ALL index not allowed here” 

“alphanumeric value expected” 

“ALTER para must start with GO TO: %s” 

“Ambiguous identifier: %s” 

The identifier here could be interpreted to be more than one thing.  If 
two group items use the same field name and the field is referred to in 
the program, the field name must be qualified by the name of the next 
higher group item with a unique name.

“Ambiguous symbol: %s” 

“Arithmetic expression expected” 

Table Compile Flag Default Value

Identifiers/statement - the maximum 
number of items in each statement

td 4096

Subscripts/statement - the maximum 
size for OCCURS

te 256



D-8  Compiler Error Messages
“AT value must be 4 or 6 digits” 

B

“Bad CHART STATUS definition” 

“Bad CRT STATUS definition” 

“Bad CURSOR definition” 

“Bad picture” 

“Bad picture for DATE: keyname”

You have compiled with the “-Fx” option.  The object file was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  

The PICTURE in a DATE directive must be six or eight bytes in 
length, either alphanumeric or numeric with no sign.

“Bad SCREEN CONTROL definition” 

“Badly formed condition” 

“Badly formed ID: %s” 

See the rules for COBOL Words, in Section 2.1.1.1 of the 
ACUCOBOL-GT Reference Manual.

“Badly formed number: %s” 

See the rules for Numeric literals, in Section 2.1.2.1 of the 
ACUCOBOL-GT Reference Manual.

“BY CONTENT parameters exceed maximum size” 

For Version 7.0 and earlier, the maximum parameter size is 64K.  For 
later versions, the maximum limit is 2GB.  

“BY expected” 

The REPLACE statement and the REPLACING phrase require the 
word BY.

“BY VALUE parameter %s illegal size” 



List of Errors  D-9
“BY VALUE parameter %s illegal type” 

“BY VALUE parameter %s mis-aligned” 

“BY VALUE parameter may not be a literal” 

“BY VALUE parameter must be an integer” 

C

“Can’t recover from earlier error, Good bye!” 

“CELL phrase used inconsistently” 

The CELL phrase appears in either the LINE or CLINE phrase, but not 
in both.  Or, the CELL phrase appears in either the COL or CCOL 
phrase, but not in both.  The CELL phrase must be specified in each of 
the LINE/CLINE or COL/CCOL phrases (or omitted from the pair). 

“Class already specified” 

The same category of data may not be specified more than once in the 
REPLACING phrase of an INITIALIZE statement.



D-10  Compiler Error Messages
“Class name not allowed here: %s” 

“Clause repeated” 

“COMP-X/N item too large” 

“Compilation aborted” 

“Compiled screen description too large” 

“Compiler error: Picture” 

“Condition name not allowed here: %s”  

“Conditional expression expected”  

“Configuration: %s” 

D

“Data item exceeds 2GB” 

The maximum data item size allowed in ACUCOBOL-GTprograms is 
2 GB.  For a list of compiler limits, see section A.2, “Limits and 
Ranges.”

“Data item exceeds 64K”  

The maximum data item size allowed in ACUCOBOL-GT programs 
compiled to Version 5.2 or earlier object format is 32 kilobytes.

“Data item not allowed here: %s” 

“Data-item: Redefined data item with value moved”

The compiler generates this error when it detects that a data item with 
value, already written into the object code, is being redefined too large 
for the current data segment.  If compiled, the resulting COBOL object 
would attempt to force the runtime to write to memory it has not 
allocated, likely resulting in a crash.

“Data missing from key segment keyname”

You have compiled with the “-Zx” option.  The object file was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  



List of Errors  D-11
Some part of the named key could not be placed in the dictionary.  This 
usually occurs because of filler.  For example:

01  my-record.
    03  my-key.
        05  filler    pic xx.
        05  field-1   pic xx.

If my-key is declared as a record key, you will receive this error 
because the area of the key described by “filler” is not included in the 
dictionary.

To correct this error, ensure that every character that is part of the key 
is included in some field that is part of the dictionary.  Use an XFD to 
give a field name to each filler, to ensure that fillers are included.

Example:

01  my-record.
    03  my-key.
*(( xfd name=myfiller ))
        05  filler   pic xx.
        05  field-1  pic xx.

“Dest may not be edited: %s”  

“Different number of SYMBOLIC names and values” 

There must be a one-to-one correspondence between occurrences of 
“name” and “number” in the SYMBOLIC CHARACTERS clause of 
the SPECIAL-NAMES paragraph. 

“Directive word too long: keyname”

You have compiled with the “-Fx” option.  The object file was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  

With one exception, the words contained in a directive, including field 
names, cannot exceed 30 characters.  The value of a WHEN directive 
may consist of up to 50 characters.  You have exceeded the limit.



D-12  Compiler Error Messages
“Disk full”  

“Duplicate ACCESS”  

“Duplicate ASSIGN” 

“Duplicate ENTRY point name: %s”

The ENTRY point name has already been used in this program. 

“Duplicate interface ‘%s’”

“Duplicate NOT %s phrase” 

Various NOT phrases may be used in the context of specific statements 
(READ ... NOT AT END, COMPUTE ... NOT ON SIZE ERROR).  
The compiler has encountered more than one such NOT phrase in a 
statement. 

“Duplicate ORGANIZATION”  

“Duplicate paragraph name: %s” 

The paragraph or section you are trying to ALTER, GO TO, or 
PERFORM has been defined more than once in the section. 

“Duplicate RECORD KEY”  

“Duplicate STATUS”  

E

“edited item too large” 

The maximum edited data item size in ACUCOBOL-GT is 255 bytes. 

“ELSE, END-IF or ‘.’ required after NEXT SENTENCE”  

“END-PERFORM required” 

The compiler has encountered code in which a scope delimiter is 
required for a PERFORM statement. 

“Entry for product ‘compiler’ in file ‘%2’ is corrupt”

The license file contains garbled information about the compiler 
product.  The compiler cannot be executed until the license file has 
been repaired.  Contact Technical Support.



List of Errors  D-13
“Error file name is the same as the source name” 

Your ccbl command has instructed the compiler to name one of its 
output files with the same name you’ve given for the source code file. 

“Error: input file is Vision format”

You have specified a Vision format file as input to “vutil -load”.  The 
source file must be the name of the binary, relative, or line sequential 
file. See Section 3.3.10 of the User’s Guide for details on this command.

“Errors found, size information suppressed”  

“EVALUATE nesting level exceeded” 

The maximum depth of EVALUATE statement nesting is 10 levels. 

“Evaluation version - expires %1/%2/%3”

“Exception handlers require recursion (-Zr)” 

“EXIT SECTION outside of SECTION”

EXIT SECTION must be used within a SECTION.

“Expecting condition after NOT”  

“EXTERNAL file in SAME AREA illegal”  

“EXTERNAL in REDEFINES” 

The REDEFINES clause and the EXTERNAL clause may not be 
applied to the same data item. 

“EXTERNAL name must be unique” 

The same name may not be given to more than one file or data item that 
is declared EXTERNAL within a program. 

“Extra segment exceeds 64K” 

The “extra segment” is that part of the object file that contains 
descriptors and other miscellaneous elements.  This category is 
restricted to 64 KB.  The main factor here is the number of different 
items that are referenced in the Procedure division. 



D-14  Compiler Error Messages
F

“FD already defined for file”  

“Field xxx causes duplicate database data”

This is a warning message that can appear if you compiled with the 
“-Fx” option.  The data dictionary was built, and the interface will 
operate correctly.  The warning informs you that your record definition 
should be restructured.  Your current definition is set up in such a way 
that:

• you have overlapping key fields, and

• both keys must be represented in the database as separate items.

The interface will handle this situation correctly.  It will keep the 
overlapping keys updated simultaneously, so that they always have the 
same value.  However, the warning alerts you that you have the same 
data represented twice in the database.  This is dangerous, because 
someone at the site might access the database via SQL and accidentally 
change only one of the keys.

Here’s an example of the problem, and a description of how to correct 
it (the example assumes that both key-1 and key-2 have been declared 
as keys):

01 order-record.
   03  key-1.
       05  field-a         pic x(5).
       05  field-b         pic 9(5).
       05  key-2
       redefines field-b   pic x(3).

This example will generate the warning message.  

Because “key-2” is a key, it must also be represented in the XFD.  It 
doesn’t correspond exactly to any other data field, so it must be entered 
as a separate field in the XFD.  

In the COBOL view of the file, “key-1” and “key-2” overlap.  But the 
requirements of XFD storage force the same data (known to COBOL 
as “field-b”) to be physically represented twice in the XFD.  Any 
updates to the data from any ACUCOBOL-GT program will correctly 
update both fields.  Updates from outside of ACUCOBOL-GT carry no 
such guarantee.  



List of Errors  D-15
In this example, you can correct the situation by breaking “field-b” into 
two columns, so that “key-2” corresponds exactly to another data field:

01 order-record.
   03  key-1.
       05  field-a           pic x(5).
       05  field-b.
           07  field-b1      pic x(3).
           07  field-b2      pic 9(2)
       05  key-2
          redefines field-b  pic x(3).

“Figurative constant not allowed: %s” 

A figurative constant (zero, space, quote, etc.) cannot be used in this 
context. 

“Figurative constant not allowed here: %s”  

“File %s in multiple areas” 

The named file appears in more than one SAME RECORD AREA 
clause. 

“File %s undefined” 

A file named in the I-O-CONTROL paragraph must be defined by a 
SELECT clause in the FILE-CONTROL paragraph. 

“File must be a SORT file”  

“FILLER cannot be EXTERNAL”  

“Floating-point literal not allowed here”  

“Floating-point VALUE not allowed here”  

“FOOTING larger than page size”  

“FOOTING must be > 0”  

“FROM/TO/USING error” 

FROM, TO, and USING can be used only once each in a particular 
screen item description.  USING cannot be used with either FROM or 
TO in the same description. 



D-16  Compiler Error Messages
“Function argument %s must be alphanumeric” 

“Function argument %s must be numeric” 

G

“GIVING data item for file %s is too small” 

“GROUP expected after USE”

You have compiled with the “-Fx” option.  The object file was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  

The “use group” directive must include both words.

I

“ID greater than 60 characters: %s...” 

“%s” is truncated to 60 characters.

“Identifier expected, %s found”

“Identifier unresolved: %s OF %s” 

An attempt to qualify an identifier, as in “field of record”, failed.  
Check the spelling of the qualifier. 

“Illegal ACCESS” 

SEQUENTIAL is the only ACCESS MODE legal with 
ORGANIZATION SEQUENTIAL.  

“Illegal arithmetic expression”  

“Illegal BLANK ZERO” 

The BLANK WHEN ZERO clause can be used only for numeric or 
numeric edited elementary items.  The picture of the item may not 
include “*” or “s”. 



List of Errors  D-17
“Illegal class condition”  

“Illegal clause(s) for sort file”  

“Illegal color value” 

The FOREGROUND-COLOR and BACKGROUND-COLOR phrases 
take a literal in the range 0-7. 

“Illegal COMPRESSION value” 

The COMPRESSION factor may not be greater than 100. 

“Illegal condition”  

“Illegal hex literal” 

Hexadecimal literals must consist of the digits “0”-“9” or “A”-“F”. 

“Illegal indicator: ‘%s’” 

The indicator area of a COBOL line may contain ” “, “-”, “*”, “$”, “/”, 
“D”, or, in Terminal mode, “\D”.  

“Illegal INITIALIZE item: %s” 

The destination may not contain a RENAMES clause. 

“Illegal JUSTIFIED clause” 

The JUSTIFIED clause can be applied only to alphabetic and 
alphanumeric data items.  It must be applied to an elementary item, 
rather than to the group item. 

“Illegal KEY phrase” 

The KEY phrase of a READ statement can be used only with 
ORGANIZATION INDEXED files and cannot be used with a READ 
NEXT or a READ PREVIOUS. 

“Illegal level for OCCURS” 

The OCCURS clause may not be used on a level 01 or a level 88 item. 

“Illegal level number” 

A level 77 item cannot be included in the File Section or in the Screen 
Section.  The Screen Section allows only levels 1-49 and level 78. 



D-18  Compiler Error Messages
“Illegal level number: %s” 

“Illegal OCCURS value” 

In a Format 1 OCCURS, the table-size must be more than zero. “Illegal 
or missing ASSIGN variable of %s” 

“Illegal or missing BOTTOM variable of %s” 

“Illegal or missing DEPENDING ON variable of %s” 

“Illegal or missing FOOTING variable of %s” 

“Illegal or missing KEY variable of %s” 

“Illegal or missing LINAGE variable of %s” 

“Illegal or missing PADDING variable of %s” 

“Illegal or missing STATUS variable of %s” 

“Illegal or missing TOP variable of %s”  

“Illegal parameter: %s”

“Illegal parameter: literal”

Generated by the compiler if low-values or other figurative constants 
are passed to ActiveX or COM methods or properties as parameters 
where the method or property expects a “by reference” parameter:  
This is the same error message you get when passing a figurative 
constant as a USING parameter in a CALL statement.  One way to tell 
that the ActiveX/COM method expects a “by reference” parameter is 
by viewing the entry in the COPY file for that control or object.  If the 
type has "BYREF" or if the numeric value divided by 16384 is odd, 
then you may not pass a figurative constant.

“Illegal picture: %s” 

“Illegal POINTER: %s” 

“Illegal receiver for source type: %s” 

The compiler has encountered an illegal MOVE. 

“Illegal REDEFINES” 



List of Errors  D-19
“Illegal RENAMES” 

“Illegal replacement size: %s” 

In an INSPECT REPLACING statement, the replace-string must be the 
same length as the target-string. 

“Illegal SD clause: %s” 

“Illegal sign condition” 

The sign condition can be applied only to an arithmetic expression. 

“Illegal SIGN/USAGE for file with CODE-SET” 

“Illegal source type for CONVERSION” 

The compiler will allow MOVE WITH CONVERSION only of 
alphanumeric items. 

“Illegal statement in current declarative” 

Occurs when a program attempts to execute a disallowed statement in 
the context of a USE FOR REPORTING declarative or a file 
declarative that has been triggered by a status “22” for a file open with 
BULK-ADDITION.  In both of these cases, the declarative is triggered 
as part of the file operation (instead of after the operation completes) 
and several restrictions apply.  The program may not perform any file 
operations or start or stop any run units (including chaining).  In 
addition, the program that contains the declarative may not perform an 
EXIT PROGRAM.  

Note: The program continues running after printing this statement 
(halting the program at this point would corrupt the data file).  

This error message indicates a programming error that should be 
corrected.  There is no way to disable the error message.  You can find 
the offending statement by running the program under the debugger.  
When the statement executes, the runtime will break to the debugger 
with this message and place the cursor at the statement.  

“Illegal table size: %s” 

Your compiler command line has specified an illegal value for a 
user-resizable table ( “-ta”, “-tb”, etc.).  See the internal table list near 
the beginning of this section.



D-20  Compiler Error Messages
“illegal USAGE” 

“Inconsistent picture” 

“INDEXED key not in record: %s” 

The key to an Indexed record must be defined within the record. 

“INDEXED key outside of smallest record: %s” 

In an Indexed file with variable record size, the offset of the end of the 
key must be within the bounds of the smallest possible record size.  
Multiple record definitions (01 levels) within a file description may 
generate a variable length record file. 

“Indexing not allowed in this context” 

“INSPECT TRAILING syntax error” 

“Interface definition ‘%s’ not found” 

“*** Internal error #%s ***” 

The compiler has encountered a syntax error for which it does not have 
a useful descriptive message.  Anytime you get such a message from 
the compiler, notify Technical Support.  If we are already aware of 
your particular syntax problem, we can tell you what to fix in your 
source.  We may even have a more recent version of the compiler that 
detects the error more elegantly.  If we have not been made aware of 
this oversight, your call will allow us to find and correct it. 

“INTO identifier may not be reference modified” 

In a STRING ... INTO statement, the destination may not be in the 
form “... INTO dest-field ( 2 : 4 )”.  If you want to start modifying the 
destination field at a position other than the leftmost, use the POINTER 
phrase. 

“Invalid CODE-SET file type” 

CODE-SET may be specified in the FD of sequential files only. 

“Invalid CLSID ‘%s’” 

“Invalid directive syntax”

The $SET directive was used incorrectly.

“Invalid GIVING data item for file %s”



List of Errors  D-21
“INVALID KEY illegal in this context” 

The INVALID KEY phrase of the DELETE statement may not be used 
with a file declared ACCESS MODE SEQUENTIAL.  The INVALID 
KEY phrase of the REWRITE statement may not be used for 
ORGANIZATION SEQUENTIAL or ORGANIZATION RELATIVE 
files if either uses ACCESS MODE SEQUENTIAL. 

“Invalid switch number: %s” 

The switch named in the SPECIAL-NAMES paragraph must be one of 
SWITCH-1 through SWITCH-26, SWITCH 1 through SWITCH 26, or 
SWITCH “A” through SWITCH “Z”. 

“Invalid syntax in COPY statement” 

K

“Key bigger than 250 bytes: %s” 

The maximum indexed key size in ACUCOBOL-GT is 250 bytes.

“KEY must be first: %s” 

More than one KEY IS phrase is allowed in each OCCURS clause.  If 
one KEY IS phrase references the data-name of the entry that contains 
the OCCURS clause, it must be the first KEY IS phrase in the clause. 

“KEY not found in table: %s” 

The key named in the KEY IS phrase of the OCCURS clause must be 
contained within the table. 

L

“Large REDEFINES of a regular variable with a value: %1 redefines %2” 

“LENGTH ignored in this context” 

“License file ‘%s’ inaccessible”

The license file cannot be located.  The message displays the name of 
the license file that the compiler is trying to locate.  The compiler 
cannot execute without a valid license file.

“License file ‘%s’ is invalid” 



D-22  Compiler Error Messages
“LINAGE must be > 0” 

“LINAGE required for END-OF-PAGE processing” 

“LINAGE requires SEQUENTIAL organization” 

“LINAGE-COUNTER is a reserved data item” 

“LINKAGE not listed in USING: %s” 

An item defined in the Linkage Section is not referenced in the USING 
phrase of the Procedure Division statement. 

“Listing file name is the same as the source name” 

Your ccbl command has instructed the compiler to name one of its 
output files with the same name you’ve given for the source code file. 

“literal expected” 

“Literal must be alphanumeric” 

“Literal too long” 

Prior to version 1.5, an ALL literal not associated with another data 
item had to be a single character. 

M

“May not be a SEQUENTIAL file” 

A Format 1 DELETE statement may not be used on a file with 
ORGANIZATION SEQUENTIAL. “May not be alphanumeric: %s” 

“May not be alphanumeric edited: %s” 

“May not be edited: %s” 

“May not be floating-point: %s” 

“May not be numeric: %s” 

“May not be numeric edited: %s” 



List of Errors  D-23
“May not INQUIRE on style %s” 

You may not use a style name in the INQUIRE statement.  You can 
only inquire the value of an element of a control.  Because styles do not 
have values, using a style name with INQUIRE is not meaningful.

“May not modify or invoke ActiveX Controls in DISPLAY” 

“May not specify both LINES and SIZE” 

While it is acceptable to specify both height and length for a BOX, a 
LINE can have only one dimension. 

“meaningless WHEN phrase” 

“MERGE illegal in DECLARATIVES” 

“Mismatching OCCURS structure” 

If an OCCURS clause applies to a screen entry with TO or USING, the 
receiving item must have an OCCURS of the same number.  With 
FROM, the source item must have an OCCURS of the same number or 
no OCCURS at all. 

“Missing ‘)’” 

“Missing ASSIGN clause” 

“Missing closing quote” 

A quoted string must have both opening and closing quotes. 

“Missing continuation line quote” 

If a continued line ends with a nonnumeric literal without a closing 
quotation mark, the first non blank character in Area B of the 
continuation line must be a quotation mark. 

“Missing COPY file: ‘%s’” 

The filename specified after the word COPY is not found in the 
directory in which it is expected.  Consider whether it is spelled 
correctly, or check your COPYPATH environment variable. 

“Missing COPY filename” 

The filename specified after the word COPY is not found.  Consider 
putting the file name in quotes. 



D-24  Compiler Error Messages
“Missing directive”

The $SET directive was used incorrectly.

“Missing END-%s” 

Several statements in COBOL, among them IF, SEARCH, PERFORM, 
and EVALUATE, can have their scope delimited by the END- 
(END-IF, END-SEARCH, END-PERFORM) phrase.  The compiler 
has encountered code in which such a scope delimiter is required. 

“Missing exponent” 

A digit in the range 0-9 must follow the E in a floating point literal. 

“Missing field name after WHEN”

You have compiled with the “-Fx” option.  The object file was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  

A valid field name, or the word OTHER, must be specified with the 
“when” directive.

“Missing KEY phrase in definition: %s”  

“Missing library filename” 

The OF phrase of the COPY statement has no pathname specified. 

“Missing operand” 

“Missing or invalid object expression” 

“Missing PARA/SECTION” “Can’t recover, good bye!”

“Missing period” 

“Missing RECORD KEY clause” 

“Missing SELECT for this file” 

“Missing switch number” 

The switch named in the SPECIAL-NAMES paragraph must be one of 
SWITCH-1 through SWITCH-26, SWITCH 1 through SWITCH 26, or 
SWITCH “A” through SWITCH “Z”. 



List of Errors  D-25
“Missing value” 

“Missing WHEN phrase” 

The SEARCH statement and the EVALUATE statement always 
require a WHEN phrase. 

“Missing ‘=’ in XFD directive”

You have compiled with the “-Fx” option.  The object file was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  

The “name” directive requires an “=” sign.  The “when” directive 
requires a comparison operator.

“Mnemonic name required” 

Each system-name in the SPECIAL-NAMES paragraph must be 
associated with a mnemonic name. 

“Modification of %s not allowed” 

LINAGE-COUNTER may never be explicitly modified by the 
program. 

“Modification of screen item” 

It is not legal to ACCEPT or DISPLAY an item defined in the Screen 
Section using reference modification. 

“More subscripts needed: %s” 

An item subordinate to an OCCURS clause has been referenced with a 
number subscripts or indexes less than its level of nesting. 

“More than 64K of parameters illegal for this CALL” 

“Multiple pictures” 

“Multiple USE for %s mode” 

The INPUT, OUTPUT, I-O, and EXTEND phrases may each be 
specified in only one USE statement in a Procedure Division. 

“Multiple USE for file: %s” 

A particular file may not appear in more than one USE statement in a 
program. 



D-26  Compiler Error Messages
“Multiple USE for OBJECT” 

“Must be a GROUP item: %s” 

Both the source and the destination of a MOVE CORRESPONDING 
statement must be group items. 

“Must be alphanumeric: %s” 

“Must be in Working-Storage or Linkage: %s” 

“Must be INDEXED file: %s” 

“Must be integer: %s” 

“Must be level 01 WORKING-STORAGE for EXTERNAL” 

A data item can be declared EXTERNAL only if it is defined in the 
Working Storage section.  The item must be at level 01 or level 77.  
(Except for the ability to take subordinate items, level 77 is often 
implied where level 01 is specifically mentioned.) 

“Must be SEQUENTIAL” 

A file must be ORGANIZATION SEQUENTIAL to CLOSE REEL, 
CLOSE UNIT, CLOSE NO REWIND, WRITE NO CONTROL, or 
WRITE ADVANCING. 

“Must be size 1 in this context: %s” 

“Must be USAGE DISPLAY: %s” 

“Must not be subscripted: %s” 

N

“Native character specified twice, ordinal value = %s” 

When you specify an ALPHABET in the SPECIAL-NAMES 
paragraph, each character may appear only once. 

“Needs DELIMITED BY to use COUNT” 

“Needs DELIMITED BY to use DELIMITER” 

“NEXT/PREVIOUS illegal for RANDOM ACCESS” 



List of Errors  D-27
“No entry for product ‘compiler’ in file ‘%2’”

The license file does not contain an entry for the compiler product.  
The compiler cannot be executed until the license file is corrected.  
Contact Technical Support.

“No FD for %s” 

“No records defined for file” 

“No SELECT for file: %s” 

“Non-native object file produced” 

“Not a condition-name: %s” 

Only level 88 items may be SET to TRUE or FALSE. 

“Not a file: %s” 

The USE statement must include INPUT, OUTPUT, I-O, and 
EXTEND or the name of a file described in the Data Division. 

“Not a record of a file: %s” 

“Not a record of a SORT file: %s” 

The RELEASE statement may act only on the records of sort files. 

“NOT, END-ACCEPT or ‘.’ required after NEXT SENTENCE” 

“Null ENTRY point name”

The program has used “” as an ENTRY point name.

“number too large” 

The maximum numeric data item size in ACUCOBOL-GT is 18 digits. 

“Number too large: %s” 

“Numeric literal not allowed here” 

“NUMERIC test is constant, because of the type of variable being tested”

The compiler issues this warning in cases where the item being tested 
is a binary item.  This test should always return TRUE for binary items, 
since binary items can't be non-numeric.  You can optimize your 
COBOL program by removing constant tests.



D-28  Compiler Error Messages
“numeric value expected” 

“Numeric VALUE not allowed here” 

O

“Object file name is the same as the source name” 

Your ccbl command has instructed the compiler to name one of its 
output files with the same name you’ve given for the source code file. 

“Object wrong type for subject” 

If the subject of an EVALUATE statement is, or can be evaluated to 
be, TRUE or FALSE, the object must be a phrase that is, or can be 
evaluated to be, TRUE or FALSE (e.g., EVALUATE TRUE WHEN a 
= b ..., or EVALUATE a > b WHEN FALSE ...).  Otherwise, the object 
must be something that would balance the subject in a conditional 
expression (e.g., EVALUATE field1 WHEN “a” ...). 

“OCCURS DEPENDING illegal in Screen Section” 

“OCCURS DEPENDING in OCCURS illegal” 

“OCCURS DEPENDING must be last in group: %s” 

“Offset too large: %s” 

When you are using a subscript of the form “(data-item + integer)”, the 
integer can be no greater than 32767. 

“Only 1 level of OCCURS allowed” 

Nested OCCURS are not permitted in the Screen Section. 



List of Errors  D-29
“Operation has no effect” 

“ORGANIZATION clash” 

“*** Out of Main Memory! ***” 

P

“Pic ‘V’ illegal in COMP-X/N” 

COMP-X and COMP-N items can be defined with only ‘9’ or only ‘X’ 
symbols. 

“PICTURE and/or VALUE clash in Screen Section” 

The PICTURE and VALUE clauses may not both be specified for the 
same screen description entry, either explicitly or implicitly by the use 
of FROM, TO, or USING. 

“Picture required for floating-point in this context” 

A screen item must have a picture.  If you are using a FLOAT item with 
USING or FROM, give it a picture within the Screen Section. 

“Picture too long” 

The maximum picture string in ACUCOBOL-GT is 100 characters. 

“Pixel AT value must be 8 digits”

When using the AT verb together with the PIXEL verb, 8 digits are 
mandatory to specify the position, or the variable being used must be a 
PIC 9(8).

“Positive integer required” 

The value for this field must be greater than zero and include no 
decimal fraction.  A subscript or index must be a positive integer. 

“PREVIOUS illegal for sequential file” 

This refers to ORGANIZATION SEQUENTIAL. 

“Procedure name not allowed here: %s” 

“Procedure name required” 

GO TO must always be followed by a paragraph or section name. 



D-30  Compiler Error Messages
“Program code exceeds 1MB” 

The maximum size of the code portion of an ACUCOBOL-GT object 
file is 1 MB.  The size of the program code is largely determined by the 
size of the Procedure division of the program.  If you cannot streamline 
the instructions in the Procedure division to fit within this restriction, 
you might split the logic into two programs, one called by the other. 

“Program data exceeds 32 segments” 

The 1 MB restriction on the program data is monitored in terms of 
segments.  The factors determining this size are as described above. 

“Program data exceeds 64K” 

The maximum size of the data portion of an ACUCOBOL-GT object 
file for any version prior to 1.5 is 64 KB.  Thus, this restriction might 
be encountered when you are using the “-Z4” compiler option.  
Starting with Version 1.5, the maximum program data size is 1 MB.  
The size of the data is basically the sum of the sizes of the items in the 
data division (including File Descriptions) and of the literal strings 
used within the program (including the Procedure Division). 

“Program-wide CURSOR already defined” 

The CURSOR phrase of the ACCEPT statement may not be specified 
if a CURSOR phrase is specified in the program’s Configuration 
Section. 

R

“Radio Buttons cannot have array elements in a VALUE or USING phrase”

This error is generated at the occurrence of a radio button control in the 
screen section whose VALUE (or USING) is an array.  This is not 
allowed due to the internal functionality of how data is copied to 
COBOL data items once the screen section terminates.

“Record belongs to SORT file: %s” 

WRITE and REWRITE statements may not apply to records of files 
described with an SD rather than an FD in the File Section. 



List of Errors  D-31
“REDEFINES not allowed in Screen Section” 

“REDEFINES of an OCCURS item illegal under ANSI” 

“Reference modification of numeric function is illegal” 

“Reference modifier illegal in this context” 

“Reference modifier out of range” 

Using reference modification, either the start position is beyond the 
end of the referenced item, or the calculated end position would be. 

“RELATIVE key in record: %s” 

The key to a Relative record must be defined outside of the record. 

“RELATIVE Key is required”

A relative key must be indicated if ACCESS DYNAMIC or ACCESS 
RANDOM MODE is specified.

“RELATIVE key must be PIC 9: %s” 

“REMAINDER may not be used if any operand is External Floating-Point” 

“Repeated OCCURS” 

“REPLACING LEADING/TRAILING requires literals” 

“REPLACING not allowed on nested COPY” 

“RETURN-CODE is a reserved data item” 

S

“Screen item subject to OCCURS” 

It is not legal to ACCEPT or DISPLAY an item defined in the Screen 
Section with or subordinate to an OCCURS clause. 

“SEARCH ALL must have only one WHEN” 

“SEARCH statement missing WHEN phrase” 

A SEARCH statement must have a WHEN phrase.



D-32  Compiler Error Messages
“SECTION required” 

The use of Declaratives is part of a Format 1 Procedure Division.  The 
Format 1 Procedure Division requires the use of Sections. 

“Segment %s exceeds 64K” 

When you are using segmentation, an individual segment may not be 
larger than 64 KB. 

“Segments must be in order” 

When segment numbers are used on the SECTION header, they must 
be used in ascending order. 

“SELECT for this file inconsistent with a SORT file” 

“SIZE or LINES phrase required” 

A DISPLAY LINE statement requires that either the length or height 
be specified. 

“Sorry, multiple TALLYING counters not supported” 

“Sorry, this compiler may not be used on a stand-alone basis” 

Some of our customers are licensed to include a limited-use version of 
the ACUCOBOL-GT compiler in their software application for sale to 
their own customers.  Any attempt to activate such a compiler from the 
command line, rather than from inside the application, will produce an 
error. 

“SORT file not allowed here” 

A Sort file is a file described with an SD rather than an FD in the File 
Section. 



List of Errors  D-33
“SORT illegal in DECLARATIVES” 

“Source name too long: %s” 

“Special name not allowed here: %s” 

“START illegal for RANDOM ACCESS files” 

“START illegal for SEQUENTIAL files” 

“Statement too large at code address %s” 

The maximum Paragraph size in ACUCOBOL-GT is 32767 bytes. (A 
statement cannot be larger than the maximum paragraph.) 

“Status name not allowed here: %s” 

“STATUS variable %s should be X(2)” 

“String must be 1 character in context: ‘%s’” 

“Style name not allowed here” 

“Subscript may not be table item: %s” 

A data item used as a subscript may not itself be subordinate to an 
OCCURS clause. 

“Subscript out of bounds: %s” 

The subscript or index on a table entry is less than 1 or greater than the 
number in the OCCURS that defines the table. 

“Subscript required: %s” 

An item subordinate to an OCCURS clause has been referenced 
without a subscript or index. 

“Symbol not in LINKAGE: %s” 

“Symbol not in WORKING-STORAGE: %s” 

“SYMBOLIC name expected” 

The SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES 
paragraph must include at least one “name” naming a symbolic 
character. 



D-34  Compiler Error Messages
“SYMBOLIC value must be between 1 and %s” 

The “number” in the SYMBOLIC CHARACTERS clause of the 
SPECIAL-NAMES paragraph must be in the range of ordinal positions 
in the alphabet being referenced. 

“SYNC not allowed in Screen Section” 

“Syntax error” 

“Syntax error: %s” 

“syntax error scanning %s” 

T

“This constant not allowed: %s” 

“This evaluation copy of ACUCOBOL has expired!” 

“Please call customer support if you would like to upgrade to a full 
version or if you wish to extend your evaluation period.” 

“TO value too small in OCCURS” 

The maximum value cannot be less than the minimum value for a 
Format 2 OCCURS clause. 

“Too few parameters: %1 required, %2 found” 

“Too many ALPHABETS (max  100)” 

“Too many delimiters (max  30)” 

“Too many destinations (max  30)” 

“Too many destinations (max  50)” 

“Too many ENTRY points (max 65536)”

The program has more than 65536 ENTRY statements.

“Too many ENTRY point pages (max 65536)”

It would take more than 65536 object file pages to write out the 
ENTRY point table.



List of Errors  D-35
“Too many errors, compilation aborted” 

The compiler has a limit on the number of errors it will track on any 
one compile cycle.  Please correct some of the errors encountered to 
this point, and try again.  

“Too many EXTERNAL items (max  256)”

“Too many files open by the current process” 

Vision returns this system error (30) when its attempt to create an 
additional file segment is stopped because the limit imposed by 
MAX_FILES has been reached.  Error code is one of the following:  
94,10; 97; or 97,10; depending on the setting of 
FILE-STATUS-CODES.

“Too many INITIALIZE destinations (max  50)” 

“Too many key segments (max  6)” 

“Too many keys (max  120)” 

“Too many level 01 linkage items (max 255)”

The program has more than 255 level 01 linkage items.

“Too many operands (max  60)” 

“Too many parameters: %1 is the maximum, %2 found” 

“Too many REPLACING operands (max  %s)” 

For Version 7.0 and earlier, the maximum number is 30.  For later 
versions, the maximum limit is 256.  

“Too many sending items (max  100)” 

“Too many source items (max  50)” 

“Too many subscripts: %s” 

An item subordinate to an OCCURS clause has been referenced with a 
number of subscripts or indexes greater than its level of nesting. 



D-36  Compiler Error Messages
“Too Many <symbols> (max <symbols>))” 

Generated if compiling for debug and the number of symbols is larger 
than 65535, or the number of bytes in all symbols is larger than 
1048560.  This latter limit only happens if compiling with -Znn with nn 
< 80.

“Too many SYMBOLIC CHARACTERS in this clause (max  100)” 

“Too many table dimensions (max  15)” 

“Too many USING parameters (max  255)”  

U

“Unable to find ‘‘%s’’” 

“Undefined data item: %s” 

The data item referred to has not been defined in the Data Division. 

“Undefined procedure: %s”  

The paragraph or section you are trying to ALTER, GO TO, or 
PERFORM has not been defined in the program. 

“Undefined procedure: %s OF %s” 

The paragraph or section you are trying to ALTER, GO TO, or 
PERFORM does not exist in the program within the qualifier you have 
specified for it. 

“Unknown mode: %s” 

As part of our compatibility with other dialects of COBOL, the 
ACUCOBOL-GT compiler allows the use of the RECORDING 
MODE clause.  Only “F”, “V”, “S” and “U” modes are permitted. 

“Unknown reserved word: %s” 

“Unknown special name: %s” 

The mnemonic-name in a Format 6 ACCEPT statement or in a Format 
9 DISPLAY statement has not been defined in the Special-Names 
paragraph. 



List of Errors  D-37
“Unknown switch: %s” 

The switch named in the SPECIAL-NAMES paragraph must be one of 
SWITCH-1 through SWITCH-26, SWITCH 1 through SWITCH 26, or 
SWITCH “A” through SWITCH “Z”. 

“Unmatched ELSE” 

The ELSE phrase must always be used in a one-to-one relationship 
with IF in an IF statement. 

“Unmatched END-%s” 

Several statements in COBOL, among them IF, SEARCH, PERFORM, 
and EVALUATE, can have their scope delimited by the END- 
(END-IF, END-SEARCH, END-PERFORM) phrase.  Such END- 
phrases must exist in matched pairs with their companion verbs.  The 
compiler has encountered such a scope delimiter, but found no 
matching verb preceding it. 

“Unmatched NOT %s phrase” 

Various NOT phrases may be used in the context of specific statements 
(READ ... NOT AT END, COMPUTE ... NOT ON SIZE ERROR).  
The compiler has encountered such a NOT phrase outside of its proper 
statement. 

“Unsupported operation” 

“USAGE conflict” 

“USAGE must be DISPLAY” 

“USE statement missing” 

 USING parameter <name> not aligned and may cause problems in the called 
subprogram

This is a warning message that can be generated if compiling with the 
“-Wa” option.   This warns that a passed parameter is a group or is 
binary, and whose alignment is not an even multiple of the alignment 
specified by the “-Da#” option.

USING parameter <name> is not an 01-level item

This is a warning message that can be generated if compiling with the 
“-W1” option.  The ANSI COBOL standard requires that parameters 
passed to subprograms be 01-level items.   ACUCOBOL-GT does 



D-38  Compiler Error Messages
restrict them as such; however, there are valid reasons for restricting 
their use.  See the ACUCOBOL-GT User’s Guide, chapter 2 for details 
on this warning message. 

V

“VALUE illegal on item > 64K” 

“VALUE in EXTERNAL” 

External data items may not have a VALUE phrase. 

“VALUE in REDEFINES” 

A Format 1 VALUE clause may not appear on a data item that is 
subordinate to a REDEFINES clause. 

“Value must be 80 or 132” 

The DISPLAY SCREEN SIZE statement must specify either an 
80-column or a 132-column display. 

“Value should be a name: %s”

You have compiled with the “-Fx” option.  The object code was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  

This error occurs when the item to the right of an “=” should be a name 
and it isn’t.  For example, it would be an error to use a quoted string 
with the “name” directive: $XFD NAME=“some text”.  

The “%s” in the message is the value found.

“Value should be numeric: %s”

You have compiled with the “-Fx” option.  The object code was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  

This error occurs when the item to the right of an “=“ should be 
numeric and it isn’t.  The “%s” in the message is the value found.



List of Errors  D-39
“Value should be a literal: %s”

You have compiled with the “-Fx” option.  The object code was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  

This error occurs when the item to the right of an “=” should be a literal 
and it isn’t.  The “%s” in the message is the value found.  A literal is 
either a quoted string or a numeric integer.

“VALUE size error: %s” 

All literals used in a VALUE clause must have a value which falls 
within the range of allowed values for the item’s PICTURE clause.  
Nonnumeric literals may not exceed the size of the item.  Numeric 
items must have numeric literals.  Alphabetic, alphanumeric, group, 
and edited items must have nonnumeric literals. 

“VALUE specified for group” 

When a VALUE clause is applied to a group item, no subordinate item 
may contain a VALUE clause. 

“Value too large for context: %s” 

The number you are using is too large.  There are many cases in which 
64 KB is the maximum size. 

“VALUE too long: %s” 

The maximum length for a floating point literal is 30. 

“VALUE type error: %s” 

All literals used in a VALUE clause must have a value within the range 
of allowed values for the item’s PICTURE clause.  Nonnumeric literals 
may not exceed the size of the item.  Numeric items must have numeric 
literals.  Alphabetic, alphanumeric, group, and edited items must have 
nonnumeric literals. 

“Variable file name requires “File” directive”

You have compiled with the “-Fx” option.  The object code was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  



D-40  Compiler Error Messages
This message occurs when the compiler cannot assign a name to the 
“.xfd” file because the ASSIGN phrase for the file names a variable file 
name.  In this case, you must use a “file” directive to name the “.xfd” 
file.  

“Verb expected, %s found” 

W

“Warning:  -Dcm ignored when using -Z%s” 

The data storage option “-Dcm” is being ignored because you are 
generating object code for a runtime version that does not support that 
storage convention.

“Warning:  -Dcn ignored when using -Z%s” 

The NCR sign coding convention indicated by “-Dcn” requires a 
Version 2.4 or later runtime.  The “-Dcn” flag has been ignored by the 
compiler.

“Warning: cannot generate native code from pre-5.0 object, ‘-Z%1’ flag ig-
nored” 

“Warning: COLLATING SEQUENCE ignored for non-INDEXED files”

“Warning: native code not supported on current host, ‘-n’ ignored”

“Warning: PADDING CHARACTER ignored for non-SEQUENTIAL files” 

“Warning: Paragraph Name found in Area B.”

“WHEN OTHER must be last” 

No other WHEN phrase may follow WHEN OTHER in an 
EVALUATE statement. 

“WHEN subject may not be reference modified” 

SEARCH ALL does not allow the compared item to be reference 
modified. 



List of Errors  D-41
“WHEN unexpected” 

“WHEN variable xxx not found in record”

You have compiled with the “-Fx” option.  The object code was 
generated, but a data dictionary could not be built, for the reason listed 
below.  Remove the error condition and recompile to obtain a data 
dictionary.  

This happens if you have a “when” directive that mentions a variable 
that doesn’t exist in the record.

“WHEN, END-SEARCH or ‘.’ required after NEXT SENTENCE” 

“Writing %s code” 

“Wrong number of parameters: %1 expected, %2 found” 





E
 File Status Codes
Key Topics

Introduction ............................................................................................  E-2
Table of Codes.........................................................................................  E-2
Vision Secondary Error Codes for Error 98s ......................................  E-8
Transaction Error Codes .....................................................................  E-10
IBM DOS/VS Error Codes ..................................................................  E-13



E-2  File Status Codes
E.1 Introduction

ACUCOBOL-GT conforms to five different standards regarding the values 
of file status codes.  These codes are those used by RM/COBOL-85 (ANSI 
85), RM/COBOL version 2 (ANSI 74), Data General ICOBOL, VAX 
COBOL, and IBM DOS/VS COBOL.  By default, ACUCOBOL-GT uses the 
RM/COBOL-85 set.  You can change the current set by changing the 
configuration variable FILE_STATUS_CODES (see also the 
ACUCOBOL-GT User’s Guide, Section 2.8.3, “File Status Codes”). 

The table in the next section describes the various file status codes returned 
by each condition.  Some of the status values in the table have a second 
two-character code listed.  This code distinguishes between different causes 
for the same FILE STATUS code.  You can obtain this second code value by 
calling the ACUCOBOL-GT library routine C$RERR described in 
Appendix I.  Where a second code is not listed, its value is “00”.  

For file systems that support READ PREVIOUS, wherever READ NEXT is 
mentioned, you may assume that READ PREVIOUS is also implied.  An end 
of file for READ NEXT is analogous to a beginning of file for READ 
PREVIOUS. 

E.2  Table of Codes

Regardless of which set of status codes is being used:

• Any code that starts with a “0” is considered successful.

• Any code that starts with a “1” is considered to be an “at end” condition.

• Any code that starts with a “2” is considered to be an “invalid key” 
condition.

85    74    Vax    
 

DG
 

IBM
 

  

Condition

00 00 00 00 00 Operation successful.



Table of Codes  E-3
02 02 00 00 00 The current key of reference in the record just read 
is duplicated in the next record.  (read next)  

02 02 02 00 00 The operation added a duplicate key to the file 
where duplicates were allowed.  (write, rewrite)

05 00 05 00 10 Optional file missing.  If the open mode is I-O or 
EXTEND, then the file has been created. This is 
also returned by DELETE FILE if the file is not 
found.  (open, delete file)

07 00 07 00 00 A CLOSE UNIT/REEL statement was executed 
for a file on a non-reel medium.  The operation 
was successful.  

0M 0M 0M 0M 00 The operation was successful, but some optional 
feature was not used.  For example, if you opened 
a file that specified an alternate collating sequence, 
but the host file system did not support that 
feature, then the open would succeed, but it would 
return this status.

10 10 13 10 10 End of file.  (read next)

14 00 14 00 00 A sequential READ statement was attempted for a 
relative file, and the number of digits in the 
relative record number is larger than the size of the 
relative key data item.  (read next)

21 21 21 21 21 Primary key was written out of sequence, or the 
primary key on a rewrite does not match the last 
record read. This error occurs only for an indexed 
file open with the sequential access mode.  (write, 
rewrite)  

22 22 22 22 22 Duplicate key found but not allowed.  (write, 
rewrite)

23 23 23 23 23 Record not found.

24 24 24 24 24 Disk full for relative or indexed file.  (write)

85    74    Vax    
 

DG
 

IBM
 

  

Condition



E-4  File Status Codes
24, 01 00 24, 01 00 24 A sequential WRITE statement was executed for a 
relative file, and the number of digits in the 
relative record number was larger than the size of 
the relative key data item.  (write)  

30, xx 30, xx 30, xx 30, xx 30 Permanent error.  This is any error not otherwise 
described.  

The secondary code value is set to the host 
system’s status value that caused the error.  See 
your operating system user manual for an 
explanation, and C$RERR in Appendix I.

34 34 34 34 34 Disk full for sequential file or sort file.  (write, 
sort)

35 94, 20 35 91 93 File not found.  (open, sort)

37, 01 95, 01 37, 01 91, 01 93 The file being opened is not on a mass-storage 
device which is required for the file type or the 
requested open mode.  (open)

37, 02 95, 02 37, 02 91, 02 93, 02 Attempt to open a sequential file with fixed-length 
records as a Windows spool file.

37, 07 90, 07 39, 07 91, 07 93 User does not have appropriate access permissions 
to the file.  (open)

37, 08 95, 08 37, 08 91, 08 93 Attempt to open a print file for INPUT.  (open)

37, 09 95, 09 37, 09 91, 09 93 Attempt to open a sequential file for I/O and that 
file has automatic trailing space removal specified.  
(open)

37, 99 95, 99 37, 99 91, 99 93, 99 A Windows or Windows NT runtime that is not 
network-enabled tried to access a file on a remote 
machine.

38 93, 03 38 92 93 File previously closed with LOCK by this run unit.  
(open)

85    74    Vax    
 

DG
 

IBM
 

  

Condition



Table of Codes  E-5
39, xx 94, xx 39, xx 9A, xx 95 Existing file conflicts with the COBOL 
description of the file.  (open)

The secondary error code may have any of these 
values:

01 - mismatch found but exact cause unknown 
(this status is returned by the host file system)  

02 - mismatch found in file’s maximum record 
size

03 - mismatch found in file’s minimum record size

04 - mismatch found in the number of keys in the 
file 

05 - mismatch found in primary key description 

06 - mismatch found in first alternate key 
description 

07 - mismatch found in second alternate key 
description 

The list continues in this manner for each alternate 
key.  

41 92 41 91 93 File is already open.  (open)

42 91 42 92 92 File not open.  (close)

42 91 94 91 92 File not open.  (unlock)

43 90, 02 43 92 23 No current record defined for a sequential access 
mode file.  (rewrite, delete)

44 97 44 92 21 Record size changed.  The record being rewritten 
is a different size from the one existing in the file, 
and the file’s organization does not allow this.  
(rewrite)  

This status code can also occur if the record is too 
large or too small according to the RECORD 
CONTAINS clause for the file. (write, rewrite)

85    74    Vax    
 

DG
 

IBM
 

  

Condition



E-6  File Status Codes
46 96 46 92 21 No current record.  This usually occurs when the 
previous operation on the file was a START that 
failed, leaving the record pointer undefined.  (read 
next)

47, 01 90, 01 47, 01 92, 01 13 File not open for input or I-O.  (read, start)

47, 02 91, 02 47, 02 92, 02 13 File not open.  (read, start)

48, 01 90, 01 48, 01 92, 01 13 A file that is defined to be access mode sequential 
is open for I-O, or the file is open for INPUT only.  
(write)

48, 02 91, 02 48, 02 92, 02 13 File not open.  (write)

49, 01 90, 01 49, 01 92, 01 13 File not open for I-O.  (rewrite, delete)

49, 02 91, 02 49, 02 92, 02 13 File not open.  (rewrite, delete)

93 93 91 94 93 File locked by another user.  (open)

94, 10 94, 10 97 97, 10 93 Too many files open by the current process.  
(open)

94, 62 94, 62 39, 62 92, 62 93 One of the LINKAGE values for this file is illegal 
or out of range.  (open, write)

94, 63 94, 62 39, 62 92, 62 93 Key not specified (specifying a table whose size is 
zero) in a SORT or MERGE statement 

98, xx 98, xx 30, xx 9B, xx 93 Indexed file corrupt.  An internal error has been 
detected in the indexed file.  The secondary status 
code contains the internal error number.  The file 
should be reconstructed with the appropriate 
utility.  

99 99 92 94 23 Record locked by another user.

9A 9A 9A 9A 23 Inadequate memory for operation.  This most 
commonly occurs for the SORT verb, which 
requires at least 64K bytes of free space.  (any)

85    74    Vax    
 

DG
 

IBM
 

  

Condition



Table of Codes  E-7
9B 9B 9B 9B 23 The requested operation is not supported by the 
host operating system.  For example, a deferred 
file system initialization failed, or a READ 
PREVIOUS verb was executed and the host file 
system does not have the ability to process files in 
reverse order.  (any)

If you are using AcuXML, this error results when 
the program tries to open a file EXTEND or I-O.  
With AcuXML, programs are able to open files 
INPUT or OUTPUT only.

9C 9C 9C 9C 23 There are no entries left in one of the lock tables.  
The secondary error code indicates which table is 
full:

01 - operating system lock table

02 - internal global lock table (see the 
MAX_LOCKS configuration variable)

03 - internal per-file lock table (see the 
LOCKS_PER_FILE configuration variable)

9D, xx 9D, xx 9D, xx 9D, xx 92 This indicates an internal error defined by the host 
file system.  The “xx” is the host system’s error 
value.  This is similar to error “30”, except that 
“xx” is specific to the host file system instead of 
the host operating system.  For example:

02 - In Acu4GL or AcuXML, 9D,02 indicates that 
an XFD file is corrupt. This could be the result of 
a parsing error.

03 - In Acu4GL or AcuXML, 9D,03 indicates that 
an XFD file is missing. This could be the result of 
a parsing error.

05 - In AcuXML, 9D,05 indicates that there was 
an XFD parsing error, so AcuXML was unable to 
read a record. 

Refer to the specific product documentation for 
more details on the host file system’s error codes.  

85    74    Vax    
 

DG
 

IBM
 

  

Condition



E-8  File Status Codes
E.3  Vision Secondary Error Codes for Error 98s

Following is a brief description of the secondary error codes for error 98s for 
the Vision file system.

9E, xx 9E, xx 9E, xx 9E, xx 92 This indicates an error occurred in the transaction 
system.  The exact nature of the error is shown by 
the contents of TRANSACTION-STATUS.  See 
section E.4, “Transaction Error Codes.”

9Z 9Z 9Z 9Z 92 This indicates that you are executing the program 
with a runtime that has a restriction on the number 
of records it can process.  You have exceeded the 
record limit.

85    74    Vax    
 

DG
 

IBM
 

  

Condition

01 The file size listed in the file’s header does not match the actual file size.

02 The header’s next record pointer points to an area that is invalid.

03 Unique ID used to distinguish duplicate keys has already been used and 
cannot be used with a new key.

04 Missing tree terminator key.

05 An error was detected while performing a bulk read of a record.

06 The key being deleted from the tree was not found in the tree.

07 A child node was not found in its parent.

08 An I/O error occurred when the runtime was trying to read key 
information out of the file’s header.

09 A pointer in a node points past the end of the file.

12 A node in the free node list was not marked as a free node.

13 A record in the deleted record list was not marked as a deleted record.

20 Non-zero key prefix on first key in node.

21 Key prefix larger than key size.



Vision Secondary Error Codes for Error 98s  E-9
22 Key prefix or key size larger than maximum key size.

31 A record pointer in a Vision Version 3 file points to a record-chain 
value.  In a Version 3 file, record pointers should always point to the 
start of a record, never to a record-chain value.

42 The unique record counter has been exhausted. Rebuild the file to 
correct the error.

68 A Vision 4 or 5 data segment is not found during an open.

69 A Vision 4 or 5 index segment is not found during an open.

81 Invalid data found in record header when a compressed record was read.

82 Invalid data found in record header when a non-compressed record was 
read.

83 When a record was read, an I/O error occurred or the record was too 
short. 

84 When a record link was read, an I/O error occurred or the link was too 
small.  

85 Record contains invalid record compression codes--the record would 
uncompress into a record that was larger than the maximum record size.

86 During a record write, a read of a record-chain value failed, probably 
due to an end-of-file condition.  

87 Vision Version 4 or 5 detects that it is about to write a record to an area 
of a file that does not contain an appropriate record header.  An 
appropriate record header indicates that a record currently does not exist 
at this address.  

89 In Vision Version 4 or 5, on open, a data segment’s internal revision 
number does not match the internal revision number stored in the header 
of the first data segment.  

90 In Vision Version 4 or 5, on open, an index segment’s internal revision 
number does not match the internal revision number stored in the header 
of the first data segment.  

99 Vision Version 4 or 5 has tried to open the 65,537th data or index 
segment for this file.  Vision can only support 65,536 data segments and 
65,536 index segments per logical file.  



E-10  File Status Codes
E.4  Transaction Error Codes

A transaction management error is one that follows a START 
TRANSACTION, COMMIT, ROLLBACK or call to C$RECOVER, or one 
that occurs during some other file operation within a transaction (resulting in 
an error 9E).  Error codes associated with these are stored in the 
TRANSACTION-STATUS register.  This section lists and describes the 
primary and secondary transaction error codes. 



Transaction Error Codes  E-11
E.4.1  Primary Error Codes

Following is a list of the primary error codes for the transaction management 
system.  

01 This is returned from a ROLLBACK statement or call to 
C$RECOVER when an error occurs in an external routine.  For a list 
of the secondary codes for this error, see section E.4.2, “Secondary 
Error Codes for Error 01.”.

02 An attempt to open the log file failed because the maximum number of 
files per process would be exceeded.  This is returned from a START 
TRANSACTION or call to C$RECOVER.

03 An attempt to open the log file failed because some element of the 
specified directory path is non-existent.  This is returned from a START 
TRANSACTION statement or call to C$RECOVER.  

04 An attempt to open the log file failed because the user has insufficient 
access privileges for the file.  This is returned from a START 
TRANSACTION statement or call to C$RECOVER.

05 This indicates an operating system error that is not otherwise covered by 
one of the standard error conditions.  You can determine the exact nature 
of this error by examining the value of the secondary error code.

06 This indicates that the log file is corrupted.  The error is returned when 
the program encounters an unexpected end of file, or when an invalid 
transaction type code is found during recovery.

07 An attempt to open the log file failed because the file is locked 
(MS-DOS only).  This is returned from a START TRANSACTION 
statement or a call to C$RECOVER.

08 This indicates that the system ran out of dynamic memory.

09 This indicates that a write failed because the disk is full.

10 This is returned from a START TRANSACTION statement or call to 
C$RECOVER when no log file was specified in the LOG-DIR 
configuration variable.

11 This is returned from a ROLLBACK or COMMIT statement when an 
unexpected end of file is reached while the rollback log file is being read.

12 A START TRANSACTION, ROLLBACK or COMMIT failed because 
the last transaction in the log file is incomplete.



E-12  File Status Codes
E.4.2  Secondary Error Codes for Error 01

The following is a list of the secondary error codes for transaction error 01. 

13 This error is returned in the TRANSACTION-STATUS register from a 
WRITE, REWRITE, CLOSE, or DELETE if the file was not opened 
within a transaction.  Note that, if the FILE-CONTROL paragraph for 
the file contains the WITH ROLLBACK phrase, all OPENs are 
automatically performed within a transaction.

14 This is a file-system specific error that is not one of the standard errors, 
and not an error returned by the operating system.  The secondary and 
tertiary error codes indicate the exact meaning, which is file-system 
dependent.

16 This error is returned when the runtime is executing a START 
TRANSACTION while another transaction is already active.

99 This warning indicates that the requested transaction operation is not 
supported by a host file system.  The transaction operation is still 
attempted for other file systems.

    Secondary Error Corresponding 
file-status error

01 operating system error (see tertiary code for 
system-specific error code)

30

02 illegal parameter 39,01

03 attempt to open more files than system allows 94,10

04 open mode does not allow operation 48,01 or 49,01

05 requested record is locked 99

06 index file is corrupt 98,xx

07 duplicate key where duplicates not allowed 22

08 requested record not found 23

10 disk became full while adding a new record 24

11 file locked against requested open mode 93

12 record size mismatch during rewrite 44



IBM DOS/VS Error Codes  E-13
E.5  IBM DOS/VS Error Codes

IBM DOS/VS COBOL has a form of the USE statement in the 
DECLARATIVES section that is not normally recognized by 
ACUCOBOL-GT:

USE AFTER STANDARD ERROR PROCEDURE ON file-name GIVING
       data-name-1 [data-name-2]

This form is accepted by ACUCOBOL-GT when the “-Cv” option is in 
effect.

When an error handler introduced by this statement is invoked, the runtime 
puts special error codes into the eight-byte data item data-name-1.  For more 
information and the list of codes, see Chapter 5, “IBM DOS/VS COBOL 
Conversions,” in the Transitioning Your COBOL Applications to 
ACUCOBOL-GT book.

14 out of dynamic memory 9A

15 requested file does not exist 35

16 inadequate access permissions to file 37,07

17 requested operation not supported 9B

18 out of lock-table entries 9C

19 file-system specific error 9D

    Secondary Error Corresponding 
file-status error





F
 Intrinsic Functions
Key Topics

Introduction ............................................................................................  F-2
Function Definitions and Returned Values ..........................................  F-3



F-2  Intrinsic Functions
F.1 Introduction

Intrinsic functions are subprograms that are built into the ACUCOBOL-GT 
library.  They save time by simplifying common tasks that your COBOL 
programs might need to perform.  For example, intrinsic functions can 
perform statistical calculations, convert strings from upper to lower case, 
compute annuities, derive values for trigonometric functions such as sine and 
cosine, and perform general utility tasks such as determining the compile date 
of the current object file.

Intrinsic functions are sometimes called built-in or library functions.

To access an intrinsic function, you include it inside a COBOL statement 
(typically a MOVE or COMPUTE statement).  Here’s an example of a 
statement that uses the “min” intrinsic function:

move function min(3,8,9,7) to my-minimum. 

This COBOL statement can be translated into: move the result derived from 
performing the “min” function on the literals “3, 8, 9, and 7” to the variable 
“my-minimum.”

Note the presence of the required word “function,” followed by the name of 
the function (“min”) and then its parameters.  

Each intrinsic function is evaluated to a data value.  This value is stored in a 
temporary storage area that you cannot access directly in your program.  The 
only way to get the derived value of an intrinsic function is to provide the 
name of a data item into which the resulting value should be placed.  In the 
example shown above, the variable “my-minimum” receives the derived 
value of the “min” function.

In the example above, the parameters passed to the “min” function are 
literals.  It is also permissible to pass data items, as shown here:

compute my-sine = function sin(angle-a). 



Function Definitions and Returned Values  F-3
Note: When the return value of a function is a double, the precision of the 
return value is limited to that supported by the underlying hardware. 
However, if your COBOL program is compiled for 31-digit support 
(“-Dd31”), numeric functions are computed using special floating point 
arithmetic that is accurate to approximately 33 digits, regardless of the 
floating-point representation on the host machine. 
The functions that return a double include: ABS, ABSOLUTE-VALUE, 
ACOS, ANNUITY, ASIN, ATAN, COS, LOG, LOG10, MEAN, 
MEDIAN, MIDRANGE, NUMVAL, NUMVAL-C, PRESENT-VALUE, 
RANDOM, REM, SIN, SQRT, STANDARD-DEVIATION, TAN, and 
VARIANCE.

F.2  Function Definitions and Returned Values

The definition of a function identifies the following:

• For alphanumeric functions, the size of the returned value

• For numeric and integer functions, the sign of the returned value and 
whether the function is an integer

• For some other cases, the value returned

Data item functions are elementary data items and return alphanumeric, 
numeric, or integer values.  Data item functions are treated as elementary data 
items and cannot be receiving operands.  Types of data item functions are as 
follows:

• Alphanumeric functions--these are of the class and category 
alphanumeric.  The number of character positions in this data item is 
specified in the function definition.  Alphanumeric functions have an 
implicit usage of DISPLAY.

• Numeric functions--these are of the class and category numeric.  A 
numeric function is always considered to have an operational sign.

• A numeric function may be used only in an arithmetic expression.



F-4  Intrinsic Functions
• A numeric function may not be referenced where an integer operand is 
required, even though a particular reference may yield an integer value.

• Integer functions--these are of the class and category numeric.  A 
numeric function is always considered to have an operational sign.

• An integer function may be used only in an arithmetic expression.

• An integer function can be referenced where an integer operand is 
required and where a signed operand is allowed.

F.2.1  Function Definitions

The table below summarizes the functions that are now available.

The Arguments column defines the type and number of arguments as 
follows:

The Type column defines the type of the function as follows:

A alphabetic

I integer

N numeric

X alphanumeric

I integer

N numeric

Z alphanumeric



Function Definitions and Returned Values  F-5
Function-name Arguments Type Value returned

ABSOLUTE-VALUE 
(or ABS)

N1 N Absolute value of the 
argument passed

ACOS N1 N Arccosine of N1

ANNUITY N1, N2 N Ratio of annuity paid 
for I2 N2 periods at 
interest rate of N1 to 
initial investment of one

ASIN N1 N Arcsine of N1

ATAN N1 N Arctangent of N1

CHAR I1 X Character in position I1 
of program collating 
sequence

COS N1 N Cosine of N1

CURRENT-DATE None X Current date and time 
and difference from 
Greenwich Mean Time

DATE-OF-INTEGER I1 I Standard date 
equivalent 
(YYYYMMDD) of 
integer date

DAY-OF-INTEGER I1 I Julian date equivalent 
(YYYYDDD) of 
integer date

FACTORIAL I1 I Factorial of I1

INTEGER N1 I The greatest integer not 
greater than N1

INTEGER-OF-DATE I1 I Integer date equivalent 
of standard date 
(YYYYMMDD)

INTEGER-OF-DAY I1 I Integer date equivalent 
of Julian date 
(YYYYDDD)

INTEGER-PART N1 I Integer part of N1



F-6  Intrinsic Functions
LENGTH A1 or N1 or 
X1

I Length of argument

LOG N1 N Natural logarithm of N1

LOG10 N1 N Logarithm to base 10 of 
N1

LOWER-CASE A1 or X1 X All letters in the 
argument are set to 
lowercase

MAX A1... or I1... 
or N1... or 
X1...

Depends on 
arguments.*

Value of maximum 
argument

MEAN N1... N Arithmetic mean of 
arguments

MEDIAN N1... N Median of arguments

MIDRANGE N1... N Mean of minimum and 
maximum arguments

MIN Al... or I1... 
or N1... or 
X1...

Depends on 
arguments*

Value of minimum 
argument

MOD I1, I2 I I1 modulo I2

NUMVAL X1 N Numeric value of 
simple numeric string

NUMVAL-C X1, X2 N Numeric value of 
numeric string with 
optional commas and 
currency sign

ORD A1 or X1 I Ordinal position of the 
argument in collating 
sequence

ORD-MAX A1... or 
N1... or 
X1...

I Ordinal position of 
maximum argument

ORD-MIN A1... or 
N1... or X1

I Ordinal position of 
minimum argument

Function-name Arguments Type Value returned



ABSOLUTE-VALUE (ABS) Function  F-7
*A function that has only alphabetic arguments is type alphanumeric.

F.3  ABSOLUTE-VALUE (ABS) Function

The ABSOLUTE-VALUE (or ABS) function returns a single numeric value 
which is the absolute value of the argument passed.

PRESENT-VALUE N1, N2... N Present value of a series 
of future period-end 
amounts, N2n at a 
discount rate of N1

RANDOM I1 N Random number

RANGE I1... or N1... Depends on 
arguments

Value of maximum 
argument minus value 
of minimum argument

REM N1, N2 N Remainder of N1/N2

REVERSE A1 or X1 X Reverse order of the 
characters of the 
argument

SIN N1 N Sine of N1

SQRT N1 N Square root of N1

STANDARD-
  DEVIATION

N1... N Standard deviation of 
arguments

SUM I1... or N1... Depends on 
arguments

Sum of arguments

TAN N1 N Tangent of N1

UPPER-CASE A1 or X1 X All letters in the 
argument are set to 
uppercase

VARIANCE N1... N Variance of argument

WHEN-COMPILED None X Date and time program 
was compiled

Function-name Arguments Type Value returned



F-8  Intrinsic Functions
Usage
FUNCTION ABSOLUTE-VALUE (argument-1)

or
FUNCTION ABS (argument-1)

Parameter

Argument-1 must be class numeric.

Returned Value

The returned value is a single numeric value which is the absolute value of 
argument-1.

F.4  ACOS Function

The ACOS function returns a numeric value in radians that approximates the 
arccosine of argument-1.  The type of this function is numeric.

Usage
FUNCTION ACOS (argument-1)

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than or equal to “-1” and less 
than or equal to “+1”.

Returned Value

The returned value is the approximation of the arccosine of argument-1 and 
is greater than or equal to zero and less than or equal to pi.  This function will 
produce results accurate to only about 17 digits, even when argument-1 
contains more than 18 digits (for example, if you have compiled your 
program for 31-digit support.)



ANNUITY Function  F-9
F.5  ANNUITY Function

The ANNUITY function (annuity immediate) returns a numeric value 
representing the amount of each payment in a series of equal periodic 
payments whose total value is 1.0, where argument-1 is the interest rate per 
period, argument-2 is the number of periods (usually 12), and each payment 
is applied at the end of its period.  The type of this function is numeric.

a numeric value that approximates the ratio of an annuity paid at the end of 
each period for the number of periods specified by argument-1 and is applied 
at the end of the period before the payment.  The type of this function is 
numeric.

Usage
FUNCTION ANNUITY (argument-1 argument-2)

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than or equal to zero.

3. Argument-2 must be a positive integer.

Returned Values

1. When the value of argument-1 is zero, the value of the function is the 
approximation of:

1 / argument-2

2. When the value of argument-1 is not zero, the value of the function is 
the approximation of:

argument-1 / (1 - (1 + argument-1) ** (- argument-2))

Note: This function will produce results accurate to only about 17 digits, 
even when argument-1 contains more than 18 digits (for example, if you 
have compiled your program for 31-digit support.)



F-10  Intrinsic Functions
F.6  ASIN Function

The ASIN function returns a numeric value in radians that approximates the 
arcsine of argument-1.  The type of this function is numeric.

Usage
FUNCTION ASIN (argument-1)

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than or equal to “-1” and less 
than or equal to “+1”.

Note: This function will produce results accurate to only about 17 digits, 
even when argument-1 contains more than 18 digits (for example, if you 
have compiled your program for 31-digit support.)

Returned Value

The returned value is the approximation of the arcsine of argument-1 and is 
greater than or equal to “-pi/2” and less than or equal to “+pi/2”.

F.7  ATAN Function

The ATAN function returns a numeric value in radians that approximates the 
arctangent of argument-1.  The type of this function is numeric.

Usage
FUNCTION ATAN (argument-1)

Parameter

Argument-1 must be class numeric.



CHAR Function  F-11
Returned Value

The returned value is the approximation of the arctangent of argument-1 and 
is greater than “-pi/2” and less than “+pi/2”.

F.8  CHAR Function

The CHAR function returns a one-character alphanumeric value that is a 
character in the program collating sequence having the ordinal position that 
corresponds to the value of argument-1.  The type of this function is 
alphanumeric.

Usage
FUNCTION CHAR (argument-1)

Parameters

1. Argument-1 must be an integer.

2. The value of argument-1 must be greater than zero and less than or 
equal to the number of positions in the collating sequence.

Returned Values

1. If more than one character has the same position in the program collating 
sequence, the character returned as the function value is that of the first 
literal specified for that character position in the ALPHABET clause.

2. If the current program collating sequence was not specified by an 
ALPHABET clause, the value returned will be the character in the 
ASCII character set occupying the ordinal position of the argument.

F.9  COS Function

The COS function returns a numeric value that approximates the cosine of an 
angle or arc, expressed in radians that is specified by argument-1.  The type 
of this function is numeric.



F-12  Intrinsic Functions
Usage
FUNCTION COS (argument-1)

Parameter

Argument-1 must be class numeric.

Returned Value

The returned value is the approximation of the cosine of argument-1 and is 
greater than or equal to “-1” and less than or equal to “+1”.

F.10  CURRENT-DATE Function

The CURRENT-DATE function returns a 21-character alphanumeric value 
that represents the calendar date, time of day, and local time differential 
factor provided by the system on which the function is evaluated.  The type 
of this function is alphanumeric.

Usage
FUNCTION CURRENT-DATE

Returned Values

1. The character positions returned, numbered from left to right, are 
described in the table below.

Character 
Position

Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 
01 through 12.

7-8 Two numeric digits of the day of the month, in the range 
01 through 31.

9-10 Two numeric digits of the hours past midnight, in the 
range of 00 through 23.



DATE-OF-INTEGER Function  F-13
2. If the system does not have the facility to provide fractional parts of a 
second, the value 00 is returned in character positions 15 and 16.

3. If the system does not have the facility to provide the local time 
differential factor, the value 00000 is returned in character positions 17 
through 21.

4. Currently, we do not support the information contained in positions 17- 
through 21.  These fields will contain 0.

5. The returned value can be reference modified.  For example:

   MOVE FUNCTION CURRENT-DATE (1:4) TO YEARDATE.

F.11  DATE-OF-INTEGER Function

The DATE-OF-INTEGER function converts a date in the Gregorian calendar 
from integer date form to standard date form (YYYYMMDD).  The type of 
this function is integer.

Usage
FUNCTION DATE-OF-INTEGER (argument-1)

11-12 Two numeric digits of the minutes past the hour, in the 
range 00 through 59.

13-14 Two numeric digits of the seconds past the minute, in the 
range 00 through 59.

15-16 Two numeric digits of the hundredths of a second past a 
second, in the range 00 through 99.  The value 00 is 
returned if the system on which the function is evaluated 
does not have the facility to provide the fractional part of a 
second.

17 The character '0'.  This is reserved for future use.

18-19 The characters '00'.  This is reserved for future use.

20-21 The characters '00'.  This is reserved for future use

Character 
Position

Contents



F-14  Intrinsic Functions
Parameter

Argument-1 is a positive integer that represents a number of days succeeding 
December 31, 1600 in the Gregorian calendar.

Returned Values

1. The returned value represents the ISO standard date equivalent to the 
integer specified in argument-1.

2. The returned value is in the form YYYYMMDD, where YYYY 
represents a year in the Gregorian calendar; MM represents the month 
of that year; and DD represents the day of that month.

F.12  DAY-OF-INTEGER Function

The DAY-OF-INTEGER function converts a date in the Gregorian calendar 
from integer date form to Julian date form (YYYYDDD).  This type of 
function is integer.

Usage
FUNCTION DAY-OF-INTEGER (argument-1)

Parameter

Argument-1 is a positive integer that represents a number of days succeeding 
December 31, 1600, in the Gregorian calendar.

Returned Values

1. The returned value represents the Julian equivalent of the integer 
specified in argument-1.

2. The returned value is an integer of the form YYYYDDD, where 
YYYY represents a year in the Gregorian calendar, and DDD 
represents the day of that year.



FACTORIAL Function  F-15
F.13  FACTORIAL Function

The FACTORIAL function returns an integer that is the factorial of 
argument-1.  The type of this function is integer.

Usage
FUNCTION FACTORIAL (argument-1)

Parameter

Argument-1 must be an integer greater than or equal to zero.

Returned Values

1. If the value of argument-1 is zero, the value “1” is returned.

2. If the value of argument-1 is positive, its factorial is returned.

F.14  INTEGER Function

The INTEGER function returns the greatest integer value that is less than or 
equal to the argument.

Usage
FUNCTION INTEGER (argument-1)

Parameter

Argument-1 must be class numeric.

Returned values

1. When standard arithmetic is specified, argument-1 is not rounded.

2. The returned value is the greatest integer less than or equal to the value 
of argument-1.  For example, if the value of argument-1 is “ -1.5”, 
“-2” is returned.  If the value of argument-1 is “+1.5”, “+1” is 
returned.



F-16  Intrinsic Functions
F.15  INTEGER-OF-DATE Function

The INTEGER-OF-DATE function converts a date in the Gregorian calendar 
from standard date form (YYYYMMDD) to integer date form.  The type of 
this function is integer.

Usage
FUNCTION INTEGER-OF-DATE (argument-1)

Parameter

Argument-1 must be an integer of the form YYYYMMDD, whose value is 
obtained from the calculation (YYYY * 10,000) + (MM * 100) + DD.

• YYYY represents the year in the Gregorian calendar.  It must be an 
integer greater than 1600.

• MM represents a month, and must be a positive integer less than 13.

• DD represents a day, and must be a positive integer less than 32 provided 
that it is valid for the specified month and year combination.

Returned Value

The returned value is an integer that is the number of days the date 
represented by argument-1 succeeds December 31, 1600 in the Gregorian 
calendar.

F.16  INTEGER-OF-DAY Function

The INTEGER-OF-DAY function converts a date in the Gregorian calendar 
from Julian date form (YYYYDDD) to integer date form.  The type of this 
function is integer.

Usage
FUNCTION INTEGER-OF-DAY (argument-1)



INTEGER-PART Function  F-17
Parameter

Argument-1 must be an integer of the form YYYYDDD, whose value is 
obtained from the calculation (YYYY * 1000) + DDD.

• YYYY represents the year in the Gregorian calendar.  It must be an 
integer greater than 1600.

• DDD represents the day of the year.  It must be a positive integer less 
than 367 provided that it is valid for the year specified.

Returned Value

The returned value is an integer that is the number of days the date 
represented by argument-1 succeeds December 31, 1600 in the Gregorian 
calendar.

F.17  INTEGER-PART Function

The INTEGER-PART function returns an integer that is the integer portion 
of argument-1.  The type of this function is integer.

Usage
FUNCTION INTEGER-PART (argument-1)

Parameter

Argument-1 must be class numeric.

Returned Values

1. If the value of argument-1 is zero, the returned value is zero.

2. If the value of argument-1 is positive, the returned value is the greatest 
integer less than or equal to the value of argument-1.  For example, if 
the value of argument-1 is “+1.5”, then “+1” is returned.



F-18  Intrinsic Functions
3. If the value of argument-1 is negative, the returned value is the least 
integer greater than or equal to the value of argument-1.  For example, 
if the value of argument-1 is “-1.5”, then “-1” is returned.

F.18  LENGTH Function

The LENGTH function returns an integer equal to the length of the argument 
in character positions.  This type of function is integer.

Usage
FUNCTION LENGTH (argument-1)

Parameters

1. Argument-1 may be a non-numeric literal or a data item of any class or 
category.

2. If argument-1 (or any data item subordinate to argument-1) is 
described with the DEPENDING phrase of the OCCURS clause, the 
contents of the data item referenced by the data-name specified in the 
DEPENDING phrase are used at the time the LENGTH function is 
evaluated.

Returned Values

1. If argument-1 is a non-numeric literal or an elementary data item, or if 
argument-1 is a group data item that does not contain a variable 
occurrence data item, the value returned is an integer equal to the length 
of argument-1 in character positions.

2. If argument-1 is a group data item containing a variable occurrence 
data item, the returned value is an integer determined by evaluation of 
the data item specified in the DEPENDING phrase of the OCCURS 
clause for that variable occurrence data item.  This evaluation is 
accomplished according to the rules in the OCCURS clause dealing 
with the data item as a sending data item.

3. The returned value includes implicit FILLER characters, if any.



LOG Function  F-19
Note: This function is similar in functionality to the Format 8 Set SET 
statement: “SET result-item TO SIZE OF data-item”.

F.19  LOG Function

The LOG function returns a numeric value that approximates the logarithm 
to the base e (natural log) of argument-1.  The type of this function is 
numeric.

Usage
FUNCTION LOG (argument-1)

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than zero.

Returned Value

The returned value is the approximation of the logarithm to the base e of 
argument-1.

F.20  LOG10 Function

The LOG10 function returns a numeric value that approximates the logarithm 
to the base 10 of argument-1.  The type of this function is numeric.

Usage
FUNCTION LOG10 (argument-1)



F-20  Intrinsic Functions
Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than zero.

Returned Value

Returned value is the approximation of the logarithm to the base 10 of 
argument-1.

F.21  LOWER-CASE Function

The LOWER-CASE function returns a character string that is the same 
length as argument-1 with each uppercase letter replaced by the 
corresponding lowercase letter.  The type of this function is alphanumeric.

Usage
FUNCTION LOWER-CASE (argument-1)

Parameter

Argument-1 must be class alphabetic or alphanumeric, and must be at least 
one character in length.

Returned Values

1. The same character string as argument-1 is returned, except that each 
uppercase letter is replaced by the corresponding lowercase letter.

2. The character string returned has the same length as argument-1.

3. If the computer character set does not include lowercase letters, no 
changes take place in the character string.

4. This function only translates characters with a numeric value of 0-128.  
Anything above that (such as é, with a value of 130) must be mapped 
to its associated upper- or lower-case character using the configuration 
variable UPPER-LOWER-MAP. 



MAX Function  F-21
Note: This function is similar to the library routine C$TOLOWER 
except that the original data is not modified, and the entire string is 
converted.

5. The returned value can be reference modified.  For example:

MOVE FUNCTION LOWER-CASE(FILE-NAME)(1:4) TO TMP-STRING.

F.22  MAX Function

The MAX function returns the content of the argument-1 that contains the 
maximum value.  The type of this function depends upon the argument types 
as follows:

Usage
FUNCTION MAX ({argument-1} ... )

Parameters

If more than one argument-1 is specified, all arguments must be of the same 
class.

Returned Values

1. The returned value is the content of the argument-1 having the greatest 
value.  The comparisons used to determine the greatest value are made 
according to the rules for simple conditions.

Argument Type Function Type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

All arguments integer Integer

Numeric Numeric (some arguments may be integer)



F-22  Intrinsic Functions
2. If more than one argument-1 has the same greatest value, the content 
of the argument-1 returned is the leftmost argument-1 having that 
value.

3. If the type of the function is alphanumeric, the size of the returned 
value is the same as the size to the selected argument-1.  

F.23  MEAN Function

The MEAN function returns a numeric value that is the arithmetic mean 
(average) of its arguments.  The type of this function is numeric.

Usage
FUNCTION MEAN ({argument-1} ... )

Parameters

Argument-1 must be class numeric.

Returned Values

1. The returned value is the arithmetic mean of the argument-1 series.

2. The returned value is defined as the sum of the argument-1 series 
divided by the number of occurrences referenced by argument-1.

F.24  MEDIAN Function

The MEDIAN function returns the content of the argument whose value is 
the middle value in the list formed by arranging the arguments in sorted 
order.  The type of this function is numeric.

Usage
FUNCTION MEDIAN ({argument-1} ... )



MIDRANGE Function  F-23
Parameters

Argument-1 must be class numeric.

Returned Values

1. The returned value is the content of the argument-1 having the middle 
value in the list formed by arranging all the argument-1 values in sorted 
order.

2. If the number of occurrences referenced by argument-1 is odd, the 
returned value is such that at least half of the occurrences referenced by 
argument-1 are greater than or equal to the returned value, and at least 
half are less than or equal.  If the number of occurrences referenced by 
argument-1 is even, the returned value is the arithmetic mean of the 
values referenced by the two middle occurrences.

3. The comparisons used to arrange the argument-1 values in sorted order 
are made according to the rules for simple conditions.

F.25  MIDRANGE Function

The MIDRANGE (middle range) function returns a numeric value that is the 
arithmetic mean (average) of the values of the minimum argument and the 
maximum argument.  The type of this function is numeric.

Usage
FUNCTION MIDRANGE ({argument-1} ... )

Parameters

Argument-1 must be class numeric.

Returned Values

The returned value is the arithmetic mean of the greatest argument-1 value 
and the least argument-1 value.  The comparisons used to determine the 
greatest and least values are made according to the rules for simple 
conditions.



F-24  Intrinsic Functions
F.26  MIN Function

The MIN function returns the content of the argument-1 value that contains 
the minimum value.  The type of this function depends upon the argument 
types as follows:

Usage
FUNCTION MIN ({argument-1} ... )

Parameters

If more than one argument-1 is specified, all arguments must be of the same 
class.

Returned Values

1. The returned value is the content of the argument-1 having the least 
value.  The comparisons used to determine the least value are made 
according to the rules for simple conditions.

2. If more than one argument-1 has the same least value, the content of 
the argument-1 returned is the leftmost argument-1 having that value.

3. If the type of the function is alphanumeric, the size of the returned 
value is the same as the size of the selected argument-1.  

F.27  MOD Function

The MOD function returns an integer value that is argument-1 modulo 
argument-2.  The type of this function is integer.

Argument Type Function Type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

All arguments integer Integer

Numeric (some arguments may be integer) Numeric



NUMVAL Function  F-25
Usage
FUNCTION MOD (argument-1 argument-2)

Parameters

1. Argument-1 and argument-2 must be integers.

2. The value of argument-2 must not be zero.

Returned Values

1. The returned value is argument-1 modulo argument-2.  The returned 
value is defined as:

argument-1 - (argument-2 * FUNCTION INTEGER (argument-1 / 
argument-2))

2. The following illustrates the expected results for some values of 
argument-1 and argument-2:

F.28  NUMVAL Function

The NUMVAL function returns the numeric value represented by the 
character string specified by argument-1.  Leading and trailing spaces are 
ignored.  The type of this function is numeric.

Usage
FUNCTION NUMVAL (argument-1)

argument-1 argument-2 Return

11 5 1

-11 5 4

11 -5 -4

-11 -5 -1



F-26  Intrinsic Functions
Parameters

1. Argument-1 must be a non-numeric literal or alphanumeric data item 
whose content has one of the following two formats:

[space] [+] [space] {digit [ . [digit]]} [space]
        [-]         {. digit           }

or

[space] {digit [ . [digit]]} [space] [+ ] [space]
        {. digit           }         [- ]
                                     [CR]
                                     [DB]

where space is a string of zero or more spaces, and digit is a string of one 
to 18 digits.

2. The total number of digits in argument-1 must not exceed 18. If your 
program has been compiled for 31-digit support (“-Dd31”), 
argument-1 must not exceed 31.

3. If the DECIMAL-POINT IS COMMA clause is specified in the 
SPECIAL-NAMES paragraph, a comma must be used in argument-1 
rather than a decimal point.

Returned Values

1. The returned value is the numeric value represented by argument-1.

2. The number of digits returned is 18. If your program has been 
compiled for 31-digit support (“-Dd31”), up to 31digits may be 
returned.

F.29  NUMVAL-C Function

The NUMVAL-C function returns the numeric value represented by the 
character string specified by argument-1.  Any optional currency sign 
specified by argument-2 and any optional commas preceding the decimal 
point are ignored.  The type of this function is numeric.



NUMVAL-C Function  F-27
Usage
FUNCTION NUMVAL-C (argument-1 [argument-2])

Parameters

1. Argument-1 must be a non-numeric literal or alphanumeric data item 
whose content has one of the following formats:

[space] [+] [space] [cs] [space] {digit [, digit] ... [. [digit]]} [space]
        [-]                      {. digit                        }

or

[space] [cs] [space] {digit [, digit] ... [. [digit]]} [space] [+ ] [space]
                     {. digit                        }         [- ]
                                                               [CR]
                                                               [DB]

where space is a string of zero or more spaces, cs is the string of one or 
more characters specified by argument-2, and digit is a string of one or 
more digits.

2. If the DECIMAL-POINT IS COMMA clause is specified in the 
SPECIAL-NAMES paragraph, the functions of the comma and decimal 
point in argument--1 are reversed.

3. The total number of digits in argument-1 must not exceed 18. If your 
program has been compiled for 31-digit support (“-Dd31”), 
argument-1 must not exceed 31.

4. Argument-2, if specified, must be a non-numeric value represented by 
argument--1.

5. If argument-2 is not specified, the character used for cs is the currency 
symbol specified for the program.

Returned Values

1. The returned value is the numeric value represented by argument-1.

2. The number of digits returned is 18.  If your program has been 
compiled for 31-digit support (“-Dd31”), up to 31digits may be 
returned.



F-28  Intrinsic Functions
F.30  ORD Function

The ORD function returns an integer value that is the ordinal position of 
argument-1 in the collating sequence for the program.  The lowest ordinal 
position is “1”.  The type of this function is integer.

Usage
FUNCTION ORD (argument-1)

Parameter

Argument-1 must be one character in length, and must be class alphabetic or 
alphanumeric.

Returned Value

The returned value is the ordinal position of argument-1 in the collating 
sequence for the program.

F.31  ORD-MAX Function

The ORD-MAX function returns a value that is the ordinal number of the 
argument-1 that contains the maximum value.  The type of this function is 
integer.

Usage
FUNCTION ORD-MAX ({argument-1} ... )

Parameters

If more than one argument-1 is specified, all arguments must be of the same 
class.

Returned Values

1. The returned value is the ordinal number that corresponds to the position 
of the argument-1 having the greatest value in the argument-1 series.



ORD-MIN Function  F-29
2. The comparisons used to determine the greatest valued argument are 
made according to the rules for simple conditions.

3. If more than one argument-1 has the same greatest value, the number 
returned corresponds to the position of the leftmost argument-1 having 
that value.

F.32  ORD-MIN Function

The ORD-MIN function returns a value that is the ordinal number of the 
argument that contains the minimum value.  The type of this function is 
integer.

Usage
FUNCTION ORD-MIN ({argument-1} ... )

Parameters

If more than one argument-1 is specified, all arguments must be of the same 
class.

Returned Values

1. The returned value is the ordinal number that corresponds to the position 
of the argument-1 having the least value in the argument-1 series.

2. The comparisons used to determine the least valued argument-1 are 
made according to the rules for simple conditions.

3. If more than one argument-1 has the same least value, the number 
returned corresponds to the position of the leftmost argument-1 having 
that value.



F-30  Intrinsic Functions
F.33  PRESENT-VALUE Function

The PRESENT-VALUE function returns a value that approximates the 
present value of a series of future period-end amounts specified by 
argument-2 at a discount rate specified by argument-1.

Usage
FUNCTION PRESENT-VALUE (argument-1 {argument-2} ... )

Parameters

1. Argument-1 and argument-2 must be of the class numeric.

2. The value of argument-1 must be greater than -1.

Returned Value

The returned value is an approximation of the summation of a series of 
calculations with each term in the following form:

argument-2 / (1 + argument-1) ** n

There is one term for each occurrence of argument-2.  The exponent, n, is 
incremented increased from one by in increments of one for each term in the 
series.

Example
COMPUTE RSULT = FUNCTION PRESENT-VALUE (DISCOUNT-RATE, 2000).

Note: In this example, DISCOUNT-RATE and RSULT are numeric data 
items.  If DISCOUNT--RATE has the value “0.08”, the value returned and 
stored in RSULT is approximately “1851.85”. 



RANDOM Function  F-31
F.34  RANDOM Function

The RANDOM function returns a numeric value that is a pseudo-random 
number (one of a sequence of numbers generated by an algorithm so as to 
have an even distribution over a range of values and minimal correlation 
between successive values) from a rectangular distribution.  The type of this 
function is numeric.

Usage
FUNCTION RANDOM [(argument-1)]

Parameters

1. If argument-1 is specified, it must be zero or a positive integer.  It is used 
as the seed value to generate a sequence of pseudo-random numbers.

2. If a subsequent reference specifies argument-1, a new sequence of 
pseudo-random numbers is started.

3. If the first reference to this function in the run unit does not specify 
argument-1, a seed value will be provided by the runtime.

4. In each case, subsequent references without specifying argument-1 
return the next number in the current sequence.

Returned Values

1. The returned value is greater than or equal to zero and less than one.

2. For a given seed value on a given implementation, the sequence of 
pseudo-random numbers will always be the same.

Example
   77  random_num  pic s9(4)v99.
...
   move function random() to random_num.



F-32  Intrinsic Functions
F.35  RANGE Function

The RANGE function returns a value that is equal to the value of the 
maximum argument minus the value of the minimum argument.  The type of 
this function depends on the argument types as follows:

Usage
FUNCTION RANGE ({argument-1} ... )

Parameters

Argument-1 must be class numeric.

Returned Value

The returned value is equal to the greatest value of argument-1 minus the 
least value of argument-1.  The comparisons used to determine the greatest 
and least values are made according to the rules for simple conditions.

F.36  REM Function

The REM function returns a numeric value that is the remainder of 
argument-1 divided by argument-2.  The type of this function is numeric.

Usage
FUNCTION REM (argument-1 argument-2)

Parameters

1. Argument-1 and argument-2 must be class numeric.

2. The value of argument-2 must not be zero.

Argument Type Function Type

All arguments integer Integer

Numeric (some arguments may be integer) Numeric



REVERSE Function  F-33
Returned Value

The returned value is the remainder of argument-1 / argument-2.  It is 
defined as the expression:

Argument-1 - (argument-2 * FUNCTION INTEGER-PART (argument-1 / 
argument-2))

F.37  REVERSE Function

The REVERSE function returns a character string of exactly the same length 
as argument-1 and whose characters are exactly the same as those of 
argument-1, except that they are in reverse order.  The type of this function 
is alphanumeric.

Usage
FUNCTION REVERSE (argument-1)

Parameter

Argument-1 must be class alphabetic or alphanumeric, and must be at least 
one character in length.  

Returned Value

If argument-1 is a character string of length n, the returned value is a 
character string of length n such that for 1< j < n, the character in position j 
of the returned value is the character from position n-j+1 of argument-1.

F.38  SIN Function

The SIN function returns a numeric value that approximates the sine of an 
angle or arc, expressed in radians, that is specified by argument-1.  The type 
of this function is numeric.



F-34  Intrinsic Functions
Usage
FUNCTION SIN (argument-1)

Parameter

Argument-1 must be class numeric.

Returned Value

The returned value is the approximation of the sine of argument-1 and is 
greater than or equal to “-1” and less than or equal to “+1”.

F.39  SQRT Function

The SQRT function returns a numeric value that approximates the square 
root of argument-1.  The type of this function is numeric.

Usage
FUNCTION SQRT (argument-1)

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be zero or positive.

Returned Value

The returned value is the absolute value of the approximation of the square 
root of argument-1.

F.40  STANDARD-DEVIATION Function

The STANDARD-DEVIATION function returns a numeric value that 
approximates the standard deviation of its arguments.  The type of this 
function is numeric.



SUM Function  F-35
Usage
FUNCTION STANDARD-DEVIATION ({argument-1} ... )

Parameters

Argument-1 must be class numeric.

Returned Values

1. The returned value is the approximation of the standard deviation of the 
argument-1 series.

2. The returned value is calculated as follows:

a. The difference between each argument-1 value and the arithmetic 
mean of the argument-1 series is calculated and squared.

b. The values obtained are then added together.  This quantity is 
divided by the number of values in the argument-1 series.

c. The square root of the quotient obtained is then calculated.  The 
returned value is the absolute value of the square root.

3. If the argument-1 series consists of only one value, or if the 
argument-1 series consists of all variable occurrence data items and the 
total number of occurrences for all of them is one, the returned value is 
zero.

F.41  SUM Function

The SUM function returns a value that is the sum of the arguments.  The type 
of this function depends upon the argument type as follows:

Argument Type Function Type

All arguments integer Integer

Numeric (some arguments may be integer) Numeric



F-36  Intrinsic Functions
Usage
FUNCTION SUM ({argument-1} ... )

Parameters

Argument-1 must be class numeric.

Returned Values

1. The returned value is the sum of the arguments.

2. If the argument-1 series are all integers, the value returned is an 
integer.

3. If the argument-1 series are not all integers, a numeric value is 
returned.

F.42  TAN Function

The TAN function returns a numeric value that approximates the tangent of 
an angle or arc, expressed in radians, that is specified by argument-1.  The 
type of this function is numeric.

Usage
FUNCTION TAN (argument-1)

Parameter

Argument-1 must be class numeric.

Returned Value

The returned value is the approximation of the tangent of argument-1.



UPPER-CASE Function  F-37
F.43  UPPER-CASE Function

The UPPER-CASE function returns a character string that is the same length 
as argument-1 with each lowercase letter replaced by the corresponding 
uppercase letter.  The type of this function is alphanumeric.

Usage
FUNCTION UPPER-CASE (argument-1)

Parameter

Argument-1 must be class numeric or alphanumeric and must be at least one 
character in length.

Returned Values

1. The same character string as argument-1 is returned, except that each 
lowercase letter is replaced by the corresponding uppercase letter.

2. The character string returned has the same length as argument-1.

3. This function only translates characters with a numeric value of 0-128.  
Anything above that (such as é, with a value of 130) must be mapped 
to its associated upper- or lower-case character using the configuration 
variable UPPER-LOWER-MAP. 

Note: This function is similar to the library routine C$TOUPPER 
except that the original data is not modified, and the entire string is 
converted.

4. The returned value can be reference modified.  For example:

MOVE FUNCTION UPPER-CASE(FILE-NAME)(1:4) TO TMP-STRING.

F.44  VARIANCE Function

The VARIANCE function returns a numeric value that approximates the 
variance of its arguments.  The type of this function is numeric.



F-38  Intrinsic Functions
Usage
FUNCTION VARIANCE ({argument-1} ... )

Parameters

Argument-1 must be class numeric.

Returned Values

1. The returned value is the approximation of the variance of the 
argument-1 series.

2. The returned value is defined as the square of the standard deviation of 
the argument-1 series.

3. If the argument-1 series consists of only one value, or if the 
argument-1 series consists of all variable occurrence data items and the 
total number of occurrences for all of them is one, the returned value is 
zero.

F.45  WHEN-COMPILED Function

The WHEN-COMPILED function returns the date and time the program was 
compiled as provided by the system on which the program was compiled.  
The type of this function is alphanumeric.

Usage
FUNCTION WHEN-COMPILED

Returned Values

1. The character positions returned, numbered from left to right, are 
described in the table below.

.

Character Positions Contents

1-4 Four numeric digits of the year in the Gregorian 
calendar.



WHEN-COMPILED Function  F-39
2. The returned value is the date and time of compilation of the source 
program that contains this function.  If the program is a contained 
program, the returned value is the compilation date and time associated 
with the separately compiled program in which it is contained.

Note: The returned value must denote the same time as the 
compilation date and time if provided in the listing of the source 
program and in the generated object code for the source program, 
although their representations and precisions may differ.

3. The returned value can be reference modified.  For example:

     MOVE FUNCTION WHEN-COMPILED (1:4) TO YEARDATE.

5-6 Two numeric digits of the month of the year, in the 
range 01 through 12.

7-8 Two numeric digits of the day of the month, in the 
range 01 through 31.

9-10 Two numeric digits of the hours past midnight, in 
the range of 00 through 23.

11-12 Two numeric digits of the minutes past the hour, in 
the range 00 through 59.

13-14 Two numeric digits of the seconds past the minute, 
in the range 00 through 59.

15-16 Two numeric digits of the hundredths of a second 
past a second, in the range 00 through 99.  The 
value 00 will be returned for all systems

17 The character ‘0’.  This field is reserved for future 
implementation.

18-19 The characters ‘00’.  This field is reserved for 
future implementation.

20-21 The characters ‘00’.  This field is reserved for 
future implementation.

Character Positions Contents





G
 Reserved for Future Use
As a convenience to long-time ACUCOBOL-GT programmers and users, we 
have retained this empty appendix so that Appendix H, “Runtime 
Configuration Entries”, and Appendix I, “ACUCOBOL-GT Library 
Routines” can continue to be located in their historic positions.





H
 Configuration Variables
Key Topics

Introduction ............................................................................................ H-2
Configuration variables ........................................................................  H-5



H-2  Configuration Variables
H.1 Introduction

Many aspects of the runtime system can be controlled through runtime 
configuration variables.  This mechanism provides a great deal of flexibility, 
because these variables can be modified by each runcbl site as well as 
directly by an ACUCOBOL-GT program.  

H.1.1  Variable Syntax

Configuration variables are maintained in a runtime configuration file.  This 
standard text file can be modified by the host system’s text editor.  Each entry 
in the runtime configuration file consists of a single line.  All entries start 
with a keyword, followed by one or more spaces or tabs, and then one or 
more values.  

Some examples of runtime configuration variables are:
AUTO_PROMPT   0
BELL   1
COMPRESS_FACTOR   70
CURSOR_TYPE   3
MENU_ITEM   Edit=Delete   200
SCROLL   on 

For all runtime configuration variables, “=” placed between the keyword and 
the first value is optional, and is interchangeable with a space. 

For some runtime configuration variables, the words “on”, “true”, and “yes” 
are synonyms for “1”, and the words “off”, “false”, and “no” are synonyms 
for “0”.  The entry for each variable in this appendix indicates when these 
synonyms are allowed.

runcbl uses the following rules to decide what the configuration file is 
called: 

1. If the “-c” runtime option is used, the configuration file is the one named 
by that option; otherwise,

2. If the operating system environment variable “A_CONFIG” is defined, 
its value is the name of the configuration file; otherwise,



Introduction  H-3
3. The configuration file is named according to the host operating system.  
This depends on the operating system used by the machine, as outlined 
in the following table. 

Caution: Do not give a data file a name that is the same as a configuration 
variable name.  Doing so can cause problems if you map the data filename 
through a configuration entry.  For example, if you have a data file named 
“CURRENCY”, the runtime may confuse the data file with the 
configuration variable of the same name, inadvertently changing the default 
currency character.

H.1.2  Variable Usage

The configuration file is optional, as are all of its contents.  For this reason, 
no errors in the configuration file are ever reported.  The “-l” runcbl option 
can help debug configuration file problems.  

In the descriptions of some runtime configuration variables, you will find 
comments about behavior under the Windows environment; unless otherwise 
noted, these comments apply to all 32-bit versions of the Windows operating 
system.

Runtime configuration variables may be placed in either the runtime 
configuration file or the machine’s environment.  When they are placed in the 
runtime configuration file, upper- and lower-case names are equivalent, as 
are hyphens and underscores.  When placed in the machine’s environment, 
the keywords must be all upper case and must use underscores instead of 
hyphens.  For more details about the configuration process, see the 
ACUCOBOL-GT User’s Guide, section 2.8, “Runtime Configuration.” 

System Configuration File

Windows \etc\cblconfi

UNIX/Linux /etc/cblconfig

MPE/iX /etc/cblconfig

VMS SYS$LIBRARY:A_CONFIG.DAT



H-4  Configuration Variables
All configuration variables that have a default value are used by and affect 
the runtime in the same way that they would if they were in the configuration 
file.  That is to say, a configuration variable that has a default value is treated 
as if it appears in the configuration file set to the default value.  

The values of many runtime configuration variables may be changed at 
runtime with the SET ENVIRONMENT verb.  The syntax is:

SET ENVIRONMENT env-name TO env-value

Env-name may specify either the literal name of the variable or a data-item 
whose value is the name of the variable.  If you specify the actual name of the 
variable, such as CODE_CASE, then you must enclose the name in quotes.  
Env-value is the value to which env-name will be set.  If it is a numeric data 
item, then it is treated as if it were redefined as an alphanumeric data item.

Most configuration variables can be read with the ACCEPT FROM 
ENVIRONMENT statement.  If the variable to be read is numeric, then the 
receiving field must be defined either as a numeric field or as an 
alphanumeric field of five or more characters.  If it is defined as 
alphanumeric and is longer than five characters, then the value that is read 
from the environment will occupy the leftmost five characters of the field and 
the remainder will be space-filled.  

H.1.3  Nested configuration files

It is possible to use multiple configuration files by nesting one inside another.  
Within the configuration file, you can specify another file to process with the 
following syntax:

!COPY filename

No name expansion is done to filename (for example FILE_PREFIX is not 
applied) so you must specify a file that the runtime can find.  You can include 
remote name syntax if you are using AcuServer® or AcuConnect®.  
Otherwise, the file must be an absolute path or a path relative to the current 
directory.



Configuration variables  H-5
For example, if you have some configuration variables in a global place such 
as “/etc/cblconfi”, then individual users can execute the runtime using this 
configuration file instead of the usual one. The settings in the usual 
configuration file take effect also, because their settings are copied in with 
!COPY:

#Get all the standard variables
!copy /etc/cblconfi

#Now set personal settings
COMPRESS_FILES 1

H.2  Configuration variables

This section contains an alphabetical list of the runtime configuration file 
variables.  Many of these variables are also described in other parts of the 
documentation set.  

3D_LINES 

This variable has meaning only on graphical systems such as Windows.  Set 
this variable to “1” (on, true, yes) to cause the runtime to display lines and 
boxes with 3-D shading.  This makes the lines appear to be inscribed into the 
surface of the screen.  The variable is especially helpful in giving a 3-D look 
to a program originally designed on a character system.  Only black lines on 
a non-black background are shown with shading.  Other lines are displayed 
normally. 

The set of colors available to ACUCOBOL-GT significantly impacts how 
effective the shading will be.  Normally, the shading is most effective when 
the background is low-intensity white.  The other low-intensity colors are 
next best.

The shading is only marginally effective with a high-intensity background.  
For this reason, the 3D_LINES setting is not used when a high-intensity 
background is drawn.  Note that, by default, ACUCOBOL-GT shows 
background colors in high-intensity, so you will need to use at least one other 



H-6  Configuration Variables
configuration variable to arrange for a low-intensity background color.  For 
example, the BACKGROUND_INTENSITYvariable could be set to “1” to 
force a low-intensity background.

You may freely change the way lines are displayed in COBOL by using the 
SET ENVIRONMENT verb to set 3D-LINES prior to displaying a line or a 
box.  

• Setting it to “1” (on, true, yes) gives you the 3-D effect.

• Setting it to “0” (off, false, no) gives you normal lines.  

The runtime remembers which lines are drawn with 3-D, so you don’t need 
to keep track of this yourself.  Note, however, that if you attach a 3-D line to 
a non-3-D line, the intersection will use the 3D-LINES setting currently in 
effect.

The default value is “0”.

4GL_COLUMN_CASE

When set to “unchanged”, this variable causes the runtime to leave the case 
and hyphen usage of the field names found in XFDs unchanged.  XFDs are 
used with the Acu4GL interface, AcuXDBC, or AcuXML.  They are also 
required for international character mapping with AcuServer and they pro-
vide useful information to the alfred record editor.  By default, the runtime 
converts all field names to lower case and all hyphens to underscores.

For AcuXML, the case and hyphen usage of the XFD must match the XML 
file exactly, and 4GL_COLUMN_CASE should be set to “unchanged”.  For 
Acu4GL, however, you should be aware that most databases do not accept 
hyphens in column names.  If you set this variable to “unchanged” to protect 
case, you may need to modify the XFD by hand to replace hyphens with 
underscores. 



Configuration variables  H-7
7_BIT 

When this configuration variable is set to “1” (on, true, yes), 
ACUCOBOL-GT supports 7-bit communications instead of 8-bit.  This 
variable is designed specifically for machines that use 7-bit communications 
with parity enabled.  When 7_BIT is set to the default of “0” (off, false, no), 
8-bit communications are used. 

A_CHECKDIV

This variable allows you to specify an alternate runtime response to a divide 
by zero condition when the statement does not include a SIZE ERROR 
clause.  

In COBOL, a division by zero produces a size error condition.  The SIZE 
ERROR clause allows the programmer to specify actions to take when this 
condition occurs.  If there is no SIZE ERROR clause, by default in 
ACUCOBOL-GT the results are undefined.  You can use the A_CHECKDIV 
configuration variable to specify alternate handling.  

A_CHECKDIV can be set to:

NONE  
or:

 “0” The default setting.  This setting retains the 
default behavior of the runtime: the results 
are undefined.

ABEND  or:  “1”, 
STOP, 
ABORT

This setting causes the runtime to catch the 
divide by zero condition and exit with the 
error message: “Attempt to divide by zero”.

MOVE_ZERO  or:  “2”, 
ZERO_RESULT
, MOVE_ZEROS

This setting causes the runtime to move 
zeroes to the destination item(s) and 
continue.



H-8  Configuration Variables
A_DEBUG

This variable is available for applications such as online transaction servers 
that call ACUCOBOL-GT through the C API (see Chapter 6 of A Guide to 
Interoperating with ACUCOBOL-GT).  The default value is “0”.  With the 
default setting, the debugger launches when the debug_method flag in the C 
interface is set to “1”. 

Set this variable to “1” to turn on the ACUCOBOL-GT debugger in an xterm 
window the first time you call the C interface.  The debugger shuts down 
when the program that caused it to launch shuts down.

A_DISPLAY

This variable is available for applications such as online transaction servers 
that call COBOL through the C API.  The value of A_DISPLAY overrides 
the value of the DISPLAY environment variable.  Set A_DISPLAY to the 
value of your X server host name or IP address in the runtime configuration 
file (or /etc/cblconfig).  For example:
A_DISPLAY myvpn123.myhostname.com:0

A_EXTFH_FUNC

The value of this variable is an EXTFH function name needed for the EXTFH 
interface.  If you are using a library that contains an EXTFH function name 
other than “cics_xfh”, “cobol_extfh”, or “EXTFH”, you also need to set one 
or more of these variables to specify the function name:

A_EXTFH_FUNC Specifies a function to be used by all file types 
(indexed, relative, and sequential).

A_EXTFH_IDX_FUNC Specifies a function name to be used by indexed 
file types.

A_EXTFH_REL_FUNC Specifies a function name to be used by relative 
file types.

A_EXTFH_SEQ_FUNC Specifies a function name to be used by 
sequential file types.



Configuration variables  H-9
For example, to specify a function name to use for all file types:
A_EXTFH_FUNC=myExtfh

Or, to specify a different function for indexed, relative, and sequential files:
A_EXTFH_IDX_FUNC=myIdxExtfh
A_EXTFH_SEQ_FUNC=mySeqExtfh
A_EXTFH_REL_FUNC=myRelExtfh

If the library is a DLL, you can specify both the name of the DLL and the 
calling convention to use.  Any calling convention specified this way 
overrides the DLL_CONVENTION variable setting.  For information about 
specifying DLLs and calling conventions, see section 3.3.2, “Loading DLLs 
with Configuration Variables,” in A Guide to Interoperating with 
ACUCOBOL-GT.

A_EXTFH_LIB

The value of this variable is an EXTFH shared library or DLL file name.  You 
can use this variable to dynamically load an EXTFH library without relinking 
the ACUCOBOL-GT runtime.  For example:
A_EXTFH_LIB libraryname.so

You can also use the following variables to specify library names for 
indexed, relative, and sequential files.  The ACUCOBOL-GT runtime uses 
A_EXTFH_LIB as the default EXTFH library for all three file types.  If one 
or more of these three variables is also set, the runtime uses its value instead 
of A_EXTFH_LIB for the corresponding file type.

You can specify these variables in the runtime configuration file or as 
operating system environment variables.

A_EXTFH_IDX_LIB Specifies the EXTFH library to use for indexed 
files.

A_EXTFH_REL_LIB Specifies the EXTFH library to use for relative files.

A_EXTFH_SEQ_LIB Specifies the EXTFH library to use for sequential 
files.



H-10  Configuration Variables
If the library is a DLL, you can specify both the name of the DLL and the 
calling convention to use.  Any calling convention specified this way 
overrides the DLL_CONVENTION variable setting.  For information about 
specifying DLLs and calling conventions, see section 3.3.2, “Loading DLLs 
with Configuration Variables,” in A Guide to Interoperating with 
ACUCOBOL-GT.

See section 11.6, “Working With an EXTFH Interface,” in A Guide to 
Interoperating with ACUCOBOL-GT, for information on specifying 
EXTFH library and function names to use with the EXTFH interface.

A_EXTFH_SIMPLE_OPEN_OUTPUT

This variable is only used in UniKix environments, and the UniKix 
application automatically sets this variable to “1” (TRUE).  When set to “1” 
(TRUE), an OPEN OUTPUT statement will cause the EXTFH functions to 
bypass the “make” process, and will open the file as OUTPUT.  When set to 
“0” (FALSE), or not set at all, the EXTFH functions will execute the “make” 
process, and will open the file as EXTEND.

A_EXTFH_VARIABLE_IDX, A_EXTFH_VARIABLE_REL, 
A_EXTFH_VARIABLE_SEQ 

These variables indicate whether the filesystem you are accessing with the 
the EXTFH interface can or cannot handle variable length files.  Setting this 
variable to the default of  “1” (on, true, yes) causes the EXTFH interface to 
pass the minimum and maximum record lengths to the file system for 
variable length files as defined in the COBOL program.  Setting this variable 
to “0” (off, false, no) causes the EXTFH interface to ignore the variable 
record length defined in the COBOL program and instead pass a record 
length equal to the maximum record length. 

You can specify the variable separately for indexed, relative, and sequential 
files.  For example:
A_EXTFH_VARIABLE_IDX=0
A_EXTFH_VARIABLE_REL=0
A_EXTFH_VARIABLE_SEQ=1



Configuration variables  H-11
When the file system does not process variable length files, set these 
configuration variables to “0” and the EXTFH interface treats variable length 
records as fixed lengths.

If the file system does process variable length files, set the configuration 
variables to “1” (or do not set them at all).

A_JAVA_CHARSET

This variable specifies the character set that the runtime should use when 
mapping Java strings or PIC X data items containing characters outside of the 
ISO-8859-1 range.   The default setting is "IS0-8859-1".   If you have data 
outside the IS0-8859-1 range (for example, an umlaut or Euro symbol),  
specify a different character set that contains those characters.  

Be aware of a common misconception that ISO-8859-1 is equivalent to 
Windows-1252. This is mostly  true, but there are characters in the range 
0x80 – 0x9F that differ. Windows-1252 uses these numbers for letters and 
punctuation, while the ISO-8859-1 uses these for control codes. 

A_JAVA_GC_COUNT

A_JAVA_GC_COUNT is a 32-bit value that determines how often the 
runtime calls the JVM garbage collector.  The JVM garbage collector will run 
at unknown times, in order to deallocate memory which is no longer being 
used.  Setting this to a non-zero value allows you to be a little more 
intentional about running the garbage collector.  The value is the number of 
times C$JAVA is called before the runtime calls the JVM garbage collector.  
The default value is 9883, so every 9883 calls to C$JAVA will explicitly call 
the JVM garbage collector.  (For more info on the JVM garbage collector, see 
your JVM documentation.)



H-12  Configuration Variables
A_JAVA_TRACE_FILENAME

A_JAVA_TRACE_FILENAME is the name of the file where the trace 
information is sent.  This filename can include all of the format specifiers that 
the runtime error file can include.  If this file can’t be opened for writing (for 
any reason), no trace information is collected. 

A_JAVA_TRACE_VALUE

To track calls to the JVM made on behalf of the COBOL program, you can 
set one of the following  three configuration variables: 
A_JAVA_TRACE_VALUE, A_JAVA_TRACE_FILENAME, and 
A_JAVA_GC_COUNT.  

A_JAVA_TRACE_VALUE is a 32-bit value that determines the types of 
calls to trace.  Add any of the following values together to create a single 
value to set.

1 - Show calls that return simple types (boolean, byte, character, short, 
integer, long, float, double).

2 - Show method calls that return simple types.

4 - Show string calls that return string references (that must be released).

8 - Show string calls that return simple types.

16 - Show calls that return references to a Java object (that must be released).

32 - Show method calls that return references to a Java object (that must be 
released).

64 - Show calls that return references to a Java array or array elements (that 
must be released).

128 - Show calls that return other array information.

256 - Show calls to the exception routines (some of which must be released).



Configuration variables  H-13
512 - Show calls to get IDs (Method Identifiers or Field Identifiers).

1024 - Show calls to field functions that return references to a Java object 
(that must be released).

2048 - Show calls to field functions that return simple types.

4096 - Show other types of calls that return references to a Java object (that 
must be released).

8192 - Show calls to release a reference to a Java object.

16384 - Show other calls to the Java runtime.

Note for there to be no memory leaks, any call that returns a reference to a 
Java object (that must be released) needs to be paired with a call to release 
that reference.  If the COBOL program gets that reference, it is responsible 
for releasing the reference.  If the runtime gets the reference for internal 
purposes, the runtime is responsible for releasing the reference.

For example, setting A_JAVA_TRACE_VALUE to 13684 shows all calls to 
the JVM that obtain or release a reference to a Java object.  Setting 
A_JAVA_TRACE_VALUE to -1 is equivalent to setting it to 32767 (which 
is the sum of all the above values), and has the added benefit of tracing new 
options that may be added in the future.  However, for finding memory leaks, 
this may be too much information.

A_LICENSE_RETRIES

This variable affects UNIX networks with multiple-user licenses for the 
runtime. When set to a positive, non-zero value, this entry causes the runtime 
to retry (“value” times) any failed attempt to register with the network license 
manager, acushare.  The configuration variable A_RETRY_DELAY 
specifies how many seconds the runtime will wait between retries.  

The default value is “0” (no retries).



H-14  Configuration Variables
A_OPERATING_SYSTEM

As of Version 5.0, the runtime no longer differentiates between “UNIX-V” 
and “UNIX-4” in the OPERATING-SYSTEM field of the 
SYSTEM-INFORMATION data item.  Instead, the value “UNIX” is used for 
all UNIX platforms.  If you have an existing program that depends on one of 
the older values, set A_OPERATING_SYSTEM to a value of “UNIX-V” or 
“UNIX-4”.  Then, when an ACCEPT FROM SYSTEM-INFO statement is 
executed, this value overrides the value returned by the function.  The default 
value is empty.

A_REMOVE_EMPTY_ERROR_FILE

Use this variable to prevent the accumulation of 0 byte files when using 
format specifiers such as “%p” (to include the process id) in the error file 
name.  When this variable is set to “1” (on, true, yes), the runtime deletes its 
error file if the runtime has never written to that file.  Note that on some 
operating systems, if your error file is shared by multiple processes (i.e., the 
file name does not include the process id or some other unique session 
information), setting A_REMOVE_EMPTY_ERROR_FILE to “1” may  
cause error messages to be lost.  For example, on UNIX if the error file is 
empty when one runtime exits, that runtime would delete the file. The file 
will remain deleted even if another runtime process subsequently writes a 
message to it.  The default value for this variable is “0” (off, false, no).

A_RETRY_DELAY 

This variable affects UNIX networks with multiple-user licenses.  If 
A_LICENSE_RETRIES is set to a positive integer value, then the value of 
A_RETRY_DELAY determines how many seconds the runtime will wait 
between repeated attempts to register itself with the network license 
manager, acushare. 

The default value is “10”.



Configuration variables  H-15
A_SEQ_DEFAULT_BLOCK_SIZE

This configuration variable determines the size of the buffer to use when 
accessing a sequential file whose definition has no BLOCK CONTAINS 
clause.  When set, A_SEQ_DEFAULT_BLOCK_SIZE specifies the size of 
the buffer in characters, rounded up to the nearest power of 2 that is greater 
than or equal to that value.  The default value is “0”, which sets the block size 
to one record.  Note that this variable does not apply to print files or to files 
with names that start with a hyphen followed by “D” or “P”.  

You can set A_SEQ_DEFAULT_BLOCK_SIZE in the environment to allow 
the “vutil -load” command to buffer the input file according to the variable’s 
value.  The maximum buffer size is 1 GB.  If this variable is not set, the 
default buffer block size is 4096 bytes.  If it is set to “0”, “vutil -load” 
performs record-based I/O on a sequential file. 

A_SYSLOG_HOSTNAME

This variable applies only on Windows and works in conjunction with the 
A_SYSLOG_ON_RUNTIME_ERROR configuration variable.  Set 
A_SYS_HOSTNAME to the server name or IP address on which the event 
log is located.  Do not include any slashes with the server name.  The default 
value for this variable is empty.  Then set 
A_SYSLOG_ON_RUNTIME_ERROR to “1” (on, true, yes).    Shutdown 
messages will be sent to the event log on the local machine.

A_SYSLOG_ON_RUNTIME_ERROR

When this variable is set to “1” (on, true, yes), on a fatal error, the runtime 
will send its shutdown error message to the UNIX syslog daemon, console, 
or Windows event log.  The runtime uses the same logic as the C$SYSLOG 
routine.  (See C$SYSLOG in Appendix I for more information).  The error 
message also includes the name of the runtime error file so that the 
administrator can view it for more information.  The default value for this 
variable is “0” (off, false, no).



H-16  Configuration Variables
ACCEPT_AUTO

This configuration variable applies only when running in HP COBOL 
compatibility mode (with the “-Cp” compiler option).  The ACCEPT_AUTO 
configuration variable causes the runtime to treat all Format 1 ACCEPT 
statements as if the AUTO phrase is used, whether or not AUTO appears in 
the statement.  Set this variable to “1” (on, true, yes) to enable this behavior.  
The default value is “0” (off, false, no). 

ACCEPT_TIMEOUT 

This variable causes all ACCEPT statements to time out just as if there was a 
BEFORE TIME phrase present in the ACCEPT statement.  The value 
assigned to ACCEPT_TIMEOUT is the timeout period, in seconds.  This 
timeout value is applied to every ACCEPT statement that can have a 
BEFORE TIME phrase specified for it.  If a particular ACCEPT statement 
has a BEFORE TIME phrase explicitly coded for it, that phrase takes 
precedence and ACCEPT_TIMEOUT does not apply to that statement.  The 
default value of ACCEPT_TIMEOUT is “0”, which indicates no timeout 
value.  

ACTIVE_BORDER_COLOR 

This variable is used on character-based hosts to specify the color and video 
attributes of the characters used to form the border (box) around the active 
floating window.  ACTIVE_BORDER_COLOR can be set to a variety of 
numeric values that express combinations of color and video attributes.  See 
the documentation for the COLOR phrase in the “Common Screen Options” 
section of the ACUCOBOL-GT Reference Manual (Section 6.4.9).

If ACTIVE_BORDER_COLOR is set to “0”, the active window’s border is 
drawn with the colors and video attributes specified in the COBOL program 
when the window is initially created.  The default value is “0”.



Configuration variables  H-17
ACU_DUMP, ACU_DUMP_FILE, ACU_DUMP_WIDTH, 
ACU_DUMP_TABLE_LIMIT

These configuration variables are used to enable and configure the Abend 
Diagnostic Report (ADR) facility.  For a complete description of the ADR,  
see Section 3.1.9, in Book 1, ACUCOBOL-GT User’s Guide. 

ACU_DUMP

This variable enables the Abend Diagnostic Report.  The default value is “0” 
(off, false, no).   Set ACU_DUMP to “1” (on, true, yes) to turn on the ADR. 

ACU_DUMP_FILE

This variable specifies the name of the report file.  It allows the following 
special parameters:

• If the file name starts with a plus sign (“+”), the report is appended to the 
specified file.  By default, a new report overwrites the specified file. 

• If the name contains the string “%p”, when the report is generated that 
string is replaced with the process ID (PID) of the runtime from which 
the report originates.

•  If the name contains the string “%d”, that string is replaced with the 
current date in the form YYYYMMDD where YYYY is the year, MM 
month and DD day.

• If the name contains the string “%t”, that string is replaced with the 
current time in the form HHMMSSTTT where HH is the hour, MM 
minute, SS second and TTT milliseconds.

• If the name contains the string “%u”, that string is replaced with the 
username.

• If the name contains the string “%h”, that string is replaced with the 
hostname.

The default value for ACU_DUMP_FILE is “acudump.%p”.



H-18  Configuration Variables
ACU_DUMP_WIDTH

This variable controls the width of the report and has a default value of 80 
characters.  The minimum allowed value is 79 and the maximum is 2048.  
Note that because the report uses dynamically computed columns for its 
hexadecimal data, making the report very wide can reduce readability by 
introducing excessive white space.

ACU_DUMP_TABLE_LIMIT

This variable limits how many elements of each table item to list.  The default 
value is 1000.  Note that if you increase this value substantially, and if you 
have tables that allow for large numbers of elements, you may get very large 
reports.

In the following example, ACU_DUMP_TABLE_LIMIT is set to 5:
01 MY-TABLE-R                     = (group)
05 TABLE-ENTRY(1)                 =     1          h20202020 31
05 TABLE-ENTRY(2)                 =     2          h20202020 32
05 TABLE-ENTRY(3)                 =     3          h20202020 33
05 TABLE-ENTRY(4)                 =     4          h20202020 34
05 TABLE-ENTRY(5)                 =     5          h20202020 35
Remaining table items suppressed due to ACU-DUMP-TABLE-LIMIT setting

ACU_USER_DIR

The ACU_USER_DIR configuration variable specifies the default location 
of a user debugger settings file.  In the past, the ACUCOBOL variable has 
been used for this purpose.  When set, ACU_USER_DIR specifies the 
directory for the user’s debugger settings (“.adb”) file.  The default value is 
“NULL”, which causes the runtime to use the ACUCOBOL variable.



Configuration variables  H-19
ACUCOBOL 

This variable holds the full path to the ACUCOBOL-GT installation 
directory.  For example, if the runtime is installed in “C:\Program 
Files\Acucorp\Acucbl8xx\AcuGT\bin”, you would set this configuration 
variable to:

ACUCOBOL C:\Program Files\Acucorp\Acucbl8xx\AcuGT

This variable is used to locate extensions to the runtime. 

AGS_MAX_SEND_SIZE

This variable allows you to control the size of a basic socket packet 
exchanged between extend applications that use sockets to communicate.  
The default value is 16000.  In the vast majority of cases, the default value 
provides excellent results.  However, when performance problems are traced 
to packet size, you can change the size with AGS_MAX_SEND_SIZE.  The 
value of this variable is checked every time that data is sent to the socket.  
When a program changes the value, the new value is applied the next time 
that data is sent to the socket.

AGS_RECEIVE_BUFFER_SIZE

This variable determines the size of the low-level receive buffer for a socket 
connection.  For the value to have an affect, it must be set before any sockets 
have been created.  The default value is 16384. The default value should be 
sufficient for most cases. The receive-buffer-size is passed directly to a call 
to setsockopt. 

Note: The value of this variable is sent to a lower-level socket layer not 
controlled by ACUCOBOL-GT.  It may not have any noticeable effect.  
Changes in this value are not seen in response to a “U” debugger command 
listing the memory usage of the runtime. 



H-20  Configuration Variables
AGS_SEND_BUFFER_SIZE

This variable determines the size of the low-level send buffer for a socket 
connection.  For the value to have an affect, it must be set before any sockets 
have been created.  The default value is 16384.  The default value should be 
sufficient for most cases. The send-buffer-size is passed directly to a call to 
setsockopt.

Note: The value of this variable is sent to a lower-level socket layer not 
controlled by ACUCOBOL-GT.  It may not have any noticeable effect.  
Changes in this value are not seen in response to a “U” debugger command 
listing the memory usage of the runtime. 

AGS_SOCKET_COMPRESS

This variable determines the type of data compression performed at the 
internal socket layer. AGS_SOCKET_COMPRESS must be set before any 
socket communication is done, and cannot be changed via SET 
ENVIRONMENT.  This variable has three possible values:

RUNLENGTH compression tends to be very fast, while ZLIB compression 
tends to compress the data more, but is slower as a result.

NONE This is the default setting.  When 
AGS_SOCKET_COMPRESS is set to 
this value, no compression is performed.

ZLIB When AGS_SOCKET_COMPRESS is 
set to this value, socket data is 
compressed using the same algorithm as 
the gzip compression utility.

RUNLENGTH When AGS_SOCKET_COMPRESS is 
set to this value, simple compression is 
done, based on counting repeated bytes 
of data.



Configuration variables  H-21
Windows supports ZLIB compression, but not all UNIX machines do.  For 
those machines that do not, RUNLENGTH compression will be used 
whether this variable is set to ZLIB or RUNLENGTH.  When the 
compression algorithm is being negotiated with a server, the method that both 
machines support will be used.

AGS_SOCKET_ENCRYPT 

To turn on encryption at the internal socket-layer, set the configuration 
variable AGS_SOCKET_ENCRYPT to “1” (on, true, yes).  It must be set 
before any socket communication is performed, and cannot be changed via a 
SET ENVIRONMENT statement.

Note: If the variables AS_CLIENT_ENCRYPT and/or 
THIN_CLIENT_ENCRYPT are set to “1”, AGS_SOCKET_ENCRYPT is 
also set to “1” automatically.

AGS_TCP_NODELAY

This variable determines whether the Nagle algorithm is used when sending 
socket buffer messages.  This algorithm automatically delays sending small 
socket packets for a short period of time in order to increase network 
efficiency by sending them in a batch.  Setting this variable to the default of  
“1” (on, true, yes) causes socket packets to be sent immediately (not using the 
algorithm), while setting this variable to “0” (off, false, no) causes socket 
packets to be delayed (using the algorithm). The TCP-NODELAY socket 
option is used as follows: 
setsockopt(s, IPPROTO_TCP, TCP_NODELAY, &tcp_nodelay, sizeof(int)); 

The value of this variable is sent to a lower-level socket layer not controlled 
by ACUCOBOL-GT.  It may not have any noticeable effect. 



H-22  Configuration Variables
alfred Configuration variables

As of Version 8.0, the Indexed File Record Editor (alfred) is provided as a 
sample program and is located in the “sample” folder under “AcuGT”.  You 
can download detailed information on using and configuring alfred in PDF 
format from the Support > Examples & Utilities >Acucorp Samples > 
Acucorp Technical Articles and Tips section of the Micro Focus website 
(www.microfocus.com). 

ALLOW_FS_OVERRIDE 

This variable enables you to determine if the actual EXTFH return status will 
be returned, or if the return status should be translated by the runtime.  The 
default setting is “True” or “1” and will cause the actual EXTFH return status 
to be returned to the user.  Setting this variable to “False” or “0” will cause 
the EXTFH return status to be translated by the runtime

ANSI_OUTPUT_IN_DEBUG

This variable prevents a COBOL program that uses ANSI-style DISPLAY 
statements from interfering with the runtime debugger window.  This 
variable accepts two possible values:  “CANVAS” or “TERMINAL”.

When set to “CANVAS” (the default setting) the runtime constructs a default 
canvas on which to place the ANSI output.  This prevents the ANSI output 
from interfering with the debugger window.  Note that if your COBOL 
program sends escape sequences to the terminal, this mode will cause those 
escape sequences to not have the intended result.  

When set to “TERMINAL”, the runtime will send ANSI output to the 
terminal, possibly interfering with the view of the debugger window.  This is 
how the runtime behaved before the implementation of this new feature.

Note that this configuration variable must be set before the runtime initializes 
the terminal manager, which means you cannot set this variable from a 
COBOL program.



Configuration variables  H-23
APPLY_CODE_PATH 

When set to “1” (on, true, yes), this variable causes the CODE_PREFIX 
variable to be applied to object files with full path names (those beginning 
with a “/” (forward slash).  Otherwise, CODE_PREFIX is not applied to files 
with full path names.  For example, if your application specifies the file:

/accounting/objects/payroll

and your CODE_PREFIX variable is set to:
CODE_PREFIX  /master_obj

and APPLY_CODE_PATH is set to “on”, the runtime will look for your file 
in:

/master_obj/accounting/objects/payroll

The default value of APPLY_CODE_PATH is “0” (off, false, no).

APPLY_FILE_PATH 

When set to “1” (on, true, yes), this variable causes the FILE_PREFIX 
variable to be applied to data files with full path names (those beginning with 
“/”, forward slash).  Otherwise, FILE_PREFIX is not applied to files with full 
path names.  For example, if your application specifies the file:

/accounting/data/ind.dat

and your FILE_PREFIX variable is set to:
FILE_PREFIX  /master_data

and APPLY_FILE_PATH is set to “on”, the runtime will look for your file 
in:

/master_data/accounting/data/ind.dat

The default value of APPLY_FILE_PATH is “0” (off, false, no).



H-24  Configuration Variables
AUTO_DECIMAL

When set to “1” (on, true, yes), this variable checks the data item descriptions 
of numeric entry fields with a decimal point for the number of digits that must 
be filled to the right of the decimal point. When all the digits after the decimal 
point are entered, the field will terminate if the AUTO_TERMINATE phrase 
is specified.  The number of digits to the right of the decimal point can vary, 
depending on how many are indicated in the picture of each numeric entry 
field.  You must specify AUTO_TERMINATE phrase for this feature to 
work.

The exception to this is when an entry field has an AUTO_DECIMAL 
property specified, in which case, the coded value will be used.

The default value of this variable is “0” (off, false, no).

AUTO_PROMPT 

When set to “1” (on, true, yes), this variable causes all ACCEPT statements 
without a PROMPT clause to be treated as if they had a PROMPT SPACES 
clause.  This causes the screen to be erased at the field position prior to the 
data’s being entered.  This variable is provided for compatibility with 
ACUCOBOL-85 Version 1.3 and earlier, which behaved this way.  The 
default setting is “0” (off, false, no).

AXML_CREATE_SCHEMA

This variable is designed for use with AcuXML for instances when you want 
to include a schema or schema name with your XML output.  In order for this 
variable to have an effect, AXML_CREATE_STYLE must be set to 
“schema” and AXML_SCHEMA_NAME must name the schema file.  
Once these conditions are met, this variable tells AcuXML whether to create 
a schema file with XML output, or simply include the name of a schema file 
in the output.  

By default, when AXML_CREATE_STYLE is set to schema, AcuXML 
creates a schema file for all XML output.  Because only one schema is 
typically required, you should set AXML_CREATE_SCHEMA to “FALSE” 



Configuration variables  H-25
after the first time a schema is created.  Then, only the name of the schema 
file will be included in the output XML file.  Similarly, if you already have a 
schema file and don’t want AcuXML to overwrite it, set this variable to 
“FALSE.”

AXML_CREATE_STYLE 

This variable is designed for use with AcuXML.  Use it to define the type of 
XML output that ACUCOBOL-GT should generate when it creates XML 
files.  It can be set to “DTD”, “SCHEMA” or “NONE”.  Set this variable to 
“NONE” if you want the resulting XML file to be raw XML.  Set it to “DTD” 
if you want the output to include a Document Type Definition of the elements 
in the document. Often, the party with whom you trade data may require that 
your XML document include a DTD.

Set this variable to “SCHEMA” if you want ACUCOBOL-GT to create a 
schema to describe the XML documents that it writes.  Schemas provide the 
highest level of detail about the contents of the associated XML document, 
and are typically required for development purposes.  If you set this variable 
to “SCHEMA”, you must use the  AXML_SCHEMA_NAME variable to 
name the schema file.

Please note that creating a schema for a file that was run through the xml2fd 
utility with a schema won’t result in an identical schema.  In addition, note 
that setting this variable to “schema” causes a schema to be created for every 
XML output file by default.  Once the first schema is created, you should set 
AXML_CREATE_SCHEMA to “FALSE” to prevent  schemas from being 
created on subsequent XML outputs.

AXML_ENCODING

This variable is designed for use with AcuXML.  Use it when you want to 
specify a character encoding method for the XML files that 
ACUCOBOL-GT creates.  By default, the XML output generated by 
ACUCOBOL-GT is mapped to the UTF-8 encoding system (compatible with 
the US-ASCII character set).  If you want to use a different encoding system, 



H-26  Configuration Variables
for instance a European encoding system that includes the British pound 
character (£), change this variable to reflect the new system name.  For 
example:

AXML_ENCODING iso8859-1

This variable causes encoding information to be added to the header of XML 
files created by ACUCOBOL-GT. With the configuration file entry shown 
above, the following header would be included: 

<?xml version="1.0" encoding="iso8859-1"?> 

This header causes the ISO-8859-1 Latin encoding system to be applied to 
the data file as desired. 

AcuXML supports the following encoding systems: 

• UTF-8, default [8-bit Unicode Transformation Format, backwards 
compatible with US-ASCII]

• US-ASCII

• UTF-16 [16-bit Unicode Transformation Format]

• ISO-8859-1 [Latin 1, European encoding]

AXML_EXACT_TABLE_MATCH

This variable affects the behavior of AcuXML.  By default, all tables in an 
FD must match data in the XML file with respect to the values of the indices.  
Therefore, AXML_EXACT_TABLE_MATCH is set to “1” (on, true, yes) by 
default.  To disable this requirement, set 
AXML_EXACT_TABLE_MATCH to “0” (off, false, no).

AXML_IGNORE_EMPTY_DATA

Set this variable to “TRUE” to omit empty and zero-filled data from 
AcuXML’s output file.  In this case, AcuXML will not write tags for 
alphabetic data items that are all blank or numeric data items that are “0”.  
When you set this variable from your COBOL program, it affects any records 



Configuration variables  H-27
written via AcuXML from that point on.  Note that setting this variable to 
“TRUE” could cause AcuXML to generate parts of an XML file that are not 
consistent with any DTD or schema associated with the file.  As a result, use 
this variable with care.  

The default value of “FALSE” causes AcuXML to generate tags for all data 
items in the file.  If your records are mostly empty, this may be overkill.

AXML_SCHEMA_DOC 

This variable is designed for use with AcuXML.  Use it when you want to add 
a documentation element to the schema that ACUCOBOL-GT creates when 
it writes an XML file (such as whenever a sequential file is OPEN 
OUTPUT).  

If you do not require specific documentation in the schema file, or if you did 
not request that schemas be created for XML output, you can omit this 
variable. 

If this variable is set, its value is included in the documentation element of the 
resulting schema. For example, if you set this variable as follows:

AXML_SCHEMA_DOC This is the documentation to be
included in the file...

The schema will include the following data:
   <xs:annotation>
     <xs:documentation>
       This is the documentation to be included in the file.
       Created by AcuXML version 6.0.0 on 2002/05/16
     </xs:documentation>
   </xs:annotation>

Note: For information on working with XML data, see section 11.2 in A 
Guide to Interoperating with ACUCOBOL-GT.



H-28  Configuration Variables
AXML_SCHEMA_NAME

This variable is designed for use with AcuXML.  Use it to define the name of 
the schema file that ACUCOBOL-GT writes, if any, when it creates an XML 
file.  If this variable is not set, or if it is set to a file name that cannot be 
created (for whatever reason), a schema is not created.  

Note: To tell ACUCOBOL-GT to create a schema, use the 
AXML_CREATE_STYLE and AXML_CREATE_SCHEMA variables.

AXML_SCHEMA_NAMESPACE_DATA

This variable is designed for use with AcuXML for instances when you want 
to include a schema or schema name with your XML output and you want 
precise control over the schema namespace string shown in the output.  The 
default value of this variable is:
xmlns:xs=\"http://www.w3.org/2001/XMLSchema-instance\" 
    xs:noNamespaceSchemaLocation=\"%s\"

By default, when ACUCOBOL-GT writes XML output (and a schema has 
been requested), it substitutes the “%s” in this variable with the name of the 
schema file specified with the AXML_SCHEMA_NAME configuration 
variable.  For instance, if AXML_SCHEMA_NAME  is set to “myschema”, 
ACUCOBOL-GT will include the following line in the XML output:
xmlns:xs=\"http://www.w3.org/2001/XMLSchema-instance\" 
    xs:noNamespaceSchemaLocation=\"myschema.xsd\"

If you need something different than “myschema.xsd” written in the 
namespace output, add this variable to your configuration file and alter the 
namespace value in the quotes to meet your requirements.

Note: If you want to include a single “%” character in the namespace, add 
a second percent sign “%%” to the definition of this variable.  

In general, the value of this variable is used in the standard C library printf() 
function as the first argument, and all printf() rules apply. 



Configuration variables  H-29
AXML_STYLESHEET_HREF and AXML_STYLESHEET_TYPE

These variables are designed for use with AcuXML.  Use them when you 
want to associate an XML style sheet with the XML documents that 
ACUCOBOL-GT creates.  When you set these variables to a non-blank 
value, ACUCOBOL-GT includes an XML-stylesheet comment in the 
beginning of the resulting XML files.  For instance, the following entry:

AXML_STYLESHEET_TYPE text/css

causes the following comment to be added to the beginning of the XML file:
<?xml-stylesheet type="text/css"?>

 If you set both of these variables, as in the following example,
AXML_STYLESHEET_TYPE text/css
AXML_STYLESHEET_HREF mystyle.css

then a comment like the following is added to the file:
<?xml-stylesheet type="text/css" href="mystyle.css"?>

If you do not require specific stylesheet data in the XML file, you can omit 
these variables. 

BACKGROUND_INTENSITY 

This variable is used to choose a background intensity.  Use one of these 
values: 

0 The runtime uses the default intensity, which is based on your 
hardware and operating environment.  Under Windows, the default 
background intensity is high-intensity.  The default value is “0”.

1 The runtime uses low-intensity.

2 The runtime uses high-intensity.



H-30  Configuration Variables
There are two important exceptions:

• The runtime always assigns low-intensity to the background if the 
background color is black.  Using high-intensity would cause the 
background to be dark gray, which tends to make the screen look muddy.  

• Many devices do not support a background intensity independent from 
the foreground intensity (most terminals, for example).  When that is the 
case, the runtime declares the background intensity to be low-intensity.  

BELL 

When set to “0” (off, false, no), this variable will inhibit all bells generated 
by ACCEPT and DISPLAY statements.  Note that this will override explicit 
WITH BELL clauses as well as implicit bells.  The default setting is “1” (on, 
true, yes).

BOXED_FLOATING_WINDOWS 

When this variable is set to “1” (on, true, yes) all floating windows displayed 
on character-based hosts are drawn with a border (box).  If this variable is set 
to “0” (off, false, no), floating windows are drawn with a border only when 
the BOXED phrase appears in the statement that creates the window.  The 
default value for this variable is “0” (off, false, no).  This variable has an 
affect only on character-based host systems. 

BTRV_MASS_UPDATE 

When this variable is set to “1” (on, true, yes), a Btrieve file is opened in 
exclusive mode.  No other processes may open the file at the same time.  
When this variable is set to “0” (off, false, no), a Btrieve file is opened in 
accelerated mode, and other processes may open the file.



Configuration variables  H-31
BTRV_NOWRITE_WAIT

When a user tries to write to a locked file, the Btrieve interface performs a 
15-second “wait and retry” operation before it reports an error condition (99) 
to the runtime.  Setting the  BTRV_NOWRITE_WAIT configuration 
variable to “TRUE” (the default) prevents this operation  from occurring, and 
the error condition is reported immediately.  Setting 
BTRV_NOWRITE_WAIT to “FALSE” causes the interface to perform the 
wait and retry operation.   

BTRV_USE_REPEAT_DUPS

This variable controls whether duplicate keys are created as LINKED 
duplicates (the Btrieve default) or REPEATING duplicates.  When set to the 
default value of “FALSE”, the Btrieve interface creates all duplicate keys as 
LINKED duplicates.  When set to “TRUE”, the Btrieve interface creates all 
duplicate keys as REPEATING duplicates. 

In cases where a large number of users are accessing files, you may 
experience better performance if you set this variable to “TRUE”.  See the 
Pervasive documentation for information on REPEATING duplicates and 
why you may want to use them.

BUFFERED_SCREEN 

This variable controls how the Terminal Manager should buffer its output on 
UNIX systems.  Normally, all queued output is sent to the screen after each 
DISPLAY statement.  If this value is set to “1” (on, true, yes), then output is 
sent only when the internal buffer is full, an ACCEPT statement is executed, 
or an internal 1-second timer expires.  This can speed up output on some 
systems by reducing the number of times the operating system is called.  It 
will also cause a short delay before messages are seen.  We recommend 
keeping this setting at the default “0” (off, false, no) unless you are 
experiencing poor screen performance. 



H-32  Configuration Variables
CALL_HASH_SIZE

The setting of this variable controls the size of the hash table that tracks 
CALL statements to COBOL subprograms.  Each CALL statement tracks its 
last resolution (target object, entry point, and owning thread).  When the 
resolution is unchanged in a subsequent execution of the CALL statement, 
the CALL uses the saved information, contributing to improved 
performance.  Each program contains its own copy of this table, so the size 
should generally be set to a small value.

The default value for CALL_HASH_SIZE is “31”.  The only reason to 
change this setting is if your programs contain hundreds of individual CALL 
statements that target distinct objects.  In this case, you may see a small 
performance improvement by setting CALL_HASH_SIZE to a larger value.  
You can disable the tracking of these CALL statements by setting the value 
of CALL_HASH_SIZE to “0”.

Note that this mechanism consumes a small amount of memory for each 
CALL statement.  This memory is recovered when the calling object is 
removed from memory.  The amount is machine-specific, but is normally 
well under 100 bytes per CALL.

CANCEL_ALL_DLLS

This variable is used to change the default behavior of a CANCEL ALL 
statement.  The default behavior is for CANCEL ALL to free all DLLs and 
UNIX/Linux shared object libraries loaded with a prior CALL statement.  
Setting CANCEL_ALL_DLLS to “0” (off, false, no) indicates that CANCEL 
ALL should not free any DLLs or shared object libraries.  If you want to free 
a particular DLL or shared library when CANCEL_ALL_DLLS is set to “0”, 
you must specify the DLL’s name in a CANCEL statement.

The default value of CANCEL_ALL_DLLS is “1” (on, true, yes).

CARRIAGE_CONTROL_FILTER 

The value of this variable affects how carriage control characters are treated 
when found in LINE SEQUENTIAL data files.  



Configuration variables  H-33
RM/COBOL version 2 handles carriage control characters in a line sequential 
file differently on different systems.  By default, both ACUCOBOL-GT and 
RM/COBOL-85 remove carriage control characters from input records for 
line sequential files.  This is the ANSI standard.  RM/COBOL version 2, 
however, does not remove form-feed characters on MS-DOS machines and 
does not remove form-feed or carriage return characters on UNIX systems.  
Some existing RM/COBOL version 2 programs depend on this behavior.  

You can retain any or all of these characters in the input record by setting 
CARRIAGE_CONTROL_FILTER to a value as follows:

You can specify two or three characters to be retained by adding the 
appropriate values together.  For example, a value of “6” retains carriage 
returns and line feeds (2 plus 4).  Setting the variable to “0” causes the default 
action of removing all three characters.  

The default value is “0”.  

Note: On VMS systems, carriage control information is not placed directly 
into data records and is instead maintained separately. For this reason, the 
CARRIAGE_CONTROL_FILTER setting has no effect on VMS systems 
and should not be considered portable to those machines.  

CBLHELP

Define the CBLHELP configuration variable to the location of the “cblhelp” 
debugger help file.  The definition must include the path and filename.  For 
example: 

CBLHELP /home/acucobol8/etc/cblhelp

1 form-feed characters are retained 

2 carriage return characters are retained

4 line-feed characters are retained



H-34  Configuration Variables
CGI_AUTO_HEADER 

This variable is used when you are writing a Common Gateway Interface 
(CGI) program in COBOL.  It allows you to suppress the output of the HTML 
header. 

Set CGI_AUTO_HEADER to “0” (off, false, no) if you want to suppress the 
output of the HTML header.  This can be useful when you want to execute a 
CGI program and include its output into an existing flow of HTML text.  For 
example, with server-side includes, or SSI, you can instruct the Web server 
to execute a subprogram in the manner of CGI and then incorporate its output 
right into the HTML document before sending it to the requesting client.  The 
default value is “1” (on, true, yes).

For information about writing a CGI program in COBOL, refer to Chapter 4 
in A Programmer’s Guide to the Internet.  

CGI_CLEAR_MISSING_VALUES

This variable is used when you are writing a Common Gateway Interface 
(CGI) program in COBOL.  It allows you to control the behavior of the 
ACCEPT statement when CGI variables do not exist in the CGI input data.

By default, ACCEPT sets the value of numeric data items to zero and 
non-numeric data items to spaces if a CGI variable does not exist.  Set the 
CGI_CLEAR_MISSING_VALUES configuration variable to “0” (off, false, 
no) if you do not want ACCEPT to change the value of the data item if the 
corresponding CGI variable is missing from the CGI input data. 

CGI_CONTENT_TYPE

By default, the output generated by your CGI program is mapped as HTML 
content.  To associate your CGI output with a MIME content type other than 
“text/html”, use the CGI_CONTENT_TYPE configuration variable.  This 
variable lets you control the content type information in the header of output 
files created by ACUCOBOL-GT.  Such information informs recipients of 
the type of content that they are about to receive.  



Configuration variables  H-35
Using this variable, you can configure your CGI program for many types of 
output, including eXtensible Markup Language (XML) or Wireless Markup 
Language (WML) for Wireless Application Protocol (WAP) devices like 
mobile phones.  

Whichever format you choose, the US-ASCII character set is applied to the 
output by default.  If you want the CGI output to be mapped to an alternate 
character set such as ISO-8859-I (Western European), then you can specify 
the character encoding set to use with the variable as well.

Include this variable in your runtime configuration file as follows:
CGI_CONTENT_TYPE contenttype; charset=encoding_set

Where contenttype is the MIME content type of the generated output, and 
encoding_set is the preferred character encoding set to use.    

For example, the WML content type for WAP mobile phones is “text/
vnd.wap.wml”.  To associate your CGI output with WML, include the 
following in your configuration file:

CGI_CONTENT_TYPE text/vnd.wap.wml

If you want your WML output to be mapped to the Western European 
character set, include the following:

CGI_CONTENT_TYPE text/vnd.wap.wml; charset=iso-8859-I

The content type for eXtensible Markup Language (XML) documents is 
“text/xml”.  If your program generates XML data, include the following:

CGI_CONTENT_TYPE text/xml

Caution: To avoid overriding other Content-Type associations, we suggest 
that you create a different configuration file for each of the MIME 
Content-Type associations that you make in your Web server setup.  

Please note that if you use this variable, the external forms indicated in your 
program’s DISPLAY syntax must contain the appropriate content.  In other 
words, if you associate your program with the “text/xml” content type, the 
forms must be “.xml” documents with XML syntax.   If you associate it with 



H-36  Configuration Variables
“text/vnd.wap.wml”, the forms must be “.wml” documents with WML 
syntax.  Your program can DISPLAY virtually any type of data, as long as 
the Content-Type ID corresponds to the external form file that you provide.

Be aware that if you do not use the proper file extension for your external 
form documents, the Web server will interpret the data as HTML and display 
the wrong data.  WML and XML are also more sensitive to syntax errors than 
HTML.

In addition, note that the capabilities of the configuration entry 
CGI_NO_CACHE may be affected by the content type that you choose.  

For information about writing a CGI program in COBOL, refer to Chapter 4 
in A Programmer’s Guide to the Internet.  

CGI_NO_CACHE 

This variable allows you to choose whether the HTML output of your 
Common Gateway Interface (CGI) program will be cached by the requesting 
client.  

The default value is “1” (on, true, yes), which means there is no caching.  By 
default, the runtime generates “Pragma: no-cache” in the HTML response 
header that gets sent to the standard output stream.  If you set 
CGI_NO_CACHE to “0” (off, false, no), the runtime suppresses this line of 
the response header, and the requesting client caches the output.

For information about writing a CGI program in COBOL, refer to Chapter 4 
in A Programmer’s Guide to the Internet.  

CGI_STRIP_CR

When this variable is set to “1” (on, true, yes), the runtime automatically 
removes carriage return characters from data entered in HTML 
TEXTAREAS (multiple line entry-fields). Stripping the carriage returns 
from this kind of input prevents double-spacing problems, as well as conflicts 
that may arise if the data is used in a context that does not expect a carriage 
return character to precede each line feed character. Some browsers send a 



Configuration variables  H-37
carriage return line feed sequence to the CGI program, and when this 
sequence is written to a file on operating systems that terminate text lines 
with line feed characters only, the file may appear to be double spaced. The 
default value for this variable is “0” (off, false, no).

For example, if you enter the following three lines in a TEXTAREA for a 
field called “thetext”:
Sometext line 1
Sometext line 2
Sometext line 3

The browser sends the following to the CGI program:
thetext=Sometext+line+1%0D%0ASometext+line+2%0D%0ASometext+line+3%0D%0A

If the CGI_STRIP_CR is set to “1” (on, true, yes), the runtime strips the 
carriage return characters so that the input line is the following:

thetext=Sometext+line+1%0ASometext+line+2%0ASometext+line+3%0A

For information about writing a CGI program in COBOL, refer to Chapter 4 
in A Programmer’s Guide to the Internet.  

CHAIN_MENUS 

When this variable is set to “1” (on, true, yes), the runtime system 
automatically destroys any menu displayed by a program performing a 
CHAIN or CALL PROGRAM.  This destruction is accomplished with the 
WMENU-DESTROY-DELAYED operation of the W$MENU library 
routine.  The effect is that the menu is not actually destroyed until the 
chained-to program displays a new menu.  Setting this variable to “0” (off, 
false, no) inhibits the destruction of the menu.  The default value is “off”.  

CHECK_USING 

When this value is “1” (on, true, yes), the runtime system tests each use of a 
LINKAGE data item to make sure that the item passed by the calling program 
is at least as large as the item declared by the called program.  This ensures 
that unallocated memory is not accidentally referenced.  



H-38  Configuration Variables
Setting this value to “0” (off, false, no) inhibits the parameters size matching 
test.  It also inhibits the runtime test that verifies that all parameters of a 
subprogram are passed by the caller.  

The default value is “1”.  If you set this value to “0”, you should test your 
programs carefully to avoid corrupting memory.

Note: It is common for programs in some OLTP environments to specify a 
data item length as a negative value.  By default, this produces a runtime 
error.  Set CHECK_USING to “0” to override the default behavior.

CISAM_COMPRESS_KEYS 

This variable allows you to turn off key compression in C-ISAM files.  By 
default, the ACUCOBOL-GT interface to C-ISAM uses the key compression 
feature of C-ISAM.  But some C-ISAM emulators do not understand the 
compressed keys and cannot read the files created.  This variable allows you 
to turn off the compression.

When the variable is set to “0” (off, false, no), key compression is not used.  
When it’s set to the default of  “1” (on, true, yes), key compression is used.  
Note that this value is examined each time a file is created, so its setting can 
be changed for each file.  The setting is meaningful only when the file is 
created.  After that, the file retains its compression mode.  

CLOSE_ON_EXIT 

When set to “1” (on, true, yes), this variable enables the automatic closing of 
all files except print files when a program performs an EXIT PROGRAM 
statement.  When set to “2” it enables the automatic closing of all files when 
a program exits.  When set to “0” (off, false, no), no files will be 
automatically closed.  For more information, see the ACUCOBOL-GT 
User’s Guide, section 2.8.5, “File Handling Options.”  The default 
value is “0”.  



Configuration variables  H-39
COBLPFORM

This configuration variable is used to define and print to printer channels 
C01-C12.  Specify the line numbers for each channel with the COBLPFORM 
configuration variable.  Null entries are ignored. Those channels that have 
line number zero, function-names S01-S052, CSP, or are undefined, are set 
to line 1.

Example 1  
COBLPFORM 1:3:5:7:9:11:13:15:17:19:21:23

In this example C01 equals 1, C02 equals 3, and so on.

Example 2  
COBLPFORM :3::5: :9

In this example, C01 equals 3, C02 equals 5, C03 equals 1, and C04 equals 9.   
You can specify only a single line number for each channel.

In example 2 above, channels C05 - C12 are undefined.  If a print statement 
specifies channel C05 - C12, the line is printed at line 1.  In addition, in the 
example shown, C03 equals 1 because its value is a space and therefore 
undefined.

Any WRITE BEFORE/AFTER PAGE statements cause positioning to be at 
line 1.  Each line advance increases the line number by one.  A request to skip 
to a line number less than or equal to the current line causes a new page to 
begin.  The appropriate number of line feeds are then generated.

CODE_CASE 

This configuration variable allows you to adjust the case of an object file 
name that is specified in a CALL statement.  It has five possible values:

NONE or  “0” (the default) object file names are not 
translated 

LOWER or  “1” object file names are translated to lower case, 
including directory (path) elements 



H-40  Configuration Variables
Translation occurs before the CODE_SUFFIX and CODE_PREFIX 
configuration options are applied.  You should make sure that those variables 
specify the correct case.  For a complete description of the runtime CALL 
handling procedure, see Section 2.10.1 in Book 1, ACUCOBOL-GT 
User’s Guide.  

CODE_MAPPING 

This configuration variable allows you to modify CALL, CHAIN, and 
CANCEL names at runtime.  This can be particularly useful if you are using 
AcuServer or AcuConnect.  When this variable is set to “1” (on, true, yes), 
every CALL, CHAIN, and CANCEL statement checks the current 
configuration for a name that matches the CALL name.  This is handled in the 
same way that file name processing is done (the environment is checked for 
an uppercase version of the name, with any hyphens treated as underscores).  
If a matching name is found, its value is substituted.  This is done recursively 
until no more matching names are found.   

After this substitution occurs, the CALL name handling proceeds normally 
(and includes any effects of CODE_PATH, CODE_SUFFIX, and 
CODE_CASE).

For example, with CODE_MAPPING set to “1”, if your configuration file 
had the following entry:

MYPROG  @sun:/app/myprog

Then CALL “MYPROG” would act the same as CALL “@sun:/app/
myprog”.  

UPPER or  “2” object file names are translated to upper case, 
including directory (path) elements 

LOWER_BASE or  “3” object file names are translated to lower case, 
excluding directory (path) elements  

UPPER_BASE or  “4” object file names are translated to upper case, 
excluding directory (path) elements   



Configuration variables  H-41
Thin client applications may find the CODE_MAPPING mechanism useful 
for automatically adding the “@[DISPLAY]:” prefix to the name of the DLL 
to run on the display host.  For example, if your configuration file includes 
the entry: 

mylib.dll  @[DISPLAY]:mylib.dll

Then the statement
CALL  “mylib.dll” 

is interpreted as
CALL “@[DISPLAY]:mylib.dll”

causing “mylib.dll” to run on the display host.

Those wanting to specify the DLL calling conventions will also find 
CODE_MAPPING useful.  For example, if you use the following 
configuration entries:

funcA=funcA@__stdcall
funcB=funcB@__cdecl 

then the statement
CALL "funcA"

calls funcA using the stdcall calling convention and 
CALL "funcB" 

calls funcB using the cdecl convention.

For more information about calling DLLs from thin client applications, see 
section 7.2.6 of the AcuConnect User’s Guide.  For information on calling 
DLLs in general, refer to Chapter 3 of A Guide to Interoperating with 
ACUCOBOL-GT.

The default value for this variable is “0” (off, false, no).



H-42  Configuration Variables
CODE_PREFIX 

This variable defines a set of directories that the runtime searches to locate a 
program object file.  The default value is “.” (current working directory).   
Code and data file search paths are described in more detail in Section 2.8.2 
of the ACUCOBOL-GT User’s Guide.

Directories can be a mix of relative and absolute paths.  Entries are separated 
by spaces.  A space is a valid separator on all systems.  Alternatively, on 
UNIX systems you can also separate entries with a colon.  On Windows 
systems a semicolon can be used.  On VMS systems a comma can be used.

Include a “^” (carat) to specify the directory containing the calling program.  
For example:

CODE_PREFIX . /cobbin ^

causes the runtime to search the current working directory, followed by the 
“cobbin” root directory, followed by the directory containing the calling 
program.

You can specify a directory path that contains embedded spaces if you 
surround the path with quotation marks.  For example:

CODE_PREFIX C:\“program files” C:\Customers

Remote name notation is allowed if your runtime is client-enabled.  See 
User’s Guide Section 5.2.1 and Section 5.2.2 for more information about 
client-enabled runtimes and remote name notation. 

Up to 4096 characters can be specified for the value of this variable.

CODE_SUFFIX 

The value of this variable is automatically appended to the end of program 
filenames when those names do not contain explicit suffixes.  A suffix is the 
portion of a filename that follows a period.  For example, if 
CODE__SUFFIX is set to “COB”, then CALL “PGMFILE” causes the 
runtime to look for the file “PGMFILE.COB”.  The default value is empty.  



Configuration variables  H-43
CODE_SYSTEM 

The runtime configuration variable CODE_SYSTEM tells the runtime if 
double-byte character data is being accepted or displayed, and which code 
system (that is, which standard for encoding Japanese and other Asian 
character sets, for example) is being used.  Each code system has a range of 
values that it allows within each byte of a two-byte character, so identifying 
the code system allows the runtime to recognize character boundaries when 
it is processing double-byte data for ACCEPT and DISPLAY statements.

Setting CODE_SYSTEM to the proper value allows your COBOL 
applications to handle input and display of double-byte character data 
without source program changes.  The syntax is:

CODE_SYSTEM  setting

The table below shows the possible settings of the CODE_SYSTEM 
variable, the code system to which each setting refers, and some examples of 
operating systems to which the particular code system applies: 

The default “0” means ASCII or EBCDIC single-byte characters.

Setting Code System Op. System Examples

BIG5 Big Five (Taiwan) Chinese DOS, Windows 

DBC Acucorp Generic 
Double-byte Coding 
Scheme 

other double-byte machines 

EUC Extended UNIX Most UNIX machines 

GB Code of Chinese Graphic 
Character Set (People’s 
Republic of China) 

Chinese DOS, Windows

KSC Korean Character Standard Korean DOS 

SJC Shift JIS Code (Japanese 
Industrial Standard)

DOS/V, Windows, some 
UNIX machines



H-44  Configuration Variables
The following table shows the decimal values that the respective code 
systems allow for each byte of the two-byte character:

Note: The first and second byte values are co-dependent; that is, both 
values must fall within the respective ranges shown in the table.  If either 
value is not within its allowable range, then each byte will be treated as a 
single character.  

COLOR_MAP 

This variable can be used to assign colors to programs that do not contain 
explicit color settings.  This is described in Section 4.4.1 of ACUCOBOL-GT 
User’s Guide.  The default value is empty.  

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

COLOR_MODEL 

This variable is typically used when a character-based application is moved 
to a graphical environment.  Use the COLOR_MODEL setting to perform 
uniform changes to your program’s color scheme.  These changes are 

Code System Setting 1st byte 2nd byte

BIG5

(second format)

161 - 254 

161 - 254

64 - 126

161 - 254 

DBC 128 - 255 128 - 255 

EUC  

(second format)

142

161 - 254

161 - 223

161 - 254 

GB and KSC 161- 254 161 - 254 

SJC 

(second format)

129 - 159

224 - 239

64 - 252  (not 127)

64 - 252  (not 127)



Configuration variables  H-45
represented by rules that act on your colors.  An example of a rule is 
“exchange the foreground and background colors”.  Use COLOR_MODEL 
to change your color scheme in a global way. 

The default color model is model “0”.  It causes no changes to occur to your 
color scheme.  The remaining 10 models are “1” through “10”.  

• The odd-numbered models transform only those parts of your program 
that are entirely black and white.  Any character position that contains 
any color is left unchanged.  

• The even-numbered models apply the changes regardless of color.  
When selecting a COLOR_MODEL, you can ignore the even-numbered 
models if you are satisfied with the color portions of your program.  

Each color model is actually a composite; it’s the equivalent of two or more 
configuration file variable settings:

COLOR_MODEL Equivalent Configuration File Variable Settings

“1” COLOR_TRANS “5”

INTENSITY_FLAGS “34”

BACKGROUND_INTENSITY “1”

“2” COLOR_TRANS “4”

INTENSITY_FLAGS “34”

BACKGROUND_INTENSITY “1”

“3” COLOR_TRANS “3”

INTENSITY_FLAGS “34”

“4” COLOR_TRANS “1”

INTENSITY_FLAGS “34”

“5” COLOR_TRANS “1”

 INTENSITY_FLAGS “129”

“6” COLOR_TRANS “1”

INTENSITY_FLAGS “129”

BACKGROUND_INTENSITY “2”



H-46  Configuration Variables
For more information, see Chapter 9 in Book 2, ACUCOBOL-GT User 
Interface Programming.

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

COLOR_TABLE 

This variable is typically used when a character-based application is moved 
to a graphical environment.  Use the COLOR_TABLE variable to cause 
transformations of individual color combinations.  For example, a 
COLOR_TABLE entry might cause a red foreground on a black background 
to be translated to a white foreground on a blue background.  

Follow the word COLOR_TABLE with the original foreground and 
background numbers, separated by a comma.  Follow these by an equals sign 
and then the new foreground and background numbers, separated by a 
comma.  

For example, to transform the color combination of foreground 5 on 
background 2, to foreground 13 on background 2, you would use:

COLOR_TABLE   5, 2 = 13, 2

“7” COLOR_TRANS “3”

INTENSITY_FLAGS “161”

“8” COLOR_TRANS “1”

INTENSITY_FLAGS “161”

“9” COLOR_TRANS “3”

INTENSITY_FLAGS “193”

“10” COLOR_TRANS “1”

INTENSITY_FLAGS “193”

COLOR_MODEL Equivalent Configuration File Variable Settings



Configuration variables  H-47
These are the possible values for foreground and background settings:

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

Color Color value

low-intensity Black 1

low-intensity Blue 2

low-intensity Green 3

low-intensity Cyan 4

low-intensity Red 5

low-intensity Magenta 6

low-intensity Brown 7

low-intensity White 8

high-intensity Black 9

high-intensity Blue 10

high-intensity Green 11

high-intensity Cyan 12

high-intensity Red 13

high-intensity Magenta 14

high-intensity Brown 15

high-intensity White 16



H-48  Configuration Variables
COLOR_TRANS 

This variable is typically used when a character-based application is moved 
to a graphical environment.  It determines how the initial colors in an 
application are transformed.  By default, it is set to “0”, which causes no 
transformation.  It may be set to any of these values:

Generally speaking, you could use the COLOR_TRANS variable as a 
starting point in converting an application to appear more natural under 
Windows.  (It’s easier to start with COLOR_MODEL instead.)  Note that if 
your application is entirely black-and-white, then the first three 
COLOR_TRANS options are essentially identical.  See Chapter 9 in Book 
2, ACUCOBOL-GT User Interface Programming for color mapping 
suggestions.

1 This mode causes the foreground and background colors to be 
exchanged for each other.  This is equivalent to running the entire 
program in reverse-video.

2 This causes white to be exchanged for black and black to be exchanged 
for white.  The foreground and background colors are transformed 
independently.  For example, a green foreground on a black background 
would turn into a green foreground on a white background.  This setting 
usually has the effect of transforming a black background into white 
while maintaining the general color scheme of the application.  

3 The foreground and background colors are exchanged for each other, 
but only if they are both black or white.  If either the foreground or 
background contains a color other than black or white, then nothing 
happens.  This is equivalent to running the monochrome parts of your 
program in reverse-video while maintaining the color portions 
unchanged.  

4 The foreground and background colors are exchanged for each other, 
but only if the background is black.  This mode ensures that you never 
have a black background.  

5 If the colors are foreground white and background black, they are 
exchanged for each other.  Otherwise, nothing happens.  



Configuration variables  H-49
COLUMN_SEPARATION 

This configuration variable sets the default separation distance between 
columns in a list box.  The value is expressed in 10ths of characters.  For 
example, to place a 1/2 character space between list box columns, you would 
assign a value of “5”.  See the description of the list box SEPARATION 
property for more information.  The default value of 
COLUMN_SEPARATION is “5”.

COMPRESS_FACTOR 

This variable is used to define the compression factor that is applied to 
indexed files (if the indexed file system supports compression; Vision does).  
COMPRESS_FACTOR is applied when a file is created with the WITH 
COMPRESSION phrase in the ASSIGN clause of the file’s SELECT and the 
COMPRESSION CONTROL VALUE phrase is either omitted or specifies a 
value of “1”.  If the COMPRESS CONTROL VALUE phrase specifies a 
value other than one, that value is used and the value of 
COMPRESS_FACTOR is ignored.   

COMPRESS_FACTOR can be set to any value within the range zero to 100.  
Zero specifies no compression.  Values from 2-100 are treated as a 
percentage that specifies how much of the space saved by file compression is 
removed from the compressed records.  A value of 1, the default, is a special 
case that causes the standard default compression factor of 70 to be applied.  
Note that a file’s compression factor is set when the file is created and cannot 
later be changed except by recreating the file or rebuilding the file with vutil.  
For more information about Vision record compression, see Book 1, 
ACUCOBOL-GT User’s Guide, section 6.1.6.1, “Compression.”

COMPRESS_FILES 

Setting this configuration variable to “1” (on, true, yes) causes 
ACUCOBOL-GT to treat all indexed files as if they had the WITH 
COMPRESSION phrase specified for them.  This affects the status of newly 
created files only.  When the configuration variable is set to the default value 



H-50  Configuration Variables
of “0” (off, false, no), only those files with the WITH COMPRESSION 
phrase specified will be compressed.  You can specify the amount of 
compression with the COMPRESS_FACTOR configuration variable.

CONTROL_CREATION_EVENTS 

This variable applies to those using ActiveX controls in their 
ACUCOBOL-GT programs. Use it if you want to allow events during the 
creation of an ActiveX control.  By default, the runtime ignores events from 
all controls while it is creating an ActiveX control.  If it did not, subsequent 
operations on the ActiveX control could fail.

If you are using a control that delivers significant information using events 
and you don’t want to miss those events while you are creating a new control, 
set the CONTROL_CREATION_EVENTS variable to “1” (On, True, Yes). 
Alternatively, you could avoid creating an ActiveX control when you are 
expecting an event.

 By default, this variable is set to “0” (Off, False, No).

CURRENCY

This configuration variable can be used to set the desired currency character 
at runtime.  It is followed with the desired character.  The default is to use the 
character specified in the source program’s CURRENCY phrase (or “$” if 
the CURRENCY phrase is absent). 

CURSOR_MODE 

This configuration variable determines when the cursor should be visible.  It 
has three values:

1 always visible

2 always invisible

3 invisible except during ACCEPT statements, then visible



Configuration variables  H-51
The default value is “3”.  Note that a change to the value does not take effect 
until the next ACCEPT or DISPLAY statement.  The sample program 
MENUBAR.CBL contains examples of how to modify the cursor from 
within a program.  The cursor is always set to Normal, Visible when the 
runtime exits or when the SYSTEM library routine is called.  

CURSOR_TYPE 

This configuration variable determines the way the cursor looks on 
character-based systems.  It can be set to one of the following values (“3” is 
the default):

DEBUG_NEWCOPY

This variable determines whether a new copy of a COBOL program being 
debugged is loaded from disk whenever the debugger is active.  By default, 
DEBUG_NEWCOPY is “True” so that you can continue to use the logical 
cancel and code caching feature while the debugger is active.

Set DEBUG_NEWCOPY to “False” if you want to keep caching enabled and 
have the debugger use the copy of the program in the cache instead of reading 
a new copy from disk.  You must then do one of two things:

• Start the debugger before the first execution of the program in the current 
process

• In a transaction processing system, use the CICS command, CEMT SET 
PROGRAM(program_name) NEWCOPY, to load  a new copy of the 
program to be debugged.

1 normal cursor (usually underscore)

2 bright cursor (usually block)

3 normal cursor except when in insert mode, then bright

4 vertical bar (when available)



H-52  Configuration Variables
Note: The ACUCOBOL-GT debugger periodically reads source code from 
the object file on disk.  When the program is cached (as the result of a 
logical cancel), the object file is closed and could be replaced or deleted.  
For the debugger to function correctly, it must keep the object file open and 
ensure that the object code in the disk file is identical to the code in 
memory.  Therefore, if the program has been cached (using 
LOGICAL_CANCELS and DYNAMIC_MEMORY_LIMIT), the 
debugger unloads the program from the cache, reopens the object file, and 
reloads the object code from memory.  For more information, see section 
6.3, “Memory Management,” in Book 1, ACUCOBOL-GT User’s Guide.

DECIMAL_POINT 

This configuration variable sets the character to be used as the program’s 
decimal point.  Follow it with the desired character.  If you use this variable 
to set the decimal point to a comma, then the place and function of the 
decimal point and comma are reversed (just like the phrase 
DECIMAL_POINT IS COMMA).  The default is to use the decimal point 
specified by the program’s source.  

Note: You do not have to change the value of DECIMAL_POINT to match 
the decimal point used by floating point values received from external 
components.  The runtime automatically makes the correct adjustment.

DEFAULT_FILESYSTEM

This variable determines the file system to be used if no 
filename_FILESYSTEM variable is set for a file and none of the other file 
system variables are set for the file type.  The other variables you can use to 
specify a different file system for indexed, relative, or sequential files, are:
DEFAULT_IDX_FILESYSTEM
DEFAULT_REL_FILESYSTEM
DEFAULT_SEQ_FILESYSTEM



Configuration variables  H-53
For example, setting:
DEFAULT_IDX_FILESYSTEM EXTFH

causes all indexed files to go through the EXTH interface.  Unless another 
file system is specified, ACUCOBOL-GT uses its native file handler for 
relative and sequential files.

Note: The DEFAULT_IDX_FILESYSTEM variable is a synonym for the 
existing configuration variable, DEFAULT_HOST.

By default, all file access is handled by the ACUCOBOL-GT native file 
handler.  For those file types you want to access using an EXTFH library, you 
need to set one or more of these configuration variables to “EXTFH”.  

For example, to use the DB2 library to access indexed files, you would set the 
following two configuration variables:
A_EXTFH_LIB=/usr/lpp/cics/lib/libxfhdb2sa.a(libxfhdb2_shr.o)
DEFAULT_IDX_FILESYSTEM=EXTFH 

For information on specifying EXTFH library and function names to use with 
the EXTFH interface, see section 11.6, “Working With an EXTFH 
Interface,” in A Guide to Interoperating with ACUCOBOL-GT.

DEFAULT_FONT 

This variable defines which font to use for the DEFAULT_FONT (for a 
description of this font, see Format 3, ACCEPT Statement in Book 3, 
ACUCOBOL-GT Reference Manual).  When DEFAULT_FONT is set to “0” 
(the normal setting), the font used depends on the host system as follows:

System Font Used

Graphical system MEDIUM-FONT

Non-graphical system FIXED-FONT



H-54  Configuration Variables
You can set DEFAULT_FONT to one of the following values to use a 
different font.  The following words are valid settings:

Due to the way the runtime initializes the windowing subsystem, the 
DEFAULT_FONT setting is effective only when it is placed in the 
configuration file or the host system’s environment.  Setting 
DEFAULT_FONT from inside a COBOL program has no effect.

DEFAULT_HOST 

When the application program is opening an existing file or creating a new 
file, you need to tell the runtime which file system to use.  You accomplish 
this with one of two configuration variables: DEFAULT_HOST or 
filename_HOST.  

DEFAULT_HOST filesystem

designates the file system to be used for files that are not individually 
assigned.  If this variable is not given a value, and if you have not individually 
assigned a file system (with filename_HOST), the Vision file system is used.

Note: The DEFAULT_IDX_FILESYSTEM variable is a synonym for 
DEFAULT_HOST.

Setting Font Used

TRADITIONAL TRADITIONAL-FONT

FIXED FIXED-FONT

LARGE LARGE-FONT

MEDIUM MEDIUM-FONT

SMALL SMALL-FONT



Configuration variables  H-55
DEFAULT_MAP_FILE 

Use this variable to point to the character map file used for translating 
international character sets between machines that use differing character 
codes.   The map file is a simple text file that you create with an editor of your 
choice.  Each line in the map file must contain two values in either decimal 
or hexadecimal: the character code of the character on the client machine, and 
the character code of the same character on the remote machine.  Use a # sign 
to indicate a comment.

The runtime first searches for the configuration variable server_MAP_FILE 
and, if it is found, uses that setting to locate the map file.  If that variable is 
not set, the runtime searches for DEFAULT_MAP_FILE.  If this variable is 
not set, then no character translation is done. 

Example:  
DEFAULT_MAP_FILE = c:\etc\pc_iso.txt

DEFAULT_PROGRAM 

Use this variable to specify the name of the program to be run by default if no 
program name is specified on the command line.  The name you give here is 
treated exactly as it would be if you had typed it on the command line.  The 
default is “cbl.out”.

Remote name notation is allowed for this variable if your runtime is 
client-enabled.  See ACUCOBOL-GT User’s Guide Section 5.2.1 and 
Section 5.2.2 for more information about client-enabled runtimes and remote 
name notation. 

DEFAULT_TIMEOUT

This variable is used by the runtime and Web Runtime to define the length of 
time, in seconds, that they will wait for a response from acuserve before 
timing out.  The default value for this variable is 25 seconds.  Some networks 



H-56  Configuration Variables
have long connect times and the default value may not be long enough to 
allow the application to connect.  For example, to change the timeout default 
of 25 seconds to one minute, you would set the following:

DEFAULT_TIMEOUT = 60

If the runtime or Web Runtime receives an error before the specified time, 
they will time out immediately.  This variable only works with AcuServer 
client runtimes and AcuServer client Web Runtimes.

DISABLED_CONTROL_COLOR

This variable allows character-based hosts to use color and video attributes to 
distinguish disabled screen controls from enabled controls. It can be set to a 
variety of numeric values that express combinations of attributes. When it is 
set to “0” (off, false, no), disabled controls appear the same as enabled ones.  
See COLOR Phrase in Book 3, ACUCOBOL-GT Reference Manual,  for a 
description of other numeric values that can be used.

DISPLAY_SWITCH_PERIOD 

This variable helps to determine how frequently the program’s threads will 
switch control.  After a thread performs the value of 
DISPLAY_SWITCH_PERIOD display operations, the runtime switches 
control to another thread (if one exists).  Note that because a single 
DISPLAY statement can compile into multiple “display operations,” and 
because thread switching is also affected by other program operations (such 
as file I/O), it is impossible to predict or control when a thread will change 
control based on the presence of DISPLAY statements in the source.  

By setting DISPLAY_SWITCH_PERIOD to lower values, you cause 
windows that are updated by multiple threads to update more uniformly, but 
more time will be spent in the thread switching code.  Setting 
DISPLAY_SWITCH_PERIOD to higher values will decrease the switching 
overhead, but will also cause the windows to update in blocks.  In most cases, 
applications that use threads will run well with the default setting of “10”.  



Configuration variables  H-57
DLL_CONVENTION 

This variable allows you to specify the calling convention used to call DLLs.  
When this variable is set to “0”, the cdecl (standard C) interface is used.  
When this variable is set to “1”, the stdcall (Pascal/WINAPI) interface is 
used.  The default for this variable is “0”.    

Note that there are a few ways to override the DLL_CONVENTION setting:

• You can specify a list of DLL names and calling conventions in the  
SHARED_LIBRARY_LISTconfiguration variable.  This variable can 
be set in the environment, in the runtime configuration file, or 
programmatically with the SET ENVIRONMENT statement.

• You can specify the calling convention for individual library functions in 
the COBOL CALL statement.

• You can set the CODE_MAPPING variable to “1”, then use 
configuration entries to specify the calling convention for individual 
functions.

• You can specify a list of DLL names and calling conventions using the 
“-y” runtime option. (see the “-y” listing in Section 2.3.1, 
ACUCOBOL-GT User’s Guide.)

In all of these cases, the runtime uses the specified calling convention and  
ignores the value of the DLL_CONVENTION configuration variable.  See 
Chapter 3 in A Guide to Interoperating with ACUCOBOL-GT for more 
details about calling DLLs.

DLL_SUB_INTERFACE

This variable identifies the routine to be used as the “sub” interface routine 
within a DLL.  It applies only to Windows systems.  Set 
DLL_SUB_INTERFACE to the name of the routine you want to use.  This 
name may be “sub” or any name you choose.  The runtime checks 
DLL_SUB_INTERFACE when a DLL is loaded.  You may change its value 
afterwards without any effect on DLLs that have already been loaded.



H-58  Configuration Variables
If DLL_SUB_INTERFACE is empty (default), the runtime does not look for 
a “sub” interface routine in a called DLL.  

DLL_USE_SYSTEM_DIR

When a program calls an unloaded DLL, the value of this variable determines 
whether the runtime attempts to find the DLL in the Windows and System 
folders.  When set to the default value “1” (on, true, yes), the runtime looks 
in the Windows and System folders.  When set to “0” (off, false, no) the 
runtime does not look in the Windows and System folders.  See Chapter 3 in 
A Guide to Interoperating with ACUCOBOL-GT for more details about 
calling DLLs.

DOS_BOX_CHARS 

This variable allows you to redefine the line drawing characters used with the 
Windows console (DOS-box) runtime.  The value of  DOS_BOX_CHARS is 
a list of characters that draw the line segments.  It should be a list of 13 
space-delimited characters that correspond, in order, to the line segments as 
listed below.  To redefine the DOS line drawing characters, specify the 
characters you want in the following order:

1. horizontal line

2. vertical line

3. upper left corner

4. upper right corner

5. lower left corner

6. lower right corner

Four three-way intersections -

7. missing bottom line

8. missing left line

9. missing top line



Configuration variables  H-59
10. missing right line

and -

11. the four-way intersection

12. upper-half block

13. lower-half block

These line drawing characters may also be specified by decimal value.  
Characters that are not available on a particular machine should be specified 
with the decimal value “0”.  

The default value for DOS_BOX_CHARS depends on the 
CODE_SYSTEM configuration variable.  If CODE_SYSTEM is not set, or 
is set to “0” (or ASCII or EBCDIC), the default is:
DOS_BOX_CHARS 196 179 218 191 192 217 193 195 194 180 197 223 220

If CODE_SYSTEM is set to a non-zero value, which is the case in the 
ACUCOBOL-GT JPN version, the default is:
DOS_BOX_CHARS 6 5 1 2 3 4 21 25 22 23 16 0 0

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

DOS_SYS_EMULATE

When set to “1” (on, true, yes), this variable causes a program running in the 
Windows console runtime to run as if it’s in a DOS environment.  One of its 
effects is that it prevents such a program from attempting to display GUI 
screens.  It is set to “0” (off, false, no) by default.  This variable has meaning 
only in Windows environments. 

DOUBLE_CLICK_TIME 

This variable has meaning only on systems that support a mouse.  It controls 
the “double-click” rate on systems that do not control it themselves.  



H-60  Configuration Variables
Specify the maximum time (in hundredths of a second) allowed between two 
clicks that are to be interpreted as a double-click.  For example, if 
DOUBLE_CLICK_TIME were set to “75” (three-quarters of a second), then 
any two clicks that occur at least that close together would be considered a 
double-click rather than two single clicks.

The default value is “50” (one-half of a second).

DUPLICATES_LOG

This variable is used during bulk addition of Vision files. It causes Vision to 
write files rejected for having illegal duplicate keys to a log file.  Set 
DUPLICATES_LOG to the name of a file in which to store the records.  If 
this log file already exists, it is overwritten. You should use a separate log file 
for each file opened with bulk addition.  You can do this by changing the 
setting of DUPLICATES_LOG between OPEN statements, as follows:

SET ENVIRONMENT “DUPLICATES_LOG” TO “file1.rej”
OPEN OUTPUT FILE-1 FOR BULK-ADDITION

SET ENVIRONMENT “DUPLICATES_LOG” TO “file2.rej”
OPEN EXTEND FILE-2 FOR BULK-ADDITION

If no duplicate records are found, the log file is removed when the Vision file 
is closed.  If DUPLICATES_LOG has not been set, or is set to spaces, no log 
file is created. 

Note: The duplicate-key log file may not be placed on a remote machine 
using AcuServer.  The log file must be directly accessible by the machine 
that is running the program. 

See Section 6.1.6.3, “Bulk addition mode for Vision,” in Book 1, 
ACUCOBOL-GT User’s Guide, for instructions on how to read the log file.



Configuration variables  H-61
DYNAMIC_FUNCTION_CALLS

This variable allows you to specify a list of functions or function name 
prefixes that the runtime treats as dynamic functions and therefore searches 
first, before searching the disk for COBOL programs.  This speeds the 
resolution of calls to functions in the current process or in a shared library. 

The runtime checks call names for matches in the list specified in the 
variable.  If a match is found, the runtime attempts to call the routine directly 
in the current process and in each of the loaded shared libraries.  If these 
attempts fail, the runtime attempts to load a COBOL program with the 
specified name. 

Set DYNAMIC_FUNCTION_CALLS to a space- or comma-delimited list of 
names of frequently called functions that are linked into the current process 
or in one of the loaded shared libraries.

The asterisk “*” character can be appended to the end of a name as a wild 
card.  In this case, the characters before the asterisk are treated as a prefix and 
match any call name that begins with that prefix.  A value of asterisk (“*”) 
alone matches all function names.  Use this to cause the runtime to treat all 
names as dynamic functions first before searching the disk or memory for a 
COBOL program with a matching name.

The value of DYNAMIC_FUNCTION_CALLS is case insensitive.  The 
default value is empty.

DYNAMIC_FUNCTION_CALLS can be set in the environment, 
configuration file, or programmatically with the SET verb.  Set it to spaces to 
clear the list.

When DYNAMIC_FUNCTION_CALLS is set in the configuration file, 
there is no limit on the number of function names or overall size of the value 
of the configuration variable.  To specify a configuration file value on 
multiple lines, you must prepend each line after the first with “-”.  For 
example:

DYNAMIC_FUNCTION_CALLS =
-                       func1,
-                       func2,
-                       func3



H-62  Configuration Variables
The line continuation processing removes all leading and trailing spaces so in 
this case you must separate the values with a comma (that is, append a 
comma to each line).

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

DYNAMIC_MEMORY_LIMIT

The value of this variable indicates the maximum number of bytes of 
dynamic memory that the ACUCOBOL-GT runtime will use to cache 
canceled programs when the logical cancel mechanism is enabled.  When the 
total amount of memory exceeds the value of 
DYNAMIC_MEMORY_LIMIT, the runtime releases all  memory held by 
programs that have been logically canceled.  

Valid values are:

A discussion of memory management and physical and logical cancels is 
located in Section 6.3, “Memory Management,” in Book 1. 
DYNAMIC_MEMORY_LIMIT is used in conjunction with the  
LOGICAL_CANCELS configuration variable. 

EDIT_MODE 

This is an obsolete entry that has been replaced by the KEYSTROKE 
configuration variable.  Its setting is ignored.

-1 (the default) no memory limit.  In transaction 
processing systems, memory used by programs that 
have been logically canceled is released only by the 
CICS transaction, CEMT SET 
PROGRAM(program_name) NEWCOPY

0 all cancels are physical; program memory is not 
cached

1 to 2147483647 the maximum number of bytes of dynamic memory



Configuration variables  H-63
EF_UPPER_WIDE 

This variable determines which font measure is used to compute the width of 
an entry field with the UPPER style.  If the value is “1” (on, true, yes), the 
entry field is sized with the wide font measure.  See section 5.9 in Book 2, 
ACUCOBOL-GT User Interface Programming for a description of how 
entry fields are measured.  The default value of EF_UPPER_WIDE is “1”.  

EF_WIDE_SIZE 

This variable sets the boundary size that determines whether an entry field is 
sized with the standard or wide font measure.  An entry field that has a 
specified width greater than the value of EF_WIDE_SIZE is always sized 
with the standard font measure.  Entry fields that are both non-numeric and 
not larger than EF_WIDE_SIZE are sized with the wide font measure.  See 
Section 5.9 in Book 2, ACUCOBOL-GT User Interface Programming for a 
description of how entry fields are sized.  The default value of 
EF_WIDE_SIZE is “5”.  Setting this variable to “0” causes all entry fields to 
be sized with the standard font measure (exception: see EF_UPPER_WIDE 
above).  Note that setting the value of this variable to a number larger than 
your largest entry field causes all entry fields to use the wide font measure.

EOF_ABORTS 

This configuration variable can be used to handle two unexpected loop 
conditions:

1. a loop that results when the runtime has been started with “-i” and an 
input file terminates prematurely.

2. a loop that results when a terminal emulator disconnects unexpectedly.

If the runtime is started with the “-i” option and a loop occurs when an input 
file terminates prematurely, you can set EOF_ABORTS to “1” (on, true, yes) 
to cause the runtime to shut down when an ACCEPT statement detects an 
end-of-file condition. 



H-64  Configuration Variables
On UNIX/Linux systems, if the runtime enters a loop due to an unexpected 
disconnect from a terminal emulator, you can set EOF_ABORTS to a value 
of “2” to cause the runtime to generate a hangup signal (SIGHUP) when it 
detects an EOF on standard input (stdin). 

The default value is “0” (off, false, no). 

EOL_CHAR 

This configuration variable determines the character that is used to mark the 
end of each line when a pre-existing line sequential file is read.  This should 
be set to the ASCII value of the desired character.  The default value is “10” 
(line-feed).  This option may be useful if you must process a line-oriented file 
that has an unusual line terminator.  This configuration variable has no effect 
under VMS (RMS does not support it).

ERRORS_OK 

Normally, if a file error occurs and there is no AT END, INVALID KEY, or 
Declarative statement to handle it, the runtime system prints an error message 
and halts.  You can cause the runtime to ignore file errors and continue 
processing by setting ERRORS_OK to either “1” (on, true, yes) or “2” 
(FILESTATUS).  

By default, ERRORS_OK is set to “0” (off, false, no).

When ERRORS_OK is set to “1”, if a file error occurs the runtime continues 
as if no error occurred.  

When ERRORS_OK is set to “2”, if a file error occurs and there are no 
Declaratives but a file status variable is defined, the runtime ignores the error 
and continues processing.  However, if a file error occurs and there are no 
Declaratives and a file status variable is not defined, the runtime halts.

Note: In general, it is not recommended that you configure the runtime to 
ignore file errors.



Configuration variables  H-65
EXIT_CURSOR 

When a STOP RUN is executed, the ACUCOBOL-GT runtime system 
normally places the cursor on the last line of the screen and then scrolls the 
screen one line.  This allows the operating system prompt to appear on a new 
blank line at the bottom of the screen.  To inhibit this behavior, set 
EXIT_CURSOR to “0” (off, false, no).  This causes the runtime system to 
leave the cursor in its current location when the program exits.  The default 
value “1” (on, true, yes) causes the standard ACUCOBOL-GT cursor 
positioning. 

This variable has no effect on Windows systems.

EXPAND_ENV_VARS

Setting this variable to “1” (on, true, yes) causes the runtime to expand 
environment variables in filename specifications.   This is the last step of file 
name interpretation process (see section 2.9, “File Name Interpretation,” 
in Book 1, ACUCOBOL-GT User’s Guide).  A file specification that 
includes a “$” character will have all the characters from “$” to the end of the 
name or to the next “/” or “\” replaced with the value of the matching 
environment variable.  For example, if the program attempts to open 
“$mydir/myfile”, the environment and configuration file are searched for the 
variable “mydir”.  If found, its value is substituted.  If not found, the 
replacement is null.  Referring to the preceding example, if “mydir” is not 
defined, the runtime attempts to open “/myfile”.

The default value is “0” (off, false, no).

Note: The “$” character is a valid filename character in many file systems, 
including NTFS and most UNIX file systems.  If you want to use dollar 
signs in your file names, you should not enable this option.  In particular, if 
a user chooses the name of the file, you should keep this option disabled.

If you also use FILE_ALIAS_PREFIX, note that when 
EXPAND_ENV_VARS is set to “1”, FILE_ALIAS_PREFIX treats 
“$FILE1” and “FILE1”  the same.



H-66  Configuration Variables
EXTEND_CREATES 

Setting this configuration variable to “1” (on, true, yes), causes OPEN 
EXTEND statements to create a new file when the file being opened is not 
present.  The default value is “0” (off, false, no).  

EXTFH_KEEP_TRAILING_SPACES

An EXTFH_KEEP_TRAILING_SPACES configuration variable allows you 
to preserve trailing spaces in line sequential file records when using our 
EXTFH module with EXTSM.  Set this variable to “1” (on, true, yes) to 
retain the trailing spaces, which is the runtime’s default behavior.  With a 
default value of “0” (off, false, no), trailing spaces are removed.    

Note that a related configuration variable is the 
STRIP_TRAILING_SPACES variable.   

EXTERNAL_SIZE 

ACUCOBOL-GT manages external data items by allocating them in pools.  
The minimum size of each pool is set by the EXTERNAL_SIZE variable.  
When a new external data item is needed, it is allocated from an existing 
pool.  If it doesn’t fit in any of the allocated pools, a new pool is allocated.  
The size of this pool is the same as the size of the data item, but never smaller 
than the value specified by the EXTERNAL_SIZE configuration variable.  
Using this larger pool reduces memory fragmentation.  Because external data 
items remain allocated after programs are canceled, it’s best to allocate the 
external data items together so they don’t break up the memory space.  The 
default value for EXTERNAL_SIZE is “8192”.  The maximum value is 
“32767”.

EXTRA_KEYS_OK

This configuration variable allows you to open an indexed file without 
specifying all of that file’s alternate keys.  When it is set to “1” (on, true, yes), 
you may open an indexed file that contains more keys than are described by 



Configuration variables  H-67
your program, and no file error will occur.  However, you will still receive a 
file error if you open a file that does not contain all of the keys described in 
your program.  EXTRA_KEYS_OK is useful when you are adding new 
alternate keys to an existing file because you do not need to rework your 
existing programs.  This configuration variable is ignored if you use a 
Version 1.4 or earlier ACUCOBOL-85 object file.  

The default value is “0” (off, false, no).

F10_IS_MENU

By convention, the F10 key is used by Windows and Windows NT to activate 
program menus. This action is controlled automatically by the program.  The 
F10_IS_MENU configuration variable allows you to set the runtime to 
handle the F10 key as a user defined-key. The default setting is “1” (on, true, 
yes).  When you change the setting to “0” (off, false, no) you inhibit the menu 
activation capability.  For example, action of Shift-Ctl-F10 may only be 
defined by the user if F10_IS_MENU is set to “0”, otherwise this key 
combination activates context menus.  This variable does not affect the 
behavior of the mouse.  However, the mouse continues to work with the 
menu.

FAST_ESCAPE 

This configuration variable determines how long the runtime will wait after 
receiving an escape key before deciding that the key is actually intended as 
an escape key, and not as the start of a function key sequence.  (Increasing the 
number causes the runtime to wait longer.)  The default setting varies with 
the machine.  It is generally between 20 and 100.

This variable has no effect on Windows systems.



H-68  Configuration Variables
FIELDS_UNBOXED 

On most GUI systems, including Microsoft Windows, entry fields are boxed 
by default.  This can cause problems when you are converting applications 
that have fairly full screen displays, because the box adds roughly 50% to the 
height of the field.  This can make it difficult to fit all the existing fields onto 
the user’s screen.

FIELDS_UNBOXED provides a global method of removing boxes on entry 
fields.  If this field is set to “1” (on, true, yes), the system does not display a 
box around entry fields.  Technically this has three effects:

1. If it is set when the entry field is initially created, the NO-BOX property 
is automatically implied.

2. If it is set when a floating window is initially created, the window’s 
LABEL-OFFSET property is given a default value of “0”.  

3. When an entry field is measured by the CELL phrase of the DISPLAY 
FLOATING WINDOW statement, its height is measured without the 
box.  

On character-based systems, setting this variable to “1” (on, true, yes) 
eliminates the display of the left and right delimiting symbols used in the 
textual emulation of entry fields.  (See GUI_CHARS for more information 
about these delimiting symbols).  Eliminating these symbols affects the 
location at which the entry fields are displayed on character-based systems. 

The default value for this option is “0” (off, false, no).  

This variable can be overridden for individual entry fields in the program 
with the BOXED style in the entry field definition.

FILE_ALIAS_PREFIX 

This variable allows you to specify a list of strings to prefix to a file name 
before searching for that name in the configuration file or environment.  Data 
and code file search paths are described in more detail in Section 2.8.2 of the 
ACUCOBOL-GT User’s Guide.



Configuration variables  H-69
When searching for a file alias:

1. The runtime constructs the file alias name by prepending the first string 
listed in FILE_ALIAS_PREFIX to the file name and searches for that 
name in the environment or configuration file. 

2. If the name is not found, the runtime constructs a new name by 
prepending the second string in FILE_ALIAS_PREFIX to the file 
name and searches for that alias. 

This process is repeated with each string in FILE_ALIAS_PREFIX until a 
file alias name is found or the end of the list is reached.

For example, with: 
SELECT file1-name ASSIGN TO "FILE1".

by default, the runtime looks for a configuration or environment variable 
named “FILE1” and, if found, substitutes its value for the file name.  If you 
specify:
FILE_ALIAS_PREFIX "":DD_

the runtime first looks for “FILE1” and, if not found, looks for  “DD_FILE1”.

The default value of FILE_ALIAS_PREFIX is an empty string (“”).  
Specifying an empty string as an entry in FILE_ALIAS_PREFIX causes the 
runtime to search for the file name itself as an alias name.  Up to 4096 
characters can be specified for the value of this variable. 

Note: Separate strings by one or more spaces.  A space is a valid separator 
on all systems.  On UNIX systems, you can also separate entries with a 
colon.  On Windows systems, a semicolon can be used and on VMS 
systems, a comma can be used.  Strings can be enclosed in quotation marks.   
You can specify an empty string using two consecutive quotation marks. 

Note on using with EXPAND_ENV_VARS: 

If you use the EXPAND_ENV_VARS configuration variable and the file 
name includes a dollar sign ($), the FILE_ALIAS_PREFIX logic is applied 
to the environment variable name.  For example, if  EXPAND_ENV_VARS 
is set to”1” (on, true, yes), “$FILE1” and “FILE1” are treated the same.



H-70  Configuration Variables
For example, with:
EXPAND_ENV_VARS=1
FILE_ALIAS_PREFIX=DD_

the following statement,
SELECT file1-name ASSIGN TO "DIR1/$DIR2/FILE1".

causes the runtime to search for an environment or configuration variable 
named “DD_DIR2” (instead of “DIR2”) and, if found, substitute its value for 
“$DIR2”. 

FILE_CASE 

This configuration variable allows you to adjust the case of data file names.  
Possible values include:

Translation occurs before the FILE_PREFIX and FILE_SUFFIX 
configuration options are applied.  You should make sure that those variables 
specify the correct case.  

File name translation does not occur if the file name starts with -F, -D, or -P.  
(See ACUCOBOL-GT User’s Guide, Section 2.9, “File Name 
Interpretation”). 

NONE

or “0”

(the default) data file names are not translated 

LOWER

or “1”

data file names are translated to lower case, 
including directory (path) elements 

UPPER

or “2”

data file names are translated to upper case, 
including directory (path) elements 

LOWER_BASE
or “3”

data file names are translated to lower case, 
excluding directory (path) elements  

UPPER_BASE

or “4”

data file names are translated to upper case, 
excluding directory (path) elements   



Configuration variables  H-71
FILE_CONDITION

This configuration variable can be used to alter the File Status value of an 
individual file status condition.  We recommend that you use one of the four 
pre-defined file status code sets instead.  If you need to change an individual 
status code, contact Technical Support for assistance.

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

FILE_IO_PEEKS_MESSAGES

This configuration variable tells the Windows runtime to automatically call 
the Windows PeekMessage() API function between file operations.  When 
the FILE_IO_PEEKS_MESSAGES configuration variable is set to “1” (on, 
true, yes), the runtime calls PeekMessage() with flags that tell it to simply 
check for messages without removing them from the message queue. This 
operation tells Windows that the application is alive and responding.  The 
default value of the variable is “0” (off, false, no). 

FILE_IO_PROCESSES_MESSAGES 

This configuration variable can be used to control whether the runtime 
processes system messages while performing file I/O operations.  When it is 
set to “1” (on, true, yes), the runtime will process system messages while 
doing file I/O operations.  This was the default behavior prior to Version 3.2.  
Note that the processing of system messages during file I/O should only be 
enabled under special conditions, as described below.

To understand when it is appropriate to set this configuration variable, it is 
important to be familiar with system messages and how the 
ACUCOBOL-GT runtime and your program respond to them.  For the 
purposes of this discussion, system messages are the mechanism used by 
graphical systems, such as Windows, to communicate with your program.  
They are what the operating system uses to facilitate the communication of 
user and system activity to the program.  They are similar to 
ACUCOBOL-GT’s events.  Prior to Version 3.2, the runtime automatically 



H-72  Configuration Variables
processed system events during file operations.  This allows the user to 
manipulate an application window (for example, minimizing it) while file I/
O operations are performed.  If the application suspends the processing of 
system messages, the system appears to the user to be frozen.  

Starting with Version 3.2, this feature is turned off by default.  This is 
because the processing of messages outside of an ACCEPT statement can 
cause flaws in a program that uses multithreading or modeless windows.  It 
also creates a state where event procedures can be called at unexpected times.  
In addition, the controls of the application are not actually functional, though 
they appear to be working to the user.

Generally speaking, setting this variable is useful only when the application 
does not use multithreading, modeless windows, or event procedures.

Note: The proper way to process system messages while performing other 
operations is to start a second thread that performs an ACCEPT statement 
while the main thread continues with the work.  This allows the system to 
process messages under control of an ACCEPT, which provides a 
well-defined point in your program from which event procedures can be 
called.  

FILE_PREFIX 

This variable defines a set of directories that the runtime searches to locate a 
data file.  The default value is “.” (current working directory).  Data and code 
file search paths are described in more detail in Section 2.8.2 of the 
ACUCOBOL-GT User’s Guide.

Directories can be a mix of relative and absolute paths.  Entries are separated 
by one or more spaces.  A space is a valid separator on all systems.  
Alternatively, on UNIX systems you can also separate entries with a colon.  
On Windows systems a semicolon can be used.  On VMS systems a comma 
can be used.

You can specify a directory path that contains embedded spaces if you 
surround the path with quotation marks.  For example:

FILE_PREFIX  C:\“Sales Data”  C:\“Customers”



Configuration variables  H-73
Remote name notation is allowed for the FILE_PREFIX variable if your 
runtime is client-enabled (for indexed files, remote name notation requires 
the Vision file system).  See ACUCOBOL-GT User’s Guide Section 5.2.1 
and Section 5.2.2 for more information about client-enabled runtimes and 
remote name notation.

Up to 4096 characters can be specified for the value of this variable.

FILE_STATUS_CODES 

This variable determines which set of file status codes to use.  For details, see 
the ACUCOBOL-GT User’s Guide, section 2.8.3, “File Status Codes.”  The 
default value is “85”.

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

FILE_SUFFIX 

The value of this variable is automatically appended to data file names that 
do not contain an explicit suffix.  A suffix is the portion of a file name that 
follows a period.  For example, if FILE_SUFFIX is set to “DAT”, then 
opening a file called “EMPFILE” would actually open the file called 
“EMPFILE.DAT”.  The default value is empty.

FILE_TRACE

This variable allows you to start file tracing without opening the debugger.  
Set this variable to a non-zero value to save information about all file OPENs, 
READs, and WRITES in the error file.  This is equivalent to specifying “tf n” 
from the debugger (where n is an integer).  The default is “0.”  See section 
3.1.4, “File Tracing,”of the ACUCOBOL-GT User’s Guide for more 
information about the file trace feature.



H-74  Configuration Variables
FILE_TRACE_FLUSH

Set this variable to “1” (on, true, yes) to flush the error file after every 
WRITE statement.  This is equivalent to using “t flush” from the debugger.  
The default is “0” (off, false, no).  See section 3.1.4, “File Tracing,” of the 
ACUCOBOL-GT User’s Guide for more information about the file trace 
feature.

FILE_TRACE_TIMESTAMP

Set this variable to “1” (on, true, yes) to cause file trace timestamp 
information to be recorded in the error file.  When this variable is enabled, a 
timestamp is placed at the beginning of every line in the trace file.  The 
format of the timestamp is: HH:MM:SS.mmmmmm, where “mmmmmm” is 
the finest resolution that the runtime can obtain from the system.  The default 
setting of this variable is “0” (off, false, no).  

Timestamp information is included only when file trace information is 
directed to a file.  Timestamp output can add significant I/O overhead and 
may have a noticeable impact on performance.

filename

This configuration variable allows you to map Vision 4 and 5 files to a 
different directory.  Vision examines the name of each physical file it 
attempts to open to determine if the file should be mapped to a different 
directory.  The configuration variable used is constructed from the file’s base 
name and extension, with all letters converted to upper case and all 
non-alphanumeric characters converted to underscores.  

For example, assume you open “/usr/data/custfile.dat”, and a configuration 
variable “CUSTFILE_DAT” has the value “/usr2/data/custfile.dat”.  Vision 
treats this value as the actual file name to open, and “custfile.dat” ends up in 
the “/usr2/data” directory rather than “/usr/data”.

Because the extension is included in the configuration variable name, you can 
place different parts of a multi-segment file in different directories.  If no 
name is found for a particular segment, then the segment name is used 



Configuration variables  H-75
unchanged.  Note that you can move parts of a file around by simply moving 
the segment and adding/modifying its corresponding configuration name.  
Name mapping is done directly by Vision (as opposed to, for example, 
FILE_PREFIX, which is handled by the runtime).  As a result, all programs 
that use Vision (such as vutil and vio) use this variable when present.  For 
programs other than the runtime, the variable must be set in the environment 
rather than the configuration file.  

Two configuration variables can affect the value of this variable.  They are: 
V_BASENAME_TRANSLATION and V_STRIP_DOT_EXTENSION.  

This variable is similar to the filename_VERSION configuration variable.  

Note: The filename translation performed by this configuration variable is 
performed by Vision itself.  The runtime can also perform filename 
translation.  See Book 1, ACUCOBOL-GT User’s Guide, Section 2.8.1 for 
more information.

filename_DATA_FMT 

This configuration variable specifies a format for naming the data segments 
of Vision 4 and 5 files.  (See filename_INDEX_FMT for details about 
naming the index segments, as both variables should be set to corresponding 
patterns).  The configuration variable used is constructed from the file’s base 
name and extension, with all letters converted to upper case and all 
non-alphanumeric characters converted to underscores, followed by the 
“_DATA_FMT” string.  Note that by design, this variable does not modify 
the first specified data segment.  The first data segment retains the originally 
specified name.  The filenames of the additional segments of a Vision file are 
generated from the name of the initial data segment.  The 
filename_DATA_FMT variable allows you to change the way the names of 
the following data segments are formed, but the names still originate from the 
name of the initial data segment.  As long as the names are as expected (and 
you have set filename_DATA_FMT and filename_INDEX_FMT 
accordingly) the segments will be found properly.

Suppose that the regular name of your COBOL file is “/usr1/gl.dat”.  The 
variable you would use to set the data segment naming format for this file is 
GL_DAT_DATA_FMT.  



H-76  Configuration Variables
The variable must be set equal to a pattern that shows how to create the 
segment names.  The pattern shows how to form the base name and extension 
for each segment.  Part of this pattern is a special escape sequence (such as 
%d) that specifies how the segment number should be represented.  Choices 
include %d (decimal segment numbers), %x (lowercase hexadecimal 
numbers), %X (uppercase hexadecimal numbers), and %o (octal numbers).  

For example, setting the variable GL_DAT_DATA_FMT=gl%d.dat would 
result in data segments named /usr1/gl.dat (remember that the first data 
segment is not affected), /usr1/gl1.dat, /usr1/gl2.dat, and so forth.

Escape sequence definitions:

The %d in the value of the filename_DATA_FMT above is a printf-style 
escape sequence.  Most reference books on the C language contain an 
in-depth explanation of these escape sequences, and UNIX systems typically 
have a man page (“man printf”) that explains them in detail.  Here are the 
basics:

• “%d” expands into the decimal representation of the segment number.

• “%x” expands into the hexadecimal representation (with lower case a-f) 
of the segment number.

• “%X” expands into the hexadecimal representation (with upper case 
A-F) of the segment number.

• “%o” expands into the octal representation of the segment number.

• You can add leading zeros to the number (to keep all the file names the 
same length) by placing a zero and a length digit between the percent 
sign and the following character.  “%02d” would result in “00”, “01”, 
“02”, and so forth, when expanded.

• To embed a literal “%” in the file name, use “%%”.



Configuration variables  H-77
The escape sequence can be positioned anywhere in the file name, including 
the extension.

Note: While the runtime checks for this segment naming variable in the 
runtime configuration file as well as in the environment, utilities such as 
vutil and vio check only the environment.  Therefore, if you are using this 
variable with the runtime and vio or vutil, you must set the variable in the 
environment and not in the configuration file.

Two configuration variables affect the value of this variable: 
V_BASENAME_TRANSLATION and V_STRIP_DOT_EXTENSION.  

Note: The filename translation performed by this configuration variable is 
performed by Vision itself.  The runtime can also perform filename 
translation.  See Book 1, ACUCOBOL-GT User’s Guide, Section 2.8.1 for 
more information.

filename_FILESYSTEM

filename_FILESYSTEM is a synonym for filename_HOST.  See the entry 
for filename_HOST.

filename_HOST 

Note: filename_FILESYSTEM is a synonym for  filename_HOST.

If the program opens an existing file or creates a new one, you can tell the 
runtime the file system to use with that file.  The Vision file interface is used 
by default.  You specify the file system with one of two configuration 
variables: DEFAULT_FILESYSTEM, or filename_HOST (syn. 
filename_FILESYSTEM).  DEFAULT_FILESYSTEM specifies the default 
file system for all files (see the entry for DEFAULT_FILESYSTEM).  
filename_HOST specifies the file system for an individual file.  For example,

filename_HOST filesystem



H-78  Configuration Variables
assigns the specified data file to the named file system.  Any file so assigned 
uses the designated file system and not the one specified by 
DEFAULT_FILESYSTEM.  Filename must be the base name of the file and 
cannot include the path or the file extension (any part of the name that 
follows the first dot (“.”).  For example, to specify that data file “IDX1.DAT” 
be handled by the EXTFH interface, you would specify:

IDX1_HOST EXTFH

or
IDX1_FILESYSTEM EXTFH

You must specify only the base name of the file in filename.  

To specify that the data file “DXML1.DAT” be handled by the XML 
interface, you could specify:

DXML1_HOST XML

Note that XML can be specified only with sequential files.

 filename_INDEX_FMT 

This configuration variable specifies a format for naming the index segments 
of Vision 4 and 5 files.  (See filename_DATA_FMT for details about 
naming the data segments, as both variables should be set to corresponding 
patterns).  The configuration variable used is constructed from the file’s base 
name and extension, with all letters converted to upper case and all 
non-alphanumeric characters converted to underscores, followed by the 
“_INDEX_FMT” string.  Note that by design, this variable does not modify 
the first specified index segment.  The first index segment retains the 
originally specified name.  The filenames of the additional segments of a 
Vision file are generated from the name of the initial index segment.  The 
filename_INDEX_FMT variable allows you to change the way the names of 
the following data segments are formed, but the names still originate from the 
name of the initial index segment.  As long as the names are as expected (and 
you have set filename_DATA_FMT and filename_INDEX_FMT 
accordingly) the segments will be found properly.



Configuration variables  H-79
Suppose that the regular name of your COBOL file is “/usr1/gl.dat”.  The 
variable you would use to set the format for naming the file’s index segments 
is GL_DAT_INDEX_FMT.  

The variable must be set equal to a pattern that shows how to create the 
segment names.  The pattern shows how to form the base name and how to 
form the extension for each segment.  Part of this pattern is a special character 
(such as %d) that specifies how the segment number should be represented.  
Choices include %d (decimal segment numbers), %x (lowercase 
hexadecimal numbers), %X (uppercase hexadecimal numbers), and %o 
(octal numbers).  

For example, setting the variable GL_DAT_INDEX_FMT=gl%d.idx would 
result in index segments named /usr1/gl0.idx, /usr1/gl1.idx, /usr1/gl2.idx, 
and so forth.

Escape sequence definitions:

The %d in the value of the filename_INDEX_FMT above is a printf-style 
escape sequence.  Most reference books on the C language contain an 
in-depth explanation of these escape sequences, and UNIX systems typically 
have a man page (“man printf”) that explains them in detail.  Here are the 
basics:

• “%d” expands into the decimal representation of the segment number.

• “%x” expands into the hexadecimal representation (with lower case a-f) 
of the segment number.

• “%X” expands into the hexadecimal representation (with upper case 
A-F) of the segment number.

• “%o” expands into the octal representation of the segment number.

• You can add leading zeros to the number (to keep all the file names the 
same length) by placing a zero and a length digit between the percent 
sign and the following character.  “%02d” would result in “00”, “01”, 
“02”, and so forth when expanded.

• To embed a literal “%” in the file name, use “%%”.



H-80  Configuration Variables
The escape sequence can be positioned anywhere in the file name, including 
the extension.

Note: While the runtime checks for this segment naming variable in the 
runtime configuration file as well as in the environment, utilities such as 
vutil and vio check only the environment.  Therefore, if you are using this 
variable with the runtime and vio or vutil, you must set the variable in the 
environment and not in the configuration file.

Two configuration variables affect the value of this variable: 
V_BASENAME_TRANSLATION and V_STRIP_DOT_EXTENSION.  

Note: The filename translation performed by this configuration variable is 
performed by Vision itself.  The runtime can also perform filename 
translation.  See Book 1, ACUCOBOL-GT User’s Guide,  Section 2.8.1 for 
more information.

filename_LOG 

This configuration variable specifies individual log files to be used by the 
transaction logging system.  The format of the variable is:

     filename_LOG logfilename

where filename is the base name of the data file, and logfilename is the name 
of the log file.  filename should not include any directory names nor a file 
extension.  logfilename can include the absolute or relative directory path 
ending with the name of the log file.  If the log file is not found, a new file is 
created with the specified name.  Note that logfilename can have remote 
name notation.  

FILENAME_SPACES 

When this configuration variable is set to  “1” (on, true, yes), filenames may 
contain embedded spaces and the runtime considers the last non-space 
character as the end of the name.  The default is “1”.  When this configuration 



Configuration variables  H-81
variable is set to “0” (off, false, no), then filenames may not contain 
embedded spaces and the name terminates at the first space character.  For 
example:

C:\temp dir\my file name

is read as: 
C:\temp

This affects the behavior of the library routines that take a filename as an 
argument:
C$CHDIR
C$COPY
C$DELETE
C$FILEINFO
C$FULLNAME
C$MAKEDIR
C$RESOURCE
CBL_COPY_FILE
CBL_CREATE_DIR
CBL_DELETE_DIR
CBL_DELETE_FILE
I$IO
RENAME
W$BITMAP
W$KEYBUF
$WINHELP
WIN$PLAYSOUND

filename_VERSION 

This configuration variable sets the Vision file format on a file-by-file basis.  
The filename is replaced by the base name of the file (the filename minus 
directory and extension).  The meaning of the variable is the same as for 
“V_VERSION”.  This variable is useful if you want to have all your Vision 
files in one format, with a few exceptions.  For example, you might want to 
maintain most of your files in Vision Version 3 format to conserve file 



H-82  Configuration Variables
handles, but have a few files in Version 5 format to take advantage of the 
larger file size.  Note that this variable only affects the file format when it is 
created.  You can always rebuild the file in another format later.  

This variable (and the “V_VERSION” variable) is most helpful when you are 
using transaction management.  The transaction system does not record the 
format of the created file if an OPEN OUTPUT is done during a transaction, 
because the transaction system is not tied to any particular file system.  If you 
need to recover a transaction, the system will recreate the OPEN OUTPUT 
files using the settings of the “VERSION” variables.  

The behavior of this variable is affected by the settings of the configuration 
variables V_STRIP_DOT_EXTENSION and 
V_BASENAME_TRANSLATION.

• If V_STRIP_DOT_EXTENSION is set to “0” (off, false, no), Vision 
does not remove any dot extension when replacing the base name of the 
file. This can be useful if you have two files that share a common name 
before their dot extension.

• If V_BASENAME_TRANSLATION is set to “0” (off, false, no), Vision 
includes the entire path of the file in the base name. This can be useful if 
you have files with the same names stored in different directories.

filesystem_DETACH 

This configuration variable detaches any file system from the runtime.  The 
syntax is:

     filesystem_DETACH n

where filesystem corresponds to the first five letters of the file system name 
and n is a non-zero value.  Examples of file systems that may be detached 
using this feature are:

Btrieve BTRIE_DETACH

C-ISAM C_ISA_DETACH

Informix INFOR_DETACH

SQL Server MSSQL_DETACH



Configuration variables  H-83
The file systems may be detached only when the runtime is started, not 
during execution.  If you detach all file systems, the runtime will terminate 
with an error message.  For example, if you detach Vision with 
VISIO_DETACH on a standard runtime, the runtime will terminate with this 
message to std err: No file system available.

This feature automatically supports new file systems added to the runtime.

FLUSH_ALL 

This configuration variable can be used to control the flushing of file buffers 
to disk.  It is one of several variables that control buffer flushing.  See the 
other entries in this appendix that begin with “FLUSH”.

This variable can take a combination of the following values:
1 (on, true, yes, all)
0 (off, false, no)
MASS_UPDATE
REMOTE

When this variable is set to “1”, files opened for MASS-UPDATE are flushed 
along with other files.  This means that the local cache used to hold the 
MASS-UPDATE buffers is flushed whenever the operating system cache is 
flushed.  

When this variable is set to the default value of  “0”, files opened for 
MASS-UPDATE are not flushed. 

Setting this variable to MASS_UPDATE causes the runtime to flush local 
files, including files opened with MASS-UPDATE.  

ODBC ODBC_DETACH

Oracle ORACL_DETACH

RMS RMS_DETACH

Sybase SYBAS_DETACH

Vision VISIO_DETACH



H-84  Configuration Variables
Setting this variable to REMOTE causes the runtime to flush local files not 
opened with MASS-UPDATE, as well as remote files.  

You can also set this variable to a combination of values.  For example,
FLUSH_ALL  MASS_UPDATE  REMOTE 

causes the runtime to flush all local files, including those opened with 
MASS-UPDATE, as well as remote files.  

Note on bitmask integer values:

Internally, the value of this configuration variable is converted to a bitmask, 
and its bitmask integer value is determined by the keywords used to set it.  
Keywords translate into integer values as follows:  

FALSE, NO and OFF are equivalent to “0” 

MASS_UPDATE is equivalent to “1” 

REMOTE is equivalent to “2” 

ALL, TRUE, YES and ON are equivalent to “–1”

When the runtime is started with the “-l” and “-e errfile” arguments, only the 
integer value of FLUSH_ALL is recorded in the error file.



Configuration variables  H-85
FLUSH_COUNT

This configuration variable allows you to flush the disk buffers after a certain 
number of file updates has occurred.  For example, if you set this 
configuration variable to “10”, then the buffers will be flushed after every ten 
updates to disk files.  Only indexed files are counted.  When the buffers are 
flushed, the exact action depends on the operating system:

Note: Setting this variable to a low non-zero value will improve the 
chances of recovering a file after a power failure, but will decrease 
performance.  If FLUSH_COUNT is set to “0”, then the system buffers are 
flushed only when a file is closed.  The default setting is “0”.

FLUSH_ON_ACCEPT 

This configuration variable causes the system’s buffers to be flushed 
whenever a Format 1 or Format 2 ACCEPT statement is executed.  You turn 
on this configuration variable by setting its value to “1” (on, true, yes).  The 
default setting is “0” (off, false, no).  Note that this variable is not 
recommended for multi-user systems because of the performance penalty.

Windows Buffers are written to disk and the file’s directory 
information is updated.  This is roughly equivalent 
to the action that occurs when a file is closed.

UNIX The “sync” system routine is called.  This causes all 
of UNIX’s cache to be written to disk.  This 
operation is only scheduled--it occurs when the 
system finds time to do it.  Because the system does 
this every 30 seconds anyway, probably the only 
reason to request a call to “sync” is if you have 
unreliable power.  

VMS VMS does not have a system cache, so this 
configuration variable has no effect.



H-86  Configuration Variables
FLUSH_ON_CLOSE

This configuration variable applies only to Windows systems. When this 
variable is set to “1” (on, true, yes), the cache buffers will be flushed to disk 
when the file is closed.  Versions prior to 4.3.1 flushed the cache buffers for 
safety reasons.  This, however, reduced system performance, significantly in 
some programs.  This feature is turned “off” by default. 

FLUSH_ON_COMMIT 

When this configuration variable is set to “0” (off, false, no), the COMMIT 
verb will not request the host operating system to flush all buffers to disk.

If flushing is prevented, COMMIT and UNLOCK ALL have the same effect.  
The default setting is “0” (off, false, no).  

FLUSH_ON_OPEN 

This variable causes the system’s buffers to be flushed on the first WRITE, 
REWRITE, or DELETE that occurs after an indexed file is opened for I/O.  
The purpose of this is to update the “user count” field in the file’s header to 
keep it accurate.  When this configuration variable is set to “1” (on, true, yes), 
this feature is turned on; when set to “0” (off, false, no), it’s turned off.  The 
default setting is “0”.

FONT 

This variable has meaning only on graphical systems such as Windows.  You 
determine the font used for accepting and displaying data on screen by setting 
the configuration variable FONT to one of these values:

1 Use the graphical font (default).  The character set for this font is 
referred to as the “ANSI” set.

2 Use the  “OEM” character set (MS-DOS font).



Configuration variables  H-87
This setting must be made in the configuration file before you execute the 
program.  Altering the value of FONT from inside your program has no 
effect.  

By default, data is stored on disk using the same character set that was used 
when the data was entered.  Thus, if you use the graphical font to accept data, 
that data is stored in the ANSI character set.  If you use the MS-DOS font, 
then data is stored in the OEM character set.  

Data moved into a graphical environment from MS-DOS applications was 
originally stored in the OEM character set.  What happens if you now choose 
the graphical font?  As long as your application uses only standard ASCII 
characters, the underlying representation is the same, and so the data is 
completely interchangeable.  See the variable TRANSLATE_TO_ANSI if 
you are using non-ASCII characters.

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

FONT_AUTO_ADJUST 

This variable allows you to disable an automatic font adjustment that is 
applied on Windows machines.  The runtime attempts to adjust automatically 
for differences in the relative proportions between “small fonts” and “large 
fonts.”  You can inhibit the adjustment by setting this variable to “0” (off, 
false, no).

The adjustment is provided because the internal scaling of fonts under 
Windows changes between “small” and “large” fonts.  Under small fonts, 
digits are slightly wider than the average character.  Under large fonts, digits 
have the same width as the average character.  ACUCOBOL-GT uses the size 
of the font’s width for many calculations.  Thus, the change in relative 
proportion within a single font can cause problems for screens designed for 
the small fonts.  For example, a frame may not be big enough to hold its 
contents.  To prevent this problem, the runtime ensures that the “standard 
font measure” is always a bit larger than the average character width in a font.  
To disable this adjustment, set this variable to “0”.



H-88  Configuration Variables
Note: This variable computes the width of  a printer font in the same way 
that the width of a screen font is computed.  You can suppress this behavior 
by compiling with the “-C43” option.

FONT_SIZE_ADJUST 

This variable allows you to adjust the size of the standard font measurement 
that is computed for graphical controls (applies to variable-pitch fonts only).  
The value of FONT_SIZE_ADJUST is added directly to the computed 
standard font size.  For example, a setting of “1” adds one pixel to the 
computed width of the font.  Because the standard font measure is used to 
compute the width of nearly all controls, any adjustment made by this 
variable will have a significant impact on the layout of your screens.  

The adjustment to the standard font measure is made after the wide font 
measure is computed (this is important to note because the wide font measure 
depends on the standard font measure; to change the wide font measure, use 
the FONT_WIDE_SIZE_ADJUST configuration variable).

After applying the adjustment, the runtime checks and ensures that the 
computed font measure is not less than one (1) or greater than the widest 
character in the font.  If you find that the default size of most controls is 
slightly smaller than you prefer, you might try setting 
FONT_SIZE_ADJUST to a small value (typically 1).

Generally, it is recommended that FONT_SIZE_ADJUST (and 
FONT_WIDE_SIZE_ADJUST) be left at its default value of “0”.  You can 
also use negative values, but there is rarely a need to do so.

To optimize performance, the runtime computes the font sizes only 
occasionally.  Although you can change the variable dynamically at runtime, 
the exact time when the new setting will take effect is difficult to predict.  For 
this reason, we recommend that you either set it in your program prior to 
constructing your initial screen, or directly in the configuration file.



Configuration variables  H-89
Note: This variable computes the width of a printer font in the same way 
that the width of a screen font is computed.  You can suppress this behavior 
by compiling with the “-C43” option.

FONT_WIDE_SIZE_ADJUST 

This variable allows you to adjust the size of the wide font measurement 
(applies to variable-pitch fonts only).  The wide font measure is normally 
used when the runtime is measuring small or upper-case entry fields.  The 
value of FONT_WIDE_SIZE_ADJUST is added directly to the computed 
wide font size.

After applying the adjustment, the runtime checks and ensures that the 
computed wide font measure is not smaller than the (adjusted) standard font 
measure or larger than the widest character in the font.  If your upper-case 
fields are not quite as wide as you prefer, try setting this variable to a small 
value (typically 1 or 2).  

Generally, it is recommended that FONT_WIDE_SIZE_ADJUST (and 
FONT_SIZE_ADJUST) be left at its default value of “0”.  You can also use 
negative values, but there is rarely a need to do so.

Note: In order to improve performance, the runtime computes the font 
sizes only occasionally.  Although you can change the variable dynamically 
at runtime, the exact time when the new setting will take effect is difficult 
to predict.  For this reason, we recommend that you either set it in your 
program prior to constructing your initial screen, or directly in the 
configuration file.



H-90  Configuration Variables
FOREGROUND_INTENSITY 

Use this variable to set the default foreground intensity.

If your program specifies a default intensity, then the runtime will never 
assign high-intensity if the foreground is black.  As with the background, we 
do this to prevent a washed-out appearance.  There’s one exception to this 
rule.  The runtime will assign high-intensity to a black foreground if the 
output device does not support independent background intensities.  In this 
case, the device will typically show the background in high-intensity and 
keep the foreground black.  Note that if your program explicitly sets 
high-intensity, then that will be used regardless of the foreground color.  The 
default value for this variable is “0”.

FREEZE_AX_EVENTS

This configuration variable applies only in a thin client environment.  During 
the processing of an ActiveX event, the Windows and thin client runtimes 
attempt to suspend subsequent ActiveX events until the first event has 
completed.  By default, the thin client runtime also attempts to suspend 
ActiveX events whenever the application is not processing an ACCEPT 
statement.  To suspend and resume events, the runtime calls the ActiveX 
function IOleControl::FreezeEvents().  

You might want to disable calls to “FreezeEvents” for ActiveX controls that 
discard events while in a “FreezeEvents” state.  For example, if a user 
double-clicks in an ActiveX control, the control might generate three events: 
mouse-down, mouse-up, and double-click.  If the COBOL program 
terminates an ACCEPT statement in response to the mouse-down event, the 
runtime calls FreezeEvents(), and the ActiveX control might discard the 
mouse-up and double-click events.  

0 The runtime uses the default intensity for the output device.  For 
Windows the default is low-intensity.  

1 The runtime uses low-intensity.  

2 The runtime uses high-intensity.  



Configuration variables  H-91
You can disable the FreezeEvents() logic by setting the 
FREEZE_AX_EVENTS runtime configuration variable to “0” (off, false, 
no) in the configuration file or programmatically with the SET verb.  The 
default value of FREEZE_AX_EVENTS is “1” (on, true, yes).  

Note: The FreezeEvents() logic protects against unexpected nesting of 
ActiveX events and against event procedures running unexpectedly during 
a CREATE, DISPLAY, MODIFY, INQUIRE, or other operation that waits 
for results from the thin client.  Turning this feature off can cause 
unexpected behavior. 

For more information about ActiveX controls in a thin client environment, 
refer to the AcuConnect User’s Guide. 

FULL_BOXES 

This variable applies only in text-mode environments.  When FULL_BOXES 
is set to “1” (on, true, yes) a full, four-sided box is drawn around boxed entry 
fields.  By default, to save screen space on character-based systems, only the 
left and right edges of a box are drawn around boxed entry fields.  The default 
value of FULL_BOXES is “0” (off, false, no).

Note: This variable requires that the boxed entry field be defined as 
MULTILINE.

GRID_BUTTONS_CAUSE_GOTO

This variable applies to graphical programs that include one or more paged 
grid controls.  When GRID_BUTTONS_CAUSE_GOTO is set to “1” (on, 
true, yes) and a user clicks a scroll button on the side of a paged grid, the 
runtime checks to see if the grid has focus.  If the grid does not have focus, 
the runtime gives the grid the focus, generating any events that result 
normally from that focus change.  This usually means that a CMD-GOTO 
event is sent to the COBOL program.  The default value for this variable is 
“0” (off, false, no).



H-92  Configuration Variables
GRID_NO_CELL_DRAG

This variable applies to graphical programs that include grid controls and sets 
the NO-CELL-DRAG style as the default behavior for all grid controls, as 
opposed to specifying NO-CELL-DRAG style individually for each grid 
control.  To configure the NO-CELL-DRAG style as the default setting, set 
the GRID_NO_CELL_DRAG configuration variable to “1” (on, true, yes). 
The default value is “0” (off, false, no) and will enable the user to drag a cell 
in a GRID control unless you specify a NO-CELL-DRAG style on that 
particular grid control.

GUI_CHARS 

 This variable configures a character-based host runtime to substitute some 
specific characters when it is performing textual emulation of graphical 
controls.  If the GF-GUI-MAP terminal database entry doesn’t exist or has 
the character “0” (zero) in a particular character’s position, the runtime 
examines the GUI_CHARS variable to determine what character to display.  
GUI_CHARS is used only by character-based host runtimes.

The value of GUI_CHARS is a list of 14 space delimited characters strictly 
ordered to correspond with the following graphical elements (defaults are in 
parentheses):

1. System menu button (*) 

2. Title left corner (+)

3. Title right corner (+)

4. Title fill character (=)

5. Minimizer (.)

6. Maximizer (^)

7. Scroll bar up button (^)

8. Scroll bar down button (v)

9. Scroll bar left button (<)

10. Scroll bar right button (>)

11. Scroll bar page area ( )



Configuration variables  H-93
The characters may be specified in ASCII or decimal form.  To specify an 
ASCII value, precede the value with a space.  For example, to use “-” in place 
of “=” for the title fill character, make the following entry in the runtime 
configuration file:

GUI_CHARS  0 0 0 - 0 0 0 0 0 0 0 0 0 0 

or
GUI_CHARS  0 0 0 -

The presence of a “0” (zero) following a space, causes the default character 
to be used.

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

HELP_PROGRAM

If the program uses help automation (see Book 2, ACUCOBOL-GT User 
Interface Programming, Help Automation), this variable should be 
assigned the name of the help processor program.  The help processor’s entry 
point is always a COBOL program. The program can be the help processor 
itself, or a shell to some other help processor, such as Windows Help.  The 
default value of HELP_PROGRAM is “AcuHelp”. 

HINTS_OFF

Controls how long the pop-up hint is displayed before being erased.  See 
Section 3.7.4 in Book 2, ACUCOBOL-GT User Interface Programming for 
a description of pop-up hints.  Set this variable to the number of hundredths 

12. Scroll bar slider (#)

13. Left entry field box ([)

14. Right entry field box (])



H-94  Configuration Variables
of seconds to display the hint.  The default value is “400” (four seconds).  If 
you set this value to “0”, the hint will remain displayed until some other event 
(such as using the button or typing) causes it to disappear.  

HINTS_ON

Controls how long the mouse must remain stationary over a bitmap button 
before displaying its pop-up hint.  For a description of pop-up hints, see 
Section 3.7.4 in Book 2, ACUCOBOL-GT User Interface Programming.  
Set this variable to the number of hundredths of a second that the mouse must 
be stationary.  The default value is “75” (three-quarters of a second).  If you 
set this variable to “0”, pop-up hints will not be displayed.  Setting this 
variable to “1” or “2” is not recommended because it may result in the pop-up 
hint being displayed while the mouse is moving across the button face 
(because the mouse motion events may occur less than 0.02 seconds apart).  

HOT_KEY 

ACUCOBOL-GT offers two methods for assigning hot keys--the HOT_KEY 
variable, described here, and the KEYSTROKE hot-key format described in 
the ACUCOBOL-GT User’s Guide, Section 4.3.2.2. 

Using the HOT_KEY variable described below, you can easily assign a 
whole range of keys to a single hot-key program and determine which key 
activated the program.  This lets you write a single program that handles an 
entire menu.  Each menu item can act as a “hot key” to call this program.    

This HOT_KEY format differs from the KEYSTROKE hot-key described in 
the User’s Guide in three ways:

• You assign a hot key by referencing its exception value instead of 
referencing its key code.  Thus, if you assign the same exception value to 
several individual keys, you can associate these keys with the same 
hot-key program by making one COBOL configuration file entry.

Similarly, menu items and individual keys can be assigned the same 
exception value, and then associated with the same hot-key program in a 
single configuration file entry.



Configuration variables  H-95
• You may assign a range of exception values to activate the same 
program.  You could use this to write a menu handler by assigning all of 
your menu items to a unique range and then assigning that range to a 
single hot-key program.  

• A hot-key program activated using the HOT_KEY format is passed an 
additional parameter.  This third parameter contains the value of the 
exception key that activated the program.  This is passed as a COMP-1 
data item.

Use this variable to associate an exception value, or range of values, with a 
program.  HOT_KEY has the following format:

HOT_KEY  program = value1 [, value2]

where program is the name of the program to run, value1 is the lower (or 
only) exception value that activates  the program, and value2 is the upper 
value of the activation range.  Value2 may be omitted; if it’s used it must 
include the separating comma.  You must place program in single or double 
quotes if you require a lower-case program name.  

For example, to assign a program called “mymenu” to exception values 100 
through 200, use the following entry:

HOT_KEY  “mymenu” = 100, 200

A special exception value named TIMEOUT may be specified as the first 
exception value. When this value is used as the first exception value for a 
HOT_KEY program, the runtime will execute the named program whenever 
an ACCEPT BEFORE TIME times out.  When that occurs, the second 
exception value is ignored.

Remote name notation is allowed for the HOT_KEY variable if your runtime 
is client-enabled.  See ACUCOBOL-GT User’s Guide Section 5.2.1 and 
Section 5.2.2 for more information about client-enabled runtimes and remote 
name notation.

Multiple HOT_KEY entries may reference the same program.  This allows 
you to specify noncontiguous activation ranges.  (Be aware that no more than 
16 hot-key entries can be included in the COBOL configuration file.  Using a 
contiguous range of exception values assigns many keys while counting as 
only one entry towards the limit.)  



H-96  Configuration Variables
If you specify a value1 value of “0”, then all hot-key references to program 
are removed.  Within a given run unit, this is the only way to remove the 
assignment of an exception value to a hot-key program after it has been 
assigned.  You will probably use SET ENVIRONMENT in your source code 
to do this.

If you assign multiple hot-key programs to the same exception value, the 
results are undefined.

You may assign different hot keys using both the HOT_KEY variable, 
described here, and the KEYSTROKE hot-key format described in the 
ACUCOBOL-GT User’s Guide, Section 4.3.2.2.  The results are undefined 
if you assign the same key using both formats.  The total number of hot-key 
entries defined by both methods cannot exceed 16.  

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

HP_TERMINAL_ATTRIBUTE_HANDLING

When set to “1” (on, true, yes), if the previous character was written to a line 
other than the current one this variable causes the runtime to set the attribute 
for the character to be written even if the attribute has not changed.  When set 
to “0” (off, false, no), this variable causes the runtime to behave as it always 
has.  For example, if the terminal attribute has not changed then it will not be 
set again.  The default setting is “0” (off, false, no).

HTML_TEMPLATE_PREFIX

This variable is used to specify a series of directories for locating HTML 
template files.  This variable is similar to FILE_PREFIX and 
CODE_PREFIX.  It specifies a series of one or more directories to be 
searched for the desired HTML template file.  The directories are specified as 
a sequence of space-delimited prefixes to be applied to the file name.  All 
directories in the sequence must be valid names.  The current directory can be 
indicated by a period (regardless of the host operating system).  This is the 
default.



Configuration variables  H-97
Note: Remote name notation is not allowed for the 
HTML_TEMPLATE_PREFIX variable, even if your runtime is 
client-enabled.

ICOBOL_FILE_SEMANTICS

This variable affects the behavior of indexed and relative files when 
reversing direction after reading past the beginning or end of a file.  
Normally, if you perform a series of READ NEXTs that reach to the end of 
the file (returning file status “10”), a subsequent READ PREVIOUS will 
return the last record in the file.  The file pointer’s position after each READ 
NEXT is just past the end of the last record.  Similarly, reading past the 
beginning of the file and then doing a READ NEXT will return the first 
record in the file.  

Under ICOBOL, these conditions produce different results.  The record 
returned by the READ PREVIOUS is the second-to-last record in the file, 
and the record returned by the READ NEXT is the second record in the file.  
Essentially, when a series of READs passes either end of the file, the record 
pointer remains on the first or last record. 

Setting ICOBOL_FILE_SEMANTICS to “1” (on, true, yes) will cause the 
runtime to emulate ICOBOL’s handling.  This is useful when porting 
ICOBOL programs to ACUCOBOL-GT.  This option is effective only in 
programs that have been compiled for ACUCOBOL-85 2.0, or later.  The 
default value is “0” (off, false, no).

ICON 

This variable has meaning only on graphical systems such as Windows.  Use 
this variable to designate a program’s minimized icon.  (By default, it uses the 
non-debugger icon provided with ACUCOBOL-GT.)  Set ICON to the name 
of the file that contains the icon.  This file should be an “.ICO” file that 
contains a 16-color icon.  (Although the file may contain icons in other 



H-98  Configuration Variables
formats, the runtime accesses only the 16-color icon.)  The icon should be 
created using an icon editor like the one in the Windows Software 
Development Kit.  

For example, if your custom icon were contained in the file 
“PAYROLL.ICO” in the directory \ACCT\ICONS, you would add the 
following line to your COBOL configuration file:

ICON  \ACCT\ICONS\PAYROLL.ICO

The maximum icon size that can be used with the ICON variable is 32 x 32 
bits. The runtime uses the first icon it finds in the icon file that fits its 
maximum.  If that icon is larger than the maximum, a memory access 
violation may occur.

Note: The ICON configuration variable determines the icon used only 
when your application is minimized.  It does not determine the icon 
displayed by the Program Manager.

IMPORT_USES_CELL_SIZE

This variable is used when importing graphical screens into the AcuBench 
Screen Designer using the screen import utility.  
IMPORT_USES_CELL_SIZE allows you to choose whether fields are 
measured using the actual cell size of the imported screen or measured in 
10-pixel by 10-pixel cells.  The runtime checks this variable only if you are 
importing screens.  When IMPORT_USES_CELL_SIZE is set to the default 
value of “1” (on, true, yes), the screen import utility captures the actual cell 
size used to create windows.  If this variable is set to “0” (off, false, no), the 
screen import utility outputs information based on 10-pixel by 10-pixel cells.  
Note that there is no need to set this variable when importing character 
screens, which should always import with a cell size of 10-pixel by 10-pixel 
cells.  See the AcuBench documentation for more information on importing 
screens.



Configuration variables  H-99
INACTIVE_BORDER_COLOR 

This variable is used on character-based hosts to specify the color and video 
attributes of the characters that form the border (box) around an inactive 
floating window.  INACTIVE_BORDER_COLOR can be set to a variety of 
numeric values that express combinations of color and video attributes.  See 
the documentation for the COLOR phrase in the “Common Screen Options” 
section of the ACUCOBOL-GT Reference Manual (Section 6.4.9).

If INACTIVE_BORDER_COLOR is set to “0”, the inactive window’s 
border is drawn with the colors and video attributes specified in the COBOL 
program when the window is first created.  The default value is “0”.

INCLUDE_PGM_INFO

This variable causes additional program information to be added to the string 
passed to COBOL error procedures.  

When INCLUDE_PGM_INFO is set to “1” (on, true, yes) the string passed 
to COBOL error procedures is prepended with the current program name and 
the address of the program failure.  The address may not be exactly the same 
as that in the COBOL listing, but it will be very close.  (The given address is 
the actual current program counter, which is typically slightly advanced from 
the line on which the fault occurred.)  When INCLUDE_PGM_INFO is set 
to the default, “0” (off, false, no), the string contains only the text of the 
intermediate error message.

For more about COBOL error procedures, see the entry for the 
CBL_ERROR_PROC in Appendix I.

INPUT_STATUS_DEFAULT 

The value of this variable is returned when an ACCEPT FROM INPUT 
STATUS statement is executed on a machine that cannot determine the input 
status of the terminal.  This can be used to make a running program behave 
correctly on a new machine.  The value must be a single digit.  The default 
value is “0”.



H-100  Configuration Variables
If the input is redirected (not attached to a terminal), the SCRIPT_STATUS 
configuration variable determines whether ACCEPT FROM INPUT 
STATUS returns the value of INPUT_STATUS_DEFAULT or returns the 
actual status of the input file.

INSERT_MODE 

This variable determines whether or not keystrokes are inserted in front of 
any existing text when the user types an entry.  Set this variable to “1” (on, 
true, yes) to enable insertion.  The default value is “0” (off, false, no), which 
causes typing to replace existing text.  

The user can change the state of INSERT_MODE with various key actions.  
For example, pressing <insert> can enable insertion.  This variable has no 
affect on Windows controls.

INTENSITY_FLAGS 

This variable takes effect only if you use COLOR_TRANS and only if it 
changes your color scheme.  After any color transformation is completed, the 
runtime system then transforms the foreground and background intensities 
according to the setting of INTENSITY_FLAGS.  The value for this variable 
is actually the sum of the values you choose from the list below.  The default 
value is “0”. 



Configuration variables  H-101
Set INTENSITY_FLAGS to a combination of the following options by 
adding their values together:

These transformations are performed in the order listed above.  After this 
variable is applied, the COLOR_TABLE setting is applied to the program.

1 Exchanges the foreground and background intensities for each 
other.  This is useful if you are swapping a black background into 
the foreground and want to assign the foreground’s intensity to 
the background.  

2 Causes the foreground intensity to be inverted.  That is, if the 
foreground is high-intensity, it becomes low-intensity.  
Otherwise, it becomes high-intensity.  This is useful if you are 
transforming the background to white and the foreground to 
black.  Setting this will cause your low-intensity foreground to be 
shown as gray while your high-intensity item will show as black.  

4 Forces the foreground to high-intensity.  This will not be applied 
to a black foreground.  

8 Forces the foreground to low-intensity.  This may not be used if 
“4” is used.  

16 Causes the “4” or “8” setting to be used even if the 
COLOR_TRANS setting had no effect.  This is an override 
switch that you can use to cause all foreground intensities to be 
set to high or low.  

32 Forces the background to high-intensity.  This will not be applied 
to a black background.  

64 Forces the background to low-intensity.  This may not be used if 
“32” is used.  

128 Forces the background to high-intensity, but only if it is black.  
This may be used in conjunction with setting “32” or “64” for 
special effects.  

256 Causes the “32”, “64”, or “128” setting to be used even if the 
COLOR_TRANS setting had no effect.



H-102  Configuration Variables
IO_CREATES 

Setting this configuration variable to a “1” (on, true, yes) causes the runtime 
system to create a relative or indexed file when the program attempts to open 
a nonexistent file for I-O.  This is provided for compatibility with some other 
COBOL systems.  The default value is “0” (off, false, no).   

IO_FLUSH_COUNT

Use this variable to specify how often the runtime should flush pending 
screen output during file operations.  When set to a positive value, the 
variable indicates the number of file operations to perform between each 
screen flush.  By default, IO_FLUSH_COUNT is set to 20.  

For optimal performance, set IO_FLUSH_COUNT to zero (“0”).  When 
IO_FLUSH_COUNT is set to zero, COBOL file verbs will not automatically 
flush pending screen output.  

To reduce unexpected screen behavior, however, leave this variable at its 
default setting.  The overhead at the default setting is small.

IO_READ_LOCK_TEST

When this variable is set to “1” (on, true, yes), the runtime will cause a read 
with no lock to fail if the file is opened for I-O and the record is locked.  This 
setting will work with Vision files only.  The setting is provided for 
compatibility with some other COBOL systems.  The default value is “0” 
(off, false, no).  The default behavior is to allow the read to succeed.

IO_SWITCH_PERIOD

The value of this variable affects the frequency with which the program’s 
threads change control based on file IO activity.  After a thread performs the 
value of IO_SWITCH_PERIOD operations, the runtime switches control to 



Configuration variables  H-103
another thread (if one exists).  Note that because thread switching is also 
affected by other program operations (such as display I/O), it is impossible to 
predict or absolutely control when a thread will change control. 

The default value of IO_SWITCH_PERIOD is “10”.  This value will provide 
good results with most applications.  To produce behavior that more closely 
imitates that of Versions 6.1 and earlier, set IO_SWITCH_PERIOD to “1”.  
Zero and negative values are invalid and will result in undefined behavior.

ISOLATE_FILE_CREATES

It is possible to experience unexpected file errors when trying to create a file 
if another process is simultaneously creating or removing the same file name.  
Setting ISOLATE_FILE_CREATES to “1” (on, true, yes) causes files to be 
created with temporary names and then renamed when they are fully formed.  
This prevents another process from interfering with the creation.  This option 
is effective only with Vision, and has undefined effects when used with other 
file systems.  We recommend that you use this option only if you are 
experiencing unexpected errors when trying to create a file.

JAVA_LIBRARY_NAME

This variable is designed for those calling a Java program from COBOL via 
the C$JAVA library routine.  In this variable, specify the name of the DLL 
that exports the Java Native Interface (JNI) API for loading the JVM.  In the 
case of JRE 1.4.2_04, the file is called “jvm.dll” or “libjvm.so”.  If the path 
to the DLL is in the Path environment variable, the filename is sufficient 
here; otherwise, this name should be fully qualified with the path.

For details see thee C$JAVA routine in Appendix I.  For information on 
calling Java from COBOL using C$JAVA, see section 2.3.1 in A Guide to 
Interoperating with ACUCOBOL-GT.



H-104  Configuration Variables
JAVA_OPTIONS

This variable is designed for those calling a Java program from COBOL via 
the C$JAVA library routine.  In this variable, specify the command-line 
options that you want passed to the JVM when it is started. 

Note that both CLASSPATH (java.class.path system property) and the 
java.library.path must be configured in order for C$JAVA to locate the Java 
class to run.  The CLASSPATH is the location of “.jar” or “.class” files.  The 
java.library.path is the location DLLs or shared objects that are required 
either by the runtime or by the Java Virtual Machine (JVM). 

If these properties are not set in the environment, use JAVA_OPTIONS to set 
CLASSPATH and java.library.path.  For example:
JAVA_OPTIONS=”-Djava.library.path="c:\usr\lib" -Xms128m 
-Xmx128m -classpath /java/MyClasses/myclasses.jar”

JUSTIFY_NUM_FIELDS

When this variable is set to “1” (on, true, yes), all entry fields that have a 
numeric or numeric-edited VALUE data item associated with them are right 
justified (the same as if the RIGHT style were specified).  You can inhibit this 
for a given field by specifying the LEFT style for the entry field.  Note that 
this variable is examined only when each entry field is created and has no 
further effect.  The default value is “0” (off, false, no).

KBD

These variables can be used in conjunction with the KEYBOARD variable to 
set global terminal attributes.  For details, see the ACUCOBOL-GT User’s 
Guide, section 4.3.2.1, “The KEYBOARD variable.”

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 



Configuration variables  H-105
KEY_MAP 

This is an obsolete variable that has been replaced by the KEYSTROKE 
configuration variable.  Its setting is ignored.

KEYBOARD 

This variable sets global terminal attributes.  For details, see the 
ACUCOBOL-GT User’s Guide, section 4.3.2.1, “The KEYBOARD 
variable.”

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

KEYSTROKE 

This variable redefines the action of a particular keystroke.  It can also 
control mouse handling.  For details on redefinition of keystrokes, see 
section 4.3.2, “Redefining the Keyboard,” in Book 1, ACUCOBOL-GT 
User’s Guide.  Information on mouse handling is provided in Chapter 7 in 
Book 2, ACUCOBOL-GT User Interface Programming.

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

LC_ALL

This variable supports the transfer of double-byte character variables and 
string literals and has meaning only on 32-bit Windows systems that support 
double-byte characters (e.g., Asian Windows machines).  It should not be set 
in other environments and is needed only if you are passing data to a COBOL 
program from another language, such as Visual Basic, and are using 
C$GETVARIANT or C$SETVARIANT.  By using the LC_ALL 
configuration variable, you cause the runtime to set the locale to a particular 



H-106  Configuration Variables
value.  You do not need to set this variable on Japanese machines.  The 
runtime automatically detects Japanese versions of Windows and 
automatically sets the locale, LC_ALL, to “Japanese_Japan.932”.  

The default value for this variable is “C”.  The C locale assumes that all 
characters are 1 byte and that their value is always less than 256.  The value 
of LC_ALL is in the format:

language[_country[.code_page]]

or 
.code_page

where “language” is one of the supported language strings, “country” is one 
of the supported country or region strings, and “code_page” is the Windows 
code page setting for the language and country.  “country” and “code_page” 
are optional.  For example, the following are all equivalent:

LC_ALL Japanese
LC_ALL Japanese_Japan
LC_ALL Japanese_Japan.932
LC_ALL .932

For Korean double-byte character support under Windows use:
LC_ALL Korean

For Chinese use:
LC_ALL Chinese

or
LC_ALL Chinese-simplified

or
LC_ALL Chinese-traditional

The following are the supported language strings:

Chinese Chinese “chinese”

Chinese Chinese (simplified) “chinese-simplified” or “chs”   

Chinese Chinese (traditional) “chinese-traditional” or “cht”   



Configuration variables  H-107
Czech Czech “csy” or “czech”   

Danish Danish “dan” or “danish”   

Dutch Dutch (Belgian) “belgian”, “dutch-belgian”, or “nlb”   

Dutch Dutch (default) “dutch” or “nld”   

English English (Australian) “australian”, “ena”, or “english-aus”   

English English (Canadian) “canadian”, “enc”, or “english-can”   

English English (default) “english”   

English English (New Zealand) “english-nz” or “enz”   

English English (UK) “eng”, “english-uk”, or “uk”   

English English (USA) “american”, “american english”, 
“american-english”, 
“english-american”, “english-us”, 
“english-usa”, “enu”, “us”, or “usa” 

Finnish Finnish “fin” or “finnish”  

French French (Belgian) “frb” or “french-belgian”  

French French (Canadian) “frc” or “french-canadian”  

French French (default) “fra” or “french” 

 

French French (Swiss) “french-swiss” or “frs”  

German German (Austrian) “dea” or “german-austrian”  

German German (default) “deu” or “german”  

German German (Swiss) “des”, “german-swiss”, or “swiss”  

Greek Greek “ell” or “greek”  

Hungarian Hungarian “hun” or “hungarian”  

Icelandic Icelandic “icelandic” or “isl”  

Italian Italian (default) “ita” or “italian”  

Italian Italian (Swiss) “italian-swiss” or “its”  

Japanese Japanese “japanese” or “jpn”  

Korean Korean “kor” or “korean”  

Norwegian Norwegian (Bokmal) “nor” or “norwegian-bokmal”  



H-108  Configuration Variables
The following are the supported country/region strings:

Norwegian Norwegian (default) “norwegian”

Norwegian Norwegian (Nynorsk) “non” or “norwegian-nynorsk”  

Polish Polish “plk” or “polish”  

Portuguese Portuguese (Brazilian) “portuguese-brazilian” or “ptb”  

Portuguese Portuguese (default) “portuguese” or “ptg”  

Russian Russian (default) “rus” or “russian”  

Slovak Slovak “sky” or “slovak”  

Spanish Spanish (default) “esp” or “spanish”  

Spanish Spanish (Mexican) “esm” or “spanish-mexican”  

Spanish Spanish (Modern) “esn” or “spanish-modern”  

Swedish Swedish “sve” or “swedish”  

Turkish Turkish “trk” or “turkish”  

Australia “aus” or “australia”  

Austria “austria” or “aut”  

Belgium “bel” or  “belgium”  

Brazil “bra” or  “brazil”  

Canada “can” or  “canada”  

Czech Republic “cze” or  “czech”  

Denmark “denmark” or  “dnk”  

Finland “fin” or  “finland” 

France “fra” or  “france”  

Germany “deu” or  “germany” 

Greece “grc” or  “greece”  

Hong Kong “hkg”, “hong kong”, or “hong-kong”  

Hungary “hun” or  “hungary”  

Iceland “iceland” or  “isl”  

Ireland “ireland” or  “irl”



Configuration variables  H-109
LICENSE_ERROR_MESSAGE_BOX

This configuration variable prevents acushare licensing errors from 
appearing in a message box, which requires a response from the user.  The 
error messages will instead go to the error output (stderr, or an error file if one 

Italy “ita” or  “italy”  

Japan “japan” or  “jpn”  

Mexico “mex” or  “mexico”  

Netherlands “nld”, “holland”, or “netherlands”  

New Zealand “new zealand”, “new-zealand”, “nz”, or “nzl”  

Norway “nor” or  “norway”  

Peoples Republic of 
China 

“china”, “chn”, “pr china”, or “pr-china”

Poland “pol” or  “poland”  

Portugal “prt” or  “portugal”  

Russia “rus” or  “russia”  

Singapore “sgp” or  “singapore”  

Slovak Republic “svk” or  “slovak”  

South Korea “kor”, “korea”, “south korea”, or “south-korea”  

Spain “esp” or  “spain”  

Sweden “swe” or  “sweden”  

Switzerland “che” or  “switzerland”  

Taiwan “taiwan” or  “twn”  

Turkey “tur” or  “turkey”  

United Kingdom “britain”, “england”, “gbr”, “great britain”,”uk”, “united 
kingdom”, or “united-kingdom”  

United States of 
America 

“america”, “united states”, “united-states”, “us”, or “usa”  



H-110  Configuration Variables
is specified).  Set LICENSE_ERROR_MESSAGE_BOX to 0 to prevent 
these messages from appearing in a message box.  The default value is 1, 
which allows these messages to appear in a message box.

LISTS_UNBOXED

Meaningful only in character-based environments, this variable indicates 
whether list boxes should be boxed (set to a value of “0”, off, false or no) or 
unboxed (set to a value of “1”, on, true or yes).  The default setting is “0”.  

LITERAL_ENTRY

This variable can be used to loosen the literal match restrictions of ENTRY 
point name matching logic.  By default, the matching logic is case sensitive 
and distinguishes between hyphens and underscores.  Setting 
LITERAL_ENTRY to “0” (off, false, no) causes the runtime to handle 
ENTRY point name matching with case insensitivity (upper and lower case 
equivalent) and to treat hyphens and underscores (“-”, “_”) as equivalent.  
The default value is “1” (on, true, yes).

LOCK_DIR 

When set, this controls automatic device locking on UNIX systems.  This is 
described in Section 6.1.5 of the ACUCOBOL-GT User’s Guide.  The 
default value is empty.  

LOCK_OUTPUT

When set to a “1” (on, true, yes), this configuration variable causes all files 
open for OUTPUT to be locked for exclusive use.  Setting this can 
dramatically improve performance on VMS machines.  Some other COBOL 
systems lock files that are open for OUTPUT.  The default value is “0” (off, 
false, no).  



Configuration variables  H-111
LOCK_SORT 

When this configuration variable is set to a “1” (on, true, yes), input files to 
the SORT verb are opened for INPUT ALLOWING READERS.  This can 
improve the performance of the SORT verb slightly and also ensure that the 
data being sorted is not modified.  The default value is “0” (off, false, no).  

LOCKING_RETRIES 

This configuration variable is designed for Windows 98 systems.  It gives 
you some control over situations where a user must wait for access to a 
shared file.  The runtime will try repeatedly to acquire the file lock, up to 400 
times by default.  Set this variable to the number of attempts you would like 
the runtime to make to acquire the file lock. 

LOCKS_PER_FILE 

This value determines the maximum number of record locks that can be held 
on a file by a single process.  This value affects only the files that are 
maintaining multiple record locks.  The default setting is “10”.  The 
maximum value is 32767 for Vision files.  Setting this variable to its 
maximum value can waste resources and is not recommended.

Note: If you increase the value of LOCKS_PER_FILE, you may wish to 
increase the value of MAX_LOCKS as well.

LOG_BUFFER_SIZE 

This sets the maximum buffer size, in bytes, for the transaction log file.  
Acceptable values are from “0” to “32767”.  LOG_BUFFER_SIZE is 
examined before each write to the log file.  Its default value is “512”.  If 
LOG_BUFFER_SIZE is set to “0”, then writes to the log file are synchronous 
(unbuffered).  This value can also be set inside a COBOL program with the 
SET ENVIRONMENT verb.



H-112  Configuration Variables
LOG_DEVICE 

Setting this value to “1” (on, true, yes) causes the transaction management 
system to assume that the log file is actually a device, rather than a file.  This 
means that a special device locking method will be used on the log file (see 
the ACUCOBOL-GT User’s Guide Section 6.1.5, “Device Locking Under 
UNIX”).  It also guarantees that the log file will be opened “append” and that 
no seeks will be performed on it.  This allows for the use of a tape device for 
the log file on many systems.  The default setting is “0” (off, false, no).

LOG_DIR

This variable allows you to specify a directory to be used for holding the 
temporary files generated by the transaction management system.  The value 
of LOG_DIR is treated as a prefix, much like FILE_PREFIX.  If no directory 
is specified, temporary files are placed in the current directory.

Note: In general, you should not use remote name notation in the 
LOG_DIR variable. Although remote name notation is allowed for the 
LOG_DIR variable, it is not advisable to place temporary files on a remote 
server.

LOG_ENCRYPTION 

If this value is set to “1” (on, true, yes), record images are encrypted before 
they are written to the transaction log file.  The default setting is “0” (off, 
false, no).

LOG_FILE 

This identifies the name of the default log file for transaction management.  
The default log file is opened at the beginning of the first transaction unless 
NO_LOG_FILE_OK is set to “1.”  If it does not exist, it is created.  This 
variable can be set programmatically with the SET ENVIRONMENT verb.  



Configuration variables  H-113
The default setting is empty.  Unless you have set NO_LOG_FILE_OK to 
“1”, you must set the LOG_FILE variable if you want to use transaction 
management.

Remote name notation is allowed for the LOG_FILE variable if your runtime 
is client-enabled.  See ACUCOBOL-GT User’s Guide sections 5.2.1 and 
Section 5.2.2 for more information about client-enabled runtimes and remote 
name notation.

LOGGING 

Setting this variable to “0” (off, false, no) disables the logging of file updates 
to the log file.  This means that the data file recovery process (using the 
library routine C$RECOVER) is impossible.  However, because rollback 
information is maintained internally by the runtime, the program can still use 
the transaction management system to START, COMMIT, and ROLLBACK 
transactions.  This variable can be set programmatically with the SET 
ENVIRONMENT verb.  The default setting is “1” (on, true, yes). 

LOGICAL_CANCELS

This variable is used to enable logical cancels.  Logical cancels reduce 
CALL overhead and can, as a result, improve performance.   Cancels, both 
logical and physical (the default), are initiated by the CANCEL verb or 
through a function of the C interface.  A discussion of memory management 
and physical and logical cancels is located in section Section 6.3, “Memory 
Management,”  in Book 1.  A description of the CANCEL Statement is 
located in section 6.6 of Book 3.

LOGICAL_CANCELS can be set to the following values:

-1 (default) all cancels are physical cancels except for programs called from 
CICS that have the “Resident” attribute set to TRUE.



H-114  Configuration Variables
LOGICAL_CANCELS is used in conjunction with the 
DYNAMIC_MEMORY_LIMIT configuration variable, which specifies 
the size of the dynamic memory pool for programs.  See its entry in this 
appendix.

MAKE_ZERO

When set to a “1” (on, true, yes), this configuration variable causes a numeric 
data item that contains non-numeric data to be treated as zero when that item 
is used in a numeric statement.  Setting the value to “0” (off, false, no) causes 
the item to be treated “as is” with whatever effects that will have.  The default 
value is “1” (on, true, yes).  

MASS_UPDATE

When set to “1” (on, true, yes), this variable causes all OPEN...WITH LOCK 
statements to be treated as if they were written OPEN...WITH 
MASS_UPDATE.  This does not apply to OPEN INPUT, however.  Setting 
this configuration variable will improve file performance for applications 
that lock files, but may lead to file corruption if the program is killed before 
it completes.  For more information on this topic, see the ACUCOBOL-GT 
User’s Guide, section 6.1.6, “Indexed File Considerations.”  The default 
value is “0” (off, false, no).  

0 all cancels are physical cancels.  Cancels of programs called with 
the C interface are treated as physical cancels even if the “cache” 
field is set to “1”. 

1 all cancels are logical cancels.  Cancels of programs called with the 
C interface are treated as logical cancels even if the “cache” field is 
set to “0”.



Configuration variables  H-115
MAX_ERROR_AND_EXIT_PROCS

This variable sets the maximum number of error and exit procedures that a 
program can install or call.  The default is 64.  If the limit is exceeded, 
program execution is aborted.  For more information about error and exit 
procedures, see Error and Exit Procedures, CBL_ERROR_PROC, 
CBL_EXIT_PROC, and CBL_GET_EXIT_INFO in Appendix I.

MAX_ERROR_LINES

This variable sets the maximum number of lines that can be included in the 
error file.  It’s especially useful when you are using the file trace function of 
the debugger.  When the size of the error file reaches the number of lines 
specified in this variable, the error file is rewound to its beginning, and 
subsequent lines of output overwrite existing lines in the file.  For example, 
if you set the maximum to 300, then lines 301 and 302 would overwrite lines 
1 and 2 in the file.  Note that there is an upper limit of 32767, setting a larger 
number causes odd behavior.   The default value is “0”, which means do not 
limit the size of the file. 

When using the “-l” runtime option (which causes the configuration settings 
to be logged in the trace file) the trace file wraps to the line below the 
MAX_ERROR_LINES entry.  For this reason, MAX_ERROR_LINES 
should be the last entry in the runtime configuration file

To help you locate the end of the file, the message “*** End of log ***” is 
output whenever the runtime shuts down.  Line numbers are included in each 
line of the file, in columns one through seven. 

This variable is not available on VMS systems.

MAX_FILES 

This variable sets the maximum number of files that can be opened by the 
runtime system.  The default value is “32”.  Keeping this value small 
conserves memory.  Many operating systems limit the number of files that 
can be opened by a single process, so you may have to make some 
adjustments there too.  The maximum value of MAX_FILES is 32767. 



H-116  Configuration Variables
MAX_LOCKS 

This value sets the maximum number of record locks that can be held by the 
runtime system for all of the files together.  The default value matches the 
setting of MAX_FILES.  Many operating systems also have limits on the 
number of record locks that can be held, so you may have to make 
adjustments there too.  The maximum value is 32767 for Vision files.  Setting 
this variable to its maximum value can waste resources and is not 
recommended.

Note: If you change the value of MAX_LOCKS, you should consider 
changing the value of LOCKS_PER_FILE as well.

MENU_ITEM

This variable affects the behavior of pull-down menus.  

The default action of a menu item is to return an exception value equal to the 
item’s ID.  You can change the default action of a particular item by using 
MENU_ITEM. 

Use MENU_ITEM in the same fashion as the KEYSTROKE variable, except 
that the last entry on the line is the menu’s ID, not the key code.  For example, 
to cause a menu item whose ID is “200” to act the same as the Delete key, use 
the following:

MENU_ITEM  Edit=Delete  200

Alternately, you could cause menu item “200” to call the “notepad” sample 
program by using:

MENU_ITEM  Hot_Key=“notepad” 200

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 



Configuration variables  H-117
MESSAGE_BOX_COLOR 

This variable is used on character-based hosts to specify the color and video 
attributes of characters displayed in a message box window.  
MESSAGE_BOX_COLOR can be set to a variety of numeric values that 
express combinations of color and video attributes.  See the documentation 
for the COLOR phrase in the “Common Screen Options” section of the 
ACUCOBOL-GT Reference Manual (Section 6.4.9).

If MESSAGE_BOX_COLOR is set to “0” (the default value), the message 
box is displayed with the default window colors and attributes.

MESSAGE_QUEUE_SIZE 

This variable sets the initial size of the message queue, in bytes.  The message 
queue is dynamically resized, as needed, to hold large messages.  However, 
it is not resized to hold multiple messages (instead, the sending threads wait 
until the queue empties).  Setting the value larger than the default will allow 
more messages to be queued.  Setting it to a smaller value will allow fewer 
messages to be queued and conserves memory.  The default size is 32767.  

MIN_REC_SIZE 

This configuration variable sets the minimum record size for print records, 
and for line sequential files for which trailing space removal has been 
specified.  The default value is “1”.  If set to “0”, then a record will be 
reduced to zero size (except for the line delimiter) if the line is blank.  You 
may also set MIN_REC_SIZE to higher values to establish a minimum 
record size other than one.

MONOCHROME 

When set to “1” (on, true, yes), this configuration variable disables color 
output for machines with graphics video cards.  The default value is “0” (off, 
false, no).



H-118  Configuration Variables
ACUCOBOL-GT assumes that machines with graphics video cards are color 
machines.  If you have a monochrome monitor attached to such a machine, 
some program screens may be difficult to see.  You tell ACUCOBOL-GT to 
disable color output for these machines through the MONOCHROME 
configuration variable.  When this variable is set to a “1”, ACUCOBOL-GT 
will use only black and white. 

MOUSE

This variable has meaning only on systems with a mouse.  When the user 
selects a field in the Screen Section, the exact behavior depends on the field’s 
underlying type.  The runtime distinguishes between three classes of fields: 
numeric, numeric-edited, and all others.  These are referred to respectively as 
NUMERIC, EDITED, and ALPHA.  

You can control the behavior of the mouse with regard to each of these field 
types with the MOUSE configuration variable.  This variable takes as its 
arguments one of the field-type names and two keywords.  The first keyword 
defines how the field is selected when the user presses the left button.  The 
second keyword indicates the shape that the mouse pointer should take while 
in the field.  The first keyword can be one of the following: 

None Indicates that this type of field may not be selected with the mouse.  
When this keyword is used, then the second keyword (which 
defines the mouse’s shape) is ignored.  The mouse adopts the shape 
used for areas of the screen that are not part of any field.     

Field Indicates that pressing the left button anywhere in the field will 
cause the cursor to be positioned at the beginning of the field.   

Character Indicates that pressing the left button in the field will position the 
cursor at the character pointed to by the mouse.  If this is past the 
last non-prompt character in the field, the cursor will be placed just 
after the last non-prompt character.  



Configuration variables  H-119
The second keyword indicates the shape that the mouse pointer should take 
while in the field.  It can be one of the following:

You may also define the shape that the mouse will take when it is used in the 
current field.  Because the action of the mouse is the same for all field types 
once they become the current field, the mouse shape is the same for all three 
types.  You set the desired shape using the Current keyword in the MOUSE 
configuration variable.  The default shape is the Bar shape.

Configuring the MOUSE variable

Depending on where you are setting the MOUSE variable, there are three  
methods of setting its configuration:

1. If you want to implement this variable in a configuration file, the 
variable can be set without using the equals sign. For example:

MOUSE_NUMERIC_SHAPE     Bar

2. If you are setting the variable in the Windows environment, the 
variable would look this:

SET MOUSE_NUMERIC_SHAPE=Bar

3. If you are setting the variable in your program using COBOL syntax, 
the variable would look like this:

SET ENVIRONMENT “MOUSE_NUMERIC_SHAPE” TO “Bar”

The default configuration is as follows:

Arrow The mouse pointer appears in the default arrow shape.  

Bar The mouse appears as a vertical bar.  This is the “I-Bar” shape 
typically used to indicate that the mouse can be positioned at a 
particular character.

Cross The mouse appears as cross-hairs.

MOUSE_ALPHA_CHARACTER Bar 

MOUSE_NUMERIC_FIELD Arrow  

MOUSE_EDITED_FIELD Arrow

MOUSE_CURRENT Bar



H-120  Configuration Variables
You may place multiple entries on the MOUSE configuration line, but you 
are not required to do so.  

The following configuration variables can also be used to set the behavior of 
the mouse:

To set field selection:
MOUSE_ALPHA_SELECT

MOUSE_EDITED_SELECT

MOUSE_NUMERIC_SELECT

To set cursor shape:
MOUSE_ALPHA_SHAPE

MOUSE_EDITED_SHAPE

MOUSE_NUMERIC_SHAPE

MOUSE_CURRENT_SHAPE

With these variables, you need to set the first and second keywords 
separately.  For example, to change the defaults shown above for a numeric 
field, you would enter:

MOUSE_NUMERIC_SELECT  character
MOUSE_NUMERIC_SHAPE  bar

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 



Configuration variables  H-121
MOUSE_FLAGS 

This variable has meaning only on systems with a mouse.  Indicate which 
mouse actions will return an exception value to your program by setting the 
value of the configuration variable MOUSE_FLAGS.  Mouse actions that 
you don’t want to deal with will be ignored.  The value you set is actually one 
or more values added together.  The possible values are: 

For example, if you wanted your program to receive an exception value 
whenever the user pressed either the left or right button, you would set:

MOUSE_FLAGS  130

1 Causes ACUCOBOL-GT to use its automatic mouse handling facility.  
(default)

2 Enables the “left button pushed” action.  

4 Enables the “left button released” action.  

8 Enables the “left button double-clicked” action.  

16 Enables the “middle button pushed” action.  

32 Enables the “middle button released” action.  

64 Enables the “middle button double-clicked” action.  

128 Enables the “right button pushed” action.  

256 Enables the “right button released” action.  

512 Enables the “right button double-clicked” action.  

1024 Enables the “mouse moved” action.  

2048 Forces the mouse pointer always to be the default arrow shape when you 
are using automatic mouse handling.  If this is not set, then the shape of 
the mouse pointer varies depending on various other configuration 
options.  See MOUSE above.

16384 This causes all enabled mouse actions that occur within your 
application’s window to return an exception value.  If this is not set, then 
only mouse actions that occur within the current ACUCOBOL-GT 
window return a value.  (The current ACUCOBOL-GT window is a 
window created by your program with the DISPLAY WINDOW verb.)  



H-122  Configuration Variables
NO_CONSOLE 

This variable has meaning only on graphical systems that create an 
application window, such as Windows.  Set this variable to “1” (on, true, yes) 
to indicate that you’ve built your own user interface entirely in C or that you 
are using an interface created by a code-generating tool.  This is equivalent to 
executing the runtime system with the “-b” command-line option.  When this 
variable is set to “1”, the runtime won’t create its own application window.  
Instead, your C code must build its own window.  When you provide your 
own user interface, you may not use ACCEPT or DISPLAY verbs in your 
COBOL program (except for those that don’t interact with the screen or 
keyboard).  

The default value is “0” (off, false, no).  

NO_LOG_FILE_OK 

Setting this variable to “1” (on, true, yes) eliminates the need to specify a 
default transaction log file with the LOG_FILE variable.  When this variable 
is set, the runtime will write transaction recovery information only to the log 
files specified via the filename_LOG variables.

The default value is “0” (off, false, no).  

NO_TRANSACTIONS

This variable allows you to disable ACUCOBOL-GT’s built-in transaction 
management system.  When NO_TRANSACTIONS is set to “1” (on, true, 
yes), all calls to ACUCOBOL-GT’s built-in transaction management system 
return without doing any work.  This affects all file systems in use.  The value 
of NO_TRANSACTIONS is checked once, the first time a BEGIN, 
COMMIT, or ROLLBACK is attempted and it is not checked again.  
Therefore, although the variable can be set in the program, the effective 
setting cannot be changed after the first transaction management action has 
been attempted.  The default value is “0” (off, false, no), meaning that the 
built-in transaction management facility is enabled.



Configuration variables  H-123
NT_OPP_LOCK_STATUS

This configuration variable controls how files on a shared drive are opened if 
you are working in the Windows opportunistic locking mode.  
NT_OPP_LOCK_STATUS can take one of four values: CREATEFILE, 
SAFE, GETFILETYPE, or FAST.  The default value is “SAFE”, which is a 
synonym for “CREATEFILE”.

If you set this variable to “GETFILETYPE” or “FAST” (synonyms for each 
other), the runtime uses the fast method of opening files.  

Note: If your Windows installations are not completely up to date with all 
available patches from Microsoft, particularly those related to opportunistic 
locking, the GETFILETYPE or FAST setting may cause file corruption 
(error 98).   

NESTED_AX_EVENTS

When an application dialog contains an ActiveX control that is assigned an 
event procedure, the event handler sometimes triggers additional ActiveX 
events.  This variable determines whether or not the event procedure will be 
nested.  

Set this variable to “1” (on, true, yes) if you want the event procedure to be 
nested.   (This is the default).  When NESTED_AX_EVENTS is set to “1”, 
the runtime allows events to trigger while it is processing other events.  It is 
your responsibility to know when the event procedure is busy and reject 
events when this is the case, or to look for specific events and properly handle 
them.  For example, consider this code:

AX-EVENT. 
MOVE 1 TO MY-LOOP. 
PERFORM UNTIL MY-LOOP = 10 
* Do some stuff 
ADD 1 TO MY-LOOP 
END-PERFORM 



H-124  Configuration Variables
When NESTED-AX-EVENTS is set to “1”, it is possible that when your 
code is inside the event, possibly executing the loop for the fifth  time, a new 
event triggers, setting MY-LOOP back to “1”.  The perform loop could 
execute simultaneously in two threads on the same data, and the runtime 
could crash.  When you do not have reentrant events, MY-LOOP can only 
become “1” one time.  This is the case when NESTED-AX-EVENTS are set 
to “0”. 

Set NESTED_AX_EVENTs to “0” (off, false, no) if you do not want the 
event procedure to be nested.  Be aware, however, that this option may cause 
you to lose certain events (typically events triggered by modifications made 
in the event procedure).

When NESTED_AX_EVENTS is set to “0”, once a program has entered an 
ActiveX control’s event procedure, new events are ignored.  This prevents 
the runtime from executing the same code, at the same time. However, events 
that are imperative for the code execution may be refused. 

Note: NESTED_AX_EVENTS applies only to the local runtime and has 
no effect in thin client scenarios.

NO_BARE_KEY_LETTERS

This variable is related to the terminal manager KEYSTROKE EDIT=ALT 
(see Section 4.3.2.2, “The KEYSTROKE variable”)  method of requiring 
users to press the Alt key along with the key letter to move to a new control.   
In character mode and when accepting a push-button, check box, or radial 
button, the runtime’s default behavior is to  terminate the accept if the key 
letter of a control is pressed, and move to that control.  

This behavior can be changed by setting NO-BARE-KEY-LETTERS to 
“TRUE”. When set to “TRUE”, in order to move to these types of controls, 
users will be required to press the key set by the KEYSTROKE setting 
EDIT=ALT before pressing a key letter of that control. The default setting is 
“FALSE”, which uses the behavior described in the previous paragraph.



Configuration variables  H-125
NUMERIC_VALIDATION 

If this configuration variable is set to “1” (on, true, yes), the runtime checks 
for proper format when data is converted to a numeric type (via a MOVE, for 
example).  When NUMERIC_VALIDATION is set to the default “0” (off, 
false, no), numeric conversion checking does not occur.  

OLD_ARIAL_DIMENSIONS

The Arial font shipped with Windows 98 Version 2 has a character width of 
35 pixels, while the Arial font shipped with earlier versions of Windows and 
Windows NT has a width of 23 pixels.  This might cause field overlap or 
screen distortions in programs that rely on the smaller version of the Arial 
font.  Setting this variable to “1” (on, true, yes) causes the runtime to use the 
23-pixel measurement for fields, regardless of which version of Arial (35 or 
23-pixel)  is being used.  

The default value of  “0” (off, false, no) will cause fields to be sized 
according to the version of Arial used.

Note: Because the 35-pixel version of Arial is wider, uppercase characters 
may be truncated when their size is computed with the 23-pixel 
measurement.  Use of this variable may not compensate for all possible 
character width sizing issues.  Some reprogramming of your screens may 
be required.  

OPEN_FILES_ONCE 

This variable allows different logical files that access the same physical file 
to open the physical file only once.  The default for this variable is “1” (on, 
true, yes).  This variable is valid only for UNIX runtimes.



H-126  Configuration Variables
OPTIMIZE_CONTROL_RESIZE

This configuration variable determines how the runtime optimizes control 
resize requests.  Prior to Version 5.2, the runtime would optimize away 
requests to resize a screen control if the new size and position matched the 
control’s current size and position on the screen.  In Version 5.2, or later, the 
runtime optimizes the control resize request using the SIZE and LINES 
indicated (or implied) by the program.  Setting 
OPTIMIZE_CONTROL_RESIZE to “0” (off, false, no) prevents any 
optimization of control resizing operations.  The default of “1” (on, true, yes) 
enables the new behavior.  See Appendix C, “Changes Affecting Previous 
Versions,” for more details.

OPTIMIZE_INDIVIDUAL_LINKAGE

This variable enables the runtime to perform address optimizations on each 
Linkage item individually.  In versions prior to 8.1 this optimization was 
done either for all Linkage items or for none of them, which could result in 
scenarios where optimizations could have occurred on some items, but did 
not.

The default and recommended setting is “1” (on) because the main effect is 
improved CALL performance in a greater number of scenarios.  Usually, the 
only reason to turn this variable off is if a flaw is suspected in the 
optimization.

PAGE_EJECT_ON_CLOSE 

When set to “1” (on, true, yes), this variable will cause print files to print a 
page advance record when the file is closed, unless the close contains the NO 
REWIND phrase.  This is provided for compatibility with RM/COBOL 
version 2.  The default value is “0” (off, false, no).  



Configuration variables  H-127
PAGED_LIST_SCROLL_BAR

This variable applies only in text-mode environments. 
PAGED_LIST_SCROLL_BAR can be set to “-1”, “0”, or “1”. The default 
value is “-1”.  When set to “-1”, the vertical scroll bar is displayed to the right 
of a paged list box if the user interface configuration supports a mouse. 
Otherwise, the right border appears just like the left border.  The appearance 
depends on whether the NO-BOX style is set and the values of the 
FULL_BOXES and LISTS_UNBOXED configuration variable settings.

The runtime internally calls the W$MOUSE library routine with the  
TEST-MOUSE-PRESENCE op-code to determine whether the user interface 
supports a mouse.  Note that mouse support is available for X terminals only 
if the a_termcap entry includes the “km” function. (See the AcuCOBOL-GT 
User’s Guide, section 4.6.8, “Mouse Support for X Terminals.”)

When PAGED_LIST_SCROLL_BAR is set to “1”, the vertical scroll bar is 
always displayed to the right of a paged list box.  When set to “0”, the vertical 
scroll bar is never displayed to the right of a paged list box.

PARAGRAPH_TRACE

This variable is used for debugging purposes and turns on paragraph tracing.  
Set this variable to “1” (on, true, yes) to turn on paragraph tracing from 
within the configuration file or the COBOL program.  This is equivalent to 
the debugger “tp” command.  The COBOL program must be compiled with 
symbols (“-Gs”, or anything that implies that option) to get any error output.

PERFORM_STACK 

This variable sets the depth to which PERFORM statements can be nested at 
runtime when the “-Zr” compile-time option is used.  The default value is 
“128”.  The maximum value is “10916”.  Setting this variable to its maximum 
value can waste resources and is not recommended.



H-128  Configuration Variables
PRELOAD_JAVA_LIBRARY

This variable is designed for those calling a Java program from COBOL via 
the C$JAVA library routine.  By default, the Java Virtual Machine (JVM) is 
loaded by the runtime the first time it executes a CALL C$JAVA statement.  
If you want to load the JVM when the runtime is started, set this 
configuration variable to “1”.  If you do not want to preload the JVM, set the 
variable to “0”.    

See Appendix I for details on the  C$JAVA routine.  For information on 
calling Java from COBOL using C$JAVA, see section 2.3.1 in A Guide to 
Interoperating with ACUCOBOL-GT.

PROFILE_TYPE

This configuration variable provides an optional method of profiling 
ACUCOBOL-GT on Windows called “COUNTER”. The counter method 
uses the debugger to perform counting and appears to provide the most 
accurate results in Windows environments.

Set the PROFILE_TYPE configuration variable to either “ASYNCH” or 
“COUNTER”.  When set to the default value of “ASYNCH”, the runtime 
performs profiling the way it historically has.  When set to the value 
“COUNTER”, the runtime uses this method of profiling.  Note that your 
COBOL programs must be compiled with “-Gd” as well as “-Gs” options to 
use the counter method.  

The counter method is also available on UNIX and can be used if profiling 
your COBOL results in a message similar to “profile timer expired”.  This 
method doesn’t completely solve that problem, but does substantially 
mitigate it.

PROMPTING 

This variable is used on character-based hosts to turn ENTRY-FIELD 
prompting off or on.  When PROMPTING is set to “0” (off, false, no) 
prompting is not performed.  The default value of PROMPTING is “1” (on, 
true, yes). 



Configuration variables  H-129
QUEUE_READERS

This configuration variable evens out user access by modifying the rules 
Vision uses when several users are accessing a file.  This variable applies to 
UNIX machines.  Because of restrictions, it is recommended only for sites 
that are experiencing performance problems with updaters.

By default, the runtime allows multiple readers to access a file 
simultaneously, while updaters require exclusive access to the file.  When a 
file has many readers, an updater can get blocked out of the file for a period 
of time while the runtime waits for a moment when there are no active 
readers.  While this allows processes that read the file to have nearly 
immediate access, updaters may need to wait for a noticeable amount of time. 

The QUEUE_READERS configuration variable lets you request that the 
runtime service each user in turn.  This means a reader will have the same 
priority for accessing a file as an updater does.  Each user is processed in turn 
so that access to files is evenly balanced among all the users.

By default, QUEUE_READERS is set to “0” (off, false, no).  Set it to “1” 
(on, true, yes) to force the readers to take turns instead of having immediate 
access.  

Because of technical limitations in the UNIX file system, if you use this 
configuration variable you must provide read-write access to all indexed and 
relative files that the runtime uses.  This is true even for files that are open 
only for input--UNIX requires that the runtime have write access to the files 
in order to place the kind of lock that causes each user to take turns.  

QUIT_MODE 

This variable has meaning only on graphical systems such as Windows.  It 
gives you control over the Close action that appears on the System menu in a 
graphical environment.  You may use the QUIT_MODE variable with only 
the main application window.  All other windows return the CMD-CLOSE 
event when they are closed.  QUIT_MODE has no affect on windows created 
with the NO-CLOSE phrase (see formats 11 and 12 of the DISPLAY 
Statement, in Book 3, ACUCOBOL-GT Reference Manual, section 6.6).



H-130  Configuration Variables
Many COBOL programs should not be shut down in an uncontrolled manner.  
This is especially true of any application that updates several files in a row.  
If the program is halted after updating the first file, but before updating the 
last, the files are left in an inconsistent state.  For this reason, 
ACUCOBOL-GT allows you to control the Close action.

To do this, you set QUIT_MODE to a non-zero value.  The value that you 
specify affects the Close action as follows:

For example, if you set QUIT_MODE to “100”, then your program will 
receive exception value 100 when the user selects the Close item.  If you 
wanted to call a special shutdown program when the user selected Close, you 
could assign the Close action to a hot-key program:

MENU_ITEM  Hot_Key =“shutdown”  100

In this example, the “shutdown” program might pop up a small window to 
confirm that the user wanted to exit and, if so, do a STOP RUN. 

If you start your program in “safe” mode with the “-s” runtime option, then 
QUIT_MODE will be initialized to “-2” instead of “0”.  This prevents the 
user from using the Close menu item.  A QUIT_MODE entry in the 
configuration file takes precedence over the default handling of “-s”.  

-2 Disable Close: disables the Close action entirely.  The Close menu item 
will appear gray on the System menu, and the user will not be able to select 
it.  

-1 Close only on input: the runtime disables the Close action except when it is 
waiting for user input.  This prevents the user from stopping the runtime in 
the middle of a series of file operations, but still allows the user to quit the 
application any time that the application is waiting for input.  

 0 Always Close: the runtime halts the program whenever Close is selected 
from the system menu.  

>0 Program controlled Close: when a positive value is used, the Close item 
becomes a standard menu item with an ID equal to the value of 
QUIT_MODE.  You may then handle the Close item just like any other 
menu item.  



Configuration variables  H-131
If a user attempts to end the Windows session when it is not allowed, a 
pop-up message box asks the user to terminate the application first.  You can 
customize the message that appears in the box by setting the TEXT 
configuration variable, message number 18.

Note: The QUIT_MODE setting affects only the main application 
window.  All other windows always return the event CMD-CLOSE when 
the window is closed.

QUIT_ON_FATAL_ERROR

This configuration variable applies only when running in HP COBOL 
compatibility mode (with the “-Cp” compiler option).  The 
QUIT_ON_FATAL_ERROR configuration variable causes the runtime to 
call the MPE QUIT intrinsic when an error occurs.  The MPE job control 
word (JCW) is then set, and the MPE environment can determine if the 
program terminated with a fatal error.  When set to “1” (on, true, yes), 
QUIT_ON_FATAL_ERROR calls the MPE QUIT intrinsic.  The default 
setting is “0” (off, false, no). 

QUIT_TO_EXIT

When this variable is set to “1” (on, true, yes), the user must press the close 
button on the title bar (or an alternate close mechanism provided by the 
window) after the program executes a STOP RUN.  The default value is “0”.

RECURSION 

ACUCOBOL-GT allows a program to call itself, directly or indirectly.  A 
CALL statement that attempts to call an active program is termed a recursive 
call.  

To use recursive calls, you must set the configuration variable RECURSION 
to “1” (on, true, yes).  The default setting for RECURSION is “0” (off, false, 
no), which disallows recursive calls.  



H-132  Configuration Variables
When you allow recursive calls, an active program may be called again.  This 
causes a new copy of the program to be loaded into memory and executed, as 
if it were the first call of that program.  Files and data described in that 
program are local to each copy of the program.

More specifically, the runtime assigns a recursion level to each recursively 
called program.  The first time a program is called, it is assigned a recursion 
level of “0”.  If that program is still active and it is called again, it receives a 
recursion level of “1”.  The recursion level is incremented by 1 for each 
active copy of the same program.  

When you call a program at a specific recursion level for the first time, it is 
freshly loaded from disk and its Working-Storage data items are given their 
initial values as defined by their VALUE clauses.  Subsequent calls to a 
program at the same recursion level will find the files and data left in the 
same state that the program had when it last exited.  

Files and data items are distinct between different recursion levels.  

When you CANCEL a recursively called program, all of its inactive copies 
are removed from memory.  Active copies are left alone.  Subsequent calls to 
any of the canceled recursion levels will reload the program from disk and 
reinitialize the files and data items.  

If you need to share data between different active copies of the same 
program, you can pass this data through the Linkage Section.  Alternatively, 
you can share both files and data items by declaring them as EXTERNAL 
items.  Yet another option is the RECURSION_DATA_GLOBAL 
configuration option.

The runtime system shares the program code for recursively called programs.  
Thus, while each recursion level has its own set of data, there is only one 
copy of the Procedure Division code in memory, regardless of how many 
active copies of the program there are.  The runtime system does not, 
however, share overlays.  Each copy of the program in memory has its own 
overlay area.  



Configuration variables  H-133
RECURSION_DATA_GLOBAL

This configuration variable allows you to configure the runtime so that each 
instance of a recursively called program shares the same data as the original 
instance of the program.  The primary reason for configuring the runtime in 
this manner is if you are migrating code that relies on this behavior from 
another COBOL system, such as HP COBOL.

When RECURSION_DATA_GLOBAL is set to “1” (on, true, yes), files and 
data items in a recursive call of a program refer to the identical items in the 
original call of that same program.  This is true regardless of the entry point 
into the program.  Changes to data or file state made in any recursive instance 
of the program are seen by all other instances of that program in the same run 
unit.

Note that to use this feature, you must not only set the configuration variable 
RECURSION_DATA_GLOBAL to “1”, you must also set the 
RECURSION configuration variable to “1” to allow recursion (which is not 
allowed under standard ANSI-85 COBOL rules).

The default is “0” (off, false, no).

REL_DELETED_VALUE 

This configuration variable is helpful when you use relative files and need to 
have a valid record that contains binary zeros.  However, because binary 
zeros are used as the deleted record marker, you have to be able to change this 
marker.  REL_DELETED_VALUE can hold the ASCII character value for 
the new deleted record marker.  

REL_LOCK_READ_THROUGH

This variable allows you to “read through” relative file record locks in 
Windows environments.  This means that READs that do not assert a lock are 
allowed to READ a relative file record even if it is locked by another process. 
To turn on the “read through” capability, all processes accessing the relative 
file must set the configuration variable REL_LOCK_READ_THROUGH to 
“1” (on, true, yes).  When this variable is turned on, the Vision library uses an 



H-134  Configuration Variables
alternate location for relative file record locks that does not block other 
processes from reading the records.  This is necessary because Windows has 
“enforced” file locks that preclude all other access to the locked region.  
Failure to set the configuration variable to the same value on all processes 
accessing the relative file results in undefined behavior.  This variable has no 
effect on UNIX platforms. For more information about relative files and 
record locking, refer to section 6.1, “Handling Files,” of the 
ACUCOBOL-GT User’s Guide.

RENEW_TIMEOUT 

When set to “1” (on, true, yes), this variable restarts the timeout used by 
ACCEPT BEFORE TIME after each keystroke that the user makes.  The 
default setting is “0” (off, false, no), which means that the timeout is canceled 
as soon as the user starts typing.  

RESIZE_FRAMES 

This variable is used to turn off the automatic resizing of frames that is 
performed on character-based hosts.  By default, a character-based host 
runtime automatically resizes frames to visually surround all controls whose 
home coordinates are bounded by the frame.  This makes it easier to maintain 
applications that run on both character and graphical systems.  To turn 
automatic resizing off, set RESIZE_FRAMES to “0” (off, false, no).  The 
default value is “1” (on, true, yes). 

RESIZE_FREELY 

Normally, under a graphical host (such as Windows), the runtime will not 
allow you to resize an AUTO-RESIZE window larger than its logical size (as 
determined by the number of rows and columns the program requested when 
it created the window).  When the RESIZE_FREELY variable is set to “1” 
(on, true, yes), the user can resize the window to any size.  Maximizing the 
window will cause the window to occupy the entire available screen.  The 
region of the window that lies outside of the logical area will not be 
accessible by the program and will be shown as the background color of the 
logical window (defined as the last background color to be applied to the 



Configuration variables  H-135
entire window).  Setting this option is essentially a cosmetic change to the 
way your application looks when maximized.  The default value is “0” (off, 
false, no).

RESTRICTED_VIDEO_MODE 

This value determines which rules will be followed when the program is 
positioning attribute characters for “magic cookie” terminals (terminals 
whose attributes occupy screen positions).  For more details, see the 
ACUCOBOL-GT User’s Guide, section 4.5, “Restricted Attribute 
Handling.”  The default is “0”.  

RMS_NATIVE_KEYS 

This variable is for use only on VAX/VMS systems.  When it is set to “1” 
(on, true, yes), it causes the runtime to specify a key type for numeric keys.  
In order to make use of this variable, you must also create XFD files at 
compile-time (“-Fx”), and you must set the configuration variable 
XFD_DIRECTORY to point to the directory containing those XFD files.

When these steps have been taken, the runtime will create RMS files with 
keys having either the packed decimal or integer attribute, under certain 
conditions dictated by the RMS file system.  In particular, a key will have the 
packed decimal or integer attribute only if it is a single-segment key and only 
if there is a single field in the key.  In this case, a USAGE COMP-3 data item 
in the key will receive the packed decimal attribute, and a USAGE COMP-5 
data item (if it is 2, 4, or 8 bytes long) will receive the integer attribute.

One effect of having this attribute set on key fields is that the order of the data 
is changed.  Without this attribute, a file that has records with keys -3, -2, -1, 
0, 1, 2, 3 would have those records ordered in this way: 0, 1, -1, 2, -2, 3, -3.  
With this attribute, those records would be ordered in this way: -3, -2, -1, 0, 
1, 2, 3.  The default setting for this variable is “0” (off, false, no).



H-136  Configuration Variables
SCREEN 

This configuration variable controls a variety of screen configuration options.  
For details, see the ACUCOBOL-GT User’s Guide, section 4.4.2, “The 
SCREEN Option.” 

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

SCREEN_COL_PLUS_BASE

This variable allows you to configure the COLUMN PLUS phrase in the 
Screen Section.  This capability is provided to improve compatibility with 
other COBOLs.  SCREEN_COL_PLUS_BASE allows you to choose the 
behavior that works best for your program.  It takes the following values:

SCREEN_TRACE

This variable is used for debugging and turns on screen tracing.  Set this 
variable to “1” (on, true, yes) to turn on screen tracing from within the 
configuration file or the COBOL program.  This is equivalent to the debugger 
“ts” command.

-1 (default) This value causes the runtime to determine the behavior of the 
COLUMN PLUS phrase based on whether ICOBOL compatibility has 
been specified with the “-Ci” compile option.  If so, “COLUMN + 1” 
produces a space between items, and “COLUMN + 0” creates adjacent 
items.  If ICOBOL compatibility has not been specified, “COLUMN + 1” 
produces adjacent items.  This matches the prior behavior of 
ACUCOBOL-GT.

0 This value causes column adjustments to start counting at zero.  In this case,  
“COLUMN + 0” produces adjacent items, and “COLUMN + 1” puts a 
space between items. 

1 This value causes column adjustments to start counting at one.  In this case, 
“COLUMN + 1” produces adjacent items, and “COLUMN + 2” puts a 
space between items.  



Configuration variables  H-137
SCRIPT_STATUS 

This variable controls the behavior of ACCEPT FROM INPUT STATUS 
when the input is not attached to a terminal.  If SCRIPT_STATUS has its 
default setting of “0” (off, false, no), an ACCEPT FROM INPUT STATUS 
statement will return a fixed value when the program has redirected input.  
The value returned is the value of the INPUT_STATUS_DEFAULT 
configuration variable.  

When SCRIPT_STATUS is not “0”, and input is redirected, then ACCEPT 
FROM INPUT STATUS will return the actual status of the script file (i.e., it 
will return “1” (on, true, yes) unless the script file has been exhausted).

SCRN

This variable can be used in conjunction with the SCREEN variable to 
control many attributes of the video sub-system.  For details, see the 
ACUCOBOL-GT User’s Guide, section 4.4.2, “The SCREEN Option.”

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

SCROLL 

This variable affects when screen scrolling will occur.  When it is set to “1” 
(on, true, yes), scrolling and cursor positioning occur normally.  When it is 
set to “0” (off, false, no), screen scrolling will occur only as the result of a 
SCROLL phrase in an ACCEPT or DISPLAY statement, and any DISPLAY 
statement that references a line past the bottom of the current window will be 
ignored.  ACCEPT statements that reference a line past the bottom of the 
current window will be placed in the home position of the window.  The 
default setting is “1”.



H-138  Configuration Variables
server_MAP_FILE 

This variable is used to point to the character map file used for translating 
international character sets between a client machine and a specific server 
that uses different character codes. The map file is a simple text file that you 
create with an editor of your choice.  Each line in the map file must contain 
two values in either decimal or hexadecimal: the character code of the 
character on the client machine, and the character code of the same character 
on the server.  Use a # sign to indicate a comment.

The map file may be stored on either the client machine or the server 
machine.  

The server specified in the configuration variable name must match the 
server specified in the remote name notation that points to the data files.  For 
example, if you are using AcuServer to access remote files on a machine 
named sun3, you would use remote name notation to specify the directory 
that contains the data files.  It might look like this:

@sun3:/user/acct/inventory

Then, create a map file and use this configuration variable to point to the map 
file:

sun3_map_file  @sun3:/user/acct/inventory/map.txt

If the map file is local, your value might look like this:
sun3_map_file  C:\user\utility\map.txt

If the map file is located on a server, you must have the AcuServer product on 
that server, to enable client access.

The runtime first searches for the configuration variable server_MAP_FILE 
and, if it is found, uses that setting to locate the map file.  If that variable is 
not set, the runtime searches for DEFAULT_MAP_FILE.  If that variable is 
also not set, then no character translation is done. 



Configuration variables  H-139
server_PASSWORD

Designed to be defined in the environment (rather than in the configuration 
file), server_PASSWORD and its mate server_port_PASSWORD make 
working with AcuServer easier when the compiler and cblutil are called 
repeatedly from the AcuBench integrated development environment.  In this 
scenario, when one of these variable is used, the user never has to enter a 
password.  When these variables are not used, if a password is required the 
user must provide it repeatedly.  

Set server_PASSWORD to the value of the password.  For example:
MERCURY_PASSWORD=we1rneB

where server is replaced by the name of the server.

The compiler checks the variable server_port_PASSWORD first.  If it isn’t 
defined, server_PASSWORD is checked.  If server_PASSWORD is not 
defined, the user is prompted for a password.  If either variable is defined, but 
the value does not match the value in the AcuAccess file, the connection 
attempt fails.

server_port_PASSWORD

Designed to be defined in the environment (rather than in the configuration 
file), server_port_PASSWORD and its mate server_PASSWORD make 
working with AcuServer easier when the compiler and cblutil are called 
repeatedly from the AcuBench integrated development environment.  In this 
scenario, when one of these variable is used, the user never has to enter a 
password.  When these variables are not used, if a password is required the 
user must provide it repeatedly.

Set server_port_PASSWORD when you want to connect to a server on a 
particular port.  For example, to set a password to connect to a server named 
“MERCURY” that is listening on port 4330, you can set the following:

MERCURY_4330_PASSWORD=we1rneB

where server is replaced by the name of the server, and port is replaced by 
the port number that AcuServer is using.



H-140  Configuration Variables
The compiler checks the variable server_port_PASSWORD first.  If it isn’t 
defined, server_PASSWORD is checked.  If server_PASSWORD is not 
defined, the user is prompted for a password.  If either variable is defined, but 
the value does not match the value in the AcuAccess file, the connection 
attempt fails.

SHARED_CODE 

For many UNIX machines, ACUCOBOL-GT supports the ability to have 
multiple users share the same copy of a COBOL program’s object code in 
memory.  This configuration variable indicates which programs you want to 
share code.  Use of shared memory is recommended only if you have a 
problem with limited memory and excessive swapping.  In this case, the 
advantage of reduced swapping will usually more than make up for the 
overhead added by sharing memory.  To use shared code for all of your 
programs on UNIX, add the following line:

SHARED_CODE   1

This will cause all programs to attempt to share code.  Every code segment 
loaded into memory will be placed into shared memory until shared memory 
is full.  Further code segments will then be placed in conventional memory.  
If the system runs out of shared memory and the shared code requests start 
failing, each runtime will have its own copy of the program in its own 
memory space.

Since shared memory is a limited resource under UNIX, you will usually 
want to restrict the use of shared code to those programs where it will be most 
beneficial.  This will ensure that other programs do not use up all of the 
available shared memory first.  To do this, specify each program you want to 
share as follows:

SHARED_CODE  Program1
SHARED_CODE  Program2
SHARED_CODE  Program3

(The program name may also be enclosed in single or double quotes, for 
example, “Program1” or ‘Program2’.)  When you use this method, 
“Program1”, “Program2”, and so forth are the PROGRAM-IDs from the 



Configuration variables  H-141
programs’ Identification Divisions (note that a program’s object file name is 
not used).  If you use this method, then setting SHARED_CODE to “1” will 
have no effect.  

For additional information, see the ACUCOBOL-GT User’s Guide, section 
2.12, “acushare Utility Program.” 

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

SHARED_LIBRARY_EXTENSION

This variable allows you to define the filename extension for UNIX/Linux 
shared object libraries.  The default value is “.so”.  This variable has meaning 
only on systems that support UNIX shared libraries.

SHARED_LIBRARY_LIST

This variable allows you to specify the names of UNIX/Linux shared object 
libraries or Windows DLLs.  

SHARED_LIBRARY_LIST can be set in one of three ways:

1. In the environment

2. In the runtime configuration file

3. Programmatically with the SET ENVIRONMENT statement

The runtime loads the listed objects on program startup or as the result of a 
SET ENVIRONMENT statement.  Names must be delimited by spaces, 
colons (UNIX/Linux), or semicolons (Windows).  

With DLLs, you can specify both the name of the DLL and the calling 
convention to use.  Any calling convention specified this way overrides the 
DLL_CONVENTION variable setting.  For information about specifying 



H-142  Configuration Variables
DLLs and calling conventions, see section 3.3.2, “Loading DLLs with 
Configuration Variables,” in A Guide to Interoperating with 
ACUCOBOL-GT.

You can also list objects without path information and use the 
SHARED_LIBRARY_PREFIX configuration variable to specify a set of 
directories that the runtime will search when attempting to load a shared 
library. 

Once loaded, functions exported by these libraries can be called directly.  

The SET ENVIRONMENT statement can be used to set 
SHARED_LIBRARY_LIST any number of times during program execution.  
Each time it is set, the runtime loads the libraries listed.  Previously loaded 
libraries remain loaded.  Libraries loaded with SHARED_LIBRARY_LIST 
remain in memory until the process exits.  The CANCEL statement cannot be 
used to unload the library.

On some systems, such as AIX, if the shared module is a member of an 
archive, you must specify the name of the member in parentheses after the 
name of the archive. For example:
SHARED_LIBRARY_LIST=”/usr/opt/db2_08_01/lib/libdb2.a(shr.o)”

SHARED_LIBRARY_LIST is like the runtime “-y” option, except that it 
does not require setting the SHARED_LIBRARY_EXTENSION variable, 
and unlike “-y”, you can mix “.a” and “.so” libraries in the list. 

Note: The SHARED_LIBRARY_LIST configuration variable does not 
load client-side DLLs for thin client applications that make calls using the 
CALL verb “@[DISPLAY]:” syntax. These applications must explicitly 
load the DLL by calling it with the CALL verb before calling a function 
within the DLL.

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 



Configuration variables  H-143
SHARED_LIBRARY_PREFIX

This variable allows you to specify a set of directories that the runtime will 
search when attempting to locate a shared library.  The format of the value is 
the same as that allowed for FILE_PREFIX.  You can set 
SHARED_LIBRARY_PREFIX in the configuration file, environment, or 
programmatically with the SET verb.

The default value on Windows systems is empty.  

The default value on UNIX and Linux systems is “/opt/acucorp/8xx/lib /opt/
acu/lib”.  This helps the runtime find “libclnt.so” (or “libclnt.sl”) when the 
operating system’s shared library environment variable (e.g., LIBPATH, 
LD_LIBRARY_PATH, SHLIB_PATH, etc.) is not set.  

SHUTDOWN_MESSAGE_BOX 

This variable allows you to specify whether or not you want the runtime’s 
shutdown message to be displayed in a message box.  If this variable is set to 
“0” (off, false, no), the runtime will display the shutdown message to the 
screen without a message box.  The default value is “1” (on, true, yes).  

SORT_DIR 

This variable allows you to place temporary files used by the SORT verb in 
another directory.  By default these files are stored in the current directory.  
You can specify an alternate directory to hold the sort files by setting the 
configuration variable SORT_DIR to the desired directory.  This value is 
treated as a prefix, much like FILE_PREFIX.  You can improve the 
performance of the SORT verb by placing the temporary files on a fast 
device.  Take care, however, that the device has enough free space to hold 
twice the size of the data to be sorted. 

You may not use the SORT_DIR variable with AcuServer.



H-144  Configuration Variables
Remote name notation is allowed for the SORT_DIR variable if your runtime 
is client-enabled.  See ACUCOBOL-GT User’s Guide sections 5.2.1 and 
5.2.2 for more information about client-enabled runtimes and remote name 
notation.

SORT_FILES

This configuration variable sets the number of temporary files used by 
SORT.  The acceptable range is from 4 to 64. The default value is “8”.

Increasing the number of files used will usually improve SORT performance, 
particularly for large sorts.  Note that you must have enough available file 
handles to open all of the temporary files concurrently.  In general, the 
number of files available is more important than the amount of memory used.  
If you are experiencing long sorts, try increasing the number of files before 
you increase the amount of sort memory.

The SORT verb removes all of its temporary files, except for one, prior to 
beginning its output phase. 

SORT_MEMORY 

This variable specifies the number of 64 KB blocks of memory that the 
SORT verb will try to allocate when it executes.  The acceptable range is 
from 1 to 16384.  The default value is “32”.  Using a value lower than the 
default can be useful if memory is tight on the host machine.  Using a higher 
value may enhance SORT performance.

Take care, when increasing the SORT_MEMORY setting, to ensure that you 
do not assign too much memory to the runtime.  For most operating systems, 
the memory used by SORT is not returned to the system.  While the runtime 
may use the memory for other purposes, this memory is not available to other 
programs until the runtime exits.  

The SORT verb will attempt to allocate the amount of memory specified in 
SORT_MEMORY.  If the requested amount is not available, the runtime will 
return an out of memory error.



Configuration variables  H-145
SPACES_ZERO 

This configuration variable applies only to object files generated with 
ACUCOBOL-85 Version 1.5 and earlier.  For later object files, use the “-Zz” 
compiler option.  When SPACES_ZERO is “1” (on, true, yes), it alters the 
method in which USAGE DISPLAY data items are used by the runtime 
system.  The main effect is that, in most cases, a data item containing spaces 
will be treated as if it contained zeros.  Note that this may not occur in all 
instances because the ACUCOBOL-GT compiler may construct code that 
directly acts on a data item without first converting it to a number.  The 
default value is “0” (off, false, no).

SPOOL_FILE 

This configuration variable allows you to hold a pipe open when you close 
the named file with the CLOSE WITH NO REWIND verb.  This enables you 
to gather multiple reports into a single job for the print spooler.  For 
additional details about pipes and file name interpretation, see the 
ACUCOBOL-GT User’s Guide, section 2.9, “File Name Interpretation.”

The value given to the SPOOL_FILE variable must be the ASSIGN name of 
a sequential file that has been attached to a pipe.  The pipe must be attached 
to the ASSIGN name in the COBOL configuration file via the “-P” option.  
For example, suppose you have a file defined as follows:

SELECT PRINT_FILE
ASSIGN TO PRINT “PRINTER”

and that you have the following pipe defined in the COBOL configuration 
file:

PRINTER  -P  lp  -s

Then, to specify that you want to keep the pipe open when the file is closed 
WITH NO REWIND, you would add the following line to the COBOL 
configuration file:

SPOOL_FILE PRINTER

The name specified for SPOOL_FILE is processed in the same way as the 
external file name specified in the file’s ASSIGN clause.



H-146  Configuration Variables
When the corresponding file is closed with a NO REWIND option, the pipe 
is not closed.  Instead, if the file is later opened again, the same pipe is used.  
The pipe is not closed until a CLOSE verb without the NO REWIND option 
is executed on that file, or until the run unit finishes.  Only one pipe can be 
held open in this manner.  

STD_FIXED_FONT

This configuration variable allows you to set the standard font used by the 
Windows version of the runtime.  It can be set in the configuration file to one 
of the following values:

If this variable has not been set, or has an invalid value, it will default to “-1”.

STOP_RUN_ROLLBACK 

When this variable is set to “1” (on, true, yes), the system performs an 
implied ROLLBACK rather than a COMMIT after a STOP RUN.

With a “0” (off, false, no) setting for this variable, the system performs an 
implied COMMIT after a STOP RUN. The default value for this variable 
is “0”.

-1 (default) The web runtime uses ANSI_FIXED_FONT. Other instances of 
the runtime use SYSTEM_FIXED_FONT.

0 All runtimes use ANSI_FIXED_FONT for the standard font.

1 All runtimes use SYSTEM_FIXED_FONT for the standard font.

2 All runtimes use OEM_FIXED_FONT for the standard font.



Configuration variables  H-147
STRIP_TRAILING_SPACES 

This variable provides an alternate method for determining which LINE 
SEQUENTIAL files will have trailing spaces removed from records written 
to them.  At the time a LINE SEQUENTIAL file is opened, the value of this 
variable is examined.  If this variable is “1” (on, true, yes), then automatic 
space suppression is applied to this file.  

Otherwise, the file is processed according to the normal rules, as described in 
the ACUCOBOL-GT User’s Guide, section 6.1.1, “Sequential Files.”  The 
default value for this variable is “0” (off, false, no).   

Note that a related configuration variable is the 
EXTFH_KEEP_TRAILING_SPACES variable.  

SWITCH_PERIOD 

This variable helps determine how frequently threads switch control.  When 
a thread executes SWITCH_PERIOD number of selected operations, the 
threads switch control.  The selected operations are generally comparisons.  
Comparison operations are used to cause compute-bound threads to switch.  

Setting the value of SWITCH_PERIOD lower will increase the overhead 
spent switching threads, but increase the uniformity of thread execution.  
Setting the value very low can significantly hurt performance.  The default 
value is “100”.  

SYSINTR_NAME

This variable defines the location of the SYSINTR file that may be used with 
MPE emulation software.  This variable must be specified with HFS syntax 
and set to the full path of the SYSINTR file.  For example:

SYSINTR_NAME /opt/mpux/etc/sysintr.txt



H-148  Configuration Variables
TC_AUTO_UPDATE_FAILED_MESSAGE

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  If the thin client automatic update process fails for 
any reason, a message box may appear informing the user of the failure.  The 
TC_AUTO_UPDATE_FAILED_MESSAGE configuration variable lets you 
specify the text in this message box.  Its default value is

ACUCOBOL-GT Thin Client: Automatic update was 
unsuccessful

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_AUTO_UPDATE_FAILED_TITLE

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  If the thin client automatic update process fails for 
any reason, a message box may appear informing the user of the failure.  The 
TC_AUTO_UPDATE_FAILED_TITLE configuration variable lets you set 
the title bar text for this message box.  Its default value is

ACUCOBOL-GT Thin Client

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_AUTO_UPDATE_NOTIFY_FAIL

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  If the thin client automatic update process fails for 
any reason, a message box may appear informing the user of the failure.  If 
you do not want the thin client to inform the user that the automatic update 
has failed, set the TC_AUTO_UPDATE_NOTIFY_FAIL configuration 
variable to “false” (0, off, no).  The default value of this variable is “true” (1, 
on, yes).  



Configuration variables  H-149
For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_AUTO_UPDATE_QUERY

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  When an event triggers the update process, the thin 
client displays a message box informing the user that an upgrade is required.  
The default setting of “1” (on, true, yes) for the 
TC_AUTO_UPDATE_QUERY configuration variable enables the display 
of that message box.  Setting this variable to “0” (off, false, no) prevents the 
message box from appearing.  

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_AUTO_UPDATE_QUERY_MESSAGE

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  When an event triggers the update process, the thin 
client displays a message box informing the user that an upgrade is required.  
The value of the TC_AUTO_UPDATE_QUERY_MESSAGE configuration 
variable determines the message displayed in that message box.  The default 
value of the variable depends on the circumstances that triggered the 
automatic update.  For example, if the automatic update is initiated by a 
version or protocol number mismatch, the default message displayed is:

Incompatible server version
Server version: <srvvers>, client <clntvers>
Server protocol: <srvproto>, client <clntproto>
Press OK to automatically correct this problem

where <srvvers>, <clntvers>, <srvproto>, and <clntproto> are replaced by 
the server version, client version, server protocol number, and client protocol 
number, respectively.



H-150  Configuration Variables
For detailed information about other default values for this configuration 
variable and about the thin client automatic update process, refer to section 
7.4, “Thin Client Automatic Update,” in the AcuConnect User’s Guide.  

TC_AUTO_UPDATE_QUERY_TITLE

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  When an event triggers the update process, the thin 
client displays a message box informing the user that an upgrade is required.  
You use the TC_AUTO_UPDATE_QUERY_TITLE configuration variable 
to specify the title bar text in that  message box.  The default value of this 
variable is 

ACUCOBOL-GT Thin Client

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_AX_EVENT_LIST

In thin client deployments, this variable lets you control which events your 
program receives, giving you more control over the volume of network 
traffic.  It must be set in the configuration file and cannot be changed 
programmatically with the SET verb.  It contains the numeric value of a 
single .NET or ActiveX event type or a list of .NET or ActiveX event types 
separated by non-numeric characters like spaces or commas.  Whether your 
program receives these events depends on the value of 
TC_EXCLUDE_EVENT_LIST.  If its value is “0”, then your program 
receives the events listed in TC_AX_EVENT_LIST.  If 
TC_EXCLUDE_EVENT_LIST is set to “1”, then the events listed in 
TC_AX_EVENT_LIST are not sent to your program.



Configuration variables  H-151
TC_CHECK_ALIVE_INTERVAL

This variable allows you to set a time interval in seconds (a value between 
“1” and “32767”) during which the server runtime checks for thin client 
activity.  This activity can be either regular thin client user interaction or, if 
the user interface is inactive, two “ping” messages sent by the thin client 
during the defined interval.  If no thin client activity of any kind occurs 
during a particular interval, the server runtime process exits.  Setting this 
variable to “0” disables the client activity check feature.  The default value is 
“300” (5 minutes).  

For more information about the thin client, refer to the AcuConnect 
User's Guide.

TC_CHECK_INSTALLER_TIMESTAMP

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  The value of the 
TC_CHECK_INSTALLER_TIMESTAMP configuration variable 
determines whether the thin client compares the modification times of the 
installer files on the client and on the server.  If this variable is set to “1” (on, 
true, yes) and the modification time of the client file is older than the time of 
the server file, the automatic update process is initiated.  If the installer file 
does not exist on the client, then the comparison is made with the 
modification time of the thin client executable (acuthin) currently running.  
The default value for this variable is “0” (off, false, no).  

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_CONTINUITY_WINDOW

If this configuration variable is set to “1” (on, true, yes), the Thin Client 
creates an invisible window after the next window is created by the COBOL 
application.  This invisible window remains until the Thin Client shuts down.  



H-152  Configuration Variables
This variable must be set in the application's configuration file or in the 
initialization code of the application so that it is applied to the initial window 
created by the application. 

The invisible window is needed because the GetMessage API routine 
behaves differently under Windows 2000 and Windows XP than in older 
versions of Windows.  If an application has no open windows and it calls 
GetMessage, the focus is transferred to another application. Once transferred, 
the application cannot force the focus to return to the original application, 
even if it subsequently creates a window to receive the focus.  This situation 
arises under the Thin Client if the COBOL application destroys all of its 
windows before creating a new one.  

Since this variable applies to a very specific situation, the default setting for 
TC_CONTINUITY_WINDOW is “0” (off, false, no).  You must set it 
explicitly if you want to use this feature. 

For more information about the thin client, refer to the AcuConnect 
User's Guide.

TC_CONTROL_SYNC_LEVEL

This variable determines which VALUE data items in a Screen Section are 
updated when a BEFORE, AFTER or EXCEPTION procedure executes. 
(This variable only affects BEFORE, AFTER and EXCEPTION procedures.  
The values of all variables are made current anytime an ACCEPT 
terminates.)  The possible values for TC_CONTROL_SYNC_LEVEL are:

1 (default) Only the VALUE data item associated 
with the current field is updated when its AFTER or 
EXCEPTION procedure executes.

2 Only the VALUE data item associated with the 
current field is updated when its BEFORE, AFTER 
or EXCEPTION procedure executes.

3 All VALUE data items are updated when executing 
any BEFORE, AFTER or EXCEPTION procedure.  



Configuration variables  H-153
For best performance, we recommend leaving this variable at its default 
setting of “1” unless that causes your program to perform incorrectly.  In 
which case, you can increase the setting of TC_CONTROL_SYNC_LEVEL 
to “2” or “3” to adjust for problems in the application behavior.  

Note: Alternatively, you can directly INQUIRE the value of a control in an 
embedded procedure. This allows you to tune application performance 
more precisely than TC_CONTROL_SYNC_LEVEL will allow. 

For more information about the thin client, refer to the AcuConnect 
User's Guide.

TC_DELAY_ACTIVATE

This variable determines precisely when the thin client sends 
CMD-ACTIVATE events to the server.  Under the default setting of “1” (on, 
true, yes), the client delays sending the event until after the Windows 
notification routine receiving the event has completed.  However, ActiveX 
events are never delayed.  The alternate setting of “0” (off, false, no) sends 
the event to the server immediately when it is generated on the client.

We recommend leaving this variable at its default setting because the 
Windows API occasionally alters actions taken by the program when they 
occur within the scope of an activation notification.  (For example, Windows 
will sometimes override a “set focus” call.)  Delaying the COBOL program's 
response to the activation until after the Windows notification routine is 
complete avoids these alterations.  

If you experience an unexplained difference in window activation when 
running under the thin client, try setting this variable to “0”.  If this produces 
the desired behavior, the handling of the CMD-ACTIVATE events by the 
program is unusual and may not be performing as intended. For example, the 
EVENT procedure that handles the CMD-ACTIVATE event may be 
destroying an unrelated window instead of transferring control to the window 
issuing the CMD-ACTIVATE event. 

For more information about the thin client, refer to the AcuConnect 
User's Guide.



H-154  Configuration Variables
TC_DELAY_PRE_EVENT_OPS

This configuration variable applies only to the ACUCOBOL-GT Thin Client.  
Using this variable, you can direct the thin client to buffer some requests 
received from the server and process them later.  When you set this variable 
to “1”, the thin client buffers the requests received between the time that the 
client sends an event to the server and the time that the server informs the 
client that it has started the related event procedure.  The events are processed 
only after the event procedure starts in order to prevent the thin client from 
processing requests that generate more events before the first event procedure 
has started.  The default value of TC_DELAY_PRE_EVENT_OPS is “0”.  

Note: The buffering behavior described for this configuration variable was 
introduced as the default behavior in Version 6.1.  Beginning with Version 
7.2, the buffering behavior is turned off by default.  

TC_DISABLE_AUTO_UPDATE

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  You can disable the automatic update process by 
setting the TC_DISABLE_AUTO_UPDATE configuration variable to “1” 
(on, true, yes).  The default value of this variable is “0” (off, false, no).  

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_DISABLE_SERVER_LOG

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  If the thin client automatic update process fails for 
any reason, a log file may be created on the server.  This file contains a log of 
the update operations and details about the failure.  To prevent the creation of 
this log file, set the TC_DISABLE_SERVER_LOG configuration variable to 
“true” (1, on, yes).  The default value of this variable is “false” (0, off, no).



Configuration variables  H-155
For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_DOWNLOAD_CANCEL_MESSAGE

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  During the automatic update installer file 
download process, a progress dialog appears.  You can cancel the download 
at any time from this dialog box.  Use the 
TC_DOWNLOAD_CANCEL_MESSAGE configuration variable to specify 
the message that appears when the download is cancelled.  The default value 
for this variable is

Please wait while the download is being cancelled . . .

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_DOWNLOAD_DESCRIPTION

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  During the automatic update installer file 
download process, a progress dialog appears.  You use the 
TC_DOWNLOAD_DESCRIPTION configuration variable to specify the 
text that appears in the middle of the download progress dialog.  Its default 
value is

Downloading installation file. . .

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  



H-156  Configuration Variables
TC_DOWNLOAD_DIALOG

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  During the automatic update installer file 
download process, a progress dialog appears.  The default value of “1” (on, 
true, yes) for the TC_DOWNLOAD_DIALOG configuration variable allows 
the appearance of this dialog box.  If you set this variable to “0” (off, false, 
no), the progress dialog does not appear.

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_DOWNLOAD_DIALOG_TITLE

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  During the automatic update installer file 
download process, a progress dialog appears.  The 
TC_DOWNLOAD_DIALOG_TITLE configuration variable is used to 
specify the title bar text in this dialog box.  The default value of this variable 
is

ACUCOBOL-GT Thin Client Automatic Update

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_EVENT_LIST

This configuration variable lets you control which events your program 
receives, giving you more control over the rate of network traffic.  It must be 
set in the configuration file and cannot be changed programmatically with the 
SET verb.  It contains the numeric value of a single event type or a list of 
event types separated by non-numeric characters like spaces or commas.  
Whether your program receives these events depends on the value of 
TC_EXCLUDE_EVENT_LIST.  If its value is “0”, then your program 



Configuration variables  H-157
receives the events listed in TC_EVENT_LIST.  If 
TC_EXCLUDE_EVENT_LIST is set to “1”, the events listed in 
TC_EVENT_LIST are not sent to your program.

TC_EXCLUDE_EVENT_LIST

The value of this variable determines whether the events listed in 
TC_AX_EVENT_LIST and TC_EVENT_LIST are sent to your program.  
A value of “1” means the specified events are not sent to your program.  The 
default value is “0”. 

TC_INSTALLER_ARGS

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  The thin client uses the value of the 
TC_INSTALLER_ARGS configuration variable as the command-line 
options passed to the installer executable.  For example, if you want 
“msiexec.exe” to log all of its operations to a file named “msi.log”, then you 
could set TC_INSTALLER_ARGS to “/log msi.log”.  
TC_INSTALLER_ARGS has no default value.  

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_INSTALLER_CLIENT_FILE

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  You use the TC_INSTALLER_CLIENT_FILE 
configuration variable to specify the path and file name of the installer file 
that you want to create on the client.  The default value of this variable is

<APPDATA>\ACUCOBOL-GT\<installer_server_filename>



H-158  Configuration Variables
where <APPDATA> is a special directory name for C:\Documents and 
Settings\<user>\Application Data and <installer_server_filename> is the file 
name specified in the TC_INSTALLER_SERVER_FILE configuration 
variable.  

For detailed information about special directory names like <APPDATA> 
and about the thin client automatic update process, refer to section 7.4, “Thin 
Client Automatic Update,” in the AcuConnect User’s Guide.  

TC_INSTALLER_RUN_ASYNC

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  You use the TC_INSTALLER_RUN_ASYNC 
configuration variable when you want to prevent the thin client from 
restarting after an automatic update or when your installer file handles the 
automatic update process to completion.  When you set this variable to “1” 
(on, true, yes), the thin client starts the installer process asynchronously and 
then exits immediately.  It does not wait for the automatic update process to 
complete and does not restart the application.  The default value is “0” (off, 
false, no).  

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_INSTALLER_SERVER_FILE

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  You set the TC_INSTALLER_SERVER_FILE 
configuration variable to the path and file name of the server installer file.  Its 
default value is

<runtime_path>/acuthin.msi

where <runtime_path> is the directory that contains the runcbl runtime 
executable.  



Configuration variables  H-159
For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_INSTALLER_TARGET_DIR

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  You use the TC_INSTALLER_TARGET_DIR 
configuration variable to specify the location where you want the updated 
thin client to be installed.  This variable has no default value.

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_INSTALLER_UI_LEVEL

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  The keywords or numeric values in the 
TC_INSTALLER_UI_LEVEL configuration variable control the Windows 
installer interface.  Set TC_INSTALLER_UI_LEVEL to NONE or “0” if you 
do not want the Windows installer to display a user interface.  Set this 
variable to UNATTENDED or “1” if you want the Windows installer to 
display informational and progress messages but to execute unattended.  Set 
the variable to INTERACTIVE, DEFAULT, or “2” if you want the Windows 
installer to prompt for and accept user input for the installation process.  Set 
the variable to REDUCED or “3” if you want to use a reduced user interface. 

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  



H-160  Configuration Variables
TC_MAP_FILE

In thin client deployments, set this variable to point to the character map file 
that defines the mapping of international characters between client and server 
systems.  A detailed description of international character handling is located 
in the AcuConnect User’s Guide, section 4.5, “International Character 
Handling.” 

TC_NESTED_AX_EVENTS

This variable determines how thin client handles nested ActiveX events. 
Because thin client processes Windows messages while waiting for 
responses from the server, it is possible for new ActiveX events to be sent 
while still waiting for an earlier event procedure to return, causing event 
procedures to be nested within event procedures.  Because nested event 
procedures can cause unpredictable results, including memory access 
violations (MAVs), this variable is set to “0” (off, false, no) by default.  If you 
want to enable it, set it to “1” (on, true, yes).

TC_QUIT_MODE 

This variable lets you control how your COBOL application shuts down 
when no client activity occurs during the interval defined by 
TC_CHECK_ALIVE_INTERVAL.  Setting TC_QUIT_MODE to “-1” 
(the default value) shuts your program down according to the value chosen 
for the QUIT_MODE configuration variable.  If you set this variable to “0”, 
the runtime stops the program immediately.  

When this variable is set to a value greater than “0” (up to “32767”), your 
application has a program-controlled exit.  When the runtime determines that 
the thin client is no longer responding (no user interaction and no pings 
during TC_CHECK_ALIVE_INTERVAL), the MSG-MENU-INPUT 
event is sent to the program’s main window and EVENT-DATA-2 contains 
the value defined by TC_QUIT_MODE.  Your program can detect this in the 
main window’s event procedure and you can perform whatever code you 
desire.  At this point there is no connection to the thin client, so user interface 
operations may not be performed.  You must end your shutdown code with 
“STOP RUN” to terminate the runtime.  



Configuration variables  H-161
For more information about the thin client, refer to the AcuConnect 
User's Guide.

TC_REQUIRES_BUILD_NUMBER

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  When the thin client executes, it compares its build 
number with the value of the TC_REQUIRES_BUILD_NUMBER 
configuration variable.  If the value of this variable does not match the 
client’s build number, the automatic update process is initiated.  Set this 
variable to the thin client build number required by the application.  The 
default value of this variable is “0” (off, false, no).  

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_RESTRICT_AX_EVENTS

This variable controls whether the application will ignore ActiveX events 
between ACCEPT statements (the termination of one ACCEPT and the 
beginning of the next).  Setting this variable to “1” (on, true, yes) enables this 
behavior.  The default value is “0” (off, false, no).   

Ordinarily, the thin client runtime suspends all ActiveX events when the 
application is not processing an ACCEPT statement.  However, some 
ActiveX controls do not support the ability to suspend and resume events 
when an application is not processing an ACCEPT statement.  As a result, in 
a thin client environment, an event procedure may be run unexpectedly 
during a CREATE, DISPLAY, MODIFY, INQUIRE, or any other operation 
that waits for results from the thin client.  Setting 
TC_RESTRICT_AX_EVENTS provides some control over these ActiveX 
events.

To determine if a particular ActiveX control supports suspending and 
resuming events, check the control’s documentation or ask the control 
vendor.  Note that the control must implement the 
“IOleControl::FreezeEvents()” function.  



H-162  Configuration Variables
For more information about ActiveX control handling, see Chapter 4 in A 
Guide to Interoperating with ACUCOBOL-GT, and section 6.3 of the 
AcuConnect User’s Guide. 

TC_SERVER_LOG_FILE

This configuration variable applies only to the ACUCOBOL-GT Thin Client 
automatic update feature.  If the thin client automatic update process fails for 
any reason, a log file may be created on the server.  This file contains a log of 
the update operations and details about the failure.  The 
TC_SERVER_LOG_FILE configuration variable can be used to configure 
the location and name of that log file. The name can optionally include the 
hostname of the client machine and the process ID of the server runtime that 
was managing the automatic update at the time of the failure.

By default, this file is named “autoupdate.%c.%p.log”, where “%c” is 
replaced by the client hostname and “%p” is replaced by the process ID of the 
server runtime. The default location is the working directory specified in the 
alias on the server.  Note that the directory must exist at the time of the failure 
for the log file to be created.  

For detailed information about the thin client automatic update process, refer 
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s 
Guide.  

TC_SERVER_TIMEOUT

This variable lets you determine how many seconds (from “0” to “32767”) 
the thin client waits for a response from the server.  If the thin client receives 
no response from the server in the specified time period, the following 
message box appears:
   The remote host is not responding.
   Press OK to close this program.
   Press Cancel to wait another %s seconds.

where “%s” is the value of TC_SERVER_TIMEOUT.  The default value is 
“20”.  



Configuration variables  H-163
For more information about the thin client, refer to the AcuConnect 
User's Guide.

TC_TV_SELCHANGING

This variable is designed for thin client applications.  It provides some 
control over when the runtime generates Msg-Tv-Selchanging events for tree 
view controls.  Because most applications that use tree view controls do not 
process Msg-Tv-Selchanging events, the thin client suppresses its generation 
in some cases.  This improves both performance and stability.  
TC_TV_SELCHANGING recognizes the following values:

The default setting of “1” allows you to detect user-initiated events in your 
program while filtering out many other causes of the event.

If you know your program doesn’t handle any Msg-Tv-Selchanging events, 
you can set TC_TV_SELCHANGING to “0” to entirely inhibit generation of 
the event.  This can slightly improve performance.

If TC_TV_SELCHANGING is set to “1” and your program experiences odd 
behavior with tree view controls under the thin client, you can try setting the 
variable to “2” to generate all Msg-Tv-Selchanging events.  This setting can 
help you determine whether a Msg-Tv-Selchanging event is the cause of the 
odd behavior.  If this setting eliminates the odd behavior, it indicates that 
your program relies on Msg-Tv-Selchanging events in cases other than the 
user initiating a selection change.

For more information about the thin client, refer to the AcuConnect 
User's Guide.

0 never generate Msg-Tv-Selchanging events

1 (default) generate Msg-Tv-Selchanging events when the selection 
is about to change due to the user using the mouse or the keyboard 
to change to current selection

2 always generate Msg-Tv-Selchanging events



H-164  Configuration Variables
TEMP_DIR

This variable lets you specify where certain temporary files used by the 
ASSIGN clause will be created on VAX/VMS systems.  These temporary 
files are created when you use the %TMP% option for assigning a file to a 
simulated pipe with “-P”.  For more information, see the ACUCOBOL-GT 
User’s Guide, section 2.9, “File Name Interpretation.”

TEMPORARY_CONTROLS 

By default, graphical controls are created as permanent controls.  By setting 
this configuration variable to “1” (on, true, yes), you cause controls to be 
created temporary by default.  This is useful when you are converting older 
programs that assume that a screen update will overwrite any existing screen 
data.  You can make individual controls permanent or temporary explicitly by 
using the PERMANENT and TEMPORARY styles (see Section 5.2 in 
Book 2, ACUCOBOL-GT User Interface Programming).  

TEXT 

This configuration variable controls the text of runtime messages.  The 
ACUCOBOL-GT runtime system displays a number of informational and 
warning messages to the end user.  Several of these messages can be 
customized via entries in the configuration file.  

For each message that you want to change, place the word “TEXT” in your 
configuration file, followed by a message number from the list below, an “=” 
sign, and then the text you would like to use.  

For example, the standard message #1 is “press return”.  You can change that 
message to “push enter” by placing this line in your configuration file:

TEXT  1=push enter

Note: There is no space before or after the equals sign, and the new 
message is not in quotes.



Configuration variables  H-165
These are the standard runtime messages and their numbers:

Message # Text 

1 “Press return”

2 “Number required”

3 “Entry required”

4 “Field must be filled with data”

5 “Too many hot keys active”

6 “Program missing or inaccessible”

7 “Not a COBOL program”

8 “Corrupted program”

9 “Inadequate memory available”

10 “Unsupported version of object code”

11 “Program already in use”

12 “Too many external segments”

13 “Large-model program not supported”

18 “Please end this application first”

19 “Japanese objects not supported” 

This message is displayed when a standard runtime attempts to 
execute an object that contains Japanese COBOL extensions.  

20 “Too many lines” 

This message is displayed when the user exceeds the MAX-LINES 
setting for a multiline entry field.  

21 “License manager (acushare) not running” 

This message is displayed when acushare is not running and the 
runtime is unable to start it (e.g., because it is not in the path).  

22 “Data must fit this format:” 

This message is displayed when the user enters illegal data when 
using the NUMERIC_VALIDATION configuration option.

23 “&Ok”

24 “&Yes”



H-166  Configuration Variables
Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

25 “&No”

26 “&Cancel” 

Messages 23, 24, 25, and 26 are used by character-based versions for 
the message box facility.  

28 “Unable to access the file “%s” due to heavy usage by other users.  
Would you like to continue waiting for it?” 

(See the configuration variable WAIT_FOR_FILE_ACCESS for 
more information about this message.)

30 “Connection refused - perhaps AcuConnect is not running”

31 “Please enter a value between %ld and %ld” 

This message is displayed when the user enters a value outside of the 
allowed range for an entry-field (see MIN-VAL/MAX-VAL in the 
entry-field reference).  The first “%ld” is replaced by the MIN-VAL 
setting.  The second “%ld” is replaced by the MAX-VAL setting.  
You may omit these if you desire.  Note that the second character in 
the sequence is the letter “l”, and not the number one (“1”).

32 “Program contains object code for a different processor”

33 “Incorrect serial number”

34 “Connection refused - user count exceeded on remote server”

35 “License error”

36 “The remote host is not responding.\nPress OK to close this 
program.\nPress Cancel to wait another %s seconds.

This message is displayed when Thin Client does not receive a 
response from the server in the number of seconds specified in 
TC_SERVER_TIMEOUT. 

Use “\n” to separate lines and “%s” to substitute the number of 
seconds (value of TC_SERVER_TIMEOUT). If you don’t want to 
display the number of seconds, omit the “%s”.

Message # Text 



Configuration variables  H-167
TRACE_STYLE

This variable allows you to customize the format of error and trace messages.  
You can set it to the sum of one or more of the following values:

You can also set TRACE_STYLE to one of the following keywords, which 
correspond to the indicated numerical values:

TRANSLATE_TO_ANSI

This variable has meaning only on graphical systems such as Windows.  It is 
used only if:

• you are using the graphical system’s font to accept data, and

• you store your data using the OEM character set.  (For example, Vision 
files may contain OEM characters if they were created with a DOS 
runtime.)

0 The default.  No “ACU” prefix, process ID, time, or date is 
included in the trace output.

1 Adds “ACU” prefix to each line of the trace output.

2 Adds the process ID.

4 Adds the time.

8 Adds the microseconds; has an effect only if “4” is also 
specified.

16 Adds the date.

NONE 0

TIMESTAMP 12 -- The TIMESTAMP style is 4+8;  it outputs timestamps 
with microseconds.

APPSERVER 23 -- The APPSERVER style is 1+2+4+16; at the beginning 
of each line of the error file it outputs “ACU” followed by 
the date, the process ID, and the time without microseconds.



H-168  Configuration Variables
Set the variable TRANSLATE_TO_ANSI to “1” (on, true, yes) to turn 
on a character set translator.  Then, if you use the graphical system’s font 
for accepting data, the runtime will translate from one character set to the 
other for you.  Data that is accepted from the screen will be translated 
into the OEM character set before it is stored on disk.  Data stored in the 
OEM character set will be translated to the ANSI character set before it 
is displayed on screen.  This also applies to the printer, if you are using 
Windows spooling and the printer uses an ANSI font.

Setting TRANSLATE_TO_ANSI to the default, “0” (off, false, no), turns off 
the translation process.

This variable can be set from within a COBOL program with the SET verb.  
For example:

SET ENVIRONMENT “TRANSLATE_TO_ANSI” TO “YES”.  

Note on ANSI and OEM characters:

The ANSI and OEM representations of the following standard English 
characters are identical:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Abcdefghijklmnopqrstuvwxyz
0123456789 <space>
! " # $ % & ' ( ) * + , - . / : 
; < = > ? @ [ \ ] ^ _ ‘ { | } ~

Only the representations of accented vowels and other special or non-English 
characters are different.  

TREE_ROOT_SPACE 

This variable controls the number of screen columns between the left edge of 
the Tree-View control and the root level text.  TREE_ROOT_SPACE is used 
only with the LINES-AT-ROOT property.  If LINES-AT-ROOT is not 
specified, the root level item text will be displayed starting at the leftmost 
screen column inside the tree-view control.



Configuration variables  H-169
For example, if TREE_ROOT_SPACE is set to 5, there will be 5 screen 
columns before the text of each root level item.  The screen column where the 
root level line will be drawn is determined by this formula:

root level-line = (TREE_ROOT_SPACE - 1)/2 + 1

Taking off from the previous example, if TREE_ROOT_SPACE=5, the root 
level line will be drawn in screen column 3, counting from the left edge of the 
Tree-View control.

This has the effect of centering the vertical root level line in the space 
between the left edge of the Tree-View control and the last root level text.

The “+” or “-” button is displayed in the column to the right of this vertical 
line if the TREE_ROOT_SPACE is set to a value greater than or equal to 2.  
If the TREE_ROOT_SPACE is set to 1, the “+” or “-” button appears in the 
first screen column of the Tree-View control.  The default value of 
TREE_ROOT_SPACE is 2.

TREE_TAB_SIZE 

This configuration variable is one of two variables that affect the appearance 
of character-based Tree-View controls.  TREE_TAB_SIZE controls the 
number of screen columns between each level in the visual representation of 
the tree.  For example, if TREE_TAB_SIZE is set to 10, the horizontal 
distance between the first character of text in the first level and the first 
character of text in the succeeding levels of the tree will be 10 screen columns 
each.  The default value of TREE_TAB_SIZE is 3.

See TREE_ROOT_SPACE variable.

TRX_HOLDS_LOCKS 

This configuration variable allows you to control which locks are released at 
the end of a transaction.  If this variable is set to “1” (on, true, yes), then locks 
set using the READ statement that are not specifically released or replaced by 
extended transaction locks (for example, by a REWRITE) are held at the end 



H-170  Configuration Variables
of the transaction.  Locks are released during a transaction by any operation 
that would ordinarily release them, unless those locks were replaced by 
extended transaction locks.  

If TRX_HOLDS_LOCKS is set to the default, “0” (off, false, no), then locks 
are released at the end of a transaction, and the UNLOCK verb has no effect 
during a transaction.  

UPPER_LOWER_MAP 

This variable allows you to define which upper-case characters correspond to 
which lower-case characters, for characters outside of the standard ASCII 
character set (those whose underlying decimal values are 128 or larger).

You might find this useful if you are experiencing problems with the UPPER 
or LOWER option of the ACCEPT statement when non-standard characters 
are entered (such as an “e” with an accent above it).  The ACUCOBOL-GT 
runtime system relies heavily on C library routines to handle conversions 
between upper-case and lower-case characters.  On many machines, these 
routines do not handle characters outside of the standard ASCII character set 
correctly.

To specify corresponding characters, use UPPER_LOWER_MAP followed 
by pairs of characters, where the first character is the upper-case version and 
the second character is the lower-case version.  Separate the characters by a 
space.  Describe the characters either by typing them at the keyboard or by 
entering the decimal value that represents them.  

For example, on a standard IBM PC, the video card represents an upper-case 
“U” with an umlaut (Ü) as character 154, and the lower-case “u” with an 
umlaut (ü) as 129.  The upper-case “E” with an accent character is 144 (É) 
and the lower-case “e” with an accent is 130 (é).  To express this in the 
configuration file, you would add the following line:

UPPER_LOWER_MAP  154 129 144 130

This could be extended to include all of the character pairs available.  



Configuration variables  H-171
By default, Windows systems come with the UPPER_LOWER_MAP 
defined to be the character pairs available on the standard video cards 
produced by IBM.  Note that using “code pages” can change this, so the 
default may not work in all cases for these machines.  For other machines, the 
default is empty (which means that C library routines are used for 
conversion).  If you experience difficulties, UPPER_LOWER_MAP allows 
you to define a mapping that reflects your hardware configuration.

Only characters whose decimal values are 128 or greater may be mapped by 
this technique.

Note: This variable cannot be read with the ACCEPT FROM 
ENVIRONMENT statement. 

USE_CICS

Set this variable to indicate to the runtime that the program makes calls to the 
CICS interface.  When USE_CICS is set to “1” (on, true, yes), the runtime 
attempts to pass calls to functions that begin with the string “CICS” to the 
CICS interface.  If the named routine does not exist, the runtime uses the 
normal search sequence to find a matching function.  When USE_CICS is set 
to the default value of “0” (off, false, no), the runtime does not perform any 
special handling.

USE_EXECUTABLE_MEMORY

When set to “TRUE”, this variable enables a COBOL program compiled for 
Native Code (-n compiler option) to run on a Windows machine that has Data 
Execution Protection (DEP) enabled for all processes.  The default value is 
“FALSE”.



H-172  Configuration Variables
USE_EXTSM

Set this variable to indicate that the runtime should use an external sort 
module. When USE_EXTSM is set to “1” (on, true, yes), the runtime uses the 
linked-in EXTSM function to perform the SORT or MERGE operation. 
When USE_EXTSM is set to the default value of “0” (off, false, no), the 
runtime does not perform any special handling for SORT and MERGE verbs.

USE_LARGE_FILE_API

On UNIX systems, this variable allows you to turn on or off file system API 
support for very large files (greater than 2 gigabytes).  Support for large files 
is enabled when USE_LARGE_FILE_API is set to “1” (on, true, yes).  Some 
UNIX systems do not support files greater than 2 gigabytes in size.  In those 
situations, setting this variable to the default of  “0” (off, false, no) causes the 
runtime to use the standard 32-bit file system API.  This variable has no effect 
on Windows platforms. 

USE_LOCAL_SERVER

This variable is used by the runtime and Web Runtime to specify whether or 
not you want to run client applications on the same machine as an AcuServer 
file server.  When USE_LOCAL_SERVER is set to the default of “0” (off, 
false, no), AcuServer is bypassed when accessing local files that have remote 
name notation.  The remote name is stripped off and the file I/O operation is 
handled by the runtime or Web Runtime.  Set this variable to “1” (on true, 
yes) to use AcuServer to access local files that have remote name notation.  
This variable only works with AcuServer client runtimes and AcuServer 
client Web Runtimes.

USE_MPE_REDIRECTION

This configuration variable applies only when running in HP COBOL 
compatibility mode (with the “-Cp” compiler option) on machines that 
support the MPE environment.  With the use of the 
USE_MPE_REDIRECTION configuration variable, input for an ACCEPT 



Configuration variables  H-173
statement is read from the file specified by STDIN=, and output from a 
DISPLAY statement is written to the file specified by STDLIST= on the 
RUN command line.  To enable this behavior, set 
USE_MPE_REDIRECTION to “1” (on, true, yes).  The default value is “0” 
(off, false, no).  In addition, when this variable is set, no terminal manager 
escape sequences are written to the redirected output file.

USE_MQSERIES

Use this variable to indicate to the runtime that the program makes calls to 
WebSphere MQ (formerly MQSeries).  When USE_MQSERIES is set to “1” 
(on, true, yes), the runtime attempts to pass calls to functions that begin with 
the string “MQ” to the WebSphere MQ interface.  If the named routine does 
not exit, the runtime uses the normal search sequence to find a matching 
function.  When USE_MQSERIES is set to the default value of “0” (off, 
false, no), the runtime does not perform any special handling.

USE_SYSTEM_QSORT

This variable instructs the runtime SORT routine to use the system qsort() 
function, rather than the built-in sort function.  Set USE_SYSTEM_QSORT 
to “1” if you want to use the system qsort() function.  The default value is “0” 
and results in the use of the built-in sort function.  

Some systems have qsort() functions that perform better than the built-in 
function.  Consider experimenting with this variable’s settings to determine 
if this option yields better performance on your system.  Pay particular 
attention to the number of comparisons done during the sort, which can be 
seen in the runtime trace output.  

USE_WINSYSFILES

This variable specifies whether the runtime should recognize calls to modules 
with the extensions “.drv” and “.ocx” as well as those with the extension 
“dll”.  By default, it is set to “1” (on, true, yes).  



H-174  Configuration Variables
For backwards compatibility, you can turn this feature off by setting it to “0” 
(off, false, no).  Then, only calls to “.dll” files are supported.

V_BASENAME_TRANSLATION

This variable allows you to tell Vision whether to include full path 
information in the filename.  By default, only the base name is included (the 
filename with no extension and no path information).  Retaining the path 
information can be helpful in instances where Vision files of the same name 
are stored in different locations and you want to map one of the segments 
from one directory to a new location.  

When V_BASENAME_TRANSLATION is set to “0” (off, false, no), Vision 
uses the entire path of the file.  When it is set to “1” (on, true, yes), the default 
setting, Vision uses only the base name.  

The setting of V_BASENAME_TRANSLATION affects the behavior of 
three configuration variables that handle Vision filename translation:  
filename,  filename_DATA_FMT, and filename_INDEX_FMT.  The 
following illustrates how the configuration variables interact.   

For the file “/user/data/record1.vix”:

• If V_BASENAME_TRANSLATION is set to “on” (the default),  
filename, filename_INDEX_FMT, and filename_DATA_FMT use 
“RECORD1_VIX” as the base name.  

• If V_BASENAME_TRANSLATION is set to “off”,  filename, 
filename_INDEX_FMT, and filename_DATA_FMT use 
“_USER_DATA_RECORD1_VIX” as the base name (underscores 
replace instances of “/” and “.”).  

For a description of filename, filename_INDEX_FMT, and 
filename_DATA_FMT, see their respective entries in this appendix.



Configuration variables  H-175
 V_BUFFERS 

This variable sets the number of indexed block buffers to allocate.  These 
buffers are used to improve the performance of indexed files.  Each buffer is 
512 bytes plus some overhead.  Increasing the number of buffers can  
improve file performance.  Decreasing the number conserves memory.  The 
value of V_BUFFERS has no effect on versions of ACUCOBOL-GT that do 
not use Vision files.  The value of V_BUFFERS can range from zero (no 
buffering) to 2097152.  The default value is 64. 

V_BUFFER_DATA 

The setting of this variable determines whether or not Vision indexed file 
data blocks (as opposed to key blocks) will be held in the memory-resident 
disk buffers.  When it is set to “1” (on, true, yes), both data blocks and key 
blocks will use the buffers.  When set to “0” (off, false, no), only key blocks 
will use the buffers.  Setting this value to “1” will usually improve 
performance unless very few buffers are being used.  

Note: Holding data blocks in the buffers slightly increases the chances of 
losing data if a file opened for MASS_UPDATE is not closed properly 
(power failure, etc.).  The default setting of this variable is “1”.

V_BULK_MEMORY 

Vision allocates a memory buffer for each file opened for bulk addition.  The 
size of this buffer is controlled by the V_BULK_MEMORY configuration 
option.  The default size of this buffer is 1 MB.  

Note: The default size is fairly large because it is assumed that only a few 
files will be open for bulk addition on a system at any one time.  If this 
buffer cannot be allocated, the OPEN fails with a status indicating 
inadequate memory. 

To change the size of the allocated memory buffer to, for example, 500 KB, 
you would enter:



H-176  Configuration Variables
V_BULK_MEMORY = 500 KB

V_FORCE_OPEN

This variable allows you to force the runtime to open broken files that would 
normally cause an error 98.  This means you can write COBOL programs to 
recover these files in ways that are not available with vutil.  Set 
V_FORCE_OPEN to “1” (on, true, yes) to open the files.  The default is “0” 
(off, false, no).

Note: When this variable is set to “1”, make sure you do not also have the 
V_OPEN_STRICT variable set to “1” because the settings conflict.

V_INDEX_BLOCK_PERCENT

This configuration variable allows you to specify index pre-allocate and 
extension factors as a percentage of the factors applied to the data segment.  
In Vision 4 and 5 files, the index data contained in the index segments is often 
much smaller than the record data contained in the data segments. As a result, 
a large pre-allocate or extension factor typically allocates many more index 
blocks than are needed. This can be undesirable, especially if disk space is 
tight.

Setting V_INDEX_BLOCK_PERCENT to a number less than 100 causes 
fewer index blocks than data blocks to be created.  Setting the variable to a 
number greater than 100 causes more index blocks than data blocks to be 
created.  The valid range for V_INDEX_BLOCK_PERCENT is one through 
1000.  If the value specified is less than one, it will be promoted to one.  
V_INDEX_BLOCK_PERCENT is set to 100 by default (the default 
pre-allocate and extension factors for a file). 

For example, if a file has an extension factor of 10, setting 
V_INDEX_BLOCK_PERCENT to 50 causes 10 new data blocks and five 
new index blocks to be created the next time the file is extended.  Setting 
V_INDEX_BLOCK_PERCENT to 200 causes 10 new data blocks and 20 
new index blocks to be created the next time the file is extended.



Configuration variables  H-177
Note: The number of blocks pre-allocated will never be larger than that 
which can fit in the initial data and index segments.  If the pre-allocation 
value specified or calculated from V_INDEX_BLOCK_PERCENT is 
larger than the segment size, the pre-allocation amount is automatically 
reduced to the segment size.

V_INTERNAL_LOCKS

This configuration variable allows you to control whether the runtime 
enforces internal record or file locking.  When V_INTERNAL_LOCKS is set 
to “0” (off, false, no), Vision tracks locks but does not enforce internal record 
or file locking.  As a result, the runtime does not return a record or file locked 
condition for a record or file that was previously locked by the same run unit.  
When V_INTERNAL_LOCKS is set to the default of “1” (on, true, yes), 
internal record and file locking are enforced.  

Note: The Windows operating system enforces a single lock per process 
on a region of a file.  This means that if your program opens the same 
physical file as two different logical files and then tries to lock the same 
record in both “files”, the second lock will fail (with an error “99”) even if 
V_INTERNAL_LOCKS is set to “0”.  So V_INTERNAL_LOCKS 0 
practically affects programs running on UNIX operating systems only.

V_LOCK_METHOD 

This variable selects which locking method Vision will use to control 
simultaneous access to indexed files.  It affects only the Vision file system, 
and only files directly accessed by the runtime (it does not apply to files 
accessed via AcuServer).

The default setting of “0” (zero) causes Vision to lock the first byte of the file 
for every access to the file (both reads and updates).  This ensures that the 
process is not interfered with by another process.  This locking method is 
always used by Vision Version 2 files.



H-178  Configuration Variables
Setting this variable to “1” causes Vision to lock the first byte of the file for 
all operations except random READs or READ NEXTs.  These two 
operations proceed without the lock.  Instead they perform some additional 
reads of the file, to ensure that they get consistent results.  If they get 
inconsistent results, they are retried, this time locking the first byte as other 
operations do.  This locking method is available only for Vision Version 3, 4, 
and 5 files.

Note: This variable must have the same setting for all the runtimes 
accessing a file, whether they are reading or writing to it.  For example, if a 
runtime set with V_LOCK_METHOD=1 is reading from a file, any 
runtimes that are writing to that same file must also have 
V_LOCK_METHOD set to 1.

Lock method “1” can produce better performance on some machines.  These 
machines fall into two categories:

• Machines that take a long time to place a lock.

• Machines that do not queue lock requests, and are very busy.  In this 
case, some users typically get good performance, while others get poor 
performance.

Setting V_LOCK_METHOD to “1” might help improve performance with 
Vision Version 3, 4, or 5 files.  For example, setting V_LOCK_METHOD to 
“1” can be helpful on some Windows networks.  A peer-to-peer network of 
Windows 98 machines can exhibit problems reading Vision files when a 
process performs a tight read loop.  The problem usually surfaces as either an 
error 30,33 or an unexpected error 99.  This occurs because the runtime is 
unable to place a lock on the header of the file after 400 attempts over a 
20-second period.  For other networks, setting V_LOCK_METHOD to “1” 
can substantially reduce the number of lock requests made by the runtime and 
can often resolve these problems. 

To get statistics about header locks, select Trace Files level “3” in the 
debugger (for example, “TF 3”).  These statistics print on the runtime’s error 
output each time a Vision file is closed.  They cover the operations in that file 
since it was last opened.  You can also view these statistics (without the full 
trace) by adding “256” to the lock method chosen (for example, setting 
V_LOCK_METHOD to “257” selects method “1” and prints statistics).  



Configuration variables  H-179
Setting the V_LOCK_METHOD variable to “2” enables “asynchronous 
reads” of Vision files.  This option is intended to further reduce the number 
of file locks required to perform random READs and READ NEXTs.  

The advantage of the “2” setting is that it is less likely to require retrying a 
READ with a lock when a file is undergoing heavy modification.  With 
V_LOCK_METHOD=1, the READ is retried with a lock whenever it detects 
that the file has been updated in any way; with V_LOCK_METHOD=2, the 
READ is retried only when Vision encounters inconsistent data while 
traversing the index tree or reading the record data.  This leads to less locks 
and therefore greater performance for machines with slow locking functions.

V_LOCK_METHOD=2 works only for Vision 4 and 5 files.   A fundamental 
requirement  for the V_LOCK_METHOD=2 feature to work properly is that 
the operating system must provide atomic write operations.  That is, if one 
process is writing to a file, another process will always see the contents of the 
file as it exists either before or after the write operation, never the 
intermediate contents as the write operation runs.  There is evidence that 
Linux does not provide atomic writer operations and therefore it is not 
recommended to use this setting in a Linux environment.

If any process reading a particular file is using V_LOCK_METHOD=2, all 
other processes (runtimes) updating that file must be ACUCOBOL Version 
5.0.0 or greater.  This is because Version 5.0.0 contains changes that affect 
the way Vision updates the tree structure of its files.  These changes allow for 
greater consistency of the tree from the viewpoint of an asynchronous reader.  
This requirement is not enforced by Vision, however, so it is important for 
the users to pay careful attention to the versions of programs accessing their 
files to avoid receiving erroneous data.  Therefore, before enabling this 
option, make sure that all runtimes updating files on which asynchronous 
reads are to be performed (V_LOCK_METHOD=2) are Version 5.0.0 or 
later.  

As with V_LOCK_METHOD=1, adding 256 to the value of the 
V_LOCK_METHOD setting causes statistics about header locks to be 
printed to the runtime’s error output each time a Vision file is closed.  So, 
setting V_LOCK_METHOD=258 selects method 2 and turns on the header 
lock statistics.



H-180  Configuration Variables
V_MARK_READ_CORRUPT

This variable allows you to configure Vision so that it does not mark a file as 
broken if it encounters a corruption during a read or start operation.  The 
effect is that the user is allowed to retry the program.  This may be useful 
when the error is spurious (for example due to a network caching glitch).  If 
the user retries the program and once again receives a file-corrupt message, 
then the file should be rebuilt or recovered normally.  To enable this option, 
set the configuration option “V_MARK_READ_CORRUPT” to “0” (off, 
false, no).  The default setting is “1” (on, true, yes).

V_NO_ASYNC_CACHE_DATA

This configuration variable turns on the caching of data blocks for file reads.  
By default, Vision 4 and 5 do not cache data blocks in its internal cache (all 
V_BUFFERS are allocated only to index blocks).  This is required for the 
asynchronous reads feature (V_LOCK_METHOD=2) to work properly 
(each data record needs to be read/written in a single system call).

The default setting of this configuration variable is “0” (off).

If you are not using the asynchronous reads feature at all, you may turn on 
the caching of data blocks by setting the V_NO_ASYNC_CACHE_DATA 
configuration variable to “1”.  This may improve READ performance.

Caution: Be certain that you do not use this configuration variable with 
V_LOCK_METHOD=2 in any combination, as silent data corruption may 
result.



Configuration variables  H-181
V_OPEN_STRICT

By default, Vision allows OPEN INPUT on files that are marked as broken.  
This behavior is intended to make it easier to recover records from broken 
files.  If you want to receive an error status when opening a file marked as 
broken for INPUT, set V_OPEN_STRICT to “1” (on, true, yes).  The default 
setting of  “0” (off, false, no) allows open input on broken files. 

Note: When this variable is set to “1”, make sure you do not also have the 
V_FORCE_OPEN variable set to “1” because the settings conflict. 

V_READ_AHEAD 

Setting this configuration variable to “0” (off, false, no) turns off Vision’s 
read-ahead logic.  This may improve performance in cases where highly 
random file processing is being used.  The default value is “1” (on, true, yes).  

V_SEG_SIZE 

This configuration variable sets the maximum size of a Vision 4 or 5 file 
segment in bytes.  The default value is 2,147,482,112 (i.e., 2GB – 1536), 
except on older HP/UX machines where it is 1,073,740,288 (i.e., 1GB – 
1536) due to an operating system limitation.  You may not use larger values, 
but you can set smaller ones.  The default value is the maximum allowed.  
The value specified will automatically be rounded down to a multiple of the 
block size of the file being created.  For example, if the default V_SEG_SIZE 
value is used and a file with a block size of 1024 is created, the segment size 
for that file will be 2,147,481,600 (i.e., 2GB – 2048).

Using a smaller value for the segment size can help if you do not have 2GB 
free on any disk or for testing purposes.  The minimum value allowed is 
81,920 bytes.  To minimize the number of files created, you should set this 
value as high as possible.



H-182  Configuration Variables
The segment size of a file is set at file creation time and cannot be modified 
without recreating the file (i.e., using vutil –rebuild with a different 
V_SEG_SIZE setting).  vutil uses this variable, but since it does not use a 
configuration file, this variable must be set in the environment.  

V_STRIP_DOT_EXTENSION

The V_STRIP_DOT_EXTENSION variable determines whether or not 
Vision strips a trailing “dot extension” (“.dat”) from the logical name of a 
data file when generating file names for index and data segments (other than 
the first data segment).  Setting this variable to “0” prevents the extension 
from being removed.  For example, by default, the first index segment name 
for the logical file “file.one” is “file.vix” (which would conflict with the 
index segment of “file.two”).  When V_STRIP_DOT_EXTENSION is set to 
“0” (off, false, no), the index segment name is “file.one.vix”.  The default 
value for this variable is “1” (on, true, yes). 

Note: The setting of this variable affects the behavior of four configuration 
variables: filename,  filename_DATA_FMT, filename_INDEX_FMT, 
and filename_VERSION.  See their respective entries in this appendix for 
details.

V_VERSION 

This variable specifies the version number of new Vision files that are 
created.  The default value is “5”, which produces Vision files in the format 
of the current version (Version 5).  The value “4” produces Version 4 files.  
Version 5 and 4 files are generated in a dual file format, with data records 
filed in one segment and overhead key information filed in another.  The 
value “3” produces Version 3 files, in which data and keys are stored in a 
single file.  The value “2” produces Version 2 files.  Any value other than 
“2”,  “3”, or “4” produces Version 5 files.



Configuration variables  H-183
V23_GRAPHICS_CHARACTERS

Programs written for and executed with UNIX versions of the runtime up to 
and including Version 2.4.0 use hex values 1-8 to display line drawing 
characters on the screen. Runtimes after Version 2.4.0 use hex values offset 
by one (1). When older programs are used with runtimes released after 
Version 2.4.0, line drawing characters do not display as expected. To use the 
old values for line drawing characters, set this variable to “1” (on, true, yes).

If the variable is set to “0” (off, false, no) or is not set at all, the runtime will 
use the newer offset values. This variable works only for UNIX systems.

V30_MEASUREMENTS 

This configuration variable affects whether the runtime sizes certain controls 
according to the rules from Version 3.0 or from the current version.  If the 
current measurement code is causing your application to display incorrectly, 
then setting this variable to “1” (on, true, yes) will use Version 3.0 sizing 
rules instead.  When V30_MEASUREMENTS is set to the default “0” (off, 
false, no), then the current sizing rules are in effect.  

The related configuration variables, V31_MEASUREMENTS and 
V32_MEASUREMENTS have the same effect of setting the sizing rules to 
that of their respective versions. 

V31_FLOATING_POINT 

This configuration variable allows you to disable a correction that was made 
to the way floating-point numbers are displayed.  Because some loss of 
precision in the display of “USAGE DOUBLE” fields was possible in 
Version 3.1, an improvement was introduced.  Setting this variable to “1” 
(on, true, yes) means that the Version 3.1 method of displaying floating-point 
numbers is used.  When V31_FLOATING_POINT is set to the default “0” 
(off, false, no), then the correction is in effect. 



H-184  Configuration Variables
V42_FLOATING_POINT

This variable affects how floating-point arithmetic is performed.  Starting 
with Version 4.3, floating-point arithmetic was enhanced to more closely 
reflect the way that floating-point values are determined on the host system. 
This enhancement can affect the behavior of existing programs.  To revert to 
the computation method used prior to Version 4.3, set the value of 
V42_FLOATING_POINT to “1” (on, true, yes). By default, this variable is 
set to  “0” (off, false, no).

V43_PRINTER_CELLS

This variable affects whether the runtime sets the width of a printer cell 
according to the rules from Version 4.3 or from the current version.  Version 
4.3 (and prior versions) computed the width of a printer cell based on the 
average width of a selected printer font.  The width of a printer cell is 
currently computed in the same way that cells are computed for the screen, 
namely by the width of the “0” character.  For fixed-width fonts, such as 
Courier, these values are the same for all characters. For proportional fonts, 
such as Times New Roman, some characters might be wider than the “0” 
character.  

If the current computation is causing your application to print incorrectly, 
then setting this variable to “1” (on, true, yes) will use Version 4.3 rules 
instead.  When V43_PRINTER_CELLS is set to the default “0” (off, false, 
no), then the current rules are in effect.  

V52_BITMAP_BUTTONS

If some event in the system forces the focus away from a bitmap-based push 
button after a click has been started but not finished, this variable determines 
whether the click is voided.  If you do not want the click to be voided, set this 
variable to “1” (on, true, yes).  The default setting is “0” (off, false, no).



Configuration variables  H-185
V52_BITMAPS

This variable determines whether your application uses device-dependent or 
device-independent bitmaps for image processing. The following settings are 
recognized:
 

V52_GRID_GOTO

This configuration variable determines how the runtime behaves when a user 
clicks in a grid control cell containing the cursor.  Prior to Version 5.2, the 
runtime would not pass a MSG-GOTO-CELL-MOUSE event to the program 
when the user clicked in a grid cell containing the cursor. For programs 
compiled with Version 5.2, or later, this event is passed to the program.  
Setting V52_GRID_GOTO to “0” (off, false, no), maintains the pre-5.2 
behavior.  The default of “1” (on, true, yes) enables the new behavior, even 
for programs compiled with Versions 5.1 or earlier and run with Versions 5.2 
or later.  See Appendix C, “Changes Affecting Previous Versions,” for 
more details.

V60_LIST_VALUE

This variable allows you to select the algorithm used by the runtime to match 
a list box or combo box VALUE with an item in the control’s list. 

 1 Use Version 5.2 and earlier image-processing code 
(device-independent) for bitmap controls.

 0 Use Version 6.0 and later image-processing code 
(device-dependent) for bitmap controls.

-1 (default)  Dynamically apply the image-processing 
code based on the program’s object semantics.  For 
programs compiled for pre-Version 6.0 semantics, use 
the older imaging code.  For programs compiled for 
Version 6.0 or later semantics, use the newer code.



H-186  Configuration Variables
Prior to Version 6.0, setting the VALUE of a combo box or list box caused 
the first item in the list that started with the value of VALUE to be selected, 
regardless of case.  Beginning with Version 6.0, when a box’s VALUE is set, 
the list is searched for an exact, case sensitive match with the specified value.  
If the value is found, it is selected.  If an exact match is not found, the list is 
searched for an exact match regardless of case.  If a match is still not found, 
the list is searched again, this time for the first string that contains the passed 
VALUE as a leading substring, regardless of case.  V60_LIST_VALUE 
allows you to specify which algorithm to use.  It accepts the following values:

V62_MAX_WINDOW

Starting with Version 7.0, when the runtime reduces the size of a window to 
fit the screen, it includes any fractional lines and columns that fit, provided 
the COBOL program attempts to create a window with fractional lines and 
columns.  For example, if you create a 70.0 line window, but only a 66.4 line 
window fits on the display, the runtime detects that no fractional lines were 
attempted, and truncates the number of lines to 66.0.  However, if you 
attempt to create a 70.1 line window, the runtime recognizes the fractional 
measurement and displays a 66.4 line window.  To preserve the pre-7.0 
behavior, set the configuration variable V62_MAX_WINDOW to “1” (on, 
true, yes) and fractional lines and columns are always removed.  The default 
value is “0” (off, false, no).

1 directs the runtime to use the Version 6.0 search algorithm

0 directs the runtime to use the pre-6.0 search algorithm (substring 
search only)

-1 (default) directs the runtime to use the 6.0 search algorithm on 
objects compiled for Version 6.0 or later, and to otherwise use the 
old search algorithm.  This means that objects compiled for 
compatibility with versions prior to 6.0 that are run with a Version 
6.0 runtime will not exhibit the new behavior. 



Configuration variables  H-187
V71_ALIGNED_ENTRY_FIELD

Starting with Version 7.2, the wheel mouse can be used for scrolling in a 
center- or right-aligned entry field.  To preserve the pre-7.2 behavior, set the 
V71_ALIGNED_ENTRY_FIELD configuration variable to “1” (on, true, 
yes).  The default value of this variable is “0” (off, false, no).  

V71_FONT_WIDTHS

Windows has a function called GetTextMetrics that returns information 
about a font.  This data is used by the runtime to compute the “maximum 
character width” and “wide character width” of a font.  The “maximum 
width” amount is used to set a lower bound for how small an entry field can 
be (to ensure that at least one character is always visible).  The “wide width” 
is used to scale small entry fields and uppercase entry fields.  The “wide 
width” is computed by averaging the maximum and average character 
widths.  Experimentation has shown that the “maximum character width” 
data returned may be inaccurate, sometimes by very large margins.  

With the use of the V71_FONT_WIDTHS configuration variable, the 
runtime validates the data returned by the Windows function and corrects it 
when it is too large.  The change does not affect programs until they are 
recompiled with Version 7.2 or later, or the change is specifically enabled 
through the V71_FONT_WIDTHS configuration option.  The variable can 
have the following values: 

Please note the following issues regarding the use of this variable:

• The runtime's standard fonts are not affected by this configuration 
variable setting.  

-1 (default) The change is enabled for programs using Version 7.2 or later 
semantics.  In other words, the program has been compiled with Version 
7.2 or later and the command line does not contain a compiler option for 
pre-7.2 semantics.

0 The change is enabled.

1 The change is disabled and the Version 7.1 and earlier font measuring 
code is used.



H-188  Configuration Variables
• Entry fields defined by physical units (CELLS or PIXELS) and all 
screens created using the AcuBench Screen Designer will not change.  

• Entry fields will not grow larger due to this configuration variable 
setting.  The majority will stay the same size, and a few might get 
smaller.

• Fixed width fonts are not affected by this configuration variable setting.

WAIT_FOR_ALL_PIPES 

This configuration variable determines if the runtime calls the wait system 
call each time a “-P” file is closed.  When WAIT_FOR_ALL_PIPES is set to 
“0” (off, false, no), the runtime does not make this call until it is ready to 
close the last pipe it knows about.  Setting this configuration variable to the 
default “1” (on, true, yes) means that the runtime calls the wait system call 
when a “-P” file is closed. 

WAIT_FOR_FILE_ACCESS 

This configuration variable is designed for Windows 98 systems.  It gives 
you some control over situations where a user must wait for access to a 
shared file.  The runtime will try repeatedly to acquire the file lock, up to 400 
times.  If it has been unable to obtain a file lock after 400 tries, it will (by 
default) display a message box, asking if the user would like to continue 
waiting.  If the user clicks the “Yes” button, then the runtime will try again 
another 400 times (or the value of LOCKING_RETRIES).  If the user clicks 
the “No” button, then the runtime will return an error to the COBOL program 
(such as file error 30,33 (system error) or file error 99 (record locked).  

The WAIT_FOR_FILE_ACCESS variable lets you choose one of three 
behaviors: either the user will always see the message box and make a choice, 
or the program will always return an error code if it cannot acquire the lock, 
or the runtime will always behave as if the user answered “yes” to the 
message box.



Configuration variables  H-189
You can modify the text shown to the user in the message box via the TEXT 
configuration variable.  The message is number 28.  To include the filename 
in your message, insert “%s” at the place where you want the name of the file 
to appear.  You can introduce line breaks by including “\n” in the message.

Possible values for the WAIT_FOR_FILE_ACCESS variable are:

For programs running in background (“-b” runtime option), or programs with 
redirected input or output, the “Ask” option is treated the same as the “Yes” 
option.

WAIT_FOR_LOCKS

This determines how the runtime handles file status error 99 conditions on 
record reads.  This variable is not checked on record write operations.  It can 
have one of the following values:

Any other value (including the default value of “-1”) causes the runtime to 
wait for locked records only if you have compiled for RM/COBOL 
compatibility and the file does not have a Declarative.

0 “No” Do not display message box if lock is not acquired.  Send 
error to COBOL program.

1 “Ask” Show the message box and ask the user. (Default)

2 “Yes” Do not show the message box.  Assume that the user wants 
to wait for the file.  This ensures that the user eventually 
can access the file, but introduces a small risk of an 
infinite loop if the system’s lock table becomes corrupt.

0 Do not wait for locked records, return error 99.

1 Wait for the locked record if no Declarative is available for the file, 
otherwise return error 99.

2 Always wait for the locked record, never return error 99.



H-190  Configuration Variables
WARNINGS 

This configuration variable controls whether a warning message is printed 
and an error raised for the following conditions:

1. when non-numeric data is used in a context where numeric data is 
required

2. when there is a reference modification range error

By default, the runtime silently corrects reference modification range errors 
as follows:

• A start reference less than 1 is treated as 1.  For example, var(0:3) is 
treated as var(1:3).

• A length reference less than 0 is treated as 0.  Moving a zero-byte item is 
equivalent to moving spaces to the destination item.  A zero-byte 
destination is not affected by the move.   In a STRING statement, a 
length of zero for a string source is treated as 1, not 0.

• A start plus length reference that is past the end of the item is treated as 
meaning to the end of the item.  For example, if the var is a PIC X(5) 
item, var(4:23) is treated as var(4:2).

WARNINGS can take the following values:

0 (off, false, no)  No warning is printed.  

1 (on, true, yes)  A warning is printed.  This is the default.  

2 A warning is printed or sent to the error file.  If you are in the debugger, an 
automatic breakpoint occurs.

3 For a non-numeric error, a warning is printed, an intermediate error is 
generated that calls the installed error procedures, if any, and the runtime is 
halted.  For more information on error procedures, see 
CBL_ERROR_PROC in Appendix I.



Configuration variables  H-191
Note: The setting you select for WARNINGS applies to reference modifier 
range errors when the start plus length reference is past the end of the item.  
Reference modifiers that are equal to or less than zero are always silently 
corrected as described above.

WARNING_ON_RECURSIVE_ACCEPTS 

An event procedure may CALL another procedure which may contain 
ACCEPT statements, which, in turn, may contain embedded procedures.  
Although this is handled in the same fashion as nested PERFORMs and is 
perfectly legal, doing this poses the danger of going from one ACCEPT to 
another uncontrollably.  When the limit of 10 nested accepts is reached, the 
program starts overwriting memory.  It is possible to warn the user when the 
limit is reached by giving this configuration variable a zero (“0”) value.  This 
gives users the opportunity to continue at their own risk.  Giving 
WARNING_ON_RECURSIVE_ACCEPTS a non-zero value suppresses the 
warning.

To avoid overwriting memory, you may choose to re-code affected programs 
to terminate the ACCEPT and perform the CALL after you exit from the 
ACCEPT.  You may also use CHAIN or CALL PROGRAM instead of the 
regular CALL, if applicable.

WHITE_FILL 

This variable has meaning only on graphical systems such as Windows.  
Some graphical systems (such as Windows) use a “background brush” when 
they resize a window.  By default, the background brush color for 
ACUCOBOL-GT is black (“0”, off, false, no).  If you have arranged your 
default background to be white, you will see a black flash when you resize the 
window.  This does not affect the final appearance of the window, but is 
briefly noticeable while the window is being redrawn.  



H-192  Configuration Variables
Set WHITE_FILL to “1” (on, true, yes) to cause ACUCOBOL-GT’s 
background brush to be set to white instead of black.  Doing this will also 
cause the initial screen that ACUCOBOL-GT paints to be white instead of 
black.  

Note: This variable must be set in the configuration file to be effective.  
Modifying this variable with the SET ENVIRONMENT verb has no effect.  

WIN_ERROR_HANDLING 

This variable has meaning only on graphical systems such as Windows.  Use 
WIN_ERROR_HANDLING to control how hardware errors are handled.  

When this variable is set to the default of “1” (on, true, yes), certain errors are 
handled directly by the host environment, and do not automatically return a 
file error code.  For these errors, a dialog box is displayed that describes the 
error and offers “Cancel” and “Retry” buttons.  The user may correct the 
error and press “Retry”.  If the user presses “Cancel”, then your program 
receives the file error that it would have normally received.  

If you set WIN_ERROR_HANDLING to “0” (off, false, no), then the dialog 
box is not shown, and your program receives the error directly.  

WIN_F4_DROPS_COMBOBOX 

This configuration variable applies only to programs running under 
Windows.

If WIN_F4_DROPS_COMBOBOX is set to its default value of “1” (on, true, 
yes), then combo boxes use the standard Windows handling for the <F4> 
key.  Pressing <F4> while a combo box is active causes it to drop its 
drop-down list, and the COBOL program is not notified of an exception.  

When this variable is set to “0” (off, false, no), pressing <F4> with a combo 
box active causes the COBOL program to get the exception, but the combo 
box does not drop its drop-down list.



Configuration variables  H-193
It is not possible to get both behaviors at the same time.  

WIN_SPOOLER_PORT

This variable allows you to divert printer output to a file or port through the 
Windows print spooler.  Files created in this way are stored in binary 
encoding.  You may set the Windows print spooler with “-P SPOOLER” or 
“-Q <printername>” with or without the DIRECT option. However, if you 
omit the DIRECT option, the resulting file will include all the embedded 
control codes formatting the print job for the original target printer.  

By default, the value of WIN_SPOOLER_PORT is undefined.  Set 
WIN_SPOOLER_PORT to a valid filename or port.  This can be done in a 
configuration file, in the environment, or in the program.  For example:
WIN_SPOOLER_PORT  c:\mydir\myprint.prn

or
SET ENVIRONMENT "WIN_SPOOLER_PORT" TO "c:\mydir\myprint.prn".

This will affect all print jobs performed in the current instance of the runtime.  
Any graphics operations performed in the COBOL application, such as 
WINPRINT-BITMAP or WINPRINT-GRAPH-DRAW, are preserved in the 
file, and will print.  However, these options may result in a very large binary 
file.  

The resulting file can be copied directly to any printer that is compatible with 
the original target printer.  For example, the following command:
COPY /B c:\mydir\myprint.prn LPT1

will send the file to LPT1, while the “/B” option tells the COPY command 
that the file contains binary encoding.  

WIN3_CLIP_CONTROLS 

This option is specific to the Windows versions of ACUCOBOL-GT.  It 
affects the way in which updates to a window interact with graphical controls 
in a window.  Normally, Windows allows updates to a parent window to 



H-194  Configuration Variables
show through any controls in that window.  The controls are then updated to 
create the proper final appearance.  This is very fast, but it can cause controls 
to flash when the background is being updated.  When this option is set to “1” 
(on, true, yes), the controls are clipped from the update region in the parent 
window before the parent is repainted.  This causes the controls to remain 
relatively stable; however, screen repaints can be significantly slower, 
particularly when the runtime is creating and destroying controls.  The 
default setting for this option is “0” (off, false, no).  We recommend that you 
experiment with both settings to see which you prefer.  Note that this option 
is examined when a floating window is created.  Once a window is created, 
changes to this option have no effect on that window.  

Note: When turned on, this option causes the Windows 
WS_CLIPCHILDREN style to be used whenever floating windows are 
created.  

WIN3_EF_PADDED 

This configuration variable has meaning only on Windows systems.  Under 
Windows, unboxed entry fields include a small amount of extra space so the 
cursor can be seen when it is placed after the last character position.  This 
space can be a problem if you want to convert a program and align screen 
items.  When WIN3_EF_PADDED is set to “0” (off, false, no), this extra 
space does not appear in unboxed entry fields, and the entry field has only 
enough space for its character positions.  When this variable is set to the 
default “1” (on, true, yes), the extra space appears in unboxed entry fields.  

WIN3_GRID 

This option is specific to Windows.  When set to a non-zero value, it causes 
a fine grid to be drawn in each floating window.  The grid outlines the 
character cells in the windows.  This is intended as a debugging tool, to help 
you see how various controls line up against the window’s character cells.  It 
can also help you adjust the layout of a screen.  



Configuration variables  H-195
The grid is drawn using the color number that WIN3_GRID is set to (see the 
COLOR phrase for the exact values).  For example, setting WIN3_GRID to 
“4” will draw a cyan grid.  The grid is drawn with dashed lines.  Every fifth 
horizontal line and every tenth vertical line is drawn with a solid line.  

WIN32_3D 

This configuration variable causes the runtime to use the native 3-D features 
of Windows when drawing controls with the 3-D style.  This has an effect 
only with the 32-bit Windows runtime.  Turn this feature on by setting 
WIN32_3D to “1” (on, true, yes).  When set to the default of “0” (off, false, 
no), the runtime supplies its own 3-D effects.  The advantage of using the 
native Windows 3-D is that you get a slightly more modern appearance and a 
closer match to the appearance of other Windows programs.  The 
disadvantages are:

1. Windows always draws the border using the colors selected in the 
system’s control panel.  As a result, the effect looks right only when 
placed on a window whose background is the USER-GRAY color.  You 
can accomplish this easily by creating  STANDARD windows that 
specify BACKGROUND-LOW.  

2. The Windows 3-D effect is slightly larger than the runtime’s 3-D 
effect.  Windows draws a 1-pixel wide border around the control that is 
the same color as the USER-GRAY color.  This border is essentially 
invisible against a window with the USER-GRAY background.  
However, this border can overwrite anything else that may be 
positioned there.  The net effect is that you can’t place controls as close 
together as you can with the runtime’s 3-D.  

3. This 3-D style can be used only with the 32-bit runtime.  

The runtime adjusts for the physical differences between the two styles.  
Under either style, the position and usable size of the control’s interior should 
be same.  



H-196  Configuration Variables
Note: This configuration setting can effect the behavior of an application 
if it is using the latest Windows control styling, that is the  
WIN32_NATIVECTLS configuration variable set to 1, true, or on.  If 
WIN32_3D has not been set by the user then the default value will be 
overridden and set to false (0 or off).  If the user has set WIN32_3D then 
their settings will not be overridden and if it is set to true (1 or on) then 3D 
drawing will occur over the top.

WIN32_CTL_INPUT_STATUS

Setting this variable to the default of  “1” (on, true, yes) causes 
ACCEPT…FROM INPUT STATUS to return a non-zero status if data is 
available in a control.  If set to “0” (off, false, no), then the data in the control 
does not affect the status returned by ACCEPT…FROM INPUT STATUS.

This variable is only available in the Windows runtime and is not available to 
the thin client. 

WIN32_NATIVECTLS

This variable enables your application to use the Windows control style that 
is in use on the workstation, (the workstation's theme is set to Windows XP 
or Vista).  To enable these visual styles, your application must be running on 
an operating system that contains ComCtl32.dll version 6, which is included 
with Windows XP and Vista.

When set to "1" (on, true, yes), the application will display the current control 
styling available on that operating system, the XP look and feel on the 
Windows XP OS or the Vista look and feel on the Windows Vista OS.



Configuration variables  H-197
Note:  In addition to visual differences, some XP and Vista controls have 
different behaviors than their Windows classic counterpart (by Microsoft 
design).  The behavior differences if any, that our internal testing has 
identified are documented in Book 2, Chapter 5 under the applicable 
control.  Alternatively, you can find a consolidated list in the 8.1 ECN List 
(ECN 3734) located at the support section of the Micro Focus website.

The default setting is "0" (off, false, no) which prevents the runtime from 
using the  Windows control styling, and forces the “gray chiseled” or classic 
Windows look. 

Note: The configuration variable WIN32_3D can also change the look of 
controls in an ACUCOBOL-GT application.  It is generally recommended 
that you leave WIN32_3D set to its default behavior of off or false when 
setting  WIN32_NATIVECTLS to on or true.

Note: The Windows OS allows users to configure (accessibility options) 
whether or not keyboard shortcut names appear with underlines.  For 
example “ctrl+c” vs. “ctrl+c”. The WIN32_NATIVECTLS respects this 
setting and will display shortcut names accordingly.

WINDOW_INTENSITY

This configuration variable controls whether the color settings specified in 
the COLOR phrase of the DISPLAY WINDOW statement are used or 
ignored by the runtime.  When the value of this variable is set to “0” (off, 
false, no), the COLOR intensity settings in all DISPLAY WINDOW 
statements are ignored.  When the value of this variable is set to “1” (on, true, 
yes), which is the default, the runtime sets the windows intensity as specified.  



H-198  Configuration Variables
WINDOW_TITLE

This variable has meaning only on graphical systems such as Windows.  The 
ACUCOBOL-GT runtime system automatically sets the title of the 
application window to the base name of the initial object file.  For example, 
if you run a program called “notepad.cbx”, then the title on the main window 
will be set to “Notepad”.  The title is shown in lower-case except for the first 
letter, which is made upper case.  

You may provide an alternate title by setting WINDOW_TITLE to the 
desired text.  No translation of the text is done, so you should enter it using 
the desired case.

Note: Setting WINDOW_TITLE from within a program has no effect, 
because the WINDOW_TITLE setting determines only the window’s initial 
title.

To change the title from within your program, use a DISPLAY statement.  
The syntax is:

DISPLAY text UPON GLOBAL WINDOW TITLE

where text is an alphanumeric literal or variable.  Enter the title with the 
desired case.  The title is always shown in the ANSI font, so if you are using 
a different font, your text will be translated to ANSI.      

To ensure that the WINDOW_TITLE variable operates as expected, make 
sure that the first screen operation in your program is not DISPLAY 
WINDOW with a title (the DISPLAY WINDOW title is stored in the same 
place as the WINDOW_TITLE).  Instead, do some other screen operation 
first, such as “DISPLAY WINDOW, ERASE”.

WINPRINT_NAMES_ONLY

This variable allows you to generate a list of the names of printers installed 
on a Windows PC.  It does this by altering the behavior of some of the 
operations of the WIN$PRINTER library routine.  When 
WINPRINT_NAMES_ONLY is set to a value of “1” (on, true, yes), the 



Configuration variables  H-199
WIN$PRINTER operations that retrieve printer information return only the 
names of installed printers, rather than the real-time status of all available 
printer capabilities. 

This variable can be set in the configuration file or directly in your program 
with the following code:

SET ENVIRONMENT "WINPRINT-NAMES-ONLY" TO "1".

Note on WIN$PRINTER library routine:

When this variable is turned on, the following operations of the 
WIN$PRINTER library routine are affected:

WINPRINT-GET-PRINTER-INFO 
WINPRINT-GET-PRINTER-INFO-EX
WINPRINT-GET-CURRENT-INFO
WINPRINT-GET-CURRENT-INFO-EX 

Instead of returning detailed information about the capabilities of each printer 
(duplex, copying, etc.), the routine returns only the name of the printer.  This 
can provide a significant performance improvement, particularly with 
networked printers.

If you are using the default printer settings, set the 
WINPRINT_NAMES_ONLY variable to “1”, generate a list of printer names 
using WINPRINTER-GET-PRINTER-INFO-EX (see the WIN$PRINTER 
documentation in the Appendices of the ACUCOBOL-GT manual set, or 
refer to the sample program “prndemox.cbl”), and select the desired printer.  

If you want to modify the printer settings, such as the number of copies or the 
paper orientation, you should perform the steps described above, and then set 
WINPRINT_NAMES_ONLY back to the default of  “0” (off, false, no).  
You may then use WINPRINT-GET-PRINTER-INFO-EX to obtain detailed 
information about the capabilities of the selected printer.

For more information about Windows printing, refer to WIN$PRINTER in 
Appendix I.



H-200  Configuration Variables
WRAP 

The setting of this variable determines whether a DISPLAY statement will 
wrap around or be truncated when it extends past one line.  When it is set to 
“0” (off, false, no), DISPLAY statements will be truncated.  Also, any 
DISPLAY statement that references a column past the right edge of the 
current window will be ignored.  An ACCEPT statement that references a 
column past the right edge will be placed in the home position of the window.  
The default value for this setting is “1” (on, true, yes). 

XFD_DIRECTORY 

This variable tells the runtime system the name of the directory that contains 
the data dictionaries built by the ACUCOBOL-GT compiler.  The default 
value is the current directory.

For example, to tell the runtime that the dictionaries are stored in the 
directory “/usr/inventory/dictionaries” you would enter:

xfd_directory   /usr/inventory/dictionaries

See also the “-Fo” compile-time option, which tells the compiler where to put 
the dictionaries.  Unless you have moved the dictionaries, you should use the 
same value for XFD_DIRECTORY that you used with the “-Fo” option.  

If you have embedded an XFD file in an object library, the runtime will read 
that file instead of an XFD file that has the same name but is stored in the 
directory specified by XFD_DIRECTORY.  The exception to this is when the 
XFD_DIRECTORY configuration variable uses remote name notation.

Remote name notation is allowed for the XFD_DIRECTORY variable if 
your runtime is client-enabled.  See ACUCOBOL-GT User’s Guide sections 
5.2.1 and 5.2.2 for more information about client-enabled runtimes and 
remote name notation.



Configuration variables  H-201
XFD_PREFIX 

This variable defines a series of directories to search for XFD files, rather 
than indicating only one (as in XFD_DIRECTORY).  Each directory is 
searched in order until an XFD matching the name of the file is found.  Once 
a file with the same name is found, the runtime stops searching, even if other 
files of the same name are located in a subsequent directory in the search 
parameter.  Only named directories are searched, not subdirectories.

Note: If the XFD you are searching for does not match the file 
specifications (max-keys, max-rec-size, min-rec-size, and key parameters, 
for example) of the file you are trying to open, the runtime will not continue 
searching the directories listed in XFD_PREFIX until a correct XFD file is 
found.

The default for XFD_PREFIX is empty.  If this variable is set to any other 
value, the configuration variable XFD_DIRECTORY (in which you specify 
only one directory) is ignored.  You can specify a directory path that contains 
embedded spaces if you surround the path with quotation marks.  Separate 
entries using a semi-colon (;). For example:

XFD_PREFIX C:\ “Sales Data”;C:\Customers

You may specify up to 4096 characters for this variable. Remote name 
notation is allowed for the XFD_PREFIX variable if your runtime is 
client-enabled.  See ACUCOBOL-GT User’s Guide sections 5.2.1 and 5.2.2 
for more information about client-enabled runtimes and remote name 
notation.

XTERM_PROGRAM

Some users may want to debug with an xterm, but don't actually want to 
debug with the xterm executable because it doesn't have some of the abilities 
they need (such as displaying non-ASCII characters).  You can specify the 
executable used to show the debugger on UNIX by setting the 
XTERM_PROGRAM runtime configuration variable.



H-202  Configuration Variables
Its default value is “xterm”, but it can be set to any compatible program such 
as dtterm or kterm.  The runtime executes this program when it tries to create 
the program for background debugging.  Note that the runtime passes some 
arguments to this program, so this program must be able to execute with 
those arguments.  These arguments are:

-title “title of the window”

-Sccn

-display Xserver-name

The “-Sccn” option allows the program to be used as the input and output 
channel for the runtime, and is absolutely required.  Without this option, the 
program won't know to display data from the runtime.



I
 ACUCOBOL-GT Library 
Routines
Key Topics

General Syntax and Library List...........................................................  I-2



I-2  ACUCOBOL-GT Library Routines
I.1 General Syntax and Library List

ACUCOBOL-GT has a large set of library routines built into the runtime 
system.  These routines may be accessed via the CALL verb.  This appendix 
describes each of these routines in detail.  The routines are listed in 
alphabetical order.

In the following descriptions, the phrase “Numeric parameter” indicates a 
data item or literal that contains a numeric value in any of the following 
formats:

• Signed or unsigned COMP-4 (or internal equivalent such as COMP-X)

• Unsigned PIC 9 USAGE DISPLAY

• PIC X containing digits (other data ignored)

• Unsigned numeric literal

• Alphanumeric literal containing digits (other data ignored)

Any routine that has a GIVING phrase specified in its USAGE may omit that 
phrase.  If this is done, then the routine’s return value will be placed into the 
special register RETURN-CODE instead. 

ASCII2HEX

ASCII2HEX converts binary data to its hexadecimal format.  This routine is 
the inverse of the HEX2ASCII routine.

Usage
CALL "ASCII2HEX"
    USING ASCII-VALUE, HEX-VALUE

Parameters

ASCII-VALUE   PIC X(2)

The input data area containing the ASCII representation of a unit of data.



General Syntax and Library List  I-3
HEX-VALUE   PIC X(4)

The output data area to contain the hexadecimal value.

When you define the parameters, use the exact field sizes specified in the 
calling conventions above, otherwise the runtime may terminate abnormally.

ASCII2OCTAL

ASCII2OCTAL converts binary data to octal format.  This routine is the 
inverse of the OCTAL2ASCII routine.

Usage
CALL "ASCII2OCTAL"
    USING ASCII-VALUE, OCTAL-VALUE

Parameters

ASCII-VALUE   PIC X(2)

The input data area containing the ASCII representation of a unit of data.

OCTAL-VALUE   PIC X(8)

The output data area to contain the octal value.

When you define the parameters, use the exact field sizes specified in the 
calling conventions above, otherwise the runtime may terminate abnormally.

CBL_AND

CBL_AND performs a binary, bitwise “and” operation on a series of bytes.  

Usage
CALL "CBL_AND"
    USING SOURCE, DEST, LENGTH
    GIVING STATUS



I-4  ACUCOBOL-GT Library Routines
Parameters

SOURCE   PIC X(n)

The source bytes for the operation.

DEST   PIC X(n)

The destination bytes for the operation.

LENGTH   Numeric parameter (optional)

The number of bytes to combine.  If omitted, then CBL_AND uses the 
minimum of the size of SOURCE and the size of DEST.  

STATUS   Any numeric data item

The return status of the operation.  Returns “0” if successful, “1” if not.  This 
routine always succeeds, so STATUS always contains a zero. 

Description

For LENGTH bytes, each byte of SOURCE is combined with the 
corresponding byte of DEST.  The result is stored back into DEST.  The bytes 
are combined by performing an “and” operation between each bit of the 
bytes.  The “and” operation uses the following table to determine the result:

CBL_CLEAR_SCR

The CBL_CLEAR_SCR routine is one of a set of library routines that 
facilitate reading and writing attributes on the screen.  This routine clears the 
entire screen using a specified character and attribute.

And 0 1

0 0 0

1 0 1



General Syntax and Library List  I-5
Usage
CALL "CBL_CLEAR_SCR" 
    USING CHARACTER, ATTRIBUTE
    RETURNING STATUS-CODE

Parameters

CHARACTER   PIC X COMP-X.

On entry, contains the character to write

ATTRIBUTE   PIC X COMP-X.

On entry, contains the attribute to write

STATUS-CODE   Any numeric type

Returns “1”  if successful, or “0” if not successful

CBL_CLOSE_FILE

Usage
CAll "CBL_CLOSE_FILE" 
     USING HANDLE
     RETURNING STATUS-CODE

Parameters

HANDLE (pic x(4) comp-x)

This is the handle returned from CBL_OPEN_FILE or 
CBL_CREATE_FILE.  Once this routine is called, the file handle should not 
be used in future calls to READ or WRITE or CLOSE, or undefined results 
will occur, including the possibility of a MAV.



I-6  ACUCOBOL-GT Library Routines
Description

This routine is used for closing files and returns “0” on success and non-zero 
if an error occurred.  The error is a special encoding of the digit 9 with the 
ANSI-74 error code, or the runtime system error number if no ANSI-74 error 
code pertains to the error.  If RETURN-CODE is non-zero after calling this 
routine, you must process it as a file status, for example:
01  file-status-group.
    03  file-status     pic xx comp-x. 
    03  redefines file-status. 
        05  fs-byte-1  pic x. 
        05  fs-byte-2  pic x comp-x.
. . . 
call "CBL_CLOSE_FILE" using parameters 
if return-code not = 0 
    move return-code to file-status 
. . .

At this point fs-byte-1 contains “9” and fs-byte-2 contains the ANSI-74 error 
code, or a runtime system error number. 

Note: This routine is written in C and is called via the “direct” method, so 
it is not possible for the runtime to validate parameters for accuracy.  
Passing unexpected parameters will result in undefined behavior and 
possibly even a MAV.

CBL_COPY_FILE

CBL_COPY_FILE creates a copy of an existing file. 

Usage
CALL "CBL_COPY_FILE" 
    USING SOURCE-FILE, DEST-FILE,
    GIVING COPY-STATUS

Parameters

SOURCE-FILE   PIC X(n)



General Syntax and Library List  I-7
Contains the name of the file to copy.  The name can contain a path and is 
terminated by a space.  If no path is given, the current directory is assumed.  
Remote name notation is allowed for this parameter.  

DEST-FILE   PIC X(n)

Contains the destination file name.  The name can contain a path and is 
terminated by a space.  If no path is given, the current directory is assumed.  
Remote name notation is allowed for this parameter.  

COPY-STATUS   Any numeric type

Returns “0” if successful, or “1” if not. 

Description

CBL_COPY_FILE creates an exact duplicate of SOURCE-FILE in 
DEST-FILE.   

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

CBL_CREATE_DIR

CBL_CREATE_DIR creates a subdirectory. All of the directories in the 
given path, except the last, must already exist.

Usage
CALL "CBL_CREATE_DIR" 
    USING DIR-NAME,
    GIVING STATUS

Parameters

DIR-NAME   PIC X(n)



I-8  ACUCOBOL-GT Library Routines
Contains the name of the directory to be created.  This should be either a full 
path name or a name relative to the current directory.  You may use remote 
name syntax in combination with AcuServer to create a directory on a remote 
machine.  CBL_CREATE_DIR can make a directory only one level lower 
than an existing directory and cannot create more than one level at a time.

STATUS   Any numeric type

Returns “0” if successful, or “1” if not. 

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

CBL_CREATE_FILE

Usage
CAll "CBL_CREATE_FILE" 
     USING FILENAME, ACCESS-MODE, DENY-MODE, DEVICE, HANDLE
     RETURNING STATUS-CODE

Parameters

FILENAME (PIC X(n)) 

This is the name of a file to create.  If this file does not exist, the open fails 
and sets return-code to “1”.  The filename parameter can be blank-terminated 
or terminated with low-values.

ACCESS-MODE (pic x comp-x) 

This parameter is ignored (the file is always open for writing only), and the 
file is created anew.  This means that if the file exists, it is truncated to 0 
bytes, and if it does not exist, it is created.

DENY-MODE (pic x comp-x) 



General Syntax and Library List  I-9
Determines how other users can access the file: “0” to deny read and write 
access by other users, “1” to deny write access, “2” to deny read access, and 
“3” to allow all other users.  This flag has an effect only on Windows 
systems.

DEVICE (pic x comp-x) 

This is not used and must be “0”.

HANDLE (pic x(4) comp-x)

This is set to the handle of the file created.  Use this handle in the other 
functions.

Description

This routine is used for creating files and returns “0” on success and non-zero 
if an error occurred.  The error is a special encoding of the digit 9 with the 
ANSI-74 error code, or the runtime system error number if no ANSI-74 error 
code pertains to the error.  If RETURN-CODE is non-zero after calling this 
routine, you must process it as a file status, for example:
01  file-status-group.
    03  file-status     pic xx comp-x. 
    03  redefines file-status. 
        05  fs-byte-1  pic x. 
        05  fs-byte-2  pic x comp-x.
. . . 
call "CBL_CREATE_FILE" using parameters 
if return-code not = 0 
    move return-code to file-status 
. . .

At this point fs-byte-1 contains “9” and fs-byte-2 contains the ANSI-74 error 
code, or a runtime system error number. 

Note: This routine is written in C and is called via the “direct” method, so 
it is not possible for the runtime to validate parameters for accuracy.  
Passing unexpected parameters will result in undefined behavior and 
possibly even a MAV.



I-10  ACUCOBOL-GT Library Routines
CBL_DELETE_DIR

CBL_DELETE_DIR deletes the indicated directory.  The directory is deleted 
only if it is empty.  You may use remote name syntax in combination with 
AcuServer to delete a directory on a remote machine.  

Usage
CALL "CBL_DELETE_DIR" 
    USING PATH-NAME,
    GIVING STATUS

Parameters

PATH-NAME   PIC X(n)

Contains the relative or absolute path name, terminated by space or NULL.

STATUS   Any numeric type

Returns “0” if successful, or “1” if not. 

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

CBL_DELETE_FILE

CBL_DELETE_FILE deletes the indicated file. 

Usage
CALL "CBL_DELETE_FILE" 
    USING FILE-NAME,
    GIVING STATUS

Parameters

FILE-NAME   PIC X(n)



General Syntax and Library List  I-11
Contains the name of the file to be deleted.  This should either be a full path 
name or a name relative to the current directory.

STATUS   Any numeric data type 

Returns “0” if successful, or “1” if not. 

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

CBL_EQ

CBL_EQ performs a binary, bitwise “equals” operation on a series of bytes.  

Usage
CALL "CBL_EQ"
    USING SOURCE, DEST, LENGTH
    GIVING STATUS

Parameters

SOURCE   PIC X(n)

The source bytes for the operation.

DEST   PIC X(n)

The destination bytes for the operation.

LENGTH   Numeric parameter (optional)

The number of bytes to combine.  If omitted, then CBL_EQ uses the 
minimum of the size of SOURCE and the size of DEST.  

STATUS   Any numeric data item



I-12  ACUCOBOL-GT Library Routines
The return status of the operation.  Returns “0” if successful, “1” if not.  This 
routine always succeeds, so STATUS always contains a zero.  

Description

For LENGTH bytes, each byte of SOURCE is combined with the 
corresponding byte of DEST.  The result is stored back into DEST.  The 
runtime combines the bytes by performing an “equals” operation between 
each bit of the bytes.  The “equals” operation uses the following table to 
determine the result:

CBL_ERROR_PROC

CBL_ERROR_PROC installs or removes error procedures to be called 
automatically if and when the current run unit generates any of certain 
runtime errors.  This implementation calls error procedures only when a run 
unit generates what is called an intermediate runtime error.  The list of 
intermediate runtime errors includes:

• “File error #”

• “File error # on #”

• “Illegal MERGE”

• “Illegal RELEASE”

• “Illegal RETURN”

• “Illegal SORT”

• “Index out of bounds”

• “INSPECT REPLACING size mismatch”

• “Invalid or missing parameter”

Eq 0  1

0 1 0

1 0 1



General Syntax and Library List  I-13
• “Non-numeric data in numeric field”

• “Passed USING item smaller than corresponding LINKAGE item”

• “Program missing or inaccessible”

• “Reference modifier range error”

• “Transaction error #”

• “Transaction error # on #”

• “Use of a LINKAGE data item not passed by the caller”

The “#” signs are replaced at run time by error names, numbers, or other 
information.

Usage 
CALL "CBL_ERROR_PROC" 
    USING INSTALL-FLAG PROGRAM-NAME
    [RETURNING STATUS-CODE] 

Parameters

INSTALL-FLAG   Numeric data item or literal 

Zero if the error procedure is to be installed; nonzero if it is to be removed.  

PROGRAM-NAME   Alphanumeric data item or literal 

Name of the error procedure to be installed or removed.  

STATUS-CODE   Any numeric data item 

Always zero.  (It is returned only for Micro Focus compatibility.) 

Description 

A run unit can dynamically build a single queue of one or more error 
procedures to be called if and when the run unit generates any of certain 
runtime errors.  Not all runtime errors are treated in this way.  Some, such as 



I-14  ACUCOBOL-GT Library Routines
memory allocation errors, are so severe that the runtime cannot continue and 
must be aborted.  Others, such as size errors, are handled by ordinary 
COBOL code.  Runtime errors which call error procedures are called 
intermediate errors.  

When an error procedure is installed, it is placed at the beginning of the queue 
(or moved to the beginning if it is already in the queue).  

When an intermediate runtime error occurs, and there are error or exit 
procedures in the queues, the error procedures in the queue are called, one by 
one, as though by a CALL statement, in sequential order (the opposite of 
installation order), with a single PIC X(325) argument containing the text of 
an appropriate error message.  This error message may contain newline 
characters and is null-terminated like a C string.  Each procedure is removed 
from the queue just before it is called.  

Note: You can cause the runtime to also include the program name and the 
address of the program failure in the string passed to the error procedure by 
setting the INCLUDE_PGM_INFO runtime configuration variable.  See 
the entry for INCLUDE_PGM_INFO in Appendix H. 

An error procedure must end with an EXIT PROGRAM RETURNING 
statement which contains an appropriate return value.  If the return value is 
zero, then subsequent error procedures are removed from the queue and are 
not called.  

After all error procedures are called, the exit procedures, if any, are called.  
Then the run unit is terminated.  

If an error procedure generates an intermediate runtime error, it is terminated 
and the remaining error procedures, if any, are called.  Then the exit 
procedures, if any, are called, and the run unit is terminated.  

If an intermediate runtime error occurs when there are no error or exit 
procedures in the queues, it is handled in the usual way.  In some cases, the 
error is ignored.  In other cases, the runtime issues an error message and 
terminates the entire application, not just the run unit which generated the 
error.  



General Syntax and Library List  I-15
Note: An error procedure may install or remove exit procedures and other 
error procedures.  This practice is not generally recommended, however, 
because it may lead to hard-to-predict behaviors resulting in part from the 
runtime modifications employed in the handling of error and exit 
procedures.  

Error procedure names are case-insensitive and must not contain spaces.  

To prevent the program from entering an infinite loop or non-terminating 
condition, the total number of error and exit procedures installed or called is 
limited to the value of the configuration parameter 
MAX_ERROR_AND_EXIT_PROCS.  The default value is 64.  Any attempt 
to exceed this limit aborts the application.  

CBL_EXIT_PROC

CBL_EXIT_PROC installs, removes, and queries exit procedures to be 
called automatically when the current run unit terminates normally.  

In some cases exit procedures can be called when a run unit generates an 
error.  See the CBL_ERROR_PROC Routine for error-caused terminations 
of the run unit.  

Usage
CALL "CBL_EXIT_PROC" 
    USING PRIORITY-NUMBER PROGRAM-NAME
    [RETURNING STATUS-CODE]

Parameters

PRIORITY-NUMBER   Numeric data item or literal

Priority number of the queue or the special value “254” or “255”.

PROGRAM-NAME   Alphanumeric data item or literal

Name of the exit procedure to be installed, removed, or queried.



I-16  ACUCOBOL-GT Library Routines
STATUS-CODE   Any numeric data item

Queue number when the exit procedure is queried.

Description

A run unit can dynamically build one or more queues of exit procedures to be 
called if and when the run unit terminates normally or when an error 
procedure terminates normally.  

Exit procedures are kept in queues, one queue for each priority level.  Each 
run unit has its own set of queues, with priorities ranging from 0 to 127, 
inclusive.  The priority queue for an exit procedure is determined when the 
procedure is installed.  Because it is possible for an error or exit procedure to 
install or remove error or exit procedures, the priorities and queues can 
change dynamically.  The queues and priorities that apply in the end are those 
in effect at the time when the runtime chooses an error or exit procedure to 
call.

When the program calls CBL_EXIT_PROC, if the priority-number is in the 
range from 0 to 127, inclusive, then:

1. The exit procedure is removed from the current run unit, if present; 

2. The exit procedure is installed at the beginning of the corresponding 
queue for the current run unit.

If the priority-number is “254”, the exit procedure is simply removed from 
the current run unit.

If the priority-number is “255”, the priority number of the queue in the 
current run unit containing the exit procedure is returned in status-code (or 
RETURN-CODE, if no RETURNING phrase is present).   
(RETURN-CODE is described in Book 3, ACUCOBOL-GT Reference 
Manual, section 6.6, under CALL Statement, General Rule 21.)  If it is not 
in any queue in the current run unit, the value “255” is returned.

The installed exit procedures for the current run unit are called when the 
current run unit terminates by executing a STOP RUN, CALL PROGRAM 
or CHAIN statement.



General Syntax and Library List  I-17
An exit procedure cannot start a new run unit by executing a CALL RUN or 
CHAIN statement.  If it tries to do so, the runtime displays an error message 
and stops without calling any other procedures.

An exit procedure must not call STOP RUN.  Its effects are undefined.  

Exit procedures in queues with lower priority numbers are called before those 
in queues with higher priority numbers.  Exit procedures in the same queue 
are called in sequential order (the opposite of installation order).  Each exit 
procedure is removed from its queue just before it is called.

An exit procedure may install, remove, or query other exit procedures.

An exit procedure is called as though by a CALL statement and must return 
by an EXIT PROGRAM statement.

Exit procedure names are case-insensitive and must not contain spaces.

No arguments are passed to an exit procedure, and an exit procedure may not 
return a value.

To prevent the program from entering an infinite loop or non-terminating 
condition, the total number of exit procedures installed or called is limited to 
the value of the configuration parameter 
MAX_ERROR_AND_EXIT-PROCS.  The default value is 64.  Any attempt 
to exceed this limit aborts the application.

CBL_FLUSH_FILE

Usage
CAll "CBL_FLUSH_FILE" 
     USING HANDLE
     RETURNING STATUS-CODE

Parameters

HANDLE (pic x(4) comp-x)



I-18  ACUCOBOL-GT Library Routines
This is the handle returned from CBL_OPEN_FILE or 
CBL_CREATE_FILE.  Any buffers that have not been flushed to disk will 
be flushed.

Description

This routine is used for flushing files and returns “0” on success and non-zero 
if an error occurred.  The error is a special encoding of the digit 9 with the 
ANSI-74 error code, or the runtime system error number if no ANSI-74 error 
code pertains to the error.  If RETURN-CODE is non-zero after calling this 
routine, you must process it as a file status, for example:
01  file-status-group.
    03  file-status     pic xx comp-x. 
    03  redefines file-status. 
        05  fs-byte-1  pic x. 
        05  fs-byte-2  pic x comp-x.
. . . 
call "CBL_FLUSH_FILE" using parameters 
if return-code not = 0 
    move return-code to file-status 
. . .

At this point fs-byte-1 contains “9” and fs-byte-2 contains the ANSI-74 error 
code, or a runtime system error number. 

Note: This routine is written in C and is called via the “direct” method, so 
it is not possible for the runtime to validate parameters for accuracy.  
Passing unexpected parameters will result in undefined behavior and 
possibly even a MAV.

CBL_GET_CSR_POS

The CBL_GET_CSR_POS routine is one of a set of library routines that 
facilitate reading and writing attributes on the screen.  This routine returns the 
cursor position.                                      

Usage
CALL "CBL_GET_CSR_POS" 
    USING SCREEN-POSITION



General Syntax and Library List  I-19
    RETURNING STATUS-CODE

Parameters

SCREEN-POSITION   Group item 

Group item is defined as follows: 
01  SCREEN-POSITION.
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.

On exit, contains the screen position of the cursor.  The top left corner is row 
0, column 0.

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful

Description

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to determine the position of the cursor on the screen.  

Note: This routine is not supported with Thin Client.

CBL_GET_EXIT_INFO

CBL_GET_EXIT_INFO provides an exit procedure with certain information 
about the termination that invoked it.  It is included mainly for compatibility 
with other COBOL implementations.

Usage
CALL "CBL_GET_EXIT_INFO" 
    USING EXIT-INFO 
    [RETURNING STATUS-CODE]



I-20  ACUCOBOL-GT Library Routines
Parameters

EXIT-INFO   Group item.

Group item containing four elementary data items laid out as follows:
exit-info.
   p-block-size   PIC X(4) COMP-N VALUE 16.
   p-return-code  PIC X(4) COMP-N.
   p-rts-error    PIC X(4) COMP-N.
   p-exit-flags   PIC X(4) COMP-N.

STATUS-CODE   Any numeric data item.

Return status of the operation.

Description

Termination information is returned in the last three items of exit-info and in 
status-code. The items returned and their values are as follows:

p-return-code most recent value of RETURN-CODE

p-rts-error error number of the most recent runtime error, or zero 
if none

p-exit-flags a 32-bit word with flag bits as follows (bit 0 is the least 
significant bit):

bit meaning of “1” in this bit

0 always zero

1 always zero

2 terminated by STOP RUN, CALL 
PROGRAM, or CHAIN

3 always zero

4 terminated by operator

5 always zero

6-31 reserved; always zero



General Syntax and Library List  I-21
status-code the status of the operation as follows:

CBL_GET_SCR_SIZE

The CBL_GET_SCR_SIZE routine is one of a set of library routines that 
facilitate reading and writing attributes on the screen.  This routine returns the 
screen size.  

Usage
CALL "CBL_GET_SCR_SIZE" 
    USING DEPTH, WIDTH 
    RETURNING STATUS-CODE

Parameters

DEPTH   PIC X COMP-X.

On exit, contains the number of lines in the screen

WIDTH   PIC X COMP-X.

On exit, contains the number of columns in the screen

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful

Description

This library routine uses the DEPTH and WIDTH parameters to return 
information about the size of the screen.  

Note: This routine is not supported with Thin Client.

Value meaning

0 success

1006 called from outside exit 
procedure

1009 value of p-block-size is not 16



I-22  ACUCOBOL-GT Library Routines
CBL_NOT

CBL_NOT performs a binary, bitwise “not” operation on a series of bytes.  

Usage
CALL "CBL_NOT"
    USING DEST, LENGTH
    GIVING STATUS

Parameters

DEST   PIC X(n)

Data area containing the bytes for the operation.  

LENGTH   Numeric parameter (optional)

Describes the number of bytes to combine.  If omitted, then CBL_NOT uses 
the size of DEST.  

STATUS   Any numeric data item

Contains the return status of the operation.  Returns zero if successful, 1 if 
not.  This routine always succeeds, so STATUS always contains a zero.  

Description

For LENGTH bytes, each byte of DEST is negated in a bitwise fashion.  For 
each bit of each byte, the result is the opposite bit value.  The “not” operation 
uses the following table to determine the result:

Not     

0 1

1 0



General Syntax and Library List  I-23
CBL_OPEN_FILE

Usage
CAll "CBL_OPEN_FILE" 
     USING FILENAME, ACCESS-MODE, DENY-MODE, DEVICE, HANDLE
     RETURNING STATUS-CODE

Parameters

FILENAME (PIC X(n)) 

This is the name of a file to open.  If this file does not exist, the open fails and 
sets return-code to “1”.  The filename parameter can be blank-terminated or 
terminated with low-values.

ACCESS-MODE (pic x comp-x) 

This is the mode in which to open the file: “1” for Input, “2” for Output, “3” 
for IO.  Any other value will result in the open failing, with a return-code of 
“1”.

DENY-MODE (pic x comp-x) 

Determines how other users can access the file: “0” to deny read and write 
access by other users, “1” to deny write access, “2” to deny read access, and 
“3” to allow all other users.  This flag has an effect only on Windows 
systems.

DEVICE (pic x comp-x) 

This is not used and must be “0”.

HANDLE (pic x(4) comp-x)

This is set to the handle of the file opened.  Use this handle in the other 
functions.



I-24  ACUCOBOL-GT Library Routines
Description

This routine is used for opening files for reading and/or writing and returns 
“0” on success and non-zero if an error occurred.  The error is a special 
encoding of the digit 9 with the ANSI-74 error code, or the runtime system 
error number if no ANSI-74 error code pertains to the error.  If 
RETURN-CODE is non-zero after calling this routine, you must process it as 
a file status, for example:
01  file-status-group.
    03  file-status     pic xx comp-x. 
    03  redefines file-status. 
        05  fs-byte-1  pic x. 
        05  fs-byte-2  pic x comp-x.
. . . 
call "CBL_xxx_FILE" using parameters 
if return-code not = 0 
    move return-code to file-status 
. . .

At this point fs-byte-1 contains “9” and fs-byte-2 contains the ANSI-74 error 
code, or a runtime system error number. 

Note: This routine is written in C and is called via the “direct” method, so 
it is not possible for the runtime to validate parameters for accuracy.  
Passing unexpected parameters will result in undefined behavior and 
possibly even a MAV.

CBL_OR

CBL_OR performs a binary, bitwise “or” operation on a series of bytes.  

Usage
CALL "CBL_OR"
    USING SOURCE, DEST, LENGTH
    GIVING STATUS

Parameters

SOURCE   PIC X(n)



General Syntax and Library List  I-25
The source bytes for the operation.

DEST   PIC X(n)

The destination bytes for the operation.

LENGTH   Numeric parameter (optional)

The number of bytes to combine.  If omitted, then CBL_OR uses the 
minimum of the size of SOURCE and the size of DEST.  

STATUS   Any numeric data item

The return status of the operation.  Returns “0” if successful, “1” if not.  This 
routine always succeeds, so STATUS always contains a zero.  

Description

For LENGTH bytes, each byte of SOURCE is combined with the 
corresponding byte of DEST.  The result is stored back into DEST.  The 
runtime combines the bytes by performing an “or” operation between each 
bit of the bytes.  The “or” operation uses the following table to determine the 
result:

CBL_READ_FILE

Usage
CAll "CBL_READ_FILE" 
     USING HANDLE, OFFSET, COUNT, FLAGS, BUF
     RETURNING STATUS-CODE

Parameters

HANDLE (pic x(4) comp-x)

Or 0 1

0 0 1

1 1 1



I-26  ACUCOBOL-GT Library Routines
This is the handle returned from CBL_OPEN_FILE.

OFFSET (pic x(8) comp-x)

This is the offset from which to read from the file, based at “0” to read from 
the first byte.  Note that this is a 64-bit value, allowing access to files larger 
than 4GB.  Note that if your OS or File System does not allow such files, 
setting this to a value larger than your OS or file system can support will 
cause undefined results.

COUNT (pic x(4) comp-x)  

This is the number of bytes to read.  This should not be set to a value larger 
than the size of the buffer (described below), or you will get undefined 
results, including a potential MAV.

FLAGS (pic x comp-x)  

One special value is recognized.  If this parameter is “128”, the size of the file 
returned is the offset parameter, and the file is not read.  The only other 
allowable value is “0”.

BUF (pic x(n))

This is the buffer that will store the values read from the file.  This buffer 
should be at least count bytes long.

Description

This routine is used for reading files and returns “0” on success and non-zero 
if an error occurred.  The error is a special encoding of the digit 9 with the 
ANSI-74 error code, or the runtime system error number if no ANSI-74 error 
code pertains to the error.  If RETURN-CODE is non-zero after calling this 
routine, you must process it as a file status, for example:
01  file-status-group.
    03  file-status     pic xx comp-x. 
    03  redefines file-status. 
        05  fs-byte-1  pic x. 
        05  fs-byte-2  pic x comp-x.
. . . 
call "CBL_READ_FILE" using parameters 



General Syntax and Library List  I-27
if return-code not = 0 
    move return-code to file-status 
. . .

At this point fs-byte-1 contains “9” and fs-byte-2 contains the ANSI-74 error 
code or a runtime system error number. 

Note: This routine is written in C and is called via the “direct” method, so 
it is not possible for the runtime to validate parameters for accuracy.  
Passing unexpected parameters will result in undefined behavior and 
possibly even a MAV.

CBL_READ_SCR_ATTRS

The CBL_READ_SCR_ATTRS routine is one of a set of library routines that 
facilitate reading and writing attributes on the screen.  This routine reads a 
string of attributes from the screen.

Usage
CALL "CBL_READ_SCR_ATTRS" 
    USING SCREEN-POSITION, ATTRIBUTE-BUFFER, STRING-LENGTH 
    RETURNING STATUS-CODE

Parameters

SCREEN-POSITION   Group item 

Group item is defined as follows: 
01  SCREEN-POSITION.
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.

On entry, the screen position at which to start reading (the top left corner is 
row 0, column 0)

ATTRIBUTE-BUFFER   PIC X(N).



I-28  ACUCOBOL-GT Library Routines
On exit, this data item contains the attributes read from the screen.  It must be 
at least the length specified by STRING-LENGTH.  Positions in the data item 
beyond that length are unchanged.

STRING-LENGTH   PIC XX COMP-X.

On entry, contains the length of the string to read 

On exit, contains the length of the string read when the end of the screen is 
reached

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful

Description

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to determine the location to start the read operation.  
STRING-LENGTH specifies the length of the string of attributes to be read, 
starting from SCREEN-POSITION.  When the routine exits, 
ATTRIBUTE-BUFFER contains the string of attributes read.  

Note: This routine is not supported with Thin Client.

CBL_READ_SCR_CHARS 

The CBL_READ_SCR_CHARS routine is one of a set of library routines 
that facilitate reading and writing attributes on the screen.  This routine reads 
a string of characters from the screen.

Usage
CALL "CBL_READ_SCR_CHARS" 
    USING SCREEN-POSITION, CHARACTER-BUFFER, STRING-LENGTH 
    RETURNING STATUS-CODE



General Syntax and Library List  I-29
Parameters

SCREEN-POSITION   Group item 

Group item is defined as follows: 
01  SCREEN-POSITION.
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.

On entry, contains the screen position at which to start reading (the top left 
corner is row 0, column 0)

CHARACTER-BUFFER   PIC X(N).

On exit, this data item contains the characters read from the screen.   It must 
be at least the length specified by STRING-LENGTH.  Positions in the data 
item beyond that length are unchanged.

STRING-LENGTH   PIC XX COMP-X.

On entry, contains the length of the string to read 

On exit, contains the length of the string read when the end of the screen is 
reached

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful

Description

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to determine the location to start the read operation.  
STRING-LENGTH specifies the length of the string of characters to be read, 
starting from SCREEN-POSITION.  When the routine exits, 
CHARACTER-BUFFER contains the string of characters read.  

Note: This routine is not supported with Thin Client.



I-30  ACUCOBOL-GT Library Routines
CBL_READ_SCR_CHATTRS 

The CBL_READ_SCR_CHATTRS routine is one of a set of library routines 
that facilitate reading and writing attributes on the screen.  This routine reads 
a string of characters and their corresponding attributes from the screen.

Usage
CALL "CBL_READ_SCR_CHATTRS" 
    USING SCREEN-POSITION, CHARACTER-BUFFER, ATTRIBUTE-BUFFER,
        STRING-LENGTH 
    RETURNING STATUS-CODE

Parameters

SCREEN-POSITION   Group item 

Group item is defined as follows: 
01  SCREEN-POSITION.
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.

On entry, contains the screen position at which to start reading (the top left 
corner is row 0, column 0)

CHARACTER-BUFFER   PIC X(N).

On exit, this data item contains the characters read from the screen.  It must 
be at least the length specified by STRING-LENGTH.  Positions in it beyond 
that length are unchanged.

ATTRIBUTE-BUFFER   PIC X(N).

On exit, this data item contains the attributes read from the screen.  It must be 
at least the length specified by STRING-LENGTH.  Positions in the data item 
beyond that length are unchanged.

STRING-LENGTH   PIC XX COMP-X.

On entry, contains the length of the string to read 



General Syntax and Library List  I-31
On exit, contains the length of the string read when the end of the screen is 
reached

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful

Description

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to determine the location to start the read operation.  
STRING-LENGTH specifies the length of the string to be read, starting from 
SCREEN-POSITION.  When the routine exits, CHARACTER-BUFFER 
contains the string of characters read, and ATTRIBUTE-BUFFER contains 
those characters’ attributes.  

Note: This routine is not supported with Thin Client.

CBL_SET_CSR_POS

The CBL_SET_CSR_POS routine is one of a set of library routines that 
facilitate reading and writing attributes on the screen.  This routine moves the 
cursor. 

Usage
CALL "CBL_SET_CSR_POS" 
    USING SCREEN-POSITION
    RETURNING STATUS-CODE

Parameters

SCREEN-POSITION   Group item 

Group item is defined as follows: 
01  SCREEN-POSITION.
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.



I-32  ACUCOBOL-GT Library Routines
On entry, contains the screen position at which to put the cursor (the top left 
corner is row 0, column 0)

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful

Description

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to move the cursor to a particular location on the screen.  

Note: This routine is not supported with Thin Client.

CBL_SUBSYSTEM

This routine is used to define a COBOL subsystem, which allows cancelling 
of all COBOL programs in the subsystem with a single statement.

Usage

This library routine takes two parameters.  The first parameter is an opcode, 
and the second parameter depends on the opcode used:
CALL "CBL_SUBSYSTEM" using op-code, parameter GIVING 
status-code

Parameters

op-code (pic x comp-x)  

This contains one of the following values:

0 - declare subsystem

1 - cancel subsystem

2 - remove from subsystem



General Syntax and Library List  I-33
When op-code = 0, “parameter” is a group item that looks like:
  ss-handlepic x(2) comp-x.
  ss-name-lenpic x(2) comp-x.
  ss-namepic x(n).

When op-code = 1, “parameter” is:
  ss-handlepic x(2) comp-x.

When op-code = 2, “parameter” is ignored.

On entry:

op-code has the value of the operation to perform, 0, 1, or 2.

When op-code = 0, ss-name-len holds the length of the subsystem 
program-name field.  ss-name holds the subsystem program-name.  This 
must be a COBOL program.

When op-code = 0, ss-handle holds the subsystem handle returned by a 
function 0 call.

On exit:

When op-code = 0, ss-handle holds the subsystem handle value.

Comments

1. A subsystem is defined as a specified program in an application, plus any 
subprograms subsequently called by programs already in the subsystem 
that do not already belong to any other subsystems.

2. opcode 0 declares a subsystem.  The routine returns a subsystem 
handle in ss-handle.  The next time the program named is called in an 
initial state, it becomes part of the subsystem.  Any subprograms it 
calls also become part of the subsystem, unless they are not in an initial 
state.

3. A program belonging to a subsystem is cancelled only under the 
following circumstances:  it is the object of a CANCEL verb, the 
program cancels the entire subsystem using opcode 1, or the 
application executes a STOP RUN or CHAIN statement.



I-34  ACUCOBOL-GT Library Routines
4. opcode 1 cancels all programs in the specified subsystem.  If any 
program in the subsystem is still active, that program is released from 
the subsystem and is not cancelled.

5. opcode 2 removes the program that called it from any subsystem the 
program is in.  To ensure a program is never included in any 
subsystem, call this function at the start of each entry into the program.

CBL_SWAP_SCR_CHATTRS

The CBL_SWAP_SCR_CHATTRS routine is one of a set of library routines 
that facilitate reading and writing attributes on the screen.  This routine writes 
a string of characters and their attributes over another character string on the 
screen.

Usage
CALL "CBL_SWAP_SCR_CHATTRS" 
    USING SCREEN-POSITION, CHARACTER-BUFFER, ATTRIBUTE-BUFFER,
        STRING-LENGTH 
    RETURNING STATUS-CODE

Parameters

SCREEN-POSITION   Group item

Group item is defined as follows: 
01  SCREEN-POSITION.
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.

On entry, contains the screen position to start writing (the top left corner is 
row 0, column 0)

CHARACTER-BUFFER   PIC X(N).

On entry, contains the characters to write  

On exit, this data item contains the characters overwritten on the screen.  It 
must be at least the length specified by STRING-LENGTH.  Positions in the 
data item beyond that length are unchanged.



General Syntax and Library List  I-35
ATTRIBUTE-BUFFER   PIC X(N).

On entry, contains the attributes to write

On exit, this data item contains the attributes overwritten on the screen.  It 
must be at least the length specified by STRING-LENGTH.  Positions in the 
data item beyond that length are unchanged.

STRING-LENGTH   PIC XX COMP-X.

On entry, this item contains the length of the string to write.  Note that the 
write stops at the end of the screen.  

On exit, this item contains the length of the overwritten string (in cells, that is 
character-attribute pairs).

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful

Description

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to determine where to begin the write operation.  On entry, 
CHARACTER-BUFFER and ATTRIBUTE-BUFFER contain the characters 
to write and their corresponding attributes, respectively, and 
STRING-LENGTH contains that string’s length.  On exit, 
CHARACTER-BUFFER and ATTRIBUTE-BUFFER contain the characters 
that were replaced on the screen and their corresponding attributes, 
respectively.  STRING-LENGTH is the length of the string that was 
overwritten.  

Note: This routine is not supported with Thin Client.

CBL_WRITE_FILE

Usage
CAll "CBL_WRITE_FILE" 
     USING HANDLE, OFFSET, COUNT, FLAGS, BUF



I-36  ACUCOBOL-GT Library Routines
     RETURNING STATUS-CODE

Parameters

HANDLE (pic x(4) comp-x)

This is the handle returned from CBL_OPEN_FILE. 

OFFSET (pic x(8) comp-x)

This is the offset from which to write from the file, based at “0” to read from 
the first byte.  Note that this is a 64-bit value, allowing access to files larger 
than 4GB.  Note that if your OS or File System does not allow such files, 
setting this to a value larger than your OS or file system can support will 
cause undefined results.

COUNT (pic x(4) comp-x) 

This is the number of bytes to read.  This should not be set to a value larger 
than the size of the buffer (described below), or you will get undefined 
results, including a potential MAV.

FLAGS (pic x comp-x)  

One special value is recognized.  This value must be set to “0”.

BUF (pic x(n))

This is the buffer that will write to the file at “offset”.  This buffer should be 
at least count bytes long.

Description

This routine is used for writing files and returns “0” on success and non-zero 
if an error occurred.  The error is a special encoding of the digit 9 with the 
ANSI-74 error code, or the runtime system error number if no ANSI-74 error 
code pertains to the error.  If RETURN-CODE is non-zero after calling this 
routine, you must process it as a file status, for example:
01  file-status-group.
    03  file-status     pic xx comp-x. 
    03  redefines file-status. 



General Syntax and Library List  I-37
        05  fs-byte-1  pic x. 
        05  fs-byte-2  pic x comp-x.
. . . 
call "CBL_WRITE_FILE" using parameters 
if return-code not = 0 
    move return-code to file-status 
. . .

At this point fs-byte-1 contains “9” and fs-byte-2 contains the ANSI-74 error 
code or a runtime system error number. 

Note: This routine is written in C and is called via the “direct” method, so 
it is not possible for the runtime to validate parameters for accuracy.  
Passing unexpected parameters will result in undefined behavior and 
possibly even a MAV.

CBL_WRITE_SCR_ATTRS 

The CBL_WRITE_SCR_ATTRS routine is one of a set of library routines 
that facilitate reading and writing attributes on the screen.  This routine writes 
a string of attributes to the screen.                                     

Usage
CALL "CBL_WRITE_SCR_ATTRS" 
    USING SCREEN-POSITION, ATTRIBUTE-BUFFER, STRING-LENGTH 
    RETURNING STATUS-CODE

Parameters

SCREEN-POSITION   Group item

Group item is defined as follows: 
01  SCREEN-POSITION.
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.

On entry, contains the screen position at which to start writing (the top left 
corner is row 0, column 0)



I-38  ACUCOBOL-GT Library Routines
ATTRIBUTE-BUFFER   PIC X(N).

On entry, contains the attributes to write

STRING-LENGTH   PIC XX COMP-X.

On entry, this item contains the length of the string to write.  Note that the 
write stops at the end of the screen.

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful

Description 

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to determine where on the screen to begin the write operation.  
ATTRIBUTE-BUFFER contains the string of attributes to write, and 
STRING-LENGTH contains the length of that string of attributes.  

Note: This routine is not supported with Thin Client.

CBL_WRITE_SCR_CHARS 

The CBL_WRITE_SCR_CHARS routine is one of a set of library routines 
that facilitate reading and writing attributes on the screen.  This routine writes 
a string of characters to the screen.                                     

Usage
CALL "CBL_WRITE_SCR_CHARS" 
    USING SCREEN-POSITION, CHARACTER-BUFFER, STRING-LENGTH 
    RETURNING STATUS-CODE

Parameters

SCREEN-POSITION   Group item

Group item is defined as follows: 



General Syntax and Library List  I-39
01  SCREEN-POSITION.
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.

On entry, contains the screen position at which to start writing (the top left 
corner is row 0, column 0)

CHARACTER-BUFFER   PIC X(N).

On entry, contains the characters to write

STRING-LENGTH   PIC XX COMP-X.

On entry, contains the length of the string to write.  Note that the write stops 
at the end of the screen.

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful

Description 

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to determine the location on the screen to begin the write 
operation.  CHARACTER-BUFFER contains the string of characters to 
write, and STRING-LENGTH contains the length of that character string. 

Note: This routine is not supported with Thin Client. 

CBL_WRITE_SCR_CHARS_ATTR 

The CBL_WRITE_SCR_CHARS_ATTR routine is one of a set of library 
routines that facilitate reading and writing attributes on the screen.  This 
routine writes a string of characters to the screen, giving them all the same 
attribute. 

Usage
CALL "CBL_WRITE_SCR_CHARS_ATTR" 



I-40  ACUCOBOL-GT Library Routines
    USING SCREEN-POSITION, CHARACTER-BUFFER, STRING-LENGTH,
        ATTRIBUTE 
    RETURNING STATUS-CODE

Parameters

SCREEN-POSITION   Group item 

Group item is defined as follows: 
01  SCREEN-POSITION.
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.

On entry, contains the screen position at which to start writing (the top left 
corner is row 0, column 0)

CHARACTER-BUFFER   PIC X(N).  

On entry, contains the characters to write

STRING-LENGTH   PIC XX COMP-X.

On entry, this item contains the length of the string to write.  Note that the 
write stops at the end of the screen.

ATTRIBUTE   PIC X COMP-X.

On entry, contains the attribute to write

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful

Description 

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to determine the location on the screen to begin the write 
operation.  CHARACTER-BUFFER contains the string of characters to 
write, and STRING-LENGTH contains the length of that character string.  
The ATTRIBUTE parameter contains the attribute to apply to the character 
string. 



General Syntax and Library List  I-41
Note: This routine is not supported with Thin Client. 

CBL_WRITE_SCR_CHATTRS 

The CBL_WRITE_SCR_CHATTRS routine is one of a set of library 
routines that facilitate reading and writing attributes on the screen.  This 
routine writes a string of characters and their attributes to the screen.                

Usage
CALL "CBL_WRITE_SCR_CHATTRS" 
    USING SCREEN-POSITION, CHARACTER-BUFFER, ATTRIBUTE-BUFFER,
        STRING-LENGTH 
    RETURNING STATUS-CODE

Parameters

SCREEN-POSITION   Group item

Group item is defined as follows: 
01  SCREEN-POSITION.
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.

On entry, contains the screen position at which to start writing (the top left 
corner is row 0, column 0)

CHARACTER-BUFFER   PIC X(N).

On entry, contains the characters to write

ATTRIBUTE-BUFFER   PIC X(N).

On entry, contains the attributes to write

STRING-LENGTH   PIC XX COMP-X.

On entry, this item contains the length of the string to write.  Note that the 
write stops at the end of the screen.



I-42  ACUCOBOL-GT Library Routines
STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful 

Description

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to determine the location on the screen to begin the write 
operation.  STRING-LENGTH specifies the length of the string to be written, 
starting from SCREEN-POSITION.  When the routine exits, 
CHARACTER-BUFFER contains the string of characters written, and 
ATTRIBUTE-BUFFER contains those characters’ attributes.  

Note: This routine is not supported with Thin Client.

CBL_WRITE_SCR_N_ATTR  

The CBL_WRITE_SCR_N_ATTR routine is one of a set of library routines 
that facilitate reading and writing attributes on the screen.  This routine writes 
a specified attribute to a string of positions on the screen.             

Usage
CALL "CBL_WRITE_SCR_N_ATTR" 
    USING SCREEN-POSITION, ATTRIBUTE, STRING-LENGTH 
    RETURNING STATUS-CODE

Parameters

SCREEN-POSITION   Group item

Group item is defined as follows: 
01  SCREEN-POSITION.
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.

On entry, contains the screen position at which to start writing (the top left 
corner is row 0, column 0)



General Syntax and Library List  I-43
ATTRIBUTE   PIC X COMP-X.

On entry, contains the attribute to write

STRING-LENGTH   PIC XX COMP-X.

On entry, this item contains the length of the string to write.  Note that the 
write stops at the end of the screen.

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful

Description

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to determine the location on the screen to begin the write 
operation.  The ATTRIBUTE parameter contains the attribute to write to the 
screen location, and STRING-LENGTH is the length of that attribute string. 

Note: This routine is not supported with Thin Client. 

CBL_WRITE_SCR_N_CHAR  

The CBL_WRITE_SCR_N_CHAR routine is one of a set of library routines 
that facilitate reading and writing attributes on the screen.  This routine writes 
a specified character to a string of positions on the screen. 

Usage
CALL "CBL_WRITE_SCR_N_CHAR" 
    USING SCREEN-POSITION, CHARACTER, STRING-LENGTH 
    RETURNING STATUS-CODE

Parameters

SCREEN-POSITION   Group item 

Group item is defined as follows: 
01  SCREEN-POSITION.



I-44  ACUCOBOL-GT Library Routines
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.

On entry, contains the screen position at which to start writing (the top left 
corner is row 0, column 0)

CHARACTER   PIC X COMP-X.

On entry, contains the character to write

STRING-LENGTH   PIC XX COMP-X.

On entry, this item contains the length of the string to write.  Note that the 
write stops at the end of the screen.

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful 

Description

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to determine the location on the screen to begin the write 
operation.  The CHARACTER parameter contains the character to write to 
the screen location, and STRING-LENGTH is the length of that character 
string.  

Note: This routine is not supported with Thin Client.

CBL_WRITE_SCR_N_CHATTR

The CBL_WRITE_SCR_N_CHATTR routine is one of a set of library 
routines that facilitate reading and writing attributes on the screen.  This 
routine writes a specified character and attribute to a string of positions on the 
screen.

Usage
CALL "CBL_WRITE_SCR_N_CHATTR" 
    USING SCREEN-POSITION, CHARACTER, ATTRIBUTE, STRING-LENGTH 



General Syntax and Library List  I-45
    RETURNING STATUS-CODE

Parameters

SCREEN-POSITION   Group item 

Group item is defined as follows: 
01  SCREEN-POSITION.
    03  ROW-NUMBER      PIC X COMP-X.
    03  COLUMN-NUMBER   PIC X COMP-X.

On entry, contains the screen position at which to start writing (the top left 
corner is row 0, column 0)

CHARACTER   PIC X COMP-X.

On entry, contains the character to write

ATTRIBUTE   PIC X COMP-X.

On entry, contains the attribute to write

STRING-LENGTH   PIC XX COMP-X.

On entry, this item contains the length of the string to write.  Note that the 
write stops at the end of the screen.

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful 

Description

This library routine uses SCREEN-POSITION (in row and column 
coordinates) to determine the location on the screen to begin the write 
operation.  The CHARACTER parameter contains the character to write to 
the screen location, and ATTRIBUTE contains that character’s 
corresponding attribute.  STRING-LENGTH is the length of that character/
attribute string.  

Note: This routine is not supported with Thin Client.



I-46  ACUCOBOL-GT Library Routines
CBL_WRITE_SCR_TTY 

The CBL_WRITE_SCR_TTY routine is one of a set of library routines that 
facilitate reading and writing attributes on the screen.  This routine writes a 
string of characters to the screen starting at the current position and scrolls the 
screen if the write operation extends beyond the end of the screen.

Usage
CALL "CBL_WRITE_SCR_TTY" 
    USING CHARACTER-BUFFER, STRING-LENGTH 
    RETURNING STATUS-CODE

Parameters

CHARACTER-BUFFER   PIC X(N).

On entry, contains the characters to write

STRING-LENGTH   PIC XX COMP-X.

On entry, this item contains the length of the string to write.  If the string 
length extends off the screen, the screen is scrolled up a line and the write 
continues on the bottom line.

STATUS-CODE   Any numeric type

Returns “1” if successful, or “0” if not successful

Description

This library routine writes the character string in the 
CHARACTER-BUFFER parameter on the screen.  STRING-LENGTH 
contains the length of that character string.  If necessary, the routine allows 
the write operation to continue past the end of the screen with a scrolling 
action.  

Note: This routine is not supported with Thin Client.



General Syntax and Library List  I-47
CBL_XOR

CBL_XOR performs a binary, bitwise “exclusive or” operation on a series of 
bytes.  

Usage
CALL "CBL_XOR"
    USING SOURCE, DEST, LENGTH
    GIVING STATUS

Parameters

SOURCE   PIC X(n)

The source bytes for the operation.

DEST   PIC X(n)

The destination bytes for the operation.

LENGTH   Numeric parameter (optional)

Describes the number of bytes to combine.  If omitted, then CBL_XOR uses 
the minimum of the size of SOURCE and the size of DEST.  

STATUS   Any numeric data item

Contains the return status of the operation.  Returns “0” if successful, “1” if 
not.  This routine always succeeds, so STATUS always contains a zero.  

Description

For LENGTH bytes, each byte of SOURCE is combined with the 
corresponding byte of DEST.  The result is stored back into DEST.  The bytes 
are combined by performing an “exclusive or” operation between each bit of 
the bytes.  The “exclusive or” operation uses the following table to determine 
the result:

Xor 0 1



I-48  ACUCOBOL-GT Library Routines
C$ASYNCPOLL

C$ASYNCPOLL is used only with AcuConnect.  It checks the status of the 
server program while the client is running.

Usage
CALL "C$ASYNCPOLL" 
    USING HANDLE-OF-CALL, STATE-OF-CALL, PARAMETER(S)

Parameters

HANDLE-OF-CALL   USAGE HANDLE

Contains the handle of the CALL previously run with C$ASYNCRUN.

STATE-OF-CALL   PIC S9

Contains a value of “0” if the run is not completed, or “1” if the run is 
completed.

PARAMETER(S)   Any COBOL data type (optional)

Contains a parameter of the CALL.  You may include as many parameters as 
you choose, separated by a space or comma, to define the CALL.  The list of 
parameters used in C$ASYNCPOLL must match the list of parameters used 
in C$ASYNCRUN.

Comments

C$ASYNCPOLL tells AcuConnect to query the server about the status of the 
remote application.  AcuConnect returns a status that you can DISPLAY on 
the client. If the status is “1” or CALL completed, C$ASYNCPOLL 
terminates the connection with the remote application.  This library routine 
works only with AcuConnect.

0 0 1

1 1 0



General Syntax and Library List  I-49
C$ASYNCRUN

Call C$ASYNCRUN along with your remote applications to allow 
AcuConnect to run asynchronously.

Usage
CALL "C$ASYNCRUN"
    USING HANDLE-OF-CALL, PROGRAM-NAME, PARAMETER(S)

Parameters

HANDLE-OF-CALL   USAGE HANDLE

Contains the handle of the CALL defined in working storage.

PROGRAM-NAME   String Literal or PIC X(n)

Contains the name of the CALLed program.

PARAMETER(S)   Any COBOL data type (optional)

Contains a parameter of the CALL.  You may include as many parameters as 
you choose, separated by a space or comma, to define the CALL.

Comments

By default, AcuConnect performs synchronous CALLs to remote 
applications.  The client application CALLs the remote application and waits 
for a response from the server to continue processing. C$ASYNCRUN tells 
AcuConnect to allow the client application  to continue processing even 
while the server application is active. This library routine works only with 
AcuConnect.

C$CALLEDBY

This routine returns the name of the caller of the currently running COBOL 
program or spaces if no caller exists or if the caller is unknown.  



I-50  ACUCOBOL-GT Library Routines
Usage
CALL "C$CALLEDBY" 
    USING CALLING-PROGRAM
    GIVING CALL-STATUS

Parameters

CALLING-PROGRAM   PIC X(n)

Contains the name of the calling program or spaces if no caller exists or if the 
caller is unknown.  The runtime will use as much space for the name or spaces as 
the COBOL program allows.  If the object being called is in an object library, the 
program returns the PROGRAM-ID.  If the object is not in an object library, the disk 
name is returned.

CALL-STATUS   PIC S99

This parameter receives one of the following values:

C$CALLERR

This routine may be called to retrieve the reason why the last CALL 
statement failed.  For accurate information, it must be called before any other 
CALL statement is executed.  

Usage
CALL "C$CALLERR" 
    USING ERR-CODE, ERR-MESSAGE

Parameters

ERR-CODE   PIC X(2)

1 Routine called by another COBOL program

0 Routine is the main program; no caller exists

-1 Caller unknown; routine not called by a COBOL program



General Syntax and Library List  I-51
The single PIC X(2) parameter in this routine receives one of the following 
values:

ERR-MESSAGE    PIC X(n) (optional)

This routine may optionally be passed a second alphanumeric parameter.  
This parameter is filled in with a descriptive message about the error 
encountered.  

C$CHAIN 

The C$CHAIN routine replaces the running program and runtime system 
with another program.  

Usage
CALL "C$CHAIN" 
    USING PROG-NAME

Parameter

PROG-NAME   PIC X(n)

01 Program file missing or inaccessible

02 Called file not a COBOL program

03 Corrupted program file

04 Inadequate memory available to load program

05 Unsupported object code version number

06 Recursive CALL of a program

07 Too many external segments

08 Large-model program not supported (returned only by runtimes that do not 
support large-model programs)

09 Exit Windows and run “share.exe” to run multiple copies of “wrun32.exe” 
(returned only by Windows runtimes)

14 Japanese objects are not supported (returned only by runtimes that do not 
support Japanese objects)



I-52  ACUCOBOL-GT Library Routines
Contains an operating system command line to execute.

Description

This routine functions in the same manner as the SYSTEM library routine, 
except that there is no return to the running program.  Instead, the current 
program shuts down (like a STOP RUN) and the runtime system then 
replaces itself with the passed program.  This is similar to the CHAIN verb 
except that the called program is not a COBOL program; it is any program 
available on the host machine.  

The usual reason for calling this routine is to make more memory available to 
the called program.  The runtime system can occupy a significant amount of 
memory that may be needed by the called program.  Calling C$CHAIN 
ensures that the runtime system is removed from memory along with the 
various COBOL programs that have been active.  

Often it is desirable to return from the called program to the caller.  One way 
to do this is to use an operating system script to re-execute the calling 
program.  You can control the script with various exit statuses--for a 
description of the runtime’s exit statuses, see the entry for the STOP 
Statement in section 6.6 of the ACUCOBOL-GT Reference Manual.  
Usually the script will sit in a loop calling the ACUCOBOL-GT runtime 
system until it receives a special exit status.  You can use the STOP RUN 
statement to pass that special status back to the script when you want to shut 
down.  You should remember that when the runtime system chains to another 
program, the script sees the exit status of the called program as the exit status 
of the runtime system.  

For example, suppose on a UNIX system that you have a program (called 
main) that executes the C$CHAIN routine.  After the called program 
terminates, you want to re-execute the caller.  You decide to use exit value 
“100” to indicate that the program should terminate.  You could use the 
following “sh” script:

runcbl main
while test $? != 100; do runcbl main; done

This script runs main once, and then continues to run it until it executes a 
“STOP RUN 100” statement.  Writing the script this way allows the program 
that is called by C$CHAIN to have a non-zero exit value without stopping the 
entire run.  



General Syntax and Library List  I-53
You may want to distinguish between the first execution of the calling 
program and subsequent executions.  For example, you may want to display 
copyright information on the first execution.  You can do this by using a 
SPECIAL-NAMES switch to distinguish between the first execution and 
subsequent ones.  For instance, in the preceding example you could add “-1” 
to the second runcbl command to set SWITCH-1 for the subsequent 
executions.  Your program can then test the value of this switch to determine 
what to do.  

C$CHDIR

The C$CHDIR routine is used to change the current working directory.

Usage
CALL "C$CHDIR" 
    USING DIR-NAME, ERR-NUM

Parameters

DIR-NAME   PIC X(n)

Contains the name of the new directory, or spaces.

ERR-NUM   PIC 9(9) COMP-4 (optional)

Holds the returned error number, or zero on success.

Comments

If a second USING parameter is passed, it must be described as PIC 9(9) 
COMP-4.  This parameter will be set to ZERO if the directory change is 
successful.  Otherwise, it will contain the operating system’s error number. 

If DIR-NAME contains spaces, then the current default directory is returned 
in it.  In this case, ERR-NUM is not used.  Otherwise, DIR-NAME should 
contain the name of a directory to make the new default directory.  On 
Windows machines, this can include a drive letter.  If you pass ERR-NUM, it 
will be set to zero if the change was successful.  Otherwise, ERR-NUM will 
contain the error value returned by the operating system. 



I-54  ACUCOBOL-GT Library Routines
On some systems (such as VMS), it is legal to switch to a directory that does 
not exist, while other systems (Windows, UNIX) do not allow it.

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

IMPORTANT

If you use C$CHDIR, create a CODE_PREFIX configuration entry to locate 
your object files.  Ensure that all of the search locations specified by the 
CODE-PREFIX are full path names.  Do not use the current directory or any 
relative path names in the CODE_PREFIX.  Without a full path name, the 
runtime system may be unable to find your object files if it needs to re-open 
them.  

For example, the runtime system must occasionally re-open an object file 
when: 

• you are using the source debugger

• the program contains segmentation (overlays)

• you are using object libraries

If the object file was initially found in the current directory or a directory 
specified relative to the current directory, and you then change the current 
directory with the C$CHDIR routine, the runtime system will not be able to 
find the object file if it needs to re-open it. This will cause a fatal error and 
your program will halt.

If you use C$CHDIR and you are running in debug mode, be sure to set 
CODE_PREFIX in the configuration file, not in the environment.  You may 
set CODE_PREFIX in the environment when you are not in debug mode.  



General Syntax and Library List  I-55
Considerations for AcuBench users

When you import a screen with the Screen Import Utility, a file called 
“import.out” is created in the current working directory.  The Screen 
Designer uses this file to load the description(s) of the imported screen(s) into 
its designer grid and property sheet.  

When you invoke the Screen Import Utility from within the Workbench, the 
act of exiting the runtime also causes the Screen Designer to load the 
import.out file which is located in the root directory of the project currently 
open.  

If your application changes the current working directory, the import.out file 
will not be created in the root directory of the currently open project, so 
different, perhaps unexpected behaviors can occur.  

Import.out files will be generated correctly, and the Screen Designer will be 
able to import them correctly, but you will have to locate the files for the 
Screen Designer and open them “manually” using the File/Open dialog box 
in the Screen Designer.

C$CODESET

This routine supports the translation of a text string from EBCDIC to ASCII, 
or ASCII to EBCDIC.  

Usage
CALL "C$CODESET" 
    USING TRANS-FLAG, LENGTH, TRANS-STRING
    GIVING RETURN-VALUE.



I-56  ACUCOBOL-GT Library Routines
Parameters

TRANS-FLAG     PIC 9(2) COMP-X.  

Indicates the type of text in TRANS-STRING, and whether to apply 
LENGTH when performing the translation. TRANS-FLAG takes one of the 
following values:

LENGTH     PIC 9(9) COMP-X 

Specifies the length of the string to translate.

TRANS-STRING  PIC X(n)

Contains the string to translate and the result of the translation.

RETURN-VALUE    Numeric data item

Returns the number of characters translated, or zero if an error occurred.

C$CONFIG

C$CONFIG resets configuration values to a known set of values.  Note, 
however, that certain values are set only at runtime start up, and are therefore 
not affected by this routine.

Usage
CALL "C$CONFIG" 
    USING OP-CODE, CONFIG-FILE

0 Indicates that TRANS-STRING contains EBCDIC and that LENGTH 
specifies the length of the string to translate to ASCII.

1 Indicates that TRANS-STRING contains ASCII and that LENGTH 
specifies the length of the string to translate to EBCDIC.

2 Indicates that TRANS-STRING contains EBCDIC and that 256 bytes of 
data should be translated to ASCII.  The LENGTH parameter is ignored.

3 Indicates that TRANS-STRING contains ASCII and that 256 bytes of data 
should be translated to EBCDIC.  The LENGTH parameter is ignored.



General Syntax and Library List  I-57
Parameters

OP-CODE   PIC 9

The only valid value is 1.  If the op-code is specified with no arguments, 
C$CONFIG resets all known configuration values to their default.  Values 
are removed from any user-defined configuration variables, leaving them 
blank, and the original configuration file is reloaded.

CONFIG-FILE   PIC X(n) (optional)

Specifies a new configuration file to be loaded after the configuration 
variable values have been reset.

Description

C$CONFIG resets all runtime configuration variables first to their default 
values, then to the values specified in CONFIG-FILE, if CONFIG-FILE is 
specified.

If you pass a blank argument for CONFIG-FILE, as shown below, all 
configuration variables are reset and no configuration file is loaded.  
CALL "C$CONFIG" USING 1, ""

C$COPY

C$COPY creates a copy of an existing file. 

Usage
CALL "C$COPY" 
    USING SOURCE-FILE, DEST-FILE, FILE-TYPE, 
    GIVING COPY-STATUS

Parameters

SOURCE-FILE   PIC X(n)

Contains the name of the file to copy.  Remote name notation and 
“@[DISPLAY]:” notation are allowed for this parameter.  



I-58  ACUCOBOL-GT Library Routines
DEST-FILE   PIC X(n)

Contains the destination file name.  Remote name notation and 
“@[DISPLAY]:” notation are allowed for this parameter.  

FILE-TYPE    PIC X (optional)

Indicates the file type.  If the FILE-TYPE parameter is supplied, it must be 
either “S”, “R”, “I”, or “T”, indicating that the source file is a sequential, 
relative, indexed file, or text file.  Note that the “T” implies that the file is a 
line sequential file, since copying relative or indexed files as text is 
counter-intuitive and would likely corrupt those types of files.  Copying text 
files applies when copying between UNIX and Windows systems, where text 
files have different line terminator characters. 

The FILE-TYPE parameter can be useful in cases where the original file is 
held in more than one physical disk file (for example, C-ISAM indexed files 
are physically held in two separate files).  If the FILE-TYPE parameter is 
omitted, then only the single physical file named in SOURCE-FILE is 
copied.   

COPY-STATUS   Any numeric type

Returns zero if successful, or non-zero if not.  Currently, an unsuccessful 
status code is always “1”, but future versions may return additional 
information.  

Description

C$COPY creates an exact duplicate of SOURCE-FILE in DEST-FILE.   

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

To transfer files between the application host and display host in a thin client 
environment, add the prefix “@[DISPLAY]:” to the name of any source or 
destination file that resides on the client machine.
C$COPY "@[DISPLAY]:C:\path\file1.ext" "/usr/data/file1.ext"



General Syntax and Library List  I-59
To copy from one path on the client to another, specify the “@[DISPLAY]:” 
prefix for both the SOURCE-FILE and the DEST-FILE.  

If the file name on the client starts with special directory specifiers, the thin 
client attempts to locate those files in special Windows directories.  The 
special directory names are as follows:

Note that these directories are not necessarily the same for all versions of 
Windows, and may in fact be on network drives. 

If you use the “@[DISPLAY]:” prefix, you may not use the FILE-TYPE 
parameter.  Only the single, specified source file is copied.  

See the AcuConnect User’s Guide, section 7.2.1, for more information about 
using C$COPY in a thin client environment.

C$DELETE

C$DELETE deletes the indicated file. 

Usage
CALL "C$DELETE" 
    USING FILE-NAME, FILE-TYPE,
    GIVING STATUS

Identifier Directory

<APPDATA> C:\Documents and 
Settings\<user>\Application Data

<COMMON_APPDATA> C:\Documents and Settings\All 
Users\Application Data

<COMMON_DOCUMENTS> C:\Documents and Settings\All 
Users\Documents

<DESKTOP> C:\Documents and Settings\<user>\Desktop

<LOCAL_APPDATA> C:\Documents and Settings\<user>\Local 
Settings\Application Data

<MYDOCUMENTS> C:\Documents and Settings\<user>\My 
Documents



I-60  ACUCOBOL-GT Library Routines
Parameters

FILE-NAME   PIC X(n)

Contains the name of the file to be deleted.  This should either be a full path 
name or a name relative to the current directory.

FILE-TYPE    PIC X (optional)

Indicates the file type.  If the FILE-TYPE parameter is supplied, it must be 
either “S”, “R”, or “I” indicating that the source file is a sequential, relative, 
or indexed file.  This can be useful in cases where the original file is held in 
more than one physical disk file (for example, C-ISAM indexed files and 
Vision 4 and 5 files are physically held in two separate files).  If the 
FILE-TYPE parameter is omitted, then only the single physical file named in 
FILE-NAME is deleted.   

STATUS   PIC 9(n)

Returns “0” if successful, or “1” if not. 

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

C$DISCONNECT

C$DISCONNECT disconnects the executing AcuServer client from the 
specified server at the time of the call.  

Under normal circumstances, the AcuServer client disconnects from the 
server automatically (without requiring you to call the C$DISCONNECT 
routine) at shutdown.  Also, whenever a server loses its connection to a client, 
before a new connection is made, all old client connections are automatically 
closed.

Usage
CALL "C$DISCONNECT" 



General Syntax and Library List  I-61
    USING SERVER-NAME, PORT-NUMBER
    GIVING STATUS

Parameters

SERVER-NAME    PIC X(n)

Contains the name of the server computer from which you are disconnecting. 
The name will be terminated at the first space character.

PORT-NUMBER    PIC 9(n) (optional)

Specifies the port number of SERVER-NAME. If omitted, this parameter 
defaults to the value of the configuration variable SERVER-PORT. 

STATUS    PIC 9(n)

This routine returns the one of the following status codes after the operation 
has been performed:

Comments

Any open files on the server should be closed before calling this routine. 
When these files are reopened, it is as if the original connection had never 
existed.  In particular, any passwords needed to connect to the server will 
need to be reentered by the user.

C$EXCEPINFO

C$EXCEPINFO retrieves information about an object exception that has 
been raised.

Usage
CALL "C$EXCEPINFO" 

0 Client is now disconnected from the server

1 Server/port combination was not found; no such connection

2 Client access is not enabled



I-62  ACUCOBOL-GT Library Routines
    USING ERROR-INFO, ERR-SOURCE, ERR-DESCRIPTION,
        ERR-HELP-FILE, ERR-HELP-CONTEXT, ERR-OBJECT-HANDLE,
        ERR-CONTROL-ID

Parameters

ERROR-INFO    Group item to receive returned information.  

ERROR-INFO must have the following structure (defined in “activex.def”):
01 ERROR-INFO.
   03  ERROR-INFO-RESULT    USAGE UNSIGNED-INT.
   03  ERROR-INFO-FACILITY  USAGE UNSIGNED-SHORT.
   03  ERROR-INFO-CODE      USAGE UNSIGNED-SHORT.

ERROR-INFO is described in the Comments section below.

ERR-SOURCE    PIC X(n) (optional)

A text string identifying the source of the exception. Typically, this is an 
application name. 

ERR-DESCRIPTION    PIC X(n) (optional)

A text description of the error intended for the user. If no description is 
available, ERR-DESCRIPTION is filled with spaces.

ERR-HELP-FILE    PIC X(n) (optional)

The fully qualified drive, path, and file name of a help file with more 
information about the error. If no help is available, ERR-HELP-FILE is filled 
with spaces. 

ERR-HELP-CONTEXT    Usage unsigned-long (optional)

The help context ID of the topic within the help file. This parameter is filled 
in only if the ERR-HELP-FILE parameter is not spaces. The help context ID 
will be between 0 and 4294967295. 

ERR-OBJECT-HANDLE    Usage handle (optional)



General Syntax and Library List  I-63
The handle of the COM object or ActiveX control that generated the 
exception.

ERR-CONTROL-ID   Usage PIC XX COMP-X (optional)

The ID of the ActiveX control that generated the exception.  The value  is “0” 
if the object that generated the exception is not an ActiveX control.

Comments

C$EXCEPINFO is typically called from an error handling procedure 
specified with a Format 2 USE statement in the declaratives.

The following are the parameters for the ERROR-INFO group item:

ERROR-INFO-RESULT is a 32-bit number identifying the error. The error 
number will be greater than 1000 and less than 4294967296. This error 
number is divided into 4 fields: a severity code, a reserved portion, a facility 
field, and an error code. 

The severity code is the high-order bit (31).  The next 4 bits are reserved 
(30-27).  The next eleven bits are the facility field (26-16), and the last 
sixteen bits are the error code (15-0).  The severity code is usually “1”, and 
the reserved bits are usually set to “0”. The error code is defined by the 
facility that raised the exception.  The facility field is one of the following:

The standard facility field values and error codes are defined as condition 
names (level 88) in “activex.def”.  

Note: If you receive a facility value that is anything other than the two 
listed above, you will need to look up the ERROR-INFO result number in 
the documentation for the specific ActiveX control you are using or in 
Microsoft’s documentation.

FACILITY-ACU (4) For status codes of exceptions raised by the 
ACUCOBOL-GT runtime.

FACILITY-ACTIVE-X (10) For status codes of exceptions raised by an 
ActiveX control.



I-64  ACUCOBOL-GT Library Routines
ERROR-INFO-FACILITY contains the facility field extracted from 
ERROR-INFO-RESULT.

ERROR-INFO-CODE contains the error code extracted from 
ERROR-INFO-RESULT.  ERROR-INFO-CODE will be listed in the 
ACUCOBOL-GT error codes if the facility field is FACILITY-ACU.  If the 
facility is FACILITY-ACTIVE-X, the ERROR-INFO-CODE may be listed 
in an enumeration in the ActiveX control’s COPY file or it may be one of the 
standard COM status codes for ActiveX controls.

When called to get information about an object exception, the error code can 
either be an ACUCOBOL-GT defined code or a COM status code. 

ACUCOBOL-GT Error Codes (defined in “activex.def”):

COM Status Codes for ActiveX controls (defined in “activex.def”):

Name Description 

ACU-E-UNEXPECTED Unexpected error

ACU-E-INVALIDPARAMNAME Invalid parameter name

ACU-E-INVALIDHANDLE Invalid handle

ACU-E-INITIALSTATE Error loading INITIAL-STATE from resource file

ACU-E-NOEXCEPINFO No exception information available

ACU-E-INVALIDPROPNUM Invalid property number

ACU-E-TOOMANYPARAMS Too many parameters

ACU-E-TOOFEWPARAMS Too few parameters

ACU-E-NOTPROPERTYGET Property can be modified but not inquired

ACU-E-NOTPROPERTYPUT Property can be inquired but not modified

ACU-E-CREATE Error creating ActiveX control

Name Description 

AX-E-ILLEGALFUNCTIONCALL Illegal function call 

AX-E-OVERFLOW Overflow 

AX-E-OUTOFMEMORY Out of memory 



General Syntax and Library List  I-65
AX-E-DIVISIONBYZERO Division by zero 

AX-E-OUTOFSTRINGSPACE Out of string space 

AX-E-OUTOFSTACKSPACE Out of stack space 

AX-E-BADFILENAMEORNUMBER Bad file name or number 

AX-E-FILENOTFOUND File not found 

AX-E-BADFILEMODE Bad file mode 

AX-E-FILEALREADYOPEN File already open 

AX-E-DEVICEIOERROR Device I/O error 

AX-E-FILEALREADYEXISTS File already exists 

AX-E-BADRECORDLENGTH Bad record length 

AX-E-DISKFULL Disk full 

AX-E-BADRECORDNUMBER Bad record number 

AX-E-BADFILENAME Bad file name 

AX-E-TOOMANYFILES Too many files 

AX-E-DEVICEUNAVAILABLE Device unavailable 

AX-E-PERMISSIONDENIED Permission denied 

AX-E-DISKNOTREADY Disk not ready 

AX-E-PATHFILEACCESSERROR Path/file access error 

AX-E-PATHNOTFOUND Path not found 

AX-E-INVALIDPATTERNSTRING Invalid pattern string 

AX-E-INVALIDUSEOFNULL Invalid use of NULL 

AX-E-INVALIDFILEFORMAT Invalid file format 

AX-E-INVALIDPROPERTYVALUE Invalid property value 

AX-E-INVALIDPROPERTYARRAYINDEX Invalid property array index 

AX-E-SETNOTSUPPORTEDATRUNTIME Set not supported at run time 

AX-E-SETNOTSUPPORTED Set not supported (read-only property) 

AX-E-NEEDPROPERTYARRAYINDEX Need property array index 

AX-E-SETNOTPERMITTED Set not permitted 

Name Description 



I-66  ACUCOBOL-GT Library Routines
For an example of how this works, let’s look at the standard COM error code 
for “Out of Memory”.  

The code is hex 800A0007.  

In binary this is “1000 0000 0000 1010 0000 0000 0000 0111”.  

This error code can be broken down as follows:

The severity code is 1 which makes ERROR-INFO-RESULT greater than or 
equal to 2147483648 (hex 80000000). The reserved portion is 0. The facility 
code is 10 (hex A) which is defined in “activex.def” as 
FACILITY-ACTIVE-X. The error code is 7 (hex 7) which is defined in 
“activex.def” as AX-E-OUTOFMEMORY.

Example
DATA DIVISION.
WORKING-STORAGE SECTION.
COPY "ACTIVEX.DEF"
77  ERR-SOURCE          PIC X(30).
77  ERR-DESCRIPTION     PIC X(200).
77  ERR-HELP-FILE       PIC X(200).

AX-E-GETNOTSUPPORTEDATRUNTIME Get not supported at run time 

AX-E-GETNOTSUPPORTED Get not supported (write-only property) 

AX-E-PROPERTYNOTFOUND Property not found 

AX-E-INVALIDCLIPBOARDFORMAT Invalid clipboard format 

AX-E-INVALIDPICTURE Invalid picture 

AX-E-PRINTERERROR Printer error 

AX-E-CANTSAVEFILETOTEMP Can’t save file to TEMP 

AX-E-SEARCHTEXTNOTFOUND Search text not found 

AX-E-REPLACEMENTSTOOLONG Replacements too long 

Name Description 

1 000 0 000 0000 1010 0000 0000 0000 0111

Severity Code Reserved Facility Field Error Code



General Syntax and Library List  I-67
77  ERR-HELP-CONTEXT    USAGE UNSIGNED-LONG.
77  CHOICE              PIC 9.

PROCEDURE DIVISION.
DECLARATIVES.
OBJECT-EXCEPTION-HANDLING SECTION.
    USE AFTER EXCEPTION ON OBJECT.
OBJECT-EXCEPTION-HANDLER.
    CALL "C$EXCEPINFO" USING ERROR-INFO, ERR-SOURCE, 
        ERR-DESCRIPTION, ERR-HELP-FILE, 
        ERR-HELP-CONTEXT.
    IF ERR-HELP-FILE = SPACES THEN
        DISPLAY MESSAGE BOX ERR-DESCRIPTION
            TITLE ERR-SOURCE
            ICON MB-ERROR-ICON
    ELSE
        DISPLAY MESSAGE BOX ERR-DESCRIPTION H'0d' 
            "Do you want help ?"
            TITLE ERR-SOURCE
            ICON MB-ERROR-ICON
            TYPE IS MB-YES-NO
            DEFAULT IS MB-YES
            GIVING CHOICE
        IF CHOICE = 1 THEN
            CALL "$WINHELP" USING ERR-HELP-FILE, HELP-CONTEXT
                ERR-HELP-CONTEXT
        END-IF
    END-IF.
    EVALUATE TRUE
        WHEN FACILITY-ACU
            EVALUATE TRUE
                WHEN ACU-E-UNEXPECTED
                    STOP RUN
            END-EVALUATE
        END-EVALUATE.
END DECLARATIVES.

MAIN-PROGRAM SECTION.
{ . . . }
* The following line causes an AX-E-SETNOTSUPPORTEDATRUNTIME
* exception since Microsoft Chart's BorderStyle property is not
* allowed to be modified at runtime
    MODIFY MS-CHART-1 BorderStyle = VtBorderStyleBold.   



I-68  ACUCOBOL-GT Library Routines
C$EXITINFO

The C$EXITINFO library routine returns information about an exit from an 
END procedure in the declaratives.

Usage
CALL "C$EXITINFO" 
    USING EXIT-MESSAGE, EXIT-CODE, OS-EXIT-CODE, SIGNAL-NUMBER

Parameters

EXIT-MESSAGE  Alphanumeric

Contains the lines of text that the runtime outputs to the error file or shutdown 
message box.  Each line of text is separated by a newline character H‘0A’. 

EXIT-CODE  Numeric (optional)

Contains one of the following codes (listed in “lib/sub.h”):
    1     COBOL_EXIT_PROGRAM
    2     COBOL_REMOTE_CALL
    3     COBOL_STOP_RUN
    4     COBOL_CALL_ERROR
    5     COBOL_SIGNAL
    6     COBOL_FATAL_ERROR
    7     COBOL_NONFATAL_ERROR
    8     COBOL_DEBUGGER

OS-EXIT-CODE  Numeric (optional)

Contains the value that the process passes to the system exit routine

SIGNAL-NUMBER  Numeric (optional)

This is always “0” on Windows.  On UNIX, it contains the signal number if 
EXIT-CODE is “5” (COBOL_SIGNAL).



General Syntax and Library List  I-69
C$FILEINFO

C$FILEINFO retrieves some operating system information about a given 
file. 

Usage
CALL "C$FILEINFO" 
    USING FILE-NAME, FILE-INFO, 
    GIVING STATUS-CODE

Parameters

FILE-NAME   PIC X(n)

Contains the name of the file to check.  This should either be a full path name 
or a name relative to the current directory.  Remote name notation and 
“@[DISPLAY:]” notation are allowed for this parameter.  If run in 
standalone mode, and the “@[DISPLAY]” syntax is used, the file will be 
searched for on the local machine.

FILE-INFO   Group item to receive returned information.  

FILE-INFO must have the following structure:
01  FILE-INFO.
    02  FILE-SIZE    PIC X(8) COMP-X.
    02  FILE-DATE    PIC 9(8) COMP-X.
    02  FILE-TIME    PIC 9(8) COMP-X.

STATUS-CODE   Any numeric data item.

This receives the return status.  It will be zero if successful, or “1” if the file 
does not exist or is not a regular disk file.

Description

This routine checks to see if the passed file exists and is a regular disk file.  If 
it is, then FILE-INFO is filled in with the appropriate information.  The 
FILE-SIZE field is the size of the file in bytes.  The FILE-DATE and 
FILE-TIME fields indicate the time the file was last modified.  FILE-DATE 
has the form “YYYYMMDD” (year/month/day, note the 4-digit year) and 



I-70  ACUCOBOL-GT Library Routines
FILE-TIME has the form “HHMMSShh” (hours/minutes/seconds/
hundredths--just like ACCEPT FROM TIME).  On all current 
implementations, the hundredths field is always set to zero.  

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

C$FILESYS

C$FILESYS performs one of three functions, depending on the operations 
code passed to it.  It retrieves the names of file systems known to the runtime, 
determines whether a particular file system is known, or returns a count of all 
known file systems. 

Usage
CALL "C$FILESYS" 
    USING OP-CODE, FILE-SYSTEM

Parameters

OP-CODE   PIC 9

The value indicates the desired operation.  

FILE-SYSTEM   PIC X(5)

Passes or returns a file system name.  The names that are recognized are up 
to five characters long and are listed in the program filetbl.c, which is linked 
into the runtime.  (For example, use “visio” for Vision, “infor” for Informix, 
“oracl” for Oracle, and “sybas” for Sybase.)

Comments

This routine can determine which file systems are known to the runtime, and 
can give a count of known systems.  



General Syntax and Library List  I-71
The file system names are up to five characters long, and are listed in 
filetbl.c, which must be linked into the runtime.  The (activated) names listed 
in filetbl.c are the names that are returned by this routine, and the only names 
that the routine recognizes.

If OP_CODE is “0”, both parameters are required.  The routine returns the 
first file system known to the runtime and gets set up to return the rest.  
RETURN-CODE will be set to “1” if there was a file system to return, or “0” 
if not.

If op-code is “1”, both parameters are required.  The routine returns the next 
file system known to the runtime.  RETURN-CODE is set to “1” if there was 
a file system to return, or “0” if not (there are no more).  You can call the 
routine with this parameter repeatedly, until RETURN-CODE is set to “0”.

If op-code is “2”, both parameters are required.  The routine checks to see if 
the passed file system is known to the runtime.  You must pass one of the 
names used in the program filetbl.c.  (The routine checks only the first five 
characters of the name you pass; the rest are ignored.)  The case of the name 
does not matter.  For example, “SYBAS” and “sybas” are equivalent.  
RETURN-CODE is set to “1” if yes, or “0” if no.

If op-code is “3”, the second parameter is not required.  RETURN-CODE is 
set to the number of known file systems.

C$FULLNAME

C$FULLNAME locates a file by using the runtime’s filename translation and 
search logic.  The routine returns the full name of the corresponding file. 

Usage
CALL "C$FULLNAME"
    USING FILE-NAME, FULL-NAME, FILE-INFO
    GIVING STATUS-CODE

Parameters

FILE-NAME   PIC X(n)



I-72  ACUCOBOL-GT Library Routines
Specifies the name of the file to be located.  

FULL-NAME   PIC X(n)

Data item to receive the full name of the file.

FILE-INFO   Group item (optional)

Group item to receive information about the file located.  Must have this 
structure: 
01  FILE-INFO.
    02  FILE-SIZE    PIC X(8) COMP-X.
    02  FILE-DATE    PIC 9(8) COMP-X.
    02  FILE-TIME    PIC 9(8) COMP-X.

The FILE-SIZE field is the size of the file in bytes.  The FILE-DATE and 
FILE-TIME fields indicate the time the file was last modified.  FILE-DATE 
has the form “YYYYMMDD” (year/month/day, note the 4-digit year) and 
FILE-TIME has the form “HHMMSShh” (hours/minutes/seconds/
hundredths--just like ACCEPT FROM TIME).  On all current 
implementations, the hundredths field is always set to zero.  

STATUS-CODE   Any numeric data item.

This receives the return status.  It will be zero if successful, or “1” if 
FILE-NAME could not be found on disk or if FILE-NAME is not the name 
of a regular disk file.

Description

C$FULLNAME invokes the runtime’s data file search logic on 
FILE-NAME.  This involves using the configuration variables 
FILE_PREFIX, FILE_SUFFIX and FILE_CASE.  The disk is searched 
using the rules described in Section 2.9 of the ACUCOBOL-GT User’s 
Guide.  The first matching file is returned in FULL-NAME.  Note that the 
returned name is not automatically a full path name.  Instead, it is the name 
of the file as the runtime found it.  This may be based on the current directory.  

If FILE-INFO is specified, information about the file located is returned in it. 



General Syntax and Library List  I-73
Note: The search techniques do not involve any file system specific 
techniques.  For example, the Vision file system has a name mapping 
facility for its additional segments.  This facility is not used when the 
runtime is searching for the file.  Also note that remote file names are 
searched for when used in conjunction with AcuServer. 

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

C$GETCGI

The C$GETCGI routine retrieves CGI (Common Gateway Interface) 
variables. 

Usage
CALL "C$GETCGI"
    USING VARIABLE-NAME, DEST-ITEM, VALUE-INDEX
    GIVING VALUE-SIZE

Parameters

VARIABLE-NAME   PIC X(n)

Contains the name of the CGI variable.

DEST-ITEM   PIC X(n)

Receives the value of the given CGI variable.

VALUE-INDEX   Numeric value

Contains the CGI value index.  This optional parameter contains an index that 
is used when a CGI variable has multiple values in the CGI input data.  This 
typically happens when multiple items have been selected from a “choose 
many” list box.  For example, to receive the third selected value, pass 3 for 



I-74  ACUCOBOL-GT Library Routines
VALUE-INDEX.  If VALUE-INDEX is greater than the total number of 
values in the input stream for the given CGI variable, then spaces are moved 
to DEST-ITEM.

VALUE-SIZE   Signed numeric value

Receives the size of the resulting value.  This may be “0” to indicate that the 
variable exists but has no value, or “-1” to indicate that the variable does not 
exist.

Description

This library routine is intended to be called from COBOL CGI scripts to 
retrieve CGI variables from either the environment or the standard input 
stream, “stdin”.

C$GETCGI automatically determines whether to read the CGI variable from 
the environment or “stdin” depending on the value of the 
“REQUEST_METHOD” environment variable, which is set by the Web 
Server.  The first time C$GETCGI is called, it reads all of the CGI variables 
and values into a variable length buffer.  If REQUEST_METHOD is “GET”, 
then the data is read from the “QUERY_STRING” environment variable.  If 
the REQUEST_METHOD is “POST”, then it is read from “stdin”.

Each time C$GETCGI is called, it searches for the variable name passed in 
the first parameter, translates the value from CGI format into standard 
format, and moves the result to the destination item passed in the second 
parameter.  An optional third parameter specifies a CGI value index.  This 
index is used when a CGI variable has multiple values in the CGI input data, 
such as the case where multiple items have been selected from a 
“choose-many” list.

The size of the resulting value is returned in the special RETURN-CODE 
register.  This may be “0” to indicate that the variable has no value or “-1” to 
indicate that the variable does not exist.  The value of RETURN-CODE is 
moved to VALUE-SIZE.

The value is truncated to the size of the destination item.



General Syntax and Library List  I-75
You may use C$GETCGI instead of or in combination with external forms.  
Use C$GETCGI if you must know the exact size of a CGI variable or if you 
are converting an existing COBOL CGI program.

C$GETERRORFILE

This routine returns the name of the runtime error file as specified with the 
runtime “-e” command-line option or with a call to the 
C$SETERRORFILE routine.

Usage
CALL "C$GETERRORFILE"
    USING ERROR-FILE-NAME

Parameters

ERROR-FILE-NAME PIC X(n)

Contains the name of the error file or spaces if no error file was specified.

C$GETEVENTDATA

When an ActiveX control or COM object generates an event, it makes 
information about the event available through event parameters. These 
parameters are stored in the control and can be retrieved by calling 
C$GETEVENTDATA from the control’s event procedure.

Usage
CALL "C$GETEVENTDATA" 
    USING EVENT-CONTROL-HANDLE, DEST-ITEM-1, [DEST-ITEM-2, ...]
    GIVING RESULT-CODE

Parameters

EVENT-CONTROL-HANDLE     USAGE HANDLE

Handle to the control that generated the event. 



I-76  ACUCOBOL-GT Library Routines
DEST-ITEM-1    Any COBOL data type

The first destination data item. 

DEST-ITEM-2, ...    Any COBOL data type (optional)

Any number of destination items. 

RESULT-CODE    Signed numeric value

Receives the result-code for the operation. This will be 0 to indicate success 
or a negative value to indicate failure.  (Microsoft defines many standard 
“result codes” in their documentation.  Note that these are usually in 
hexadecimal notation.)

Comments

C$GETEVENTDATA converts the event parameters to COBOL-type data in 
the destination items. 

You are responsible for specifying compatible types.  For instance, if the 
event parameter is a character string and you specify a numeric item to 
receive its value, C$GETEVENTDATA will try to read a number from the 
string and move it to your numeric item.  This is not a programming error and 
neither the compiler nor runtime will warn you about it.

Example

Suppose you have displayed an ActiveX control that triggers an event called 
AxEventOne which has three parameters. You would use the following 
COBOL syntax to get the event parameters into data items PARAM-1, 
PARAM-2 and PARAM-3:
WHEN AxEventOne
  CALL "C$GETEVENTDATA" USING EVENT-CONTROL-HANDLE, 
     PARAM-1, PARAM-2, PARAM-3  

For more examples of how to get event parameters for ActiveX events, refer 
to section 4.4 in A Guide to Interoperating with ACUCOBOL-GT.



General Syntax and Library List  I-77
C$GETEVENTPARAM

C$GETEVENTPARAM is an alternate way to get event parameters for 
ActiveX controls.  Use it to get a single event parameter when there are 
several for an event.  To use this routine you must know the actual name of 
the parameter. You may determine these names by reading the ActiveX 
control’s documentation or by looking at the definitions in the copy book for 
the ActiveX control. 

It is common for an ActiveX event to receive many parameters. 
C$GETEVENTPARAM allows you to get the values of only the parameters 
you care about. 

Please note that C$GETEVENTPARAM cannot be used to get event 
parameters for COM objects.  You must use C$GETEVENTDATA for COM 
objects.

Usage
CALL "C$GETEVENTPARAM" 
    USING EVENT-CONTROL-HANDLE, PARAM-NAME, PARAM-VALUE
    GIVING RESULT-CODE

Parameters

EVENT-CONTROL-HANDLE    USAGE HANDLE

Handle to the control that generated the event. 

PARAM-NAME    PIC X(n)

The symbolic name of the event parameter.

PARAM-VALUE    Any COBOL data type

Destination item to receive the event parameter’s value. 

RESULT-CODE    Signed numeric value



I-78  ACUCOBOL-GT Library Routines
Receives the result-code for the operation. This will be 0 to indicate success 
or a negative value to indicate failure. (Microsoft defines many standard 
“result codes” in their documentation.  Note that these are usually in 
hexadecimal notation.)

Comments

C$GETEVENTPARAM converts the named event parameter’s value to 
COBOL-type data in the destination item.  Using this routine instead of 
C$GETEVENTDATA will make your code more readable. The object code 
will be a little larger and calls to this routine will take a little longer than calls 
to C$GETEVENTDATA. However, these differences will probably be 
unnoticeable and the benefits of readable code outweigh the performance and 
size considerations.

You are responsible for specifying a compatible types. For example, if the 
event parameter is a character string and you specify a numeric item to 
receive its value, C$GETEVENTPARAM will try to read a number from the 
string and move it to your numeric item. This is not a programming error and 
neither the compiler nor runtime will warn you about it.

Example

Suppose you have displayed an ActiveX control that triggers an event called 
AxEventOne which has three parameters. Then suppose that you only need to 
know the value of PARAM-2.  Since PARAM-2 is the second parameter, to 
get its value you would have to pass a “dummy” first parameter using 
C$GETEVENTDATA. For example:
CALL "C$GETEVENTDATA" USING EVENT-CONTROL-HANDLE, 0, PARAM-2.

However, if you determined that the name of PARAM-2 in the ActiveX 
control was”Param2”. You could then use C$GETEVENTPARAM to 
accomplish this task in a more elegant and readable way. For example:
CALL "C$GETEVENTPARAM" 
    USING EVENT-CONTROL-HANDLE, "Param2", PARAM-2.

For more examples of how to get event parameters for ActiveX events, refer 
to section 4.4 in A Guide to Interoperating with ACUCOBOL-GT.



General Syntax and Library List  I-79
C$GETLASTFILEOP

C$GETLASTFILEOP retrieves information about the last file operation 
performed.

Usage
CALL "C$GETLASTFILEOP" 
    USING OPERATION, ADDR, X-ADDR

Parameters

OPERATION   PIC X(n) 

Receives the name of the last file operation performed in the current thread.  
If the current thread has not performed any file operations, then 
OPERATION is set to spaces.  The possible values are:

If the current thread has not performed any file operations, then 
OPERATION is set to spaces.

ADDR    Numeric (optional) 

Receives the virtual address of the instruction that performed the last file 
operation in the current thread.  If no operation has been performed, zero is 
returned.

X-ADDR   PIC X(n) (optional) 

Close ReadPreviousLock

Commit ReadPreviousNoLock

Delete Rewrite

DeleteFile Rollback

Open Start

ReadLock StartTransaction

ReadNextLock Unlock

ReadNextNoLock UnlockAll

ReadNoLock Write



I-80  ACUCOBOL-GT Library Routines
Receives a 6-character string that contains the hexadecimal equivalent of the 
value returned in ADDR.

Description

C$GETLASTFILEOP should be called from Declaratives when an 
unexpected I/O error has occurred.  The return values can be useful in some 
debugging or customer support scenarios.  

The ADDR parameter is provided primarily for compatibility with other 
COBOL systems.  You would normally convert the value returned by ADDR 
to hexadecimal and look up the result in the program’s compiler listing.  As 
a convenience, the X-ADDR parameter performs the hexadecimal 
conversion for you.  You can omit the ADDR parameter by specifying 
“NULL” or “OMITTED” in the CALL statement, for example:

77  FILE-OP     PIC X(20).
77  X-ADDR      PIC X(6).
CALL "C$GETLASTFILEOP" USING FILE-OP, NULL, X-ADDR

This routine always returns a value of “0” for ADDR and X-ADDR when 
called by a Version 5.1, or earlier, native-code object file.  Non-native object 
files return correct values regardless of version.  

C$GETNETEVENTDATA

When a .NET assembly generates an event, it makes information about the 
event available through event parameters.  These parameters are stored in the 
assembly and can be retrieved by calling C$GETNETEVENTDATA from 
the assembly’s event procedure. 

Usage 
CALL "C$GETNETEVENTDATA"
    USING EVENT-CONTROL-HANDLE, DEST-ITEM-1, [DEST-ITEM-2, ...]
    GIVING RESULT-CODE   

Parameters 

EVENT-CONTROL-HANDLE   USAGE HANDLE 



General Syntax and Library List  I-81
Handle to the .NET assembly that generated the event. 

DEST-ITEM-1   Any COBOL data type 

The first destination data item. 

DEST-ITEM-2, ...   Any COBOL data type (optional) 

Any number of destination items. 

RESULT-CODE   Signed numeric value 

Receives the result-code for the operation. This will be “0” to indicate 
success or a negative value to indicate failure.  (Microsoft defines many 
standard “result codes” in their documentation. Note that these are usually in 
hexadecimal notation.) 

Comments 

C$GETNETEVENTDATA converts the event parameters to COBOL-type 
data in the destination items. 

You are responsible for specifying compatible types.  For instance, if the 
event parameter is a character string and you specify a numeric item to 
receive its value, C$GETNETEVENTDATA will try to read a number from 
the string and move it to your numeric item. This is not a programming error 
and neither the compiler nor runtime will warn you about it. 

Example 

Suppose you have displayed a .NET assembly that triggers an event called 
NetEventOne that has three parameters.  You would use the following 
COBOL syntax to get the event parameters into data items PARAM-1, 
PARAM-2 and PARAM-3: 
WHEN NetEventOne
   CALL "C$GETNETEVENTDATA" USING EVENT-CONTROL-HANDLE,
      PARAM-1, PARAM-2, PARAM-3



I-82  ACUCOBOL-GT Library Routines
C$GETPID

This routine returns the Process ID (PID) of the current process.  This PID 
can be compared with the PID returned by the C$LOCKPID to determine if 
the current process is the one holding a file lock or record locked condition. 

Usage
CALL "C$GETPID" 
    GIVING PROCESS-ID.

Parameters

PROCESS-ID   PIC 9(n)

This contains a numeric data item large enough to hold a PID.  On most 
platforms, PIC 9(5) is sufficient.  On 64-bit systems, PIC 9(7) is 
recommended.

Comments

When called from a non-UNIX or non-Windows runtime, C$GETPID 
returns a PROCESS-ID of  “0”.   This behavior should not be used for 
system identification.  Use ACCEPT ...  FROM SYSTEM-INFO instead 
(see Chapter 6 of Book 3).

C$GETVARIANT

This routine retrieves data referenced by a Variant handle.  Typically, this is 
data passed to an ACUCOBOL-GT program from another language such as 
Visual Basic. Note that there is also a C$SETVARIANT routine that sets 
data items referenced by Variant handles

C$GETVARIANT converts Variant type data to COBOL type data.  
Programs that call ACUCOBOL-GT using the ACUCOBOL-GT 
Automation Server or runtime DLL pass their parameters (by reference) as 
Variant types. The COBOL program receives handles to the Variant data.  
C$GETVARIANT gets the data associated with a particular handle and 
moves it to a COBOL data item.  The data is automatically converted to the 
proper COBOL format.



General Syntax and Library List  I-83
Usage
CALL "C$GETVARIANT" 
    USING H-VARIANT, DEST-ITEM
    GIVING RESULT-CODE

Parameters

H-VARIANT     USAGE HANDLE

Handle to Variant type data.  Data passed in from a program calling 
ACUCOBOL-GT using the ACUCOBOL-GT Automation Server or runtime 
DLL is in the form of handles to Variant type data.

DEST-ITEM     Any COBOL data type

The destination data item. 

RESULT-CODE     Signed numeric value

Receives the result code for the operation. This will be 0 or a positive value 
to indicate success or a negative value to indicate failure. 

Under Microsoft Windows this is a code of type HRESULT that can be 
looked up in Microsoft documentation to determine the reason for the failure 
or additional information about the success.

Comments

The Variant data associated with H-VARIANT is moved to DEST-ITEM 
using standard MOVE rules. Data items must be defined in the LINKAGE 
section.

C$GETVARIANT is not supported by the ACUCOBOL-GT Thin Client 
technology, and will only run with a standalone Windows runtime.



I-84  ACUCOBOL-GT Library Routines
C$JAVA

This routine enables your ACUCOBOL-GT program to invoke a Java 
program.  It causes the Java Virtual Machine (JVM) to be loaded (if it is not 
already) and the specified Java class to be loaded.  

Using this routine, you can create a Java object, call the methods of a Java 
object, create and use Java arrays, and use Java logging.

COBOL/Java interoperability is described fully in Chapter 2 of A Guide to 
Interoperating with ACUCOBOL-GT.  Section 2.3.1, “Calling the C$JAVA 
Routine,” provides detailed information and best practices for working with 
the C$JAVA routine.

Usage
CALL "C$JAVA" 
    USING OP-CODE, CLASS-NAME, METHOD-NAME, METHOD-SIGNATURE,
        FIELD-INT, FIELD-RETURN 
    GIVING STATUS-VAL

Note: To call Java via the C$JAVA routine, HP-UX users must relink the 
runtime so that it is statically linked to “libjvm.sl”.  To do this, modify lib/
Makefile (uncommenting and editing the lines regarding relinking for 
Java), then run make to relink the runtime. 

Parameters

OP-CODE    Numeric parameter

Specifies the operation to perform. These are defined in the description 
section below.

CLASS-NAME   Alphanumeric data item or literal

Specifies the fully qualified class name, with package name if necessary, of 
the Java class to load.

METHOD-NAME   Alphanumeric data item or literal



General Syntax and Library List  I-85
Specifies the name of the specific method in the Java class that you want to 
call.

METHOD-SIGNATURE   Alphanumeric data item or literal

Specifies the method signature ID of the exact method to be called.  You can 
get this value by running the Java utility “javap.exe”on the desired jar file or 
class.  This utility comes with the Java JRE and automatically produces the 
exact signature of a given method.  You can copy and paste this signature ID 
into your CALL “C$JAVA” statement.  You can also determine this value 
manually.  See section 2.3.1.1 in A Guide to Interoperating with 
ACUCOBOL-GT, for information determining method signatures including 
syntax examples. 

FIELD-INT   Numeric parameter

Specifies the input parameters that the method requires.

FIELD-RETURN   Numeric parameter

Specifies the parameter to hold the Java return value from the method.

STATUS-VAL   Numeric parameter

Specifies a status value be returned after the call is complete.  Possible return 
values are:

CJAVA-SUCCESS           VALUE 0.
CJAVA-INVALIDARG        VALUE -1.
CJAVA-INVALIDSIGNATURE  VALUE -2.
CJAVA-CLASSNOTFOUND     VALUE -3.
CJAVA-METHODNOTFOUND    VALUE -4.
CJAVA-INVALIDPARAMTYPE  VALUE -5.
CJAVA-JAVALIBNOTLOADED  VALUE -6.
CJAVA-MEMNOTALLOC       VALUE -7.
CJAVA-INVALIDOPCODE     VALUE -8.
CJAVA-NOMEMORY          VALUE -9.
CJAVA-METHODFAILED      VALUE -10.
CJAVA-MISSINGPARAM     VALUE -11.
CJAVA-INVALIDINDEX     VALUE -12.
CJAVA-EXCEPTIONOCCURRED  VALUE -13.



I-86  ACUCOBOL-GT Library Routines
CJAVA-MISSINGPARAM is returned if a required value is not passed into 
a Java method.  For example, say a method required five parameters, but only 
four were passed in. 

CJAVA-INVALIDINDEX is returned if the region specified is not in the 
array or the region is larger or goes past the end of the array.

CJAVA-EXCEPTIONOCCURRED is returned when a Java exception 
was thrown during the call to C$JAVA.  Use the 
CJAVA-GETEXCEPTIONOBJECT op-code to obtain the object of the 
Java exception.

Description

In all of the op-codes below, you can pass either the constant name or 
numeric value shown in parentheses. A “java.def” file is located in the 
sample/def directory where you installed ACUCOBOL-GT.  It contains the 
op-codes for C$JAVA, as well as array types and return values.  You can 
include the file “java.def” in your COBOL program using the following 
statement if the “java.def” file is located in the same directory as the “.cbl” 
file:
   working-storage section.
   COPY "java.def".

CJAVA-NEW (op-code 1)

Create a new Java object on the local Java Virtual Machine (JVM).  You must 
pass a fully qualified package/classname. Use the GIVING statement to 
return the object handle.  For example:
CALL "C$JAVA" USING CJAVA-NEW, "MyJavaClass", GIVING 
OBJECT-HANDLE.

CJAVA-DELETE (op-code 2)      

Delete an existing Java object.

CJAVA-CREATE (op-code 3)

Create a new Java object.  This is the same as using the CJAVA-NEW 
op-code.  See op-code 1 for more details.



General Syntax and Library List  I-87
CJAVA-DESTROY (op-code 4)

Destroy a Java object. You must pass a valid object handle:
CALL "C$JAVA" USING CJAVA-DESTROY, OBJECT-HANDLE 
   GIVING STATUS-VAL.

Refer to A Guide to Interoperating with ACUCOBOL-GT, Chapter 2, 
section 2.3.1.3, “Creating and Using Java Objects in COBOL,” for additional 
details.

CJAVA-INVOKE (op-code 7)

Same as CJAVA-CALLSTATIC.  See op-code 10 for details.

CJAVA-CALL (op-code 8)

Call a virtual Java method.  For example:
CALL "C$JAVA" USING CJAVA-CALL, OBJECT-HANDLE, 
"CobolCallingJavaStringV", "(X)X", FIELD-STRING, 
FIELD-STRINGRET GIVING STATUS-VAL.

Note that the object handle and method name are passed, but the class name 
is not required.  Because an object handle has already been created, C$JAVA 
knows what type the handle is. 

Methods can be called as static methods, virtual methods, or non-virtual 
methods by using op-codes 8 -10.  If an op-code is not used, the default 
runtime behavior is to attempt to call the method statically, and then as a 
virtual method by attempting to create an object using a default constructor. 
A non-virtual method is called on the specific object that is being used. A 
virtual method can be called on a method that is inherited from one of the 
object’s superclasses. 

CJAVA-CALLNONVIRTUAL (OP-CODE 9)

Call a non-virtual Java method on the specific object that is being used.  For 
example:



I-88  ACUCOBOL-GT Library Routines
CALL "C$JAVA" USING CJAVA-CALLNONVIRTUAL, OBJECT-HANDLE, 
"CobolCallingJavaStringV", "(X)X", FIELD-STRING, 
FIELD-STRINGRET GIVING STATUS-VAL.

CJAVA-CALLSTATIC (op-code 10)

Call a static Java method.  For example:
CALL "C$JAVA" USING CJAVA-CALLSTATIC, "acuCobolGT/CAcuCobol",
   "CobolCallingJavaDouble", "(D)D", 
   FIELD-DOUBLE, FIELD-DOUBLERET 
   GIVING STATUS-VAL

Note that you can call static methods directly without having to create an 
object first.

Refer to A Guide to Interoperating with ACUCOBOL-GT, Chapter 2, 
section 2.3.1.3, subsection “Calling Methods on Java Objects,” for additional 
details.

CJAVA-NEWARRAY (op-code 11)

Create a new Java array.   This is the same as using the 
CJAVA-CREATEARRAY op-code.  See op-code 18 for more details. See 
also A Guide to Interoperating with ACUCOBOL-GT, Chapter 2, section 
2.3.1.4, “Creating and Using Java Arrays in COBOL.”

CJAVA-DESTROYARRAY (op-code 12)

Destroy a Java array.  Refer to A Guide to Interoperating with 
ACUCOBOL-GT, Chapter 2, section 2.3.1.4, “Creating and Using Java 
Arrays in COBOL,” for additional details.

CJAVA-SETARRAYELEMENT (op-code 13)

Set Java array elements.  Pass in an array handle, the position in the array to 
set, and the value to set. In the following example, the first element of an 
array is set with the first value from an integer table that is USAGE IS 
SIGNED-INT OCCURS 10.
CALL "C$JAVA" USING CJAVA-SETARRAYELEMENT, ARRAY-HANDLE, 1, 
INT-TABLE(1), GIVING STATUS-VAL.



General Syntax and Library List  I-89
Note: Although Java array elements start at “0”, COBOL arrays start at 
“1”.   Because C$JAVA is a COBOL statement, the 
SETARRAYELEMENT and GETARRAYELEMENT op-codes, and all 
array access from C$JAVA, use “1” as the beginning of the array.

CJAVA-GETARRAYELEMENT (op-code 14)

Get a Java array element.  This call requires an array handle, the position in 
the array to get, and the variable into which the array value will be placed. 
Here is an example:
CALL "C$JAVA" USING CJAVA-GETARRAYELEMENT, 
   ARRAY-HANDLE, 5, INT-TABLE(1), 
   GIVING STATUS-VAL.

In this case, we are getting element 5 from the array and placing it in the first 
element of an integer table.

Refer to A Guide to Interoperating with ACUCOBOL-GT, Chapter 2, 
section 2.3.1.4, “Creating and Using Java Arrays in COBOL,” for additional 
details.

CJAVA-CLEARARRAY (op-code 15)

Clear a Java array.  Pass in the array handle of the array to be cleared. Here is 
an example:
CALL "C$JAVA" USING CJAVA-CLEARARRAY, ARRAY-HANDLE 
   GIVING STATUS-VAL.

Refer to A Guide to Interoperating with ACUCOBOL-GT, Chapter 2, 
section 2.3.1.4, “Creating and Using Java Arrays in COBOL,” for additional 
details.

CJAVA-CONVERTARRAYTOTABLE (op-code 16)

Convert a Java array to a COBOL table.  Although ACUCOBOL-GT 
normally does this automatically, this op-code gives the COBOL 
programmer more precise control over the conversion process.  The call takes 



I-90  ACUCOBOL-GT Library Routines
the array handle, the number of elements to convert, the starting element 
position in the array, and the COBOL table variable in which to place the 
converted array.

Here is an example of an array of Java ints being converted to a USAGE 
SIGNED-INT OCCURS 10 table:
CALL "C$JAVA" USING CJAVA-CONVERTARRAYTOTABLE, 
   ARRAY_HANDLE, 10, 0, INT-TABLE(1) 
   GIVING STATUS-VAL.

Refer to A Guide to Interoperating with ACUCOBOL-GT, Chapter 2, 
section 2.3.1.4, “Creating and Using Java Arrays in COBOL,” for additional 
details.

CJAVA-LOGMESSAGE (op-code 17)

This operation places an entry in the Java log.  Java messages can be logged 
from a COBOL program using the CJAVA-LOGMESSAGE as follows:
CALL "C$JAVA" USING CJAVA-LOGMESSAGE, "Message to log".

The advantage of using the Java log is that it is thread-safe, and all of the 
messages from a given thread of execution are written to the same log 
whether that thread is executing COBOL or Java. Also, logs in Java are 
highly configurable. Note that the log output above is formatted to report 
date, time, class, method, and log level before the message.  You can 
configure logging by modifying the “logging.properties” file found in the 
runtime directory.

Refer to A Guide to Interoperating with ACUCOBOL-GT, Chapter 2, 
section 2.3.1.5, “Using Java Logging from COBOL,” for additional details.

CJAVA-CREATEARRAY (op-code 18)

Create a new Java array.  Following are the array types supported by 
C$JAVA:
   CJAVA-OBJECTARRAY     VALUE 300.
   CJAVA-BOOLEANARRAY    VALUE 301.
   CJAVA-BYTEARRAY       VALUE 302.
   CJAVA-CHARARRAY       VALUE 303.
   CJAVA-SHORTARRAY      VALUE 304.



General Syntax and Library List  I-91
   CJAVA-INTARRAY        VALUE 305.
   CJAVA-LONGARRAY       VALUE 306.
   CJAVA-FLOATARRAY      VALUE 307.
   CJAVA-DOUBLEARRAY     VALUE 308.
   CJAVA-STRINGARRAY     VALUE 309.

To create an array of primitive types, pass the type of array, the size of the 
array, and return the array handle through the GIVING statement. For 
example:
CALL "C$JAVA" USING CJAVA-CREATEARRAY, 
   CJAVA-INTARRAY, ARRAY-SIZE 
   GIVING ARRAY-HANDLE.

To create an object array: 
CALL "C$JAVA" USING CJAVA-CREATEARRAY, 
   CJAVA-OBJECTARRAY, 10 
   GIVING ARRAY-HANDLE.

In this case, the array consists of an array of object handles. 

To create a string array:

Even though strings in Java are objects, they are treated separately for the 
convenience of using them with PIC X tables.  Here is an example of creating 
a string array:
CALL "C$JAVA" USING CJAVA-CREATEARRAY, 
   CJAVA-STRINGARRAY, 10 
   GIVING ARRAY-HANDLE.

Refer to A Guide to Interoperating with ACUCOBOL-GT, Chapter 2, 
section 2.3.1.4, “Creating and Using Java Arrays in COBOL,” for additional 
details.

CJAVA-CONVERTTABLETOARRAY (op-code 19)

Convert a COBOL table to a Java array.  Although ACUCOBOL-GT 
normally does this automatically, this op-code gives the COBOL 
programmer more precise control over the conversion process.  The call 
requires the COBOL table from which the values will be taken, the number 
of elements, the position of the first element, and the handle of the destination 
array.



I-92  ACUCOBOL-GT Library Routines
Here is an example of call that converts a table to an array:
CALL "C$JAVA" USING CJAVA-CONVERTTABLETOARRAY, 
   INT-TABLE(1), 10, 0, ARRAY-HANDLE, 
   GIVING STATUS-VAL.

Refer to A Guide to Interoperating with ACUCOBOL-GT, Chapter 2, 
section 2.3.1.4, “Creating and Using Java Arrays in COBOL,” for additional 
details.

CJAVA-LOADCLASS (op-code 20)

Manually load a Java class prior to use.  Normally, java doesn’t require 
classes to be manually loaded. When you create new object, java typically 
searches the classpath and loads the class.

CJAVA-DBCONNECT (OP-CODE 21)

Connect to a Java Database Connectivity (JDBC) data source.

Because the “CVM.jar” package that comes with ACUCOBOL-GT contains 
a Java class for connecting to JDBC data sources and querying those data 
sources for ResultSet objects, you do not have to use the C$JAVA routine to 
do this.  However, using C$JAVA is somewhat more efficient because the 
Connection and ResultSet handles do not have to be created prior to being 
used. 

To use op-codes 21 and 22, you must include the “java.def” file in the 
working storage section of your COBOL program. Be sure that  “java.def” 
file is located in the same directory as the “.cbl” file.

Refer to the Interoperability Guide section 2.3.1.6 for more information on 
achieving connectivity with a JDBC data source.

CJAVA-DBQUERY (OP-CODE 22)

Query the JDBC ResultSet.  See op-code 21.  



General Syntax and Library List  I-93
CJAVA-NEWREMOTEOBJECT (OP-CODE 23)

Connect to a Remote Object Invocation (RMI) server, and create an instance 
of a remote object on that server.  This operation takes three parameters: the 
host name, the server name, and the port number. Here is an example of the 
call:
CALL "C$JAVA" USING CJAVA-NEWREMOTEOBJECT, "localhost", 
"RemoteInterfaceServer", PORT-NUMBER GIVING REMOTE-OBJ.

CALL "C$JAVA" USING CJAVA-CALL, REMOTE-OBJ, "acuUtilities/
RemoteInterfaceServer", "RemoteMethod", "()X", FIELD-STRINGRET 
GIVING STATUS-VAL.

CALL "C$JAVA" USING CJAVA-DELETE, REMOTE-OBJ GIVING 
STATUS-VAL.

CJAVA-STARTREMOTESERVER (OP-CODE 24)

Start the RMI server.  For example:
CALL "C$JAVA" USING CJAVA-NEW, "acuUtilities/AcuRMIServer", 
"()V" GIVING REMOTE-SERVER.
CALL "C$JAVA" USING CJAVA-STARTREMOTESERVER, REMOTE-SERVER, 
"RemoteInterfaceServer", PORT-NUMBER GIVING STATUS-VAL.

CJAVA-SETARRAYREGION (OP-CODE 25)

Take a Java array object and copy the elements from a COBOL table data 
item into a specified range.

CJAVA-GETARRAYREGION (OP-CODE 26)

Take a Java array object, get the specified range of elements, and copy them 
into a COBOL table data item. 

CJAVA-GETEXCEPTIONOBJECT (OP-CODE 27)

Return the exception object of the last Java exception thrown.  Once the 
exception object is returned, you can call any of the methods on the exception 
object that are documented in the Java documentation.



I-94  ACUCOBOL-GT Library Routines
CJAVA-SETSYSTEMPROPERTY  (OP-CODE 28)

Change a system property.  Useful for setting CLASSPATH and 
LIBRARYPATH environment variables.  For example:
CALL "C$JAVA" USING CJAVA-SETSYSTEMPROPERTY, 
"java.class.path",
"d:\MyClasses.jar;d:\otherDir" GIVING STATUS-VAL.

CALL "C$JAVA" USING CJAVA-SETSYSTEMPROPERTY, 
"java.library.path",
"C:\Acucorp\Acucbl800\AcuGT\bin;d:\otherDir" GIVING 
STATUS-VAL.

CJAVA-CALLJAVAMAIN  (OP-CODE 29)

Call a Java main method.  For example:
CALL "C$JAVA" USING CJAVA-CALLJAVAMAIN, "CobolCallingJava", "StrParam1",
    "StrParam2", "StrParam3", "StrParam4" GIVING STATUS-VAL.

This example calls a Java main method with the following signature:
public static void main( String[] args );

The main method signature can include optional exceptions that have been 
specified by the Java programmer.  The first parameter is the op-code, the 
second parameter is the name of the class containing the main method.  This 
directory or JAR file containing this class must be placed on the 
CLASSPATH environment variable. The number of string parameters can be 
zero or as many as is possible to pass using the CALL statement. The 
COBOL calling Java samples in the sample/java directory have been updated 
to include a sample of such a call.

C$JUSTIFY

C$JUSTIFY performs left or right justification of data and centering of data. 

Usage
CALL "C$JUSTIFY" 
    USING DATA-ITEM, JUSTIFY-TYPE



General Syntax and Library List  I-95
Parameters

DATA-ITEM   Any data item

This data item contains the data to be justified.  

JUSTIFY-TYPE   PIC X

This optional parameter contains one of three literal values: 

If this parameter is omitted, then “R” is implied.

Description

This routine removes all leading and trailing spaces from DATA-ITEM and 
justifies the remaining data as indicated by JUSTIFY-TYPE.  The resulting 
string is returned in DATA-ITEM.  If centering is chosen, there will be one 
more space on the right than on the left if an odd number of spaces is used.

C$KEYMAP

The C$KEYMAP routine maintains a stack of keyboard configurations.  This 
routine is used to save the current keyboard configuration just before you 
change it.  You can then later restore the original configuration by another 
call to this routine.  The ACUCOBOL-GT debugger uses this routine before 
reprogramming the keyboard for its use.  

Usage
CALL "C$KEYMAP" 
    USING KEYSTROKE-SETTING, STATUS-VAL

Parameters

KEYSTROKE-SETTING  Numeric parameter

L indicates left justification

R indicates right justification

C indicates centering



I-96  ACUCOBOL-GT Library Routines
Dictates whether to save (“1”) or restore (“0”) the keyboard settings.

STATUS-VAL    COMP-1 (optional)

Returns “1” if successful, “0” otherwise.

Comments

If KEYSTROKE-SETTING is set to “1”, then the current KEYSTROKE 
settings are pushed onto a stack.  If it is “0”, then the KEYSTROKE settings 
are restored from the stack and the stack is popped.  For a description of 
KEYSTROKE settings, see the ACUCOBOL-GT User’s Guide, section 
4.3.2.2, “The KEYSTROKE variable.”

The keyboard stack has space for 10 entries.  One of these should be reserved 
for use by the debugger.  If the stack overflows, or inadequate dynamic 
memory is available to save the keyboard configuration, then this routine 
does nothing.  

This routine may optionally be passed a second parameter.  This must be a 
COMP-1 field.  It is set to “1” if the routine succeeds.  It is set to “0” if the 
stack is full or inadequate memory is available.

The NOTEPAD.CBL sample program provided with ACUCOBOL-GT 
contains an example of the use of this routine.  

C$KEYPROGRESS

The C$KEYPROGRESS routine is used in a USE FOR REPORTING 
declarative procedure to obtain information about the progress of the system 
when it is adding keys to a file open for BULK-ADDITION.  

Usage
CALL "C$KEYPROGRESS" 
    USING KEYPROGRESS-DATA

Parameters

KEYPROGRESS-DATA  Group item as follows: 



General Syntax and Library List  I-97
01  KEYPROGRESS-DATA, SYNC.
    03  KEYPROG-CUR-KEY    PIC XX COMP-N.
    03  KEYPROG-NUM-KEYS   PIC XX COMP-N.
    03  KEYPROG-CUR-REC    PIC X(4) COMP-N.
    03  KEYPROG-NUM-RECS   PIC X(4) COMP-N.

This item holds the results of the C$KEYPROGRESS routine call.  A copy 
of this data item can be found in the COPY library “keyprog.def”.  

Description

When you call C$KEYPROGRESS from inside a USE FOR REPORTING 
declarative procedure, the KEYPROGRESS-DATA group item is filled in 
with information about the progress the runtime is making in adding keys to 
a file that has been opened for BULK-ADDITION.  Calling 
C$KEYPROGRESS at any other time has undefined effects.  

The individual fields of the group item hold the following information:

KEYPROG-CUR-KEY -- this is the current key being worked on by 
Vision.  The primary key is key “1”, the first alternate is key “2”, and so on.

KEYPROG-NUM-KEYS -- this is the total number of keys in the file.

KEYPROG-CUR-REC -- this is the number of the last record written for 
the current key, ranging from 1 to the total number of records to write.

KEYPROG-NUM-RECS -- this is the total number of records to be keyed.  

For more information about how and when to use C$KEYPROGRESS, see 
Section 6.1.6.3 in the ACUCOBOL-GT User’s Guide.

C$LIST-DIRECTORY

The C$LIST-DIRECTORY routine lists the contents of a selected directory.  
Each operating system has a unique method for performing this task. 
C$LIST-DIRECTORY provides a single method that will work for all 
operating systems.



I-98  ACUCOBOL-GT Library Routines
Usage
CALL "C$LIST-DIRECTORY" 
    USING OP-CODE, parameters 

Parameters

OP-CODE   PIC 99 COMP-X 

Indicates which C$LIST-DIRECTORY operation to perform.   The 
operations are described below.

Parameters   vary depending on the op-code chosen.

Provides information and hold results for the operations specified.  These 
parameters are described below.

Description

C$LIST-DIRECTORY allows you to get the names of files residing in a 
given directory.  It accomplishes this through three distinct operations.  The 
first operation opens the specified directory.  The second operation returns 
the filenames in the list, one-at-a-time.  The third operation closes the 
directory and deallocates all memory used by the routine.  
C$LIST-DIRECTORY has the following operation codes (defined in 
“acucobol.def”): 

LISTDIR-OPEN (VALUE 1) Opens the specified directory.  It has two 
parameters:

Directoryname PIC X(n)

Contains the name of the directory to open.  This directory must exist, 
and you must have permissions to read the directory.  You may use 
remote name syntax if AcuServer is installed on the remote machine.

Pattern PIC X(n)

Specifies the type of filename for which to search.  This routine 
supports “wildcards,” meaning that the character “*” will match any 
number of characters, and the character “?” will match any single 
character.  For example, you can search by file suffix (*.def) or by a 
common part of a file name (acu*).



General Syntax and Library List  I-99
Note: On VMS platforms, when searching for all files in a directory, 
you must specify “*.*” instead of “*”. 

If the call to LISTDIR-OPEN is successful, RETURN-CODE contains a 
handle to the list.  The value in RETURN-CODE should be moved to a data 
item that is USAGE HANDLE.  That data item should be passed as the 
directory handle to the other C$LIST-DIRECTORY operations.  If the call to 
LISTDIR-OPEN fails (if the directory does not exist, contains no files, or you 
do not have permission to read the directory), RETURN-CODE is set to a 
NULL handle. 

LISTDIR-NEXT (VALUE 2) Reads each filename from the open 
directory.  It has two parameters:

Handle USAGE HANDLE

The handle returned in the LISTDIR-OPEN operation.

Filename PIC X(n)

The location of the next filename to be returned.  If the directory listing 
is finished, it is filled with spaces.

The call to LISTDIR-NEXT can include an additional argument, 
LISTDIR-FILE-INFORMATION (defined in “acucobol.def”), which 
receives information about the returned file name.  This is an optional group 
item which returns information about the following data items:

LISTDIR-FILE-TYPE The file type can be one of the following:
B = block device
C = character device
D = directory
F = regular file
P = pipe (FIFO)
S = socket
U = unknown

LISTDIR-FILE-
CREATION-TIME 

The creation time is the date (and time) that the 
file was originally created.

 LISTDIR-FILE-LAST-
ACCESS-TIME 

The last access time is the date (and time) that the 
file was last accessed by some application 
(usually when the file was queried in some way). 



I-100  ACUCOBOL-GT Library Routines
Note: Because the supported file types vary by operating system, These 
data items have slightly different meanings depending on your operating 
system.  Even on operating systems that support these values, some file 
systems may not.  Some versions of the UNIX® operating system may 
change these values when permissions are changed.  Refer to your 
operating system documentation for specific definitions. 

LISTDIR-CLOSE (VALUE 3) Releases the resources used by the other 
operations.  It must be called to avoid memory leaks.  It has one parameter, 
handle, which is the same data item used by the LISTDIR-NEXT operation.

Handle USAGE HANDLE

The handle returned in the LISTDIR-OPEN operation.

Example

The following example lists the contents of a directory with repeated calls 
C$LIST-DIRECTORY:
WORKING-STORAGE SECTION.
copy "def/acucobol.def".
01  pattern       pic x(5) value "*.vbs".
01  directory     pic x(20) value "/virusscan".
01  filename      pic x(128).
01  mydir         usage handle.
PROCEDURE DIVISION.
MAIN.
* CALL LISTDIR-OPEN to get a directory handle.
    call "C$LIST-DIRECTORY" 
       using listdir-open, directory, pattern.
    move return-code to mydir.
    if mydir = 0
       stop run
    end-if.
* CALL LISTDIR-NEXT to get the names of the files.  
* Repeat this operation until a filename containing only 

LISTDIR-FILE-LAST-
MODIFICATION-TIME

 The last modification time is the date (and time) 
the file was last written to. 

LISTDIR-FILE-SIZE The size of the file is given in bytes.



General Syntax and Library List  I-101
* spaces is returned.  The filenames are not necessarily 
* returned in any particular order.  Filenames may be 
* sorted on some machines and not on others.
    perform with test after until filename = spaces
       call "C$LIST-DIRECTORY" 
          using listdir-next, mydir, filename
    end-perform.
* CALL LISTDIR-CLOSE to close the directory and deallocate
* memory. Omitting this call will result in memory leaks.
    call "C$LIST-DIRECTORY" using listdir-close, mydir.
    stop run.

C$LOCALPRINT

The C$LOCALPRINT routine provides access to the ACUCOBOL-GT 
window manager’s local print mechanism.  This allows the program to write 
to a printer or other device attached directly to the user’s terminal.  One or 
two USING parameters should be provided.   

Usage
CALL "C$LOCALPRINT"
    USING SOURCE-DATA, LINE-SPACE

Parameters

SOURCE-DATA   PIC X(n)

This contains the data that will be sent to the local device.  Any trailing 
spaces will be removed before the data is sent.  

LINE-SPACE    Numeric parameter (optional)

The second parameter, if specified, determines the line spacing provided by 
the routine.  Its value is interpreted as follows:

0 No additional characters are sent after the data

1 A carriage return is sent after the data



I-102  ACUCOBOL-GT Library Routines
If the second parameter is not supplied, then it is treated as if it were a “2”.  

You may add either or both of the following values to the value contained in 
the second parameter:

For example, a second parameter value of “12” causes the printer to be 
advanced one line prior to sending the data (since a value of “2” causes the 
printer to advance one line after sending the data).  

A second parameter value of “8” (with a dummy first parameter) causes the 
disable-print sequence to be sent to the terminal on its own.

Description

When this routine executes, it performs the following steps in this order: 

1. The terminal’s Enable Print command is sent.  This causes subsequent 
data sent to the terminal to be also sent to the attached device.

2. The data specified in the first USING parameter (less trailing spaces) is 
sent to the terminal.  No interpretation or modification is done to this 
data.

3. The appropriate line spacing characters specified by the second USING 
parameter are sent to the terminal.

4. The terminal’s Disable Print command is sent.  This turns off the 
pass-through mode.

5. The current cursor location is set to the home position of the current 
window.  The window manager is instructed to define the current 
screen state as “undefined”.  This causes the window manager to 

2 A carriage return and a line feed are sent after the data

3 A carriage return and a form feed are sent after the data

+10 Any line-advancing control sequences are sent before the data instead of 
after.

+20 Inhibits the sending of the disable-printer terminal sequence after sending 
the data.



General Syntax and Library List  I-103
behave correctly if the terminal’s pass-through mode is destructive to 
the screen (e.g., characters appear on the screen as well as being sent to 
the attached device).  

Note: Some terminals handle pass-through printing in an invisible fashion 
(the characters go to the printer, but do not show up on the screen), while 
others echo the characters onto the screen too.  For maximum portability, 
you should assume that a call to C$LOCALPRINT will cause garbage to 
appear on the screen and should arrange to repaint the screen when you are 
finished with the local device.

The routine assumes that the attached terminal is able to do pass-through 
printing.  You may use the ACCEPT FROM TERMINAL-INFO verb to test 
for this ability beforehand if you desire.  You need to ensure that any 
communication restrictions imposed by the terminal are followed.  For 
example, some terminals require that the attached device run at the same 
baud rate as the terminal.

With programs that use the Window’s console (DOS-box) runtime, the 
C$LOCALPRINT routine simulates local printing via the following 
procedure.  When the routine is called for the first time, the runtime system 
opens a file to which it writes the passed data.  The name of the file is 
determined by the setting of the environment variable LPRINTER.  Usually 
this will be set to the name of a device such as PRN, LPT1, and so forth.  If 
this variable is not set, then the default name PRN is used.  Serial ports are 
not supported.

Once this file is open, it is not closed by the runtime system.  If you need to 
close it, you can call C$LOCALPRINT with a dummy first parameter and a 
second parameter of “9”.  Non-Windows console runtimes ignore this form 
of the call.  Also note that no error checking is possible.  If the runtime cannot 
open the LPRINTER file, it prints an error message and stops.



I-104  ACUCOBOL-GT Library Routines
C$LOCKPID

This routine returns the Process ID (PID) of the process holding the lock 
responsible for the previous file lock or record locked condition encountered.  
This library routine works only with the Vision file system and the UNIX 
platform.

Usage
CALL "C$LOCKPID" 
    GIVING PROCESS-ID.

Parameter

PROCESS-ID   PIC 9(n)

This contains a numeric data item large enough to hold a PID.  On most 
platforms, PIC 9(5) is sufficient.  On 64-bit systems, PIC 9(7) is 
recommended.

Comments

C$LOCKPID returns a PROCESS-ID of  “0” if you have not yet encountered 
a locked file or record, if the PID is otherwise not found, or if you’ve used 
this routine with a non-UNIX runtime.

C$MAKEDIR

C$MAKEDIR creates a new directory.  C$MAKEDIR can make a directory 
only one level lower than an existing directory and cannot create more than 
one level at a time.

Usage
CALL "C$MAKEDIR" 
    USING DIR-NAME GIVING STATUS-CODE

Parameters

DIR-NAME   PIC X(n)



General Syntax and Library List  I-105
Contains the name of the directory to be created.  This should be either a full 
path name or a name relative to the current directory.  You may use remote 
name syntax in combination with AcuServer to create a directory on a remote 
machine.  

STATUS-CODE   Numeric data item.

Receives the return status of the call to create a directory.  A return status of 
zero indicates that the directory was successfully created; a status of one 
(“1”) indicates otherwise.

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

C$MEMCPY (Dynamic Memory Routine)

Copies bytes between any two memory locations. 

Usage
CALL "C$MEMCPY" 
    USING, BY VALUE, DEST-PTR, SRC-PTR, NUM-BYTES

Parameters

DEST-PTR      USAGE POINTER   or   USING BY REFERENCE

Contains the address of the first byte of the destination.  

SRC-PTR       USAGE POINTER   or   USING BY REFERENCE

Contains the address of the first byte of the source. 

NUM-BYTES   USAGE UNSIGNED-INT  or an unsigned numeric literal 

Indicates the number of bytes to copy.



I-106  ACUCOBOL-GT Library Routines
Description

This routine copies NUM-BYTES bytes of memory from the address 
contained in SRC-PTR to the address contained in DEST-PTR.  This routine 
is functionally similar to the M$COPY (Dynamic Memory Routine) 
routine except that parameters are passed by value instead of by reference. 
This routine can be used in cases where M$PUT and M$GET are not 
adequate.  Note that this routine is relatively dangerous to use.  It does not 
perform any error checking and can easily cause memory access violations if 
you pass it incorrect data.  In other words, this routine is a very low-level 
routine and should be used cautiously.  

You do not need to pass POINTER data items for SRC-PTR and DEST-PTR.  
If you prefer, either or both can be replaced by a data item passed BY 
REFERENCE.  If you do this, then the address of the data item is passed to 
C$MEMCPY.  For example, you can copy 10 bytes to DEST-ITEM from the 
memory address contained in SRC-PTR with: 
     CALL "C$MEMCPY" 
        USING BY REFERENCE DEST-ITEM, BY VALUE SRC-PTR, 10

C$MYFILE

This routine returns the filename of the disk file containing the currently 
executing program.  This is especially useful if the disk file is an object 
library.

Usage
CALL "C$MYFILE" 
    USING PROGRAM-NAME 
    GIVING CALL-STATUS

Parameters

PROGRAM-NAME    PIC X(n)

Indicates the name of the disk file containing the currently executing 
program, if known.  The runtime will use as much space for the name of the 
file as the COBOL program allows.  This parameter will contain the filename 



General Syntax and Library List  I-107
just as the runtime received it.  For example, if an object library is loaded as 
“-y ../ardir/myarlib.lib”, and a program in “myarlib.lib” calls this routine, 
PROGRAM-NAME will have a value of “../ardir/myarlib.lib”.

CALL-STATUS     PIC S99.

This parameter receives one of the following values:

C$NARG

This routine returns the number of parameters passed to the current program. 

Usage
CALL "C$NARG" 
    USING NUM-PARAM

Parameter

NUM-PARAM   COMP-1

Description

This routine must be called with one USING parameter that must be a 
COMP-1 data item.  This data item is filled in with the number of parameters.  
If the calling program is a subprogram, then this will be the number of 
USING items in the CALL statement that initiated the program.  If the calling 
program is a main program, then this will be the number of CHAINING 
parameters passed from the runcbl command line or the CHAIN statement 
that initiated the program.  C$NARG works only when the program is a 
called subroutine.  It does not work with the “CALL RUN” form of the 
CALL verb.

1 PROGRAM-NAME was filled successfully

-1 Program name unknown 



I-108  ACUCOBOL-GT Library Routines
C$OPENSAVEBOX

C$OPENSAVEBOX provides a facility for creating an Open or Save As 
dialog box.  These dialogs allow the user to browse the system’s file 
directories and select a file or folder.  

This routine can be used by applications that are deployed in extend’s Thin 
Client environment.  In this scenario, C$OPENSAVEBOX allows the user to 
choose a directory or file on the client (Windows) machine.

Not all systems support C$OPENSAVEBOX.  However, you can determine 
at runtime whether the host system supports it.

Usage
CALL "C$OPENSAVEBOX" 
    USING OP-CODE, OPENSAVE-DATA
    GIVING OPENSAVE-STATUS

Parameters

OP-CODE   Numeric value

Selects which C$OPENSAVEBOX function to perform.  The values are 
described below.

OPENSAVE-DATA   Group item as follows:
01  OPENSAVE-DATA.
    03  OPNSAV-FILENAME         PIC X(256).
    03  OPNSAV-FLAGS            PIC 9(4) COMP-X.
    03  OPNSAV-DEFAULT-EXT      PIC X(12).
    03  OPNSAV-TITLE            PIC X(80).
    03  OPNSAV-FILTERS          PIC X(512).
    03  OPNSAV-DEFAULT-FILTER   PIC 9(4) COMP-X.
    03  OPNSAV-DEFAULT-DIR      PIC X(128).
    03  OPNSAV-BASENAME         PIC X(128).

This item holds the results of a C$OPENSAVEBOX routine call. The values 
are described below.

OPENSAVE-STATUS   Signed numeric data item



General Syntax and Library List  I-109
This item returns the status of the operation.  A value of “1” indicates that the 
operation completed successfully.  A zero or negative value indicates that the 
operation failed.

Description

C$OPENSAVEBOX performs a variety of operations depending on the 
operation passed.   All of the data items and definitions required by this 
routine can be found in “opensave.def”.  The operations are as follows:

OPENSAVE-SUPPORTED (op-code 1) 

This operation returns a value that indicates whether the host system supports 
C$OPENSAVEBOX.  If the system supports it, OPENSAVE-STATUS is set 
to “1”.  Otherwise, it is set to OPNSAVERR-UNSUPPORTED (value “0”).  
The OPENSAVE-DATA parameter is not used with this op-code and should 
be omitted.  (Note that Microsoft Windows hosts support 
C$OPENSAVEBOX.)  

OPENSAVE-OPEN-BOX (op-code 2)  

This operation initiates an Open File dialog with the user.  The 
OPENSAVE-DATA structure initializes the dialog box and returns the 
results.

OPENSAVE-SAVE-BOX (op-code 3)  

This operation initiates a Save As dialog with the user.  The 
OPENSAVE-DATA structure initializes the dialog box and returns the 
results.  On some systems, there is no difference between an Open and Save 
As dialog box.  On other systems, there are some differences.  

OPENSAVE-BROWSE-FOLDER (op-code 4)  

This operation initiates a Browse for Folder dialog with the user.  The 
OPENSAV-TITLE and OPENSAV-FILENAME fields in the 
OPENSAVE-DATA structure initialize the dialog box and return the result, 
respectively.  When C$OPENSAVE BOX is called, the Browse for Folder 
dialog box displays the contents of OPENSAV-FILENAME as the root 
folder to be browsed.  Only folders which are descendants of this folder are 



I-110  ACUCOBOL-GT Library Routines
shown in the dialog box.  If OPENSAV-FILENAME is blank when the 
routine is called, the dialog shows all folders in the user’s default working 
folder, and a number of other items, such as the Recycle Bin. You may select 
an empty folder, however, if the folder specified as a root does not exist or is 
inaccessible, the dialog shows all folders in the user’s default working folder, 
just as though no root was specified. The “OK” button is disabled if any item 
other than a folder is selected.

OPENSAVE-DATA

You should use the INITIALIZE verb on OPENSAVE-DATA before you fill 
in the data fields.  This ensures that you have set all the fields to the default 
values and protects you from possible future changes to the 
OPENSAVE-DATA structure. 

The OPENSAVE-DATA item is fairly large (1120 bytes).  You can conserve 
memory by using C$OPENSAVEBOX from a utility subprogram that you 
write.   This subprogram would include OPENSAVE-DATA.  After using the 
subprogram, you can free the memory with the CANCEL verb.  In this way, 
you need to keep OPENSAVE-DATA in memory only while you are using 
it.  Alternatively, you can use the M$ALLOC library routine to allocate 
memory to hold OPENSAVE-DATA, and then free that memory after you 
are done.  

The fields contained in the OPENSAVE-DATA structure are used as 
follows:

OPNSAV-FILENAME -- On input to the routine, this item contains the 
default file name to use as the initial prompt.  Set OPNSAV-FILENAME to 
spaces if there should be no default name.  When the routine returns, this item 
contains the name of the file selected by the user.  When used with the 
OPENSAVE-BROWSE-FOLDER operation, this item returns the file 
specifications of the selected folder, if any.  If the user selects a folder which 
is not accessible, this item is blank.

OPNSAV-FLAGS -- This item is used to pass information to the 
OPENSAVE-OPEN-BOX, OPENSAVE-SAVE-BOX, and 
OPENSAVE-BROWSE-FOLDER operations to modify the behavior of the 
associated dialog boxes.  Constants for these flags are defined in 
“opensave.def”. 



General Syntax and Library List  I-111
The following flags can be used with the OPENSAVE-OPEN-BOX and 
OPENSAVE-SAVE-BOX operations: 

OPENSAVE-OVERWRITEPROMPT

This flag causes the Save As dialog box to generate a message box if 
the selected file already exists. The user must confirm whether to 
overwrite the file.

OPENSAVE-PATHMUSTEXIST

This flag specifies that the user can type only valid paths and file 
names. If this flag is used and the user types an invalid path and file 
name in the File Name entry field, the dialog box function displays a 
warning in a message box. 

OPENSAVE-FILEMUSTEXIST 

This flag specifies that the user can type only names of existing files in 
the File Name entry field. If this flag is specified and the user enters an 
invalid name, the dialog box procedure displays a warning in a 
message box.  If this flag is specified, the 
OPENSAVE-PATHMUSTEXIST flag is also used. 

OPENSAVE-CREATEPROMPT

If the user specifies a file that does not exist, this flag causes the dialog 
box to prompt the user for permission to create the file.  If the user 
chooses to create the file, the dialog box closes and the function returns 
the specified name. 

OPENSAVE-NOREADONLYRETURN

This flag specifies that the returned file does not have the Read Only 
check box selected and is not in a write-protected directory.

The following flags can be used with the OPENSAVE-BROWSE-FOLDER 
operation:

OPENSAVE-BROWSE-DONTGOBELOWDOMAIN

When this flag is set, network folders below the domain level in the 
dialog box’s tree view control are not included.



I-112  ACUCOBOL-GT Library Routines
OPENSAVE-BROWSE-RETURNFSANCESTORS 

When this flag is set, only file system ancestors are returned.  An 
ancestor is a subfolder that is beneath the root folder in the namespace 
hierarchy.  If the user selects an ancestor of the root folder that is not 
part of the file system, the OK button is disabled. 

OPENSAVE-BROWSE-EDITBOX

This flag includes an edit control in the browse dialog box allowing the 
user to type the name of an item. 

OPENSAVE-BROWSE-NEWDIALOGSTYLE 

This flag provides the user with a larger dialog box that can be resized.  
The dialog box has several new capabilities including: drag and drop 
capability within the dialog box, reordering, shortcut menus, new 
folders, delete, and other shortcut menu commands. 

OPENSAVE-BROWSE-BROWSEINCLUDEURLS

When this flag is set, the 
OPENSAVE-BROWSE-NEWDIALOGSTYLE, 
OPENSAVE-BROWSE-EDITBOX, and 
OPENSAVE-BROWSE-BROWSEINCLUDEFILES flags must also 
be set.  Otherwise, the browser dialog box rejects URLs.  Even when 
these flags are set, the browse dialog box displays URLs only if the 
folder containing the selected item supports them. 

Note: When the folder’s “IShellFolder::GetAttributesOf” method is 
called, the folder must set the SFGAO_FOLDER  flag.  If this is not 
set, the browse dialog box does not display the URL. 

OPENSAVE-BROWSE-UAHINT

When combined with OPENSAVE-BROWSE-NEWDIALOGSTYLE, 
this flag adds a usage hint to the dialog box in place of the edit box. 
OPENSAVE-BROWSE-EDITBOX overrides this flag. 

OPENSAVE-BROWSE-NONEWFOLDERBUTTON

When this flag is set, the New Folder button in the browse dialog box 
is not included.



General Syntax and Library List  I-113
OPENSAVE-BROWSE-BROWSEFORCOMPUTER

When this flag is set, if the user selects anything other than a computer, 
the OK button is disabled. 

OPENSAVE-BROWSE-BROWSEFORPRINTER 

When this flag is set, if the user selects anything other than a printer, 
the OK button is disabled.

OPENSAVE-BROWSE-BROWSEINCLUDEFILES 

When this flag is set, the browse dialog box displays files as well as 
folders.

OPNSAV-DEFAULT-EXT
OPNSAV-TITLE
OPNSAV-FILTERS
OPNSAV-DEFAULT-FILTER
OPNSAV-DEFAULT-DIR
OPNSAV-BASENAME

OPNSAV-DEFAULT-EXT -- This item holds the default file name 
extension.  The extension is the string of characters that appear after the “.” 
in the file name.  The value of OPNSAV-DEFAULT-EXT is added to the file 
name typed by the user, if the user does not type an extension.  The default 
extension should not include the period “.”.  Set this item to spaces to avoid 
having a default extension.   

OPNSAV-TITLE -- This item holds the title of the dialog box.  If it is set to 
spaces, a generic title is applied.  The generic title is host-specific.  When 
used with the OPENSAVE-BROWSE-FOLDER operation, the title of the 
Browse for Folder dialog is always “Browse for Folder”.  The 
OPENSAV-TITLE item is displayed inside the Browse for Folder dialog box 
below the title bar and above the tree view control.  

OPNSAV-FILTERS --  The value of OPNSAV-FILTERS describes the set 
of filters that the dialog box uses to restrict the set of files shown to the user.  
Filters make it easier for a user to navigate through a large directory by 
limiting the files shown at once.

Each filter consists of a pair of descriptors.  These descriptors are separated 
by a vertical bar character (“|”).  The first descriptor in the pair is displayed 
in the file type selection box of the Open or Save As dialog box.  In Windows, 



I-114  ACUCOBOL-GT Library Routines
it appears in the List of File Types drop-down box (see the illustration 
below).  The second descriptor is the file name pattern that defines the filter.  
The file name pattern is formatted as “A [ . B ]” where “A” and “B” are 
optional text followed by an optional asterisk.  An asterisk matches any 
sequence of characters excluding periods.  This descriptor is what the system 
uses to look for matching files. 

Here is a sample OPNSAV-FILTERS setting that contains two filters:
"COBOL source files (*.cbl)|*.cbl|All files (*.*)|*.*"

The first filter in the example shows only “.cbl” files to the user.  The second 
filter shows all files.  The user selects which filter to use based on the 
descriptions supplied.  

Filters do not restrict the user from entering names that do not match the 
supplied pattern.  Filters do not limit the user’s choices, they only simplify 
the process of choosing.  

Set OPNSAV-FILTERS to spaces if you don’t want any filters.

Some systems do not support multiple filters.  In this case, only the initial 
filter is used.  See OPNSAV-DEFAULT-FILTER to determine how to select 
the initial filter.  

OPNSAV-DEFAULT-FILTER -- This item is used in conjunction with 
OPNSAV-FILTERS.  The value of OPNSAV-DEFAULT-FILTER 
determines which of the given filters to use as the initial filter.  A value of “1” 
selects the first filter pair, “2” selects the second pair, and so on.  A value of 
zero also selects the first pair.  This setting is not used if no filters are defined.

OPNSAV-DEFAULT-DIR -- This item holds the default directory to use for 
the selected file.  The dialog box initially displays the files found in this 
directory.  If this item is set to spaces, the current directory is used.  Note that 
the value of this item only defines the default directory. It does not prevent 
the user from selecting files in a different directory.

OPNSAV-BASENAME -- When the routine returns, this item contains the 
base file name of the file chosen by the user.  This differs from the value of 
OPNSAV-FILENAME in that all directory information is removed, leaving 
only the file name.   



General Syntax and Library List  I-115
Error Handling

C$OPENSAVEBOX returns a value of “1” when successful.  Otherwise, it 
returns one of the following values (found in “opensave.def”):

Example

This example uses C$OPENSAVEBOX to prompt for a text file name, and 
uses M$ALLOC to dynamically allocate OPENSAVE-DATA, freeing it 
after it is no longer needed.
WORKING-STORAGE SECTION.
77  OPENSAVE-DATA-SIZE    PIC 9(4) BINARY.
77  OPENSAVE-DATA-ADDR    POINTER.
77  OPENSAVE-STATUS       PIC S99.
    88  OPENSAVE-OK       VALUE 1.
77  FILE-NAME             PIC X(256).

LINKAGE SECTION.
COPY "opensave.def".

PROCEDURE DIVISION.
MAIN-LOGIC.
   SET OPENSAVE-DATA-SIZE TO SIZE OF OPENSAVE-DATA.
   CALL "M$ALLOC" 
      USING OPENSAVE-DATA-SIZE, OPENSAVE-DATA-ADDR.
   IF OPENSAVE-DATA-ADDR = NULL
      {error handling here}
   ELSE

OPNSAVERR-UNSUPPORTED This error indicates that the 
C$OPENSAVEBOX routine is not 
supported by the current host system. 

OPNSAVERR-CANCELLED This error indicates that the user clicked 
the “Cancel” button or typed the Escape 
key while using the dialog box.

OPNSAVERR-NO-MEMORY This error indicates that not enough 
memory could be allocated to load the 
dialog box.

OPNSAVERR-NAME-TOO-LARGE This error indicates that the name 
entered by the user does not fit in 
OPNSAV-FILENAME.  



I-116  ACUCOBOL-GT Library Routines
      SET ADDRESS OF OPENSAVE-DATA
          TO OPENSAVE-DATA-ADDR
      INITIALIZE OPENSAVE-DATA
      MOVE 
          "Text files (*.txt)|*.txt|All files (*.*)|*.*" 
          TO OPNSAV-FILTERS
      MOVE "txt" TO OPNSAV-DEFAULT-EXT
      CALL "C$OPENSAVEBOX" USING OPENSAVE-SAVE-BOX, 
                                 OPENSAVE-DATA
                           GIVING OPENSAVE-STATUS

      IF OPENSAVE-OK
          MOVE OPNSAV-FILENAME TO FILE-NAME
      END-IF
      CALL "M$FREE" USING OPENSAVE-DATA-ADDR
   END-IF.

C$PARAMSIZE

This routine returns the number of bytes actually passed by the caller for a 
particular parameter.   

Usage
CALL "C$PARAMSIZE" 
    USING PARAM-NUM, 
    GIVING PARAM-SIZE

Parameters

PARAM-NUM   Numeric parameter

This value is the ordinal position in the Procedure Division’s USING phrase 
of the parameter whose size you want to know.  

PARAM-SIZE   Any numeric data item

This item receives the number of bytes in the data item actually passed by the 
caller.  



General Syntax and Library List  I-117
Description

This routine returns the actual size (in bytes) of a data item passed to the 
current program by its caller.  You pass the number (starting with “1”) of the 
data item in the Procedure Division’s USING phrase, and C$PARAMSIZE 
will return the size of the corresponding item that was actually passed.  This 
can be useful for handling data items of unknown size.  

For example, suppose that you wanted to write a routine that could convert 
any data item to upper-case, up to 10000 bytes in size.  This routine could 
look like this:
IDENTIFICATION DIVISION.
PROGRAM-ID.  MAKE-UPPERCASE.

DATA DIVISION.
WORKING-STORAGE SECTION.
77  PARAM-SIZE    PIC 9(5).

LINKAGE SECTION.
77  PASSED-ITEM   PIC X(10000).

PROCEDURE DIVISION USING PASSED-ITEM.
MAIN-LOGIC.
   CALL "C$PARAMSIZE" USING 1, GIVING PARAM-SIZE
   INSPECT PASSED-ITEM( 1 : PARAM-SIZE ) 
      CONVERTING "abcdefghijklmnopqrstuvwxyz" 
      TO "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
  EXIT PROGRAM.

In this example, if you do not use C$PARAMSIZE, you have to pass a full 
10000 bytes to this routine or you get a memory usage error.  By using 
C$PARAMSIZE and reference modification, only the memory actually 
passed is referenced, and there is no error.  C$PARAMSIZE works only 
when the program is a called subroutine.  It does not work with the “CALL 
RUN” form of the CALL verb.



I-118  ACUCOBOL-GT Library Routines
C$PARSEXFD

This routine is used to parse XFD files and retrieve information about them, 
giving you a way to map field description information to file record areas.  
Similar functionality allows the alfred utility to display data in a logical way 
(rather than displaying full records).

A detailed description of the use and structure of XFD files can be found in 
Book 1, Chapter 5, section 5.3 of the ACUCOBOL-GT User’s Guide.

Note: The utility alfred is distributed with a file called “parsexfd.ws”, 
which describes how to use the alfred object library to parse XFD files.  
Although the C$PARSEXFD routine supersedes the abilities of that 
program, you may continue to use it.  The “ParseXFD” COBOL program 
has been rewritten to use C$PARSEXFD, but the program interface has not 
changed.

Usage
CALL "C$PARSEXFD"
    USING OP-CODE, parameters
    GIVING return-value.

Parameters

OP-CODE   Numeric value

The op-codes, which are defined in “parsexfd.def”, select which 
C$PARSEXFD function to perform.  This table shows which operation 
corresponds to each operation code.  

Code Operation

0 parse XFD file

1 retrieve key information

2 retrieve condition information

3 retrieve field information

4 test record conditions

9 release XFD file from memory



General Syntax and Library List  I-119
Detailed information about the operations is given in the description below.  

parameters 

Op-code parameters vary depending on the operation code chosen.  They 
provide information and hold results for the operations specified.  The 
parameters that apply to C$PARSEXFD op-codes are all defined in 
“parsexfd.def”.

return-value  Numeric data item

This item returns information relevant to the operation.  The type of return 
value varies by op-code.

Description

C$PARSEXFD performs a variety of operations depending on the specified 
op-code.  These operations are as follows:

PARSEXFD-PARSE (op-code 0)

This operation parses a specified XFD file.  The syntax is:
CALL "C$PARSEXFD" 
    USING PARSEXFD-PARSE, xfd-name, filename, flags,
         xfd-description.

PARSEXFD-PARSE takes the following parameters:

xfd-name   PIC X(n)

Specifies the name of the XFD file to parse, with or without path information.  
If there is no path information, the configuration variables XFD_PREFIX or 
XFD_DIRECTORY are used to find the XFD file.  You may omit the “.xfd” 
extension.

filename  PIC X(n) or NULL 



I-120  ACUCOBOL-GT Library Routines
Specifies an indexed data file to be compared against the parsed XFD file.  If 
the characteristics of the specified data file do not match the XFD, the parsed 
XFD is freed and the return-value is set to NULL.  If this parameter is NULL 
or empty, the XFD file is not compared to any file.

flags  Numeric parameter

Flags modify the type of information returned from other op-codes.  This 
parameter can be “0” (if no flags are set), or the sum of any of the following 
values:

PARSEXFD-FLAG-INCLUDE-COMMENTS (value 1):  This option 
causes comments to be included in the parsed XFD.  The routine cannot, 
however, currently retrieve those comments.

PARSEXFD-FLAG-INCLUDE-999 (value 2):  This option includes 
fields with a condition code of 999, which indicates group items and 
other fields not normally included with XFD files.

PARSEXFD-FLAG-EXCLUDE-ARRAYS (value 4):  All table 
elements are normally appended with a value indicating their index.  For 
example, for a field that occurs five times, the returned XFD includes 
five fields with _1, _2, _3, _4, and _5 appended to the field names.  
When this flag is set, such fields are returned with no suffix indicating 
their array index value.  The information is still included, however, with 
the field group item (see below).

PARSEXFD-FLAG-DEEP-FIRST (value 8):  This flag modifies the 
order in which fields that are sub-elements of a table are returned.  For 
example:

   07  my-array occurs 5 times.
      09  elem-1     pic x.
      09  elem-2     pic x.
      09  elem-3     pic x.

Normally this is returned as elem-1(1), elem-1(2), elem-1(3), elem-1(4), 
elem-1(5), elem-2(1), elem-2(2), elem-2(3), elem-2(4), elem-2(5), elem-3(1), 
elem-3(2), elem-3(3), elem-3(4), elem-3(5).



General Syntax and Library List  I-121
If PARSEXFD-FLAG-DEEP-FIRST is specified, the items are instead 
returned as elem-1(1), elem-2(1), elem-3(1), elem-1(2), elem-2(2), and so on.  
The same data is returned, but in a different order.

xfd-description   Group item

This parameter is structured as follows:
01  PARSEXFD-DESCRIPTION.
    03  PARSEXFD-HEADER-LINE.
        05  PARSEXFD-VERSION           PIC X COMP-N.
        05  PARSEXFD-SELECT-NAME       PIC X(30).
        05  PARSEXFD-FILENAME          PIC X(30).
        05  PARSEXFD-FILETYPE          PIC X COMP-N.
            88 PARSEXFD-SEQUENTIAL-FILE    VALUE 4.
            88 PARSEXFD-RELATIVE-FILE      VALUE 8.
            88 PARSEXFD-INDEXED-FILE       VALUE 12.
        05  PARSEXFD-COBOL-TRIGGER     PIC X(100).
    03  PARSEXFD-RECORD-LINE.
        05  PARSEXFD-MAX-REC-SIZE      PIC X(4) COMP-N.
        05  PARSEXFD-MIN-REC-SIZE      PIC X(4) COMP-N.
        05  PARSEXFD-NUM-KEYS          PIC X COMP-N.
    03  PARSEXFD-COMPILE-LINE.
        05  PARSEXFD-SIGN-FLAG          PIC X(2) COMP-N.
            88  PARSEXFD-SIGN-ACU           VALUE 0.
            88  PARSEXFD-SIGN-IBM           VALUE 4.
            88  PARSEXFD-SIGN-MF            VALUE 8.
            88  PARSEXFD-SIGN-NCR           VALUE 20.
            88  PARSEXFD-SIGN-VAX           VALUE 36.
            88  PARSEXFD-SIGN-MBP           VALUE 72.
            88  PARSEXFD-SIGN-REA           VALUE 128.
        05  PARSEXFD-MAX-DIGITS         PIC X(2) COMP-N.
            88  PARSEXFD-18-DIGITS           VALUE 40.
            88  PARSEXFD-31-DIGITS           VALUE 68.
        05  PARSEXFD-SIGN-ATOI          PIC X(2) COMP-N.
            88  PARSEXFD-ATOI-PLUS           VALUE 11.
            88  PARSEXFD-ATOI-MINUS          VALUE 13.
        05  PARSEXFD-PGM-PERIOD         PIC X.
        05  PARSEXFD-PGM-COMMA          PIC X.
    03  PARSEXFD-CONDITION-LINE.
        05  PARSEXFD-NUMBER-CONDITIONS  PIC XX COMP-N.
    03  PARSEXFD-FIELDS-LINE.
        05  PARSEXFD-NUMBER-FIELDS      PIC X(4) COMP-N.



I-122  ACUCOBOL-GT Library Routines
The values of the “xfd-description” parameter are defined as follows:

PARSEXFD-VERSION is the version number of this XFD file.

PARSEXFD-SELECT-NAME is the SELECT name of the file.

PARSEXFD-FILENAME is the name of the data file described in the 
XFD.

PARSEXFD-FILETYPE is the data file type.  Valid values are 4 
(sequential file), 8 (relative file), and 12 (indexed file).

PARSEXFD-COBOL-TRIGGER specifies the name of the COBOL 
program to be executed as a trigger.

PARSEXFD-MAX-REC-SIZE and MIN-REC-SIZE are the 
maximum and minimum size values for a record in this file.

PARSEXFD-NUM-KEYS gives the number of keys described in the 
XFD.

PARSEXFD-SIGN-FLAG indicates sign compatibility and is set by 
the “-Dc” compiler options.

PARSEXFD-MAX-DIGITS indicates the maximum numeric digits.  
The possible values are “18” and “31”.  This is set by the “-Dd31” 
compiler option.

PARSEXFD-PGM-PERIOD indicates the decimal value of the  
character used as the program period.

PARSEXFD-PGM-COMMA indicates the decimal value of the  
character used as the program comma.

PARSEXFD-NUMBER-CONDITIONS gives the number of 
conditions described in the XFD file.

PARSEXFD-NUMBER-FIELDS is the number of fields available in 
the XFD.



General Syntax and Library List  I-123
return-value 

For this op-code, the return value is the handle to the XFD.  This handle must 
be used in future calls to C$PARSEXFD to get more information about the 
XFD, and to free the XFD when you are finished.

If the return-value is “0”, an error occurred.  You can get  information about 
errors by examining f-errno and f-int-errno, which are defined in the 
“filesys.def” COPY file.

PARSEXFD-GET-KEY-INFO (op-code 1)

This operation retrieves information about the specified (single) key.  It uses 
the following syntax:
CALL "C$PARSEXFD" 
    USING PARSEXFD-GET-KEY-INFO, xfd-handle, keynum,
          key-description

The operation takes the following parameters:  

xfd-handle 

A valid handle returned by C$PARSEXFD PARSEXFD-PARSE.

keynum  Numeric parameter between 0 and PARSEXFD-NUM-KEYS

Used to specify which key to parse.  Takes a value between 0 and 
PARSEXFD-NUM-KEYS.  Both 0 and “PARSEXFD-NUM-KEYS - 1” are 
valid key numbers, but “PARSEXFD-NUM-KEYS” is not valid.  In other 
words, key numbers are a zero-based array.

key-description   Group item 

This parameter is structured as follows:
01 PARSEXFD-KEY-DESCRIPTION.
   03 PARSEXFD-NUMBER-SEGMENTS        PIC X COMP-N.
   03 PARSEXFD-DUP-FLAG               PIC X COMP-N.
      88 PARSEXFD-ALLOW-DUPLICATES    VALUE 1 FALSE 0.
   03 PARSEXFD-SEGMENT-DESCRIPTION
        OCCURS MAX-SEGS TIMES
        INDEXED BY PARSEXFD-SEG-IDX.



I-124  ACUCOBOL-GT Library Routines
      05 PARSEXFD-SEGMENT-LENGTH      PIC X COMP-N.
      05 PARSEXFD-SEGMENT-OFFESET     PIC X(4) COMP-N.
      05 PARSEXFD-SEGMENT-OFFSET      PIC X(4) COMP-N.
   03 PARSEXFD-NUMBER-KEY-FIELDS      PIC X COMP-N.
   03 PARSEXFD-KEY-FIELDS
        OCCURS MAXNUMKEYFIELDS TIMES
        INDEXED BY PARSEXFD-KEY-FIELD-IDX.
      05 PARSEXFD-KEY-FIELD-NUM       PIC XX COMP-N.

The values of the “key-description” parameter are defined as follows:

PARSEXFD-NUMBER-SEGMENTS specifies the number of 
segments in this key.

PARSEXFD-DUP-FLAG shows whether duplicates are allowed in this 
key.  A value of “1” indicates that duplicates are allowed; a value of “0” 
indicates no duplicates.

PARSEXFD-SEGMENT-LENGTH and SEGMENT-OFFSET are 
the length and offset of each segment.  The offset value is zero-based, so 
offset 0 is the beginning of the record.  There is one 
SEGMENT-LENGTH and SEGMENT-OFFSET value for each 
segment.

PARSEXFD-NUMBER-KEY-FIELDS gives the number of fields that 
make up this key.  This is always at least as large as the number of 
segments, but may be larger (if a segment holds multiple fields).

PARSEXFD-KEY-FIELDS is a table of key fields.  This table has 
PARSEXFD-NUMBER-KEY-FIELDS valid elements.

PARSEXFD-KEY-FIELD-NUM is the field number of this key field.  
Get information about the key field by looking at this field number.

return-value  0 or 1

A return value of “1” indicates that the operation was successful; a “0” 
indicates failure.  For this operation, a return code of “0” means that you have 
entered an invalid key number (for instance, specifying a key number of 3 for 
a file that only has two keys).  Note, however, that if an invalid handle is 
specified, the results are undefined and may result in a memory violation.



General Syntax and Library List  I-125
PARSEXFD-GET-COND-INFO (op-code 2)

This operation retrieves information about conditions that use the WHEN 
directive within the XFD file.  It uses the following syntax:
CALL "C$PARSEXFD"
    USING PARSEXFD-GET-COND-INFO, xfd-handle, cond-index,
          cond-description.

PARSEXFD-GET-COND-INFO takes the following parameters:

xfd-handle 

A valid handle returned by C$PARSEXFD PARSEXFD-PARSE.

cond-index  Numeric parameter 

The condition index determines which condition to evaluate.  It takes a value 
between 0 and PARSEXFD-NUMBER-CONDITIONS.  Because conditions 
are a zero-based array, “0” and “PARSEXFD-NUMBER-CONDITIONS - 
1” are valid values, but PARSEXFD-NUMBER-CONDITIONS is not.

cond-description  Group item 

The condition description holds information about what condition has been 
set (EQUAL TO, AND, OR), whether the condition has been met (is true or 
false), and how the condition is structured.

This parameter is structured as follows:
01  PARSEXFD-CONDITION-DESCRIPTION.
    03  PARSEXFD-CONDITION-TYPE         PIC X COMP-N.
        88  PARSEXFD-EQUAL-CONDITION    VALUE 1.
        88  PARSEXFD-AND-CONDITION      VALUE 2.
        88  PARSEXFD-OTHER-CONDITION    VALUE 3.
        88  PARSEXFD-GT-CONDITION       VALUE 4.
        88  PARSEXFD-GE-CONDITION       VALUE 5.
        88  PARSEXFD-LT-CONDITION       VALUE 6.
        88  PARSEXFD-LE-CONDITION       VALUE 7.
        88  PARSEXFD-NE-CONDITION       VALUE 8.
        88  PARSEXFD-OR-CONDITION       VALUE 9.
        88  PARSEXFD-COMPARISON-COND    VALUES 1, 4 THROUGH 8.
    03  PARSEXFD-CONDITION-FLAG         PIC X.
        88  PARSEXFD-TRUE-CONDITION     VALUE 'Y' FALSE 'N'.



I-126  ACUCOBOL-GT Library Routines
    03  PARSEXFD-COMPARISON-CONDITIONS.
        05  PARSEXFD-COMP-FIELDNUM      PIC XX COMP-N.
        05  PARSEXFD-COMP-FIELDNAME     PIC X(30).
        05  PARSEXFD-COMP-FIELD-VAL     PIC X(50).
    03  PARSEXFD-OTHER-CONDITIONS
         REDEFINES PARSEXFD-COMPARISON-CONDITIONS.
        05  PARSEXFD-OTHER-FIELDNUM     PIC XX COMP-N.
        05  PARSEXFD-OTHER-FIELDNAME    PIC X(30).
    03  PARSEXFD-AND-OR-CONDITIONS
         REDEFINES PARSEXFD-COMPARISON-CONDITIONS.
        05  PARSEXFD-CONDITION-1        PIC XX COMP-N.
        05  PARSEXFD-CONDITION-2        PIC XX COMP-N.
    03  PARSEXFD-CONDITION-TABLENAME    PIC X(30).

The values of the “cond-description” parameter are defined as follows:

PARSEXFD-CONDITION-TYPE tells whether this is an EQUAL 
condition, AND condition, etc.

PARSEXFD-CONDITION-FLAG tells whether this condition is 
TRUE.  This is only valid after PARSEXFD-TEST-CONDITONS (see 
below) has been called.

PARSEXFD-CONDITION-TABLENAME is the table name 
specified in the TABLENAME directive of the WHEN directive.

For EQUAL, GT (greater than), GE (greater than or equal to), LT (less 
than), LE (less than or equal to), and NE (not equal to) conditions, the 
following fields are valid:

PARSEXFD-COMP-FIELDNUM is the field number of the field 
whose value will be tested against the value of the condition.

PARSEXFD-COMP-FIELDNAME is the name of that field.

PARSEXFD-COMP-FIELD-VAL is the value to be tested.  This is the 
value specified in the WHEN directive of the FD used to create this 
XFD.



General Syntax and Library List  I-127
For OTHER conditions, the following fields are valid:

PARSEXFD-OTHER-FIELDNUM is the field number of the field 
whose value will be different than all the other conditions which use this 
field.

PARSEXFD-OTHER-FIELDNAME is the name of that field.

For AND and OR conditions, the following fields are valid:

PARSEXFD-CONDITION-1 and PARSEXFD-CONDITION-2 are 
the conditions tested to determine whether this condition is true.  For 
AND, both conditions must be true.  For OR, one or both conditions 
must be true.

PARSEXFD-GET-FIELD-INFO (op-code 3)

This operation retrieves information about the field.  It uses the following 
syntax:
CALL "C$PARSEXFD"
    USING PARSEXFD-GET-FIELD-INFO, xfd-handle, fieldnum,
          field-description.

The operation takes the following parameters:

xfd-handle 

A valid handle returned by C$PARSEXFD PARSEXFD-PARSE.

fieldnum  Numeric parameter 

Takes a value between 0 and PARSEXFD-NUMBER-FIELDS.  Because 
fields are a zero-based array, “0” and “PARSEXFD-NUMBER-FIELDS - 1” 
are valid values, but PARSEXFD-NUMBER-FIELDS is not valid.

field-description  Group item 

This parameter is structured as follows:
01  PARSEXFD-FIELD-DESCRIPTION.
    03  PARSEXFD-FIELD-OFFSET            PIC X(4) COMP-N.
    03  PARSEXFD-FIELD-LENGTH            PIC X(4) COMP-N.
    03  PARSEXFD-FIELD-TYPE              PIC X COMP-N.



I-128  ACUCOBOL-GT Library Routines
        88  PARSEXFD-SIGNED-FIELD   VALUES NumSignSep
                                           NumSigned
                                           NumSepLead
                                           NumLeading
                                           CompSigned
                                           PackedSigned
                                           BinarySigned
                                           NativeSigned.
        88  PARSEXFD-NUM-FIELD      VALUES NumEdited THRU
                                           NativeUnsigned.
        88  PARSEXFD-FLOAT-FIELD    VALUE  Flt.
        88  PARSEXFD-ASCII-FIELD    VALUES Alphanum THRU Group.
        88  PARSEXFD-NAT-FIELD      VALUES Nat-type THRU NatEdited.
        88  PARSEXFD-WIDE-FIELD     VALUES Wide-type THRU
                                           WideEdited.
    03  PARSEXFD-FIELD-DIGITS            PIC X COMP-N.
    03  PARSEXFD-FIELD-SCALE             SIGNED-SHORT.
    03  PARSEXFD-FIELD-USER-TYPE         PIC XX COMP-N.
    03  PARSEXFD-FIELD-CONDITION         PIC XX COMP-N.
    03  PARSEXFD-FIELD-LEVEL             PIC X COMP-N.
    03  PARSEXFD-FIELD-NAME              PIC X(30).
    03  PARSEXFD-FIELD-FORMAT            PIC X(30).
    03  PARSEXFD-FIELD-OCCURS-DEPTH      PIC X COMP-N.
    03  PARSEXFD-FIELD-OCCURS-TABLE
            OCCURS MaxNumKeyFields TIMES
            INDEXED BY PARSEXFD-FIELD-OCCURS-LEVEL.
        05  PARSEXFD-FIELD-OCC-MAX-IDX   PIC XX COMP-N.
        05  PARSEXFD-FIELD-OCC-THIS-IDX  PIC XX COMP-N.
    03  PARSEXFD-FIELD-IN-KEY-FLAG       PIC X.
        88  PARSEXFD-FIELD-IS-IN-KEY     VALUE 'Y' FALSE 'N'.
    03  PARSEXFD-FIELD-SECONDARY-FLAG    PIC X.
        88  PARSEXFD-FIELD-IS-SECONDARY  VALUE 'Y' FALSE 'N'.
    03  PARSEXFD-FIELD-HIDDEN-FLAG       PIC X.
        88  PARSEXFD-FIELD-IS-HIDDEN     VALUE 'Y' FALSE 'N'.
    03  PARSEXFD-FIELD-READ-ONLY-FLAG    PIC X.
        88  PARSEXFD-FIELD-IS-READ-ONLY  VALUE 'Y' FALSE 'N'.

The values of the “field-description” parameter are defined as follows:

PARSEXFD-FIELD-OFFSET is the offset of the beginning of this 
field (zero-based).

PARSEXFD-FIELD-LENGTH is the number of bytes this field 
requires.

PARSEXFD-FIELD-TYPE describes the type of field.  The types are 
defined as they appear in lib/sub.h, and are also listed in “parsexfd.def”.



General Syntax and Library List  I-129
PARSEXFD-FIELD-DIGITS is either the number of digits in this 
numeric field, or the length if the field is non-numeric.

PARSEXFD-FIELD-SCALE is either the scale of the numeric field or 
“0” if the field is non-numeric.  The scale is defined as the power of ten 
by which the numeric value must be multiplied in order to get the actual 
value.  For example, if the scale is -2, then there are two digits to the right 
of the decimal point.

PARSEXFD-USER-TYPE describes some of the XFD directives, as 
listed in “parsexfd.def”.  The UserDate, UserBinary and UserVarLength 
values are mutually exclusive (only one of them is set).  SecondaryTable 
may be added to the value to signify that the SECONDARY-TABLE 
directive was also used.

PARSEXFD-FIELD-CONDITION is the condition that the field 
depends on.  A condition of “0” means that the field is always included; 
“999” means that the field is a group item.  In the latter case, the value 
may not be completely meaningful (if there are binary items in the group 
item).

PARSEXFD-FIELD-LEVEL is the level number of the field in the FD 
used to create this XFD.

PARSEXFD-FIELD-NAME is the name of the field.  If 
EXCLUDE-ARRAYS was NOT used when parsing the XFD, and the 
field is part of a table, then the field name may include array indices.

PARSEXFD-FIELD-FORMAT is the date format specified in the 
XFD DATE directive.

PARSEXFD-FIELD-OCCURS-DEPTH is the number of valid 
elements in the OCCURS-TABLE.

PARSEXFD-FIELD-OCCURS-TABLE gives information about this 
element of a table.  The OCC-MAX-IDX is the maximum index allowed.  
The OCC-THIS-IDX is the index of this element.

PARSEXFD-FIELD-IN-KEY-FLAG indicates whether this field is 
part of a key.  The value is “Y” if this field is a part of one or more keys, 
or “N” if not.



I-130  ACUCOBOL-GT Library Routines
PARSEXFD-FIELD-SECONDARY-FLAG indicates whether the  
SECONDARY-TABLE directive was used.  The value is “Y” if so or 
“N” if not.

PARSEXFD-FIELD-HIDDEN-FLAG indicates whether the HIDDEN 
directive was used on this field.  The value is “Y” if so or “N” if not.

PARSEXFD-FIELD-READ-ONLY-FLAG indicates whether the  
READ-ONLY directive was used on this field.  The value is “Y” if so or 
“N” if not.

return-value  0 or 1

A return-value of “1” indicates that the operation was successful; a “0” 
indicates failure.  For this operation, you will only see a return code of “0” if 
you specify an invalid field number (for example, if you try to retrieve 
information about field number 17 in a record that only has 15 fields).

PARSEXFD-TEST-CONDITIONS (op-code 4)

This operation tests the conditions of a particular record.  It uses the 
following syntax:
CALL "C$PARSEXFD" 
    USING PARSEXFD-TEST-CONDITIONS, xfd-handle, 
          record-pointer.

The operation takes the following parameters:

xfd-handle 

A valid handle returned by C$PARSEXFD PARSEXFD-PARSE.

record-pointer 

This is a pointer to the record area on which to test conditions.  (Because 
conditions are true or false depending on the value of particular fields, the 
values of those fields must be known.  The only way to do this is to have a 
record from a file, specified with the PARSEXFD-PARSE op-code, to test 
against.)



General Syntax and Library List  I-131
After calling with this op-code, you can get each condition and tell whether 
fields that depend on that condition should be included in this record.

PARSEXFD-RELEASE (op-code 9)

This operation frees all memory associated with the XFD.  It has the 
following syntax:
CALL "C$PARSEXFD" USING PARSEXFD-RELEASE, xfd-handle

This operation takes a single parameter:

xfd-handle

A valid handle returned by C$PARSEXFD PARSEXFD-PARSE.

After calling this op-code, do not reference the XFD handle.  Doing so will 
result in undefined behavior, and may cause a memory access violation.

C$RECOVER

This routine opens the transaction log file defined in the LOG_FILE 
configuration variable and replays all of the file operations recorded in it on 
the appropriate data files.   

Note that file systems other than Vision may require you to use their own 
recovery routines, instead of C$RECOVER.  Please refer to your file system 
manufacturer’s documentation to learn how the file system handles recovery 
procedures.

Usage
CALL "C$RECOVER"

Description

This routine allows you to recover from a hardware failure or power outage 
that may have left your data files in a corrupt state.  C$RECOVER is helpful 
for recovering from error 98s and from any error that leaves your data 
damaged or possibly destroyed.



I-132  ACUCOBOL-GT Library Routines
In order to use this routine, you need to have been logging transactions with 
the START TRANSACTION and COMMIT TRANSACTION verbs.  These 
cause file operations to be logged in log files that you designate with the 
LOG-FILE and other configuration variables.  

You also need a good backup of your data files.  This backup should have 
been created just before you cleared or deleted the log file.  You use your 
backup to restore the damaged files.  Then you use C$RECOVER to read the 
log and recreate all of the file operations in the log, in the same sequence they 
were logged.  These file operations are replayed on the data files.

The result is that your data files are brought up to date.  After recovery, all 
files will be in a consistent state, because only committed (completed) 
transactions will be replayed from the log.  

One way to use this routine is described here.  First get everyone off the 
system.  Then restore your clean backup files to their original locations.  (It’s 
a good idea to have more than one backup, because you will need a clean 
backup in order to recover.)  Then run a COBOL program that calls the 
C$RECOVER routine (for example, CALL “C$RECOVER”).  Make sure 
that the LOG-FILE configuration variable is set correctly.  Repeat this 
procedure for each log file.

To make sure that your data can be recovered, follow these guidelines:

1. Commit all transactions before you make your data file backups.

2. Clear (or delete) your old log files as soon as your backup is complete 
and you know you have a good backup.

3. Don’t permit any file activity between the time you make your backup 
and the time you clear or delete the logs.

4. It’s all right to have multiple log files.  You may periodically back up 
the log file and start a new one, if you are careful not to do this while 
there is any activity on the log or data files.  Just be sure to run 
C$RECOVER on each log file in the same order in which they were 
written.

5. Don’t permit any activity on the data files during recovery.

6. If any log file gets corrupted or destroyed, immediately make data file 
backups and clear or delete the old log.



General Syntax and Library List  I-133
C$REDIRECT

This routine is used to install and uninstall file I/O handlers.  The routine 
gives you the ability to redirect file I/O operations to other, separate COBOL 
programs (handlers) that perform file I/O operations in addition to, or instead 
of the original operation.

For example, you can augment a file I/O operation to act on an additional file 
without rewriting the original application. C$REDIRECT specifies the name 
of the handler(s) that performs the additional operations.  The handler is 
simply a COBOL program. This feature is activated or deactivated by calling 
C$REDIRECT.  Information is passed to the handler program using standard 
COBOL linkage items. Each program has its own set of I/O handlers.  This 
means that only the module (or subprogram) calling C$REDIRECT is 
affected.

Usage
CALL "C$REDIRECT" 
    USING HANDLER-FUNCTION, HANDLER-VERSION, HANDLER-NAME, 
        [PREVIOUS-HANDLER-NAME],
    GIVING HANDLER-STATUS

Parameter

HANDLER-FUNCTION   any numeric value

This parameter has three possible values, HANDLER-FUNCTION-PRE, 
HANDLER-FUNCTION-REPLACE, and HANDLER-FUNCTION-POST 
(defined in “filesys.def”).  

HANDLER-VERSION   any numeric value

Specifies the version of the linkage items to be passed to the handler program 
(defined in “filesys.def”).  The linkage items are defined in “handler.cpy”.  If 
later releases change the format of the linkage items, you can use 
HANDLER-VERSION to specify which version of the linkage items to use.  
Currently, the only legal values for this parameter are “1” and “2”.



I-134  ACUCOBOL-GT Library Routines
HANDLER-NAME   PIC X(n)

Specifies the name of the handler program to be installed.  Use NULL to 
uninstall a handler that has been previously installed.

PREVIOUS-HANDLER-NAME   PIC X(n) (optional)

After a successful call to C$REDIRECT, this data item holds the name of the 
previously installed HANDLER-FUNCTION.  It will contain spaces if there 
was no previous handler of this type.

HANDLER-STATUS   signed numeric value (optional)

After a call to C$REDIRECT, this data item contains the status of the action.  
A “1” indicates that the install or uninstall action has succeeded and “0” 
indicates failure.  Possible reasons for failure include an unsupported 
HANDLER-VERSION or an unsupported operation version.

Description

C$REDIRECT allows you to install as many as three discrete handlers:  

• The “pre” handler executes before the file I/O statement.  

• The “replace” handler executes in place of the file I/O statement.  

• The “post” handler executes after the file I/O statement.  

These handlers may be used together in any combination, but each must be 
installed with a separate call to C$REDIRECT.  All standard file I/O 
statements trigger the installed handlers (standard file I/O statements include: 
OPEN, CLOSE, READ, READ NEXT, READ PREVIOUS, WRITE, 
REWRITE, DELETE, DELETE FILE, START, COMMIT, and 
ROLLBACK).  Information is passed to the handlers via standard COBOL 
linkage items.  These items are described in the file “handler.cpy” that is 
installed with the ACUCOBOL-GT development system.  Once a handler is 
installed, all file I/O for all files is redirected through the handler.



General Syntax and Library List  I-135
This routine can be used with the SORT and MERGE statements.  The I/O 
handlers are used on the files listed in the USING and GIVING phrases when 
these verbs execute implicit OPEN, READ, NEXT, WRITE, AND CLOSE 
operations. In this situation, the handlers will be called more than once for 
each execution of the verb.

When an installed handler executes, it can return its status via the linkage 
item HANDLER-STATUS-CODE.  This item is meant to return the standard 
COBOL file status code that is normally returned by a file operation.  The 
value returned is made available in the file’s status variable.  The set of codes 
used is up to the developer, as long as they follow these rules:

• Any code that starts with a “0” is considered successful.

• Any code that starts with a “1” is considered to be an “at end” condition.

• Any code that starts with a “2” is considered to be an “invalid key” 
condition.

The first handler to return an unsuccessful status code will be the last portion 
of the file operation to be executed, whether the remaining operation is the 
regular file operation or another handler.  For example, a “pre” handler 
returning an error will preclude the execution of the normal file operation (or 
a “replace” handler, if defined) and the “post” handler, if defined.  
Declaratives are run as appropriate when a handler returns an error.  

Note: C$RERR and other library functions that report internal file error 
codes may not return the expected results after executing a handler 
program. 

C$REGEXP

This routine allows you to search strings using regular expressions.  This 
section includes the following topics:

Usage
CALL "C$REGEXP" 
    USING OP-CODE, parameters
    GIVING return-value



I-136  ACUCOBOL-GT Library Routines
Parameters

OP-CODE   Numeric data item

Specifies the operation to perform.  Each operation is defined in 
“acucobol.def” and is described in detail in the “OP-CODES and parameters” 
section below.  Op-codes include:

parameters  Type varies (defined in “acucobol.def”)

Parameters vary depending on the operation selected. They provide 
information and hold results.

return-value  Numeric data item

Unless otherwise noted, each operation returns a value or a status in 
return-value.  Its contents vary by operation and the result of the operation.

Description

This routine allows you to use a regular expression to search a text string.  

A regular expression is a formula for matching strings that have a certain 
pattern.  For a complete description of regular expressions, refer to the 
POSIX 1003.2 standard appropriate for your platform.  Windows platforms 
use the CAtlRegExp library; UNIX platforms use the POSIX C routines 
native to the platform.

Code Operation

1 AREGEXP-GET-LEVEL

2 AREGEXP-COMPILE

3 AREGEXP-MATCH

4 AREGEXP-RELEASE-MATCH

5 AREGEXP-RELEASE

6 AREGEXP-NUMGROUPS

7 AREGEXP-GETMATCH

20 AREGEXP-LAST-ERROR



General Syntax and Library List  I-137
A simple use of C$REGEXP is outlined in the following steps.  

1. Use the AREGEXP-GET-LEVEL op-code to validate that the host 
platform provides support for regular expressions.

2. Validate and compile your regular expression with op-code 
AREGEXP-COMPILE.  Your program should include an error 
handling routine in the event that the compiler finds an error in the 
expression.

3. Use op-code AREGEXP-MATCH to apply a compiled regular 
expression to a string to search for a match.  You may want to do this 
iteratively to find all matches in the string.

4. Use op-codes AREGEXP-NUMGROUPS and 
AREGEXP-GETMATCH to work with subexpression matches.

5. Manage the memory used by this routine with op-codes 
AREGEXP-RELEASE-MATCH and AREGEXP-RELEASE.

OP-CODES and parameters

AREGEXP-GET-LEVEL (op-code 1) 

This operation indicates whether regular expression support is available on 
the host.  Its usage is:
CALL "C$REGEXP" USING AREGEXP-GET-LEVEL GIVING return-value

The value of return-value can be one of the following (defined in 
“acucobol.def”):

AREGEXP-COMPILE  (op-code 2) 

This operation compiles a regular expression to ensure that it has a valid 
form, returning a handle to the compiled regular expression or NULL if there 
is an error.  Its usage is:

AREGEXP-NONE 0  regular expression processing is not available

AREGEXP-WINDOWS 1 Windows regular expressions supported

AREGEXP-POSIX 2 POSIX regular expressions supported



I-138  ACUCOBOL-GT Library Routines
CALL "C$REGEXP" USING AREGEXP-COMPILE, reg-expr, flags
                GIVING return-value

reg-expr must be a NULL-terminated regular expression.  It must be 
NULL-terminated because trailing spaces are allowed in regular expressions.

flags (optional) is the sum of one or more of the following values (defined in 
“acucobol.def”):

return-value contains a handle to the compiled expression, or NULL if an 
error occurred.

AREGEXP-MATCH (op-code 3)

This operation applies a regular expression to a string, and returns a handle. 
To see if there is a match you need to check match-start.  If match-start is “0”  
there is no match.   Its usage is: 
CALL "C$REGEXP" USING AREGEXP-MATCH,

AREGEXP_COMPILE_IGNORECASE 1 Ignore case when matching 
patterns.  (Windows or 
UNIX)

AREGEXP_COMPILE_BASIC 2 Change the type of regular 
expression from extended 
to basic.  (UNIX only)   
(For an explanation of 
extended and basic, see the 
POSIX 1003.2 standard.) 

AREGEXP_COMPILE_NO_SPECIAL 4 Treat all characters as 
ordinary characters with no 
special meaning.  (UNIX 
only)

AREGEXP_COMPILE_NO_SUB 8 When matching, determine 
only if there is a match, 
without returning the 
offsets of the match.  
(UNIX only)

AREGEXP_COMPILE_NEWLINE 16 Treat newlines as special 
(end-of-line marker) 
characters.  (UNIX only)



General Syntax and Library List  I-139
   reg-expr-handle, string, length, match-start, match-end
   GIVING return-value

reg-expr-handle is a handle to a regular expression returned by 
AREGEXP-COMPILE.

string is the string to test for a match.

length is the length of string.  If length is zero, the size of string is used.

match-start returns the index of the start of the pattern that matched.

match-end returns one byte beyond the pattern that matched.  To test the 
string for additional matches, start a new AREGEXP-MATCH at the 
match-end offset.

return-value contains a handle to the match or zero if no match is found or an 
error occurred.

AREGEXP-RELEASE-MATCH  (op-code 4)

This operation frees memory that is allocated when AREGEXP-MATCH is 
called.  Return-value is not used. Its usage is:
CALL "C$REGEXP" USING AREGEXP-RELEASE-MATCH match-handle

match-handle is a handle to a match returned by AREGEXP-MATCH.

AREGEXP-RELEASE  (op-code 5)

This operation frees the memory allocated when AREGEXP-COMPILE is 
called.  Return-value is not used. Its usage is:
CALL "C$REGEXP" USING AREGEXP-RELEASE reg-expr-handle

reg-expr-handle is a handle to a regular expression returned by 
AREGEXP-COMPILE. 



I-140  ACUCOBOL-GT Library Routines
AREGEXP-NUMGROUPS  (op-code 6) 

This operation returns the number of substrings that matched any subgroups 
in the regular expression.  Its usage is:
CALL "C$REGEXP" USING AREGEXP-NUMGROUPS match-handle
                GIVING return-value

match-handle is a handle returned by AREGEXP-MATCH.

return-value returns the number of matches.

Depending on the construction of a regular expression, it is possible for a 
subgroup of the regular expression to match multiple substrings.  This 
operation reports the number of instances found in the last 
AREGEXP-MATCH operation.  For more information, rules, and examples, 
see the POSIX 1003.2 documentation or one of the many books available on 
regular expressions.

AREGEXP-GETMATCH  (op-code 7)  

This operation returns a set of indices into a string passed to 
AREGEXP-MATCH that match the subexpression of the regular expression.  
Its usage is:
CALL "C$REGEXP" 
    USING AREGEXP-GETMATCH, match-handle, group, 
    idx-start, idx-end
    GIVING return-value

The parameters are defined as follows:

match-handle is a handle returned by AREGEXP-MATCH.

group is a number between “1” and the value returned by 
AREGEXP-NUMGROUPS.

idx-start returns an index into the beginning of the string that matches the 
subexpression of the regular expression.

idx-end returns an index to the end of the string that matches the 
subexpression of the regular expression.



General Syntax and Library List  I-141
return-value returns “1” if the operation succeeds, and zero if there is an 
error.

AREGEXP-LAST-ERROR  (op-code 20) 

This operation returns the last error code returned by a call to C$REGEXP.  
Its usage is:
CALL "C$REGEXP" USING AREGEXP-LAST-ERROR GIVING return-value

The error value is returned in return-value.  The possible error values 
(described in “acucobol.def”) have the following meanings:

AREGEXP-ERROR-NO-ERROR 0 No error

AREGEXP-ERROR-NO-MEMORY 1 Insufficient memory to handle the request

AREGEXP-ERROR-BRACE-EXPECTED 2 A closing brace is missing

AREGEXP-ERROR-PAREN-EXPECTED 3 A closing parenthesis is missing

AREGEXP-ERROR-BRACKET-EXPECTED 4 A closing bracket is missing

AREGEXP-ERROR-UNEXPECTED 5 An unknown error occurred

AREGEXP-ERROR-EMPTY-RANGE 6 An empty range was given

AREGEXP-ERROR-INVALID-GROUP 7 The group provided was invalid

AREGEXP-ERROR-INVALID-RANGE 8 An invalid range was given

AREGEXP-ERROR-EMPTY-REPEATOP 9 A repeat operator was given on an empty 
subexpression

AREGEXP-ERROR-INVALID-INPUT 10 The input was invalid

AREGEXP-ERROR-INVALID-HANDLE 11 The handle is not a regular expression 
handle or a match handle



I-142  ACUCOBOL-GT Library Routines
Note: If the error code returned does not match a value in the list, it may 
be that the value is coming from the host’s regular expression library.  
Refer to the documentation for the host’s regular expression library. 

C$RERR

This routine returns extended file status information.

Usage
CALL "C$RERR"
    USING EXTEND-STAT, TEXT-MESSAGE, STATUS-TYPE

Parameters

EXTEND-STAT (returned)  PIC X(5) or larger; PIC X(7) or larger under 
VMS

TEXT-MESSAGE (returned) PIC X(n)

STATUS-TYPE (input) Numeric parameter

AREGEXP-ERROR-INVALID-ARGUMENT 12 One of the arguments 
given is invalid

AREGEXP-ERROR-INVALID-CALL-SEQ 13 The order of C$REGEXP 
operations is an invalid 
sequence.

AREGEXP-ERROR-NO-MATCH 14 The regular expression 
did not find a match in 
the given string.



General Syntax and Library List  I-143
Comments

C$RERR must be passed a USING argument that should be PICTURE X(5) 
or larger. This argument is filled in with either the extended file status caused 
by the last file I/O, or the extended transaction status caused by the last 
transaction operation.  The value of STATUS-TYPE determines which status 
will be filled in.   

A text message is available for some 9D errors, which are host system errors.  
When a text message is available, it’s moved into the data item 
TEXT-MESSAGE, and returned as the second parameter.  You can use 
TEXT-MESSAGE to display text to the user, so the user can decide what 
action to take.  This parameter is ignored for transaction status.

The third parameter, STATUS-TYPE, controls whether file status or 
transaction status information is returned by the routine.  If STATUS-TYPE 
is set to “1” or the parameter is omitted, file status is returned.  If 
STATUS-TYPE is set to “2”, transaction status is returned.

The first two characters of the extended file status are identical to the normal 
FILE STATUS value returned by ACUCOBOL-GT for a file operation.  The 
last two characters further clarify the reason for the particular FILE STATUS 
value.  The values used here are listed in the file status table found in 
Appendix E.  If the file status (first two characters) is “30”, the remainder of 
the information is the operating system’s status code explaining what caused 
the error.  

On some systems, the operating system requires more than two digits for its 
status codes.  That is why the C$RERR routine may be passed a field that is 
larger than four characters.  Whenever an error “30” occurs, the operating 
system’s status value is returned in this extended field.  The number returned 
is a left-justified decimal value.  If the receiving field is too small, the 
right-most digits are returned.  If the receiving field is too large, the excess 
characters are filled with spaces.

The first two characters of the extended transaction status are identical to the 
contents of the TRANSACTION-STATUS register.  The last two characters 
further clarify the reason for the particular transaction status value.  The 
values used here are listed in the transaction status table found in 
Appendix E, Section E.4.  



I-144  ACUCOBOL-GT Library Routines
In a few cases, there may also be a tertiary status code.  If there is one, a 
comma will be placed immediately after the secondary status code, and the 
tertiary code will then appear left-justified.   

C$RERRNAME

This routine returns the name of the last file used in an I/O statement.  It can 
be used in conjunction with C$RERR to determine file errors.

Usage
CALL "C$RERRNAME" 
    USING FILE-NAME

Parameter

FILE-NAME   PIC X(n)

This field is filled in with the name of the last file that was involved in an I/O 
statement.  If the last statement was a transaction statement, then this routine 
returns spaces.  The file name returned is the one found in the file’s ASSIGN 
clause when it was opened. Any name translations specified in the 
configuration file are reflected in the returned name, but the FILE-PREFIX 
and FILE-SUFFIX used are not.

C$RESOURCE

Use C$RESOURCE to load a resource file and get a resource handle or to 
destroy the resource handle and free any memory associated with it.  The 
AcuBench Screen Designer saves changes made to an ActiveX control in a 
“state” resource file.  The runtime uses the information in this resource file 
when displaying the ActiveX control. 

After an ActiveX control is displayed you may destroy the resource handle 
used to initialize it. The ActiveX control only references this resource handle 
during the first DISPLAY or MODIFY which sets the initial-state property 
(usually the first display).  In general, you should destroy resource handles to 
free memory after all ActiveX controls that use them have been displayed.



General Syntax and Library List  I-145
Usage
CALL "C$RESOURCE" 
    USING OP-CODE, parameters
    GIVING RESOURCE-HANDLE

Parameters

OP-CODE    Numeric parameter

Op-code indicates the desired operation.  The file “activex.def” contains level 
78 symbolic names for these operations.

Parameters  Vary depending on the op-code chosen.  These are described in 
the Comments section below.

RESOURCE-HANDLE    PIC 9(9)

RESOURCE-HANDLE holds the return value of C$RESOURCE. Values 
less than or equal to zero indicate errors. This is only used by the 
CRESOURCE-LOAD operation.

Comments

There are two operations available in C$RESOURCE:

1. load a resource file and return a resource handle

2. destroy a resource handle and free its associated memory

To use C$RESOURCE, you pass an op-code as the first parameter, followed 
by one additional parameter.  The op-code determines which operation is 
performed and the meaning of the additional parameter.

Currently, there are two operations: CRESOURCE-LOAD and 
CRESOURCE-DESTROY:



I-146  ACUCOBOL-GT Library Routines
CRESOURCE-LOAD   This operation loads a resource file from disk and 
returns a resource handle.  It takes one additional parameter. 

Note: When you are running in a thin client environment, and a file 
name beginning with “@[DISPLAY]” is passed to this routine, it will 
attempt to access the file in the display host’s file system.  It does not 
download the file from the server.  For more information, refer to 
section 7.2, “Using Library Routines and DLLs in Thin Client.” of the 
AcuConnect User’s Guide.

CRESOURCE-DESTROY   This operation destroys a resource handle and 
releases its memory.  It takes one additional parameter.

Note: The behavior of this library routine is affected by the setting of the 
FILENAME_SPACES configuration variable that may or may not allow 
spaces in a file name.  See the documentation on FILENAME_SPACES in 
Appendix H, “Configuration Variables,” for information about the 
terminating character for path names.

Example
CALL "C$RESOURCE" USING CRESOURCE-LOAD, "PROGRAM1.RES" 
   GIVING RES-HANDLE.
IF RES-HANDLE > 0 THEN
   DISPLAY MSCHART LINE 10 COLUMN 10 LINE 5 SIZE 40 
      INITIAL-STATE = (RES-HANDLE, "MSCHART-1-INITIAL-STATE")
      HANDLE IN MSCHART-1
   CALL "C$RESOURCE" USING CRESOURCE-DESTROY, RES-HANDLE
END-IF  

NAME This is an alphanumeric literal or data item that is the file 
name of the resource file.  This must be a resource file 
generated by AcuBench.  The file usually ends with 
“.res”. 

RES-HANDLE This is a resource handle returned by 
CRESOURCE-LOAD.



General Syntax and Library List  I-147
C$RUN

ACUCOBOL-GT for Windows supports an alternate method for running 
other programs.  This is through the library routine C$RUN.  This library 
routine works identically to the SYSTEM library routine, except that the 
calling program does not wait for the called program to finish.  Instead, both 
programs run in parallel.   

Usage
CALL "C$RUN"
    USING COMMAND-LINE,
    GIVING STATUS-VAL

Parameters

COMMAND-LINE   PIC X(n)

Contains the operating system command line to execute.

STATUS-VAL   Any numeric data item

Returns “0” if successful or “-1” if not.

Description

C$RUN sets STATUS-VAL to “-1” if the call fails or to “0” if it succeeds.  

C$RUN is implemented only under the Windows and Windows NT versions 
of ACUCOBOL-GT.  On other systems, it always returns “-1”. 

C$SETERRORFILE

This routine sets the name of the runtime error file.  Format specifiers may be 
used in the name.  If the resulting file name differs from the current runtime 
error file name, the runtime closes the current error file, attempts to rename it 
to the new name, and opens the new file in extend mode.  Subsequent error 
and trace messages are written to the new error file.  Note that the rename 



I-148  ACUCOBOL-GT Library Routines
operation overwrites an existing file.  Also, the rename operation may fail if 
the original error file is in use by other runtime processes.  In this case the 
original file will be left alone and the new file will start empty. 

Usage
CALL "C$SETERRORFILE"
    USING ERROR-FILE-NAME

Parameters

ERROR-FILE-NAME PIC X(n)

Contains the name of the error file.  The runtime error file format specifiers 
may be used.

Comments

This routine provides a means for applications to embed identifying 
information in the runtime error file name.  For example, after a user logs in, 
an application can change the name of the runtime error file so that it includes 
the user name.

If the runtime fails and the user calls customer support, the support analyst 
can search the directory containing runtime error files and quickly identify 
the one with the user’s name to help resolve the issue.  This is especially 
useful in situations where the runtime was launched from AcuConnect using 
an entry in the AcuConnect alias file.  Since one alias is used by many users, 
there is potentially only one error file.  In this case, error messages tied to 
failures experienced by a particular user may be lost or difficult to read 
because multiple runtime processes are writing to the same error file.  
C$SETERRORFILE helps by allowing you to set the error file name from 
COBOL for a particular runtime instance. 



General Syntax and Library List  I-149
C$SETEVENTDATA

When an ActiveX control or COM object event procedure exits, it can send 
information back to the control through the event parameters. These 
parameters are stored in the control and can be set by calling 
C$SETEVENTDATA before the control’s event procedure exits.

Usage
CALL "C$SETEVENTDATA" 
    USING EVENT-CONTROL-HANDLE, SRC-ITEM-1, [SRC-ITEM-2, ...]
    GIVING RESULT-CODE

Parameters

EVENT-CONTROL-HANDLE    USAGE HANDLE

Handle to the control that triggered the event. 

SRC-ITEM-1    Any COBOL data type

The first source data item. 

SRC-ITEM-2,  . . .    Any COBOL data type (optional)

Any number of source items. 

RESULT-CODE    Signed numeric value

Receives the result-code for the operation. This will be 0 to indicate success 
or a negative value to indicate failure. (Microsoft defines many standard 
“result codes” in their documentation.  Note that these are usually in 
hexadecimal notation.)

Comments

C$SETEVENTDATA converts the COBOL-type data in the source items to 
the corresponding event parameter types. 



I-150  ACUCOBOL-GT Library Routines
You are responsible for specifying compatible types. For example, if the 
source item you specify is alphabetic, and the event parameter you are setting 
is a signed integer, C$SETEVENTDATA will try to read a number from the 
alphabetic item and move it to the event parameter. This is not a 
programming error and neither the compiler nor runtime will warn 
you about it.

Example

Suppose you have displayed an ActiveX control that triggers an event called 
AxEventOne which has three parameters. You would use the following 
COBOL syntax to get the event parameters, add two to each one and set the 
event parameters to their new values:
WHEN AxEventOne
   CALL "C$GETEVENTDATA" USING EVENT-CONTROL-HANDLE, 
      PARAM-1, PARAM-2, PARAM-3
   ADD 2 TO PARAM-1
   ADD 2 TO PARAM-2
   ADD 2 TO PARAM-3
   CALL "C$SETEVENTDATA" USING EVENT-CONTROL-HANDLE, 
      PARAM-1, PARAM-2, PARAM-3

For more examples of how to set event parameters for ActiveX events, refer 
to section 4.4 in A Guide to Interoperating with ACUCOBOL-GT.  

C$SETEVENTPARAM

C$SETEVENTPARAM is an alternate way to set event parameters for 
ActiveX controls. Use it to set a single event parameter when there are 
several for an event.  To use this routine you must know the actual name of 
the parameter. You may determine these names by reading the ActiveX 
control’s documentation or by looking at the definitions in the copy book for 
the ActiveX control. 

It is common for an ActiveX event to receive many parameters. 
C$SETEVENTPARAM allows you to set the values of only the parameters 
you care about. 



General Syntax and Library List  I-151
Please note that C$SETEVENTPARAM cannot be used to set event 
parameters for COM objects.  You must use C$SETEVENTDATA for COM 
objects.

Usage
CALL "C$SETEVENTPARAM" 
    USING EVENT-CONTROL-HANDLE, PARAM-NAME, PARAM-VALUE
    GIVING RESULT-CODE

Parameters

EVENT-CONTROL-HANDLE    USAGE HANDLE

Handle to the control that generated the event. 

PARAM-NAME    PIC X(n)

The symbolic name of the event parameter.

PARAM-VALUE    Any COBOL data type

Source item containing the event parameter’s value. 

RESULT-CODE    Signed numeric value

Receives the result-code for the operation. This will be 0 to indicate success 
or a negative value to indicate failure. (Microsoft defines many standard 
“result codes” in their documentation.  Note that these are usually in 
hexadecimal notation.)

Comments

C$SETEVENTPARAM converts the COBOL-type data in the source item to 
the named event parameter’s type.  Using this routine instead of 
C$SETEVENTDATA will make your code more readable.  The object code 
will be a little larger and calls to this routine will take a little longer than calls 
to C$SETEVENTDATA. However, these differences will probably be 
unnoticeable and the benefits of readable code outweigh the performance and 
size considerations.



I-152  ACUCOBOL-GT Library Routines
You are responsible for specifying a compatible types. For example, if the 
source item you specify is alphabetic, and the event parameter you are setting 
is a signed integer, C$SETEVENTPARAM tries to read a number from the 
alphabetic item and move it to the event parameter. This is not a 
programming error and neither the compiler nor runtime warns you about it.

Example

Suppose you have displayed an ActiveX control that triggers an event called 
AxEventOne which has three parameters. Then suppose that PARAM-1 and 
PARAM-2 contain information about the event and that only PARAM-3 is 
meant to be set by the event procedure. Since PARAM-3 is the third 
parameter, to set it you would have to pass two “dummy” parameters using 
C$SETEVENTDATA. For example:
CALL "C$SETEVENTDATA" 
   USING EVENT-CONTROL-HANDLE, 0, 0, PARAM-3.

However, If you determined that the name of PARAM-3 in the ActiveX 
control was”Param3”. You could then use C$SETEVENTPARAM to 
accomplish this task in a more elegant and readable way. For example,
CALL "C$SETEVENTPARAM" 
   USING EVENT-CONTROL-HANDLE, "Param3", PARAM-3.

For more examples of how to set event parameters for ActiveX events, refer 
to section 4.4 in A Guide to Interoperating with ACUCOBOL-GT. 

 C$SETVARIANT

This routine sets data items referenced by Variant handles. Note that there is 
also a C$GETVARIANT routine that retrieves data referenced by a Variant 
handle.

C$SETVARIANT converts COBOL type data to Variant type data.  
Programs that call ACUCOBOL-GT using the ACUCOBOL-GT 
Automation Server or runtime DLL pass their parameters (by reference) as 
Variant types.  The COBOL program receives handles to the Variant data.  
C$SETVARIANT sets the data associated with a particular handle to the 
value of a COBOL data item.  The data is automatically converted to the 
proper Variant format.



General Syntax and Library List  I-153
Usage
CALL "C$SETVARIANT" 
    USING SRC-ITEM, H-VARIANT
    GIVING RESULT-CODE

Parameters

SRC-ITEM     Any COBOL data type

The source data item. 

H-VARIANT     USAGE HANDLE

Handle to Variant type data.  Data passed in from a program calling 
ACUCOBOL-GT using the ACUCOBOL-GT Automation Server or runtime 
DLL is in the form of handles to Variant type data.

RESULT-CODE     Signed numeric value

Receives the result code for the operation. This will be 0 or a positive value 
to indicate success or a negative value to indicate failure. 

Under Microsoft Windows this is a code of type HRESULT that can be 
looked up in Microsoft documentation to determine the reason for the failure 
or additional information about the success.

Comments

The COBOL data item SRC-ITEM is converted to Variant type data, and is 
stored in the Variant item associated with H-VARIANT.

C$SETVARIANT creates a new variant to store the initial value of the 
handle item passed to it is LOW-VALUES or SPACES.  (It is your 
responsibility to free this variant using the DESTROY verb.)

The C$SETVARIANT library routine and OLE SAFEARRAY data type are 
supported in thin client environments, regardless of the kind of operating 
system on the server.  However, be careful when using C$SETVARIANT in 
thin client environments, because it generates network traffic and can affect 



I-154  ACUCOBOL-GT Library Routines
performance. When using this library routine in a thin client environment, 
you should pass only small amounts of data.  Note that C$GETVARIANT 
is not supported in thin client environments at this time.

C$SLEEP

This routine causes the program to pause in a machine efficient fashion.

Usage
CALL "C$SLEEP" 
    USING NUM-SEC

Parameter

NUM-SEC   Numeric or alphanumeric parameter

The number of seconds to sleep.

This parameter is a an unsigned fixed-point numeric parameter, or an 
alphanumeric data item containing an unsigned fixed-point number. 

Description

This routine can be used to impose slight delays in loops.  For example, you 
might want to introduce a delay in a loop that is waiting for a record to 
become unlocked.  Calling C$SLEEP will allow the machine to execute other 
programs while you wait.

The C$SLEEP routine is passed one argument.  This argument is the number 
of seconds you want to pause.  For example, to pause the program for five and 
a half seconds, you could use either of the following:
CALL "C$SLEEP" USING 5.5
CALL "C$SLEEP" USING "5.5"

The amount of time paused is only approximate.  Depending on the 
granularity of the system clock and the current load on the machine, the time 
paused may actually be shorter or longer than the time requested.  Typically, 
the time paused will be within one second or one-tenth of a second of the 
amount requested (unless the machine is excessively loaded).  



General Syntax and Library List  I-155
If the sleep duration is zero, this function does nothing.  If the sleep duration 
is signed, this function generates a runtime error.

C$SOCKET

This routine can be used to communicate with other processes on remote or 
local hosts. This provides an interface to inter-process communication via 
sockets.

Usage
CALL "C$SOCKET" 
    USING OP-CODE, parameters

Parameters

OP-CODE   Numeric parameter

Specifies the operation to perform.  These are defined in the description 
below.

Parameters   Various types defined in “socket.def”. 

The remaining parameters vary depending on the operation selected. They 
provide information and hold results for the operations specified. 

Description

All parameters passed to C$SOCKET are passed BY REFERENCE.  The 
C$SOCKET routine provides any necessary conversions.  Numeric 
arguments passed to this routine must be declared as COMP 5.

Note:  If a COBOL thread calls one of these operations, all threads are 
blocked until the operation is finished and control is returned to the 
COBOL program.  



I-156  ACUCOBOL-GT Library Routines
AGS-CREATE-SERVER (op-code 1) 

This operation creates a server-side socket.  It must be called once at the 
beginning of any service you create.  If the call is successful, the value in 
RETURN-CODE should be moved to a data item that is USAGE HANDLE.  
This data item is then passed as the socket handle to AGS-ACCEPT or 
AGS-NEXT-READ.  This socket handle is not available for read or write 
operations.  You can use the GIVING phrase instead of MOVE to store the 
value in a data item. If the call fails, RETURN-CODE is NULL. This 
operation has a single parameter: 

port-number a numeric value specifying the port on which the 
socket is created.  All clients must use the same port 
number to connect to this server.

AGS-ACCEPT (op-code 2) 

This operation waits for a connection from a client.  It blocks other calls 
while waiting, and returns only after a client has attempted to connect.  If a 
client successfully connects, the value in RETURN-CODE is a socket handle 
that may be used to communicate with the client using AGS-WRITE and 
AGS-READ. This operation is called once if the server is a single-client 
server. In that case, once the client has connected it is safe to close the 
original server socket (created in AGS-CREATE-SERVER) using 
AGS-CLOSE, and use only the socket handle returned by this operation. This 
operation has a single parameter:

socket-handle this is returned by a call from 
AGS-CREATE-SERVER.

AGS-CREATE-CLIENT (op-code 3) 

This operation attempts to connect to a server.  It waits only a short time 
before giving up, so the server should be running before the client makes this 
call. (The length of time is dependent on the underlying socket layer.) If it is 
successful, the value in RETURN-CODE is a socket handle that can be used 
to communicate with the server using AGS-WRITE and AGS-READ.  The 
socket handle should be moved to a data item of USAGE HANDLE. This 
operation takes two parameters:



General Syntax and Library List  I-157
port-number a numeric value specifying the port on which the 
socket is created.  

server-name a PIC X(n) data item that holds the machine name of 
the server.

AGS-CLOSE (op-code 4) 

This operation closes a socket handle.  After closing a socket handle, it 
should no longer be referenced.  This operation takes a single parameter:

socket-handle this indicates which socket to close.

AGS-WRITE (op-code 5) 

This operation writes data to a socket, either from the client to the server, or 
from the server to the client.  With this operation, data is actually written: 

• when AGS-READ is attempted on that socket,

• when you are querying for any available sockets to read using 
AGS-READ or AGS-NEXT-READ, or 

• when you call AGS-FLUSH. 

The value in RETURN-CODE is the number of bytes written.  If this is 
different than the length parameter, an error has occurred.  

Note:  It is up to you to make sure that the server is writing when the client 
is reading, and vice versa.  If both attempt to read at the same time, a 
deadlock will result.  

This operation takes three parameters:

socket-handle a valid socket handle returned from AGS-ACCEPT, 
AGS-CREATE-CLIENT, or AGS-NEXT-READ. 

buffer indicates a buffer to write.  It can be of any format, 
including a group item.  



I-158  ACUCOBOL-GT Library Routines
Note: Be careful when sending numeric data across the network 
because some machines use different byte ordering than others and 
native numeric data can appear swapped on different machines.  
COMP-4 data is in the order that most network servers expect for 
binary data.  If you are communicating with a non-COBOL client 
or server, you should use COMP-4 data of the correct size for the 
machine in question. If your client and server are both COBOL, 
you can use standard COBOL types.

length the number of bytes to write.  If the buffer passed is 
smaller than the value of this parameter, an error will 
result.

AGS-READ (op-code 6) 

This operation reads data from a socket.  It blocks other calls until all the data 
requested is actually read, or an error occurs.  The value returned in 
RETURN-CODE is the number of bytes actually read.  If this is different 
than the length parameter, an error occurred.   If the socket is closed before 
the entire buffer is filled, C$SOCKET will return the number of bytes read to 
that point, which will be less than the amount requested.  The next time 
AGS-READ is called, C$SOCKET will return -1 to signify that the socket is 
closed. This operation takes four parameters:

socket-handle a valid socket handle returned from AGS-ACCEPT, 
AGS-CREATE-CLIENT, or AGS-NEXT-READ. 

buffer indicates a buffer to read.  It can be of any format, 
including a group item.  (The same cautions about byte 
order described in AGS-WRITE apply here.)

length the number of bytes to read.  If the buffer passed is 
smaller than the value of this parameter, an error will 
result. If length = 0, then the return value is the number 
of bytes available to be read on the socket.  In other 
words, after calling AGS-READ with a length of “0”, 
you can call AGS-READ again with a length equal to 
the previous return value and be guaranteed not to 
block.  If length is negative, the data is moved to the 
buffer, but it is also left in the socket so that a future 



General Syntax and Library List  I-159
call to AGS-READ can read it again.  In this case, the 
number of bytes transferred to the buffer is the 
absolute value of length.

timeval a number, measured in milliseconds, that determines 
how long to execute this operation. If the specified 
time-out period passes, buffer will contain as much 
data as is available, and the return value will be the 
number of bytes read. This will probably be less than 
the number of bytes desired. This allows COBOL 
programs to wait for data that may not come.

AGS-FLUSH (op-code 7) 

This operation flushes any data in the socket, sending any data that has been 
written, and checking for data to be read.  The data to be read is stored in an 
internal buffer, awaiting a call to AGS-READ. This operation returns no 
value. This operation takes a single parameter:

socket-handle this indicates which socket handle to flush.

AGS-EMPTY (op-code 8) 

This operation is similar to AGS-READ, except that the number of bytes is 
thrown away, rather than being stored. This operation takes two parameters:

socket-handle a valid socket handle returned from AGS-ACCEPT, 
AGS-CREATE-CLIENT, or AGS-NEXT-READ. 

length the number of bytes to throw away.  Setting this 
parameter means that AGS-EMPTY will not complete 
until that many bytes are available on the socket to 
throw away.

AGS-GETHOSTNAME (op-code 9) 

This operation allows the COBOL program to get the name of the host 
machine on which the COBOL program is executing. The return value is “0” 
on success, and “-1” on error. This operation takes a single parameter:



I-160  ACUCOBOL-GT Library Routines
hostname this parameter should be a PIC X(n) parameter.  The 
name of the host machine is stored in this data item.

AGS-LAST-ERROR (op-code 10) 

This operation allows the COBOL program to determine the last error on a 
socket.  This information is only meaningful when an error has occurred.  It 
is useful if one of the operations that returns a socket handle returns an error 
instead.  The value stored in RETURN-CODE is the error number.  The error 
numbers are listed by name in “socket.def”.  (To interpret these error codes, 
refer to third-party documentation about sockets.) This operation takes a 
single parameter:

socket-handle a valid socket handle returned from AGS-ACCEPT, 
AGS-CREATE-CLIENT, or AGS-NEXT-READ, or a 
NULL socket handle.  

AGS-NEXT-READ (op-code 11) 

This operation allows you to create multi-client servers.  It waits until data is 
ready to be read from one of the sockets your server has created. Note that 
this operation only returns information about sockets created as children of 
the server socket passed (meaning that it only waits for sockets that were 
ACCEPTed from that socket) and ignores all other sockets.  It automatically 
accepts new client connections from AGS-CREATE-CLIENT, and returns 
the corresponding socket handle as one that can be read. The value in 
RETURN-CODE is a socket handle returned from AGS-ACCEPT, 
AGS-CREATE-CLIENT, or AGS-NEXT-READ, “0” to signify that the 
timeval has elapsed, or “-1” to signify an error.  (The socket handle returned 
from this operation may be from a new client which has connected and sent 
data.  If your program has not yet recognized this as a valid socket, the value 
may be unfamiliar to you.)  This operation takes two parameters:

server-socket-handle   the socket handle returned by 
AGS-CREATE-SERVER.

timeval a number, measured in microseconds, that determines 
how long to execute this operation. The first time you 
call AGS-NEXT-READ, timeval determines the 



General Syntax and Library List  I-161
length of time the operation executes. All subsequent 
invocations of this operation are handled in one of two 
ways:

1)  If there is a socket handle that has already been 
determined to have data available, that socket handle 
is returned immediately regardless of the value of 
timeval.  

2)  If all sockets have been processed, then the setting 
of timeval determines how long the routine will 
execute, just as in the initial call.  Any sockets that 
receive data during that time will store the data until 
AGS-READ or AGS-EMPTY is called with that 
socket as an argument.  Any future calls to 
AGS-NEXT-READ will return those socket handles.

If timeval is set to “0”,  all the sockets are checked and 
the operation returns immediately.  If no sockets have 
data, the routine  returns “0”. Otherwise the return 
value will be a socket that has data. If timeval is set to 
the default of “-1”, the operation waits until a socket 
which can be read is available (potentially forever).  If 
all your server does is service clients, then you should 
always pass the value of “-1” as the timeval.  The only 
reason to pass a timeval that is not “-1” is if your 
server wants to perform other work while it is not busy 
servicing clients.  

AGS-REMOTE-NAME (op-code 12) 

This operation returns the name of a remote machine. It takes two 
parameters:

socket-handle a valid socket handle returned from AGS-ACCEPT, 
AGS-CREATE-CLIENT, or AGS-NEXT-READ.  

remote-name a PIC X(n) data item that is filled with the name of the 
remote machine.



I-162  ACUCOBOL-GT Library Routines
AGS-REMOTE-ADDR (op-code 13) 

This operation returns the IP address of a remote machine. It takes two 
parameters:

socket-handle a valid socket handle returned from AGS-ACCEPT, 
AGS-CREATE-CLIENT, or AGS-NEXT-READ.  

remote-addr a PIC X(n) data item that is filled with the IP address 
of the remote machine.

AGS-READ-LINE (op-code 14) 

This operation reads a line of data from a socket.  A line is defined as a block 
of text terminated by either a NewLine or Carriage-Return / NewLine (NL or 
CRNL).  The NL or CRNL is stripped from the data before it is returned, and 
the return value is the number of bytes read, not counting the NL or CRNL.  
This operation blocks other calls until all the data requested is actually read, 
or an error occurs. This operation takes four parameters:

socket-handle a valid socket handle returned from AGS-ACCEPT, 
AGS-CREATE-CLIENT, or AGS-NEXT-READ. 

buffer indicates a buffer to read.  It can be of any format, 
including a group item.  (The same cautions about byte 
order described in AGS-WRITE apply here.)

length the number of bytes to read.  If the buffer passed is 
smaller than the value of this parameter, an error 
results.  If length = 0, then the return value is the 
number of bytes available to be read on the socket.  In 
other words, after calling AGS-READ-LINE with a 
length of 0, you can call AGS-READ-LINE again 
with a length equal to the previous return value and be 
guaranteed not to block.  If length is negative, the data 
is moved to the buffer, but it is also left in the socket 
so that a future call to AGS-READ-LINE can read it 
again.  In this case, the number of bytes transferred to 
the buffer is the absolute value of length.



General Syntax and Library List  I-163
timeval a number, measured in milliseconds, that determines 
how long to execute this operation. If the specified 
time-out period passes, buffer will contain as much 
data as is available, and the return value will be the 
number of bytes read. This will probably be less than 
the number of bytes desired. This allows COBOL 
programs to wait for data that may not come.

AGS-GETHOSTADDR (op-code 15)

This operation code takes a single argument:

host-address A pic x(15) or larger item.  This is the address of the 
local host in dotted notation (192.15.4.32) when 
C$SOCKET returns.

AGS-GETSOCKETPORT (op-code 16)

This operation code takes a single argument:

socket-handle This is a socket handle.  The return value is the port 
being used by that socket, or “-1” on error.  This is 
useful when passing “0” as the port number when 
creating a socket, since a socket is created on some 
unknown port in that case.  This function can then be 
used to determine the actual port being used.

Examples

Three sample programs are provided to illustrate the use of the C$SOCKET 
routine. 

• “sockcli.cbl” is a client that connects to a server and sends it data.  The 
server returns the data modified. 

• “socksrv1.cbl” is a single-client server.  This means that it can 
accommodate a single client.  When that client shuts down, the server 
also halts.  If another client subsequently tries to connect to the server, it 
is ignored.



I-164  ACUCOBOL-GT Library Routines
• “socksrvm.cbl” is a multi-client server.  Any number of clients can 
attach to this server.  When one client disconnects, the rest continue to be 
serviced.  

Because of limitations in the “socksrvm.cbl” sample program, the only way 
to halt the server is to kill it at the operating system level.  This is not a 
general requirement of  multi-client servers.

C$SYSLOG

This library routine can be used to open, write to, and close the system log.  
Using this routine, you can write to the system log or event notification 
system (on Windows) in the event of a serious error that administrators need 
to know about.  

Usage
CALL "C$SYSLOG"
    USING OP-CODE, parameters

Parameters

OP-CODE  Constant

Indicates which C$SYSLOG operation to perform.  The operations are 
described below in the Description section.

parameters  vary depending on the op-code chosen

Provide information and hold results for the operation specified.  These 
parameters are discussed with their corresponding op-codes in the 
Description section below.

Description

C$SYSLOG sends messages to syslog on UNIX systems that have the syslog 
function.  On other UNIX systems, and on other non-Windows operating 
systems, this routine sends messages to the console.  On Windows systems, 
the routine sends messages to the event log, which can be viewed using the 
Event Viewer applet available on Windows.



General Syntax and Library List  I-165
The runtime also sends messages to the system log when it detects broken 
files.  This function allows COBOL programmers to notify system 
administrators automatically when a broken file is detected, instead of 
relying on individual users to report such errors.  The runtime sends such 
notifications only if the COBOL program has opened the system log using 
the C$SYSLOG routine as described below.  

Note: Because the various implementations of system logging don't report 
errors, the C$SYSLOG routine does not report errors either, because it 
never receives any.

See your UNIX system documentation for information about the syslog 
facility.  Refer to your Windows documentation for information on the Event 
Viewer applet. 

The following constants used by the C$SYSLOG library routine are defined 
in “acucobol.def”:

CSYSLOG-OPEN (op-code 0) opens the system log.  This operation takes 
the following two parameters and has no return value:  

DOMAIN  Alphanumeric item

The UNC name of a Windows machine to which to send events.  This 
parameter is used only for Windows machines.  It is ignored on other 
operating systems.  

If this parameter is set to any of the following items, the local machine 
executing the runtime receives the event messages:

• the NULL keyword

• an empty string literal (this setting generates a compiler 
warning)

• a string literal that contains spaces

• a data item with a value of spaces or low-values



I-166  ACUCOBOL-GT Library Routines
APPNAME  Alphanumeric item

The name of the application under which to log the notifications.  See 
the Event Viewer or syslog documentation for information about what 
this parameter actually does and how to filter notifications on this 
name.

CSYSLOG-WRITE (op-code 1) allows you to write to the system log.  This 
operation takes the following two parameters:

PRIORITY   Numeric item 

This parameter may have one of the following values:

CSYSLOG-PRIORITY-SUCCESS (value 0)

CSYSLOG-PRIORITY-INFORMATION (value 1)

CSYSLOG-PRIORITY-WARNING (value 2)

CSYSLOG-PRIORITY-ERROR (value 3)

See the Event Viewer or syslog documentation that comes with your 
operating system for information about these values and how to filter 
based on them.  

MESSAGE   Alphanumeric item 

The message sent to the system log.  This parameter has no maximum 
length; it is sent to the system log as is.  The system administrator sees this 
message in the system log.  

CSYSLOG-CLOSE (op-code 2) closes the system log.  This operation takes 
no parameters and returns no value.  After the system log is closed and before 
it is opened again, all writes to the system log (including those done 
internally by the runtime for reporting broken files) fail with no warning or 
error message.

C$SYSTEM

This routine combines the functionality of “SYSTEM” and “C$RUN”.  It 
allows you to run other programs from inside a COBOL application in a 
variety of ways.



General Syntax and Library List  I-167
C$SYSTEM adds the following capabilities to the original capabilities of 
SYSTEM and C$RUN:

1. Uniform programming interface for all options

2. Asynchronous operation (C$RUN) added to UNIX hosts

3. Windows hosts can specify minimized, maximized, or hidden windows

4. Smart shell selection for Windows and Windows NT

Usage
CALL "C$SYSTEM" 
    USING CMD-LINE, FLAGS
    GIVING EXIT-STATUS

Parameters

CMD-LINE   PIC X(n)

Contains the operating system command line to execute.

FLAGS   Numeric unsigned (optional)

Supplies the options for the operation.  If omitted, acts as if “0” was specified. 
You can find possible values of FLAGS in “acucobol.def”.

EXIT-STATUS   Any numeric data item

Returns the called program’s exit status.

FLAGS

The FLAGS field specifies various options about how the command should 
be run.  Determine the value of the FLAGS field by adding together the 
values corresponding to the following options:

CSYS-ASYNC (value 1): This option causes the command to run 
independently of the COBOL program.  After starting the command, the 
COBOL program continues.  When this option is specified, EXIT-STATUS 
returns undefined results.  When this flag is not used, the COBOL program 



I-168  ACUCOBOL-GT Library Routines
waits for the command executed to finish before the COBOL program 
continues.  CSYS-ASYNC is functional only on Windows and UNIX 
systems.

Note: On UNIX machines, specifying CSYS-ASYNC with a program that 
tries to do input or output to the terminal is not supported.

CSYS-NO-IO (value 2): For character-based systems, the runtime normally 
sets the terminal to its default state prior to running the command, and resets 
it back to the state needed by the runtime when the command finishes.  This 
option ensures that the called application runs correctly if the application uses 
the screen.  However, CSYS-NO-IO also causes the runtime to “forget” the 
contents of the screen.  This happens because the command executed may 
display information on the screen that ACUCOBOL-GT is not aware of.  
Because of this, windows created after a call to C$SYSTEM may not 
correctly restore the screen contents when these windows are closed.  You 
can avoid this problem by re-initializing the screen after C$SYSTEM returns.  
You can do this by erasing the screen or closing a floating or pop-up window 
that covers the entire screen (the window must have been created by the 
C$SYSTEM call).  

If the command to be executed will not perform any screen I/O, then you can 
request that C$SYSTEM retain ACUCOBOL-GT’s memory of the original 
screen by using the CSYS-NO-IO option.  This will avoid the problem 
described above.  The option has no effect in Windows, where the command 
runs in its own window.  

CSYS-MAXIMIZED (value 4): This option causes the command to run in a 
maximized window.  This is functional only when you are running under 
Windows.  

CSYS-MINIMIZED (value 8): This option causes the command to run in a 
minimized window.  In addition, the COBOL program remains the active 
program retaining the keyboard focus and keeping the active appearance. 
This is functional only when you are running under Windows.  

CSYS-COMPATIBILITY (value 16): This option causes the command to 
run in a window that is compatible with the way the SYSTEM library routine 
works.  Use this option if you want to modify a call to SYSTEM and change 
this call to C$SYSTEM.  There are very few differences between the default 



General Syntax and Library List  I-169
behavior of SYSTEM and C$SYSTEM, so this option is rarely needed.  The 
only known difference involves the Microsoft Word application.  If you use 
SYSTEM to start Microsoft Word, it always starts in a “normal” sized 
window, that is, the window size suggested by Windows.  If you use 
C$SYSTEM to start Microsoft Word (with no FLAGS specified), then Word 
adopts the last window size it previously used.  Supplying a flag of 
CSYS-COMPATIBILITY causes C$SYSTEM to behave the same as 
SYSTEM.  Of course, if you prefer the behavior of C$SYSTEM, the flag 
should not be used.  In comparison with SYSTEM, C$SYSTEM generally 
conforms more closely to the way Windows itself launches programs.  The 
CSYS-COMPATIBILITY flag is recommended only if you change a 
SYSTEM call to a C$SYSTEM call and you observe a difference you do not 
like.  

CSYS-HIDDEN (value 32): This option runs the command in a hidden 
window.  Note that some applications, particularly those that routinely 
interact with the user, may get confused if you “hide” the command.  This 
works well, however, for executing system tasks that do not have a user 
interface, such as executing a batch file that renames a series of files.  This 
option is functional only when you are running under Windows.  

CSYS-SHELL (value 64): When this option is specified, C$SYSTEM uses 
the host’s command-line processor (the host’s shell) to execute the 
command.  Otherwise, the command may be executed without the 
command-line processor.  This option affects only Windows (non-Windows 
versions always use the host’s shell).  For Windows applications that create 
their own windows, you should avoid using the shell - the application will not 
receive the initial window size request specified in FLAGS.  For “.COM” and 
“.BAT” programs, and other built-in shell commands such as COPY and 
DIR, you must use the shell or the command may not execute.  

The effect of this option is to prefix the command with the value of the 
COMSPEC environment variable and “/C”.  Under Windows, this will 
usually result in a prefix like “C:\COMMAND.COM /C”.  Under Windows 
NT, the prefix will typically be “CMD.EXE /C”.

CSYS-DESKTOP (value 128): This option is for applications running in the 
thin client environment.  It indicates that the application wants to run the 
command on the client system rather than the application server.  When the 
command executes, unless the CSYS-ASYNC option is also specified, the 
thin client appears to “hang” while the application waits for the command’s 



I-170  ACUCOBOL-GT Library Routines
termination status.  This behavior can be avoided with the CSYS-ASYNC 
flag.  The CSYS-ASYNC flag causes the command to be run 
asynchronously.

If CSYS-DESKTOP is specified but the calling program is not running under 
thin client, the flag is ignored and the command is run on the same machine 
as the calling application.

CSYS-INHERIT-HANDLES (value 256):  This option causes the new 
process to inherit each inheritable handle owned by the calling process.  This 
includes “stdin”, “stdout”, “stderr”, and other file handles that the calling 
process has open.

Note that because the called process inherits many open files, it is vulnerable 
to running out of file handles.

This option is needed when an Alternate Terminal Manager runtime calls 
C$SYSTEM to run a batch program which in turn calls another Alternate 
Terminal Manager runtime.  Without this option, the called program will not 
display any output to the screen.

Comments

The “C$SYSTEM” routine submits CMD-LINE to the host operating system 
as if it were a command keyed in from the terminal.  The maximum allowable 
length for the command line is 1024 bytes.

Note: Applications that run under Windows but that do not create their 
own windows should use the CSYS-SHELL flag to execute “.COM”, 
“.BAT”, and built-in shell commands such as COPY and DIR.  See the 
description of CSYS-SHELLflag.

You should specify only one window size flag (CSYS-MAXIMIZED, 
CSYS-MINIMIZED, CSYS-COMPATIBILITY, or CSYS-HIDDEN).  In 
the absence of any window size flag, the command runs in a “normal” 
window whose size is determined by the operating system.  Windows 
programs can set their own window size.  This will override the window size 
suggested by FLAGS.  Essentially, the value of FLAGS is only a 
“suggestion” to the application.  



General Syntax and Library List  I-171
Options that are not meaningful to the host system are ignored.  Meaningful 
options in the same FLAGS setting are still applied.  

The status of a call to C$SYSTEM is placed in EXIT-STATUS.  This is 
usually the exit status of the executed program, or is “-1” if C$SYSTEM 
failed.  Note that Windows will return “-1” from commands that are built into 
COMMAND.COM because COMMAND.COM does not return an exit 
status for built-in functions.  

C$TOUPPER and C$TOLOWER

These routines translate text to upper- or lower-case.  

Usage
CALL "C$TOUPPER" 
    USING TEXT-DATA, VALUE TEXT-LEN

CALL "C$TOLOWER" 
    USING TEXT-DATA, VALUE TEXT-LEN

Parameters

TEXT-DATA   PIC X(n)

Contains the data to translate to upper- or lower-case.  

TEXT-LEN   USAGE UNSIGNED-INT, or a numeric literal

Contains the number of characters to translate.

Description

C$TOUPPER translates the first TEXT-LEN characters in TEXT-DATA to 
upper-case.  C$TOLOWER translates them to lower-case.  No size checking 
is done on TEXT-DATA, so you must ensure that TEXT-LEN has a valid 
value.  VALUE must be included in the calling statement.  If it is omitted, the 
program will very likely encounter memory errors.  These routines only 
translate characters with a numeric value of 0-128.  Anything above that 



I-172  ACUCOBOL-GT Library Routines
(such as é, with a value of 130) must be mapped to its associated upper- or 
lower-case character using the configuration variable 
UPPER-LOWER-MAP. 

Note: You can also translate character strings using the intrinsic functions 
UPPER-CASE and LOWER-CASE, the CONVERTING option of the 
INSPECT statement, or the UPPER or LOWER options of the ACCEPT 
statement.

C$XML

This routine lets you retrieve and parse precise information from an XML 
document.  It also lets you add, modify, or delete data in an XML document.  
Refer to the Guide to Interoperating with ACUCOBOL-GT, Chapter 11, 
section 11.2.6 for additional user instructions, examples, and help with XML 
terminology like element, attribute, parent, child, and sibling. 

Usage
CALL "C$XML" 
    USING OP-CODE, parameters...

Parameters

OP-CODE   Numeric parameter

Specifies the operation to perform. These are defined in the description 
below. There are constants defined for the op-codes in “acucobol.def”.

Parameters   Vary depending on the op-code chosen.

The parameters vary depending on the operation selected. They provide 
information and hold results for the operations specified.  These are described 
below.



General Syntax and Library List  I-173
Description

Unless otherwise noted, the return code is “0” if an error has occurred. The 
return code is positive if everything went correctly.  Possible operations 
include:

CXML-PARSE-FILE (op-code 1)

Parses the specified file, returning a parser handle as the return-code.  This 
operation takes one parameter:  

filename name of the XML document to parse 

To read a file from the Internet and parse it, you can pass the filename with 
URL syntax.  For example, you could pass the following filename:

http://myserver.mycomp.com/xmldata/bookfile.xml

Use this op-code when the file is fairly small, and you want to read and parse 
the whole file with a single call and store it in memory.

CXML-RELEASE-PARSER (op-code 2)

Releases memory allocated by parsing.  The passed handle is zeroed by this 
call.  This operation takes one parameter:  

handle the parser handle returned by CXML-PARSE-FILE, 
CXML-OPEN-FILE, CXML-PARSE-STRING, or 
CXML-NEW-PARSER

Caution: Failing to call with this op-code results in a memory leak.

CXML-GET-FIRST-CHILD (op-code 3)

Retrieves the handle of the first child element of the handle passed. The 
return-code is a handle of the first child element, or “0” if there are no 
children.  (The case of no children is not considered an error, even though 
CXML-GET-LAST-ERROR will return “10”.)  This operation takes one 
parameter:  



I-174  ACUCOBOL-GT Library Routines
handle a parser handle or an element handle.  If a parser 
handle, returns the first child of the top-level element. 

CXML-GET-NEXT-SIBLING  (op-code 4)

Retrieves the handle of the next sibling element of the handle passed. The 
return-code is a handle of the next sibling element, or “0” if no more siblings.  
(The case of no next sibling is not considered an error, even though 
CXML-GET-LAST-ERROR will return “11”.)  This operation takes one 
parameter:

handle an element handle

CXML-GET-PARENT  (op-code 5)

Retrieves the handle of the parent element of the handle passed.  This enables 
you to go through the XML tree without keeping track of all the handles 
received from C$XML.  The return-code contains the handle of the parent 
element of that element, or “0” if this is the top-level element or some other 
error.  This operation takes one parameter:

handle an element handle

CXML-GET-DATA  (op-code 6)

Retrieves the name and value of that element. This operation takes four 
parameters, the fourth parameter is optional:

handle is an element handle or parser handle.  If handle is a 
parser handle, it is first set to the handle of the 
top-level element of the parsed file.

item-name is returned as the name of the element

item-value is returned as the CDATA of that element (the data 
outside of the XML tags)

item-value-length (optional) is set to the length of the data returned in 
item-value.  



General Syntax and Library List  I-175
CXML-GET-ATTRIBUTE-COUNT  (op-code 7)

Retrieves the number of attributes in that element.  This operation takes one 
parameter.  

handle an element handle or parser handle.  If it is a parser 
handle, it is first set to the handle of the top-level 
element of the parsed file.

CXML-GET-ATTRIBUTE  (op-code 8)

Retrieves the name and value of the attributes in that element.  This operation 
takes five parameters, the fifth parameter is optional:

handle an element handle or parser handle.  If it is a parser 
handle, it is first set to the handle of the top-level 
element of the parsed file.

attr-num the attribute to get (starting at 1)

attr-name the name of the attribute 

attr-value the value of the attribute

attr-value-len  (optional) the length of the attribute value (a numeric 
item)

If the return-code is “0”, it can mean that there are no elements, or that the 
passed handle is not a valid handle.  Query on the last error with op-code 9 to 
determine which is the case.

CXML-GET-LAST-ERROR  (op-code 9)

Any C$XML call that fails will generate an error code, both a numeric value 
and a string value that describes the error.  If return-code from any other 
function is “0” or “-1”, call this operation to get the error.  This function 
returns the numeric value of the last error.  This function takes one parameter:

text-val the text value of the error code



I-176  ACUCOBOL-GT Library Routines
These errors are listed as a level 78 data item in “acucobol.def”.  The possible 
errors are:

Numeric 
value

Text Value Description

1 CXML-NO-MEMORY Unable to create parser due to 
low memory

2 CXML-EXPAT-ERROR Unable to create parser - expat 
error

3 CXML-FILE-OPEN-ERROR Unable to open named file

4 CXML-PARSE-ERROR Invalid XML file or other 
parsing error

5 CXML-INVALID-PARSER-HA
NDLE

The passed handle is not a 
valid parser handle

6 CXML-INVALID-ELEMENT-
HANDLE

The passed handle is not a 
valid element handle

7 CXML-INVALID-ATTRIBUTE
-NUMBER

Invalid attribute number

8 CXML-URL-ERROR The URL given could not be 
accessed

9 CXML-NOT-AVAILABLE The XML parser is not 
available on this machine

10 CXML-NO-CHILDREN The specified element has no 
children

11 CXML-NO-SIBLINGS The specified element has no 
siblings

12 CXML-NO-PARENT The specified element is a 
top-level element

13 CXML-NO-VALUE The specified element has no 
value

14 CXML-NO-ATTRIBUTES The specified element has no 
attributes

15 CXML-REGEXP-ERROR The regular expression given 
caused an error



General Syntax and Library List  I-177
CXML-OPEN-FILE  (op-code 10) 

Opens the named file with an XML parser, positioning it at the top-level 
element.  (Use CXML-PARSE-NEXT-RECORD to get more data).  The 
returned handle is a parser handle.  This operation takes one parameter:

filename the name of the file to open with the parser

CXML-PARSE-STRING   (op-code 11) 

Parses the specified string as XML, returning a parser handle.  You can parse 
strings passed by reference.  Note that strings passed by reference MUST be 
terminated with low-values so that the runtime can determine the length of 
the string passed.  Not terminating with low-values will result in undefined 
behavior.  

This operation takes one parameter:

16 CXML-TOP-LEVEL The specified parser already 
has a top-level element

17 CXML-INVALID-PROC-IN
STR-NUMBER

The idx given for 
CXML-GET-PROC-INSTR is 
outside of the range of 
available processing 
instructions (i.e., is greater 
than the value returned by 
CXML-GET-PROC-INSTR-C
OUNT).

18 CXML-NO-PROCESSING-I
NSTRUCTIONS

There are no processing 
instructions for 
CXML-GET-PROC-INSTR-C
OUNT or 
CXML-GET-PROC-INSTR, 
or target was not used or is 
blank in 
CXML-SET-PROC-INSTR 
(i.e., you are removing a 
processing instruction).

Numeric 
value

Text Value Description



I-178  ACUCOBOL-GT Library Routines
string the string or string reference to be parsed as XML

CXML-PARSE-NEXT-RECORD   (op-code 12)

Parses the next record in the element of the specified handle.  This operation 
takes one parameter:

handle is a parser handle returned by CXML-OPEN-FILE

No data is returned, but now more data is available for retrieval by other 
op-codes.  Return-code is “0” on error (including end-of-file) or non-zero if 
everything worked.

CXML-GET-PREV-SIBLING  (op-code 13)

Retrieves the previous sibling element of the handle passed. The return-code 
is a handle of the previous sibling element, or “0” if no previous siblings.  
(The case of no previous sibling is not considered an error, even though 
CXML-GET-LAST-ERROR will return “11”.)  This operation takes one 
parameter:

handle an element handle 

CXML-NEW-PARSER   (op-code 14)

Creates an empty XML document in memory and returns the parser handle.  
You must pass this to CXML-RELEASE-PARSER to free the data.  This 
operation takes no parameters.

CXML-GET-ATTRIBUTE-BY-NAME  (op-code 15) 

Retrieves the named attribute from an element.  This operation takes seven 
parameters.  The last three, attr-name, attr-value, and attr-len are all 
optional.   

handle is an element handle

attr-regex-name is a regular expression matching the name of the 
attribute returned.  This regular expression must be 
null-terminated, or fewer than 1024 bytes.    



General Syntax and Library List  I-179
attr-regex-flags is a collection of flags to apply to the regular 
expression.  The valid flags are listed in 
“acucobol.def” and described under C$REGEXP 
op-code 2.  They can be added together to get more 
than one flag.  

attr-idx is one less than the starting index of attributes to 
search (use “0” to start at the first attribute).  Is also the 
index of the attribute actually returned if successful.  

This returned attribute number can be used in the next 
call to GET-ATTRIBUTE-BY-NAME to continue 
searching where you left off.

attr-name (optional) is the name of the actual attribute returned

attr-value (optional) is the value of that attribute 

attr-len (optional) is the length of the attribute value

If desired, attr-name, attr-value, and attr-len can be retrieved by calling 
CXML-GET-ATTRIBUTE (op-code 8) with the index returned from this 
call.  Not getting these values can be useful if all you want to do is test for the 
existence of a particular named attribute.

CXML-GET-CHILD-BY-NAME  (op-code 16) 

Retrieves the named child element.  This operation takes three parameters:

handle is an element handle

regex is a regular expression of the child to locate.  This 
regular expression must be null-terminated, or fewer 
than 1024 bytes.

flags is flags for the regular expression.  See C$REGEXP 
op-code 2 for a list of valid flags.

Return-code is the handle of the returned child, or “0” if no such child exists.



I-180  ACUCOBOL-GT Library Routines
CXML-GET-CHILD-BY-CDATA   (op-code 17)

Retrieves the child element whose data matches the regular expression given.  
This operation takes three parameters:

handle is an element handle

regex is a regular expression of the child to locate.  This 
regular expression must be null-terminated, or fewer 
than 1024 bytes.

flags is flags for the regular expression.  See C$REGEXP 
op-code 2 for a list of valid flags.

Return-code is the handle of the returned child, or “0” if no such child exists.

CXML-GET-CHILD-BY-ATTR-NAME   (op-code 18)

Retrieves the child element that has an attribute name that matches the 
regular expression given.  This operation takes three parameters:

handle is an element handle

regex is a regular expression of the child to locate.  This 
regular expression must be null-terminated, or fewer 
than 1024 bytes.

flags is flags for the regular expression.  See C$REGEXP 
op-code 2 for a list of valid flags.

Return-code is the handle of the returned child, or “0” if no such child exists.

CXML-GET-CHILD-BY-ATTR-VALUE  (op-code 19)

Retrieves the child element that has an attribute value that matches the 
regular expression given.  This operation takes three parameters:

handle is an element handle

regex is a regular expression of the child to locate.  This 
regular expression must be null-terminated, or fewer 
than 1024 bytes.



General Syntax and Library List  I-181
flags is flags for the regular expression.  See C$REGEXP 
op-code 2 for a list of valid flags.

Return-code is the handle of the returned child, or “0” if no such child exists.

CXML-GET-SIBLING-BY-NAME  (op-code 20)

Retrieves the named sibling element.  This operation takes three parameters:

handle is an element handle

regex is a regular expression of the sibling to locate.  This 
regular expression must be null-terminated, or fewer 
than 1024 bytes.

flags is flags for the regular expression.  See C$REGEXP 
op-code 2 for a list of valid flags.

Return-code is the handle of the returned child, or “0” if no such child exists.

CXML-GET-SIBLING-BY-CDATA   (op-code 21)

Retrieves the sibling element whose data matches the regular expression 
given.  This operation takes three parameters:

handle is an element handle

regex is a regular expression of the sibling to locate.  This 
regular expression must be null-terminated, or fewer 
than 1024 bytes.

flags is flags for the regular expression.  See C$REGEXP 
op-code 2 for a list of valid flags.

Return-code is the handle of the returned child, or “0” if no such child exists.

CXML-GET-SIBLING-BY-ATTR-NAME  (op-code 22)

Retrieves the sibling element that has an attribute name that matches the 
regular expression given.  This operation takes three parameters:

handle is an element handle



I-182  ACUCOBOL-GT Library Routines
regex is a regular expression of the sibling to locate.  This 
regular expression must be null-terminated, or fewer 
than 1024 bytes.

flags is flags for the regular expression.  See C$REGEXP 
op-code 2 for a list of valid flags.

Return-code is the handle of the returned child, or “0” if no such child exists.

CXML-GET-SIBLING-BY-ATTR-VALUE  (op-code 23)  

Retrieves the sibling element that has an attribute value that matches the 
regular expression given.  This operation takes three parameters:

handle is an element handle

regex is a regular expression of the sibling to locate.  This 
regular expression must be null-terminated, or fewer 
than 1024 bytes.

flags is flags for the regular expression.  See C$REGEXP 
op-code 2 for a list of valid flags.

Return-code is the handle of the returned child, or “0” if no such child exists.

CXML-GET-COMMENT  (op-code 24)

Retrieves the comment for the specified handle.  This operation takes three 
parameters. The third is optional.

handle is an element handle or a parser handle

data is returned as the comment for the handle

len (if provided) is the length of the comment

When comments are returned to the COBOL program, they are separated by 
a single byte of low-values as they are in the XML file.  For example:
<!--  this is a multi-line comment
      for a single XML file.  -->

is returned to the COBOL program as a single string.  But this comment:



General Syntax and Library List  I-183
<!--  this is two separate comments  -->
<!--  this is the second line of the separate comment -->

is returned to the COBOL program with a single byte of LOW-VALUES 
separating the separate lines and comment.  The final line is terminated by 
two bytes of LOW-VALUES, so you know how many lines of comments are 
in the XML file.  

If you pass the third optional len parameter to C$XML when getting 
comments, the length in bytes is returned in that parameter.

CXML-MODIFY-CDATA   (op-code 25)

Modifies data in the specified element.  This operation takes five parameters. 
The last three, len, start-pos and end-pos, are optional.

handle is an element handle to modify

data is the new value of that element 

len is the length of data (the variable).  If omitted, it 
defaults to the size of the variable.   

start-pos the starting position of the data to modify

end-pos the ending position of the data to modify

If end-pos is omitted, it defaults to the end of the data.  If start-pos is omitted, 
it defaults to the start of the data.

CXML-MODIFY-ATTRIBUTE-VALUE  (op-code 26)

Modifies the specified attribute value of an element.  This operation takes 
four parameters. The last one is optional.

handle is an element handle

attr-num is the attribute number whose value you want to 
modify

new-attr-value is the new value (of length new-attr-len) of that 
attribute



I-184  ACUCOBOL-GT Library Routines
new-attr-len (optional) is the length of the new attribute value

If new-attr-len is omitted, it defaults to the length of the data element given 
for new-attr-value.

CXML-ADD-CHILD   (op-code 27)

Adds a new child element to the list of children already in the specified 
element.  The new element will be the last in the list.  This operation takes 
four parameters:

handle is an element handle

element-name is the name of the new child element  

element-data (optional) is the value of the new child element.  By 
default, this is blank.

data-len (optional) is the length of the new child element.  If 
omitted, it defaults to the size of the data item.

Return code is the new element handle, or “0” on error.

CXML-ADD-SIBLING    (op-code 28)

Adds a new sibling element to the specified element.  The new element will 
be the next element of this sibling.  This operation takes four parameters:

handle is an element handle

element-name is the name of the new sibling element

element-data (optional) is the value of the new sibling element.  By 
default, this is blank.

data-len (optional) is the length of the new sibling element.  If 
omitted, it defaults to the size of the data element.

Return code is the new element handle, or “0” on error.



General Syntax and Library List  I-185
CXML-ADD-ATTRIBUTE  (op-code 29)

Adds a new attribute to the specified element.  This operation takes four 
parameters. The last one is optional:

handle is an element handle

attr-name is the new attribute name

attr-value is the new attribute value, of length attr-value-len (if 
given) or the length of the data element given as the 
attr-name. 

attr-value-len  (optional) length of the new attribute value

Return code is the index of the new attribute, or “0” on error.

CXML-ADD-COMMENT   (op-code 30)

Adds a new comment to the specified element handle or parser handle.  This 
operation takes three parameters. The last one is optional.

handle is an element handle or a parser handle

data is the comment to add to the handle

len (if provided) is the length of the comment

CXML-APPEND-COMMENT    (op-code 31)

Appends a comment to the specified element handle or parser handle.  This 
operation takes three parameters. The last one is optional.

handle is an element handle or a parser handle

data is the comment to append to the handle

len (if provided) is the length of the comment



I-186  ACUCOBOL-GT Library Routines
Note that comments are associated with the element that follows them, as in: 

<!-- comment assoc with elem-1 --> 
<elem-1> 
data for elem1 
</elem-1> 

CXML-DELETE-ATTRIBUTE    (op-code 32)

Deletes the specified attribute from an element.  This operation takes two 
parameters:

handle is an element handle

attr-num is the index of the attribute to delete (starting at “1”).

CXML-DELETE-ELEMENT     (op-code 33)

Deletes the specified element. This operation takes one parameter:

handle is the handle of the element to delete

If this element has any children, all children are also deleted.

CXML-DELETE-COMMENT   (op-code 34)

Deletes the comment from the specified element handle or parser handle.  
This operation takes one parameter:

handle is an element handle or a parser handle 

There is no return code (errors are silent).

CXML-WRITE-FILE   (op-code 35)

Writes the specified file to the data tree.  This operation takes two 
parameters:

handle is a parser handle

filename is the file to which to write the data tree



General Syntax and Library List  I-187
CXML-GET-PROC-INSTR-COUNT     (OP-CODE 36)

Sets the number of processing instructions to get, if any.  This op-code takes 
a single parameter, a valid parser handle.  The return-code is “0” on error 
(including that there are no processing instructions), or the number of 
processing instructions on success.

CXML-GET-PROC-INSTR      (OP-CODE 37)

Retrieves the stylesheet and other processing instructions from the XML file.  
This op-code takes four parameters:

handle is a valid parser handle

idx (pic 9(n)) is the number of the processing instruction to get 
(starting at “1”)

target (pic x(n)) is where the processing instruction target is returned.  
This data is space-filled from what is read from the 
file.

data (pic x(n)) is where the processing instruction data is returned.  
This data is space-filled from what is read from the 
file.

Processing instructions are composed of a target and data, and there can be 
multiple instructions in a given XML file.  The target is the first word of the 
instruction line, and the data is the rest of the line.  For example, given the 
following XML snippet:
<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<?xml-stylesheet type="text/css" href="svg_default.css"?>
<!-- testit.xml - generated by ACUCOBOL-GT v8.0.0 -->
<svg

there is a single processing instruction (the stylesheet line).  The target is the 
first word (xml-stylesheet), and the data is the rest of the information, not 
including the question marks (?):  type="text/css" href="svg_default.css"



I-188  ACUCOBOL-GT Library Routines
CXML-SET-PROC-INSTR     (OP-CODE 38)     

Sets the processing instructions in the XML file being created.  This op-code 
takes two or four parameters:

handle is a valid parser handle

idx (pic 9(n)) is the number of the processing instruction to set 
(starting at “1”)

target (pic x(n)) is the processing instruction target.  This variable will 
have trailing spaces removed before being written to 
the XML file. 

data (pic x(n)) is the processing instruction data.  This variable will 
have trailing spaces removed before being written to 
the XML file.  If target is all spaces, or if target and 
data are omitted, then the processing instruction is 
deleted.  In this case, any later processing instructions 
are moved.  (If instruction 3 is deleted, then instruction 
4 becomes instruction 3, and instruction 5 becomes 
instruction 4, and so on.)

CXML-GET-VERSION     (OP-CODE 39)

Retrieves the version attribute from the XML file.  This op-code takes two 
parameters:

handle is a valid parser handle

dest (pic x(n) for n >= 3) is the destination for the version value

CXML-SET-VERSION     (OP-CODE 40)

Sets the version attribute in the XML file. This op-code takes two parameters:

handle is a valid parser handle



General Syntax and Library List  I-189
new-version (pic x(n)) is the new version value.  Note that making this 
an invalid version usually makes the resulting XML 
file invalid.  It is your responsibility to make sure 
new-version is valid.  At this time, the only valid value 
is “1.0”.

CXML-GET-ENCODING     (OP-CODE 41)

Retrieves the encoding attribute from the XML file. This op-code takes two 
parameters:

handle is a valid parser handle

dest (pic x(n)) is the destination for the encoding value

CXML-SET-ENCODING     (OP-CODE 42)

Sets the encoding attribute in the XML file. This op-code takes two 
parameters:

handle is a valid parser handle

new-encoding (pic x(n))is the new encoding value

CXML-GET-STANDALONE     (OP-CODE 43)

Retrieves the stand-alone attribute from the XML file. This op-code takes 
two parameters:

handle is a valid parser handle

dest (pic x(n) for n >= 3) is the destination for the stand-alone value

This is returned as either “no”, “yes”, or all blanks (if the stand-alone 
attribute is not specified in the XML file).

CXML-SET-STANDALONE     (OP-CODE 44)

Sets the stand-alone attribute in the XML file. This op-code takes two 
parameters:



I-190  ACUCOBOL-GT Library Routines
handle is a valid parser handle

new-standalone (pic x(n)) is the new stand-alone value

Return-code can either be “no” or “yes”, which puts the corresponding value 
into the XML file.  Any other value causes the stand-alone attribute to be 
omitted from the XML file.

CXML-GET-RAW-DOCTYPE-LEN     (OP-CODE 45)

Retrieves the raw doctype attribute length from the XML file. This op-code 
takes a single parameter:

handle is a parser handle

Return-code is the length of the raw doctype, or “-1” on error.

CXML-GET-RAW-DOCTYPE     (OP-CODE 46)

Retrieves the raw doctype attribute from the XML file. This op-code takes 
two parameters, and an optional parameter:

handle is a parser handle

doctype (pic x(n) OR usage pointer) is a data item to be filled in with 
the current raw doctype value.  If it is shorter than the 
length of the current doctype, it will be truncated.  If 
doctype is of type POINTER, then you should include 
len (a numeric data item) as well and set it to the 
number of bytes allocated for doctype.

Return-code is “0” on error, or “1” on success. 

CXML-SET-RAW-DOCTYPE     (OP-CODE 47)

Sets the raw doctype attribute in the XML file. This op-code takes two 
parameters:

handle is a parser handle



General Syntax and Library List  I-191
doctype (pic x(n)) is the new doctype.  The old doctype (if any exists) is 
discarded.  Trailing spaces are removed.

Comments

This utility gives you low-level control over the parsing of XML data.  If you 
do not require such precise control or if you would prefer to use a transparent 
interface to map XML to COBOL, you can use AcuXML to parse the XML 
data instead. AcuXML is a file system interface that is designed to map XML 
data to COBOL based on eXtended File Descriptors (XFDs) created at 
compile time. (See the Guide to Interoperating with ACUCOBOL-GT, 
Chapter 11, section 11.2, for more information.)

The C$XML routine is useful for parsing all XML files, including 
non-records-based XML files such as XFDs or configuration files that you 
have formatted in XML.  AcuXML is not able to parse XML documents such 
as these, because it quits after the close of the first top-level element, 
considering that to be the end of the file. AcuXML is useful strictly for 
records-based XML files.

DISPLAY_REG_*

The routines named DISPLAY_REG_* parallel the routines named REG_*.  
These routines allow you to access and work with the Windows registry.  For 
more information, see the section titled “Routines to Handle Dynamic 
Memory” in this Appendix.

Error and Exit Procedures

The error and exit procedure facilities allow you to cause one or more error 
or exit procedures to be called automatically when a program generates a 
particular type of error or terminates normally.  Support of error and exit 
procedures in ACUCOBOL-GT helps facilitate the porting of Micro Focus 
COBOL applications containing this feature to ACUCOBOL-GT.

You can specify one or more error procedures to be called automatically 
when a run unit terminates normally or generates any of certain runtime 
errors.  See the CBL_ERROR_PROC Routine in this appendix for details.



I-192  ACUCOBOL-GT Library Routines
You can specify one or more exit procedures to be called automatically when 
a run unit terminates normally.  See the CBL_EXIT_PROC Routine in this 
appendix for details.

An exit procedure can retrieve information about the termination that induced 
it with the CBL_GET_EXIT_INFO routine.  See the entry in this appendix 
for details.

The error and exit procedures discussed in this appendix are:

• CBL_ERROR_PROC

• CBL_EXIT_PROC

• CBL_GET_EXIT_INFO

HEX2ASCII

HEX2ASCII converts hexadecimal data from the non-displayable 
hexadecimal format to its ASCII equivalent.  This routine is the inverse of the 
ASCII2HEX routine.

Usage
CALL "HEX2ASCII"
    USING ASCII-VALUE, HEX-VALUE

Parameters

ASCII-VALUE   PIC X(2)

The ASCII representation of a unit of data.

HEX-VALUE   PIC X(4)

The hexadecimal value. 

When you are defining the parameters, use the exact field sizes specified in 
the calling conventions above, otherwise the runtime may terminate 
abnormally.



General Syntax and Library List  I-193
Any characters that are not valid hexadecimal digits are treated as the digit 
“0”.  Trailing spaces are removed from the input value before conversion.

I$IO

The I$IO routine provides an interface to the file handler.  An operation code 
and some number of additional parameters (depending on the operation 
called) are passed to the routine.  The return code is set automatically after the 
call.  The external variable “F-ERRNO” is set according to any errors found.  
“F-ERRNO” may not be reset on entry to I$IO, and should be checked only 
if I$IO returns an error condition.

Usage
CALL "I$IO" 
    USING OP-CODE, parameters

Parameters

OP-CODE     Numeric parameter

Specifies the file handling routine to be performed.  This table shows which 
operation corresponds to each operation code.  The operations are detailed in 
the description below:

Code Operation

1 OPEN-FUNCTION

2 CLOSE-FUNCTION

3 MAKE-FUNCTION

4 INFO-FUNCTION

5 READ-FUNCTION

6 NEXT-FUNCTION

7 PREVIOUS-FUNCTION

8 START-FUNCTION

9 WRITE-FUNCTION



I-194  ACUCOBOL-GT Library Routines
parameters      Vary depending on the op-code chosen

The remaining parameters vary depending on the operation selected.  They 
provide information and hold results for the operations specified.  All 
parameters are passed by reference.  Parameters may be omitted from those 
operations that do not require them.  These parameters are detailed in the 
“Description” below.

Description

All parameters passed to I$IO are passed by reference.  This applies even to 
parameters that are integer values in the corresponding file handling routines.  
All numeric parameters should be passed to I$IO as SIGNED-SHORT 
values.  The I$IO routine provides any necessary addressing conversions.  
Note that a parameter must be in the correct format for its type.  Parameters 
that are PIC X must be terminated by a LOW-VALUES character.  

Except for the MAKE function, I$IO will automatically terminate any PIC X 
parameters with a LOW-VALUES byte for you.  Also, you do not have to 
specify SYNC for level 01 or level 77 parameters because they are 
automatically synchronized by ACUCOBOL-GT.

10 REWRITE-FUNCTION

11 DELETE-FUNCTION

12 UNLOCK-FUNCTION

13 REMOVE-FUNCTION

14 SYNC-FUNCTION

15 EXECUTE-FUNCTION

16 BEGIN-FUNCTION

17 COMMIT-FUNCTION

18 ROLLBACK-FUNCTION

19 RECOVER-FUNCTION

21 IN-TRANSACTION-FUNCTION 

Code Operation



General Syntax and Library List  I-195
The file “filesys.def” is a COBOL COPY file that contains many useful 
definitions for use with I$IO.  It contains definitions for the I$IO codes along 
with the “F-ERRNO” error values and many useful pre-declared variables 
that are of the proper type and usage.  

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

Note: The runtime configuration variable FILE_PREFIX is ignored by the 
I$IO routine.

OP-CODES and PARAMETERS

OPEN-FUNCTION (op-code 1)

This routine opens an existing indexed file.  If it is successful, the value in 
RETURN-CODE should be moved to a data item that is USAGE POINTER.  
This data item is passed as the open file handle to the other file handling 
routines.  If it fails, RETURN-CODE is set to a NULL value.  After the file 
is opened, the primary key is set as the current key of reference and is 
positioned at the beginning of the file.

The OPEN routine has three parameters, name, mode and l_parms.  

Name is the name of the file to open.  It must be null-terminated.  

Mode is one of the following values (defined in “filesys.def”):

This routine only opens already existing files.  If the file does not exist, the 
routine fails, even when opening with mode “Foutput”. 

Finput open for input only

Foutput open for output only

Fio open for input and output

Fextend same as Foutput



I-196  ACUCOBOL-GT Library Routines
 “Foutput” does not delete the current file (this is different from the OPEN 
OUTPUT verb in COBOL).

Mode may furthermore have one of the following flags added to it to indicate 
file locking options (defined in “filesys.def”):

Some file systems cannot support the “Fread_lock” option correctly.  For 
these systems, the setting of the external variable “F_UPGRADE_RLOCK” 
determines what happens.  If this variable is set to the default, then the 
“Fread_lock” setting is treated as a normal open (no file locking).  If this 
variable is non-zero, then the “Fread_lock” setting is treated as 
“Fwrite_lock” instead.

A few file systems do not support any form of file locking.  If locking is 
requested on one of these file systems, the open proceeds as if file locking 
were not specified, but the external variable “F-ERRNO” is set to 
W_NO_SUPPORT.  This is also returned for file systems that cannot support 
multiple record locks when “Fmulti_lock” is specified.

If “Fmass_update” is used, then the file system is also requested to emphasize 
speed of updates over file security.

Additionally, “Fmulti_lock” may be also added to mode to request that more 
than one record lock be maintained in the file by this process.  If this option 
is not specified, then any I/O operation on the file will first release any 
currently locked record.  This results in only one record lock being set in the 
file at any time.  When this option is used, locked records are released only 
when the file is closed or when the UNLOCK routine is called.

Fread_lock locks file against other updaters

Fwrite_lock locks file against all others

Fmass_update same as Fwrite_lock

Ftrans extended locking rules for transaction management



General Syntax and Library List  I-197
L_parms points to a null-terminated string that describes the key structure for 
the file.  The l_parms parameter is the same as the l_parms parameter passed 
when using the MAKE op-code.  This parameter is a string that contains three 
comma-separated numbers.  These values are (in order): 

If the maximum record size does not match the minimum record size, then 
variable sized records are implied.  This parameter is not used by all file 
systems, but is supplied for those file systems that cannot determine these 
values on their own.

Note: The l_parms parameter is always required, but it is ignored by the 
default file systems shipped with ACUCOBOL-GT (RMS for VAX/VMS 
machines and Vision for all others).  It is required by other file systems, 
however, including Btrieve and C-ISAM.  If you ever intend on using any 
of these file systems, you should ensure that the values passed in l_params 
are correct.

CLOSE-FUNCTION (op-code 2)

This routine closes an open file.  It also removes currently held locks on the 
file.  The CLOSE routine has only one parameter, f, a file handle returned by 
OPEN.  For some file systems, it is possible that CLOSE will write additional 
records that had been previously buffered by the system.  For this reason, it is 
possible that a “disk full” condition can occur. 

MAKE-FUNCTION (op-code 3)

This routine is used to create a new indexed file.  It will overwrite any 
existing file.  This routine will not overwrite a file that is currently in use.  If 
the file is in use, the error E_FILE_LOCKED will be returned.  The MAKE 
routine has six parameters, name, comment, p_parms, l_parms, keys, and 
trans.  

1 the maximum record size

2 the minimum record size

3 the number of keys for the file.  



I-198  ACUCOBOL-GT Library Routines
This routine does not automatically terminate its parameters with 
LOW-VALUES, you must insure that the parameters are correctly 
terminated yourself.  If you do not wish to supply an alternate collating 
sequence in the “trans” parameter to MAKE, then simply omit the parameter.  
The I$IO routine does not allow you to specify a “NULL” parameter which 
is what is expected by the MAKE routine.  Instead, by omitting the 
parameter, the I$IO routine will construct a “NULL” parameter for you.

The host file system may ignore any or all of the values specified by 
comment, p_parms and trans.  If the host system cannot perform the 
requested operation, it is ignored (however, if the trans value is ignored, 
“F-ERRNO” is set to W_NO_SUPPORT).  If the host system cannot support 
one of the values specified in l_parms or keys, then MAKE fails and 
RETURN-CODE is set to the error condition E_NO_SUPPORT.  If any of 
the parameters are ill-formed or contain values outside of the legal range of 
values, E_PARAM_ERR is returned.

Name points to the name of the file.  This must be null-terminated.

Comment may be NULL or may point to comment string that describes the 
file.  This comment is stored in the file, but has no other functional use.  The 
comment may be up to 30 characters long and must be null-terminated.  
Many host file systems cannot store comments.  On these systems, this 
parameter is ignored.

P_parms points to a string that describes various physical characteristics of 
the file.  This string consists of five numeric fields separated by commas and 
must be null-terminated.  Each of these fields advises the file system of 
desired treatment for the physical storage of the file.  Individual file systems 
may ignore some or all of these fields.  Furthermore, p_parms may be NULL 
to imply “0” for each of the fields.  

The “filesys.def” COPY file has a data item containing these fields.

The fields are as follows:

1. Blocking factor.  This value is the number of disk sectors to store in a 
single file block.  It may be zero to request the default blocking factor for 
the file system.



General Syntax and Library List  I-199
2. Pre-allocate amount.  This is the number of file blocks (the size of 
which depends on the blocking factor above) to initially allocate to the 
file.  The purpose of this is to allocate contiguous disk space for the 
file.  It does not limit the file’s total size.  This value may be zero to 
request the default initial allocation amount.

3. Extension factor.  This is the number of file blocks to add to the file 
when it needs to grow.  The purpose of this is to help reduce disk 
fragmentation.  This value may be set to zero to request the default 
extension amount.

4. Compression factor.  This is a value between zero and 100.  It 
represents the amount of file compression desired.  A value of zero 
indicates no compression and a value of 100 indicates maximum 
compression.  Values in between indicate varying degrees of 
compression.  The exact meaning of this depends on the host file 
system.

5. Encryption flag.  If this value is “1”, then encryption is desired for the 
disk file.  If it is zero, then no encryption is desired.  The results of 
encryption depend on the host file system.  Since no key is supplied, 
the results of encryption are usually only moderately secure.

l_parms points to a string that describes various logical characteristics of the 
file.  The string consists of three numeric fields separated by commas.  The 
string must be null-terminated.  

The “filesys.def” COPY file has a data item containing these fields.

The fields are as follows:

1. Maximum record size.  This is the size of the largest record to be placed 
in the file.  For Vision 5 files, this may range from 1 to 67,108,864.  For 
Vision 2, 3, and 4 files, this may range from 1 to 32,767.

2. Minimum record size.  This is the size of the smallest record to be 
placed in the file.  This may range from 1 to the maximum record size.  
If this field is the same as the maximum record size, then fixed-length 
records are implied.

3. Number of keys.  This is the number of keys in the file, including the 
primary key.  This may range from 1 to MAX_KEYS.



I-200  ACUCOBOL-GT Library Routines
keys -- points to a null-terminated string that describes the key structure for 
the file.  keys is a string of numbers separated by commas.  The first key 
described is the primary key.  It may not allow duplicate values.  The primary 
key is called key “0”.  The next key described is key “1” and so on.  There 
should be as many keys described as the “number of keys” field of l_parms 
indicates.  

The “filesys.def” COPY file has a data item containing these fields.

Each key description contains the following information:

1. Number of segments.  This is the number of segments in this key.  A 
segment is a contiguous region of bytes in the record.  You may describe 
a split key by specifying more than one segment.  With Vision Version 3 
files, this may range from 1 to V3_MAX_SEGS.  With Vision Version 4 
and 5 files, this may range from 1 to MAX_SEGS.

2. Duplicates flag.  If this value is “1”, then duplicate keys are allowed.  
If “0”, then duplicate values are not allowed.  This must be “0” for the 
primary key.

3. Segment size.  This is the number of bytes in the first segment.  This 
may be between 1 and MAX_KEY_SIZE.

4. Segment offset.  This is the offset from the beginning of the record to 
the first byte of the segment.  A segment that starts at the beginning of 
the record has an offset of “0”.

5. Remaining segments.  The segment size and segment offset fields are 
repeated for each additional segment in the key.  The sum of the 
segment sizes may not exceed MAX_KEY_SIZE.

For example, a file with two keys, the first one having two segments (offset 
zero, length 10 and offset 50, length 5) and the second one with one segment 
(offset 20, length 15) and allowing duplicates would be written:
2,0,10,0,5,50,1,1,15,20

trans -- This parameter specifies an alternate collating sequence for the keys.  
If this parameter is NULL, then keys are ordered in ascending sequence 
based on their native unsigned value.  If trans is not NULL, it must point to 
a 256 byte region of memory.  Unlike other strings, this need not be 
null-terminated and is likely to contain nulls within it.  This 256 byte region 



General Syntax and Library List  I-201
is used as a translation table on the bytes of each key to arrive at a new 
key-ordering.  Each byte is used as an index into this table, and the resulting 
value is used to order the keys.  Some host file systems cannot do key 
translations.  On these systems, this parameter is ignored.

INFO-FUNCTION (op-code 4)

This routine returns a variety of information about the open indexed file f, 
depending on the value of mode.  The information is returned in the area 
pointed to by result.  Most of the modes return one or more numeric values.  
These values are represented in result as fixed size fields with the numbers 
represented as strings.  When more than one value is returned in result, the 
values are separated by commas.

The “filesys.def” COPY file contains layouts for each kind of information 
that can be retrieved with this routine.

The INFO routine has three parameters, f, mode, and result.  

F is a file handle returned by OPEN.

Mode determines what result is returned with a series of comma-separated 
numbers that define the format of result.  (Note that in the following 
descriptions, the first value is number “1”, the second is number “2” and so 
on.  The number of times the field number is repeated represents the size of 
the field.  For example “111,22” indicates that two values are returned, the 
first one is three digits long and the second one is two digits long.)

When a particular mode cannot be determined by the file system, then the 
error value E_NO_SUPPORT is set.  If a particular value of mode “-1” or 
mode “-2” cannot be determined, it is set to zero.

The following modes are supported:

-1 This returns the same information as the l_parms parameter of the 
MAKE function.  Result is in the format of “11111,22222,333” where:

    1 = maximum record size

    2 = minimum record size

    3 = number of keys



I-202  ACUCOBOL-GT Library Routines
-2 Returns the same information as the p_parms parameter of the MAKE 
function.  Result is in the format of “11,22222,33,444,5” where:

    1 = blocking factor

    2 = pre-allocation amount

    3 = extension factor

    4 = compression factor

    5 = encrypted flag

-3 Returns the comment specified to the MAKE function that made the 
file.  The format is a null-terminated string of up to thirty characters.

-4 Returns the number of records in the file.  This is returned as a 10-digit 
number.

-5 Returns the 256-byte key translation table specified to MAKE when 
the file was originally made.  If no key translation table was specified, 
then the E_NO_SUPPORT error is set.  In this case, this should be 
simply taken to mean that the native key ordering was used.

-6 Returns the number of currently locked records for the file handle 
passed to I$IO.

-7 For Vision Version 4 and 5 files, returns the number of data and index  
segments in the form: “11111,22222” where  

    1 = number of data segments

    2 = number of index segments

    For Vision Version 2 and 3 files, this mode always returns 
“00000,00000”.

-8 Returns the name and size of a Vision Version 4 or 5 file segment. 

    This mode is different from the other modes in that it uses the third 
argument as both INPUT and OUTPUT.  Set FS-TYPE to FS-DATA 
(255) or FS-INDEX (254) and FILE-SEGMENT-NUMBER to the 
number of the segment you want information about.  Upon return, 
name will contain the filename of the segment and FS-SIZE will 
contain the size of the segment.  The FILE-SEGMENT-INFO data 
item in filesys.def describes this structure.

    This operation can be called with a Vision Version 2 or 3 file, also.  In 
this case, type is ignored, but seg must be 1.  The name and size 
returned will be those of the single Version 2 or 3 file.



General Syntax and Library List  I-203
Note: Versions of INFO prior to the version used by the 3.2 runtime 
returned only one digit for the number of segments in the key.

READ-FUNCTION (op-code 5)

This routine reads a record out of an indexed file.  The READ routine has 
three parameters, f, record, and keynum.  

F must be a valid file handle returned by OPEN.  

Record points to the area to hold the record read.  

Keynum is the key number to read from.  Key “0” is the primary key, key “1” 
is the first alternate and so on.  The bytes in record corresponding to the key 
keynum must contain the key value of the record to be read.  If this routine 
succeeds, RETURN-CODE is set to the size of the record read.  
RETURN-CODE is set to zero on failure.

Records read by a file open for input only are not locked.  Furthermore, most 
file systems do not block the reading of locked records by a file open for input 
(Note that this feature depends on the host file system - not all can support it).  

-9 Returns the sum of the sizes of all the segments that make up a Vision 
Version 4 or 5 file.  The return value is 15 digits long.  If called with a 
Vision Version 2 or 3 file, this operation returns the size of the single 
Version 2 or 3 file. 

-10 Returns the version number of the Vision file in a three character 
string.  For example, if the file is Vision Version 5, “005” is returned.

0+ A mode of zero or greater indicates that information about a particular 
key is desired.  That key information is returned as “11,2,333,44444” 
where

    1 = number of segments in key

    2 = “1” if duplicates are allowed

    3 = size of first segment

    4 = byte offset of first segment

    The third and fourth fields are repeated for each additional segment in 
the key.



I-204  ACUCOBOL-GT Library Routines
Records read from a file open for I/O are automatically locked unless the 
external variable “f-no-lock” is set to a non-zero value first in which case 
they are treated in the same manner as files open for input.

If the key keynum allows duplicates and the next record in the file contains 
the same key value as the record read, the variable “F-ERRNO” is set to 
W-DUP-OK.  This feature is not supported by many host file systems.

A successful READ causes the current key of reference to be set to keynum 
and the file position is set to the record read.  This is used by the NEXT and 
PREVIOUS routines.  If READ is unsuccessful, then the current key of 
reference is set to an undefined state.

NEXT-FUNCTION (op-code 6)

This routine reads the next record in the sequence of records specified by the 
current key of reference.  When a file is first opened, its key of reference is 
the primary key and the file is positioned so that the NEXT record is the first 
record in the file.  The READ and START routines can change the current 
key of reference.  The NEXT routine has two parameters, f, and record.  F 
must be a valid file handle returned by OPEN.  Record points to the area to 
hold the record read.  

If this routine succeeds, RETURN-CODE is set to the size of the record read.  
If it fails, RETURN-CODE is set to zero and sets the current key of reference 
to the “undefined” state.  However, if it fails due to the record being locked, 
the current key of reference is unchanged and the file pointer is set to the 
locked record (some file systems do not support this rule).  Also, if it fails 
because it reached the end of the file, then the current key of reference is left 
unchanged and the file pointer is positioned so that a call to PREVIOUS 
returns the last record in the file.

The NEXT routine follows the same record locking rules as the READ 
routine.  

If the record following the one read contains the same key value (in the 
current key of reference), then “F-ERRNO” is set to W-DUP-OK.



General Syntax and Library List  I-205
PREVIOUS-FUNCTION (op-code 7)

This routine behaves just like the NEXT routine with two exceptions.  The 
first is that RETURN-CODE is set to the preceding record in the file instead 
of the next one.  The second is that it never sets the W_DUP_OK error value.  
The PREVIOUS routine has two parameters, f, and record.  F must be a valid 
file handle returned by OPEN.  Record points to the area to hold the record 
read.  

Some file systems do not support the ability to read a file backwards.  For 
these systems, this routine sets the error value E_NO_SUPPORT.

This routine treats the beginning of the file in a manner that is analogous to 
the way NEXT treats the end of the file.  If an PREVIOUS call reaches the 
beginning of the file, a call to NEXT returns the first record of the file.

START-FUNCTION (op-code 8)

This routine selects the current key of reference and positions the file pointer 
for the next NEXT or PREVIOUS routine.  The START routine has five 
parameters, f, record, keynum, keysize and mode.  

F must be a valid file handle returned by OPEN.  

Record points to the area to hold the record read.  

Keynum selects which key to use.  The corresponding key area in record 
must contain the key value that will be used to position the file.  

Keysize indicates the size of the key.  If keysize is zero, the entire key is used.  
Otherwise, only the first keysize bytes of the key will be used.  

Mode selects how the file is to be positioned with respect to the key value 
defined in record.  It can be one of the following values:

F_EQUALS The file is positioned at the record that matches the 
key value

F_NOT_LESS The file is positioned at the record that matches the 
key value, or the next greater one if no one matches



I-206  ACUCOBOL-GT Library Routines
The F_EQUALS mode is usually used to test for the existence of a record or 
to position a file when the key value is known.  The F_NOT_LESS and 
F_GREATER modes are used to position the file for a series of NEXT calls 
and the F_LESS and F_NOT_GREATER modes are used to prepare for a 
series of PREVIOUS calls.

After a successful START, the current key of reference will set to keynum.  
The next NEXT or PREVIOUS call will return the record selected by the 
START routine.  Note that in this case, NEXT and PREVIOUS both return 
the same record.

If the START routine fails, then the current key of reference is placed in the 
“undefined” state.

Some file systems cannot perform the F_LESS or F_NOT_GREATER 
modes.  On these file systems, specifying these modes causes START to 
return an error and set the E_NO_SUPPORT condition.

WRITE-FUNCTION (op-code 9)

This routine adds a new record to the passed file.  The WRITE routine has 
three parameters, f, record, and size.  

F must be a valid file handle returned by OPEN.  

Record points to the record to add.

Size is the size of the record.  If size is zero, then the maximum record size 
for the file is used.

F_GREATER The file is positioned at the first record greater than 
the key value specified

F_LESS The file is positioned at the last record smaller than 
the key value specified

F_NOT_GREATE
R

The file is positioned at the record that matches the 
key value, or the last record smaller than the key value 
if no one matches



General Syntax and Library List  I-207
If the file has keys that allow duplicate values, and one or more of those keys 
in record match keys that already exist in the file, then “F-ERRNO” is set to 
W-DUP-OK.  Several file systems cannot detect this condition and in this 
case, “F-ERRNO” is set to zero instead.

For keys that allow duplicates, the new record is added such that its keys are 
placed at the end of the sequence of those keys with the same value.  Many 
file systems do not support this rule, in which case the ordering is defined by 
the file system.

The WRITE routine does not change the current file position or affect the 
current key of reference.

REWRITE-FUNCTION (op-code 10)

This routine replaces an existing record in the file.  The REWRITE routine 
has three parameters, f, record, and size.  

F must be a valid file handle returned by OPEN.  

Record points to the new record to place in the file.   

Size may be zero to indicate the maximum record size for the file.  The record 
replaced is specified by the primary key value found in record.  The size of 
the new record need not match the size of the existing record.

For keys that are unchanged between the new record and the old record, the 
ordering of those keys is unchanged.  For keys that have changed, the new 
keys are placed at the end of the sequence of keys that have the same value.  
If any of the changed keys match keys that already exist in the file (and these 
keys allow duplicates), then “F-ERRNO” is set to W-DUP-OK.  Note that 
these rules depend on the host system and may be different for some file 
systems.

The REWRITE routine does not affect the file position or the current key of 
reference.



I-208  ACUCOBOL-GT Library Routines
DELETE-FUNCTION (op-code 11)

This routine deletes the record identified by the value found in the primary 
key area of record.  It does not affect the current file position or key of 
reference.  The DELETE routine has two parameters, f, and record.  F must 
be a valid file handle returned by OPEN.  Record points to the area to hold 
the record read.  

UNLOCK-FUNCTION (op-code 12)

This routine unlocks any locked records held by the current process in the 
passed file.  It is not an error to call this routine when there are no locked 
records.  This routine does not affect the current file position or key of 
reference.  This routine will not unlock any records if it is called during a 
transaction.  “Commit” (see below) should be used instead.  The “unlock” 
routine has only one parameter, f.  F must be a valid file handle returned by 
OPEN.  

REMOVE-FUNCTION (op-code 13)

This routine should remove from disk the indexed file indicated by name.  
This routine is specialized for indexed files because some host systems 
implement indexed files in more than one physical file.  This routine should 
be called only when the file to be removed is closed. It has only one 
parameter, name.  Name points to the name of the file.  It must be NULL 
terminated.

SYNC-FUNCTION (op-code 14)

This routine causes all file buffers to be flushed to disk.  The SYNC routine 
has only one parameter, all_files, which is a bit field.  If 

(all_files & FA-MASS-UPDATE) 

is non-zero, then MASS-UPDATE files should be synced.  If 
(all_files & FA-REMOTE) 

is non-zero, then remote files should be synced.

The constants FA-MASS-UPDATE and FA-REMOTE are defined in 
”filesys.def”.



General Syntax and Library List  I-209
The exact effect of this routine depends on the host file system.  It is entirely 
possible that this routine will do nothing under a particular system.  Because 
of the highly host-dependent nature of this routine, no error reporting is done.

EXECUTE-FUNCTION (op-code 15)

This routine executes a file-system specific command.  The EXECUTE 
routine has two parameters, system, and command.  

System points to the name of the file system (e.g. “vision”, “btrieve”, etc.).  

Command contains a command to be executed by that file system.  The list 
of available commands is completely file-system specific.  Many file systems 
do not have any commands that can be executed in this manner.  The routine 
returns 0 if successful, otherwise, RETURN-CODE is set to a file-system 
specific error value.  For file systems that do not support any commands, “-1” 
is always returned.

Note: Different file systems process this routine differently.  For example, 
the interface for Microsoft SQL Server has some unique parameters.  See 
the documentation for the specific file system interface for exceptions to 
this operation.

BEGIN-FUNCTION (op-code 16)

The BEGIN routine initiates a transaction.  On indexed file systems this 
usually opens the log file for appending the first time it is called (if the log file 
doesn’t exist, it is created).  This routine has no parameters.

COMMIT-FUNCTION (op-code 17)

This routine commits all changes and releases all locks.  It also ends a 
transaction.  This routine has no parameters.  

ROLLBACK-FUNCTION (op-code 18)

This routine rolls back all files affected to the state that they were in after the 
last completed transaction.  This routine has no parameters.



I-210  ACUCOBOL-GT Library Routines
RECOVER-FUNCTION (op-code 19)

This routine rolls forward all files affected to the state that they were in after 
the last completed transaction.  This routine has no parameters.

IN-TRANSACTION-FUNCTION (op-code 21)

This routine returns a value indicating whether or not the program is 
currently in an unfinished transaction.   The return value is “1” if there is 
current and unfinished transaction, “0” otherwise.  This routine has no 
parameters.

Example

The following program opens a file, determines the number of records in the 
file, and then reads each of those records, printing out the size of each record 
found.  

This example makes heavy use of variables found in “filesys.def”.
IDENTIFICATION DIVISION.
PROGRAM-ID.  EXAMPLE.

DATA DIVISION.

WORKING-STORAGE SECTION.

* Assume that we already know the maximum record size, minimum
* record size and the number of keys in the file.

78 MAX-SIZE    VALUE 1000.
78 MIN-SIZE    VALUE 100.
78 KEY-COUNT   VALUE 1.

COPY "filesys.def".

77  FILE-HANDLE               USAGE POINTER.
01  RECORD-AREA.
    03 OCCURS MAX-SIZE TIMES  PIC X.

PROCEDURE DIVISION.
MAIN-LOGIC.
* Open the file



General Syntax and Library List  I-211
    SET OPEN-FUNCTION TO TRUE.
    MOVE MAX-SIZE TO MAX-REC-SIZE.
    MOVE MIN-SIZE TO MIN-REC-SIZE.
    MOVE KEY-COUNT TO NUM-KEYS.
    MOVE Finput TO OPEN-MODE.
    CALL "I$IO" USING IO-FUNCTION, "MYFILE", OPEN-MODE,
                LOGICAL-INFO.
    IF RETURN-CODE = ZERO
        DISPLAY "Could not open file, error code = ", F-ERRNO,
                CONVERT
        STOP RUN.
    MOVE RETURN-CODE TO FILE-HANDLE.
* Now get the record count
    SET INFO-FUNCTION TO TRUE.
    SET GET-RECORD-COUNT TO TRUE.
    CALL "I$IO" USING IO-FUNCTION, FILE-HANDLE, INFO-MODE,
                RECORD-COUNT-INFO.
    IF E-NO-SUPPORT
        DISPLAY "File system cannot determine record count"
        PERFORM CLOSE-FILE
        STOP RUN.
* Read each record
    SET NEXT-FUNCTION TO TRUE
    PERFORM NUMBER-OF-RECORDS TIMES
        CALL "I$IO" USING IO-FUNCTION, FILE-HANDLE, RECORD-AREA
        IF RETURN-CODE = ZERO
        DISPLAY "Error reading record, code = ", F-ERRNO,
                 CONVERT
        PERFORM CLOSE-FILE
        STOP RUN
        ELSE
        DISPLAY "Record size = ", RETURN-CODE, CONVERT, LEFT
        END-IF
    END-PERFORM.
* All done
    PERFORM CLOSE-FILE.
    STOP RUN.

CLOSE-FILE.
    SET CLOSE-FUNCTION TO TRUE.
    CALL "I$IO" USING IO-FUNCTION, FILE-HANDLE.



I-212  ACUCOBOL-GT Library Routines
LIB$GET_SYMBOL

The LIB$GET_SYMBOL routine retrieves a symbol’s current value.  This 
routine is VMS-specific and should never be used on other machines. 

Usage
CALL "LIB$GET_SYMBOL"
    USING SYM-NAME, SYM-VALUE, SYM-SIZE, SYM-LOCATION

Parameters

SYM-NAME   PIC X(n)

Contains the name of the symbol to retrieve.  The local symbol table is 
searched first, followed by the global table. 

SYM-VALUE   PIC X(n)

If a value is found, it is returned in the second parameter.

SYM-SIZE    PIC 9(n) USAGE COMP-1 (optional)

The third parameter is optional.  It is filled in with the number of characters 
contained in the returned value. 

SYM-LOCATION    PIC X or PIC 9 (optional)

The final parameter is also optional.  It is filled in with a “1” if the value is 
found in the local symbol table, a “2” if found in the global table.

This routine does not report any error conditions.  See the VMS System 
Routines manual for details on VMS-specific routines.

LIB$SET_SYMBOL

This routine sets the value of a symbol belonging to the current command 
processor.  This library routine is VMS-specific and should never be used 
on other machines. 



General Syntax and Library List  I-213
Usage
CALL "LIB$SET_SYMBOL"
    USING SYM-NAME, SYM-VALUE, SYM-LOCATION

Parameters

SYM-NAME   PIC X(n) USAGE DISPLAY

The first parameter is the symbol’s name.  This name has trailing spaces 
removed and is converted to upper case. 

SYM-VALUE   PIC X(n) or PIC 9(n) USAGE DISPLAY

The second parameter is the value to assign to the symbol. This is not 
converted to upper case, but does have trailing spaces removed. 

SYM-LOCATION    PIC X or PIC 9 USAGE DISPLAY (optional)

The third parameter is optional. It should be a “1” to set the symbol in the 
local symbol table. It should be a “2” to use the global symbol table.  If this 
parameter is omitted, the local table is used. 

This routine does not report any error conditions.  See the VMS System 
Routines manual for details on VMS-specific routines.

Comments

It is possible to set a symbol’s value from ACUCOBOL-GT using the 
SYSTEM library routine, but when you do this, the symbol’s value 
immediately resets to its previous value as soon as the SYSTEM call is 
complete. This is because the SYSTEM routine starts another command 
processor which maintains its own set of symbols.

Routines to Handle Dynamic Memory

The next six routines, and the C$MEMCPY routine, allow you to create and 
manage dynamically allocated memory.  This can be useful when you have 
to manipulate a number of items, but don’t know how many items 
beforehand.  Dynamic memory is allocated using the same mechanism that 



I-214  ACUCOBOL-GT Library Routines
the runtime uses to allocate memory to programs.  In the debugger, you can 
see how much dynamic memory is currently allocated to the program by 
running the program in the debugger.  To display all memory allocated to the 
program select the Memory Usage menu item from the File menu  (or press 
“U” on the keyboard).  The amount of dynamic memory is the number that 
appears in the fifth position of the value displayed (see section 3.1.3 in Book 
1, ACUCOBOL-GT User’s Guide).

M$ALLOC (Dynamic Memory Routine)

M$ALLOC allocates a new area of dynamic memory.  

Usage
CALL "M$ALLOC" 
    USING ITEM-SIZE, MEM-ADDRESS

Parameters

ITEM-SIZE   Numeric parameter

This indicates the number of bytes to allocate.  This must be greater than 
zero.

MEM-ADDRESS   USAGE POINTER

This holds the return value, either the address of the allocated memory or 
NULL if the allocation fails.

Comments

The maximum amount of memory you may allocate in one call depends on 
the host machine, but is at least 65260 bytes for all machines (providing that 
much memory is available).  M$ALLOC adds some overhead to each 
memory block allocated.  This ranges between 4 and 16 bytes depending on 
the machine architecture.  Also, each operating system will typically add its 
own overhead.  The debugger’s “U” command reports the amount of memory 
you have currently allocated via M$ALLOC.  The overhead added by 



General Syntax and Library List  I-215
M$ALLOC is included in the total shown, but the operating system’s 
overhead is not.  Memory allocated by M$ALLOC is initialized to binary 
zeros (LOW VALUES).  

If you try to allocate more memory than the environment can give you, 
M$ALLOC will return NULL, and no memory will be allocated.

M$COPY (Dynamic Memory Routine)

Copies a region of memory from one location to another.  

Usage
CALL "M$COPY" 
    USING DEST-PTR, SRC-PTR, NUM-BYTES

Parameters

DEST-PTR      USAGE POINTER

Contains the address of the first byte of the destination region.  

SRC-PTR       USAGE POINTER

Contains the address of the first byte of the source region. 

NUM-BYTES   Numeric parameter

Indicates the size of the memory region to be copied.

Description

This routine copies NUM-BYTES from the address contained in SRC-PTR 
to the address contained in DEST-PTR.  Note that this routine is relatively 
dangerous to use. No boundary checking is performed to ensure that the 
address range is valid, so memory access violations may result if you pass it 
incorrect data.



I-216  ACUCOBOL-GT Library Routines
This routine is functionally similar to the C$MEMCOPY routine except that 
parameters are passed by reference instead of by value.  For example, you can 
copy 10 bytes to DEST-PTR from the memory address contained in 
SRC-PTR with: 
     CALL "M$COPY" 
        USING DEST-PTR, SRC-PTR, 10

M$FILL (Dynamic Memory Routine)

This routine is used to set a region of memory to a constant value. 

Usage
CALL "M$FILL" 
    USING DEST-PTR, BYTE-VALUE, NUM-BYTES

Parameters

DEST-PTR     USAGE POINTER 

Contains the address of the first byte of the region to be filled.

BYTE-VALUE     Alpha-numeric parameter 

Contains the value with which to fill the memory region.

NUM-BYTES    Numeric parameter

Indicates the size of the memory region.

Description

This routine fills NUM-BYTES with BYTE-VALUE starting at address 
DEST-PTR.  The parameters are passed BY REFERENCE. This routine does 
not do any boundary checking to make sure that the address range is valid.



General Syntax and Library List  I-217
M$FREE (Dynamic Memory Routine)

Frees a previously allocated piece of memory. 

Usage
CALL "M$FREE" 
    USING MEM-ADDRESS

Parameter

MEM-ADDRESS   USAGE POINTER

Must point to a memory area previously allocated by M$ALLOC.

Comments

Use M$FREE to release a memory block allocated by M$ALLOC.  This 
memory is returned to the pool of memory available for use by the runtime.  
On most operating systems, this memory is still associated with the runtime’s 
process, so it cannot be used by any other processes.  On a few systems, this 
memory may be made available to the operating system for re-use by other 
processes.  

It is an error to attempt to use a block of memory once it has been freed.  It is 
also an error to free a block of memory more than once or to free a memory 
address that has never been allocated.  Any of these errors can lead to 
memory access violations.  The runtime attempts to detect these errors and 
avoid them, but it cannot detect all such errors.  

M$GET (Dynamic Memory Routine)

Retrieves data from an allocated memory block. 

Usage
CALL "M$GET" 
    USING MEM-ADDRESS, DATA-ITEM, DATA-SIZE, DATA-OFFSET



I-218  ACUCOBOL-GT Library Routines
Parameters

MEM-ADDRESS   USAGE POINTER

Must point to a memory area previously allocated by M$ALLOC.

DATA-ITEM   Any data item

Data from the memory block will be stored in this item.  

DATA-SIZE    Numeric parameter (optional)

The number of bytes to move from the memory block.  If omitted, then the 
number of bytes is set to the size of the memory block (excluding overhead 
bytes).  

DATA-OFFSET    Numeric parameter (optional)

The location within the memory block from which to start the move.  The 
first location is position “1”.  If omitted, this value defaults to “1”.

Description

This routine retrieves data from the memory block at MEM-ADDRESS and 
stores it in DATA-ITEM.  Regardless of the value of DATA-SIZE, no bytes 
are copied from past the end of the memory block.  Note that the size of 
DATA-ITEM is not checked. 

M$PUT (Dynamic Memory Routine)

Stores data in an allocated memory block. 

Usage
CALL "M$PUT" 
    USING MEM-ADDRESS, DATA-ITEM, DATA-SIZE, DATA-OFFSET

Parameters

MEM-ADDRESS   USAGE POINTER



General Syntax and Library List  I-219
Must point to a memory area previously allocated by M$ALLOC.

DATA-ITEM   Any data item

This is the data that will be stored in the memory block.

DATA-SIZE     Numeric parameter (optional)

The number of bytes to move to the memory block.  If omitted, then the 
number of bytes is set to the size of the memory block (excluding overhead 
bytes).  

DATA-OFFSET    PIC 9(n), USAGE DISPLAY or COMP-4 (optional)

The location within the memory block from which to start the move.  The 
first location is position “1”.  If omitted, this value defaults to “1”.

Description

This routine copies DATA-ITEM into the memory pointed to by 
MEM-ADDRESS for DATA-SIZE bytes.  Regardless of the value of 
DATA-SIZE, no bytes are copied that exceed the size of the memory block 
at MEM-ADDRESS. 

OCTAL2ASCII

OCTAL2ASCII converts data presented in octal format to its ASCII 
equivalent.  This routine is the inverse of the ASCII2OCTAL routine.

Usage
CALL "OCTAL2ASCII"
    USING ASCII-VALUE, OCTAL-VALUE

Parameters

ASCII-VALUE   PIC X(2)

The ASCII representation of a unit of data.



I-220  ACUCOBOL-GT Library Routines
OCTAL-VALUE   PIC X(8)

The octal value.

When you are defining the parameters, use the exact field sizes specified in 
the calling conventions above, otherwise the runtime may terminate 
abnormally.

Any characters that are not valid octal digits are treated as the digit “0”.  
Trailing spaces are removed from the input value.

Routines to Handle the Windows Registry

Caution: When you are changing registry settings, Windows does not 
validate any of the values you write to it—any operation is allowed.  
Therefore, you must be very careful of what changes you make to the 
registry because no error messages will appear if you make a mistake.  You 
should create a backup of your Windows registry before making any 
changes.  Even better, back up your entire configuration, so that it could be 
restored in full in the event of a crash.

The library routines that follow enable you to create and query Windows 
Registry keys.  Each routine can be called by either of two names. Use the 
DISPLAY_REG_* name when you want to work with the registry on the 
display host (this is the local host when the application is run with a standard 
runtime, and the thin client when the application is run with the thin client).  
Use the REG_* name when you want to work with the registry on the server 
host (the local host when the application is run with a standard runtime, and 
the application host when the application is run with the thin client). 

If the routines are called from a non-Windows platform, they will return an 
error status code of “-1”.  

The Windows Registry contains the hardware, software, and user preferences 
that determine the configuration of a particular PC. When a user makes 
changes to the desktop, file structure, system configuration or software, the 
changes are reflected in the registry.  This information used to be contained 



General Syntax and Library List  I-221
in files like config.sys, autoexec.bat, win.ini, system.ini and control.ini, but 
the registry provides a single source for accessing all of a computer’s 
settings. 

Each setting in the registry has a handle or Key.  Only two registry keys are 
actually stored on the hard disk: HKEY_LOCAL_MACHINE and 
HKEY_USERS.  All other registry keys are aliases or branches of these two 
principal keys, or are created dynamically by Windows.  For example, 
HKEY_CLASSES_ROOT is an alias of the branch 
HKEY_LOCAL_MACHINE\Software\Classes. In order to interact with 
these registry keys, the Windows Application Programmer’s Interface (API) 
provides a series of functions that call the registry.  We have created the 
library routines below to operate registry functions from within your COBOL 
program.

For security reasons, in thin client deployments several of the functions 
require user authorization before the action is performed.  These functions 
include:

DISPLAY_REG_CREATE_KEY
DISPLAY_REG_CREATE_KEY_EX
DISPLAY_REG_DELETE_KEY
DISPLAY_REG_DELETE_VALUE
DISPLAY_REG_SET_VALUE
DISPLAY_REG_SET_VALUE_EX



I-222  ACUCOBOL-GT Library Routines
When one of these functions is called, a Security Information dialog is 
displayed and the user must select a Yes or No button to indicate whether the 
action may proceed.  
  

REG_CLOSE_KEY, DISPLAY_REG_CLOSE_KEY

Closes a specified registry key by providing access to the Windows registry 
routine RegCloseKey.

Use DISPLAY_REG_CLOSE_KEY when you want the action to be 
performed on the display host’s registry (the local host when the application 
is run with a standard runtime; the thin client when the application is run with 
the thin client).  Use REG_CLOSE_KEY when you want the action to be 
performed on the server host’s registry (the local host when the application is 
run with a standard runtime, and the application host when the application is 
run with the thin client). 

Usage
CALL "REG_CLOSE_KEY" 
    USING OPEN-KEY-HANDLE 
    GIVING STATUS-CODE

tgora
Text Box



General Syntax and Library List  I-223
Parameters

OPEN-KEY-HANDLE    Usage unsigned-long

Handle of an open key to close.

STATUS-CODE   Numeric data item.

Receives the return status of the call to Microsoft’s “RegCloseKey” function.  
A return status of zero indicates success; non-zero indicates that an error 
occurred.

Comments

Registry keys should not be left open any longer than necessary.

REG_CREATE_KEY, DISPLAY_REG_CREATE_KEY

Creates a specified registry key by providing access to the Windows registry 
routine RegCreateKey.  If the key already exists, this function opens it (same 
functionality as REG_OPEN_KEY).  If the key does not exist, it is created 
and then opened.

Use DISPLAY_REG_CREATE_KEY when you want the action to be 
performed on the display host’s registry (the local host when the application 
is run with a standard runtime; the thin client when the application is run with 
the thin client).  Use REG_CREATE_KEY when you want the action to be 
performed on the server host’s registry (the local host when the application is 
run with a standard runtime, and the application host when the application is 
run with the thin client). 

Usage
CALL "REG_CREATE_KEY" 
    USING OPEN-KEY-HANDLE, SUBKEY-TO-BE-CREATED, 
        SUBKEY-HANDLE 
    GIVING STATUS-CODE



I-224  ACUCOBOL-GT Library Routines
Parameters

OPEN-KEY-HANDLE   Usage unsigned-long

Handle of a currently open key or one of the following predefined handles of 
keys that are always open (defined in “acugui.def”):

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

The key created or opened by REG_CREATE_KEY is a subkey of the key 
identified by OPEN-KEY-HANDLE.

SUBKEY-TO-BE-CREATED   PIC  X(n)

Name of the subkey to create or open.

SUBKEY-HANDLE    Usage unsigned-long

Data item to receive the handle of the newly created or opened key.

STATUS-CODE   Numeric data item.

Receives the return status of the call to Microsoft’s “RegCreateKey” 
function.  A return status of zero indicates success; non-zero indicates that an 
error occurred.

Comments

REG_CREATE_KEY may be used to create several keys at once.

For example, by setting SUBKEY-TO-BE-CREATED to
     "key1\key2\key3"



General Syntax and Library List  I-225
you could create three keys, where “key3” is a subkey of “key2”, “key2” is a 
subkey of “key1”, and “key1” is a subkey of the key specified by 
OPEN-KEY-HANDLE.  The lowest-level key (“key3” in this example) is the 
one that is opened and has its handle returned in SUBKEY-HANDLE.

REG_CREATE_KEY_EX, DISPLAY_REG_CREATE_KEY_EX

Creates a specified registry key by providing access to the Windows registry 
routine RegCreateKeyEx.  If the key already exists, this function opens it 
(same functionality as REG_OPEN_KEY_EX).  If the key does not exist, it 
is created and then opened. 

Use DISPLAY_REG_CREATE_KEY_EX when you want the action to be 
performed on the display host’s registry (the local host when the application 
is run with a standard runtime; the thin client when the application is run with 
the thin client).  Use REG_CREATE_KEY_EX when you want the action to 
be performed on the server host’s registry (the local host when the application 
is run with a standard runtime, and the application host when the application 
is run with the thin client). 

Usage
CALL "REG_CREATE_KEY_EX" 
    USING OPEN-KEY-HANDLE, SUBKEY-TO-BE-CREATED,CLASS-NAME,
        OPTIONS, SAM-DESIRED, SUBKEY-HANDLE, DISPOSITION
    GIVING STATUS-CODE

Parameters

OPEN-KEY-HANDLE  Usage unsigned-long 

Handle of a currently open key or one of the following predefined handles of 
keys that are always open (defined in “acugui.def”): 

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE



I-226  ACUCOBOL-GT Library Routines
HKEY_USERS

The key created or opened by REG_CREATE_KEY_EX is a subkey of  the 
key identified by OPEN-KEY-HANDLE. 

SUBKEY-TO-BE-CREATED  PIC X(n) 

Name of the subkey to create or open. 

CLASS-NAME  PIC X(n)

Specifies the class (object type) of the key to be created.  This parameter is 
ignored if the key already exists.

OPTIONS  Usage unsigned-long 

Specifies special options for the key.  This parameter must be one of the 
following values (defined in “acugui.def”):
 

By default, keys are not volatile.  This option is ignored if the key already 
exists. 

SAM-DESIRED  Usage unsigned-long

Value Meaning

REG_OPTION_VOLATILE The value of this key varies depending on 
the Windows operating system used:

Windows 98: This value is ignored. That 
is, even if REG_OPTION_VOLATILE 
is specified, the RegCreateKeyEx 
function creates a nonvolatile key and 
returns ERROR_SUCCESS.

Windows NT 4.0, Windows 2000: This 
key is volatile; the information is stored 
in memory and is not preserved when the 
system is restarted.

REG_OPTION_NON_VOLATILE This key is not volatile; the information 
is stored in a file and is preserved when 
the system is restarted.



General Syntax and Library List  I-227
Specifies a security access mask (SAM) that describes the desired security 
access for the new key. This parameter can be a combination of the following 
values (defined in “acugui.def”): 

The above values may be combined in COBOL applications by using the 
“CBL_OR” library routine.

SUBKEY-HANDLE  Usage unsigned-long 

Data item to receive the handle of the newly created or opened key. 

DISPOSITION  Usage unsigned-long 

Value Meaning

KEY_ALL_ACCESS Combination of KEY_QUERY_VALUE, 
KEY_ENUMERATE_SUB_KEYS, 
KEY_NOTIFY, 
EY_CREATE_SUB_KEY, 
KEY_CREATE_LINK, and 
KEY_SET_VALUE access.

KEY_CREATE_LINK Permission to create a symbolic link.

KEY_CREATE_SUB_KEY Permission to create subkeys.

KEY_ENUMERATE_SUB_KEYS Permission to enumerate subkeys.

KEY_EXECUTE Permission for read access.

KEY_NOTIFY Permission for change notification.

KEY_QUERY_VALUE Permission to query subkey data.

KEY_READ Combination of KEY_QUERY_VALUE, 
KEY_ENUMERATE_SUB_KEYS, and 
KEY_NOTIFY access.

KEY_SET_VALUE Permission to set subkey data.

KEY_WRITE Combination of KEY_SET_VALUE and 
KEY_CREATE_SUB_KEY access.



I-228  ACUCOBOL-GT Library Routines
Points to a variable that receives one of the following disposition values 
(defined in “acugui.def”):
 

STATUS-CODE  Numeric data item 

Receives the return status of the call to Microsoft’s “RegCreateKeyEx” 
function.  A return status of zero indicates success; non-zero indicates that an 
error occurred. 

REG_DELETE_KEY, DISPLAY_REG_DELETE_KEY

Deletes a specified registry key by providing access to the Windows registry 
routine RegDeleteKey.  When a key is deleted, its value and all of its subkeys 
are also deleted.  

Note: On Windows NT systems only, this routine cannot be used to delete 
keys that have subkeys.

Use DISPLAY_REG_DELETE_KEY when you want the action to be 
performed on the display host’s registry (the local host when the application 
is run with a standard runtime; the thin client when the application is run with 
the thin client).  Use REG_DELETE_KEY when you want the action to be 
performed on the server host’s registry (the local host when the application is 
run with a standard runtime, and the application host when the application is 
run with the thin client). 

Usage
 CALL "REG_DELETE_KEY" 
     USING OPEN-KEY-HANDLE, SUBKEY-TO-BE-DELETED,
     GIVING STATUS-CODE

Value Meaning

REG_CREATED_NEW_KEY The key did not exist and was created.

REG_OPENED_EXISTING_KEY The key existed and was simply opened 
without being changed.



General Syntax and Library List  I-229
Parameters

OPEN-KEY-HANDLE    Usage unsigned-long

Handle of a currently open key or one of the following predefined handles of 
keys that are always open (defined in “acugui.def”):

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

The key deleted by REG_DELETE_KEY is a subkey of the key identified by 
OPEN-KEY-HANDLE.

SUBKEY-TO-BE-DELETED   PIC  X(n)

Name of the key to delete.  Must be a subkey of the key identified by 
OPEN-KEY-HANDLE.  If SUBKEY-TO-BE-DELETED is set to NULL or 
to a string consisting of all spaces, the routine does nothing and returns with 
STATUS-CODE set to ‘13’. 

STATUS-CODE   Numeric data item.

Receives the return status of the call to Microsoft’s “RegDeleteKey” 
function.  A return status of zero indicates success; non-zero indicates that an 
error occurred.  On 32-bit Windows systems, a return status of  ‘5’ indicates 
that either the application does not have delete privileges for the specified 
key, or another application has the key opened.

REG_DELETE_VALUE, DISPLAY_REG_DELETE_VALUE

Deletes a named value from a specified registry key.  



I-230  ACUCOBOL-GT Library Routines
Use DISPLAY_REG_DELETE_VALUE when you want the action to be 
performed on the display host’s registry (the local host when the application 
is run with a standard runtime; the thin client when the application is run with 
the thin client).  Use REG_DELETE_VALUE when you want the action to 
be performed on the server host’s registry (the local host when the application 
is run with a standard runtime, and the application host when the application 
is run with the thin client).

Usage
CALL "REG_DELETE_VALUE"
    USING OPEN-KEY-HANDLE, VALUE-NAME,
    GIVING STATUS-CODE

Parameters

OPEN-KEY-HANDLE  Usage unsigned-long

Handle of a currently open key or one of the following predefined handles of 
keys that are always open (defined in “acugui.def”):
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

VALUE-NAME   PIC X(n)

Name of the value to delete.  If NULL or an empty string, the value set by 
REG_SET_VALUE will be deleted.

STATUS-CODE   Numeric data item.

Receives the return status of call to Microsoft’s “RegDeleteValue” function.  
A return status of zero indicates success; non-zero indicates that an error  
occurred.

Comments

The key identified by OPEN-KEY-HANDLE must have been opened with 
KEY_SET_VALUE access (KEY_WRITE access includes 
KEY_SET_VALUE access).



General Syntax and Library List  I-231
REG_ENUM_KEY, DISPLAY_REG_ENUM_KEY

Enumerates subkeys of a specified open registry key.  REG_ENUM_KEY 
retrieves the name of one subkey each time it is called.

Use DISPLAY_REG_ENUM_KEY to perform the action on the display 
host’s registry (the local host when the application is run with a standard 
runtime; the thin client when the application is run with the thin client).  Use 
REG_ENUM_KEY to perform the action on the server host’s registry (the 
local host when the application is run with a standard runtime, and the 
application host when the application is run with the thin client).

Usage
CALL "REG_ENUM_KEY" 
    USING OPEN-KEY-HANDLE, NDX, SUBKEY-NAME, NAME-SIZE,
    GIVING STATUS-CODE

Parameters

OPEN-KEY-HANDLE    Usage unsigned-long

Handle of a currently open key or one of the following predefined handles of 
keys that are always open (defined in “acugui.def”):
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

The keys enumerated by REG_ENUM_KEY are subkeys of the key 
identified by OPEN-KEY-HANDLE.

NDX   Numeric data item

Specifies the index of the subkey to retrieve.  NDX should be set to ‘1’ for the 
first call to REG_ENUM_KEY and then incremented for subsequent calls.  
The subkeys are not returned in any particular order.

SUBKEY-NAME   PIC  X(n)



I-232  ACUCOBOL-GT Library Routines
Receives the name of the subkey.  REG_ENUM_KEY copies only the name 
of the subkey, not the full key hierarchy, to the SUBKEY-NAME buffer.

NAME-SIZE   Numeric data item

Specifies the size, in characters, of the SUBKEY-NAME buffer.

STATUS-CODE   Numeric data item.

Receives the return status of the call to Microsoft’s “RegEnumKey” function.  
A return status of zero indicates success; non-zero indicates that an error 
occurred.  

Comments

To enumerate subkeys, your application should initialize the NDX parameter 
to ‘1’ and call REG_ENUM_KEY repeatedly, incrementing NDX each time, 
until there are no more subkeys.  You can tell that there are no more subkeys 
when the function returns a non-zero STATUS-CODE (‘259’ for 32-bit 
Windows). 

While an application is using REG_ENUM_KEY, it should not make calls to 
any registry routines that might change the key being queried.

If the subkey name exceeds the size of the SUBKEY-NAME buffer (as 
specified by the NAME-SIZE parameter), the result depends on the operating 
system.  Under 32-bit Windows, a STATUS-CODE of ‘234’ is returned.

REG_ENUM_VALUE, DISPLAY_REG_ENUM_VALUE 

Enumerates the values of a specified registry key.  REG_ENUM_VALUE 
retrieves the name of one value each time it is called.  

Use DISPLAY_REG_ENUM_VALUE to perform the action on the display 
host’s registry (the local host when the application is run with a standard 
runtime; the thin client when the application is run with the thin client).  Use 
REG_ENUM_VALUE to perform the action on the server host’s registry 
(the local host when the application is run with a standard runtime, and the 
application host when the application is run with the thin client).



General Syntax and Library List  I-233
Usage
CALL "REG_ENUM_VALUE"
    USING OPEN-KEY-HANDLE, NDX, VALUE-NAME, NAME-SIZE,
        DATA-TYPE, VALUE-DATA, DATA-SIZE,
    GIVING STATUS-CODE

Parameters

OPEN-KEY-HANDLE  Usage unsigned-long

Handle of a currently open key or one of the following predefined handles of 
keys that are always open (defined in “acugui.def”):
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

NDX   Numeric data item

Specifies the index of the value to retrieve.  NDX should be set to ‘1’ for the 
first call to REG_ENUM_VALUE and then incremented for subsequent 
calls.  The values are not returned in any particular order.

VALUE-NAME  PIC  X(n)

Receives the name of the value.

NAME-SIZE    Usage unsigned-long

Specifies the size, in characters, of the VALUE-NAME buffer.  When the 
function returns, NAME-SIZE contains the size of the string copied to 
VALUE-NAME.

DATA-TYPE  Usage unsigned-long



I-234  ACUCOBOL-GT Library Routines
Points to a variable that receives the type code for the value entry.  The type 
code can be one of the following values (defined in “acugui.def”):
 

VALUE-DATA   Variable parameter

Buffer to receive the data for the value entry. If you know what type of data 
is being returned, you may specify this parameter accordingly.  If the type of 
data returned is unknown, you may specify a group item structured as 
follows:

Value Meaning

REG_BINARY Binary data in any form.

REG_DWORD A 32-bit number.

REG_DWORD_LITTLE_ENDIAN A 32-bit number in little-endian format 
(same as REG_DWORD).  In 
little-endian format, the most significant 
byte of a word is the high-order word.  
This is the most common format for 
computers running Windows and 
Windows NT.

REG_DWORD_BIG_ENDIAN A 32-bit number in big-endian format.  In 
big-endian format, the most significant 
byte of a word is the low-order word.

REG_EXPAND_SZ A null-terminated string that contains 
unexpanded references to environment 
variables (for example, “%PATH%”).   It 
will be a Unicode or ANSI string 
depending on whether you use the 
Unicode or ANSI functions.

REG_LINK A Unicode symbolic link.

REG_MULTI_SZ An array of null-terminated strings, 
terminated by two null characters.

REG_NONE No defined value type.

REG_RESOURCE_LIST A device-driver resource list.

REG_SZ A null-terminated string.  It will be a 
Unicode or ANSI string, depending on 
whether you use the Unicode or ANSI 
functions.



General Syntax and Library List  I-235
01 VALUE-DATA
   02 VALUE-DATA-ORIG                                PIC X (n).
   02 VALUE-DWORD redefines VALUE-DATA-ORIG          Usage signed-long.
   02 VALUE-LIT-ENDIAN redefines VALUE-DATA-ORIG     Usage signed-long.
   02 VALUE-BIG-ENDIAN redefines VALUE-DATA-ORIG     S9 (9) COMP-4.
   02 VALUE-EXPAND-SZ redefines VALUE-DATA-ORIG      PIC X (n).
   02 VALUE-LINK redefines VALUE-DATA-ORIG           PIC X (n).
   02 VALUE-MULTI-SZ redefines VALUE-DATA-ORIG       PIC X (n).
   02 VALUE-NONE redefines VALUE-DATA-ORIG           PIC X (n).
   02 VALUE-RESOURCE-LIST redefines VALUE-DATA-ORIG  PIC X (n).
   02 VALUE-SZ redefines VALUE-DATA-ORIG             PIC X (n).

DATA-SIZE     Usage unsigned-long

Specifies the size, in bytes, of the VALUE-DATA buffer.  When the function 
returns, DATA-SIZE contains the number of bytes copied to 
VALUE-DATA.  This parameter can be NULL only if VALUE-DATA is 
NULL.

STATUS-CODE   Numeric data item

Receives the return status of call to Microsoft’s “RegEnumValue” function.  
A return status of zero indicates success; non-zero indicates that an error 
occurred.  A value of ‘259’ indicates that there are no more values for the 
specified key.

Comments

To enumerate values, an application should initialize the NDX parameter to 
‘1’ and call REG_ENUM_VALUE repeatedly, incrementing NDX each 
time, until there are no more values (that is, until the function returns with 
STATUS-CODE set to ‘259’).

While an application is using REG_ENUM_VALUE, it should not make 
calls to any registry routines that might change the values being queried.

The key identified by the OPEN-KEY-HANDLE parameter must have been 
opened with KEY_QUERY_VALUE access.



I-236  ACUCOBOL-GT Library Routines
REG_OPEN_KEY, DISPLAY_REG_OPEN_KEY

Opens a specified registry key by accessing the Windows registry routine 
RegOpenKey.

Use DISPLAY_REG_OPEN_KEY to perform the action on the display 
host’s registry (the local host when the application is run with a standard 
runtime; the thin client when the application is run with the thin client).  Use 
REG_OPEN_KEY to perform the action on the server host’s registry (the 
local host when the application is run with a standard runtime, and the 
application host when the application is run with the thin client).

Usage
CALL "REG_OPEN_KEY" 
    USING OPEN-KEY-HANDLE, SUBKEY-TO-BE-OPENED, SUBKEY-HANDLE, 
    GIVING STATUS-CODE

Parameters

OPEN-KEY-HANDLE   Usage unsigned-long

Handle of a currently open key or one of the following predefined handles of 
keys that are always open (defined in “acugui.def”):
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

SUBKEY-TO-BE-OPENED   PIC  X(n)

String containing the name of the key to open.  This key must be a subkey of 
the key identified by OPEN-KEY-HANDLE.

SUBKEY-HANDLE   Usage unsigned-long

Data item to receive the handle of the opened subkey.

STATUS-CODE   Numeric data item.



General Syntax and Library List  I-237
Receives the return status of the call to Microsoft’s “RegOpenKey” function.  
A return status of zero indicates success; non-zero indicates that an error 
occurred.

Comments

You can use REG_OPEN_KEY to open a key several layers deep in the 
registry tree structure.  For example, if you set SUBKEY-TO-BE-OPENED 
to a string of the form:
     "level_1\level_2\level_3"

this would open the key “level_3”, where “level_3” is a subkey of “level_2”, 
“level_2” is a subkey of “level_1”, and “level_1” is a subkey of the key 
specified by OPEN-KEY-HANDLE.

REG_OPEN_KEY_EX, DISPLAY_REG_OPEN_KEY_EX

Opens a specified registry key by accessing the Windows registry routine 
“RegOpenKeyEx”.  

Use DISPLAY_REG_OPEN_KEY_EX to perform the action on the display 
host’s registry (the local host when the application is run with a standard 
runtime; the thin client when the application is run with the thin client).  Use 
REG_OPEN_KEY_EX to perform the action on the server host’s registry 
(the local host when the application is run with a standard runtime, and the 
application host when the application is run with the thin client).

Usage
CALL "REG_OPEN_KEY_EX" 
    USING OPEN-KEY-HANDLE, SUBKEY-TO-BE-OPENED, SAM-DESIRED, 
        SUBKEY-HANDLE, 
    GIVING STATUS-CODE

Parameters

OPEN-KEY-HANDLE  Usage unsigned-long

Handle of a currently open key or one of the following predefined handles of 
keys that are always open (defined in “acugui.def”):



I-238  ACUCOBOL-GT Library Routines
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

SUBKEY-TO-BE-OPENED  PIC  X(n)

String containing the name of the key to open.  This key must be a subkey of 
the key identified by OPEN-KEY-HANDLE. 

SAM-DESIRED  Usage unsigned-long

Specifies a security access mask (SAM) that describes the desired security 
access for the new key.  This parameter can be a combination of the following 
values (defined in “acugui.def”): 

Value Meaning

KEY_ALL_ACCESS Combination of 
KEY_QUERY_VALUE, 
KEY_ENUMERATE_SUB_KEYS, 
KEY_NOTIFY, 
KEY_CREATE_SUB_KEY, 
KEY_CREATE_LINK, and 
KEY_SET_VALUE access.

KEY_CREATE_LINK Permission to create a symbolic link.

KEY_CREATE_SUB_KEY Permission to create subkeys.

KEY_ENUMERATE_SUB_KEYS Permission to enumerate subkeys.

KEY_EXECUTE Permission for read access.

KEY_NOTIFY Permission for change notification.

KEY_QUERY_VALUE Permission to query subkey data.

KEY_READ Combination of 
KEY_QUERY_VALUE, 
KEY_ENUMERATE_SUB_KEYS, and 
KEY_NOTIFY access.

KEY_SET_VALUE Permission to set subkey data.

KEY_WRITE Combination of KEY_SET_VALUE and 
KEY_CREATE_SUB_KEY access.



General Syntax and Library List  I-239
You may combine the above in COBOL by using the “CBL_OR” library 
routine.

SUBKEY-HANDLE   Usage unsigned-long

Data item to receive the handle of the opened key.

STATUS-CODE    Numeric data item.

Receives the return status of call to Microsoft’s  “RegOpenKeyEx” function.  
A return status of zero indicates success; non-zero indicates that an error 
occurred.

REG_QUERY_VALUE, DISPLAY_REG_QUERY_VALUE

Retrieves the value associated with a specified registry key by accessing the 
Windows registry routine RegQueryValue.

Use DISPLAY_REG_QUERY_VALUE to perform the action on the display 
host’s registry (the local host when the application is run with a standard 
runtime; the thin client when the application is run with the thin client).  Use 
REG_QUERY_VALUE to perform the action on the server host’s registry 
(the local host when the application is run with a standard runtime, and the 
application host when the application is run with the thin client).

Usage
CALL "REG_QUERY_VALUE" 
    USING OPEN-KEY-HANDLE, RETURN-VALUE, RETURN-SIZE,
    GIVING STATUS-CODE

or
CALL "REG_QUERY_VALUE" 
    USING OPEN-KEY-HANDLE, RETURN-VALUE, RETURN-SIZE,
       SUBKEY-NAME, 
    GIVING STATUS-CODE

Parameters

OPEN-KEY-HANDLE   Usage unsigned-long



I-240  ACUCOBOL-GT Library Routines
Handle of a currently open key or one of the following predefined handles of 
keys that are always open (defined in “acugui.def”):
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

RETURN-VALUE   PIC X(n)

Receives the value associated with the specified key.

RETURN-SIZE   usage unsigned-long

Specifies the size, in characters, of the RETURN-VALUE buffer.  When the 
function returns, RETURN-SIZE contains the size of the string copied to 
RETURN-VALUE.

SUBKEY-NAME   PIC  X(n) (optional)

Name of a subkey of OPEN-KEY-HANDLE for which a value is to be 
retrieved.  If SUBKEY-NAME is omitted or contains an empty string, 
REG_QUERY_VALUE retrieves the value associated with the key 
identified by OPEN-KEY-HANDLE.

STATUS-CODE   Numeric data item.

Receives the return status of the call to Microsoft’s “RegQueryValue” 
function.  A return status of zero indicates success; non-zero indicates that an 
error occurred.

Comments

When REG_QUERY_VALUE is called repeatedly in a loop, be sure to reset 
the value of RETURN-SIZE between calls.

If the length of the value string exceeds the size of the RETURN-VALUE 
buffer (the buffer size is indicated in the input value of RETURN-SIZE), then 
the behavior of the routine depends on the operating system.  On 32-bit 
Windows systems, a value string that exceeds the size of the 



General Syntax and Library List  I-241
RETURN-VALUE buffer causes RETURN-SIZE to be set to the full length 
of the value string.  In this case, the value string is not copied into 
RETURN-VALUE, and STATUS-CODE is set to ‘234’.

REG_QUERY_VALUE_EX, 
DISPLAY_REG_QUERY_VALUE_EX

Retrieves the type and data for a specified value name associated with an 
open registry key.  

Use DISPLAY_REG_QUERY_VALUE_EX to perform the action on the 
display host’s registry (the local host when the application is run with a 
standard runtime; the thin client when the application is run with the thin 
client).  Use REG_QUERY_VALUE_EX to perform the action on the server 
host’s registry (the local host when the application is run with a standard 
runtime, and the application host when the application is run with the thin 
client).

Usage
CALL "REG_QUERY_VALUE_EX"
    USING OPEN-KEY-HANDLE, VALUE-NAME, DATA-TYPE, VALUE-DATA,
        DATA-SIZE,
    GIVING STATUS-CODE

Parameters

OPEN-KEY-HANDLE  Usage unsigned-long

Handle of a currently open key or one of the following predefined handles of 
keys that are always open (defined in “acugui.def”):
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

VALUE-NAME  PIC  X(n)

Name of the value to be queried.



I-242  ACUCOBOL-GT Library Routines
DATA-TYPE  Usage unsigned-long

Points to a variable that receives the type code for the value entry.  The type 
code can be one of the following values (defined in “acugui.def”):
 

VALUE-DATA   Variable parameter

Value Meaning

REG_BINARY Binary data in any form.

REG_DWORD A 32-bit number.

REG_DWORD_LITTLE_ENDIAN A 32-bit number in little-endian format 
(same as REG_DWORD).  In 
little-endian format, the most significant 
byte of a word is the high-order word.  
This is the most common format for 
computers running Windows and 
Windows NT.

REG_DWORD_BIG_ENDIAN A 32-bit number in big-endian format.  In 
big-endian format, the most significant 
byte of a word is the low-order word.

REG_EXPAND_SZ A null-terminated string that contains 
unexpanded references to environment 
variables (for example, “%PATH%”).   It 
will be a Unicode or ANSI string 
depending on whether you use the 
Unicode or ANSI functions.

REG_LINK A Unicode symbolic link.

REG_MULTI_SZ An array of null-terminated strings, 
terminated by two null characters.

REG_NONE No defined value type.

REG_RESOURCE_LIST A device-driver resource list.

REG_SZ A null-terminated string.  It will be a 
Unicode or ANSI string, depending on 
whether you use the Unicode or ANSI 
functions.



General Syntax and Library List  I-243
Buffer to receive the data for the value entry. If you know what type of data 
is being returned, you may specify this parameter accordingly.  If the type of 
data returned is unknown, you may specify a group item structured as 
follows:
01 VALUE-DATA
   02 VALUE-DATA-ORIG                                PIC X (n).
   02 VALUE-BINARY redefines VALUE-DATA-ORIG         PIC X (n).
   02 VALUE-DWORD redefines VALUE-DATA-ORIG          Usage signed-long.
   02 VALUE-LIT-ENDIAN redefines VALUE-DATA-ORIG     Usage signed-long.
   02 VALUE-BIG-ENDIAN redefines VALUE-DATA-ORIG     S9 (9) COMP-4.
   02 VALUE-EXPAND-SZ redefines VALUE-DATA-ORIG      PIC X (n).
   02 VALUE-LINK redefines VALUE-DATA-ORIG           PIC X (n).
   02 VALUE-MULTI-SZ redefines VALUE-DATA-ORIG       PIC X (n).
   02 VALUE-NONE redefines VALUE-DATA-ORIG           PIC X (n).
   02 VALUE-RESOURCE-LIST redefines VALUE-DATA-ORIG  PIC X (n).
   02 VALUE-SZ redefines VALUE-DATA-ORIG             PIC X (n).

DATA-SIZE  Usage unsigned-long

Prior to the call, must specify the size, in bytes, of the VALUE-DATA buffer.  
When the function returns, DATA-SIZE contains the number of bytes copied 
to VALUE-DATA.  

STATUS-CODE    Numeric data item

Receives the return status of call to Microsoft’s “RegQueryValueEx” 
function.  A return status of zero indicates success; non-zero indicates that an 
error occurred.  A return status of ‘234’ indicates that the size of the data to 
be returned in VALUE-DATA exceeds the buffer size specified by the 
DATA-SIZE parameter.

Comments

The key identified by OPEN-KEY-HANDLE must have been opened with 
KEY_QUERY_VALUE access.

This function does not expand the environment-variable names in the value 
data when the value type is REG_EXPAND_SZ. 

When calling the REG_QUERY_VALUE_EX function with 
OPEN-KEY-HANDLE set to the HKEY_PERFORMANCE_DATA handle 
and a value string of a specified object, the returned data structure sometimes 



I-244  ACUCOBOL-GT Library Routines
has unrequested objects.  Don’t be surprised; this is normal behavior.  When 
calling the REG_QUERY_VALUE_EX function, you should always expect 
to ‘walk’ the returned data structure to look for the requested object. 

REG_SET_VALUE, DISPLAY_REG_SET_VALUE

Associates a value with a specified registry key by accessing the Windows 
registry routine RegSetValue.

Use DISPLAY_REG_SET_VALUE to perform the action on the display 
host’s registry (the local host when the application is run with a standard 
runtime; the thin client when the application is run with the thin client).  Use 
REG_SET_VALUE to perform the action on the server host’s registry (the 
local host when the application is run with a standard runtime, and the 
application host when the application is run with the thin client).

Usage
CALL "REG_SET_VALUE" 
    USING OPEN-KEY-HANDLE, VALUE,
    GIVING STATUS-CODE

or
CALL "REG_SET_VALUE"
    USING OPEN-KEY-HANDLE, VALUE, SUBKEY-NAME,
    GIVING STATUS-CODE

Parameters

OPEN-KEY-HANDLE   Usage unsigned-long

Handle of a currently open key or one of the following predefined handles of 
keys that are always open (defined in “acugui.def”):
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

VALUE   PIC  X(n)



General Syntax and Library List  I-245
String containing the value to set for the specified key.

SUBKEY-NAME   PIC  X(n) (optional)

Name of a subkey of OPEN-KEY-HANDLE with which to associate a value.  
If there is no existing subkey matching the name specified, 
REG_SET_VALUE will first create it.  If SUBKEY-NAME is omitted or 
contains an empty string, the specified value will be associated with the key 
identified by OPEN-KEY-HANDLE.

STATUS-CODE   Numeric data item.

Receives the return status of the call to Microsoft’s “RegSetValue” function.  
A return status of zero indicates success; non-zero indicates that an error 
occurred.

REG_SET_VALUE_EX, DISPLAY_REG_SET_VALUE_EX

Sets value and type information for a specified open registry key.  

Use DISPLAY_REG_SET_VALUE_EX to perform the action on the 
display host’s registry (the local host when the application is run with a 
standard runtime; the thin client when the application is run with the thin 
client).  Use REG_SET_VALUE_EX to perform the action on the server 
host’s registry (the local host when the application is run with a standard 
runtime, and the application host when the application is run with the thin 
client).

Usage
CALL "REG_SET_VALUE_EX"
    USING OPEN-KEY-HANDLE, DATA-TYPE, VALUE-DATA, DATA-SIZE,
    GIVING STATUS-CODE

or:
CALL "REG_SET_VALUE_EX"
    USING OPEN-KEY-HANDLE, DATA-TYPE, VALUE-DATA, DATA-SIZE,
        VALUE-NAME,
    GIVING STATUS-CODE



I-246  ACUCOBOL-GT Library Routines
Parameters

OPEN-KEY-HANDLE  Usage unsigned-long

Handle of a currently open key or one of the following predefined handles of 
keys that are always open (defined in “acugui.def”):
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

DATA-TYPE  Usage unsigned-long

Specifies the type code for the value entry.  The type code can be one of the 
following values (defined in “acugui.def”):
 

Value Meaning

REG_BINARY Binary data in any form.

REG_DWORD A 32-bit number.

REG_DWORD_LITTLE_ENDIAN A 32-bit number in little-endian format 
(same as REG_DWORD).  In little-endian 
format, the most significant byte of a word 
is the high-order word.  This is the most 
common format for computers running 
Windows and Windows NT.

REG_DWORD_BIG_ENDIAN A 32-bit number in big-endian format.  In 
big-endian format, the most significant 
byte of a word is the low-order word.

REG_EXPAND_SZ A null-terminated string that contains 
unexpanded references to environment 
variables (for example, “%PATH%”).  It 
will be a Unicode or ANSI string 
depending on whether you use the 
Unicode or ANSI functions.

REG_LINK A Unicode symbolic link.

REG_MULTI_SZ An array of null-terminated strings, 
terminated by two null characters.

REG_NONE No defined value type.



General Syntax and Library List  I-247
VALUE-DATA   Variable parameter

Buffer to set the data for the value entry. If you know what type of data is 
being returned, you may specify this parameter accordingly.  If the type of 
data returned is unknown, you may specify a group item structured as 
follows:
01 VALUE-DATA
   02 VALUE-DATA-ORIG                                PIC X (n).
   02 VALUE-BINARY redefines VALUE-DATA-ORIG         PIC X (n).
   02 VALUE-DWORD redefines VALUE-DATA-ORIG          Usage signed-long.
   02 VALUE-LIT-ENDIAN redefines VALUE-DATA-ORIG     Usage signed-long.
   02 VALUE-BIG-ENDIAN redefines VALUE-DATA-ORIG     S9 (9) COMP-4.
   02 VALUE-EXPAND-SZ redefines VALUE-DATA-ORIG      PIC X (n).
   02 VALUE-LINK redefines VALUE-DATA-ORIG           PIC X (n).
   02 VALUE-MULTI-SZ redefines VALUE-DATA-ORIG       PIC X (n).
   02 VALUE-NONE redefines VALUE-DATA-ORIG           PIC X (n).
   02 VALUE-RESOURCE-LIST redefines VALUE-DATA-ORIG  PIC X (n).
   02 VALUE-SZ redefines VALUE-DATA-ORIG             PIC X (n).

DATA-SIZE   Usage unsigned-long

Specifies the size, in bytes, of the information in the VALUE-DATA buffer.  
If the data is of type REG_SZ, REG_EXPAND_SZ, or REG_MULTI_SZ, 
DATA-SIZE must include the size of the terminating null character. 

VALUE-NAME  PIC  X(n)

Name of the value to set.  If a value with this name is not already present in 
the key, the function adds it to the key.

REG_RESOURCE_LIST A device-driver resource list.

REG_SZ A null-terminated string.  It will be a 
Unicode or ANSI string, depending on 
whether you use the Unicode or ANSI 
functions.

Value Meaning



I-248  ACUCOBOL-GT Library Routines
STATUS-CODE    Numeric data item.

Receives the return status of call to Microsoft’s “RegSetValueEx” function.  
A return status of zero indicates success; non-zero indicates that an error 
occurred.

Comments

Value lengths are limited by available memory.  Long values (more than 
2048 bytes) should be stored as files with the filenames stored in the registry.  
This helps the registry perform efficiently.  Application elements such as 
icons, bitmaps, and executable files should be stored as files and not be 
placed in the registry. 

The key identified by the OPEN-KEY-HANDLE parameter must have been 
opened with KEY_SET_VALUE access.  

RENAME

Renames the existing file.  RENAME takes two, three, or four USING 
parameters. 

Usage
CALL "RENAME" 
    USING SOURCE-FILE, DEST-FILE, RENAME-STATUS, FILE-TYPE

Parameters

SOURCE-FILE   PIC X(n)

Contains the name of the file to rename.

DEST-FILE   PIC X(n)

Contains the new name for the file.  The RENAME routine will remove the 
destination file if necessary.



General Syntax and Library List  I-249
RENAME-STATUS   PIC 9(9) COMP-4

This parameter will be set to ZERO if the routine is successful, otherwise it 
will be set to the operating system’s error number.

FILE-TYPE   PIC X

Indicates the file type.  If the FILE-TYPE parameter is used, it must specify 
either an “S” for a sequential file, an “R” for a relative file, or an “I” for an 
indexed file.  If FILE-TYPE is not used, it is assumed to be “S”.  This can be 
useful in cases where the file is held in more than one physical disk file (for 
example, C-ISAM indexed files are physically held in two separate files).  If 
the FILE-TYPE parameter is omitted, then only the single physical file 
named in SOURCE-FILE is renamed.

Comments

The file being renamed should be closed.  Note that the RENAME routine 
cannot rename a file across different drives under Windows, but it can change 
a file’s directory.  Under UNIX systems, the RENAME procedure will 
attempt to copy the file if the target name is on a different device.  This may 
take some time if the file is large.  If the copy is successful, the original file 
is removed.

Note: The behavior of this library routine is affected by the setting of the 
FILENAME_SPACES configuration variable that may or may not allow 
spaces in a file name.  See the documentation on FILENAME_SPACES in 
Appendix H for information about the terminating character for path 
names.

R$IO

The R$IO routine provides an interface to the relative file handler.  Calls to 
the routine require an operation code and a variable number of parameters, 
depending on the operation called.  The return code is set automatically after 
the call.  The external variable “F-ERRNO” is set according to any errors 
found.  “F-ERRNO” may not be reset on entry to R$IO, and should be 
checked only if R$IO returns an error condition.



I-250  ACUCOBOL-GT Library Routines
This section includes the following topics:

Usage
CALL "R$IO" 
    USING OP-CODE, PARAMETERS

Parameters

OP-CODE     Numeric parameter

Specifies the file handling routine to be performed.  The following table lists 
each op-code and its corresponding operation.  The operations are detailed 
below:

PARAMETERS     vary depending on op-code

The remaining parameters vary depending on the operation selected.  They 
provide information and hold results for the operations specified.  Parameters 
may be omitted from those operations that do not require them.  The 
parameters are detailed below.

Code Operation

1 R-OPEN-FUNCTION

2 R-CLOSE-FUNCTION

3 R-MAKE-FUNCTION

4 R-READ-FUNCTION

5 R-NEXT-FUNCTION

6 R-PREVIOUS-FUNCTION

7 R-START-FUNCTION

8 R-WRITE-FUNCTION

9 R-REWRITE-FUNCTION

10 R-DELETE-FUNCTION

11 R-UNLOCK-FUNCTION



General Syntax and Library List  I-251
Description

All parameters passed to R$IO are passed by reference.  This applies even to 
parameters that are integer values in the corresponding file handling routines.  

R$IO automatically terminates PIC X filename parameters with a 
LOW-VALUES byte.  

You do not have to specify SYNC for level 01 or level 77 parameters because 
they are automatically synchronized by ACUCOBOL-GT.

The “filesys.def” COPY file contains many useful definitions for use with 
R$IO.  It contains definitions for the R$IO op-codes as well as the 
“F-ERRNO” error values.  It also includes many useful pre-declared 
variables that are of the proper type and usage.

Note: The behavior of this routine is affected by the setting of the 
FILENAME_SPACES configuration variable that may or may not allow 
spaces in a file name.  See the entry for FILENAME_SPACES in 
Appendix H, for information about the terminating character for path 
names.

The runtime configuration variables FILE_PREFIX and FILE_SUFFIX are 
ignored by the R$IO routine.

OP-CODES and PARAMETERS

R-OPEN-FUNCTION (op-code 1)

This routine opens an existing relative file.  If it is successful, the value in 
RETURN-CODE should be moved to a data item that is USAGE HANDLE.  
This data item is passed as the open file handle to the other file handling 
routines.  If it fails, RETURN-CODE is set to a NULL value.

The R-OPEN-FUNCTION routine takes four required parameters, and one 
optional parameter: filename, mode, maxsize, minsize, and blocks.

Filename is the name of the file to open.  It does not need to be 
null-terminated.



I-252  ACUCOBOL-GT Library Routines
Mode is one of the following values (defined in “filesys.def”):

“Foutput” does not delete the current file (this behavior differs from the 
OPEN OUTPUT statement in COBOL).

This routine only opens files that already exist.  If the file does not exist, the 
routine fails, even when opening with mode “Foutput”.

Mode may furthermore have one of the following flags added to it to indicate 
file locking options (defined in “filesys.def”):

If “Fmass_update” is used,  the file system is directed to emphasize speed of 
updates over file security.

Additionally, “Fmulti_lock” may be added to mode to request that more than 
one record lock be maintained in the file by this process.  If this option is not 
specified, then any I/O operation on the file will first release any currently 
locked record.  This results in only one record lock being set in the file at any 
time.  When this option is used, locked records are released only when the file 
is closed or when the UNLOCK routine is called.

Maxsize is the maximum record size.

Minsize is the minimum record size.  If maxsize is not equal to minsize, the 
records are considered variable length.

Blocks is the size of a block in bytes.  This parameter is optional and defaults 
to zero (“0”), meaning that a block is the size of a record.

Finput open for input only

Foutput open for output only

Fio open for input and output

Fextend open for output only (same as Foutput)

Fread_lock locks file against other updaters

Fwrite_lock locks file against all others

Fmass_update locks file against all others (same as Fwrite_lock)



General Syntax and Library List  I-253
R-CLOSE-FUNCTION (op-code 2)

This routine closes an open file.  It also removes currently held locks on the 
file.  R-CLOSE-FUNCTION has only one parameter, file_handle, the file 
handle of the file to close.  The file handle is a handle returned by the 
R-OPEN-FUNCTION.  For some file systems, it is possible that 
R-CLOSE-FUNCTION will write additional records that had been 
previously buffered by the system.  For this reason, it is possible that a “disk 
full” condition can occur.

R-MAKE-FUNCTION (op-code 3)

This routine creates a new relative file.  It will overwrite any existing file of 
the same name.  However, it will not overwrite a file that is currently in use.  
If the file is in use, the error E_FILE_LOCKED is returned.  

The R-MAKE-FUNCTION routine has two required parameters and one 
optional parameter: filename, l_params, blocks.

Filename is the name of the file to create.  The name need not be 
null-terminated.

L_parms is a string that describes logical characteristics of the file.  The 
string consists of two numeric fields separated by a comma.  The string must 
be null-terminated.  The fields are as follows:

1. Maximum record size.  This is the size in bytes of the largest record to be 
placed in the file.  This can range from 1 to 67,108,864.

2. Minimum record size.

Blocks is the size of a block of records in bytes.  The default is zero (“0”).

R-READ-FUNCTION (op-code 4)

This routine reads a record out of the relative file.  The 
R-READ-FUNCTION routine has three parameters: file_handle, 
record_area, and keyval.  

File_handle must be a valid file handle returned by R-OPEN-FUNCTION.  



I-254  ACUCOBOL-GT Library Routines
Record_area points to the area to hold the record read.  It must be at least 
MAXSIZE bytes in length.

Keyval is the record number of the record to read.  It is a long value.

If R-READ-FUNCTION succeeds, RETURN-CODE is set to the size of the 
record read, plus one.  If it fails, RETURN-CODE is set to zero.  However, if 
the function fails because the record is locked, the file pointer is set to the 
locked record.

Records read in a file open for input only are not locked.  Furthermore, most 
file systems do not block the reading of locked records in a file open for input 
(this feature depends on the host file system - not all support it).  Records read 
from a file open for I/O are automatically locked unless the external variable 
“f-no-lock” is set to a non-zero value, in which case they are treated in the 
same manner as files open for input.

R-NEXT-FUNCTION (op-code 5)

This routine reads the next record in the sequence of records in a relative file.  
The R-NEXT-FUNCTION routine has two parameters: file_handle and 
record_area.  

File_handle must be a valid file handle returned by R-OPEN-FUNCTION.  

Record_area points to the area to hold the record read.  It must be at least 
MAXSIZE bytes in length.

If R-NEXT-FUNCTION succeeds, RETURN-CODE is set to the size of the 
record read, plus one.  If it fails, RETURN-CODE is set to zero.  However, if 
the function fails because the record is locked, the file pointer is set to the 
locked record.

Records read in a file open for input only are not locked.  Furthermore, most 
file systems do not block the reading of locked records in a file open for input 
(this feature depends on the host file system - not all support it).  Records read 
from a file open for I/O are automatically locked unless the external variable 
“f-no-lock” is set to a non-zero value, in which case they are treated in the 
same manner as files open for input.



General Syntax and Library List  I-255
R-PREVIOUS-FUNCTION (op-code 6)

This routine reads the previous record in the sequence of records in a relative 
file.  The R-PREVIOUS-FUNCTION routine has two parameters: 
file_handle and record_area.  

File_handle must be a valid file handle returned by R-OPEN-FUNCTION.  

Record_area points to the area to hold the record read.  It must be at least 
MAXSIZE bytes in length.

If R-PREVIOUS-FUNCTION succeeds, RETURN-CODE is set to the size 
of the record read, plus one.  If it fails, RETURN-CODE is set to zero.  
However, if the function fails because the record is locked, the file pointer is 
set to the locked record.

Records read in a file open for input only are not locked.  Furthermore, most 
file systems do not block the reading of locked records in a file open for input 
(this feature depends on the host file system - not all support it).  Records read 
from a file open for I/O are automatically locked unless the external variable 
“f-no-lock” is set to a non-zero value, in which case they are treated in the 
same manner as files open for input.

R-START-FUNCTION (op-code 7)

This routine positions the file pointer for the next R-NEXT-FUNCTION or 
R-PREVIOUS-FUNCTION.  The R-START-FUNCTION routine has three 
parameters: file_handle, keyval, and mode.  

File_handle must be a valid file handle returned by R-OPEN-FUNCTION.  

Keyval is the record position at which to start.  It is a long value.

Mode is a direction.  Valid values are as defined in “filesys.def”.  They 
include:

F-EQUALS (0) start at the specified key

F-NOT-LESS (1) start at the specified key, or the one after

F-GREATER (2) start at the record beyond the specified key



I-256  ACUCOBOL-GT Library Routines
The F_EQUALS mode is usually used to test for the existence of a record or 
to position a file when the key value is known.  The F_NOT_LESS and 
F_GREATER modes are used to position the file for a series of NEXT calls 
and the F_LESS and F_NOT_GREATER modes are used to prepare for a 
series of PREVIOUS calls.

After a successful START, the current key of reference is set to keyval.  The 
next READ, NEXT or PREVIOUS call returns the record selected by the 
START routine.  Note that in this case, READ, NEXT and PREVIOUS will 
all return the same record.

If the START routine fails, the current key of reference is placed in the 
“undefined” state.

Some file systems cannot perform the F_LESS or F_NOT_GREATER 
modes.  On these file systems, specifying these modes causes START to 
return an error and set the E_NO_SUPPORT condition. 

R-WRITE-FUNCTION (op-code 8)

This routine adds a new record to the file.  It has four parameters: 
file_handle, record, length, and keyval.

File_handle must be a valid file handle returned by R-OPEN-FUNCTION.  

Record is the record data to write to the file.

Length is the number of bytes to write (for variable-length files).

Keyval is the record number to write.  A keyval of “-1” means to write at the 
end of the file.

The R-WRITE-FUNCTION routine does not change the current file position.

F-LESS (3) start at the record before the specified key

F-NOT-GREATER (4) start at the specified key, or the one before



General Syntax and Library List  I-257
R-REWRITE-FUNCTION (op-code 9)

This routine replaces an existing record in the file.  It has four parameters: 
file_handle, record, length, and keyval.

File_handle must be a valid file handle returned by R-OPEN-FUNCTION.  

Record is the record data to write to the file.

Length is the number of bytes to write (for variable-length files).

Keyval is the record number to write.  A value of “-1” is invalid with the 
REWRITE function.

The R-WRITE-FUNCTION routine does not change the current file position.

R-DELETE-FUNCTION (op-code 10)

This routine deletes the specified record.  It does not affect the current file 
position.  The DELETE routine has two parameters: file_handle and keyval.  

File_handle must be a valid file handle returned by R-OPEN-FUNCTION.  

Keyval specifies the position of the record to delete.

R-UNLOCK-FUNCTION (op-code 11)

This routine unlocks any locked records held by the current process in the 
specified file.  It is not an error to call this routine when there are no locked 
records.  This routine does not affect the current file position.  This routine 
will not unlock any records if it is called during a transaction.  “Commit” 
should be used instead.  

R-UNLOCK-FUNCTION has only one parameter: file_handle.  File_handle 
must be a valid file handle returned by R-OPEN-FUNCTION. 



I-258  ACUCOBOL-GT Library Routines
SYSTEM

The SYSTEM library routine provides a method of executing an operating 
system command. 

Usage
CALL "SYSTEM"
    USING MY-COMMAND-LINE,
    GIVING EXIT-STATUS

Parameters

MY-COMMAND-LINE   PIC X(n)

Contains the operating system command line to execute.

EXIT-STATUS Any numeric data item

Returns the called program’s exit status.

Comments

The SYSTEM routine takes a parameter, which is submitted to the host 
operating system as if it were a command typed in from a terminal.  

Some operating systems place limits on the length of a command-line string.  
Under Windows, the limit is 128 bytes.  When you issue a SYSTEM call 
using a variable, make sure that the length of the variable doesn’t exceed the 
operating system’s limit.

The user’s terminal is set to its default operating state before this command is 
run and is reset after it’s complete.  The runtime system waits for the 
command to complete.   

Note: On Windows systems, if you append an ampersand (&) character to 
the command line, the program will run asynchronously.  This should not 
be done for programs providing input files, but is often useful for programs 
processing output files.  



General Syntax and Library List  I-259
The status of a call to SYSTEM is placed into EXIT-STATUS.  This is 
usually the exit status of the executed program, or is “-1” if the SYSTEM 
routine failed.  

Here’s an example of a call to SYSTEM.  On a UNIX machine, you could 
display a directory listing of the “/usr” directory with the following 
command:

CALL "SYSTEM" USING "ls /usr"

If your machine is running Windows and you want to execute MS-DOS 
operating system commands via SYSTEM, you must pass the name 
COMMAND.COM, as well as the operating system command.  Use the 
syntax shown in this example that executes the DIR command:   

CALL "SYSTEM" USING 
     "COMMAND.COM /C DIR"

When CALL “SYSTEM” is used to initiate a program, it looks only for files 
with a “.EXE” extension.  If you want to call a “.COM” or “.BAT” file, you 
must explicitly add that extension in your code.  For example:    

CALL "SYSTEM" USING 
     "COMMAND.COM /C MYBATCH.BAT"

The SYSTEM routine is provided in source form as a sample of a C 
subroutine.  

Note: This routine causes ACUCOBOL-GT to forget the contents of the 
user’s screen.  This is done because the command executed may display 
information on the screen that ACUCOBOL-GT is not aware of.  Because 
of this, pop-up windows made after a call to the SYSTEM routine may not 
correctly restore the screen contents when they are closed.  You can avoid 
this problem by re-initializing the screen after you call the SYSTEM 
routine.  You can do this by erasing the screen or by closing a pop-up 
window that covers the entire screen.  

If the command to be executed will not perform any screen I/O, then you can 
request the SYSTEM routine to retain ACUCOBOL-GT’s memory of the 
user’s screen.  This will avoid the problem mentioned in the preceding 



I-260  ACUCOBOL-GT Library Routines
paragraph.  To do this, simply pass a second argument to the SYSTEM 
routine.  This may be any parameter you choose.  For clarity, we suggest that 
the second argument be the literal “NO I-O”.  

S$IO

The S$IO routine provides an interface to the sequential file handler.  Calls to 
the routine require an operation code and a variable number of parameters, 
depending on the operation called.  The return code is set automatically after 
the call.  The external variable “F-ERRNO” is set according to any errors 
found.  “F-ERRNO” may not be reset on entry to S$IO, and should be 
checked only if S$IO returns an error condition.

Note: File locking should be applied whenever SEEK operations are used.

Usage
CALL "S$IO" 
    USING OP-CODE, PARAMETERS

Parameters

OP-CODE     Numeric parameter

Specifies the file handling routine to be performed.  The following table lists 
each op-code and its corresponding operation.  The operations are detailed 
below:

Code Operation

1 S-OPEN-FUNCTION

2 S-CLOSE-FUNCTION

3 S-MAKE-FUNCTION

4 S-READ-FUNCTION

5 S-WRITE-FUNCTION

6 S-REWRITE-FUNCTION



General Syntax and Library List  I-261
PARAMETERS     variable depending on op-code

The remaining parameters vary depending on the operation selected.  They 
provide information and hold results for the operations specified.  Parameters 
may be omitted from those operations that do not require them.  The 
parameters are detailed in the section titled “Description” below.

Description

All parameters passed to S$IO are passed by reference.  This applies even to 
parameters that are integer values in the corresponding file handling routines.  

Except for the MAKE function, S$IO automatically terminates PIC X 
parameters with a LOW-VALUES byte.  

You do not have to specify SYNC for level 01 or level 77 parameters because 
they are automatically synchronized by ACUCOBOL-GT.

The “filesys.def” COPY file contains many useful definitions for use with 
S$IO.  It contains definitions for the S$IO op-codes as well as the 
“F-ERRNO” error values.  It also incudes many useful pre-declared variables 
that are of the proper type and usage.

Note: The behavior of this routine is affected by the setting of the 
FILENAME_SPACES configuration variable that may or may not allow 
spaces in a file name.  See the documentation on FILENAME_SPACES in 
Appendix H for information about the terminating character for path 
names.
The runtime configuration variables FILE_PREFIX and FILE_SUFFIX are 
ignored by the S$IO routine.

7 S-SEEK-FUNCTION

Code Operation



I-262  ACUCOBOL-GT Library Routines
OP-CODES and PARAMETERS

S-OPEN-FUNCTION (op-code 1)

This routine opens an existing sequential file.  If it is successful, the value in 
RETURN-CODE should be moved to a data item that is USAGE HANDLE.  
This data item is passed as the open file handle to the other file handling 
routines.  If it fails, RETURN-CODE is set to a NULL value.

The S-OPEN-FUNCTION routine has four required parameters, and three 
optional parameters: name, mode, recsize, type, blocking, padding, 
pipe_name.

Name is the name of the file to open.  It need not be null-terminated.

Mode is one of the following values (defined in “filesys.def”):

“Foutput” does not delete the current file (this behavior differs from the 
OPEN OUTPUT statement in COBOL).

Note: This routine only opens files that already exist.  If the file does not 
exist, the routine fails, even when opening with mode “Foutput”.

Mode may furthermore have one of the following flags added to it to indicate 
file locking options (defined in “filesys.def”):

If “Fmass_update” is used,  the file system is directed to emphasize speed of 
updates over file security.

Finput open for input only

Foutput open for output only

Fio open for input and output

Fextend open for output only (same as Foutput)

Fread_lock locks file against other updaters

Fwrite_lock locks file against all others

Fmass_update locks file against all others (same as Fwrite_lock)



General Syntax and Library List  I-263
Additionally, “Fmulti_lock” may be added to mode to request that more than 
one record lock be maintained in the file by this process.  If this option is not 
specified, then any I/O operation on the file will first release any currently 
locked record.  This results in only one record lock being set in the file at any 
time.  When this option is used, locked records are released only when the file 
is closed or when the UNLOCK routine is called.

Recsize is the maximum size of each record.  This must be known at open 
time.

Type is the type of sequential file, and is one of the following values (defined 
in “filesys.def”):

Blocking is the size of a block, in bytes.  This parameter is optional and 
defaults to 0, meaning that a block is the size of a record.

Padding is the value of the pad character for filling short blocks.  This 
parameter is optional and defaults to 0, meaning that any short blocks are 
padded with a binary 0 value.

Pipe-name is the name of the pipe to open instead of a file.  This parameter 
is optional.  It only has an effect on UNIX machines.

S-CLOSE-FUNCTION (op-code 2)

This routine closes an open file.  It also removes currently held locks on the 
file.  S-CLOSE-FUNCTION has only one parameter, f, a file handle returned 
by the S-OPEN-FUNCTION.  For some file systems, it is possible that 
S-CLOSE-FUNCTION will write additional records that had been 
previously buffered by the system.  For this reason, it is possible that a “disk 
full” condition can occur.

S-FIXED fixed record binary sequential file

S-VAR-COUNT variable record length binary sequential file

S-LINE line sequential file

S-PRINT line sequential file



I-264  ACUCOBOL-GT Library Routines
S-MAKE-FUNCTION (op-code 3)

This routine creates a new sequential file.  It will overwrite any existing file 
of the same name.  However, it will not overwrite a file that is currently in 
use.  If the file is in use, the error E_FILE_LOCKED is returned.  

This routine does not automatically terminate its parameters with 
LOW-VALUES.  You must ensure that its parameters are correctly 
terminated.

The S-MAKE-FUNCTION routine takes two parameters: name and 
l_parms.

Name contains the name of the file.  The name need not be null-terminated.

L-parms is a string that describes various logical characteristics of the file.  
The string consists of three numeric fields separated by commas.  The string 
must be null-terminated.  This parameter is optional.  If it is not specified, the 
values are not known to the runtime.  The fields are as follows:

1. Maximum record size.  This is the size in bytes of the largest record to 
be placed in the file.  This can range from 1 to 67,108,864.

2. The file type (accepted values are the same as described in 
S-OPEN-FUNCTION).  This must be a single byte containing a binary 
value that indicates the type of the file.

3. Block size.  This is the size of a block of records.

S-READ-FUNCTION (op-code 4)

This routine reads the next record in the sequence of records.  The 
S-READ-FUNCTION routine has two parameters, f and record.  

F must be a valid file handle returned by S-OPEN-FUNCTION.  

Record points to the area to hold the record read.

If S-READ-FUNCTION succeeds, RETURN-CODE is set to the size of the 
record read, plus one.  If it fails, RETURN-CODE is set to zero.  However, if 
the function fails due to the record being locked, the file pointer is set to the 
locked record.



General Syntax and Library List  I-265
Records read in a file open for input only are not locked.  Furthermore, most 
file systems do not block the reading of locked records in a file open for input 
(this feature depends on the host file system - not all support it).  Records read 
from a file open for I/O are automatically locked unless the external variable 
“f-no-lock” is set to a non-zero value, in which case they are treated in the 
same manner as files open for input.

S-WRITE-FUNCTION (op-code 5)

This routine adds a new record to the named file.  It has four parameters: f, 
record, size, and cr_cntrl.

F must be a valid file handle returned by S-OPEN-FUNCTION.  

Record points to the record to add.

Size is the size of the record.  If size is zero, then the maximum record size 
for the file is used.

Cr_cntrl is the number of lines to advance before writing the new record.  
This is only valid for print files.

The S-WRITE-FUNCTION routine does not change the current file position.

S-REWRITE-FUNCTION (op-code 6)

This routine replaces an existing record in the file.  It has three parameters: f, 
record, and size.

F must be a valid file handle returned by S-OPEN-FUNCTION.  

Record points to the new record to place in the file.   

Size is the size of the record.  It may be zero to indicate the maximum record 
size for the file.  The size of the new record need not match the size of the 
existing record.

The S-REWRITE-FUNCTION routine does not affect the file position.



I-266  ACUCOBOL-GT Library Routines
S-SEEK-FUNCTION (op-code 7)

This routine changes the current position of the file for subsequent READs.

The only time the runtime supports a seek in a sequential file is 1) to find the 
last record in order to read the file backwards, and 2) after each READ to 
seek to the previous record.  These are the only uses of SEEK supported by 
this library.  The file must be locked to ensure that other users of the file 
don’t add to it.  

S-SEEK-FUNCTION has three parameters: f, offset and mode.

F must be a valid file handle returned by OPEN.

Offset is the number of bytes to move from the current file position.  Offset 
is limited to a 32-bit value.

Mode is a flag that specifies the position from which the offset is measured.  
A value of zero sets the position at the beginning of the file, regardless of the 
current position.  A value of one sets the position to the current position.  A 
value of two sets the position to the end of the file.  Note that offset can be 
negative value.  

W$BITMAP

This routine is a collection of related operations that handle bitmapped (BMP 
and JPEG) images.  Only Windows machines can actually display bitmaps.  
On all other machines, this routine returns an error code.

Usage
CALL "W$BITMAP"
    USING OP-CODE, parameters,
    GIVING BITMAP-HANDLE

Parameters

OP-CODE   Numeric parameter 



General Syntax and Library List  I-267
Selects the W$BITMAP operation to perform.  The file “acugui.def” contains 
level 78 symbolic names for these operations. Unless otherwise noted, these 
operations can be used in a thin client environment. The specific operations 
are described below.

parameters   Vary depending on the op-code chosen.

BITMAP-HANDLE   PIC S9(9) COMP-4 (or COMP-5)

BITMAP-HANDLE holds the return value of W$BITMAP.  Values less than 
or equal to zero indicate errors.  If you are loading or destroying ImageLists, 
this should be a COMP-5 field.

Description

W$BITMAP can be used to display a bitmapped image, load a bitmapped 
image into memory, or remove a bitmapped image and free its memory. You 
can use this routine to load a bitmapped image into memory as a Windows 
API data type called an “ImageList”, which treats the bitmap file as a series 
of fixed-width images.  This provides a simplified way to load and destroy 
ImageLists when using the thin client. This routine can be used to capture 
screen shots of an active window or desktop. This routine can also be used 
to load IPictureDisp objects.

When it is trying to locate a bitmap file, W$BITMAP will search first for a 
resource with the specified name, and then for a disk file.  Resources are 
named in a fashion similar to disk files, but without any directory 
information.  (See the COPY RESOURCE statement in section 2.4.1 of 
Book 3, ACUCOBOL-GT Reference Manual for more information about 
including resources.)

Note: When you are running in a thin client environment, and a file name 
beginning with “@[DISPLAY]” is passed to this routine, it will attempt to 
access the file in the display host’s file system.  It does not download the 
file from the server.  For more information, refer to section 7.2, “Using 
Library Routines and DLLs in Thin Client,” in the AcuConnect User’s 
Guide.



I-268  ACUCOBOL-GT Library Routines
W$BITMAP will examine files to determine the type of image format. If the 
file suffix is “.jpg”, “.jpe” or “.jpeg”, W$BITMAP assumes the file is a JPEG 
image. Otherwise, it assumes the files are in BMP format. In order to read 
JPG files, you must have the file “ajpg32.dll” installed in the runtime 
directory.  Only 32-bit runtimes support JPEG format images.  If you need 
JPEG support on 64-bit Windows, run the 32-bit runtime or the Thin Client. 
You can also run the Thin Client with the 64-bit runtime.

W$BITMAP loads 24-bit color or 8-bit grayscale images in the JPEG File 
Interchange Format (JFIF).  It reads baseline and extended DCT sequential 
and progressive files that are Huffman encoded (file types SOF0, SOF1, 
SOF2). The JPG lossless mode format is not supported.   

Note: The behavior of this library routine is affected by the setting of the 
FILENAME_SPACES configuration variable that may or may not allow 
spaces in a file name.  See the documentation on FILENAME_SPACES in 
Appendix H.

OP-CODES and PARAMETERS

WBITMAP-DISPLAY (op-code 1)

This operation retrieves a bitmapped image from disk and displays it on the 
screen.  This op-code takes four additional parameters:  

name This is an alphanumeric literal or data item that is the 
file name of the bitmap to display.  This must be a file 
that contains a device-independent bitmap (usually 
called “.bmp” files).  Create this file with a bitmap 
editor.  For example, the bitmap contained in the 
sample program “tour.cbl” was created using the Paint 
program that comes with Windows.  The file name is 
not interpreted--it should be the exact file name of the 
image.  

row This is a numeric parameter.  This value is the row 
where you want to place the upper-left corner of the 
image.  Row values are treated just as they are in a 
DISPLAY statement.  This means that row “1” is the 
top row of the current ACUCOBOL-GT window.  



General Syntax and Library List  I-269
You may also refer to fractional row positions.  For 
example, row “1.5” is halfway between the top of row 
“1” and the top of row “2”.  

column This is a numeric parameter.  This identifies the 
column where the upper-left corner of the image is to 
be placed.  COLUMN is processed in the same manner 
as ROW.  

flags This is a numeric parameter that contains display 
options. Currently, the only option is 
WBITMAP-NO-FILL. When this is set, it inhibits the 
background-fill operation described below. This 
parameter can be omitted, in which case the fill option 
behaves as described. 

The bitmapped image contained in the named file is loaded into memory, 
converted to a device-dependent bitmap and displayed at the position 
indicated by ROW and COLUMN.  The entire image in the file is displayed, 
except that it is truncated to fit in the current ACUCOBOL-GT window.  

Note: You should generally try to produce small bitmaps, because 
full-screen bitmaps occupy significant amounts of memory and can take 
noticeable time to process.  If you use Windows Paint to create the image, 
you should first use the “Image Attributes” option to set the size of the 
image (the default is a full page; you’ll want to make it smaller).  

Frequently, the edges of the image will not exactly match a row and column 
boundary.  ACUCOBOL-GT fills the tiny area between the edge of the 
bitmap and the next character cell with the current window’s background 
color.  If you use the WBITMAP-NO-FILL parameter, then the runtime 
leaves this area alone.  Usually, this means that it will show arbitrary data as 
the program progresses.  This can be useful, however, if you are placing 
several bitmaps very close together and do not want the fill area of one 
bitmap to overwrite another bitmapped image.  

When W$BITMAP returns, it sets BITMAP-HANDLE to a positive 
(non-zero) value that is the bitmap’s handle.  This should be saved in a 
variable declared as PIC 9(9).  Use the handle when you make future 
reference to the displayed image (for example, you need the handle in order 



I-270  ACUCOBOL-GT Library Routines
to remove the bitmap and free the memory that it occupies).  If 
BITMAP-HANDLE is less than or equal to zero, then an error has occurred.  
(See the section on Error Handling below.)

You may display data and pop-up windows over bitmapped images.  
However, the current implementation may cause the image to flash through 
the data displayed on top when the runtime is repainting the screen.  The final 
image should be correct, but the flash can be annoying in some cases.  To 
avoid this, either do not display anything over the image, or display over the 
entire image (the runtime will not try to display the image if it is entirely 
hidden).  

The effect of displaying overlapping bitmapped images is undefined.  

WBITMAP-DESTROY (op-code 2) 

This operation removes a bitmapped image from the screen and frees the 
memory used by that bitmap.  It takes only one parameter,  the handle of the 
bitmap returned by WBITMAP-DISPLAY.  This should be either USAGE 
COMP-4 or unsigned DISPLAY.   

When an image is removed from the screen, it’s replaced by spaces using the 
current window’s background color.  Only those parts of the screen that are 
currently showing the image are updated.  

You can effectively remove an image from the screen by displaying over it.  
However, this does not free the memory used by the image.  The runtime also 
spends some time whenever it updates the screen determining whether or not 
the image is visible.  For these reasons, you should destroy images when you 
are done with them.  

The runtime automatically destroys all remaining images when it shuts down. 

WBITMAP-LOAD (op-code 3) 

This operation loads bitmapped images from disk into memory so that they 
can be displayed with bitmapped buttons.  

Note: You may not use remote name notation with this operation.



General Syntax and Library List  I-271
This op-code takes three additional parameters.  They are, in order:  

name A literal or data item containing the name of the file to 
load.  The length of the name (including path) should 
not exceed 90 characters. This limit may vary on 
different operating systems.

bitmap-handle A PIC S9(9) COMP-4 data item that stores a handle to 
the bitmapped image loaded into memory.  

flags A numeric parameter that contains loading options.  
This parameter can be omitted.  

Currently the only option is 
WBITMAP-NO-DOWNLOAD.  This option is 
intended for programs that are deployed with the 
ACUCOBOL-GT Thin Client.  When the option is set, 
the server does not download the specified bitmap to 
the client.  The flag indicates to the server that the 
bitmap is already in the client’s cache directory.  To 
properly use the option, the program must keep track 
of whether the bitmap is already in the client’s cache.

If the operation is successful, bitmap-handle holds a positive value.  If 
bitmap-handle is “0” or negative, an error occurred.

If you have bitmapped images in more than one file, you need to load each 
file before using the images they contain.  Be sure to store separate handles 
for each file loaded.

When you are done with an image and have destroyed all the buttons that 
reference that image, you can remove it from memory with the 
WBITMAP-DESTROY operation.  Do not destroy an image that is 
referenced by an active control or print job, because the results are 
unpredictable.

WBITMAP-LOAD-IMAGELIST (op-code 5) 

This operation works in the same way as the WBITMAP-LOAD operation, 
except that the returned handle is a Win32 API ImageList handle instead of a 
bitmap handle.  This handle can be directly used by ActiveX controls which 



I-272  ACUCOBOL-GT Library Routines
use ImageLists, and should be USAGE COMP-5.  When running under the 
thin client, the resulting ImageList resides on the desktop machine.  The 
ImageList handle is only meaningful to software components on that 
machine (such as a displayed ActiveX control).  Unlike images loaded with 
WBITMAP-LOAD, the runtime does not track ImageLists.  For this reason, 
you should destroy an ImageList once you no longer need it.  Error values 
returned by this operation are identical to those returned by the 
WBITMAP-LOAD operation.  This operation takes up to three additional 
parameters:

name This required alphanumeric literal is the name of the 
file you wish to load.  It should be a BMP or JPG file.  
The file is handled in exactly the same fashion as it is 
for the WBITMAP-LOAD operation.  

width This numeric parameter is optional. The bitmap file is 
treated as a series of distinct images arranged 
horizontally.  The height of each image is determined 
by the height of the bitmap.  The width of each image 
is defined by this parameter, expressed in pixels.  Each 
image must be the same width.  If omitted, a default 
width of 16 pixels (a common width for toolbar 
images) is used.

transparent-color This optional numeric literal is set to the value of a 
color that you designate as a “transparent” color.  
Pixels of this color are not displayed when the bitmap 
is drawn, allowing the background to show through. 
Color values are expressed as integers composed of 
red, green and blue components. The mathematical 
expression for the composite value is:

(blue * 65536) + (green * 256) + (red)

where red, green, and blue are values between 0 and 
255. You can use a hexadecimal numeric literal to 
express this value since each component of the color 
occupies one byte in a binary value.  For example, 
“x#FF8000” expresses an orange color with red at 
255, green at 128, and blue at 0.  The first byte (x ‘FF’) 
is the red value, the second byte (x’80’) is the green 
value, and the last byte (x‘00’) is the blue value.  



General Syntax and Library List  I-273
Note: The value “x#C0C0C0” is often used for the transparent 
color since this is the medium gray shade used in default Windows 
color schemes.  Images drawn using this as a “background” color 
adapt well when the user changes from the default color scheme. 

If this parameter is omitted, all colors are treated as 
usual and the image is drawn without modification.

WBITMAP-DESTROY-IMAGELIST (op-code 6) 

This operation destroys an ImageList.  Normally this will be an ImageList 
created by the WBITMAP-LOAD-IMAGELIST operation, but it may be any 
ImageList that resides on the desktop machine.  When running under the thin 
client, the ImageList is destroyed on the desktop machine. This operation 
takes a single parameter, the handle of the ImageList to destroy.  This should 
be USAGE COMP-5.  Because the runtime cannot verify this parameter, you 
should take extra care to ensure that it is valid.  

WBITMAP-CAPTURE-IMAGE (op-code 7) 

This operation captures a screen shot of a window, and stores it as a BMP file.  
(If you are using this operation in a thin client environment, refer to section 
7.2.5 of the AcuConnect User’s Guide for special considerations.)  This 
operation takes four additional parameters:

name This required alphanumeric literal is the name of the 
file in which the image is saved. The name may 
include embedded spaces.  This parameter is not 
affected by the FILE_PREFIX configuration variable.  
If a file of the specified name already exists, it is 
overwritten unless it is read-only.  If this parameter is 
omitted or set to spaces, the image is saved to the 
Windows clipboard.  

window-handle This optional PIC S9(9) COMP-4 data item is the 
Windows system handle of the image to capture.  If 
this parameter is omitted or set to “0”, the currently 
active window is captured.  (Active means the window 



I-274  ACUCOBOL-GT Library Routines
that responds to a keystroke.)  If no window-handle is 
available or there is no currently active window, an 
image of the desktop is captured.

Note: The Windows system handle is not the same as the 
ACUCOBOL-GT window handle.  You may determine the value 
of window-handle using the following code:
   DISPLAY WINDOW HANDLE IN acu-handle.

or
   DISPLAY ENTRY-FIELD HANDLE IN acu-handle.
   INQUIRE acu-handle SYSTEM HANDLE IN window-handle.

where acu-handle is the handle of a window or control, and 
window-handle is a PIC 9(9) COMP-5 or PC X(4) COMP-N data 
item.

client This optional numeric data item is used to specify 
whether to capture the entire window, or just the 
interior of the window.  If you specify this parameter, 
you must also specify window-handle.  This 
parameter may have one of two values:

 

colordepth This optional numeric data item sets the number of 
color bits per pixel used when capturing the image.  If 
this value is not specified, the screen default is used.  
The default color density of a screen is a property of 
the video adapter driver.  On most modern PCs this is 

0 (default) The entire window is captured, including 
the title bar, window frame, menu, etc.

1 Only the interior of the window specified by 
window-handle is captured.  This can be useful if 
you are displaying a scanned image, and want to 
capture only that image, not the window frame.



General Syntax and Library List  I-275
set to 24-bits per pixel.  This parameter is not used 
when images are saved to the clipboard.  This 
parameter may be set to one of the following values:

When making copies of all or part of the screen, do not 
use higher color density than necessary.  Color is 
memory intensive and a higher color density does not 
improve image quality as much as it results in a larger 
file size.  Consider what you will use the image for and 
set colordepth accordingly.  Many tools do not support 
bitmaps with more than 256 colors.  A color density 
setting of “8” is adequate for most situations.

WBITMAP-CAPTURE-DESKTOP (op-code 8) 

This operation captures a screen shot of the entire desktop and stores it as a 
BMP file.  (If you are using this operation in a thin client environment, refer 
to section 7.2.5 of the AcuConnect User’s Guide for special considerations.) 
This operation takes two additional parameters:

name This required alphanumeric literal is the name of the 
file in which the image is saved. The name may 
include embedded spaces. The length of name 
(including path) should not exceed 90 characters. This 
limit may vary on different operating systems. This 
parameter is not affected by the FILE_PREFIX 
configuration variable.  If a file of the same name 
already exists, it is overwritten unless it is read-only.  
If this parameter is omitted or set to spaces, the image 
is saved to the Windows clipboard.  

1 Monochrome

4 4-bits per pixel

8 8-bits per pixel (256 colors)

16 16-bits per pixel

24 24-bits per pixel (True color)

32 32-bits per pixel (True color)



I-276  ACUCOBOL-GT Library Routines
If you plan to use this operation in a thin client 
environment, refer to section 7.2.5 of the AcuConnect 
User’s Guide for special considerations.

colordepth This optional numeric data item sets the number of 
color bits per pixel used when capturing the image.  If 
this value is not specified, the screen default is used.  
The default color density of a screen is a property of 
the video adapter driver.  On most modern PCs it is 
24-bits per pixel.  This parameter is not used when 
images are saved to the clipboard.  This parameter 
may be set to one of the following values:

When making copies of all or part of the screen, do not 
use higher color density than necessary.  Color is 
memory intensive and a higher color density does not 
improve image quality as much as it results in a larger 
file size.  Consider what you will use the image for and 
set colordepth accordingly.  Many tools do not support 
bitmaps with more than 256 colors.  A color density 
setting of “8” is adequate for most situations.

WBITMAP-CAPTURE-CLIPBOARD (op-code 9) 

This operation saves the current content of the Windows clipboard as a BMP 
file.  If the clipboard is empty or contains an unsupported datatype, such as 
text, an error is returned.  (If you are using this operation in a thin client 
environment, refer to section 7.2.5 of the AcuConnect User’s Guide for 
special considerations.)  This operation takes only one parameter, the 
filename to which the clipboard content must be saved. 

1 Monochrome

4 4-bits per pixel

8 8-bits per pixel (256 colors)

16 16-bits per pixel

24 24-bits per pixel (True color)

32 32-bits per pixel (True color)



General Syntax and Library List  I-277
name This required alphanumeric literal is the name of the 
file in which the image is saved. The name may 
include embedded spaces. The length of name 
(including path) should not exceed 90 characters. This 
limit may vary on different operating systems. This 
parameter is not affected by the FILE_PREFIX 
configuration variable.  If a file of the specified name 
already exists, it is overwritten unless it is read-only.

WBITMAP-LOAD-PICTURE  (op-code 10) 

This operation accepts a filename and returns a handle to an IPictureDisp 
object.  This is similar to the Visual Basic LoadPicture function.  You must 
use the “acuclass.def” file to obtain the definition of the IPictureDisp object.  

An IPictureDisp object uses the IPictureDisp interface to expose its 
properties through Automation.  It provides a subset of the functionality 
available through IPicture methods.  For more information, go to: 
msdn.microsoft.com/library and search for IPictureDisp and/or IPicture.

The following image formats are supported:

This operation takes one parameter:

name This required alphanumeric literal is the name of the 
file you want to load.  The filename must include an 
absolute path. The length of name (including path) 
should not exceed 90 characters.  

Bitmaps & device independent bitmaps (DIB) .bmp

Icons .ico

Joint Photographic Experts Group (JPEG) .jpg

Windows MetaFile .wmf

Graphics Interchange Format .gif



I-278  ACUCOBOL-GT Library Routines
If the operation is successful, bitmap-handle holds a positive value.  If 
bitmap-handle is “0” or negative, an error occurred.  Note that the runtime 
does not manage memory consumed by this function.  When you are done 
with an image, you should remove it from memory with a “DESTROY 
IPictureDisp_handle” statement.  See Example 3, below.

Note: The IPictureDisp handle will not accept negative values. If an error 
(a negative value) is returned, you must use a REDEFINES, or move the 
value to a signed numeric variable, in order to read the error code.  See 
Example 3 below.

Error Handling

If the value of BITMAP-HANDLE is “0” or negative, an error has occurred. 
These errors are defined in “acugui.def”. 

WBERR-UNSUPPORTED (value “0”) -- The system does not support 
bitmapped images.  Currently, ACUCOBOL-GT supports the display of 
bitmaps on Windows systems only.  

WBERR-FILE-ERROR (value “-1”) -- A file error occurred when trying to 
open name.  The most common cause is that name does not exist.  Other 
possibilities include a permissions error or running out of file handles.  

WBERR-NO-MEMORY (value “-2”) -- The system ran out of memory 
trying to allocate space for the image.

WBERR-NOT-BITMAP (value “-3”) -- The named file does not contain a 
device-independent bitmap.  

WBERR-FORMAT-UNSUPPORTED (value “-4”) -- The format of the 
current image is not supported. 

WBERR-MISSING-DLL (value “-5”) -- The runtime has attempted to load 
a “.jpg” file and the file “ajpg32.dll” cannot be found.

WBERR-INVALID-HWND (value “-6”) -- The runtime cannot capture the 
current image. The window handle provided was invalid.



General Syntax and Library List  I-279
WBERR-INVALID-DATA (value “-7”) -- The runtime cannot access the 
bitmap object. This can happen if the window has been closed, or if the image 
is corrupt.

WBERR-INVALID-CLIPBOARD (value “-8”) -- The runtime has been 
denied access to the clipboard. This may be because another application has 
locked the clipboard.

WBERR-INVALID-PALETTE (value “-9”) -- The runtime is not able to 
create the palette for this image. The most common cause is that the image is 
corrupt or has a palette size that is not supported.

Example 1

The following example shows the first two op-codes in use.  After the 
example, the parameters are described.  For an example of the 
WBITMAP-LOAD operation, see Example 3.

Notice the two calls to W$BITMAP in the sample code.  First we use 
W$BITMAP to display a logo, and then we use the DISPLAY verb to place 
two lines of text on the screen.  The second call to W$BITMAP removes the 
logo from the screen and releases the memory it occupies.
* Displays the logo for 2 seconds. 

display window, line 7, column 26, lines 9, size 30, color black +
   bckgrnd-white, erase, shadow, no scroll, pop-up area is window-1.

* Now we give the name of the bitmap file and 
* the row and column of the upper left corner: 

call “w$bitmap” using wbitmap-display, “sample/acucob85.bmp”, 2, 5.

* We save the handle so we’ll have it when we want 
* to remove the image: move return-code to bitmap-handle.

* Check to make sure the logo file was found and 
* that no error occurred: 

if bitmap-handle <= zero
   close window window-1 
else
   display “Copyright (c) 1985 - 2000”, line 7, size 30, centered
   display “Acucorp, Inc.”, line 8, size 30, centered
   accept single-char, auto, before time 200 



I-280  ACUCOBOL-GT Library Routines
end-if
close window window-1

* We remove the bitmapped image and release the 
* memory it uses: 

call “w$bitmap” using wbitmap-destroy, bitmap-handle.

Example 2

Following are several examples of different W$BITMAP calls to capture 
screen shots and desktop images:
* This call captures the standard active window as a file 
* named “myfile.bmp”
call "W$BITMAP" using WBITMAP-CAPTURE-IMAGE “myfile.bmp”.

* This call captures the standard active window onto 
* the Windows clipboard
call "W$BITMAP" using WBITMAP-CAPTURE-IMAGE “ ”.

* This call captures the client area of the active 
* window as a file named “myfile.bmp” using 8-bit color
call "W$BITMAP" 
   using WBITMAP-CAPTURE-IMAGE “myfile.bmp” 0 1 8.

* This call captures the indicated window handle using 16-bit 
* color and saves it as a file named “myfile.bmp”
inquire mycontrol system handle in hWND
call "W$BITMAP" 
   using WBITMAP-CAPTURE-IMAGE “myfile.bmp” hWND 0 16.

* This call captures the entire desktop as a file named
* “myfile.bmp” using 32-bit color
call "W$BITMAP" using WBITMAP-CAPTURE-DESKTOP “myfile.bmp” 32.

* This call captures the current bitmap content of the Windows
* clipboard as a file named “myfile.bmp” 
call "W$BITMAP" using WBITMAP-CAPTURE-CLIPBOARD “myfile.bmp”.

Example 3

The following sample program calls W$BITMAP to load an IPicture object.
       ...



General Syntax and Library List  I-281
SPECIAL-NAMES.
   COPY "acuclass.def".
     .

WORKING-STORAGE SECTION.
   COPY "acugui.def".
     77  myIPictureDisp     HANDLE OF IPictureDisp.
     77  myErrorTest REDEFINES myIPictureDisp PIC S9(9) COMP-5.

   ...
PROCEDURE DIVISION.
   MAIN-001.

  CALL "W$BITMAP" USING WBITMAP-LOAD-PICTURE
      "C:\MyDir\MyBitmaps.bmp"
       GIVING myIPictureDisp.

EVALUATE myErrorTest
     WHEN WBERR-FILE-ERROR
        DISPLAY MESSAGE BOX
          "File not found"
          TITLE "Error"
          INITIALIZE myIPictureDisp
     WHEN WBERR-FORMAT-UNSUPPORTED
        DISPLAY MESSAGE BOX
          "Format not supported"
           TITLE "Error"
           INITIALIZE myIPictureDisp
     WHEN OTHER
          DISPLAY MESSAGE BOX
          "File successfully loaded"
          TITLE "Success"
END-EVALUATE.
DESTROY myIPictureDisp.
GOBACK.

W$BROWSERINFO

The W$BROWSERINFO routine provides information about a requesting 
Web browser.  This routine is used in conjunction with the ACUCOBOL-GT 
Web Runtime.  See the book titled A Programmer’s Guide to the Internet for 
more information about using the Web Runtime.

Usage
CALL "W$BROWSERINFO" 



I-282  ACUCOBOL-GT Library Routines
    USING BROWSERINFO-DATA

Parameters

BROWSERINFO-DATA   Group item as follows:
01 BROWSERINFO-DATA.
   03 USER-AGENT-STRING       PIC X(50).
   03 BROWSWER-MAJOR-VERSION  PIC X COMP-X.
   03 BROWSWER-MINOR-VERSION  PIC X COMP-X.

BROWSERINFO-DATA is found in the COPY library “acucobol.def”. The 
values are as follows:

USER-AGENT-STRING   This is the browser’s user_agent field.  It 
contains the name of the browser as it is sent to the HTTP server.  It may also 
contain version numbers, product name, and operating system name.  
Netscape browsers set the first seven characters of this field to “Mozilla”.  
Microsoft Internet Explorer sets this field to “Microsoft Internet Explorer”.

BROWSER-MAJOR-VERSION   This is the major version number 
reported by the browser.  This is not the same as the major version number 
displayed in the browser’s “About” screen.  Many browsers simply place a 
“0” in this field.

BROWSER-MINOR-VERSION  This is the minor version number 
reported by the browser.  This is not the same as the minor version number 
displayed in the browser’s “About” screen.

Description

Upon return from W$BROWSERINFO, all of the data elements contained in 
BROWSWERINFO-DATA are filled in.  If you call W$BROWSERINFO 
when the COBOL application is not running in a Web browser via the Web 
Runtime, the first field is set to spaces, and the last two fields are set to zero 
(“0”).



General Syntax and Library List  I-283
W$FLUSH

The W$FLUSH routine causes the screen and/or cursor to be refreshed.  It 
can be used to ensure that the user sees the most current display (see the 
explanation under Description, below).

Usage
CALL "W$FLUSH" 
    USING PARAM-NUM

Parameters

PARAM-NUM   numeric data item (optional)

Specifies what part of the display (screen or cursor) is refreshed.  

Description

Calling this routine refreshes the display so that the user sees everything that 
is current, even if an ACCEPT has not been performed.  Normally, the 
runtime ensures that the information the user sees is correct only when input 
is required from the user.  This means that if you DISPLAY some text or 
control, and then perform extensive processing without also performing an 
ACCEPT, the text or control may not be immediately visible to the user.  
Possible values are:

0 (default) the screen is made current, but the cursor may appear 
in an arbitrary location. (This is due to output optimization.)

1 the screen and cursor are made current



I-284  ACUCOBOL-GT Library Routines
Note: Prior to the introduction of W$FLUSH, some programs worked 
around this problem using the statement “ACCEPT OMITTED BEFORE 
TIME 0”.

If you are experiencing a performance penalty for these runtime calls, 
especially during file processing where the screen is updated after each 
record, you can choose to inhibit calls to W$FLUSH.  This can be useful if 
you want to simulate “mass update” functionality for ActiveX controls that 
do not have this capability built in.  Use one of the following parameters: 
 

For example:
   78  INHIBIT-FLUSH   VALUE 256.
   78  ALLOW-FLUSH     VALUE 257.

   CALL "W$FLUSH" USING INHIBIT-FLUSH
   PERFORM LARGE-ACTIVEX-UPDATE
   CALL "W$FLUSH" USING ALLOW-FLUSH

2 on UNIX machines using the BUFFERED-SCREEN 
configuration option, the screen is made current at the next 
clock tick

on all other machines this has the same behavior as setting the 
value to “1”.

3 on UNIX machines using the BUFFERED-SCREEN 
configuration option, the screen and cursor are made current at 
the next clock tick

on all other machines this has the same behavior as setting the 
value to “1”.

256 inhibits any future calls to W$FLUSH, including those made internally 
by the runtime system.  Only a call with parameter “257” will be 
honored.  This parameter must be turned off to restore user interaction.

257 cancels the inhibited state caused by parameter “256”.  This parameter 
does not cause a flush itself; it just allows future calls to W$FLUSH to 
function.  You must call this parameter before interacting with the user.



General Syntax and Library List  I-285
W$FONT

The W$FONT routine provides general support for selecting fonts and 
determining their characteristics.

Usage
CALL "W$FONT"
    USING OP-CODE, FONT-HANDLE, WFONT-DATA
    GIVING WFONT-STATUS

Parameters

OP-CODE   Numeric value

Selects the W$FONT function to perform.  These operations are described 
below.

FONT-HANDLE   USAGE HANDLE or HANDLE OF FONT

When retrieving a font from the system, the system stores a handle to the font 
in this item.  With other operations, this value specifies the font to act on.  

WFONT-DATA   Group item as follows:
01 WFONT-DATA.
   03 WFONT-FACE-DATA.
      05 WFONT-DEVICE                  HANDLE, VALUE NULL.
         88 WFDEVICE-CONSOLE           VALUE NULL.
         88 WFDEVICE-WIN-PRINTER       VALUE 1.
      05 WFONT-NAME                    PIC X(33).
      05 WFONT-CHAR-SET                PIC X COMP-X.
         88 WFCHARSET-DONT-CARE        VALUE 0.
         88 WFCHARSET-DEFAULT          VALUE 1.
         88 WFCHARSET-WIN-OEM          VALUE 2.
         88 WFCHARSET-WIN-SYMBOL       VALUE 3.
         88 WFCHARSET-WIN-SHIFTJIS     VALUE 4.
         88 WFCHARSET-WIN-HANGUL       VALUE 5.
         88 WFCHARSET-WIN-GB2312       VALUE 6.
         88 WFCHARSET-WIN-CHINESEBIG5  VALUE 7.
         88 WFCHARSET-WIN-JOHAB        VALUE 8.
         88 WFCHARSET-WIN-HEBREW       VALUE 9.
         88 WFCHARSET-WIN-ARABIC       VALUE 10.



I-286  ACUCOBOL-GT Library Routines
         88 WFCHARSET-WIN-GREEK        VALUE 11.
         88 WFCHARSET-WIN-TURKISH      VALUE 12.
         88 WFCHARSET-WIN-VIETNAMESE   VALUE 13.
         88 WFCHARSET-WIN-THAI         VALUE 14.
         88 WFCHARSET-WIN-EASTEUROPE   VALUE 15.
         88 WFCHARSET-WIN-RUSSIAN      VALUE 16.
         88 WFCHARSET-WIN-MAC          VALUE 17.
         88 WFCHARSET-WIN-BALTIC       VALUE 18.
      05 WFONT-SIZE                    PIC X COMP-X.
      05 WFONT-BOLD-STATE              PIC X COMP-X.
         88 WFONT-BOLD                 VALUE 1, FALSE 0.
      05 WFONT-ITALIC-STATE            PIC X COMP-X.
         88 WFONT-ITALIC               VALUE 1, FALSE 0. 
      05 WFONT-UNDERLINE-STATE         PIC X COMP-X.
         88 WFONT-UNDERLINE            VALUE 1, FALSE 0.
      05 WFONT-STRIKEOUT-STATE         PIC X COMP-X.
         88 WFONT-STRIKEOUT            VALUE 1, FALSE 0.
      05 WFONT-PITCH-STATE             PIC X COMP-X.
         88 WFONT-FIXED-PITCH          VALUE 1, FALSE 0.
      05 WFONT-FAMILY                  PIC X COMP-X.
         88 WFFAMILY-DONT-CARE         VALUE 0.
         88 WFFAMILY-MODERN            VALUE 1.
         88 WFFAMILY-ROMAN             VALUE 2.
         88 WFFAMILY-SWISS             VALUE 3.
         88 WFFAMILY-SCRIPT            VALUE 4.
         88 WFFAMILY-DECORATIVE        VALUE 5.
   03 WFONT-CHOOSE-DATA.
      05 WFONT-CHOOSE-FLAGS            PIC X COMP-X.
      05 WFONT-CHOOSE-MIN-SIZE         PIC X COMP-X.
      05 WFONT-CHOOSE-MAX-SIZE         PIC X COMP-X.
      05 WFONT-CHOOSE-RED              PIC X COMP-X.
      05 WFONT-CHOOSE-GREEN            PIC X COMP-X.
      05 WFONT-CHOOSE-BLUE             PIC X COMP-X.
      05 WFONT-CHOOSE-COLOR-NUM        PIC X COMP-X.
   03 WFONT-ANGLE                      PIC X(2) COMP-X.

WFONT-DATA contains parameters that are used by the various W$FONT 
operations.  The descriptions below detail how each operation uses this data 
item.  

WFONT-STATUS   Signed numeric data item



General Syntax and Library List  I-287
WFONT-STATUS returns the status of the operation.  Unless otherwise 
specified below, a value of “1” indicates success and “0” or a negative value 
indicates failure.  

All of the data items and definitions required by this routine can be found in 
the COPY library “fonts.def”.  To avoid problems should the format of 
WFONT-DATA change in a future version of ACUCOBOL-GT, it is 
recommended that you always use the “fonts.def” COPY file.  

Description

W$FONT performs a variety of operations depending on the specified 
op-code.  The operations are as follows:

 WFONT-SUPPORTED  (op-code 1) 

This operation returns a value that indicates whether the host system supports 
W$FONT.  If it does not, WFONT-STATUS is set to 
WFONTERR-UNSUPPORTED (value “0”).  This indicates that the host 
system does not use fonts (as would be normal for a non-graphical host).  A 
return value of WFONT-FONT-SUPPORT (value “1”) indicates that fonts 
are supported, but the WFONT-CHOOSE-FONT operation is not available.  
Finally, a value of WFONT-FULL-SUPPORT (value “2”) indicates that all 
W$FONT operations are supported on the system.  

The FONT-HANDLE and WFONT-DATA parameters are not used with this 
op-code and should be omitted.  

WFONT-GET-FONT  (op-code 101) 

This operation returns a font on the system that matches the specifications in 
WFONT-DATA.  If a matching font is found, its handle is returned in 
FONT-HANDLE and WFONT-STATUS is set to “1”.  If no matching font is 
found, FONT-HANDLE is set to NULL and WFONT-STATUS returns the 
WFONTERR-FONT-NOT-FOUND error condition.  

Note: Fonts occupy memory.  If you no longer need a font, you can free the 
memory used by the font by using the DESTROY verb on the font’s handle.  
The runtime automatically destroys all fonts when it terminates.  



I-288  ACUCOBOL-GT Library Routines
In WFONT-GET-FONT, the WFONT-DATA fields are used to describe the 
desired font. These fields are described in detail below.  You should always 
INITIALIZE the group item WFONT-DATA prior to filling in these fields to 
ensure that unused fields contain the proper default values.  

If you do not specify WFONT-NAME, WFONT-CHAR-SET, or 
WFONT-SIZE, the corresponding aspect of the font will be arbitrary.  In 
general, you should always specify WFONT-NAME and WFONT-SIZE to 
get useful results.   

WFONT-GET-CLOSEST-FONT (op-code 102) 

This operation is identical to WFONT-GET-FONT, except that it doesn’t fail 
if it cannot find the specified font.  Instead, it returns the closest matching 
font.  Note that only Windows systems are capable of performing this 
operation.  On other systems, this call is treated as being identical to 
WFONT-GET-FONT.  You should specify WFONT-CHAR-SET with this 
function to ensure that the returned font is useful.  Also, specifying 
WFONT-FAMILY can help in locating a suitable font.  

WFONT-DESCRIBE-FONT  (op-code 106)  

This operation returns the characteristics of the font described by 
FONT-HANDLE in WFONT-DATA.  All of the fields contained in the 
subgroup WFONT-FACE-DATA are returned, within the capabilities of the 
host system.  

WFONT-CHOOSE-FONT  (op-code 2)  

This operation presents the user with a dialog box that allows for the direct 
selection of a font.  If the user cancels the dialog box, W$FONT returns a 
status of WFONTERR-CANCELLED.  Otherwise, W$FONT returns a 
status of “1” and sets WFONT-FACE-DATA to a description of the chosen 
font.  FONT-HANDLE is not used and should be passed as “NULL”.  To 
generate a font handle for the user’s choice, take the WFONT-FACE-DATA 
values returned by this operation and pass them to the WFONT-GET-FONT 
operation.  



General Syntax and Library List  I-289
Values contained in WFONT-CHOOSE-DATA modify the behavior of the 
dialog box and return additional information.  These fields are described 
below.  You should always INITIALIZE the group item WFONT-DATA 
prior to filling any fields.  This ensures that you have the correct default 
values for unused fields.  

Not all systems that support fonts support this function.  See the 
WFONT-SUPPORTED operation above for details.  

WFONT-DATA

The fields of WFONT-DATA are used as follows:

WFONT-DEVICE -- This item identifies the device that a font is associated 
with.  When a font is associated with a particular device, it should not be used 
on another device, because these results are undefined.  Under Windows, 
fonts can be shared between devices, but the size is incorrect, because 
Windows fonts are internally stored with their sizes represented in pixels/
device-units instead of points.  For example, using a screen font that is 15 
pixels high on a laser printer (with 300 or 600 dpi) produces tiny letters.  All 
settings of WFONT-DEVICE are machine-dependent except for the 
following:

WFDEVICE-CONSOLE This setting (default value 
“NULL”) associates the font with 
the user’s screen.

WFDEVICE-WIN-PRINTER This setting (default value “1”) is 
meaningful only under Windows 
systems.  It associates the font with 
the currently selected printer for 
the Windows spooler.   If you are 
using WIN$PRINTER, this item 
must be set to “true” before you 
call W$FONT.



I-290  ACUCOBOL-GT Library Routines
WFONT-NAME -- This item holds the face name of the font.  This name is 
case-sensitive and may contain internal spaces.  When asking for a font, you 
must match its name exactly.  If this item is set to spaces, then any font is 
allowed to match.  Under Windows, some common True Type font names are 
“Courier New”, “Times New Roman”, and “Arial”.  

WFONT-SIZE -- This item holds the size, in points, of the font’s characters.  
A value of zero allows for any size font.  In that case, the size chosen by the 
system may or may not be useful.  If you are not certain which size to choose, 
start with “10” and adjust from there.  

WFONT-BOLD -- When this item is set to TRUE, the font is a boldface font.

WFONT-ITALIC -- When this item is set to TRUE, the font is italic.  Note 
that under Windows, most controls have difficulty displaying italic fonts 
correctly.  

WFONT-UNDERLINE -- When this item is set to TRUE, the font is 
underlined.



General Syntax and Library List  I-291
WFONT-CHAR-SET -- This item defines the character set to use.  A font’s 
character set includes the internal representations used for each character.  
The possible settings are as follows:

WFCHARSET-DONT-CAR
E

This allows for any character set.  
When returned by a call to 
WFONT-DESCRIBE-FONT, it 
indicates that the font’s character 
set is unknown or does not 
correspond to one of the following 
settings.  When requesting a 
specific font, use this setting only 
if you are certain that the face 
name you are requesting uses the 
character set you want.  This may 
be necessary when you are asking 
for a font that uses a character set 
other than any of the following (as 
might be true for some oriental 
character sets).  

WFCHARSET-DEFAULT This setting corresponds to a 
host-dependent default character 
set.  This is the character set most 
commonly used by the host 
system.  Under Windows, this is 
the ANSI character set.  If you are 
not certain which setting of 
WFONT-CHAR-SET to use, use 
this one.  

WFCHARSET-WIN-OEM This setting is meaningful only 
under Windows.  It corresponds to 
the host hardware’s “OEM” 
character set.  For IBM-style PCs, 
this is the traditional MS-DOS 
character set.  This is the same 
character set used by the built-in 
font “TRADITIONAL-FONT”.  



I-292  ACUCOBOL-GT Library Routines
WFCHARSET-WIN-name The following settings are 
meaningful only in a Windows 
environment.  They correspond to 
various character sets supported 
by Windows fonts (where name is 
the supported font name from the 
list below). You may select the 
character set directly in the 
“script” portion of the font 
chooser dialog box.   Note that 
most fonts only support a subset 
of these character sets.

WFCHARSET-WIN-SYMBOL

WFCHARSET-WIN-SHIFTJIS    

WFCHARSET-WIN-HANGUL    

WFCHARSET-WIN-GB2312

WFCHARSET-WIN-
CHINESEBIG5

WFCHARSET-WIN-JOHAB

WFCHARSET-WIN-HEBREW    

WFCHARSET-WIN-ARABIC    

WFCHARSET-WIN-GREEK    

WFCHARSET-WIN-TURKISH    

WFCHARSET-WIN-
VIETNAMESE    

WFCHARSET-WIN-THAI

WFCHARSET-WIN-
EASTEUROPE

WFCHARSET-WIN-RUSSIAN

WFCHARSET-WIN-MAC    

WFCHARSET-WIN-BALTIC  



General Syntax and Library List  I-293
WFONT-STRIKEOUT -- When this item is set to TRUE, the font is 
struck-out (i.e., has a line running horizontally through the middle of the 
characters).  

WFONT-FIXED-PITCH -- When this item is set to TRUE, the font is 
fixed-pitch.  This means that each character in the font is the same width.  

WFONT-FAMILY -- This item describes the look of the font in very general 
terms.  It is used to aid in selecting a font when WFONT-NAME is not 
specified or not found.  No font is ever rejected because it does not match the 
requested family.  Usually this field can be set to 
WFFAMILY-DONT-CARE, but specifying other choices can be useful 
when you don’t know what fonts are on a system and you want to find one 
close to a specific font.  Some graphical systems do not have the concept of 
font families.  On these systems, the value of this field is ignored.  The 
possible values of WFONT-FAMILY are:

WFFAMILY-DONT-CARE This setting allows for any font 
family.  When set by 
WFONT-DESCRIBE-FONT, it 
indicates that the font family is 
unknown or does not match any 
of the following possibilities.

WFFAMILY-MODERN This setting indicates a font with 
a constant stroke width.  These 
fonts are typically fixed-pitch, 
but need not be.  Example fonts 
are “Courier” and “Elite”.

WFFAMILY-ROMAN This setting indicates a font with 
variable stroke width and serifs.  
Example fonts include “Times 
Roman” and “New Century 
Schoolbook”.

WFFAMILY-SWISS This setting indicates a font with 
variable stroke width and no 
serifs.  Example fonts include 
“Helvetica” and “MS Sans 
Serif”.  



I-294  ACUCOBOL-GT Library Routines
WFONT-ANGLE -- This item holds a value specifying the angle at which 
the font will print. The value can range from the default of “0”, which is the 
normal horizontal orientation, to “360”, which is the same as “0”.  For 
example, to print at a 45-degree angle, set WFONT-ANGLE to “45”.  To 
print upside down, set it to “180”.   Any font supported by the destination 
printer can be loaded with this setting. This feature works only when printing 
a font, not when displaying a font on screen.

Note: You should use the WINPRINT-SET-CURSOR operation of 
W$PRINTER to set the position of the cursor prior to making a WRITE 
statement using this feature.

The following fields are part of the subgroup WFONT-CHOOSE-DATA and 
are used only with the WFONT-CHOOSE-FONT operation.  

WFFAMILY-SCRIPT This setting indicates a font 
designed to look like 
handwriting.  Example fonts are 
“Script” and “Comic Sans MS”.  

WFFAMILY-DECORATIVE This setting indicates a font for 
decorative or novelty purposes.  
“Old English” is an example of 
such a font.  



General Syntax and Library List  I-295
WFONT-CHOOSE-FLAGS -- This item modifies the behavior of 
WFONT-CHOOSE-FONT based on the following settings.  You can set any 
combination of these by adding together the corresponding values (all 
contained in “fonts.def”):

WFONT-CHOOSE-MIN-SIZE -- This item, when set to a positive value, 
specifies the minimum font size (in points) that the user can choose.  

WFONT-CHOOSE-MAX-SIZE -- This item, when set to a positive value, 
specifies the maximum font size (in points) that the user can choose.  When 
it’s set to zero, no maximum is established.  

WFONT-CHOOSE-RED -- This item is used only when the 
WFCHOOSE-EFFECTS-OK flag is set.  It returns the red component of the 
color chosen.  This is a number in the range of “0” to “255”.  See the 
W$PALETTE Routine for ways to use this value.  On systems that do not 
support palettes, this value is always zero.

WFONT-CHOOSE-GREEN -- This item is similar to 
WFONT-CHOOSE-RED, except it returns the green component of the color.

WFCHOOSE-FIXED-ONLY This setting allows the user to 
select only a fixed-pitch font.  
Otherwise, any font can be chosen.

WFCHOOSE-INITIALIZE This setting causes the various 
fields of the dialog box to be 
initialized based on the values 
contained in 
WFONT-FACE-DATA.  
Otherwise, the fields will have no 
initial value.

WFCHOOSE-EFFECTS-OK This setting causes the 
special-effects section of the dialog 
box to appear.  This section allows 
the user to select the following 
traits: underline, strike-out, and 
color.  If it’s not set, then this 
section does not appear in the 
dialog box.



I-296  ACUCOBOL-GT Library Routines
WFONT-CHOOSE-BLUE -- This item is similar to 
WFONT-CHOOSE-RED, except it returns the blue component of the color.

WFONT-CHOOSE-COLOR-NUM -- This item is used only when the 
WFCHOOSE-EFFECTS-OK flag is set.  It returns the ACUCOBOL-GT 
color number (in the range of “1” to “16”) if the color chosen by the user 
corresponds to a color in the current window’s palette.  If it does not, then this 
value is set to zero.  Non-zero values can be used directly in the COLOR 
phrase of a screen item to get the correct color.  

Error Handling

The following values are returned by various operations when an error 
occurs.  All error values are less than or equal to zero.  

WFONTERR-UNSUPPORTED -- This error indicates that the current host 
system does not use fonts and the W$FONT routine is not supported.

WFONTERR-CANCELLED -- This error indicates that the dialog box 
used by WFONT-CHOOSE-FONT was canceled by the user.

WFONTERR-FONT-NOT-FOUND -- This error indicates that no font was 
found that matched the requested font.

WFONTERR-INVALID-HANDLE -- This error indicates that the value in 
FONT-HANDLE does not correspond to an existing font.  

W$FORGET

The W$FORGET routine causes the ACUCOBOL-GT Terminal Manager to 
reinitialize itself. 

Usage
CALL "W$FORGET"



General Syntax and Library List  I-297
Description

The exact effects of this routine depend on the host machine, but include such 
things as setting the current screen image to “unknown,” repositioning the 
cursor to the last line on the screen, and placing the current screen attribute to 
“unknown.”  Note that once the current screen image is forgotten, any 
pop-up windows that you create afterwards will act as if the original screen 
image were spaces.  This may erase some portions of the screen when you 
close those windows.  

The reasons for calling this routine are fairly specialized.  This routine allows 
the window manager to function correctly when the user’s screen has been 
changed in ways that the window manager is unaware of.  Since the window 
manager keeps an exact image of the user’s screen, it must manage every 
change to the screen itself.  If it does not, then you must tell it to forget its 
current screen image.  You can use this routine to restart the window manager 
after a sequence of ANSI-style ACCEPT or DISPLAY statements.  

W$GETC

The W$GETC routine retrieves the next keystroke from the user and returns 
it to the program.  The keystroke is not echoed.  Use this routine when you 
require detail management of the keyboard.  

Caution: In the current implementation, W$GETC does not interact well 
with event procedures.  You should avoid using W$GETC if you use event 
procedures at the same time.  In this case, you can use single character 
ACCEPT statements instead.

Usage
CALL "W$GETC" 
    USING KEY-FOUND

Parameter

KEY-FOUND   PIC X(2)



I-298  ACUCOBOL-GT Library Routines
Description

W$GETC places the keystroke found into its single parameter.  If the 
character is a single 8-bit value, the first character of the return value is a 
space and the second character is the character typed.  For example, if the 
user types an “A”, the return value will be a space followed by “A”.

If the key typed is a special character such as a function key or the operating 
system’s backspace key, W$GETC returns the two-character keycode found 
in the ACUCOBOL-GT User’s Guide section 4.3.2.3, “Table of keys.”  For 
example, if the user types function key 5, the return value will be “k5”.  

Finally, if an end-of-file condition occurs, then W$GETC returns the 
two-character sequence “-1”.  

W$GETURL

W$GETURL works with the Web Runtime.  It tells the runtime to pass a 
given URL (Uniform Resource Locator) to the host browser.  The browser 
handles this URL as if it were typed into the URL entry field.  After a CALL 
to W$GETURL, subsequent URL requests are ignored until the CALL 
completes.  See the manual A Programmer’s Guide to the Internet for a 
description of the Web Runtime.

Usage
CALL "W$GETURL" 
    USING URL, TARGET

Parameters

URL   PIC X(n)

Contains the complete URL.  This can be of any type, such as http, ftp, news, 
mailto, gopher, or javascript.



General Syntax and Library List  I-299
TARGET   PIC X(n)

Represents the destination for displaying the URL.  This can be the name of 
a window or a frame, or one of several special target names.  If you specify 
“_current” or “_self” or “_top”, the response data is written to the browser 
window, and the Web Runtime is unloaded.  If you specify “_new” or 
“_blank”, the response data is written to a new browser window.

You can also write the response data to a frame by specifying the frame name 
as the target parameter.

Comments

After a CALL is made to W$GETURL, subsequent URL requests are ignored 
until the CALL completes.  

Description

Each URL that you pass with the W$GETURL routine contains a protocol 
and a path, separated by a colon.  For example, http://www.microfocus.com/ 
tells the browser to use the HyperText Transfer Protocol and to contact the 
Web server “www.microfocus.com” and to ask for the root page (/).  

Sending e-mail uses the “mailto” protocol.  For example, 
mailto:support@microfocus.com opens an e-mail message to the user 
“support” at the machine “microfocus.com”.  

JavaScript is also supported as a protocol, so you can execute JavaScript 
sequences that display dialog boxes, create Web pages, build text files, and 
so forth.

Note: This routine is available only when the calling COBOL program is 
running in a Web browser window via the ACUCOBOL-GT Web Runtime.  
The routine is not available to programs run by the standard runtime when 
the standard runtime is executed by a Web browser.  The RETURN-CODE 
register is set to “1” after a successful call and set to “0” if this routine is 
unavailable.  



I-300  ACUCOBOL-GT Library Routines
$WINHELP

If you have the Microsoft Windows Software Development Kit (SDK), you 
can access help files created with the SDK help compiler by calling the 
$WINHELP library routine.  You can also access compiled HTML files that 
have the “.chm” extension.  This is a support routine for Windows and 
Windows NT, and is not portable to other systems.

$WINHELP provides a direct interface to the Microsoft “WinHelp” library 
routine for files created with the SDK help compiler.  This routine allows you 
to perform various functions using Microsoft Help.  Normally, you would use 
this to allow the user to browse help information associated with your 
application.   

For compiled HTML files whose names end with the “.chm” extension, 
$WINHELP invokes the Microsoft HTML Help Viewer application 
“hh.exe.”

Note: $WINHELP is not supported in Microsoft Windows Vista.  Vista 
does not support WinHelp files (.hlp) meaning any programs that use the 
$WINHELP routine will no longer function.  Microsoft is encouraging 
developers to transition their help file formats to CHM, HTML, or XML.

Usage
CALL "$WINHELP"
    USING HELP-FILE, OP-CODE, PARAM-VAL

Parameters

HELP-FILE   PIC X(n)

This is the file name of the help file.

OP-CODE   Numeric parameter

This value indicates the desired operation.

PARAM-VAL   Type depends on op-code



General Syntax and Library List  I-301
This is an operation-dependent parameter.  It may be omitted for several 
operations.

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

HLP Files

Microsoft Help allows the user to search through “.HLP” files in a variety of 
ways.  In order to use Microsoft Help in your application, you must create 
one or more “.HLP” files.  To do this, you need a program that converts text 
files into help files.  This is called a help compiler.  You can find a help 
compiler (called “hc”) and instructions on its use in the Microsoft Windows 
SDK.  You will also find information on how to construct the text files that 
get compiled into help files.  

Note: Microsoft is encouraging developers to move away from .HLP files, 
as this file type is not supported in Windows Vista.

WinHelp

After you’ve created help files, use the WinHelp library routine to interact 
with the Microsoft Help application that is bundled with Windows.  This 
allows you to perform a variety of functions such as opening one of your help 
files and directing Help to a particular topic.  WinHelp is fully explained in 
the SDK documents.

$WINHELP provides a direct interface to WinHelp.  The advantages to using 
$WINHELP are:

• you don’t have to relink the runtime system 

• you use a simplified calling sequence 

WinHelp takes four parameters: the handle of the main application window, 
the name of the help file, an operation code and an operation-dependent 
parameter.  $WINHELP takes similar parameters, but with the following 
differences:



I-302  ACUCOBOL-GT Library Routines
• You do not pass the window-handle parameter.  $WINHELP always 
supplies this parameter using the main ACUCOBOL-GT window.  Thus, 
you pass (at most) three parameters to $WINHELP instead of the four 
that are passed to WinHelp.

• If the operation-dependent parameter is not needed, you may omit it.  In 
this case, $WINHELP will pass a value of zero to WinHelp.

• All parameters are passed BY REFERENCE (the default for COBOL).  

In summary, you pass either two or three parameters to $WINHELP.  These 
are (in order):

1. the filename of the help file

2. the desired operation code

3. an operation-dependent parameter (which can be omitted)

As a convenience, the COBOL declarations for the operation codes can be 
found in the file “winhelp.def”.  The operation codes found there exactly 
correspond to the operation codes documented for WinHelp in the SDK.

Commonly Used Operations

Most of the operation codes are used to manage context-sensitive help.  For 
more information about ACUCOBOL-GT support for context-sensitive help, 
see Help Automation in Book 2, User Interface Programming.  For a 
simple, context-independent help, you will typically use just the following 
operations:

HELP-CONTENTS --displays the topic specified by the Contents option in 
the [OPTIONS]section of the .HPJ file. Microsoft indicates that this 
command is for backward compatibility. New applications should provide a 
.CNT file and use the HELP-FINDER command.  You do not use the third 
parameter for this call.  

HELP-FINDER -- displays the Help Topics dialog box with the last tab 
used.  You do not use the third parameter for this call. 



General Syntax and Library List  I-303
HELP-PARTIALKEY -- Use this operation to bring up the keyword-search 
window.  The third parameter should be the entire or partial keyword you 
want to find.  Typically, this will be set to LOW-VALUES to allow key 
searches throughout the keyword list.  One easy way to do this is to use 
“x’00’” as the third parameter.  

HELP-HELPONHELP -- Calls up Help’s own help file.  The third 
parameter is not used.  

HELP-QUIT -- Use this to exit the Help application.  Microsoft requires that 
each application using Help logs out when it is done (if it doesn’t, then Help 
keeps running after the application has quit).  Note that $WINHELP tracks 
each help file used and automatically logs out each one when the runtime 
shuts down.  Because of this, you need to use HELP-QUIT only if you want 
to shut down Help prior to exiting your application.

The help system provided with the ACUCOBOL-GT debugger uses these 
calls.  The debugger presents three options to the user: “Contents”, “Search”, 
and “Help on Help”.  The COBOL code that corresponds to these cases is:
     evaluate menu-selection
        when menu-contents
           call "$winhelp" using
           "acudebug.hlp", 
           help-contents
*Note newer applications should consider using help-finder 
instead of help-contents.

        when menu-search
           call "$winhelp" using
           "acudebug.hlp", 
           help-partialkey, x"00"

        when menu-help-on-help
           call "$winhelp" using 
           "acudebug.hlp", 
           help-helponhelp
     end-evaluate.

This is all that’s required to provide a simple help system.  For information 
on creating a context-sensitive help system, see the SDK documentation.



I-304  ACUCOBOL-GT Library Routines
CHM Files

Microsoft makes an online help system called HTML Help.  HTML Help 
uses the underlying components of Microsoft Internet Explorer to display 
help content.  HTML Help supports HTML, ActiveX, Java, scripting 
(JavaScript and Microsoft Visual Basic Script), and HTML image formats 
(.jpeg, .gif, .png).

To create online help for your application, use the authoring tool in HTML 
Help called HTML Help Workshop (HHW).  HHW will help you create a 
compiled HTML file that ends with the “.chm” extension.  The “Official 
Microsoft Help Authoring Kit” from Microsoft Press has more information 
about help authoring.  Contact Microsoft for more information about 
compiled HTML files. 

$WINHELP will automatically detect the “.chm” file extension and invoke 
the Microsoft HTML Help Viewer application (hh.exe) to access the file.  
Only two operation codes are supported, HELP-CONTENTS and 
HELP-CONTEXT.  When the operation code is HELP-CONTENTS, 
$WINHELP simply passes the specified compiled HTML help file name as a 
command-line argument to hh.exe.  When the second parameter to 
$WINHELP, the operation code, is HELP-CONTEXT, $WINHELP 
constructs a command line using the following template:

hh.exe -mapid context_id help_file

where “help_file” is the first parameter to $WINHELP and “context_id” is 
the third parameter to $WINHELP.  For example, the COBOL call:

CALL "$WINHELP" USING "c:\mydir\myhelp.chm", 
HELP-CONTENTS

translates to the system command line:
hh c:\mydir\myhelp.chm

and
CALL "$WINHELP" USING "c:\mydir\myhelp.chm", 
    HELP-CONTEXT, 72

translates to:
hh -mapid 72 c:\mydir\myhelp.chm



General Syntax and Library List  I-305
W$KEYBUF

This routine lets you add characters to the runtime’s keyboard input buffer.  
This allows a program to simulate user input.

Usage
CALL "W$KEYBUF" 
    USING OP-CODE, parameters

Parameters

OP-CODE   PIC 9(2)

parameters Vary depending on the op-code chosen

Description

The first parameter to W$KEYBUF is a number that determines the action of 
the routine.  The following options are supported:

1. Use op-code “1” to add keystrokes to the keyboard input buffer.  In this 
case, the second parameter to W$KEYBUF specifies the key or keys you 
want to add.  Optionally, you may also specify a third parameter that 
contains the number of characters you want to add.  If you omit the third 
parameter, then all of the second parameter is used (including any 
trailing spaces).  When keystrokes are added to the input buffer, they are 
placed after any previously added keystrokes, but before any keys typed 
by the user.  This ensures that the user does not interfere with your 
programmatic control.  

2. This is the same as “1” except that the characters are added at the 
beginning of the input buffer instead of at the end.

3. Use op-code “3” to empty the input buffer.  This can be useful in some 
error handling routines.  Note that this routine does not empty the 
operating system’s input buffer--any keys queued up by the user are 
still available.  Only keys added with W$KEYBUF are removed.  

4. Op-code “4” turns on the keystroke recording mechanism.  You must 
pass as a second parameter the name of a buffer in which you want to 
place the recorded keystrokes.  The buffer is a field you have defined 



I-306  ACUCOBOL-GT Library Routines
in the Data Division.  The size of this buffer limits the number of 
keystrokes recorded.  You may optionally pass a third parameter that is 
the size of the buffer.  If you omit the third parameter, then the entire 
buffer is used.  The keystroke recorder does not initialize the buffer, 
and it does not modify any part of the buffer that follows the last 
recorded keystroke.  

5. Op-code “5” turns off the keystroke recorder.  This action sets 
RETURN-CODE to the number of characters used in the buffer to hold 
the recorded keystrokes.

6. Op-code “6” inquires whether or not the keystroke recorder is active.  
This will set RETURN-CODE to “1” if keystroke recording is 
currently turned on.  If it is turned off, then RETURN-CODE will be 
set to “0”.

7. Op-code “7” causes keys typed by the user to be recorded in a file.  
You pass the name of the file as the first parameter after the op-code.  
If that file exists, it is deleted first.  If the file is successfully created, 
then RETURN-CODE is set to zero.  If the file cannot be created, then 
RETURN-CODE is set to “1”.  You use op-code “5” to turn off the 
recording.  Only one recording mode can be active at once, so this 
op-code will cancel any other active keystroke recording.  In thin client 
environments, keys typed by the user are recorded in a temporary local 
file. That file is automatically uploaded to the server when recording is 
stopped with op-code “5”.

8. Op-code “8” is identical to op-code “7”, except that the file is 
appended to if it already exists. In thin client environments, the file is 
downloaded from the server to the client, appended to, and then 
uploaded to the server with op-code “5”.

9. Op-code “9” causes a previously recorded file to be “played back.”  
The keystrokes recorded in that file are treated as input from the user.  
The file name is passed as the first parameter after the op-code.  
RETURN-CODE is set to zero if the file is opened successfully, 
otherwise RETURN-CODE is set to “1”.  Keystrokes inserted into the 
keyboard buffer using op-codes “1” or “2” of W$KEYBUF are 
processed before the keystrokes recorded in the file.  Once the 
keystrokes in the file have all been used, control passes back to the 
user’s keyboard.  



General Syntax and Library List  I-307
In thin client environments, this op-code first tries to open the file on 
the client machine using the path specified in the CALL statement.  If 
the file is not found, the thin client requests that the file be downloaded 
from the server.  In this case the path specified in the CALL statement 
refers to the server machine’s file system.  The specified path can be an 
absolute path or a path relative to the current working directory, as 
specified in the alias file.  If the file is found, it is downloaded to the 
client machine and stored in the thin client’s temporary cache directory 
(the directory specified by the TEMP environment variable; often 
“C:\WINDOWS\TEMP”.  If the TEMP environment variable is not set, 
the files are stored in the client’s current working directory.  The file is 
not downloaded again unless it changes or is deleted from the client.

There is a runtime command-line option that causes the immediate 
playback of a keystroke file.  This option, “-k”, causes the next 
command-line argument to be treated as the name of a file that contains 
recorded keystrokes.  The runtime internally calls W$KEYBUF using 
op-code “9” and this file name prior to executing the first COBOL 
program.  The effect is that the keystrokes recorded in the file are treated 
as the runtime’s first user input.

10. Op-code “10” allows you to specify how long the system waits after 
each simulated keystroke is processed.  The delay, expressed in 
hundredths of a second, is passed as the second parameter.  For 
example, to add a quarter-second delay to each keystroke, use the 
following:

     CALL "W$KEYBUF" USING 10, 25

You can terminate a pause early by pressing any key.

11. Op-code “11” defines a key that causes the playback to pause for an 
indefinite time period, allowing you to explain a special feature.  The 
playback resumes when another key is pressed.  To designate the pause 
key, use op-code “11” with the ASCII value of the key. Note that you 
can only define a pause key that is a simple ASCII key, not a complex 
key like a function key.

12. Op-code “12” defines a key that stops the playback and returns the 
program to interactive mode.  Use op-code “12” with the ASCII value 
of the cancel key.  



I-308  ACUCOBOL-GT Library Routines
Special keystrokes

You may specify special keystrokes by placing code names in curly braces.  
Within curly braces, you may use the caret (^) to indicate Control characters 
or the “at” symbol (@) to indicate ALT characters.   For example, “{^M}” 
indicates Control+M and “{@L}” indicates ALT+L.   

You may also use a special key’s two-character name as found in the Table 
of Keys in the ACUCOBOL-GT User’s Guide, section 4.3.2.3.   For 
example, you may refer to function key 2 with “{k2}”. 

Menu selections are encoded as {m#} where “#” is the numeric ID of the 
menu item.  

You may insert specific pauses in a simulated input stream using the 
following character sequences:
   

A programmed pause also includes any pause introduced by op-code “10”, 
described above. You can terminate a pause early by pressing any key.

Finally, if you require an opening curly brace on its own, specify it twice.   
For example:  “{{“.   

The following line specifies that the next characters processed should be 
“abc”, Tab, “def”, and function key 1:

     CALL "W$KEYBUF" USING 1, "abc{^I}def{k1}".

The keystroke recording mechanism records normal keys as native 
characters.  The keystroke recorder will not record a “time out” event.  

In order to operate correctly with graphical controls on Windows systems, the 
W$KEYBUF routine converts characters placed into the keyboard buffer 
into keyboard scan codes.  Thus, you can use only those characters that have 

{p#} where # is in hundredths of a second

{P#} where # is in seconds

{P} 1-second pause



General Syntax and Library List  I-309
a corresponding keyboard scan code.  As a result, you can “play back” 
non-English characters only when you have installed a keyboard that 
contains those characters.

The behavior of this routine is affected by the FILENAME_SPACES 
configuration variable. The value of  FILENAME_SPACES determines 
whether spaces are allowed in a file name.  See the entry for 
FILENAME_SPACES in Appendix H for more information.

W$MENU

You construct and control menus with the W$MENU library routine.  You 
use the CALL statement to access this routine.

Usage
CALL "W$MENU"
    USING OP-CODE, parameters,
    GIVING WMENU-RESULT

Parameters

OP-CODE   Numeric parameter

This indicates the desired operation.  Level 78 symbolic names for these 
operations can be found in “acugui.def”.

parameters Vary depending on the op-code chosen

WMENU-RESULT   PIC S9(9)

Holds the return value from W$MENU.  A value of zero indicates failure for 
all operations.

Description

The routine takes one or more parameters, which are always passed BY 
REFERENCE (the default in COBOL).  The first parameter is always an 
operation code.  This code defines what the routine will do.  The remaining 



I-310  ACUCOBOL-GT Library Routines
parameters depend on the operation selected.  The operation codes are 
defined in the COPY file “acugui.def”.  The available codes are described 
here:

WMENU-NEW — This operation constructs a new empty menu bar.  
W$MENU returns a handle for this menu bar in the special register 
WMENU-RESULT.  This handle should be stored in a variable declared as 
PIC S9(9) COMP-4.  All future references to this menu bar are made with this 
handle.  This operation can fail if the system runs out of memory.  In this 
case, WMENU-RESULT will be set to zero.    

WMENU-NEW-POPUP — This operation constructs a new empty pop-up 
menu.  W$MENU returns a handle for this menu in the special register 
WMENU-RESULT.  This handle should be stored in a variable declared as 
PIC S9(9) COMP-4.  All future references to this pop-up menu are made with 
this handle.  This operation can fail if the system runs out of memory.  In this 
case, WMENU-RESULT will be set to zero.  This option is available for 
Windows systems only.  

WMENU-POPUP — This operation displays a pop-up menu and gets the 
user’s response.  After the user makes a selection, the pop-up menu is 
removed.  (This is not the typical way to display a pop-up window.  It is 
easier to assign the pop-up menu to a window or control and let the runtime 
handle activation.)  The second parameter passed in conjunction with this 
operation code is the handle of the pop-up menu to show.  The next two 
parameters are optional.  If they are omitted, the menu appears where the 
mouse is currently located.  If specified, they are the row and column 
(respectively) of the location where the menu should appear.  This is 
expressed in screen base units (pixels under Windows), with “1,1” being the 
upper left corner of the physical screen.  The user’s response is sent to the 
current window and is treated as if it were a regular entry from the widow’s 
menu bar.  This option is available for Windows systems only.  

WMENU-DESTROY — You must pass the handle of a valid menu as the 
second parameter.  That menu is destroyed and all memory it occupies is 
released.  Any submenus that it contains are also destroyed.  If the menu is 
currently being displayed, it is removed from the screen first.  After 
destroying a menu, you must not use it any more.  You should not destroy a 
submenu directly—use the WMENU-DELETE operation instead.   



General Syntax and Library List  I-311
WMENU-DESTROY-DELAYED —  You must pass the handle of a valid 
menu as the second parameter.  If that menu is not being displayed, the menu 
is destroyed and all memory it occupies is released.  Any submenus that it 
contains are also destroyed.  If the menu is currently being displayed, it is not 
destroyed immediately.  Instead, it is marked for destruction later.  It is 
actually destroyed immediately after the next WMENU-SHOW operation.  
After destroying a menu, you must not use it any more.  You should not 
destroy a submenu directly—use the WMENU-DELETE operation instead.   

WMENU-ADD — Adds a menu item to a menu.  This operation takes 
several parameters.  Note that all of the parameters are passed as integers 
(either USAGE DISPLAY or COMP-4) except for the “text” parameter, 
which is alphanumeric.  You must use WMENU-SHOW to display an altered 
menu at the top level.   

The parameters are, in order: 
 

Handle This is the handle of the menu to which you are adding the 
item.

Position This is the location at which you want to place the new item.  
If this value is zero, then the item is appended to the menu.  
Otherwise, this value is the ID of the item in front of which 
you want to insert the new item.   

Flags This is a combination of one or more of the following:

    W-CHECKED  indicates that a check mark should be 
placed beside the item.  Check marks appear only on 
submenus.

    W-DISABLED  indicates that the item may not be selected.  
It will appear gray on the menu.

    W-SEPARATOR  indicates that this item consists of a bar 
that separates items on the menu.  This item may not be 
selected by the user.  The “text” field is ignored for this item.  
Separator bars may appear only on submenus.

    You may combine flags by adding their values together.  
Values are defined in the file “acugui.def”.  The default value 
is “0”, which indicates an enabled, unchecked menu item.   



I-312  ACUCOBOL-GT Library Routines
Text This is the text of the menu item that will appear on the menu 
bar.  Text is limited to 50 characters.  The text will appear 
exactly as you specify it, so be sure to use the desired case.  
(Graphical environments typically have conventions that you 
may want to follow, for consistency with other applications.  
For example, under Windows it is conventional to capitalize 
the first letter of each major word in a menu item.) 

    You may place an “&” symbol in front of the letter you want 
to use as the key letter for this menu item.  The user can 
select this menu item by pressing <Alt> and typing its key 
letter.  The key letter typically appears underlined on the 
menu (you can change this appearance; see Section 8.9.4, 
“Menu Configuration With the Generic Menu Handler” 
in Book 2, ACUCOBOL-GT User Interface Programming).

    If you omit the “&” symbol, no underline will appear, and 
the first letter of the item will be used as the item’s key letter.  
If the same key letter represents more than one item, and a 
user types that letter, the system will highlight the next menu 
item with that key letter and will wait for the user to confirm 
the selection by pressing <return>.  If “flags” contains the 
W-SEPARATOR option, you should either omit this 
parameter or pass NULL.  

Id This is an unsigned integer less than or equal to 4095 that you 
will use to identify this menu item.  Use this ID anytime you 
need to refer to this menu item.  This is the ID that’s returned 
to your program when the item is selected by the user.  
Assign a unique ID to each item in a particular menu 
hierarchy.  Normal (text) menu items must be given an ID.  
Submenu names and separator bars may optionally be given 
an ID of zero.  These become anonymous menu items that 
you may never refer to again.  If this parameter is omitted, an 
ID of zero is used.  

Submenu This parameter is omitted or set to zero for normal menu 
items and separator bars.  You can create a submenu by 
setting this value to the handle of another menu.  When the 
user selects this item, that other menu will pop up.  Pop-up 
menus are placed down and to the right, unless they fit better 
in another position.  



General Syntax and Library List  I-313
WMENU-CHANGE — This operation takes the same parameters as 
WMENU-ADD (handle, position, flags, text, id, and submenu).  The 
“position” parameter must not be zero.  It indicates the ID of the menu entry 
you want to change.  That entry is deleted and the entry described by the 
current parameters is inserted in the same location.  If the item that you are 
replacing is a submenu, that submenu’s entries are  also destroyed.  If you 
change the main menu bar, you must use WMENU-SHOW to display the 
changed menu.   

WMENU-DELETE — Pass the handle of a menu as the second parameter, 
and the ID of an entry in that menu as the third parameter.  The indicated 
entry is removed by this operation.  If the deleted item is a submenu name, 
the submenu is also destroyed.  If you change the main menu bar, you must 
use WMENU-SHOW to display the changed menu.  

WMENU-CHECK — This operation places a check mark in front of a menu 
item.  You pass two additional parameters:  the handle of the menu and the 
ID of the item you want to change.  Only items that appear in submenus can 
have check marks. 

WMENU-UNCHECK — Use this operation to remove a check mark from 
a menu item.  The second and third parameters are the handle of the menu and 
the ID of the item you want to change.

WMENU-DISABLE — Use this operation to disable individual menu 
items.  Disabled menu items are displayed with gray text.  The second and 
third parameters are the menu’s handle and the ID of the item you want to 
disable.  You may disable items that appear on the top level of the menu.  If 
you disable a submenu, then access to the submenu’s items is denied.  If you 
change the main menu bar, you must use WMENU-SHOW to display the 
changed menu. If you call W$MENU using this option, and pass the menu’s 
main handle, without specifying an item on the menubar, the entire menu bar 
is disabled.

WMENU-ENABLE — Use this operation to enable a menu item.  The 
second and third parameters are the menu’s handle and the menu item’s ID.  
If you change the main menu bar, you must use WMENU-SHOW to display 
the changed menu.  



I-314  ACUCOBOL-GT Library Routines
WMENU-SHOW — Use this operation to display a menu bar on the screen.  
The first parameter after the op-code is the handle of the menu bar to show.  
The second parameter (optional) is the handle of the window on which to 
display the menu.  If the second parameter is omitted, the menu is displayed 
on the current window.  Use this operation both to display the menu bar 
initially and to display any changes made to the top level of the menu.

For example, if you disable one of the top-level menu items, then you must 
use WMENU-SHOW to make that change visible.  If the application already 
has another menu bar showing when you call WMENU-SHOW, then that 
menu bar is removed.  It is not destroyed--you may re-use that menu bar 
again later.  If you pass a menu handle of zero, then any existing menu bar is 
removed and no new menu bar is shown, so passing a menu handle of zero is 
a way to clear all menu bars off the screen.

WMENU-REFRESH — Use this operation to redraw an existing menu.  
This is typically used to restore a menu that has been overwritten by an 
external piece of software.  For example, if you called the SYSTEM library 
routine to display the current directory, the directory listing might overwrite 
the menu.  Use WMENU-REFRESH to redraw the menu when you are ready 
to see it again. 

WMENU-GET-MENU — Sets WMENU-RESULT to the handle of the 
currently displayed menu.  This returns zero if no menu is currently 
displayed.  Use this in routines that need to save the current menu bar before 
replacing it with their own menu.

WMENU-RELEASE — This operation logically removes the menu from 
the screen, but doesn’t update the screen.  The menu is still visible, but not 
operational.  This makes the entire screen available to your program, but 
doesn’t scroll the current screen contents.  This is occasionally useful when 
you need to remove a menu bar and clear the entire screen.  If you instead use 
WMENU-SHOW to remove the menu bar, you’ll have additional screen 
activity as it removes the menu bar and (if that bar was static) scrolls the 
screen.  The screen update isn’t needed if you are going to clear the whole 
screen anyway.  

Under Windows, this function blocks the menu bar, but leaves it in place.  
The runtime uses this function just prior to shutting down.  

This operation takes no parameters.  



General Syntax and Library List  I-315
WMENU-GET-CONFIGURATION — Returns the generic menu 
handler’s current configuration.  You must pass it one parameter that has the 
layout described in the next section.  This gets filled in with the current 
configuration.  This operation sets WMENU-RESULT to “1” if the 
configuration was retrieved.  It sets WMENU-RESULT to “0” if the host 
machine does not use the generic menu handler.  In this case, the 
configuration information is not used and is meaningless.

WMENU-SET-CONFIGURATION — You must pass one parameter to 
this operation that has the layout described in the next section.  It causes this 
parameter to become the current configuration for the generic menu handler.  
It sets WMENU-RESULT to “1” if the generic menu handler is being used, 
or “0” if it is not.  In the latter case, the configuration will not be used.  

If you have a menu displayed when you change the configuration, you should 
immediately use WMENU-SHOW to update that menu.  Alternately, you 
may use WMENU-SHOW to remove that menu and display a new menu with 
the new configuration.  If you have a menu displayed and change the 
configuration, you can get undefined results if you fail to use 
WMENU-SHOW.

WMENU-BLOCK — This inhibits the menu.  It works by maintaining a 
blocking-count.  Initially, the blocking-count is set to zero.  This call adds 
one to the blocking-count.  Anytime the blocking-count is greater than zero, 
the user will not be allowed to use the menu.  This is typically used by 
“modal” routines that need to ensure that the user completes some action 
before continuing.  For example, if you are prompting for a file name, you 
might want to disable the menu until the user has entered a name.  See also 
WMENU-UNBLOCK, WMENU-GET-BLOCK, and 
WMENU-SET-BLOCK.

WMENU-UNBLOCK — If the blocking-count is currently greater than 
zero, this subtracts one from the blocking-count.  If this results in the 
blocking-count reaching zero, then the user will once again be able to use the 
menu.  See also WMENU-BLOCK, WMENU-GET-BLOCK, and 
WMENU-SET-BLOCK.

WMENU-GET-BLOCK — Sets WMENU-RESULT to the current 
blocking-count.  This is typically used by routines that need to save the 
current menu state before replacing the menu with their own menu.  They can 
save the blocking-count, set it to zero (with WMENU-SET-BLOCK), and 



I-316  ACUCOBOL-GT Library Routines
then reset to the saved state when they exit.  For example, the 
ACUCOBOL-GT debugger uses this call when replacing the application 
menu with its own menu.  See also WMENU-BLOCK, 
WMENU-UNBLOCK, and WMENU-SET-BLOCK.

WMENU-SET-BLOCK — Sets the blocking-count to the value of the 
second parameter.  Use this in conjunction with WMENU-GET-BLOCK to 
save and restore the current blocking-count.  See also WMENU-BLOCK, 
WMENU-UNBLOCK, and WMENU-GET-BLOCK.

The W$MENU routine always sets WMENU-RESULT.  Except as described 
above, this is either “1” to indicate success or “0” to indicate that the 
operation failed.  

The ACUCOBOL-GT generic menu handler allows you to configure several 
aspects of its look and feel.  This is done with get/set configuration operations 
described in the previous section.  For both of these operations, you must pass 
a parameter that has the following layout:
01 MENU-CONFIGURATION.
   03 MENU-STYLE                         PIC 9 COMP-X.
      88 MENU-IS-STATIC                  VALUE 0.
      88 MENU-IS-POPUP                   VALUE 1.
   03 MENU-CHECK-MARK                    PIC X.
   03 MENU-SUBMENU-MARK                  PIC X.
   03 MENU-COLOR-ATTRIBUTES.
      05 MENU-NORMAL-COLOR-ATTRIBUTES.
         07 MENU-NORMAL-COLOR            PIC 9(4) COMP-X.
         07 MENU-NORMAL-COLOR-KEY-1      PIC 9(4) COMP-X.
         07 MENU-NORMAL-COLOR-KEY-2      PIC 9(4) COMP-X.
      05 MENU-SELECTED-COLOR-ATTRIBUTES.
         07 MENU-SELECTED-COLOR          PIC 9(4) COMP-X.
         07 MENU-SELECTED-COLOR-KEY-1    PIC 9(4) COMP-X.
         07 MENU-SELECTED-COLOR-KEY-2    PIC 9(4) COMP-X.
      05 MENU-DISABLED-COLOR-ATTRIBUTES.
         07 MENU-DISABLED-COLOR          PIC 9(4) COMP-X.
         07 MENU-DISABLED-COLOR-KEY-1    PIC 9(4) COMP-X.
         07 MENU-DISABLED-COLOR-KEY-2    PIC 9(4) COMP-X.
   03 MENU-MONO-ATTRIBUTES.
      05 MENU-NORMAL-MONO-ATTRIBUTES.
         07 MENU-NORMAL-MONO             PIC 9(4) COMP-X.
         07 MENU-NORMAL-MONO-KEY-1       PIC 9(4) COMP-X.
         07 MENU-NORMAL-MONO-KEY-2       PIC 9(4) COMP-X.
      05 MENU-SELECTED-MONO-ATTRIBUTES.



General Syntax and Library List  I-317
         07 MENU-SELECTED-MONO           PIC 9(4) COMP-X.
         07 MENU-SELECTED-MONO-KEY-1     PIC 9(4) COMP-X.
         07 MENU-SELECTED-MONO-KEY-2     PIC 9(4) COMP-X.
      05 MENU-DISABLED-MONO-ATTRIBUTES.
         07 MENU-DISABLED-MONO           PIC 9(4) COMP-X.
         07 MENU-DISABLED-MONO-KEY-1     PIC 9(4) COMP-X.
         07 MENU-DISABLED-MONO-KEY-2     PIC 9(4) COMP-X.

A copy of this data item can be found in “acugui.def”. 

When a menu is shown, the current configuration defines how it is presented.  
The fields have the following meaning:

MENU-STYLE — Determines whether the menu is static (value “0”) or 
pop-up (value “1”).  The default is static.  

MENU-CHECK-MARK — Sets the character used to display check marks.  
The default character is an asterisk.  

MENU-SUBMENU-MARK — Sets the character used to indicate that the 
item is a submenu.  This is not used on the main menu bar.  The default 
character is a greater-than sign.  

MENU-COLOR-ATTRIBUTES — Defines the display attributes used if 
the station supports color.  This is described in detail below.

MENU-MONO-ATTRIBUTES — Defines the display attributes used if the 
station is monochrome.  See below for details.

Notice that there are two sets of attributes, one for color stations and one for 
monochrome stations.  Within each set, there are three group items that 
determine the attributes used for a particular case.  Using color stations as an 
example, we have:

MENU-NORMAL-COLOR-ATTRIBUTES — Determines the 
attributes used for the normal menu items.  This is used for the menu’s 
background color along with all items that are not highlighted or 
disabled.  

MENU-SELECTED-COLOR-ATTRIBUTES — Determines the 
attributes used for the currently selected (highlighted) menu items.



I-318  ACUCOBOL-GT Library Routines
MENU-DISABLED-COLOR-ATTRIBUTES — Determines the 
attributes used by disabled menu items.  

Finally, within each group, there are three fields that determine the attributes 
used for the appropriate menu items.  For example, with normal menu items 
on a color station, we have:

MENU-NORMAL-COLOR — This is the attribute used to draw the 
menu item and its background.

MENU-NORMAL-COLOR-KEY-1 — This is the attribute used to 
draw the key letter in the menu item (if any).

MENU-NORMAL-COLOR-KEY-2 — This is used only if 
MENU-NORMAL-COLOR-KEY-1 contains the underline attribute and 
the station does not support underlining.  In this case, the actual attribute 
used is determined by this field.  

This scheme of having two possible attributes available for the key letter 
makes it easier to implement a portable set of attributes.  Traditionally, key 
letters are shown underlined, and so underlining is typically used in the 
“KEY-1” attribute.  Since many stations do not support underlining, having a 
second attribute provides a backup system.  

Attributes are set using the same scheme as that used for the COLOR phrase 
in an ACCEPT or DISPLAY statement.  The only exception is that the 
“Protected” attribute (32768) has a special meaning when used in 
conjunction with disabled menu items.  If you specify “protected” as the 
disabled item’s color, then disabled items will appear in parentheses on the 
menu.  This helps distinguish them from normal items.  



General Syntax and Library List  I-319
Attribute values are numeric.  They represent combinations of colors and 
other video features such as intensity.  You make combinations by adding 
appropriate values together from these tables:
 

The default settings for attributes are as follows:

Color Defaults

Color Foreground Background

Black 1 32

Blue 2 64

Green 3 96

Cyan 4 128

Red 5 160

Magenta 6 192

Brown 7 224

White 8 256

Attribute Value

Reverse video 1024

Low intensity 2048

High intensity 4096

Underline 8192

Blink 16384

Protected 32768

Type Main Attribute Key-1 Attribute Key-2 Attribute

Normal Black on Cyan (129) Black on Cyan, 
Underlined (8321)

High-intensity White 
on Cyan (4232)

Selected White on Blue (72) White on Blue, 
Underlined (8264)

High-intensity White 
on Blue (4168)



I-320  ACUCOBOL-GT Library Routines
Monochrome Defaults

The ACUCOBOL-GT debugger always uses the default configuration for its 
own menu bar.

W$MOUSE

This routine allows you to control the behavior of the mouse.  Before using 
W$MOUSE to respond to mouse actions, be sure that you have unmasked the 
actions you want to notice (see Book 2, Section 7.3).    

Usage
CALL "W$MOUSE"
    USING OP-CODE, parameters,
    GIVING MOUSE-STATUS

Parameters

OP-CODE   Numeric parameter

This indicates the desired operation.  Level 78 symbolic names for these 
operations can be found in the file “acugui.def”.

Disabled White on Cyan (136) White on Cyan (136) White on Cyan (136)

Type Main Attribute Key-1 Attribute Key-2 Attribute

Normal Black on White (257) Black on White, 
Underlined (8449)

High-intensity Black 
on White (4353)

Selected White on Black (40) White on Black, 
Underlined (8232)

High-intensity White 
on Black (4136)

Disabled Black on White, 
Parenthesized (32935)

Black on White (257) Black on White (257)



General Syntax and Library List  I-321
parameters  Vary depending on the op-code chosen.

MOUSE-STATUS   A numeric data item

Holds the return value from W$MOUSE.  This is used only with the 
ENABLE-MOUSE, TEST-MOUSE-PRESENCE, and 
GET-MOUSE-SHAPE operations.

Description

The first parameter you pass to W$MOUSE is an operation code.  This code 
tells W$MOUSE what to do.  The number and type of the remaining 
parameters depend on the operation selected.  All parameters are passed BY 
REFERENCE (the default in COBOL).  The operation code can be one of the 
following:

Code Operation

0 TEST-MOUSE-PRESENCE

1 GET-MOUSE-STATUS

2 GET-MOUSE-SCREEN-STATUS

3 SET-MOUSE-POSITION

4 SET-MOUSE-SCREEN-POSITION

5 SET-MOUSE-SHAPE

6 SET-DELAYED-MOUSE-SHAPE

7 GET-MOUSE-SHAPE

8 CAPTURE-MOUSE

9 RELEASE-MOUSE

10 ENABLE-MOUSE

19 SET-MOUSE-HELP

23 SET-MOUSE-POSITION-EX

24 SET-MOUSE-SCREEN-POSITION-EX

25 SET-MOUSE-POSITION-PIXEL

26 SET-MOUSE-SCREEN-POSITION-PIXEL



I-322  ACUCOBOL-GT Library Routines
ENABLE-MOUSE (op-code 10) 

Turns on the mouse on character-based systems.  (By default the mouse is 
invisible.)  The value of RETURN-CODE is set to “1” if a mouse is present, 
“0” if no mouse is found.  (Takes no additional parameters.) 

On some machines there is an appreciable delay when the mouse is enabled.

Under graphical environments such as Windows, ENABLE-MOUSE is not 
necessary.  It sets the value of RETURN-CODE properly, but no other action 
occurs, because the mouse is always enabled in these environments.

TEST-MOUSE-PRESENCE (op-code 0) 

Used to detect the presence of a mouse.  The value of RETURN-CODE is set 
to “1” if a mouse is available on the system.  It is set to “0” if no mouse is 
present.  (Takes no additional parameters.)  Note that on character-based 
systems, the mouse must be enabled before its presence can be detected.  So 
if you haven’t enabled the mouse (see ENABLE-MOUSE above), 
RETURN-CODE will have a value of “0”.

GET-MOUSE-STATUS (op-code 1)  

Returns information about the mouse’s location and the state of each of its 
buttons.  You must pass a group item with the following structure (defined in 
“acugui.def”):
01  MOUSE-INFO.
   03  MOUSE-ROW               PIC 9(4) COMP-1.
       88  MOUSE-OFF-SCREEN    VALUE ZERO.
   03  MOUSE-COL               PIC 9(4) COMP-1.
   03  LBUTTON-STATUS          PIC 9.
       88  LBUTTON-DOWN        VALUE 1.
   03  MBUTTON-STATUS          PIC 9.
       88  MBUTTON-DOWN        VALUE 1.
   03  RBUTTON-STATUS          PIC 9.
       88  RBUTTON-DOWN        VALUE 1.
   03  MOUSE-ROW-EX            PIC 9(6)V99 COMP-4, SYNC.
   03  MOUSE-COL-EX            PIC 9(6)V99 COMP-4.
   03  MOUSE-ROW-PIXEL         PIC 9(8) COMP-4.
   03  MOUSE-COL-PIXEL         PIC 9(8) COMP-4.



General Syntax and Library List  I-323
The routine fills in this structure with data about the mouse.  Each of the three 
“status” fields is set to “1” if the corresponding button is depressed.  
Otherwise, they are set to zero.  The various row and column fields are set to 
the location of the mouse within the current ACUCOBOL-GT window.  If 
the mouse is outside of the current window, then these values are set to zero.    

Here’s an example of a call to W$MOUSE that returns the menu item the 
mouse is pointing to:
* find-mouse-menu-row - returns (in mouse-row) 
* the menu item that the mouse pointer is 
* currently on. If the mouse is not on a menu 
* item, it returns zero.

find-mouse-menu-row. 
   call "w$mouse" using get-mouse-status, mouse-info 
   if mouse-row >= menu-row and 
         mouse-row < menu-row + num-menu-items * 2 
      compute mouse-row = mouse-row - menu-row + 1 
   else 
      move zero to mouse-row.

After an ACCEPT statement is executed, all CALLs to W$MOUSE pertain 
to that ACCEPT statement, until another ACCEPT is executed.  So, you 
always get the right mouse status.  By synchronizing the mouse actions with 
the appropriate exception values, the runtime ensures that you process the 
mouse correctly.  

GET-MOUSE-SCREEN-STATUS (op-code 2) 

This function is the same as the GET-MOUSE-STATUS function, except 
that the row and column coordinates are relative to the application’s virtual 
screen instead of the current window.  If the mouse is not located anywhere 
in the application’s window, then the coordinates are set to zero.

SET-MOUSE-POSITION (op-code 3) 

You must pass a group item with the same structure as described under 
GET-MOUSE-STATUS.  The mouse is placed at the coordinates named by 
MOUSE-ROW and MOUSE-COL, relative to the current ACUCOBOL-GT 
window.  The button-status fields are not used.



I-324  ACUCOBOL-GT Library Routines
SET-MOUSE-POSITION-EX (op-code 23) 

You must pass a group item with the same structure as described under 
GET-MOUSE-STATUS.  The mouse is placed at the coordinates named by 
MOUSE-ROW-EX and MOUSE-COL-EX, relative to the current 
ACUCOBOL-GT window.  These coordinates are similar to MOUSE-ROW 
and MOUSE-COL, except that the positioning of the mouse is performed 
using a precision of hundredths of cells.  The button-status fields are not used.

SET-MOUSE-POSITION-PIXEL (op-code 25) 

You must pass a group item with the same structure as described under 
GET-MOUSE-STATUS.  The mouse is placed at the coordinates named by 
MOUSE-ROW-PIXEL and MOUSE-COL-PIXEL, relative to the current 
ACUCOBOL-GT window.  These coordinates describe the mouse position in 
terms of the display’s base units (which are pixels for graphical systems).  
Unlike MOUSE-ROW and MOUSE-COL, or MOUSE-ROW-EX and 
MOUSE-COL-EX, the uppermost pixel is row “0”/column “0” instead of 
row “1”/column “1”.  The button-status fields are not used.

SET-MOUSE-SCREEN-POSITION (op-code 4) 

This is the same as SET-MOUSE-POSITION, except that the position is 
relative to the application’s virtual screen.  

SET-MOUSE-SCREEN-POSITION-EX (op-code 24) 

The same as SET-MOUSE-POSITION-EX, except that the position is 
relative to the application’s virtual screen.  

SET-MOUSE-SCREEN-POSITION-PIXEL (op-code 26) 

The same as SET-MOUSE-POSITION-PIXEL, except that the position is 
relative to the application’s virtual screen.  



General Syntax and Library List  I-325
SET-MOUSE-SHAPE (op-code 5)  

The second parameter defines the desired shape of the mouse pointer.  The 
shape is changed immediately, even if the mouse has not been moved.  The 
possible values are: 

These are defined in “acugui.def”.  Note that the runtime system changes the 
shape of the mouse when you are using automatic mouse handling.  When an 
ACCEPT statement finishes execution, the last shape defined by 
SET-MOUSE-SHAPE is restored.    

SET-DELAYED-MOUSE-SHAPE (op-code 6) 

This is identical to SET-MOUSE-SHAPE, except that the mouse pointer is 
not changed immediately.  Instead, it is changed as soon as the user moves it.  
The automatic mouse handler uses this function to provide a smoother mouse 
appearance.

GET-MOUSE-SHAPE (op-code 7) 

The value of RETURN-CODE is set to the current mouse shape.  If 
SET-DELAYED-MOUSE-SHAPE is in effect, waiting for the mouse to 
move, then the delayed shape is returned.  (Takes no additional parameters.)

CAPTURE-MOUSE (op-code 8) 

Normally, only mouse actions that occur within the application’s virtual 
screen are processed by the runtime system.  (The virtual screen is the 
drawing space allocated to the application.)  Actions that occur outside of this 
space are handled by other applications or by the environment.  The 
CAPTURE-MOUSE function causes the runtime to process all mouse 
messages, regardless of where they occur.  This should be done only in 

ARROW-POINTER The default arrow shape

BAR-POINTER A vertical bar

CROSS-POINTER Cross hairs

HELP-POINTER A question mark

WAIT-POINTER An hourglass



I-326  ACUCOBOL-GT Library Routines
special cases, because it prevents the user from using the mouse in any other 
application.  Normally, you capture the mouse only when the user is marking 
or dragging some object on the screen.  By capturing the mouse, you can 
control the action even if the user accidentally moves the mouse outside of 
the application.  (Takes no additional parameters.)

When the mouse is captured, if the mouse is outside of the legal boundaries, 
the GET-MOUSE-STATUS and GET-MOUSE-SCREEN-STATUS 
functions no longer return zero in the row and column fields.  Instead, the row 
and column fields contain the nearest legal coordinate to the mouse’s actual 
position.  

RELEASE-MOUSE (op-code 9) 

This reverses the effects of the CAPTURE-MOUSE function.  You must call 
this sometime after calling CAPTURE-MOUSE, or the environment will not 
be able to use the mouse again.  (Takes no additional parameters.)

SET-MOUSE-HELP (op-code 19) 

When the second parameter is “1”, this op-code turns the mouse pointer into 
a help-mode pointer--the mouse is captured and the pointer takes the shape of 
a question mark.  When the second parameter is “0”, the help-mode state is 
turned off--the mouse is released and the pointer returns to its default shape.  
This option is only supported under Microsoft Windows.

Note: If you use help automation (see Help Automation in Book 2, User 
Interface Programming), you don’t need to use this option.  Help 
automation automatically manages the help-mode mouse states for you. 

Mouse Handling: Sample Code
identification division.
program-id.  mouse-sample.
remarks.
   This program provides an example of programmed 
   mouse handling.
data division.
working-storage section.

77  key-entered    pic 9(3).



General Syntax and Library List  I-327
    88  mouse-button-clicked  value 81, 87.
    88  left-button-clicked   value 81.
    88  right-button-clicked  value 87.

77  menu-selection  pic 9 value 1.
    88  exit-selected  value 9.

77  MOUSE-FLAGS    pic 9(5).
77  pointer-idx    pic 9 value zero.

01  name-array.
  03 name-data.
    05  filler    pic x(9) value “arrow”.
    05  filler    pic x(9) value “bar”.
    05  filler    pic x(9) value “cross”. 
    05  filler    pic x(9) value “hourglass”.
  03  mouse-name redefines name-data occurs 4    pic x(9).

copy “acugui.def”.
screen section.
01  main-screen.
  03  “The Screen”, reverse high line 1 col 20.
  03  “Change Pointer”, reverse high line 2 col 3.
  03  “Describe Pointer”, reverse high line 4 col 3. 
  03  “EXIT”, reverse high line 6 col 3.
procedure division.
main-logic.

* Test for presence of mouse on system.
    call “w$mouse” using test-mouse-presence.
    if return-code = zero
      display “No mouse present”
      go to main-logic-exit.

* Enable program to recognize left and right button clicks. 
    add allow-left-down, allow-right-down giving mouse-flags.
    set environment “mouse-flags” to mouse-flags.

    display main-screen.
    perform main-screen-handling
      until exit-selected.
main-logic-exit.

    stop run.



I-328  ACUCOBOL-GT Library Routines
main-screen-handling.

    accept omitted, line 1, control key in key-entered.

    if mouse-button-clicked
      call “w$mouse” using get-mouse-status, mouse-info 
      evaluate mouse-row
        when 2   perform change-mouse-shape 
        when 4   perform display-mouse-shape
        when 6   set exit-selected to true
        when other 
          display “Clicked” 
        end-evaluate.

change-mouse-shape.
    if pointer-idx < 4
      add 1 to pointer-idx
    else    
      move 1 to pointer-idx. 
    call “w$mouse” using set-mouse-shape, pointer-idx.

display-mouse-shape.
    call “w$mouse” using get-mouse-shape.
display “Current mouse shape is” mouse-name (return-code).

W$PALETTE

In graphical environments, you can customize the basic set of colors that you 
use in your programs.  

ACUCOBOL-GT allows programs to reference 16 distinct colors (8 
low-intensity and 8 high-intensity).  For most machines, this set of colors is 
fixed (black, blue, green, cyan, red, magenta, brown, and white).  On 
Windows machines, you can select which 16 colors you will be using.  You 
are given access to a palette of 16 colors that defines which color corresponds 
to each color number.  

You control the palette through the library routine W$PALETTE.



General Syntax and Library List  I-329
Usage
CALL "W$PALETTE" 
    USING OP-CODE, WPALETTE-DATA 
    GIVING RESULT

Parameters

OP-CODE   Numeric value

Selects which palette function to perform.  The operations are described 
below.

WPALETTE-DATA   Group item as follows:
01  WPALETTE-DATA.
    03  WPAL-COLOR-ID    PIC X COMP-X.
    03  WPAL-FLAGS REDEFINES 
        WPAL-COLOR-ID    PIC X COMP-X.
    03  WPAL-RED         PIC X COMP-X.
    03  WPAL-USER-COLOR-ID REDEFINES
        WPAL-RED         PIC X COMP-X.
    03  WPAL-GREEN       PIC X COMP-X.
    03  WPAL-BLUE        PIC X COMP-X.

This provides information and holds results for certain operations described 
below.  It may be omitted from those operations that do not use it.

RESULT   Signed numeric data item.

Returns the status of the operation.  Unless otherwise stated below, “1” 
indicates success, and a zero or negative result indicates failure.

The WPALETTE-DATA group item and all of the level 78 symbolic names 
described below can be found in the COPY library “palette.def”.

Description

W$PALETTE performs a variety of operations depending on the passed 
OP-CODE.  These operations are as follows:



I-330  ACUCOBOL-GT Library Routines
WPALETTE-SUPPORTED (op-code 1)

This determines the level of support the host machine provides for the 
W$PALETTE routine.  Use this to determine if the host machine will allow 
you to perform certain operations.  

WPALETTE-DATA is not used.  The RESULT value will be one of the 
following:

WPAL-NO-SUPPORT (value “0”) -- This value indicates that the host 
machine does not support palettes.  Only the 
WPALETTE-SUPPORTED and WPALETTE-NUM-COLORS 
operations will function.  Currently, this result is returned for all 
platforms other than Windows and Windows NT.

WPAL-PALETTE-SUPPORTED (value “1”) -- This value indicates 
that all W$PALETTE functions are supported except for the 
WPALETTE-CHOOSE-COLOR function.  

WPAL-FULL-SUPPORT (value “2”) -- This value indicates that all 
W$PALETTE functions are available.

WPALETTE-NUM-COLORS  (op-code 2)

This operation sets RESULT to the number of distinct solid colors that the 
host machine can display simultaneously.  

WPALETTE-DATA is not used.  For monochrome machines, the RESULT 
value will be “2”.  For color machines other than Windows, this value will be 
“16”.  

For Windows machines, this value will depend on the host hardware and 
drivers installed.  For a standard VGA system, this value will be “16”.  For 
Super VGA systems with the proper driver installed, this value can be “256” 
or higher.  If the machine supports more than 32,767 distinct colors, then 
“32767” will be returned.  

For machines with 16 or fewer colors, the standard ACUCOBOL-GT palette 
represents the entire range of solid (pure) colors.  In order to display any other 
color, that color must be simulated by dithering two or more colors together.  
Windows allows us to do this, but only for background colors.  If you attempt 



General Syntax and Library List  I-331
to display a dithered color in the foreground, Windows will automatically 
substitute the nearest solid color.  Dithered background colors can also make 
the foreground text look ragged, depending on the exact colors used.  For this 
reason, you may want to limit yourself to solid colors.  One way to do this is 
to allow the user to change the palette only when the machine supports 256 
colors or more.  

WPALETTE-GET-COLOR (op-code 3)

This operation retrieves the color that currently corresponds to a particular 
color number.  Colors are numbered “1” through “16”.  The first 8 colors 
correspond to the low-intensity colors.

Their initial values are as follows:

The second set of 8 colors contains the same colors in their high-intensity 
forms.  To determine the current definition of any color number, move the 
color number desired into the WPAL-COLOR-ID field of 
WPALETTE-DATA and call W$PALETTE.  

When it returns, the WPAL-RED, WPAL-GREEN, and WPAL-BLUE fields 
of WPALETTE-DATA will be filled in with the current definition of that 
color number.  Each of these fields will contain a value from “0” to “255” that 
indicates the intensity of the red, green, and blue components of the color.  A 
red-green-blue (RGB) combination of “0”, “0”, “0” indicates black.  A RGB 
value of “255”, “255”, “255” is bright white.  Other values cover the entire 
range of colors possible under Windows.  

1 Black

2 Blue

3 Green

4 Cyan

5 Red

6 Magenta

7 Brown

8 White



I-332  ACUCOBOL-GT Library Routines
WPALETTE-SET-COLOR (op-code 4)

This function complements WPALETTE-GET-COLOR; it lets you assign a 
new color to a particular color number.  At entry, WPAL-COLOR-ID should 
contain the color number you want to change.  WPAL-RED, 
WPAL-GREEN, and WPAL-BLUE should contain the RGB value of the 
new color (see WPALETTE-GET-COLOR for a description of RGB values).

For example, if you want to make color number “2” represent a dark 
blue-green, you could use the following values:

Note: Changing the palette will change the colors currently shown on the 
screen as well as all future displays.  In the previous example, if you had 
displayed any data (or background) using color number “2”, that data 
would now change to dark blue-green.

The color palette is the lowest level of color handling in the 
ACUCOBOL-GT system.  It defines the basic set of colors used.  Although 
you are free to change the palette as you see fit, ACUCOBOL-GT makes 
certain assumptions that you should be aware of.  First of all, 
ACUCOBOL-GT assumes that color “1” is always black, and color “16” is 
always bright white.  Likewise, colors “8” and “9” are assumed to be shades 
of gray.  These assumptions affect the rendering of window shadows and 
“3-D” lines.  Additionally, the first 8 colors are assumed to be low-intensity, 
and the second 8 are high-intensity.  

ACUCOBOL-GT computes the high- or low-intensity version of a color by 
adding or subtracting “8” from its color number.  This assumption also 
affects the rendering of “3-D” lines if you use them on a colored background.  
Although you are not required to maintain any of these assumptions, be 
aware of them so that you can anticipate the total effects of your changes.  

WPAL-COLOR-ID 2

WPAL-RED 0

WPAL-GREEN 64

WPAL-BLUE 64



General Syntax and Library List  I-333
WPALETTE-UPDATE (op-code 5)

In order to allow you to change several colors efficiently, W$PALETTE does 
not immediately apply the new palette after you change it.  It waits until the 
next screen update (usually caused by either an ACCEPT or DISPLAY 
statement).  In most cases this is adequate.  If you want to force the screen to 
be updated immediately with the new palette, you can use the 
WPALETTE-UPDATE function.  WPALETTE-DATA is not used.  The 
effect is to update the screen with the new palette and return.

WPALETTE-CHOOSE-COLOR (op-code 6)

This operation provides a simple method for getting a color selection from 
the user.  You can use this to simplify the process of constructing your color 
palette according to your user’s desires.  When this operation executes, a 
standard color selection box pops up over your application.  This box is 
similar to the “Color Palette” portion of the Windows’ Control Panel 
application.  It should be familiar to most users.  

This box contains a selection of pre-determined colors (called the “Basic 
Colors”) that the user can choose from.  Windows selects these colors.  
Typically, there are 48 of them drawn from the entire spectrum (there can be 
fewer on some systems).  

The user can pick one of these by clicking the mouse on it or by using the 
arrow keys.  

Beneath these colors is a set of 16 “Custom Colors”.  Initially, these colors 
are all white.  The user can select the “Define Custom Colors” option to 
define new colors.  This pulls up a color chart that the user can select from.  
After selecting a custom color, the user can add it to the set of 16 custom 
colors by selecting the “Add to Custom Colors” button.  This color is then 
available for future selection.  

The user selects the “OK” button (or presses <enter>) to complete selection 
of the color.  The RGB value of the color selected is returned in WPAL-RED, 
WPAL-GREEN, and WPAL-BLUE.  

Alternately, the user can select the “Cancel” button (or press <escape>).  In 
this case, no color is returned and the value of RESULT is set to 
WPERR-CANCELLED (see below).  



I-334  ACUCOBOL-GT Library Routines
The initial default color selection is black (RGB value “0”, “0”, “0”).  You 
may supply a different default value by moving the desired color into 
WPAL-RED, WPAL-GREEN, and WPAL-BLUE.  You  must also set 
WPAL-FLAGS to WPAL-USE-DEFAULT (value “1”).  If you do not use 
this option, then you should set WPAL-FLAGS to zero before calling 
W$PALETTE.  

The color selection box is a standard component of Windows and 
Windows NT.  

Note: In some Windows setups “COMMDLG.DLL” provides support for 
the color selection dialog (as well as other standard dialogs).  Because 
ACUCOBOL-GT is used to build applications for use in a variety of 
nations and languages, we do not distribute this file.  The standard dialogs 
defined in this DLL contain text that is specific to the local language.  

WPALETTE-SET-USER-COLOR (op-code 7)

This operation allows you to assign selected system colors to COBOL color 
numbers.  It uses two fields in the WPALETTE-DATA group item.

WPAL-COLOR-ID contains the number of the COBOL color you want 
to change.  Values range from “1” (low-intensity black) to “16” 
(high-intensity white).  

WPAL-USER-COLOR-ID  contains the number of the system color to 
use.   You can use either WPUSER-COLOR-3D, which matches the 
system’s color for the background of 3-D objects, or 
WPUSER-COLOR-BACKGROUND, which matches the system’s 
color for window backgrounds.  These values are defined in 
“palette.def”.

The following example redefines the COBOL color number “8” (which is 
gray in the default palette) to be the same as the system’s 3-D color:
    MOVE 8 TO WPAL-COLOR-ID
    MOVE WPUSER-COLOR-3D TO WPAL-USER-COLOR-ID
    CALL "W$PALETTE" USING
       WPALETTE-SET-USER-COLOR, WPALETTE-DATA



General Syntax and Library List  I-335
Errors are handled in the same manner as the WPALETTE-SET-COLOR 
function.  Note that under some systems, such as Microsoft Windows, the 
system colors can change dynamically at runtime.  If this occurs, the runtime 
will automatically remap the colors in the palette as needed to match the new 
system colors.  

For additional color configuration options, see the USER-GRAY, 
USER-WHITE, and USER-COLORS options of the DISPLAY FLOATING 
WINDOW verb.

Error Handling

RESULT is set to a positive value if the call to W$PALETTE is successful.  
Except for the WPALETTE-SUPPORTED and 
WPALETTE-NUM-COLORS operations, the success value is always “1”.  
A zero or negative value indicates a problem.  The following values are 
possible:

WPERR-UNSUPPORTED (value “0”) -- Either the requested operation 
cannot be performed on the host system, or you passed an invalid operation 
code.

WPERR-BAD-ARG (value “-1”) -- Either you did not pass 
WPALETTE-DATA when it was required, or WPALETTE-DATA contains 
some invalid data.

WPERR-CANCELLED (value “-2”) -- The user selected the “cancel” 
operation of the color selection box, or the user closed the selection box.

W$PROGRESSDIALOG

This routine provides a general way to show a user how an operation is 
progressing.  It is typically used when deleting, copying, moving, uploading, 
or downloading large files or a large number of files.  It can also be used 
when performing a time-consuming operation that you want to allow the user 
to cancel at any time.

Usage
CALL "W$PROGRESSDIALOG"



I-336  ACUCOBOL-GT Library Routines
   USING OP-CODE, parameters
   GIVING WPROGRESS-RESULT.

Parameters

OP-CODE   Numeric parameter

This indicates the desired operation.  Level 78 symbolic names for these 
operations can be found in “acugui.def”. 

parameters Vary depending on the op-code chosen

Description

W$PROGRESSDIALOG provides access to the features of the Windows 
progress dialog box, which is exposed through the IProgressDialog COM 
interface.  This interface is part of the BROWSEUI.DLL Windows system 
library and was originally part of Internet Explorer 5.

W$PROGRESSDIALOG can be used to create a modal or modeless window 
containing a progress dialog, set its title, animation, text lines, progress, and 
cancel message.  The progress dialog can be configured to automatically 
estimate and display the time remaining until the operation completes.

The progress dialog runs on a background thread.  This allows the progress 
dialog to update its display, estimate the time remaining until the operation 
completes, and handle the user cancelling the operation independently of the  
work being done by the COBOL program.  The progress dialog updates and 
remains responsive even during long operations such as C$COPY across a 
thin client connection.  There is no need to set the 
FILE_IO_PROCESSES_MESSAGES configuration variable.

OP-CODES and Parameters

WPROGRESSDIALOG-CREATE (op-code 1)

This operation creates and starts the progress dialog.  A handle to the 
progress dialog is returned in the data item specified in the GIVING clause. 
This handle should be stored in a variable declared as USAGE HANDLE. 



General Syntax and Library List  I-337
This op-code takes six additional optional parameters, which appear in order 
below:
title 
A literal or data item containing the text that will appear in the title bar of the 
progress dialog.

cancel-message 
A literal or data item containing the text that is shown on line 3 (underneath 
the progress bar) when the user clicks the Cancel button.  Since the progress 
dialog operates on a separate background thread there will be a delay between 
the time the user presses the Cancel button and the time the COBOL program 
calls W$PROGRESSDIALOG 
WPROGRESSDIALOG-QUERY-CANCEL.  Since this delay might be 
significant, the progress dialog provides the user with immediate feedback by 
clearing text lines 1 and 2 and displaying the cancel message on line 3. The 
message is intended to let the user know that  the delay is normal and that the 
progress dialog box will be closed shortly. Typically, it is set to something 
like “Please wait while ...”. 

flags 
A numeric literal or data item, which specifies flags that determine the 
operation of the progress dialog.  This can be a combination of the following 
values:

WPROGRESSDIALOG-NORMAL (value 0)
Normal progress dialog behavior.

WPROGRESSDIALOG-MODAL (value 1)
The progress dialog box will be modal to the current window. By default, a   
progress dialog box is modeless.

WPROGRESSDIALOG-AUTOTIME (value 2)
Automatically estimate the remaining time and display the estimate on line 3. 
If this flag is set, WPROGRESSDIALOG-SET-LINE can be used only to 
display text on lines 1 and 2.

WPROGRESSDIALOG-NOTIME (value 4)
Do not show the “time remaining” text.



I-338  ACUCOBOL-GT Library Routines
WPROGRESSDIALOG-NOMINIMIZE (value 8)
Do not display a minimize button on the dialog box’s title bar.

WPROGRESSDIALOG-NOPROGRESSBAR (value 16)
Do not display a progress bar. Normally, an application can quantitatively 
determine how much of the operation remains and periodically pass that 
value to WPROGRESSDIALOG-SET-PROGRESS.  The progress dialog 
uses this information to update its progress bar.  This flag is typically set 
when the calling application needs to wait for an operation to finish but does 
not have any quantitative information it can use to update the dialog box.

animation-type 
A numeric literal or data item, which specifies the type of AVI clip that will 
run in the dialog box. It can be one of the following values:
WPROGRESSDIALOG-ANIMATION-NONE (value 0)
WPROGRESSDIALOG-ANIMATION-FILECOPY (value 1)
WPROGRESSDIALOG-ANIMATION-FILEMOVE (value 2)
WPROGRESSDIALOG-ANIMATION-FILEDEL (value 3)
WPROGRESSDIALOG-ANIMATION-FILEDELR (value 4)
WPROGRESSDIALOG-ANIMATION-FILENUKE (value 5)
WPROGRESSDIALOG-ANIMATION-SEARCH (value 6)
WPROGRESSDIALOG-ANIMATION-FINDCOMP (value 7)
WPROGRESSDIALOG-ANIMATION-FINDFILE (value 8)
WPROGRESSDIALOG-ANIMATION-CUSTOM (value 99)

If you specify WPROGRESS-ANIMATION-CUSTOM, there are two 
additional parameters:

resource-dialog 
A literal or data item containing the name of a DLL or EXE that includes the 
AVI file as a resource.

resource-id 
The resource id of the AVI file in the file specified by resource-dialog.

For example, if you want to use an AVI file named MYANIMATION.AVI 
that is included as a resource in a DLL named MYRES.DLL with ID 1007, 
you can specify it with the following parameters:



General Syntax and Library List  I-339
CALL "W$PROGRESSDIALOG" USING WPROGRESSDIALOG-CREATE
"Title" "Cancel Message"
WPROGRESSDIALOG-MODAL
WPROGRESSDIALOG-ANIMATION-CUSTOM
"MYRES.DLL" 
1007
GIVING PD-HANDLE.

Note: The requirement for the AVI file to be a resource is a limitation of 
the Microsoft IProgressDialog COM interface. There is no provision for 
loading an AVI file directly.

WPROGRESSDIALOG-DESTROY (op-code 2)

This operation destroys the progress dialog box.  It takes only one parameter, 
the handle of the progress dialog returned by 
WPROGRESSDIALOG-CREATE.

WPROGRESSDIALOG-SET-PROGRESS (op-code 3)

This operation updates the progress dialog box with the current state of the 
work being monitored. It takes three parameters:

handle 
The handle of the progress dialog returned by 
WPROGRESSDIALOG-CREATE.

completed 
A numeric literal or data item specifying an application-defined value that 
indicates what proportion of the work has been completed so far.

total 
A numeric literal or data item specifying an application-defined value that 
specifies what value the ‘completed’ parameter will have when the work is 
complete.



I-340  ACUCOBOL-GT Library Routines
WPROGRESSDIALOG-QUERY-CANCEL (op-code 4)

This operation checks whether the user has pressed the cancel button.  You 
must periodically use this function to poll the progress dialog box object to 
determine whether the operation has been canceled. 

This operation takes one parameter, the handle of the progress dialog 
returned by WPROGRESSDIALOG-CREATE.  It returns “1” if the user has 
pressed the cancel button, “0” otherwise, in the data item specified with the 
GIVING clause or in the special RETURN-CODE register. 

WPROGRESSDIALOG-SET-LINE  (op-code 5)

This operation sets the text lines that are displayed in the progress dialog.  It 
takes three parameters:

string 
A data item containing the text to display.

line-num 
A numeric literal or data item containing the line number on which the text is 
to be displayed. This can be either 1, 2, or 3.  If 
WPROGRESSDIALOG-AUTOTIME was specified in the flags parameter 
when the progress dialog was created, then only lines 1 and 2 can be used.  
The estimated time will be displayed on line 3.

compact-path 
A numeric literal or data item whose value is “1” or “0”.  The default value 
for this parameter is “1”, set it to “0” to turn off path string compaction or the 
following described behavior.  There is a defect in the Microsoft's dialog 
design of the text string field.  If a string is longer than what the field can 
contain the default behavior is to wrap rather than clip the text.  Only the 
top-most pixels of the wrapped text can be seen and so is cosmetically 
unpleasing and functionally useless.  However, if compact-path is a 1 then 
text that is too long for the field will be truncated and an ellipsis (...) gets 
appended to the end of the string.  This is better default behavior for 
ACUCOBOL-GT programmers.



General Syntax and Library List  I-341
Note: This parameter has no effect on strings or paths less than the field 
width.

WPROGRESSDIALOG-RESET-TIMER (op-code 6)

This operation resets the progress dialog box timer to zero.  It takes one 
parameter, the handle of the progress dialog returned by 
WPROGRESSDIALOG-CREATE.

The timer is used to estimate the remaining time.  It is started when your 
application calls WPROGRESSDIALOG-CREATE.  Unless your 
application will start immediately, it should call 
WPROGRESS-RESET-TIMER just before starting the work.  This practice 
ensures that the time estimates will be as accurate as possible.  This method 
should not be called after the first call to 
WPROGRESSDIALOG-SET-PROGRESS.

WPROGRESSDIALOG-C-COPY (op-code 7)

This operation specifies that the progress dialog should monitor the progress 
of the C$COPY when transferring files to or from a remote machine in a thin 
client environment. It takes one parameter, the handle of the progress dialog 
returned by WPROGRESSDIALOG-CREATE.

W$STATUS

W$STATUS works with the ACUCOBOL-GT Web Runtime.  It tells the 
runtime to display a text message in the browser’s status bar.  See the  the 
manual, A Programmer’s Guide to the Internet, for information about the 
Web Runtime. 

Usage
CALL "W$STATUS" 
    USING STATUS-MESSAGE



I-342  ACUCOBOL-GT Library Routines
Parameter

STATUS-MESSAGE   PIC X(n)

Contains the message to be displayed in the browser’s status bar.

This routine is available only when the calling COBOL program is running in 
a Web browser window via the ACUCOBOL-GT Web Runtime.  The routine 
is not available to programs run by the standard runtime when the standard 
runtime is executed by a Web browser.  The RETURN-CODE register is set 
to “1” after a successful call and set to “0” if this routine is unavailable.  

W$TEXTSIZE

The W$TEXTSIZE routine allows you to measure the height and width of a 
string of text in a particular font.

Usage
CALL "W$TEXTSIZE"
    USING TEXT-STRING, TEXTSIZE-DATA

Parameters

TEXT-STRING   PIC X(n)

Contains the string to be measured

TEXTSIZE-DATA   PIC X(n)   

The TEXTSIZE-DATA data item is found in the COPY file “acugui.def”.  It 
is defined as follows:
01 TEXTSIZE-DATA.
   03 TEXTSIZE-FONT      HANDLE OF FONT.
   03 TEXTSIZE-WINDOW    HANDLE OF WINDOW.
   03 TEXTSIZE-SIZE-X    PIC 9(7)V99  COMP-4.
   03 TEXTSIZE-CELLS-X   PIC 9(7)V99  COMP-4.
   03 TEXTSIZE-BASE-X    PIC 9(9)     COMP-4.
   03 TEXTSIZE-SIZE-Y    PIC 99V99    COMP-4.
   03 TEXTSIZE-CELLS-Y   PIC 99V99    COMP-4.



General Syntax and Library List  I-343
   03 TEXTSIZE-BASE-Y    PIC 9(4)     COMP-4.
   03 TEXTSIZE-FLAGS     PIC X        COMP-X.
      88 TEXTSIZE-STRIP-SPACES VALUE 1, FALSE ZERO.

Description

The W$TEXTSIZE routine measures the average height and width of 
TEXT-STRING according to the parameters found in TEXTSIZE-DATA 
and returns the results in TEXTSIZE-DATA.  The measurement is returned 
using a variety of units.  

The data elements in TEXTSIZE-DATA are used as follows:

Input Items:

TEXTSIZE-FONT (HANDLE OF FONT) -- This item holds the handle of 
the font that you want the runtime to measure.  If the value is NULL, 
DEFAULT-FONT is used.  TEXTSIZE-FONT is initialized to NULL in 
“acugui.def”.

TEXTSIZE-WINDOW (HANDLE OF WINDOW) -- This item holds the 
handle of the window that you want to use when measuring the number of 
window cells the text occupies (see TEXTSIZE-CELLS-X and 
TEXTSIZE-CELLS-Y below).  If this value is NULL, the current window is 
used.  If there is no current window, the “cells” measurement is returned with 
the value zero.  TEXTSIZE-WINDOW is initialized to NULL in 
“acugui.def”.

TEXTSIZE-FLAGS (PIC X  COMP-X) -- If TEXTSIZE-STRIP-SPACES 
is true, W$TEXTSIZE does not include any trailing spaces in the 
measurement of TEXTSTRING.  Otherwise, trailing spaces are included in 
the measurement.  TEXTSIZE-FLAGS is initialized to NULL in 
“acugui.def”.

Output Items:

TEXTSIZE-SIZE-X (PIC  9(7)V99  COMP-4) -- Returns the width of the 
text in label size units.  This is the SIZE value required for a label to exactly 
contain the text.  It is computed by dividing the length of the text by the size 
of the font’s “0” character.  For fixed-pitch fonts, the value returned is the 
same as the number of characters in TEXT-STRING.



I-344  ACUCOBOL-GT Library Routines
TEXTSIZE-SIZE-Y (PIC  99V99  COMP-4) -- Returns the height of the 
text in label size units.  This is the LINES value required for a label to exactly 
contain the text.  By definition, this value is always “1”.

TEXTSIZE-CELLS-X (PIC  9(7)V99  COMP-4) -- Returns the width of the 
text in window cells.  It is computed by dividing the width of the text by the 
width of a window cell.

TEXTSIZE-CELLS-Y (PIC  99V99  COMP-4) -- Returns the height of the 
text in window cells.  It is computed by dividing the height of the text by the 
height of a window cell.

TEXTSIZE-BASE-X (PIC  9(9)  COMP-4) -- Returns the width of the text 
in base units.  On a graphical system, a base unit is a pixel.  On a 
character-based system, a base unit is a character cell.

TEXTSIZE-BASE-Y (PIC  9(4)  COMP-4) -- Returns the height of the text 
in base units.  On a graphical system, a base unit is a pixel.  On a 
character-based system, a base unit is a character cell.

WIN$PLAYSOUND

The WIN$PLAYSOUND routine lets you play a “.WAV” file on Microsoft 
Windows machines (wave-form sound).  You can also play sounds that the 
user has assigned to system events in the control panel.

WIN$PLAYSOUND is supported and can be used by applications deployed 
in our Thin Client environment.  

Usage
CALL "WIN$PLAYSOUND" 
    USING SOUND-NAME, SOUND-FLAGS
    GIVING SOUND-STATUS

Parameters

SOUND-NAME   PIC X(n)



General Syntax and Library List  I-345
Identifies the sound to play.  This is either the name of a registered system 
sound or the name of a “.WAV” file.  

SOUND-FLAGS   numeric parameter

One or more optional values added together.  The SOUND-FLAG options are 
described below.  The option names are contained in the COPY library 
“acugui.def”.  

SOUND-STATUS   signed numeric data item

Indicates the status of the operation as follows: 

Description

WIN$PLAYSOUND causes the sound specified in SOUND-NAME to be 
played.  If SOUND-NAME contains the name of a system event, the sound 
associated with that event is played (the association is made via the Windows 
Control Panel).  Otherwise, WIN$PLAYSOUND assumes that 
SOUND-NAME contains the name of a “.WAV” audio file.  

Note: When you are running in a thin client environment, and a file name 
beginning with “@[DISPLAY]” is passed to this routine, it will attempt to 
access the file in the display host’s file system.  It does not download the 
file from the server.  For more information, refer to section 7.2, “Using 
Library Routines and DLLs in Thin Client.” of the AcuConnect User’s 
Guide.

If SOUND-NAME does not correspond to a system event and the file cannot 
be found, the default system sound is played.  The default sound is also 
played when there is not enough memory available to load the specified file.  
If a default sound is not available, the routine does nothing and returns “0” in 
SOUND-STATUS.

-1 Operation not available - host machine is not Windows

0 Operation failed

1 Operation succeeded



I-346  ACUCOBOL-GT Library Routines
This routine searches for the specified “.WAV” file in the object libraries, the 
working directory, and then the directories specified in the PATH 
environment variable. You can add “.WAV” files to your object library by 
using the COPY RESOURCE statement or CBLUTIL utility program. For 
more information about the COPY RESOURCE statement, see Section 2.4.1 
in Book 3, ACUCOBOL-GT Reference Manual.  For more information about 
the CBLUTIL utility program, see Section 3.2 in Book 1, ACUCOBOL-GT 
User’s Guide.  Specifying a SOUND-NAME of spaces stops any sound that 
is currently playing.  

Note: The behavior of this library routine is affected by the setting of the 
FILENAME_SPACES configuration variable that may or may not allow 
spaces in a file name.  See the documentation on FILENAME_SPACES in 
Appendix H, “Configuration Variables,” for information about the 
terminating character for path names.

System event names are implementation dependent.  The Windows API 
documents that the following sounds are always available:

Other system sound events are defined in the registry under Windows 98.  
Use “regedit” to look in the registry location: 

HKEY_CURRENT_USER\AppEvents\EventLabels

The naming conventions for system sound events is implementation 
dependent.  

SystemAsterisk

SystemExclamation

SystemExit

SystemHand

SystemQuestion

SystemStart



General Syntax and Library List  I-347
The following options can be specified in SOUND-FLAGS.  To use them, 
add together the values of the options and assign them to SOUND-FLAGS.  
The optional values have level 78 names associated with them.  These names 
are defined in “acugui.def”.  

SND-SYNC  (value 0) -- This option causes the program to pause while the 
sound is being played.  WIN$PLAYSOUND will not return until the sound 
has finished.  

SND-ASYNC  (value 1) -- This option causes the program to continue to run 
while the sound is playing.  Note that you can halt a sound that is playing by 
passing a SOUND-NAME of spaces to a subsequent call to 
WIN$PLAYSOUND.  

SND-LOOP  (value 8) -- To work, this option must be used with the 
SND-ASYNC option.  This option causes the sound to play continuously, 
restarting from the beginning when the end is reached.  The sound can be 
stopped by passing a SOUND-NAME of spaces on a subsequent call.  

SND-NOSTOP  (value 16) -- Normally, any sound playing will be stopped 
when a new sound is specified.  With NOSTOP, if a sound is already playing, 
it will continue to play and WIN$PLAYSOUND will return a 
SOUND-STATUS value of “0”.  

Printing with theWindows Print Spooler (-Q and -P)

In Windows, there are two ways that your application can print something.  It 
can either send data directly to an output device (by opening the appropriate 
port), or it can use the Windows print spooler.  Most applications use the 
spooler because it allows the user to queue-up a series of documents and then 
print them out in the background, while performing other tasks.  In this 
regard, the Windows print spooler works much like spoolers common to 
other operating systems (for example, the lp program on UNIX machines).  

In other ways, however, the Windows print spooler is very different from 
classical spoolers.  These differences derive from the graphical nature of 
Windows and Windows applications and can affect what you can accomplish 
from COBOL.  This section discusses how the Windows print spooler works 



I-348  ACUCOBOL-GT Library Routines
and how it affects your programs.  It includes information on using the “-Q” 
and “-P” configuration options to assign printers to the print spooler and 
details for using these options with the WIN$PRINTER library routine.

Programs that use traditional spoolers usually work like this:  

1. The program sends text, data, and printer-control sequences to the 
spooler.

2. The spooler saves the data on disk.  As resources become available, the 
spooler sends the information on to the port driver that manages the 
system’s printer.

3. The port driver delivers the data stream to the printer, which produces 
the document.

In this scenario, the program provides all of the printer-control coding.  The 
spooler and port driver simply coordinate transfer of the data to the printer.

The print spooling method under Windows is different.  The sequence of 
operations typically works like this:

1. The program calls the Windows graphical Application Programming 
Interface (API) to describe a logical image of each page in the document.  
This Windows graphical API is called the Graphical Device Interface 
(GDI).  

2. The GDI subsystem constructs a low-level description of each page, 
which is passed to the print driver.  The print driver and GDI work 
together to construct the data stream needed to produce the proper 
output on the printer.  This data stream is temporarily stored on disk.  

3. As resources become available, the spooler sends the disk data to the 
port driver for the printer.  From this point on, the process is the same 
as for a traditional spooler.  

The operation of the spooler itself is very similar under both scenarios.  What 
is different is that, under Windows, the GDI and print driver are responsible 
for producing the printer-control sequences, while in the traditional model, 
the program produces the control sequences.  



General Syntax and Library List  I-349
This approach to the printing process allows Windows applications to 
produce graphical output without knowing how to drive specific types of 
printers.  This greatly simplifies the printing task for sophisticated programs 
such as word processors and drawing programs.  

However, for simple reports, this is much more complicated than the 
traditional approach.  Instead of simply sending text data and carriage control 
codes, the application must go through an involved process of getting a 
device context, selecting and measuring an appropriate font, formatting lines 
of text and drawing them to the device context, and maintaining the necessary 
line and position information.  

Fortunately, ACUCOBOL-GT simplifies this work.  The runtime system 
contains print drivers that know how to simulate traditional style printing 
using the Windows spooler.  To take advantage of these drivers, simply 
assign the print file to “-Q <printername>” or to “-P SPOOLER”, as 
described in the following sections.  You can change fonts in the middle of a 
report when using the Windows spooler.  Simply select the new font via the 
W$FONT library routine while the print file is open.  You can change fonts 
at any time, even mid-line.  Make sure that WFDEVICE_WIN_PRINTER is 
set to TRUE before you call W$FONT.  When advancing lines, the runtime 
uses the height of the selected font to determine the height of the line, and the 
font must be associated with the selected printer.

Note: The process used by Windows to print (via the GDI) interferes with 
programs that attempt to control the printer directly.  Programs that embed 
control codes in their print data (to perform various functions such as 
changing the printer’s pitch, shifting to compressed print mode, or drawing 
a form on a laser printer) will not work under Windows because the GDI 
does not understand the control codes.  Instead, it tries to treat the codes as 
regular text data to be drawn.

The process used by Windows has the advantage that an application does not 
need to know how to drive an individual printer, but has the disadvantage that 
an application cannot choose to drive the printer directly.  

If you have an application that needs to control the printer directly, you have 
three choices:



I-350  ACUCOBOL-GT Library Routines
1. Examine the WIN$PRINTER routine described below.  It allows you to 
perform some basic control operations directly from COBOL.  

2. Send the report directly to the printer by assigning the print file to the 
printer’s device.  This allows you to directly control the printer, but 
you lose the advantages of using the Windows print spooler.

3. Use the GDI to describe the print image you want.  This generally 
involves calling an external function written in C or some other 
language that has direct GDI support.  This choice provides the greatest 
flexibility, but can be a large amount of work.  

-Q <printername>

If you want the Windows spooler to format the pages of your report, but you 
want to use a particular printer, assign your print file to:

PRINTER1 -Q \\printername

in the configuration file (“CBLCONFI”).  Printername is the printer 
designation as given in the Printers folder under Settings in the Start menu. 
The name may be up to 80 characters long and contain embedded spaces. The 
name may not include the semicolon character (;) or be surrounded by single 
or double quotes.  The pages are printed in the manner described in 
“-P SPOOLER” below.  The sample programs  “graphprn.cbl” and 
“prndemox.cbl” contain examples of these functions. 

To determine a valid printername, use the WIN$PRINTER library routine to 
obtain the name of the desired printer. (This is described under the 
“WINPRINT-SET-PRINTER” operation code in “Specifying a Printer.”) 
Then add the following line to your code:

MOVE "-Q \\printername" TO WS-PRINTER-NAME.

When the runtime opens a file assigned to “-Q <printername>” it sets the 
Windows print spooler to use this printer. The printer driver must be installed 
on the computer from which you print.  If printername is not recognized by 
the runtime, a dialog box allows you to choose a printer manually.

Setting Options

You may also use “-Q <printername>” to set several other printing options 
in the configuration file using the following syntax:



General Syntax and Library List  I-351
<-Q printername>[;option1=x][;option2=x][;option3=x]...

The following options may appear in any order.  Options not supported by the 
printer driver are ignored.  Printername should appear as shown in 
WINPRINT-NAME, but the options are case insensitive.  

Note: The options PITCH, COLS, LINES, and FONT are all mutually 
dependent.  Omitting one or more of these options may cause the resulting 
printout to look wrong.

%%ACU-CURR
ENT%%

May be set immediately after the -Q instead of providing a 
printer name. This specifies to use whatever printer is 
currently considered the runtime’s default printer.

NOTE: This entry is case sensitive, it must be all upper 
case.

%%WINDOWS-
STANDARD%%

May be set immediately after the -Q instead of providing a 
printer name. This specifies to use whatever printer is 
currently considered the Windows default printer.

NOTE: This entry is case sensitive, it must be all upper 
case.

CHARSET Specifies one of the character sets defined in “fonts.def”.  
Refer to the supported values described in the table below.  
If you use CHARSET, you must also use FONT.  

If CHARSET is not specified, it has the same effect as 
CHARSET=WIN-DEFAULT.  To specify an alternative 
character set, the necessary fonts must be present on the 
computer.

COLLATE Specifies that multiple print copies should be collated.  In 
order for COLLATE to have any effect, COPY must also 
be set to a value greater than 1.  COLLATE takes the 
following values:

0, NO, FALSE

Implies no collating, or collating off.

1, YES, TRUE

Specifies collating, or collating on.



I-352  ACUCOBOL-GT Library Routines
COLOR Indicates to print in color.  COLOR may be set to a legal 
RGB color code number.  See the library function 
WINPRINT-SET-TEXT-COLOR for more 
information on the color value.

COLS Specifies the number of columns (width) on the page. This 
number is not validated by the runtime or the spooler.  
Choose a number of columns that coordinate with the 
selected font and pitch when designing the report layout.

COPY If your printer supports this feature, COPY allows you to 
specify the number of copies to print.

DIRECT Setting DIRECT to “ON” causes the job to print as if the 
configuration file was set to “-P SPOOLER-DIRECT” 
(described later in this section). This option also disables 
any use of additional options.  Setting DIRECT to the 
default of “OFF” causes the job to print to the selected 
printer as if the configuration file was set to 
“-P SPOOLER”.

DUPLEX If supported by the printer, enables printing on both sides 
of the paper.  If not supported by the printer, single-sided 
printing occurs without any “warning.”

DUPLEX takes the following values:

1, FALSE, or NO 

This is the default value and implies no duplex.

2, TRUE, or YES 

Implies vertical duplexing

3 

Implies horizontal duplexing

FONT Use FONT to specify a single font name. The font name 
may have embedded spaces, but may not contain double or 
single quotes.  If the font does not exist, the closest 
matching font is chosen.

The runtime does not align columns. If you are printing a 
report containing columns, you should use a fixed-width 
font.



General Syntax and Library List  I-353
LINES Specifies the lines (rows of characters) on the page.  This 
number is not validated by the runtime or the spooler.  
Choose a number of lines that is compatible with the 
selected font and pitch when designing the report layout.

ORIENTATION If your printer supports this feature, ORIENTATION 
allows you to specify LANDSCAPE or PORTRAIT 
orientation for the report.  The default value of 
ORIENTATION is driver specific.  

PAPER Specifies the paper size to be used for the print job.  
PAPER is set to a paper format number for the target 
printer and the target tray.  See library function 
WINPRINT-GET-PRINTER-MEDIA for more 
information on paper formats.

NOTE: Paper formats and paper trays are individual and 
unique to each printer installation. They can also be 
modified by users. Because of this, you should use a 
“calibration” routine when installing your software. This is 
a program that will list the available printers, paper 
formats, and trays. The output from the calibration 
program can then be used to assign the PAPER and 
PAPERTRAY properties. A sample calibration program 
called “PaperInfo.cbl” is provided in the samples directory 
of ACUCOBOL-GT.  The output from this program 
appears in the Example section and is used to demonstrate 
the setting of PAPER and PAPERTRAY.

PAPERTRAY Specifies the paper size to be used for the print job.  
PAPER is set to a paper format number for the target 
printer and the target tray.  See library function 
WINPRINT-GET-PRINTER-MEDIA for more 
information on paper formats.

See the important note for the PAPER variable.

Also note that if there is no match between the paper 
format designated to a tray in Windows and the value you 
set in PAPER, the paper choice will take precedence and 
the printer driver will choose the tray that supports your 
paper choice.



I-354  ACUCOBOL-GT Library Routines
CHARSET Values

CHARSET can take one of the following values:

PITCH This value specifies the point size of the font.  Pitch does 
not determine the number of characters per line.  If you use 
a larger pitch, the characters simply appear more crowded.  
For example, when you are printing 132 columns, a pitch 
of 10 produces better character spacing than a pitch of 12.

SPOOLER-RESE
T

Resets the printer to its start up defaults. 
SPOOLER-RESET takes the following values:

0, NO, FALSE

 No change.

1, YES, TRUE

Reset printer to start up defaults.

Variant 1 Variant 2 Variant 3

DEFAULT WFCHARSET-DEFAULT 1

WIN-OEM WFCHARSET-WIN-OEM 2

WIN-SYMBOL WFCHARSET-WIN-SYMBOL 3

WIN-SHIFTJIS WFCHARSET-WIN-SHIFTJIS 4

WIN-HANGUL WFCHARSET-WIN-HANGUL 5

WIN-GB2312 WFCHARSET-WIN-GB2312 6

WIN-CHINESEBIG5 WFCHARSET-WIN-CHINESEBIG5 7

WIN-JOHAB WFCHARSET-WIN-JOHAB 8

WIN-HEBREW WFCHARSET-WIN-HEBREW 9

WIN-ARABIC WFCHARSET-WIN-ARABIC 10

WIN-GREEK WFCHARSET-WIN-GREEK 11

WIN-TURKISH WFCHARSET-WIN-TURKISH 12

WIN-VIETNAMESE WFCHARSET-WIN-VIETNAMESE 13

WIN-THAI WFCHARSET-WIN-THAI 14

WIN-EASTEUROPE WFCHARSET-WIN-EASTEUROPE 15



General Syntax and Library List  I-355
Examples

To use the Windows spooler with an HP Laserjet printer driver located on 
SERVER1, and specify the font, font size, width and number of lines in the 
report, enter the following into “CBLCONFI”:

PRINTER1 -Q \\SERVER1\HP Laserjet IV;FONT=Times New Roman;PITCH=12;COLS=132;LINES=65.

To print three copies directly to the printer on a server named GUTENBERG 
in Landscape orientation, enter the following into “CBLCONFI”:

PRINTER1 -Q \\GUTENBERG\HP Laserjet IV;DIRECT=ON;ORIENTATION=LANDSCAPE;COPY=3

To specify the Greek character set on a server named SERVER5, enter the 
following into “CBLCONFI”:

PRINTER1 -Q \\SERVER5\Laserjet;FONT=Courier New;PITCH=12;LINES=60;COLS=80;CHARSET=11

Output from sample program - PaperInfo.cbl

PaperInfo.cbl is provided in the sample directory of “AcuGT”.  Its output 
provides values that can be used with PAPER and PAPERTRAY.

WIN-RUSSIAN WFCHARSET-WIN-RUSSIAN 16

WIN-MAC WFCHARSET-WIN-MAC 17

WIN-BALTIC WFCHARSET-WIN-BALTIC 18

Variant 1 Variant 2 Variant 3

Dell Laser MFP 1815 PCL 6
Paper formats
  (001) - Letter 8 1/2 x 11 in
  (005) - Legal 8 1/2 x 14 in
  (007) - Executive 7 1/4 x 10 1/2 in
  (009) - A4 210 x 297 mm

Paper Trays
  (007) - Auto
  (001) - Upper tray
  (006) - Manual envelope



I-356  ACUCOBOL-GT Library Routines
To direct your print to the printer Dell Laser MFP 1815 PCL 6, on paper 
format A4 210 x 297 mm and using the Upper tray, enter the following into 
“CBLCONFI”:
PRNFILE -Q Dell Laser MFP 1815 PCL 6;COPY=2;COLLATE=1

-P SPOOLER

If you want to use the default printer and font, simply assign your print file to 
“-P SPOOLER”.  For example, to assign “PRINTER1” to the spooler, enter 
the following line in your COBOL configuration file (“CBLCONFI”):

PRINTER1  -P  SPOOLER

By default, the runtime system assigns the “PRINTER” device to the spooler.  
You may change this in the configuration file by assigning “PRINTER” to 
some other name.  

When the runtime opens a file assigned to “-P SPOOLER”, it automatically 
initiates a job with the Windows spooler and constructs print pages in 
accordance with your program.  The runtime uses the default printer and font.  
If the user looks for the job in the spooler, it is named with the current title of 
the ACUCOBOL-GT window.  

Note: The Windows spooler operates by drawing your report on each 
page.  It constructs its own control codes to handle formatting.  If you 
assign your print file to “-P SPOOLER” and your file contains 
device-dependent control sequences (such as those used to shift to a 
condensed font, or to print a form and then fill it in), the codes will be 
passed to the spooler as data and thus will not be interpreted correctly.   If 
you have reports that depend on embedded control codes, print those 
directly to the device, or assign the print file to “-P SPOOLER-DIRECT,” 
as described in the section “Direct Control” below. 

Direct Control

If you want to control the format of the printout yourself using embedded 
control codes, simply assign your print file to “-P SPOOLER-DIRECT” or to 
“-Q <printername>” using the “DIRECT=ON” option.  For example, to 



General Syntax and Library List  I-357
assign the print job  “PRINTER1” to the spooler and retain direct control over 
formatting, enter the following line in your COBOL configuration file 
(“CBLCONFI”):

PRINTER1  -P  SPOOLER-DIRECT

Or, use the following command to assign PRINTER1 to the spooler for 
printing to a specific printer while retaining direct formatting control: 

PRINTER1 -Q printername;DIRECT=ON

Both of these methods cause the print job to be sent to the printer via the 
Windows spooler, but the program does not use the spooler to format the 
pages.  You must use embedded control codes to handle formatting (much as 
you would under UNIX if you used the UNIX spooler).

When using the “-P SPOOLER-DIRECT” option, you may use the 
WIN$PRINTER library routine to choose a printer.  But because you 
completely control the printer, the various options provided by 
WIN$PRINTER are ignored.  For example, WIN$PRINTER does not set the 
page size, page orientation, or font.  Information returned from 
WIN$PRINTER, such as number of lines and columns on the page, may not 
be accurate and should not be used. 

Printing Multiple Jobs Simultaneously

If you need to print multiple jobs at the same time, you must open multiple 
File Descriptors that point to “-P SPOOLER” or “-P SPOOLER-DIRECT” 
simultaneously.  For example, you may have two simultaneous print jobs:

SELECT FIRST-FILE
       ASSIGN TO PRINTER "-P SPOOLER".

SELECT SECOND-FILE
       ASSIGN TO PRINTER "-P SPOOLER".

..

PROCEDURE DIVISION.

..

       OPEN OUTPUT FIRST-FILE.
       OPEN OUTPUT SECOND-FILE.



I-358  ACUCOBOL-GT Library Routines
and both will print to the default Windows printer without interfering with 
each other.  You can call WIN$PRINTER using WINPRINT-SETUP or 
WINPRINT-SETUP-USE-MARGINS before one or both of the OPEN 
statements.  Each file may have individual file status variables, or may refer 
to a common file status variable.  

This does not mean that you can open a single File Descriptor multiple times.  
For example, the following will return file status indicating that the file is 
already opened:

SELECT FIRST-FILE
       ASSIGN TO PRINTER "-P SPOOLER".

..

PROCEDURE DIVISION.

..

       OPEN OUTPUT FIRST-FILE.
       OPEN OUTPUT FIRST-FILE.

This is normal behavior and is consistent with the way file handling is 
implemented in COBOL and in other programming languages.  

If you are using only the verbs OPEN, CLOSE, and WRITE, no further 
changes to your code are needed.  If you are using WIN$PRINTER (other 
than WINPRINT-SETUP or WINPRINT-SETUP-USE-MARGINS), you 
need to specify which print job is affected.  This can be done in one of two 
ways:

1. The simplest way is to execute the WIN$PRINT operation immediately 
after an OPEN or WRITE statement on the intended job.  Every 
execution of OPEN and WRITE sets the current job as the default so that 
subsequent activity using WIN$PRINTER is automatically directed to 
the job that was last accessed with an OPEN or WRITE statement.

In this situation, if you have multiple jobs running, and you close one of 
them, the runtime switches to the next job in the list.  For example, if you 
are printing jobs 1, 2, and 3, and you close job 2, the close command sets 
the current job to 3.  If there is no job 3, the runtime attempts to set to the 
job that preceded the closed job (which in this case is job 1). If there are 
no jobs, the current job is initialized.



General Syntax and Library List  I-359
2. The other method is to use the WINPRINT-SET-JOB operation of the 
WIN$PRINTER library routine.

WIN$PRINTER

The WIN$PRINTER library routine is designed to enhance the ability of 
COBOL to take advantage of the Windows print spooler.  This routine is 
available on all systems that run ACUCOBOL-GT, but is useful only with 
Microsoft Windows.   Not all printer drivers are supported by this routine. 

WIN$PRINTER configures the Windows print spooler only and cannot be 
used to configure the printer directly. 

You must assign your print file to “-P SPOOLER” or to “-Q <printername>” 
in the configuration file to access the Windows print spooler.   This is 
described in the previous section, “Routine to Handle the Windows Print 
Spooler.”

If you have assigned your print file to “-P SPOOLER-DIRECT” or to 
“-Q <printername>” using the “DIRECT=ON” option, then you retain 
control over the format of the pages.  In this situation, WIN$PRINTER can 
be used to select a printer, but not to print bitmaps or determine paper size, 
page orientation, fonts, margins, and the like.  The information returned by 
WIN$PRINTER about the numbers of lines and columns on the page may 
not be accurate in this situation and should not be used.

CAUTIONS

Just as with changes to fonts and menus, modifications to Windows printer 
settings are global for a specific instance of the runtime. Settings established 
in one COBOL application will affect subsequent COBOL applications 
performed in the same runtime instance.  If you do not want settings to apply 
globally in this case, you must reverse the settings manually within the 
program.  However, these modified printer settings will not affect later 
executions unless you store the settings and reactivate them at the next 
instance of the runtime. Windows global settings, other windows 
applications and other instances of the runtime are not affected by changes 
made by the WIN$PRINTER library routine.



I-360  ACUCOBOL-GT Library Routines
When you change Windows settings in general, and printer settings in 
particular, Windows posts a message informing its subsystems of the change.  
The runtime looks for these messages and passes that information on to the 
WIN$PRINTER operation codes when they are called.  This may cause 
inconsistencies between the information stored in the COBOL program and 
the runtime, such as the order of printers in the internal printer list.  To avoid 
this problem, always use the printer name, rather than the printer number, 
when calling op-codes that require a printer identity.  The name will always 
be unique, while the number is relative to the internal printer list and may not 
be accurate.

WIN$PRINTER always performs the printer number test before the printer 
name test. This means that if WINPRINTER-NO-OF-PRINTERS is a 
positive number, the function will look for that printer number before looking 
for the printer name. This could result in a WPRTERR-BAD-ARG error. To 
overrule this ranking and use the printer name, set the argument 
WINPRINT-NO-OF-PRINTERS to zero before accessing printer-specific 
information. 

Usage
CALL "WIN$PRINTER"
    USING OP-CODE, parameters,
    GIVING RESULT

Parameters

OP-CODE 

A numeric value that selects which WIN$PRINTER function to perform.  
The op-codes are defined in “winprint.def” and described in the 
WIN$PRINTER op-codes section below.  

RESULT   

A signed numeric data item that returns the status of the operation.  The data 
type of the returned value is SIGNED-INT or PIC S9(9) COMP-5.  Unless 
otherwise stated below, “1” indicates success, and a zero or negative result 
indicates failure.



General Syntax and Library List  I-361
OP-CODE Parameters 

The remaining parameters vary depending on the operation code chosen.  
They provide information and hold results for the operations specified.  
Parameters may be omitted from those operations that do not require them. 
The parameters that apply to WIN$PRINTER op-codes are 
WINPRINT-DATA, WINPRINT-SELECTION, WINPRINT-COLUMN, 
WINPRINT-MEDIA, WINPRINT-JOB-STATUS and data defined in 
WORKING-STORAGE by the user. These are all defined in “winprint.def”.  
The parameters correspond to each of the op-codes as follows:

OP-CODE Parameter

WINPRINT-SUPPORTED none

WINPRINT-SETUP none

WINPRINT-SETUP-USE-MARGINS none

WINPRINT-GET-SETTINGS-SIZE  none

WINPRINT-GET-SPOOL-ERR none

WINPRINT-SET-JOB none

WINPRINT-UPDATE-PRINTERS none

WINPRINT-GET-SETTINGS user defined

WINPRINT-SET-SETTINGS user defined

WINPRINT-SET-DATA-COLUMNS WINPRINT-COLUMN

WINPRINT-CLEAR-DATA-COLUM
NS 

WINPRINT-COLUMN

WINPRINT-SET-PAGE-COLUMN WINPRINT-COLUMN

WINPRINT-CLEAR-PAGE-COLUM
NS

WINPRINT-COLUMN

WINPRINT-GET-PAGE-COLUMN WINPRINT-COLUMN

WINPRINT-COLUMN-ALIGN-VER
T

WINPRINT-COLUMN

WINPRINT-SET-STD-FONT WINPRINT-DATA

WINPRINT-GET-PAGE-LAYOUT WINPRINT-DATA

WINPRINT-SET-FONT   WINPRINT-DATA



I-362  ACUCOBOL-GT Library Routines
WINPRINT-SET-LINES-PER-PAGE WINPRINT-DATA

WINPRINT-GET-CAPABILITIES   WINPRINT-DATA

WINPRINT-PRINT-BITMAP  WINPRINT-DATA

WINPRINT-SET-MARGINS  WINPRINT-DATA

WINPRINT-GET-MARGINS WINPRINT-DATA

WINPRINT-GRAPH-BRUSH WINPRINT-DATA

WINPRINT-GRAPH-PEN  WINPRINT-DATA

WINPRINT-GRAPH-DRAW WINPRINT-DATA

WINPRINT-SET-CURSOR WINPRINT-DATA

WINPRINT-SET-TEXT-COLOR WINPRINT-DATA

WINPRINT-SET-BKMODE WINPRINT-DATA

WINPRINT-GET-JOB-STATUS WINPRINT-JOB-STATUS

WINPRINT-SET-JOB-STATUS WINPRINT-JOB-STATUS

WINPRINT-GET-PRINTER-MEDIA  WINPRINT-MEDIA

WINPRINT-GET-NO-PRINTERS WINPRINT-SELECTION

WINPRINT-GET-PRINTER-INFO WINPRINT-SELECTION

WINPRINT-SET-PRINTER WINPRINT-SELECTION

WINPRINT-GET-CURRENT-INFO WINPRINT-SELECTION

WINPRINT-GET-CURRENT-INFO-
EX

WINPRINT-SELECTION

WINPRINT-SET-PRINTER-EX WINPRINT-SELECTION

WINPRINT-GET-CURRENT-INFO-
EX

WINPRINT-SELECTION

WINPRINT-GET-PRINTER-STATU
S 

WINPRINT-SELECTION

OP-CODE Parameter



General Syntax and Library List  I-363
Description

To use this library routine you must include the COPY file “winprint.def”.  
You will need to copy this file into the Working-Storage section of any 
program that calls WIN$PRINTER.  You must also assign the print file to 
either “-P SPOOLER” or to “-Q <printername>”, as described in your 
Getting Started booklet.

WIN$PRINTER takes one or more parameters.  The first parameter is a 
mandatory operation code that indicates which sub-function of 
WIN$PRINTER to perform.  The operation codes are described under 
WIN$PRINTER op-codes, below.  

The other  parameters are optional data items defined in “winprint.def” or 
defined by the user in Working-Storage.  You use these data items to pass data 
to and from WIN$PRINTER.  The specific data passed depends on the 
particular operation being called.  Some operations do not use a data item, in 
which case it can be omitted.  

The definitions of WINPRINT-DATA, WINPRINT-SELECTION, 
WINPRINT-COLUMN, WINPRINT-MEDIA, and 
WINPRINT-JOB-STATUS are included in “winprint.def”. These definitions 
may change in future versions as capabilities are added to WIN$PRINTER.  
However, ACUCOBOL-GT will continue to support the existing formats. 

When WIN$PRINTER is called, it sets a return value to indicate whether the 
call succeeded or failed.  A positive value indicates success.  A zero or a 
negative value indicates an error.  The error codes are defined in the section 
on error handling, below.  

If the call to WIN$PRINTER does not include a GIVING item for the return 
value, the return value is placed in the special register RETURN-CODE.  

See “graphprn.cbl” and “prndemox.cbl” for examples of many of the 
WIN$PRINTER functions. 

Tip:  Several operations accept parameters that have values measured in the 
dots-per-inch (DPI) resolution of the output device.  Using the Windows 
graphical device interface (GDI), a program can get DPI information for a 
given printer on the system.  A demonstration program written in COBOL 
is available in the Support area of the Micro Focus Web site.  To download 

http://supportline.microfocus.com/xmlloader.asp?type=home
http://supportline.microfocus.com/xmlloader.asp?type=home
http://supportline.microfocus.com/xmlloader.asp?type=home


I-364  ACUCOBOL-GT Library Routines
the program, go to: http://supportline.microfocus.com/
xmlloader.asp?type=home.  Select Samples and Utilities > Acucorp 
Examples > Graphical User Interface Sample Programs > 
GetPrinterResolution.cbl.

Error Handling

When you call WIN$PRINTER, it returns a status value.  This numeric value 
is returned in the CALL statement’s GIVING data item, or the special 
register RETURN-CODE if no GIVING item is specified.  A positive value 
indicates that the routine succeeded.  A value of zero or less indicates that an 
error or exception occurred.  These situations have level 78 values defined for 
them in “winprint.def”.  The defined values include:

WPRTERR-BAD-ARG --  This code indicates an unknown operation code 
or illegal value for any of the WIN$PRINTER functions.  

WPRTERR-BAD-DRIVER -- This code is returned when the spooler can’t 
find a device driver that corresponds to the selected printer.

WPRTERR-BUFFER-TOO-SMALL --  This code is returned when the 
data item passed to the WINPRINT-GET-SETTINGS operation is too small 
to hold the spooler’s current configuration.  

WPRTERR-CANCELLED --  This code is returned when you use the 
WINPRINT-SETUP or WINPRINT-SETUP-USE-MARGINS operation to 
display the printer setup dialog box and the user presses the “Cancel” button 
or closes the dialog box without pressing the “OK” button.  This status can 
usually be ignored because the runtime automatically restores the prior 
configuration.  

WPRTERR-DEVICE-INCAPABLE -- This code is returned when you try 
to print a bitmap and the printer you are using cannot print bitmaps.

WPRTERR-DRV-LOADFAIL -- This code is returned when 
WIN$PRINTER failed to load the driver information for the chosen printer.  
This could be caused by a corrupted file, bad registry settings, or a remote 
printer being offline. 

http://supportline.microfocus.com/xmlloader.asp?type=home


General Syntax and Library List  I-365
WPRTERR-ENUM-FAIL -- This code is returned when one of the 
WIN$PRINTER functions does not find any available printers on the system.

WPRTERR-NO-MEMORY -- This code indicates that the system ran out 
of memory when trying to perform the requested operation.

WPRTERR-SPOOLER-CLOSED -- This code is returned when you 
attempt to print a bitmap on a closed print file.

WPRTERR-SPOOLER-OPEN -- This code indicates that the program 
tried to change the spooler’s configuration while a spooled print file was 
open.

WPRTERR-SPOOL-ERR -- This code is returned when there is an error in 
the Graphical Device Interface (GDI) layer that is not listed in 
“winprint.def”.  Use the operation WINPRINT-GET-SPOOL-ERR to obtain 
the exact Windows API code and refer to your Windows SDK documentation 
for a description.

WPRTERR-UNSUPPORTED --  This code is returned whenever 
WIN$PRINTER is called on a machine that is not a Windows machine.  

WIN$PRINTER op-codes

The following is a list of WIN$PRINTER operation codes and their effects.  
These level 78 items are all defined in “winprint.def”.
WINPRINT-DATA op-codes
WINPRINT-SELECTION op-codes
WINPRINT-COLUMN op-codes
WINPRINT-JOB-STATUS op-codes
WINPRINT-MEDIA op-codes
USER-DATA op-codes

Printer Information op-codes

The following operation codes provide general information about page 
layout, the print spooler buffer, and whether or not the WIN$PRINTER 
routine is supported. 
WINPRINT-GET-SETTINGS-SIZE



I-366  ACUCOBOL-GT Library Routines
WINPRINT-SETUP
WINPRINT-SETUP-USE-MARGINS
WINPRINT-SUPPORTED
WINPRINT-GET-SPOOL-ERR
WINPRINT-SET-JOB
WINPRINT-UPDATE-PRINTERS

WINPRINT-GET-SETTINGS-SIZE

This operation code retrieves the size of the buffer available in the current 
spooler configuration. 

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-SETTINGS-SIZE
    GIVING RESULT

Return Values

This operation returns the number of bytes needed to hold the current spooler 
configuration. 

Description

The spooler configuration includes the destination device, paper size, and 
page orientation.  It does not include the current font selection.  Use this 
operation to ensure that you have a large enough buffer when using the 
WINPRINT-GET-SETTINGS and WINPRINT-SET-SETTINGS 
operations.

Note: This operation is not supported in our Thin Client environment.  

WINPRINT-SETUP

This operation code calls the standard Windows Setup Printer dialog box.  
This allows the user to select which printer to use, the desired page 
orientation (landscape or portrait), and the desired paper size and source.  To 
also get the page margins, use WINPRINT-SETUP-USE-MARGINS 



General Syntax and Library List  I-367
instead. Note that there is also a WINPRINT-SETUP-EX operation code 
for calling the PrintDlgEx function, which is considered a more modern and 
feature-rich printer dialog box and is fully supportd in Windows Vista.

In Windows Vista, Microsoft no longer fully supports the PrintDlg function, 
which leaves the function relatively useless. This in turn limits the 
functionality of WINPRINT-SETUP, which is used to call PrintDlg. 

To minimize the impact on users of WINPRINT-SETUP, the runtime detects 
when it is executed on Vista and will change to use the new 
WINPRINT-SETUP-EX operation code that is used to display the 
PrintDlgEx printer window. 

Note that the application must have a window open in order for this feature to 
work. If no window is open, the printer dialog will not be shown, the error 
WPRTERR-WINDOW-REQUIRED will be returned, and the print job may 
go to the default printer.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SETUP
    GIVING RESULT

Description

The runtime internally configures itself based on the selections chosen by the 
user.  These become the settings used during the remainder of the run or until 
the next call to this operation.  Settings return to their defaults when the 
runtime exits. 

If you are using the WINPRINT-SELECTION data structure, calls to 
WINPRINT-SETUP must also be followed by a call to 
WINPRINT-GET-CURRENT-INFO(-EX) to ensure consistency between 
COBOL data storage information and the current Windows configuration. 
However, if you do not use any of the operation codes that rely on the 
WINPRINT-SELECTION group, there is no need to call 
WINPRINT-GET-CURRENT-INFO(-EX).

Note: Changing the output device with this operation will reset any 
columns you have set using WINPRINT-COLUMN op-codes.



I-368  ACUCOBOL-GT Library Routines
WINPRINT-SETUP-USE-MARGINS

This operation code calls the standard Windows Setup Printer dialog box and 
utilizes the margins specified in the dialog box.  This allows the user to select 
which printer to use, the desired page orientation, the margins, and the 
desired paper size and source.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SETUP-USE-MARGINS
    GIVING RESULT

Description

The WINPRINT-SETUP-USE-MARGINS operation code is similar to 
WINPRINT-SETUP in its base usage.  

If you are using the WINPRINT-SELECTION data structure (like 
WINPRINT-SETUP), it must be followed by a call to 
WINPRINT-GET-CURRENT-INFO(-EX) to ensure consistency between 
COBOL data storage information and the current Windows configuration. 
However, if you do not use any of the operation codes that rely on the 
WINPRINT-SELECTION group, there is no need to call 
WINPRINT-GET-CURRENT-INFO(-EX).

WINPRINT-SETUP-USE-MARGINS is defined in “winprint.def”.  You can 
use this operation code with WINPRINT-GET-MARGINS to obtain the 
current margin.  

Note: Changing the output device with this operation will reset any 
columns you have set using WINPRINT-COLUMN op-codes.

WINPRINT-SUPPORTED 

This operation code determines if the WIN$PRINTER routine is supported 
(i.e., the host machine is a Windows machine).  

Usage
CALL "WIN$PRINTER"



General Syntax and Library List  I-369
    USING WINPRINT-SUPPORTED
    GIVING RESULT

Return Values

This operation sets the return value of WIN$PRINTER to “1” if the 
WIN$PRINTER routine is supported.  Otherwise it sets the return value to 
WPRTERR-UNSUPPORTED.  

Comments

The WIN$PRINTER routine can only be used with Microsoft Windows.

WINPRINT-GET-SPOOL-ERR

This operation code obtains the number of the most recent Windows 
Graphical Device Interface (GDI) error from the Windows API.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-SPOOL-ERR
    GIVING RESULT

Return Values

This operation returns the most recent Windows GDI error.

Description

The complexity of Windows graphics capabilities make it impossible to 
catalog all possible error conditions in “winprint.def”.  Therefore, if a 
graphical error condition occurs, the WIN$PRINTER op-code that caused 
the error returns WPRTERR-SPOOL-ERR to indicate that a Windows API 
error occurred.  Use WINPRINT-GET-SPOOL-ERR to retrieve the specific 
Windows API error number, then refer to Windows API documentation for a 
description of the problem.  



I-370  ACUCOBOL-GT Library Routines
This operation should be called immediately after a WIN$PRINTER 
operation call has returned WPRTERR-SPOOL-ERR.  Calling this function 
under other circumstances will return unpredictable values.  This operation 
does not impact WRITE statements.  

Note: Calling WINPRINT-GET-SPOOL-ERR does not reset the last GDI 
error internally.  Do not use this operation as a method to verify that a call 
worked properly.  

WINPRINT-SET-JOB

This operation code returns the identifier of the job that is currently spooling 
into the printer.  The ID number returned by this operation will be compatible 
with, and may be used in conjunction with, the operations 
WINPRINT-SET-JOB-STATUS and WINPRINT-GET-JOB-STATUS. 

Usage
CALL "WIN$PRINTER" 
    USING WINPRINT-SET-JOB JOB-ID
    GIVING PRINT-JOB.

Return Values

If you set JOB-ID to “0”, WINPRINT-SET-JOB returns the identifier of the 
job that is currently spooling into the printer (PRINT-JOB).  You can then 
use that number to tell WIN$PRINTER operations which print job is the 
target.  This is your only way to obtain the ID of a job. To restore the system 
default settings, simply call this operation with a JOB-ID of “-1”.  

Description

This call should be issued immediately after the opening of a job.  For 
example:
OPEN OUTPUT FIRST-FILE.
CALL "WIN$PRINTER" USING WINPRINT-SET-JOB JOB-ID GIVING 
FIRST-ID.

where FIRST-ID is a variable declared signed-integer, such as:
77 FIRST-ID USAGE SIGNED-INT.



General Syntax and Library List  I-371
Subsequent calls to WIN$PRINTER may use FIRST-ID to identify the target 
for the next action, as follows:
      OPEN    OUTPUT           FIRST-FILE.
      CALL    "WIN$PRINTER"    USING
              WINPRINT-SET-JOB 0
              GIVING           FIRST-ID.
      OPEN    OUTPUT           SECOND-FILE. | Is now current.
*Initialize the print record for the first print job.
      MOVE    "This is job 1, printed with MS Sans Serif." TO
              RECORD-FILE-1.
*Initialize the print record for the second print job.
      MOVE    "This is job 2, printed with Script." TO
              RECORD-FILE-2.
*Set active job to the first print job.
      CALL    "WIN$PRINTER"    USING
              WINPRINT-SET-JOB FIRST-ID.
*Set the preferred font for the first print job.
      INITIALIZE               WINPRINT-DATA.
      MOVE    FIRST-FONT       TO WPRTDATA-FONT.
      CALL    "WIN$PRINTER"    USING
              WINPRINT-SET-FONT
              WINPRINT-DATA.

If you try to perform an operation that requires an active print job and there 
is none, an error status is returned. This series of calls can be used with all 
WIN$PRINTER functions, with the following exceptions:

• The status of a printer cannot be determined using 
WINPRINT-GET-PRINTER-STATUS or 
WINPRINT-GET-JOB-STATUS unless the print job has already 
started.  This is because the port monitor must both detect a print error 
and report it to the printer queue before it can be recognized by 
WIN$PRINTER functions.  

• Due to a limitation in the Microsoft Windows API, computers that run 
Windows 9x (Windows 98, and Windows ME) do not return the spooler 
job ID when opening a print job.  This means that you cannot use the 
WINPRINT-GET-JOB-STATUS and WINPRINT-SET-JOB-STATUS 
operations of the WIN$PRINTER library routine on these machines.  
(These operations are used to check and modify the status of a particular 
printer.)



I-372  ACUCOBOL-GT Library Routines
When you are printing multiple jobs simultaneously, you should not set a 
printer font before the print job has been opened because the font could be 
applied to the wrong job.  Once the print job is opened, you may set the font, 
using the JOB-ID of the target printer. 

However, if you need to change the printer settings for subsequent job on a 
different printer, you should set JOB-ID to “-1” before setting 
WINPRINT-SET-SETTINGS or WINPRINT-SET-PRINTER(-EX).  This 
causes WINPRINT-SET-JOB to return the ID number of the next job in the 
queue (after the current job).  This should be done just prior to calling an 
OPEN statement.  When JOB-ID is set to “-1”, the runtime executes the next 
WIN$PRINTER operation as if no current job were printing.  This does not 
affect existing jobs, but it affects the status of subsequent jobs, unless it is an 
OPEN, WRITE, or CLOSE statement.

WINPRINT-UPDATE-PRINTERS

Usage
CALL "WIN$PRINTER" 
     USING WINPRINT-UPDATE-PRINTERS

Description

This op-code enables you to force the runtime to reload the internal printerlist 
so that any changes to that list (new printer added, for example) will be 
detected by the COBOL program.  

This op-code takes no parameters and always returns “TRUE”.  By calling 
this op-code, the runtime printing system is told to reload the printer list.  A 
call to this op-code should be followed by a call to one of the following 
op-codes to ensure synchronization between the COBOL printer list and the 
internal runtime:
78  WINPRINT-GET-NO-PRINTERS            VALUE 13.
78  WINPRINT-GET-PRINTER-INFO           VALUE 14.
78  WINPRINT-GET-CURRENT-INFO           VALUE 16.
78  WINPRINT-GET-PRINTER-INFO-EX        VALUE 28.
78  WINPRINT-GET-CURRENT-INFO-EX        VALUE 30.



General Syntax and Library List  I-373
WINPRINT-DATA op-codes

The following operation codes use the data item WINPRINT-DATA 
(defined in “winprint.def”).  These operations are used to specify the 
appearance of a printed page, including features such as font, page layout and 
graphics placement.
WINPRINT-GET-CAPABILITIES
WINPRINT-GET-MARGINS
WINPRINT-GET-PAGE-LAYOUT
WINPRINT-GRAPH-DRAW
WINPRINT-GRAPH-BRUSH
WINPRINT-GRAPH-PEN
WINPRINT-PRINT-BITMAP
WINPRINT-SET-CURSOR
WINPRINT-SET-TEXT-COLOR
WINPRINT-SET-FONT
WINPRINT-SET-LINES-PER-PAGE
WINPRINT-SET-MARGINS
WINPRINT-SET-STD-FONT
WINPRINT-SET-BKMODE

WINPRINT-GET-CAPABILITIES

This operation code determines whether or not a printer can print bitmaps.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-CAPABILITIES, WINPRINT-DATA
    GIVING RESULT

Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
   03 WPRTDATA-CAPABILITIES REDEFINES
      WPRTDATA-SET-STD-FONT.
      05 WPRTDATA-BITMAPS-OK-FLAG      PIC 9.
         88 WPRTDATA-BITMAPS-OK        VALUE 1, FALSE ZERO.



I-374  ACUCOBOL-GT Library Routines
Return Values

This operation returns information about the capabilities of the currently 
selected printer to WPRTDATA-CAPABILITIES.  Currently, the only 
capability returned to this parameter is whether or not the printer can print 
bitmaps.  If it can, WPRTDATA-BITMAPS-OK is true.  Printers that do not 
use a raster technology (such as a pen plotter) cannot print bitmaps.

WINPRINT-GET-MARGINS

This operation code may be used with WINPRINT-SETUP-USE-MARGINS 
to obtain the margins set in the Windows printer setup dialog box or the 
margins set with WINPRINT-SET-MARGINS.

If used with WINPRINT-SETUP-USE-MARGINS, it returns information 
about the current default margin in the Windows printer setup dialog box 
using centimeters or inches but not with pixels or cells.  This occurs because 
the operation code is used with WINPRINT-SETUP-USE-MARGINS and 
can therefore be used only with values supported by the dialog box.

If you have used WINPRINT-SET-MARGINS and later call 
WINPRINT-GET-MARGINS, the values returned are those originally set 
with WINRPRINT-SET-MARGINS, which may include inches, centimeters, 
pixels, or cells.

Usage
INITIALIZE WPRTDATA-MARGINS
CALL "WIN$PRINTER"
    USING WINPRINT-GET-MARGINS, WINPRINT-DATA
    GIVING RESULT

Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
   03 WPRTDATA-MARGINS REDEFINES
      WPRTDATA-SET-STD-FONT.
      05 WPRTDATA-TOP-MARGIN           PIC 9(7)V99 COMP-5.
      05 WPRTDATA-BOTTOM-MARGIN        PIC 9(7)V99 COMP-5.
      05 WPRTDATA-LEFT-MARGIN          PIC 9(7)V99 COMP-5.



General Syntax and Library List  I-375
      05 WPRTDATA-RIGHT-MARGIN         PIC 9(7)V99 COMP-5.
      05 WPRTDATA-MARGIN-UNITS         UNSIGNED-SHORT.

WINPRINT-GET-MARGINS requires the WPRTDATA-MARGINS 
structure to be passed as the second parameter and WPRTDATA-MARGINS 
is filled with the current margins defined as the defaults in the printer dialog 
box.

Return Values

This operation returns one of the following values:
WPRTMARGIN-CENTIMETERS
WPRTMARGIN-INCHES
WPRTMARGIN-PIXELS (only if set with WINPRINT-SET-MARGINS) 
WPRTMARGIN-CELLS  (only if set with WINPRINT-SET-MARGINS) 

WINPRINT-GET-PAGE-LAYOUT 

This operation code determines how many columns and rows of characters 
will fit on a page. 

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-PAGE-LAYOUT, WINPRINT-DATA,
    GIVING RESULT

Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
   03 WPRT-PAGE-LAYOUT REDEFINES 
      WPRTDATA-SET-STD-FONT.
      05 WPRTDATA-LINES-PER-PAGE       UNSIGNED-SHORT.
      05 WPRTDATA-COLUMNS-PER-PAGE     UNSIGNED-SHORT.



I-376  ACUCOBOL-GT Library Routines
Return Values

This operation returns the number of print rows that can fit on a page in 
WPRTDATA-LINES-PER-PAGE, and the number of print columns in 
WPRTDATA-COLUMNS-PER-PAGE.  This accounts for the current page 
size, orientation, and printer font.  You may use this routine either before or 
after opening a print file.  

Because of the large number of variables involved with printing under 
Windows (for example, the font size, the paper size, and print orientation), 
we recommend that you use this routine to determine how many lines will fit 
on a page when you are formatting reports.

However, we do not recommend using this operation when printing in 
DIRECT mode using “-P SPOOLER” or “-Q <printername>”.  When you 
print in DIRECT mode, the Windows print spooler has no control of the 
printer, and no initialization of the printer is performed by the Windows 
printer driver.  This means that the print job uses the hardware defaults. For 
example, if you print in DIRECT mode to a printer with the hardware default 
paper size set to US letter format, that is the format used, even if the driver 
has A4 paper set as the default, in which case this operation is likely to return 
incorrect values.

WINPRINT-GRAPH-DRAW

This operation code specifies the size, shape and location of a graphic in the 
current print job using pen and brush attributes specified by 
WINPRINT-GRAPH-BRUSH and WINPRINT-GRAPH-PEN.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GRAPH-DRAW, WINPRINT-DATA
    GIVING RESULT

Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
   03  WPRTDATA-DRAW REDEFINES



General Syntax and Library List  I-377
   WPRTDATA-SET-STD-FONT.
      05  WPRTDATA-DRAW-START-X       PIC 9(7)V99 COMP-5.
      05  WPRTDATA-DRAW-START-Y       PIC 9(7)V99 COMP-5.
      05  WPRTDATA-DRAW-STOP-X        PIC 9(7)V99 COMP-5.
      05  WPRTDATA-DRAW-STOP-Y        PIC 9(7)V99 COMP-5.
      05  WPRTDATA-DRAW-UNITS         UNSIGNED-SHORT.
      05  WPRTDATA-DRAW-SHAPE         UNSIGNED-SHORT.

Return Value

This operation returns the coordinates and shape of a graphic.

Description

The printer must be open to perform this operation.  WPRTDATA-DRAW 
should be initialized prior to use.  There is no limit to the number of times this 
operation may be called. Once it is called, all further printing using the 
WRITE statement is performed using a TRANSPARENT background.  The 
TRANSPARENT setting is not usually applied to WRITE statements, but 
this mode is necessary for graphics to print correctly. (This does not apply to 
WINPRINT-COLUMN operations, which have a particular setting for 
TRANSPARENCY.)

Note: The current cursor position on the printer is not modified by this 
call.

If WINPRINT-GRAPH-PEN or WINPRINT-GRAPH-BRUSH have not yet 
been called, this operation will create and use the defaults. The default pen is 
solid black, with a width of “1”.  The default brush is NULL, meaning there 
is no fill.   

Note: When you call WINPRINT-GRAPH-DRAW, the operation will 
automatically test to see if a form feed is pending. If this is the case, the 
form feed will be performed before the call to this operation is executed. 



I-378  ACUCOBOL-GT Library Routines
WINPRINT-GRAPH-DRAW has the following values:

WPRTDATA-DRAW-UNITS -- Specifies the unit of measure of the values 
passed for drawing coordinates.  If an illegal value is set, the unit of measure 
will be set to the default (WPRTUNITS-PIXELS). The unit of measure may 
be set to one of the following values:

WPRTUNITS-CELLS Values are measured using 
the “cell size” of the 
currently selected font.  The 
cell-size is determined by the 
height and width of the “0” 
character of a font.  This is 
roughly equivalent to 
measuring in “characters”.  

    If you use a proportional 
font, it is common for 
uppercase characters to be 
wider than this measurement.  
Non-integer values are 
allowed in the 
measurements. 



General Syntax and Library List  I-379
WPRTUNITS-CELLS-ABS Values are measured using 
the “cell size” of the 
currently selected font.  
Positioning is based on the 
left edge of the paper, 
regardless of the physical left 
margin determined by the 
printer (even if the absolute 
position is smaller).  If the 
dimensions of the area to be 
printed are less than the 
printer’s left or top physical 
margin, or greater than the 
printer’s right or bottom 
physical margin, 
WIN$PRINTER will return 
an error. (Note that due to 
inherent differences in the 
hardware of printer 
manufacturers, this value 
may not provide truly 
device-independent results.)

WPRTUNITS-INCHES Values are measured in 
inches.

WPRTUNITS-INCHES-ABS Values are measured in 
inches. Positioning is based 
on the left edge of the paper, 
regardless of the physical left 
margin determined by the 
printer (even if the absolute 
position is smaller).  If the 
dimensions of the area to be 
printed are less than the 
printer’s left or top physical 
margin, or greater than the 
printer’s right or bottom 
physical margin, 
WIN$PRINTER will return 
an error.



I-380  ACUCOBOL-GT Library Routines
WPRTUNITS-CENTIMETERS Values are measured in 
centimeters.

WPRTUNITS-CENTIMETERS-ABS Values are measured in 
centimeters. Positioning is 
based on the left edge of the 
paper, regardless of the 
physical left margin 
determined by the printer 
(even if the absolute position 
is smaller).  If the dimensions 
of the area to be printed are 
less than the printer’s left or 
top physical margin, or 
greater than the printer’s 
right or bottom physical 
margin, WIN$PRINTER 
will return an error.

WPRTUNITS-PIXELS (default) Values are measured using 
the dots-per-inch (DPI) 
resolution of the output 
device.  Only integer values 
are allowed in the 
measurements.  

The actual size of this 
measurement varies 
depending on the target 
printer’s resolution.  This 
means that a width of “5” 
will appear differently on a 
300dpi printer than it will on 
a 600dpi printer.  Consider 
the unit of measure relative 
to the resolution of the 
targeting printer before 
printing.



General Syntax and Library List  I-381
WPRTDATA-DRAW-SHAPE -- Specifies which type of shape to draw. If 
an illegal value is used, no shape will be drawn. The possible values are:

WPRTDATA-DRAW-START-X -- Specifies the top-left horizontal 
coordinate of the shape to draw.  The unit of measure is set with 
WPRTDATA-DRAW-UNITS. The minimum value of this coordinate is “0”.  
The top-leftmost coordinate for all graphic operations is “0,0”

WPRTDATA-DRAW-START-Y -- Specifies the top-left vertical coordinate 
of the shape to draw.  The unit of measure is set with 
WPRTDATA-DRAW-UNITS. The minimum value of this coordinate is “0”.  
The top-leftmost coordinate for all graphic operations is “0,0”

WPRTDATA-DRAW-STOP-X -- Specifies the lower-right horizontal 
coordinate of the shape to draw.  The unit of measure is set with 
WPRTDATA-DRAW-UNITS. The maximum value of this coordinate 
depends on the unit of measure selected.

WPRTDATA-DRAW-STOP-Y -- Specifies the lower-right vertical 
coordinate of the shape to draw.  The unit of measure is set with 
WPRTDATA-DRAW-UNITS. The maximum value of  this coordinate 
depends on the unit of measure selected.

Example

See “graphprn.cbl” for examples of printing graphics.  This example will 
draw a box with rounded edges:
INITIALIZE               WPRTDATA-DRAW.
MOVE    WPRT-DRAW-ROUND-RECTANGLE TO  WPRTDATA-DRAW-SHAPE.
MOVE    3                TO  WPRTDATA-DRAW-START-X.
MOVE    1                TO  WPRTDATA-DRAW-START-Y.
MOVE    40               TO  WPRTDATA-DRAW-STOP-X.
MOVE    10               TO  WPRTDATA-DRAW-STOP-Y.
MOVE    WPRTUNITS-CELLS  TO  WPRTDATA-DRAW-UNITS.

WPRT-DRAW-RECTANGLE Draws a rectangle with 
90-degree corners.

WPRT-DRAW-ROUND-RECTANGL
E

Draws a rectangle with 
rounded corners.

WPRT-DRAW-LINE Draws a line.



I-382  ACUCOBOL-GT Library Routines
CALL    "WIN$PRINTER"    
        USING     WINPRINT-GRAPH-DRAW, WINPRINT-DATA
        GIVING    CALL-RESULT.

WINPRINT-GRAPH-BRUSH

This operation code specifies the pattern or solid color used to fill a shape 
drawn with WINPRINT-GRAPH-DRAW.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GRAPH-BRUSH, WINPRINT-DATA
    GIVING RESULT

Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
   03  WPRTDATA-BRUSH REDEFINES
   WPRTDATA-SET-STD-FONT.
      05  WPRTDATA-BRUSH-STYLE        UNSIGNED-SHORT.
      05  WPRTDATA-BRUSH-COLOR        PIC 9(9) COMP-5

Return Values

This operation returns the style and color of the brush used by 
WINPRINT-GRAPH-DRAW

Description

The printer must be open to perform this operation.  It must be called prior to 
WINPRINT-GRAPH-DRAW.  Once executed, the brush specified will apply 
to all graphic operations until a new call is executed.  The selected brush is 
released when the printer is closed and will not affect subsequent print jobs.  
WPRTDATA-BRUSH must be initialized before use. There is no limit to the 
number of times this operation may be called.  

WINPRINT-GRAPH-BRUSH has the following values:



General Syntax and Library List  I-383
WPRTDATA-BRUSH-COLOR -- Specifies the color used to fill the shape 
drawn with WINPRINT-GRAPH-DRAW.  The color resolution 
(COLORREF) is a combination of Red, Green, and Blue (RGB).  The 
intensity of each color in the mix is determined by a number between “0” and 
“255”. The default color (0,0,0) is black.

Note: See your Windows API documentation for more information about 
RGB colors and COLORREF values.

WPRTDATA-BRUSH-STYLE -- Specifies the pattern used to fill the 
shape drawn with WINPRINT-GRAPH-DRAW.  It may be set to one of the 
following values:

WPRT-BRUSH-SOLID Selects a solid brush that fills the 
shape with the color selected in 
WPRTDATA-BRUSH-COLOR
.

WPRT-BRUSH-NULL (default) The shape is not filled, and the 
background layer will show 
through. 

WPRT-BRUSH-BDIAGONAL Fills the shape with a pattern of 
lines angled at 45-degrees. (///
///)

WPRT-BRUSH-CROSS Fills the shape with a pattern of 
crosses. (++++++)

WPRT-BRUSH-DIAGCROSS Fills the shape with a pattern of 
diagonal crosses. (xxxxxx)

WPRT-BRUSH-FDIAGONAL Fills the shape with a pattern of 
lines angled at –45-degrees. 
(\\\\\\)

WPRT-BRUSH-HORIZONTAL Fills the shape with a pattern of 
dashes. (------)

WPRT-BRUSH-VERTICAL Fills the shape with a pattern of 
vertical bars. (||||||)



I-384  ACUCOBOL-GT Library Routines
Example

See “graphprn.cbl” for examples of printing graphics.  This example will fill 
the shapes drawn with solid gray:
INITIALIZE WPRTDATA-BRUSH.
MOVE WPRT-BRUSH-GRAY  TO  WPRTDATA-BRUSH-STYLE.

CALL "WIN$PRINTER"
    USING WINPRINT-GRAPH-BRUSH, WINPRINT-DATA
    GIVING CALL-RESULT.

WINPRINT-GRAPH-PEN

This operation code specifies characteristics of the “pen” used to draw a 
shape with WINPRINT-GRAPH-DRAW.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GRAPH-PEN, WINPRINT-DATA
    GIVING RESULT

Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
   03  WPRTDATA-PEN REDEFINES

WPRT-BRUSH-DKGRAY Fills the shape with solid dark 
gray.  If color is specified, it is 
ignored. 

WPRT-BRUSH-GRAY  Fills the shape with solid gray.  
If color is specified, it is ignored. 

WPRT-BRUSH-LTGRAY Fills the shape with solid light 
gray.  If color is specified, it is 
ignored. 



General Syntax and Library List  I-385
   WPRTDATA-SET-STD-FONT.
      05  WPRTDATA-PEN-STYLE          UNSIGNED-SHORT.
      05  WPRTDATA-PEN-WIDTH          UNSIGNED-SHORT.
      05  WPRTDATA-PEN-COLOR          PIC 9(9) COMP-5.

Return Values

This operation returns the characteristics of lines drawn with 
WINPRINT-GRAPH-DRAW.

Description

The printer must be open to perform this operation.  It must be called prior to 
WINPRINT-GRAPH-DRAW.  Once executed, the pen specified will apply 
to all graphic operations until a new call is executed.  The selected pen is 
released when the printer is closed and will not affect subsequent print jobs.  
WPRTDATA-PEN must be initialized before use. There is no limit to the 
number of times this operation may be called.  

WINPRINT-GRAPH-PEN has the following values:

WPRTDATA-PEN-WIDTH -- Specifies the thickness of the line drawn 
using WINPRINT-GRAPH-DRAW. The default unit of measure is pixels.  
For example, if WPRTDATA-PEN-WIDTH is set to “0”, the width will be 
one pixel, unless another unit of measure has been selected.  The default 
value is “1”. 

The actual size of this measurement is affected by the target printer’s 
resolution.  This means that a width of “5” will appear differently on a printer 
with a resolution of 300 dots-per-inch (DPI) than it will on a printer with 
600dpi.  Consider the unit of measure relative to the resolution of the 
targeting printer before printing.

WPRTDATA-PEN-COLOR -- Specifies the color of a line drawn using 
WINPRINT-GRAPH-DRAW.  The color resolution (COLORREF) is a 
combination of Red, Green, and Blue (RGB).  The intensity of each color in 
the mix is determined by a number between “0” and “255”. The default color 
(0,0,0) is black.  

See your Windows API documentation for more information about RGB 
colors and COLORREF values.



I-386  ACUCOBOL-GT Library Routines
WPRTDATA-PEN-STYLE -- Specifies the type of line drawn.  It may be 
set to one of the following values:

Example

See “graphprn.cbl” for examples of printing graphics.  This example will 
draw lines and shapes with a solid pen that is 10 pixels thick:
INITIALIZE WPRTDATA-PEN.
MOVE WPRT-PEN-SOLID  TO  WPRTDATA-PEN-STYLE.
MOVE 10  TO  WPRTDATA-PEN-WIDTH.

CALL "WIN$PRINTER"  
    USING  WINPRINT-GRAPH-PEN, WINPRINT-DATA
    GIVING  CALL-RESULT.

WPRT-PEN-SOLID (default) Draws a solid line in the color 
selected in 
WPRTDATA-BRUSH-COLOR.

WPRT-PEN-NULL Draws an “invisible” line.  The 
background layer will show 
through. 

WPRT-PEN-DASH Draws a line of dashes (------). 
WPRTDATA-PEN-WIDTH must 
equal “1” to use this style.

WPRT-PEN-DOT Draws a line of dots (......).  
WPRTDATA-PEN-WIDTH must 
equal “1” to use this style.

WPRT-PEN-DASHDOT Draws a line of alternating dashes 
and dots (-.-.-.-.-.-.).  
WPRTDATA-PEN-WIDTH must 
equal “1” to use this style.

WPRT-PEN-DASHDOTDOT Draws a line of dashes followed by 
two dots, 
(-..-..-..-..-..-..).  
WPRTDATA-PEN-WIDTH must 
equal “1” to use this style.

WPRT-PEN-INSIDEFRAME Draws a solid line inside of the 
actual geometric area of the shape.



General Syntax and Library List  I-387
WINPRINT-PRINT-BITMAP
This operation code prints a bitmap in the current report.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-PRINT-BITMAP, WINPRINT-DATA
    GIVING RESULT

Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
   03 WPRTDATA-PRINT-BITMAP REDEFINES
      WPRTDATA-SET-STD-FONT.
      05 WPRTDATA-BITMAP               PIC X(4) COMP-N.
      05 WPRTDATA-BITMAP-ROW           PIC 9(7)V99 COMP-5.
      05 WPRTDATA-BITMAP-COL           PIC 9(7)V99 COMP-5.
      05 WPRTDATA-BITMAP-HEIGHT        PIC 9(7)V99 COMP-5.
      05 WPRTDATA-BITMAP-WIDTH         PIC 9(7)V99 COMP-5.
      05 WPRTDATA-BITMAP-FLAGS         UNSIGNED-SHORT.

Description

The print file must be open when you are using this function.  The bitmap is 
printed according to the data contained in WPRTDATA-PRINT-BITMAP.  
To ensure that elements are initialized to their default values, INITIALIZE 
WPRTDATA-PRINT-BITMAP before filling in the elements. 

Note: When you call WINPRINT-PRINT-BITMAP, the operation will 
automatically test to see if a form feed is pending. If this is the case, the 
form feed will be performed before the call to this operation is executed. 

WPRTDATA-BITMAP should contain the handle of the bitmap you want 
to print.  You can obtain this handle by calling the library routine 
W$BITMAP with the WBITMAP-LOAD option.  This handle can be the 
same as the handle of the bitmap you have displayed on the screen.



I-388  ACUCOBOL-GT Library Routines
The dimensions of the bitmap are specified by 
WPRTDATA-BITMAP-HEIGHT and 
WPRTDATA-BITMAP-WIDTH. The unit of measurement by which the 
size of the bitmap is calculated is set with WPRTDATA-BITMAP-FLAGS.  
One of the following values is used:

The location of the top left corner of a bitmap is specified by 
WPRTDATA-BITMAP-ROW and WPRTDATA-BITMAP-COL.  By 
default, this coordinate is specified in cells. You may choose to use another 
unit of measurement by setting WPRTDATA-BITMAP-FLAGS to one of 
the following values (defined in “winprint.def”):

WPRTBITMAP-SCALE-CELLS the height and width of a cell de-
pends on the number of rows and 
columns in the report.  The currently 
selected font for the printer deter-
mines the number of rows and col-
umns on a page.  The top left corner 
of a report is row 1, column 1. You 
may use fractional rows and col-
umns, but if you specify a row or 
column less than 1, then the bitmap 
is placed at row 1, column 1. 

WPRTBITMAP-SCALE-INCHES the units represent inches on the 
printed page.  

WPRTBITMAP-SCALE-CENTIMETERS  the units represent centimeters on 
the printed page.  

WPRTBITMAP-SCALE-PIXELS the units are based on the resolution 
of the output device. This is mea-
sured in dots-per-inch (DPI). Frac-
tional values are ignored.  

WPRTBITMAP-UNITS-INCHES Values are measured in inches.

WPRTBITMAP-UNITS-CENTIMETERS Values are measured in centi-
meters. 



General Syntax and Library List  I-389
This is illustrated in Example 2, below.

Many printers have much higher resolution than screens do.  For example, 
many laser printers can print 300 or 600 dots per inch while most screens 
display less than 100 pixels per inch.  An image that is 1024 pixels wide 

WPRTBITMAP-UNITS-PIXELS Values are measured using the 
dots-per-inch (DPI) resolution 
of the output device. Only in-
teger values are allowed.

The actual size of this mea-
surement varies depending on 
the target printer’s resolution.  
Consider the unit of measure 
relative to the resolution of the 
targeting printer before print-
ing.

WPRTBITMAP-UNITS-CELLS-ABS Values are measured in 
cells, and the position of the 
bitmap is based on the left 
edge of the paper, regard-
less of the physical left 
margin determined by the 
printer (even if the absolute 
position is smaller). 

WPRTBITMAP-UNITS-INCHES-ABS Values are measured in inches 
and the position of the bit-
map is based on the left 
edge of the paper, regard-
less of the physical left 
margin determined by the 
printer (even if the absolute 
position is smaller). 

WPRTBITMAP-UNITS-CENTIMETERS-ABS Values are measured in centi-
meters and the position of 
the bitmap is based on the 
left edge of the paper, re-
gardless of the physical left 
margin determined by the 
printer (even if the absolute 
position is smaller). 



I-390  ACUCOBOL-GT Library Routines
would fill or overflow many screens, but would be less than 2 inches wide on 
a 600 DPI printer.  For this reason, bitmaps are usually scaled when they are 
printed.  By default, the runtime scales the image so that the relative 
proportions of the printed image match those of the same image when it is 
viewed on the screen. 

Scaling a bitmap

To scale a bitmap to a particular size, you must set 
WPRTDATA-BITMAP-FLAGS to the desired unit of measure (cells, inches, 
centimeters, or pixels).  Then set the desired dimensions of the bitmap in 
WPRTDATA-BITMAP-WIDTH and WPRTDATA-BITMAP-HEIGHT.  

You can either set both dimensions or leave one dimension at zero.  When 
one of the dimensions is set to zero, the relative proportions of the image are 
unchanged after the scaling of the other dimension is complete.  

You can inhibit the scaling done by the runtime by setting 
WPRTDATA-BITMAP-FLAGS to WPRTBITMAP-PRINTER-BITMAP.  
This informs the runtime that the bitmap was designed directly for printing 
on the current printer and should not be scaled.  You can also add the value 
of WPRTDATA-BITMAP-FLAGS to the other scaling options discussed 
above to prevent the runtime from performing an adjustment to the scaling.  
Adjustments are usually done to account for the difference in the relative 
proportions of the screen’s X and Y density in comparison to the printer’s X 
and Y density.  Some devices have a much higher resolution in one 
dimension than the other.  This adjustment handles the changes needed when 
you are viewing a screen image on a printer.  Most applications, however,  
should avoid this option because most bitmaps are meant to be displayed on 
the screen only.  

Colors in the bitmap image are preserved by the runtime.  It is up to the 
printer’s driver to decide how to print color images on a black-and-white 
device.  Most drivers turn colors into varying shades of gray.  



General Syntax and Library List  I-391
Example 1

The following sample code prints the AcuBench logo in the center of an 
80-character print line.  It scales the image to be 30 characters wide to 
simplify the centering computation.  This example assumes that the printer is 
already open:  
77  LOGO-HANDLE        PIC S9(9) COMP-4.
        :
        :
CALL "W$BITMAP" USING WBITMAP-LOAD, "devsuite.bmp" 
    GIVING LOGO-HANDLE
INITIALIZE WPRTDATA-PRINT-BITMAP
MOVE LOGO-HANDLE TO WPRTDATA-BITMAP
MOVE 1 TO WPRTDATA-BITMAP-ROW
MOVE 26 TO WPRTDATA-BITMAP-COL
MOVE 30 TO WPRTDATA-BITMAP-WIDTH

*Height left at zero

MOVE WPRTBITMAP-SCALE-CELLS 
     TO WPRTDATA-BITMAP-FLAGS
CALL "WIN$PRINTER" USING WINPRINT-PRINT-BITMAP, 
     WINPRINT-DATA
CALL "W$BITMAP" USING WBITMAP-DESTROY, LOGO-HANDLE

Example 2

The following example code scales a bitmap to be 3-by-3 inches square, and 
places the top left corner 10 centimeters away from both the left and top 
margins. This example assumes that the printer is already open:
77  LOGO-HANDLE        PIC S9(9) COMP-4.
        :
        :
CALL "W$BITMAP" USING WBITMAP-LOAD, "your_bitmap.bmp" 
     GIVING LOGO-HANDLE
INITIALIZE WPRTDATA-PRINT-BITMAP
MOVE LOGO-HANDLE TO WPRTDATA-BITMAP
MOVE 10 TO WPRTDATA-BITMAP-ROW WPRTDATA-BITMAP-COL.
MOVE 3 TO WPRTDATA-BITMAP-HEIGHT WPRTDATA-BITMAP-WIDTH.
MOVE WPRTBITMAP-SCALE-INCHES TO WPRTDATA-BITMAP-FLAGS.
ADD  WPRTBITMAP-UNITS-CENTIMETERS TO WPRTDATA-BITMAP-FLAGS.

CALL "WIN$PRINTER" USING WINPRINT-PRINT-BITMAP, 



I-392  ACUCOBOL-GT Library Routines
     WINPRINT-DATA
CALL "W$BITMAP" USING WBITMAP-DESTROY, LOGO-HANDLE

WINPRINT-SET-CURSOR

This operation code allows you to change the position of the printer’s write 
cursor.  This is useful when doing multiple write statements that include a 
variety of fonts, font sizes and font attributes.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SET-CURSOR, WINPRINT-DATA
    GIVING RESULT

Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
   03 WPRTDATA-DRAW REDEFINES
   WPRTDATA-SET-STD-FONT.
      05  WPRTDATA-DRAW-START-X       PIC 9(7)V99 COMP-5.
      05  WPRTDATA-DRAW-START-Y       PIC 9(7)V99 COMP-5.
      05  WPRTDATA-DRAW-STOP-X        PIC 9(7)V99 COMP-5.
      05  WPRTDATA-DRAW-STOP-Y        PIC 9(7)V99 COMP-5.
      05  WPRTDATA-DRAW-UNITS         UNSIGNED-SHORT.
      05  WPRTDATA-DRAW-SHAPE         UNSIGNED-SHORT.

Return Values

This option returns the horizontal and vertical coordinates of the write cursor.  
If an error is returned, the current cursor position is not affected.

Description

When printing in Windows, the position of text on the printed page is 
determined by the location of the write cursor. This is usually handled 
automatically by the runtime, but you may use this operation to position the 
cursor yourself. 



General Syntax and Library List  I-393
The printer must be open to perform this operation.  WPRTDATA-DRAW 
should be initialized prior to use.  The current cursor position on the printer 
is modified by this call only if WPRTDATA-DRAW-SHAPE is set to a value 
of “0” and the operation is successful.  When the cursor is moved in this 
manner, subsequent WRITE statements will be affected.  One exception is 
that the vertical position of subsequent calls to WINPRINT-COLUMNS will 
be altered, but not the horizontal position.  

Note: When you call WINPRINT-SET-CURSOR, the operation will 
automatically test to see if a form feed is pending. If this is the case, the 
form feed will be performed before the call to this operation is executed. 

If you use this operation with WPRDATA-DRAW-SHAPE set to a non-zero 
value, the cursor is not repositioned. This can be used to inquire the position 
of the write cursor without changing it.  There is no limit to the number of 
times this operation may be called.  

WINPRINT-SET-CURSOR has the following values:

WPRTDATA-DRAW-START-X -- Specifies the X coordinate of the 
cursor location.  The unit of measure is set with 
WPRTDATA-DRAW-UNITS. The minimum value of this coordinate is “0”.

WPRTDATA-DRAW-START-Y -- Specifies the Y coordinate of the 
cursor location.  The unit of measure is set with 
WPRTDATA-DRAW-UNITS. The minimum value of this coordinate is “0”.

WPRTDATA-DRAW-STOP-X -- Returns the lower-right horizontal 
coordinate of the cursor location.  This parameter has no input value, the 
previous X coordinate is returned.  The unit of measure is determined by the 
setting of WPRTDATA-DRAW-UNITS. 

WPRTDATA-DRAW-STOP-Y -- Returns the lower-right vertical 
coordinate of the cursor location.  This parameter has no input value, the 
previous Y coordinate is returned. The unit of measure is determined by the 
setting of WPRTDATA-DRAW-UNITS. 



I-394  ACUCOBOL-GT Library Routines
WPRTDATA-DRAW-UNITS -- Specifies the unit of measure used for the 
values passed. If an illegal value is used, the default will be used 
(WPRTUNITS-PIXELS). The unit of measure may be set to one of the 
following values:

WPRTUNITS-CELLS Values are measured using the “cell 
size” of the currently selected font.  
The cell-size is determined by the 
height and width of the “0” character 
of a font.  This is roughly equivalent 
to measuring in “characters”.  

Positioning is relative to the 
individual printer’s physical margin.  
Please note that the margin set in 
WINPRINT-SET-MARGINS is not 
used to determine the cursor 
position.  

    If you use a proportional font, it is 
common for uppercase characters to 
be wider than this measurement.  
Non-integer values are allowed in 
the measurements. 

WPRTUNITS-CELLS-ABS Values are measured using the “cell 
size” of the currently selected font.  
Positioning is based on the left edge 
of the paper, regardless of the 
physical left margin determined by 
the printer (even if the absolute 
position is smaller).  If the 
dimensions of the area to be printed 
are less than the printer’s left or top 
physical margin, or greater than the 
printer’s right or bottom physical 
margin, WIN$PRINTER will return 
an error. (Note that due to inherent 
differences in the hardware of 
printer manufacturers, this value 
may not provide truly 
device-independent results.)



General Syntax and Library List  I-395
WPRTUNITS-INCHES Values are measured in inches.  
Positioning is relative to the 
individual printer’s physical margin.  
Please note that the margin set in 
WINPRINT-SET-MARGINS is not 
used to determine the cursor 
position.  

WPRTUNITS-INCHES-ABS Values are measured in inches. 
Positioning is based on the left edge 
of the paper, regardless of the 
physical left margin determined by 
the printer (even if the absolute 
position is smaller).  If the 
dimensions of the area to be printed 
are less than the printer’s left or top 
physical margin, or greater than the 
printer’s right or bottom physical 
margin, WIN$PRINTER will return 
an error.

WPRTUNITS-CENTIMETERS Values are measured in centimeters.  
Positioning is relative to the 
individual printer’s physical margin.  
Please note that the margin set in 
WINPRINT-SET-MARGINS is not 
used to determine the cursor 
position.  

WPRTUNITS-CENTIMETERS-ABS Values are measured in centimeters. 
Positioning is based on the left edge 
of the paper, regardless of the 
physical left margin determined by 
the printer (even if the absolute 
position is smaller).  If the 
dimensions of the area to be printed 
are less than the printer’s left or top 
physical margin, or greater than the 
printer’s right or bottom physical 
margin, WIN$PRINTER will return 
an error.



I-396  ACUCOBOL-GT Library Routines
WPRTDATA-DRAW-SHAPE -- Determines if subsequent WRITE 
statements will be affected.  A value of “0” sets the position of the write 
cursor.  A non zero value will simply return the coordinates of the current 
position of  the write cursor.  Return values are determined by the setting of 
WPRTDATA-DRAW-UNITS.

Note: If you are using WPRDATA-DRAW-SHAPE to inquire the position 
of the write cursor, and WPRTDATA-DRAW-UNITS is set to a value other 
than “WPRTUNITS-PIXELS”, there is a possibility that the cursor position 
returned may not be 100% accurate, due to rounding errors. 

WINPRINT-SET-TEXT-COLOR

This operation code specifies the foreground color for text.  

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SET-TEXT-COLOR, WINPRINT-DATA
    GIVING RESULT

WPRTUNITS-PIXELS (default) Values are measured using the 
dots-per-inch (DPI) resolution of the 
output device.  Only integer values 
are allowed in the measurements.  
Positioning is relative to the 
individual printer’s physical margin.  
Please note that the margin set in 
WINPRINT-SET-MARGINS is not 
used to determine the cursor 
position.  

    The actual size of this measurement 
varies depending on the target 
printer’s resolution.  This means that 
a coordinate of “5” will appear in a 
different location on a 300dpi printer 
than it will on a 600dpi printer.  
Consider the unit of measure relative 
to the resolution of the targeting 
printer before printing.



General Syntax and Library List  I-397
Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
   03  WPRTDATA-TEXT-COLOR REDEFINES
       WPRTDATA-SET-STD-FONT.   PIC 9(9) COMP-5.

Return Values

This option returns text color prior to the change.  Use this value to restore a 
temporary change.

Description

When printing, color resolution is a result of a combination of three basic 
colors; Red, Green, and Blue (RGB).  The intensity of each color in the mix 
is determined by a number between “0” and “255”. For example, the lowest 
possible intensity, (0,0,0), produces black, and the highest possible intensity 
(255,255,255), produces white.  This formula of three numbers is referred to 
as the COLORREF.  

The ACUCOBOL-GT runtime does not provide a mechanism with which to 
determine the COLORREF.  If you want to specify a color, you must 
calculate the value yourself.  The following C formula can be used to 
calculate the COLORREF:
(((BYTE) (R) | ((WORD) (BYTE 9g)) <<8))|(((DWORD) (BYTE) (b)) <<16))

See your Windows API documentation for more information about RGB 
colors and COLORREF values.

The  printer must be open to perform this operation.  There is no need to reset 
this function.  WPRTDATA-TEXT-COLOR should be initialized prior to 
use.  This operation affects the color used with subsequent WRITE 
statements.  Cursor position is not affected by this operation.  This operation 
is ignored on non-color printers.  WINPRINT-SET-TEXT-COLOR has the 
following value:



I-398  ACUCOBOL-GT Library Routines
WPRTDATA-TEXT-COLOR -- Specifies the color used to write text.  The 
color is indicated by the COLORREF, representing the percentage used of 
the three basic colors; Red, Green, and Blue (RGB).  The default of “0” is 
solid black.  

Example

This example will set the current text foreground color to light blue when 
printed on a color printer:

INITIALIZE WPRTDATA-TEXT-COLOR.
MOVE 96 TO RGB-RED.
MOVE 106 TO RGB-GREEN.
MOVE 232 TO RBG-BLUE.
PERFORM CALC-COLORREF.
MOVE COLORREF TO WPRTDATA-TEXT-COLOR.
CALL "WIN$PRINTER" USING
     WINPRINT-SET-TEXT-COLOR
     WPRTDATA-TEXT-COLOR
     GIVING CALL-RESULT.

The sample program “graphprn.cbl” contains an example of using the C 
formula described above to determine the RGB color value 
(CALC-COLORREF).

WINPRINT-SET-FONT

This operation code allows you to select any printer font for spooled reports.  

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SET-FONT, WINPRINT-DATA
    GIVING RESULT

Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
   03 WPRTDATA-SET-FONT REDEFINES
      WPRTDATA-SET-STD-FONT.
      05 WPRTDATA-FONT     HANDLE OF FONT.



General Syntax and Library List  I-399
Description

First, obtain a handle to the desired font with the W$FONT routine described 
earlier.  Once you have the font handle, you can select it as the current font 
by setting WPRTDATA-FONT to the desired font handle and using 
WINPRINT-SET-FONT.  The font is now associated with the current printer 
until you change the font again or the runtime finishes.  Note that the font is 
only used for reports printed by the runtime’s spooler handler, which you use 
when you assign a print file to “-P SPOOLER”.  

Fonts are device-specific.  If you let the user change printers via 
WIN$PRINTER’s setup operation, then the user should get a new font handle 
from W$FONT and associate it with the new printer.  

You should not DESTROY a font handle that is currently selected as the print 
font, unless the printer is closed and you will not open it again.  If you do, 
then that font will not be available to the printer.  

You may use proportionally spaced fonts in print files.  The runtime handles 
the proportional spacing correctly (in other words, it does not use a fixed 
width for each character).  The runtime computes the number of columns that 
fit on a page for a proportional font by using the font’s average width.  (See 
“winspool.cbl” for a sample program that uses arbitrary fonts chosen by the 
user.)

WINPRINT-SET-LINES-PER-PAGE

This operation code sets the number of lines that should be printed on a page. 

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SET-LINES-PER-PAGE, WINPRINT-DATA
    GIVING RESULT

Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
   03 WPRT-PAGE-LAYOUT REDEFINES 



I-400  ACUCOBOL-GT Library Routines
      WPRTDATA-SET-STD-FONT.
      05 WPRTDATA-LINES-PER-PAGE       UNSIGNED-SHORT.
      05 WPRTDATA-COLUMNS-PER-PAGE     UNSIGNED-SHORT.

Description

Printing forms using the Windows spooler is sometimes difficult because you 
cannot easily control the height of a chosen font.  Most Windows fonts do not 
conform to older standards about font height.  For example, 12 point Courier 
does not necessarily print at 6 lines per inch.  You can use the 
“WINPRINT-GET-PAGE-LAYOUT” operation to determine the number of 
lines that fit on a page for a given font.  Sometimes, however, you need to be 
able to set the line height explicitly.

This operation allows you to do that.  It sets the number of lines that should 
be printed on a page.  The runtime uses this number to adjust the height of the 
printed font.  Note that the font is not scaled--it is simply printed in the 
specified vertical space.  

In order to specify the number of lines that will fit on a page, you must 
consider the height or vertical resolution of each line. 
WINPRINT-SET-LINES-PER-PAGE obtains the page height, calculates the 
physical margins of the page, and sets the font height.  The value of the font 
height includes the visible height of a letter plus its top and bottom margins.  
If your font height is 7 dots-per-inch (dpi), this includes the top and bottom 
margins of the font itself, so the actual font height might be only 5 dpi.  Note 
that these values differ from font to font.

When using this option, set the number of lines desired in 
WPRTDATA-LINES-PER-PAGE (also defined in “winprint.def”).  Then 
pass WINPRINT-DATA to the routine.  For example:
     * Set 60 lines per page 
          MOVE 60 TO WPRTDATA-LINES-PER-PAGE 
          CALL "WIN$PRINTER" 
             USING WINPRINT-SET-LINES-PER-PAGE,
             WINPRINT-DATA



General Syntax and Library List  I-401
You can set the lines per page with the spooler open or closed.  If you set it 
when it is open, then the new font height takes effect the next time the page 
position is advanced.  In either case, the lines per page is reset to the default 
value the next time the spooler is closed.  You can explicitly reset to the 
default font height by setting WPRTDATA-LINES-PER-PAGE to zero.  

Note: We do not recommend using this operation when printing with 
“-P SPOOLER-DIRECT” or “-Q <printername> DIRECT=ON”.  When 
you print in DIRECT mode, the Windows print spooler has no control over 
the printer, the printer is not initialized by the Windows printer driver.  This 
means that the print job uses the hardware defaults. For example, if you 
print in DIRECT mode to a printer with the hardware default paper size set 
to US letter format, that is the format used, even if the driver has A4 paper 
set as the default. In this situation, the operation is likely to return incorrect 
values.

WINPRINT-SET-MARGINS

This operation code allows you to set the margins on a report.  

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SET-MARGINS, WINPRINT-DATA
    GIVING RESULT

Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
   03 WPRTDATA-MARGINS REDEFINES
      WPRTDATA-SET-STD-FONT.
      05 WPRTDATA-TOP-MARGIN           PIC 9(7)V99 COMP-5.
      05 WPRTDATA-BOTTOM-MARGIN        PIC 9(7)V99 COMP-5.
      05 WPRTDATA-LEFT-MARGIN          PIC 9(7)V99 COMP-5.
      05 WPRTDATA-RIGHT-MARGIN         PIC 9(7)V99 COMP-5.
      05 WPRTDATA-MARGIN-UNITS         UNSIGNED-SHORT.

Note: This group item should be initialized before it is used.



I-402  ACUCOBOL-GT Library Routines
Description

When combined with the ability to set the exact height of a line (see 
WINPRINT-SET-LINES-PER-PAGE), this operation lets you reliably print 
on pre-printed forms with many different devices.  
WINPRINT-SET-MARGINS sets the margins for the next report if the 
printer is not open, or for the current report if the printer is open.  If the printer 
is open and the current page is blank, the margin change occurs for the 
current page.  Otherwise, the margin change occurs on the next page.  

Note: Most printers have minimum margins that cannot physically be 
printed in, regardless of the setting of the logical margins.

Setting margins

The four margin fields should be set to the values you want to use.  For 
example, to set half-inch top and bottom margins you would move “.5” to 
WPRTDATA-TOP-MARGIN and WPRTDATA-BOTTOM-MARGIN.  
You can set a margin to zero to use the printer’s default margins.  

Note: This operation is calculates the printable area of a report when 
determining the capacity for lines or columns. Setting a value for 
WPRTDATA-RIGHT-MARGIN does not cause the print line to be 
truncated. 

Before you can set the margins, the MARGIN-UNITS field must be set to a 
level 78 that describes the measurement units.  The choices are:

WPRTMARGIN-DEFAULT-MARGINS -- Use printer default margins 
(this is the default).

WPRTMARGIN-PIXELS -- Margins expressed in printer-dependent units.  
Laser printers, for example, use either 300 or 600 units per inch.

WPRTMARGIN-CELLS -- Margins expressed as a number of rows or 
columns based on the currently selected font.

WPRTMARGIN-INCHES -- Margins expressed in inches.



General Syntax and Library List  I-403
WPRTMARGIN-CENTIMETERS -- Margins expressed in centimeters. 

To use the margin-setting feature to simplify printing on pre-printed forms, 
we suggest this sequence:

1. Establish which printer you want to use.

2. Select the font.

3. Set the margins.

4. Set the line height.

It is important to note that step (3) should precede step (4) because the line 
height depends on the top and bottom margins that you have set.  For an 11” 
form, a typical scenario might be:
Font: Courier New, 12 point
Margins: .5" top and bottom
Lines per page: 60

This would result in 6 lines per inch with 3 blank lines at the top and bottom 
of each page.  The code to set the margins for this case would be:
INITIALIZE WPRTDATA-MARGINS
MOVE .5 TO WPRTDATA-TOP-MARGIN, WPRTDATA-BOTTOM-MARGIN
MOVE WPRTMARGIN-INCHES TO WPRTDATA-MARGIN-UNITS
CALL "WIN$PRINTER" USING WINPRINT-SET-MARGINS, 
      WINPRINT-DATA

WINPRINT-SET-STD-FONT

This operation code allows you to select one of a number of predefined fonts 
to use for the report.  You must make this selection prior to opening the print 
file.  

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SET-STD-FONT, WINPRINT-DATA
    GIVING RESULT

Parameters

WINPRINT-DATA   Group item defined in “winprint.def” as follows:



I-404  ACUCOBOL-GT Library Routines
01 WINPRINT-DATA.
   03 WPRTDATA-SET-STD-FONT.
      05 WPRTDATA-STD-FONT            PIC X COMP-X.
      05 FILLER                       PIC X(21).

Description

The font selected is used until explicitly changed or the runtime exits.  You 
specify which font to use by moving one of the following level 78 values to 
WPRTDATA-STD-FONT before calling WIN$PRINTER:

WPRTFONT-DEFAULT -- Requests the printer’s default font.  This is the 
initial setting.  

WPRTFONT-COURIER-12 -- Requests a 12-point TrueType Courier font.

WPRTFONT-COURIER-12-COMP  Requests a 12-point TrueType 
Courier font and rescales it so that at least 132 columns of print will fit on a 
page.  This is similar to the compressed print mode supported by many 
printers.

WPRTFONT-COURIER-10 -- Requests a 10-point TrueType Courier font.  

WPRTFONT-COURIER-10-COMP - Requests a 10-point TrueType 
Courier font and rescales it so that at least 132 columns of print will fit on a 
page.  

When you are using either of the compressed print modes, the rescaling of 
the font occurs when the print file is opened.  This ensures that the font is 
scaled correctly for the current page size and orientation.  The rescaling 
operation normally results in skinny characters, but can actually result in 
stretched characters if more than 132 characters would naturally fit on a page.  
The runtime asks the Windows TrueType font engine to scale the font to fit 
exactly 132 characters on a line even if more would normally fit.  

You should be aware that the TrueType font engine does not always produce 
exact results, particularly when rescaling a font.  You may end up with a font 
that fits more than 132 columns on a page.  You may also end up with a font 
that is a slightly different height when compressed than when not.  You can 
also end up with a font that is only vaguely related to the requested one if, for 
example, the user has removed the TrueType fonts or if the print driver 



General Syntax and Library List  I-405
cannot handle TrueType fonts.  These effects are due to the internal workings 
of the TrueType font engine and the way that Windows handles fonts in 
general.  Under Windows, an application cannot select a particular font.  
Instead, it describes the font’s characteristics and Windows selects the closest 
matching font using a weighted-penalty system for deciding which font is the 
closest match.  Sometimes, no font matches exactly, so Windows substitutes 
the font that has the closest match.  

WINPRINT-SET-BKMODE

Usage
CALL "WIN$PRINTER" 
     USING WINPRINT-SET-BKMODE 
     desired-bkmode

Parameters

bkmode

bkmode may be either:
78 WPRT-BKMODE-TRANSPARENT              VALUE 1.
78 WPRT-BKMODE-OPAQUE                   VALUE 2.

Description

WINPRINT-SET-BKMODE enables you to set the background mode for 
printing. This is useful for adding watermark effect to prints.

By calling this op-code, the printing mode of the current print job is set 
accordingly.  Note that if you have multiple print jobs, and you are not setting         
the current print job, WINPRINT-SET-JOB must be called prior to this 
op-code to target the correct print.  A call to this function with no active print 
will be ignored, and a value that differs from those specified above will be 
ignored.



I-406  ACUCOBOL-GT Library Routines
WINPRINT-SELECTION op-codes

The following operation codes use the data item WINPRINT-SELECTION 
(defined in “winprint.def”).  These operations are used to set the properties of 
a printer, including features such as printer selection, number of copies, page 
orientation and collating.
WINPRINT-GET-CURRENT-INFO
WINPRINT-GET-CURRENT-INFO-EX
WINPRINT-GET-NO-PRINTERS
WINPRINT-GET-PRINTER-INFO
WINPRINT-GET-PRINTER-INFO-EX
WINPRINT-GET-PRINTER-STATUS
WINPRINT-SET-PRINTER
WINPRINT-SET-PRINTER-EX
WINPRINT-SETUP-EX 

WINPRINT-GET-CURRENT-INFO

This operation code returns information about the currently selected printer.  

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-CURRENT-INFO, WINPRINT-SELECTION
    GIVING RESULT

Parameters

WINPRINT-SELECTION   Group item defined in “winprint.def” as 
follows:
01 WINPRINT-SELECTION.
   03 WINPRINT-NAME                    PIC X(80).
   03 WINPRINT-PORT                    PIC X(80).
   03 WINPRINT-DRIVER                  PIC X(80).
   03 WINPRINT-DRV-VERSION             SIGNED-INT.
   03 WINPRINT-NO-OF-PRINTERS          SIGNED-SHORT.
      88 WPRTERR-NO-PRINTERS           VALUE -1.
   03 WINPRINT-IS-DEFAULT              SIGNED-SHORT.
      88 WPRT-IS-NOT-DEFAULT           VALUE 0.
      88 WPRT-IS-DEFAULT               VALUE 1.
   03 WINPRINT-COPIES                  SIGNED-SHORT.



General Syntax and Library List  I-407
      88 WPRT-HAS-NO-COPY              VALUE 1.
   03 WINPRINT-ORIENTATION             SIGNED-SHORT.
      88 WPRT-HAS-NO-LANDSCAPE         VALUE 0.
      88 WPRT-HAS-LANDSCAPE            VALUE 1.
   03 WINPRINT-QUALITY                 SIGNED-SHORT.
   03 WINPRINT-CURR-ORIENTATION        SIGNED-SHORT.
   03 WINPRINT-CURR-COPIES             SIGNED-SHORT.

Return Values

A printer is considered selected if it has performed a print using 
“-Q <printername>” or “-P SPOOLER”, or if WIN$PRINTER has executed 
using any of the WINPRINT-DATA op-codes.   If no printer is selected, this 
operation will return information about the Windows default printer. 

Description

The printer may be open or closed to perform these functions.  There is no 
need to reset any of these functions.  WINPRINT-SELECTION should be 
initialized prior to use.  WINPRINT-GET-CURRENT-INFO has the 
following values:

WINPRINT-NAME -- Returns the name of the currently selected printer.

WINPRINT-PORT -- Specifies the printer port (or UNC address) of the 
currently selected printer.

WINPRINT-DRIVER -- Specifies the printer driver name.

WINPRINT-DRV-VERSION -- Specifies the version number of the printer 
driver (vendor-specific).

WINPRINT-NO-OF-PRINTERS -- Specifies the number of the currently 
selected printer in the runtime’s internal list.

WINPRINT-IS-DEFAULT -- Determines if the printer is the Windows 
print spooler default printer. If yes, the returned value is 
WPRT-IS-DEFAULT.

WINPRINT-COPIES -- Returns the number of copies the printer is capable 
of producing. Typically this number is 99 or 999.



I-408  ACUCOBOL-GT Library Routines
WINPRINT-ORIENTATION -- Determines if the printer supports 
landscape orientation. If yes, the return value is WPRT-HAS-LANDSCAPE.

WINPRINT-QUALITY -- Returns the current setting for the varying grades 
of print quality.  

This value applies to dot-matrix printers.  Most inkjet and laser printers do 
not support this method of determining the level of print quality. 

WINPRINT-CURR-COPIES -- Returns the current default value for the 
number of copies to print.  

WINPRINT-GET-CURRENT-INFO-EX

This operation code returns additional information about the currently 
selected printer, extending the functionality of  
WINPRINT-GET-CURRENT-INFO. 

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-CURRENT-INFO-EX, WINPRINT-SELECTION
    GIVING RESULT

Parameters

WINPRINT-SELECTION   Group item defined in “winprint.def” as 
follows:
01  WINPRINT-SELECTION.
   03 WINPRINT-NAME                    PIC X(80).
   03 WINPRINT-PORT                    PIC X(80).
   03 WINPRINT-DRIVER                  PIC X(80).
   03 WINPRINT-DRV-VERSION             SIGNED-INT.
   03 WINPRINT-NO-OF-PRINTERS          SIGNED-SHORT.
   03 WINPRINT-IS-DEFAULT              SIGNED-SHORT.
   03 WINPRINT-COPIES                  SIGNED-SHORT.
   03 WINPRINT-ORIENTATION             SIGNED-SHORT.
   03 WINPRINT-QUALITY                 SIGNED-SHORT.
   03 WINPRINT-CURR-ORIENTATION        SIGNED-SHORT.
   03 WINPRINT-CURR-COPIES             SIGNED-SHORT.
   03 WINPRINT-DUPLEX                  SIGNED-SHORT.
   03 WINPRINT-COLLATE                 SIGNED-SHORT.



General Syntax and Library List  I-409
   03 WINPRINT-COLOR                   SIGNED-SHORT.
   03 WINPRINT-CURR-DUPLEX             SIGNED-SHORT.
   03 WINPRINT-CURR-COLLATE            SIGNED-SHORT.
   03 WINPRINT-CURR-PAPERSIZE          SIGNED-SHORT.
   03 WINPRINT-CURR-TRAY               SIGNED-SHORT.
   03 WINPRINT-CURR-COLOR              SIGNED-SHORT.
   03 WINPRINT-JOB-TITLE               PIC X(80).

This group item has numerous conditional variables.  See “winprint.def” for 
the complete list.

Return Values

A printer is considered selected if it has performed a print using “-Q 
<printername>” or “-P SPOOLER”, or if WIN$PRINTER has executed 
using any of the WINPRINT-DATA op-codes.  If no printer is selected, this 
operation will return information about the Windows default printer.  

Description

The printer may be open or closed to perform these functions.  There is no 
need to reset any of these functions.  WINPRINT-SELECTION should be 
initialized prior to use.  WINPRINT-GET-CURRENT-INFO-EX has all the 
same values as WINPRINT-GET-CURRENT-INFO plus the following 
additional values:

WINPRINT-DUPLEX -- Determines if the currently selected printer 
supports duplex printing. If yes, the returned value is WPRT-HAS-DUPLEX.

WINPRINT-COLLATE -- Determines if the currently selected printer 
supports collating. If yes, the returned value is WPRT-HAS-COLLATE.

WINPRINT-COLOR -- Determines if the currently selected printer can 
print in color.  If color printing is supported, the returned value is 
WPRT-HAS-COLOR.

WINPRINT-CURR-DUPLEX -- Returns the current duplex setting of the 
printer. Possible values are: WPRT-SIMPLEX, 
WPRT-DUPLEX-VERTICAL, and WPRT-DUPLEX-HORIZONTAL.



I-410  ACUCOBOL-GT Library Routines
WINPRINT-CURR-COLLATE -- Determines if the collating feature of 
the currently selected printer is turned on or off.

WINPRINT-CURR-PAPERSIZE -- Returns the current paper size selected 
in the printer driver.  Values less than 42 should correspond to the 
PAPER-SIZES table in “winprint.def”.  Values greater than 41 and less than 
69 are defined by version 4.x of Windows NT.  Values greater than 68 and 
less than 119 are defined in Windows 2000.  Values greater than 118 and less 
than 256 are considered undefined.  Values greater than 255 are considered 
user defined.

WINPRINT-CURR-TRAY -- Returns the currently selected paper tray as 
defined in the printer driver. Values less than 16 should correspond to the 
PAPER-TRAYS table in “winprint.def”.  Values greater than 15 and less 
than 256 are considered undefined.  Values greater than 255 are considered 
device specific.

Values 12 and 13 are not defined in the PAPER-SIZES table in 
“winprint.def”.  This matches a similar gap in the Windows API.  Refer to 
“prndemox.cbl” for an example of how to compensate for these undefined 
values.   

WINPRINT-CURR-COLOR – Determines if the printer is in the proper 
mode to print in color.  If yes, WPRT-COLOR is returned.  Monochromatic 
printers or color printers with color support disabled return 
WPRT-MONOCHROME.

Note: When using one of these extended operations, it is best to pair it with 
a corresponding extended operation. For example, use 
WINPRINT-GET-CURRENT-INFO-EX with WINPRINT-SET-PRINTER-EX, 
instead of with WINPRINT-SET-PRINTER.

WINPRINT-GET-NO-PRINTERS

This operation code retrieves the number of printers installed on a system. 

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-NO-PRINTERS, WINPRINT-SELECTION
    GIVING RESULT



General Syntax and Library List  I-411
Parameters

WINPRINT-SELECTION   Group item defined in “winprint.def” as 
follows:
01 WINPRINT-SELECTION.
   03 WINPRINT-NAME                    PIC X(80).
   03 WINPRINT-PORT                    PIC X(80).
   03 WINPRINT-DRIVER                  PIC X(80).
   03 WINPRINT-DRV-VERSION             SIGNED-INT.
   03 WINPRINT-NO-OF-PRINTERS          SIGNED-SHORT.
      88 WPRTERR-NO-PRINTERS           VALUE -1.
   03 WINPRINT-IS-DEFAULT              SIGNED-SHORT.
      88 WPRT-IS-NOT-DEFAULT           VALUE 0.
      88 WPRT-IS-DEFAULT               VALUE 1.
   03 WINPRINT-COPIES                  SIGNED-SHORT.
      88 WPRT-HAS-NO-COPY              VALUE 1.
   03 WINPRINT-ORIENTATION             SIGNED-SHORT.
      88 WPRT-HAS-NO-LANDSCAPE         VALUE 0.
      88 WPRT-HAS-LANDSCAPE            VALUE 1.
   03 WINPRINT-QUALITY                 SIGNED-SHORT.
   03 WINPRINT-CURR-ORIENTATION        SIGNED-SHORT.
   03 WINPRINT-CURR-COPIES             SIGNED-SHORT.

Return Values

The number returned by this operation will be stored in 
WINPRINT-NO-OF-PRINTERS.  

The number in WINPRINT-NO-OF-PRINTERS may differ depending on 
the host operating system.  On a Windows 98 system, the number in 
WINPRINT-NO-OF-PRINTERS will represent the number of printers that 
are attached with a local driver. But in a Windows NT/Windows 2000 
environment, the number in WINPRINT-NO-OF-PRINTERS will represent 
the number of printers that are attached with a local driver and possibly 
include the number of remote printers with drivers stored on network servers.

Description

This op-code does not alter any of the current printer settings.  It is 
recommended, but not required, that this op-code be executed before the 
WINPRINT-GET-PRINTER-INFO op-code. 



I-412  ACUCOBOL-GT Library Routines
WINPRINT-GET-PRINTER-INFO
This operation code retrieves information about a particular printer. It does 
not alter any of the current printer settings.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-PRINTER-INFO, WINPRINT-SELECTION
    GIVING RESULT

Parameters

WINPRINT-SELECTION   Group item defined in “winprint.def” as 
follows:
01 WINPRINT-SELECTION.
   03 WINPRINT-NAME                    PIC X(80).
   03 WINPRINT-PORT                    PIC X(80).
   03 WINPRINT-DRIVER                  PIC X(80).
   03 WINPRINT-DRV-VERSION             SIGNED-INT.
   03 WINPRINT-NO-OF-PRINTERS          SIGNED-SHORT.
      88 WPRTERR-NO-PRINTERS           VALUE -1.
   03 WINPRINT-IS-DEFAULT              SIGNED-SHORT.
      88 WPRT-IS-NOT-DEFAULT           VALUE 0.
      88 WPRT-IS-DEFAULT               VALUE 1.
   03 WINPRINT-COPIES                  SIGNED-SHORT.
      88 WPRT-HAS-NO-COPY              VALUE 1.
   03 WINPRINT-ORIENTATION             SIGNED-SHORT.
      88 WPRT-HAS-NO-LANDSCAPE         VALUE 0.
      88 WPRT-HAS-LANDSCAPE            VALUE 1.
   03 WINPRINT-QUALITY                 SIGNED-SHORT.
   03 WINPRINT-CURR-ORIENTATION        SIGNED-SHORT.
   03 WINPRINT-CURR-COPIES             SIGNED-SHORT.

Return Values

Device names up to 80 characters in length will be stored. If a name is wider 
than 80 characters, it will be truncated from the rightmost position. These 
names may contain embedded spaces. The following information will be 
returned: 

WINPRINT-NAME -- Holds the name of the selected printer as given in the 
Printers folder under Settings.  



General Syntax and Library List  I-413
WINPRINT-PORT -- Holds the name of the selected port (or UNC address) 
as given in the properties of the printer. 

WINPRINT-DRIVER -- Holds the name of the assigned driver as seen in 
the properties of the printer. Note that for remote printers, this name will 
almost always be given as “winspool”. 

WINPRINT-DRV-VERSION -- Holds the version number of the driver for 
the requested printer.  

WINPRINT-NO-OF-PRINTERS -- Holds the number of the current 
printer.  Remember, this number is based on the order of printers in the 
computer’s internal printer list, and may change from time to time. It is not 
recommended to identify a printer by number unless you first enumerate the 
printers by calling WINPRINT-GET-NO-PRINTERS.  

WINPRINT-IS-DEFAULT -- Holds the value of 1 if the printer is the 
Windows default printer, otherwise it is set to 0.  

WINPRINT-COPIES -- Holds the maximum number of copies the printer 
is able to provide.  The most common value is 99.  If a printer is not copy 
capable, it will have the value of 1.  

WINPRINT-CURR-COPIES -- Returns the current number of copies the 
driver is set to print. Note that some printers return a value of 1, indicating 
that the original is copy number 1.  Other printers appear to return a value of 
0, indicating an original plus 0 copies.  You can change this value to the 
number of copies you wish to print.

WINPRINT-QUALITY -- Returns the current setting for the varying grades 
of print quality.  

This value applies to dot-matrix printers.  Most inkjet and laser printers do 
not support this method of determining the level of print quality.  

WINPRINT-ORIENTATION -- Holds a value indicating the orientation 
ability of the printer.  If portrait and landscape modes are supported, this 
value is set to 1. If only portrait mode is supported, it is set to 0.



I-414  ACUCOBOL-GT Library Routines
WINPRINT-CURR-ORIENTATION -- Returns the current orientation set 
in the driver, if portrait mode is active, the value is set to 1.  If landscape 
mode is active, the value is set to 2.  A value of 0 uses the printer’s default 
setting. You can change this value to set the orientation you prefer.

Description

Calling the op-code WINPRINT-GET-NO-PRINTERS before calling 
WINPRINT-GET-PRINTER-INFO is recommended. However, it is not 
necessary to perform WINPRINT-GET-NO-PRINTERS each time you run 
WINPRINT-GET-PRINTER-INFO. You can perform the operation once 
and store the data until it is needed.

Note: If you want to retrieve information about all the printers on the 
system, start with a value of  “1” in  WINPRINT-NO-OF-PRINTERS in the 
WINPRINT-SELECTION record. Increment this value by one for each 
new execution until a negative value is returned.  

WINPRINT-GET-PRINTER-INFO-EX

This operation code returns additional information about a particular printer, 
extending the functionality of WINPRINT-GET-PRINTER-INFO.  It does 
not alter any of the current printer settings.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-PRINTER-INFO-EX, WINPRINT-SELECTION
    GIVING RESULT

Parameters

WINPRINT-SELECTION   Group item defined in “winprint.def” as 
follows:
01  WINPRINT-SELECTION.
   03 WINPRINT-NAME                    PIC X(80).
   03 WINPRINT-PORT                    PIC X(80).
   03 WINPRINT-DRIVER                  PIC X(80).
   03 WINPRINT-DRV-VERSION             SIGNED-INT.
   03 WINPRINT-NO-OF-PRINTERS          SIGNED-SHORT.



General Syntax and Library List  I-415
   03 WINPRINT-IS-DEFAULT              SIGNED-SHORT.
   03 WINPRINT-COPIES                  SIGNED-SHORT.
   03 WINPRINT-ORIENTATION             SIGNED-SHORT.
   03 WINPRINT-QUALITY                 SIGNED-SHORT.
   03 WINPRINT-CURR-ORIENTATION        SIGNED-SHORT.
   03 WINPRINT-CURR-COPIES             SIGNED-SHORT.
   03 WINPRINT-DUPLEX                  SIGNED-SHORT.
   03 WINPRINT-COLLATE                 SIGNED-SHORT.
   03 WINPRINT-COLOR                   SIGNED-SHORT.
   03 WINPRINT-CURR-DUPLEX             SIGNED-SHORT.
   03 WINPRINT-CURR-COLLATE            SIGNED-SHORT.
   03 WINPRINT-CURR-PAPERSIZE          SIGNED-SHORT.
   03 WINPRINT-CURR-TRAY               SIGNED-SHORT.
   03 WINPRINT-CURR-COLOR              SIGNED-SHORT.
   03 WINPRINT-JOB-TITLE               PIC X(80).

This group item has numerous conditional variables.  See “winprint.def” for 
the complete list.

Return Values

This operation returns information about the currently selected printer using 
the values described in WINPRINT-GET-PRINTER and the values 
described below.  

Description

The printer may be open or closed to perform these functions.  There is no 
need to reset any of these functions.  WINPRINT-SELECTION should be 
initialized prior to use.  WINPRINT-GET-PRINTER-INFO-EX has all the 
same values as WINPRINT-GET-PRINTER-INFO plus the following 
additional values:

WINPRINT-DUPLEX -- Determines if the currently selected printer 
supports duplex printing. If yes, the returned value is WPRT-HAS-DUPLEX.

WINPRINT-COLLATE -- Determines if the currently selected printer 
supports collating. If yes, the returned value is WPRT-HAS-COLLATE.

WINPRINT-COLOR -- Determines if the currently selected printer can 
print in color.  If color printing is supported, the returned value is 
WPRT-HAS-COLOR.



I-416  ACUCOBOL-GT Library Routines
WINPRINT-CURR-DUPLEX -- Returns the current duplex setting of the 
printer. Possible values are: WPRT-SIMPLEX, 
WPRT-DUPLEX-VERTICAL, and WPRT-DUPLEX-HORIZONTAL.

WINPRINT-CURR-COLLATE -- Determines if the collating feature of 
the currently selected printer is turned on or off.

WINPRINT-CURR-PAPERSIZE -- Returns the current paper size selected 
in the printer driver.  Values less than 42 should correspond to the 
PAPER-SIZES table in “winprint.def”.  Values greater than 41 and less than 
69 are defined by version 4.x of Windows NT.  Values greater than 68 and 
less than 119 are defined in Windows 2000.  Values greater than 118 and less 
than 256 are considered undefined.  Values greater than 255 are considered 
user defined.

WINPRINT-CURR-TRAY -- Returns the currently selected paper tray as 
defined in the printer driver. Values less than 16 should correspond to the 
PAPER-TRAYS table in “winprint.def”.  Values greater than 15 and less 
than 256 are considered undefined.  Values greater than 255 are considered 
device specific.

Values 12 and 13 are not defined in the PAPER-SIZES table in 
“winprint.def”.  This matches a similar gap in the Windows API.  Refer to 
“prndemox.cbl” for an example of how to compensate for these undefined 
values. 

WINPRINT-CURR-COLOR -- Determines if the printer is in the proper 
mode to print in color.  If yes, WPRT-COLOR is returned.  Monochromatic 
printers or color printers with color support disabled return 
WPRT-MONOCHROME.

Note: When using one of these extended operations, it is best to pair it with 
a corresponding extended operation. For example, use 
WINPRINT-GET-PRINTER-INFO-EX with WINPRINT-SET-PRINTER-EX, 
instead of with WINPRINT-SET-PRINTER.

WINPRINT-GET-PRINTER-STATUS

This operation code allows you to check the current status of a printer.  This 
can be used to see if a printer is available to perform a print job or not.



General Syntax and Library List  I-417
In some cases the printer may respond that it is ready when, in fact, there are 
jobs pending because the printer is out of paper or paused.  (This is a feature 
of the Windows API.)  We recommend that you check condition of the 
printer using the WINPRINT-JOB-STATUS operation codes.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-PRINTER-STATUS, WINPRINT-SELECTION
    GIVING RESULT

Parameters

WINPRINT-SELECTION   Group item defined in “winprint.def” as 
follows:
01 WINPRINT-SELECTION.
   03 WINPRINT-NAME                    PIC X(80).
   03 WINPRINT-PORT                    PIC X(80).
   03 WINPRINT-DRIVER                  PIC X(80).
   03 WINPRINT-DRV-VERSION             SIGNED-INT.
   03 WINPRINT-NO-OF-PRINTERS          SIGNED-SHORT.
      88 WPRTERR-NO-PRINTERS           VALUE -1.
   03 WINPRINT-IS-DEFAULT              SIGNED-SHORT.
      88 WPRT-IS-NOT-DEFAULT           VALUE 0.
      88 WPRT-IS-DEFAULT               VALUE 1.
   03 WINPRINT-COPIES                  SIGNED-SHORT.
      88 WPRT-HAS-NO-COPY              VALUE 1.
   03 WINPRINT-ORIENTATION             SIGNED-SHORT.
      88 WPRT-HAS-NO-LANDSCAPE         VALUE 0.
      88 WPRT-HAS-LANDSCAPE            VALUE 1.
   03 WINPRINT-QUALITY                 SIGNED-SHORT.
   03 WINPRINT-CURR-ORIENTATION        SIGNED-SHORT.
   03 WINPRINT-CURR-COPIES             SIGNED-SHORT.

Return Values

This operation returns the printer status as defined in the Windows API.  

A great variety of conditions can affect a single print job and printer status 
may be the result of a combination of values.  This makes it impossible to 
catalog all possible status settings in “winprint.def”.  Refer to the Windows 
API documentation for a description of any status not covered in that file.



I-418  ACUCOBOL-GT Library Routines
Description

This operation may be called any time, whether the printer is open or not. 
There is no need to reset this function. WINPRINT-SELECTION should be 
initialized prior to use.  WINPRINT-NAME must be set to the name of the 
desired printer.  WINPRINT-NAME passes the printer name as an input 
variable. Printer settings are not modified by this operation.

Note: If this function is executed on a networked printer with a missing or 
malfunctioning network, your application may appear to hang.   Once the 
timeout has completed, your application will resume. This is a feature of 
the Windows API, not an effect of the runtime.

WINPRINT-SET-PRINTER

This operation code allows you to select a specific printer and set properties.  Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SET-PRINTER, WINPRINT-SELECTION
    GIVING RESULT

Parameters

WINPRINT-SELECTION   Group item defined in “winprint.def” as 
follows:
01 WINPRINT-SELECTION.
   03 WINPRINT-NAME                    PIC X(80).
   03 WINPRINT-PORT                    PIC X(80).
   03 WINPRINT-DRIVER                  PIC X(80).
   03 WINPRINT-DRV-VERSION             SIGNED-INT.
   03 WINPRINT-NO-OF-PRINTERS          SIGNED-SHORT.
      88 WPRTERR-NO-PRINTERS           VALUE -1.
   03 WINPRINT-IS-DEFAULT              SIGNED-SHORT.
      88 WPRT-IS-NOT-DEFAULT           VALUE 0.
      88 WPRT-IS-DEFAULT               VALUE 1.
   03 WINPRINT-COPIES                  SIGNED-SHORT.
      88 WPRT-HAS-NO-COPY              VALUE 1.
   03 WINPRINT-ORIENTATION             SIGNED-SHORT.
      88 WPRT-HAS-NO-LANDSCAPE         VALUE 0.
      88 WPRT-HAS-LANDSCAPE            VALUE 1.
   03 WINPRINT-QUALITY                 SIGNED-SHORT.



General Syntax and Library List  I-419
   03 WINPRINT-CURR-ORIENTATION        SIGNED-SHORT.
   03 WINPRINT-CURR-COPIES             SIGNED-SHORT.

Description

WINPRINT-NAME must hold the name of the printer as received by 
WINPRINT-GET-PRINTER-INFO.  If WINPRINT-COPIES is set to a 
positive value greater than one, you may use WINPRINT-CURR-COPIES to 
set the number of copies to print.  If WINPRINT-CURR-COPIES is set to 
zero, the printer driver default is used.  If WINPRINT-ORIENTATION is set 
to a positive value, then WINPRINT-CURR-ORIENTATION may be set to 
any of the following values:

WPRTSEL-ORIENT-DEFAULT -- For printer default.  

WPRTSEL-ORIENT-PORTRAIT -- For portrait orientation.  

WPRTSEL-ORIENT-LANDSCAPE -- For landscape orientation.  

WINPRINT-QUALITY may be used to select varying grades of print 
quality.  One may use the predefined constants for this purpose: 

WPRTSEL-QUALITY-DEFAULT -- For printer default.  

WPRTSEL-QUALITY-HIGH -- For high quality.  

WPRTSEL-QUALITY-MEDIUM -- For medium quality.  

WPRTSEL-QUALITY-LOW --  For low quality.  

WPRTSEL-QUALITY-DRAFT -- For draft quality.    

Note: WINPRINT-QUALITY only applies to dot-matrix-type printers.  
Most inkjet and laser printers do not support this method of determining 
different levels of print quality.  

Specifying a printer

The steps for actually specifying a printer differ depending on whether or not 
you know the name of the printer. 



I-420  ACUCOBOL-GT Library Routines
If you know the name of the printer, set WINPRINT-NO-OF-PRINTERS to 
0, and set WINPRINT-NAME to the name of the printer as given in the 
Printers folder under Settings. Specify any settings you desire and call 
“WIN$PRINTER” using WINPRINT-SET-PRINTER.

If you don’t know the name of the printer, start by calling “WIN$PRINTER 
using WINPRINT-GET-NO-PRINTERS and storing the result in an 
appropriate variable. Next, enumerate the printers by iterating through the 
available printers starting with 1, ending with the value obtained from 
WINPRINT-NO-OF-PRINTERS.  Stop when you have found the printer you 
want.  Specify the settings you desire and call “WIN$PRINTER” again, this 
time using WINPRINT-SET-PRINTER.  An example of this scenario can be 
found in the sample program “prndemo.cbl”.

The WINPRINT-SET-PRINTER operation also allows you to change some 
printer settings while the printer is open, or spooling.  For example, if you are 
printing a portrait-oriented report that contains a single-page table in 
landscape format, you would need to change the page orientation during 
printing.   When you are using this feature, the only properties you can alter 
for this op-code are those controlling the number of copies, the page 
orientation and the print quality.  All other properties for this op-code use the 
existing settings.  

Comments

If you call WINPRINT-SET-PRINTER on an open print job, there is  an 
implicit form feed.  WINPRINT-SET-PRINTER must be called before you 
begin to print the page with the different setting, and after all printing is done 
on the page immediately preceding the page with the different setting.  When 
the current page is finished, the print cursor is positioned at the top leftmost 
point on the new page.  The new page accepts the current values specified for 
number of copies, page orientation and print quality, provided they are within 
legal parameters for the particular setting.  

Because this feature of  WINPRINT-SET PRINTER occurs during a print 
job, it alters the document being printed, particularly by setting any current 
page margins to the printer default values.  This means that if you have 
customized margins and you call WINPRINT-SET-PRINTER on an open 
printer, you will have to reset the margins after the call to reestablish your 
custom margin settings. 



General Syntax and Library List  I-421
Margin limitations may vary from portrait to landscape on the same printer 
and you may not be able to specify the same values for both orientations.

Changing the output device with this operation will reset any columns you 
have set using WINPRINT-COLUMN op-codes.

Example

Here is an example of how to specify a printer named “Gutenberg”:
INITIALIZE WINPRINT-NO-OF-PRINTERS.
MOVE "Gutenberg" TO WINPRINT-NAME.
CALL "WIN$PRINTER" 
    USING WINPRINT-GET-PRINTER-INFO WINPRINT-SELECTION.

*we want to set landscape orientation 

MOVE WPRTSEL-ORIENT-LANDSCAPE TO WINPRINT-CURR-ORIENTATION.

*with this call, subsequent print jobs will print in landscape 
*orientation from Gutenberg

CALL "WIN$PRINTER" 
    USING WINPRINT-SET-PRINTER WINPRINT-SELECTION.

WINPRINT-SET-PRINTER-EX

This operation code allows you to select a specific printer and set properties, 
extending the functionality of  WINPRINT-SET-PRINTER. 

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SET-PRINTER-EX, WINPRINT-SELECTION

Parameters

WINPRINT-SELECTION   Group item defined in “winprint.def” as 
follows:
01  WINPRINT-SELECTION.
   03 WINPRINT-NAME                    PIC X(80).
   03 WINPRINT-PORT                    PIC X(80).
   03 WINPRINT-DRIVER                  PIC X(80).



I-422  ACUCOBOL-GT Library Routines
   03 WINPRINT-DRV-VERSION             SIGNED-INT.
   03 WINPRINT-NO-OF-PRINTERS          SIGNED-SHORT.
   03 WINPRINT-IS-DEFAULT              SIGNED-SHORT.
   03 WINPRINT-COPIES                  SIGNED-SHORT.
   03 WINPRINT-ORIENTATION             SIGNED-SHORT.
   03 WINPRINT-QUALITY                 SIGNED-SHORT.
   03 WINPRINT-CURR-ORIENTATION        SIGNED-SHORT.
   03 WINPRINT-CURR-COPIES             SIGNED-SHORT.
   03 WINPRINT-DUPLEX                  SIGNED-SHORT.
   03 WINPRINT-COLLATE                 SIGNED-SHORT.
   03 WINPRINT-COLOR                   SIGNED-SHORT.
   03 WINPRINT-CURR-DUPLEX             SIGNED-SHORT.
   03 WINPRINT-CURR-COLLATE            SIGNED-SHORT.
   03 WINPRINT-CURR-PAPERSIZE          SIGNED-SHORT.
   03 WINPRINT-CURR-TRAY               SIGNED-SHORT.
   03 WINPRINT-CURR-COLOR              SIGNED-SHORT.
   03 WINPRINT-JOB-TITLE               PIC X(80).

This group item has numerous conditional variables.  See “winprint.def” for 
the complete list.

Description

The printer may be open or closed to perform these functions.  There is no 
need to reset any of these functions.  WINPRINT-SELECTION should be 
initialized prior to use.  WINPRINT-SET-PRINTER-EX has all the same 
values as WINPRINT-SET-PRINTER plus the following additional values:

WINPRINT-CURR-DUPLEX -- If WINPRINT-DUPLEX is set to a 
positive value greater than one, you may set this to one of the following 
values: 
WPRT-SIMPLEX 
WPRT-DUPLEX-VERTICAL
WPRT-DUPLEX-HORIZONTAL

WINPRINT-CURR-COLLATE -- If WINPRINT-COLLATE is set to a 
positive value greater than one, you may use WINPRINT-CURR-COLLATE 
to turn collating on or off.

WINPRINT-CURR-PAPERSIZE -- Because of the huge variety of paper 
sizes supported by different printers, this can be set to any value.  Values less 
than 42 should correspond to the PAPER-SIZES table in “winprint.def”.  



General Syntax and Library List  I-423
Values greater than 41 and less than 69 are defined by version 4.x of 
Windows NT.  Values greater than 68 and less than 119 are defined in 
Windows 2000.  Values greater than 118 and less than 256 are undefined.  
Values greater than 255 are user defined.  The runtime accepts any value, no 
validation is performed.

WINPRINT-CURR-TRAY  -- Because of the huge variety of paper trays 
supported by different printers, this can be set to any value.  Values less than 
16 should correspond to the PAPER-TRAYS table in “winprint.def”.  Values 
greater than 15 and less than 256 are undefined.  Values greater than 255 are 
device specific.  The runtime accepts any value, no validation is performed.

Values 12 and 13 are not defined in the PAPER-TRAYS table in 
“winprint.def”.  This matches a similar gap in the Windows API.  Refer to 
“prndemox.cbl” for an example of how to compensate for these undefined 
values. 

WINPRINT-CURR-COLOR -- If WINPRINT-COLOR is set to a positive 
value greater than one, you may use this to turn color printing on or off.

Note: When using one of these extended operations, it is best to pair it with 
a corresponding extended operation. For example, use 
WINPRINT-GET-CURRENT-INFO-EX with WINPRINT-SET-PRINTER-EX, 
instead of with WINPRINT-SET-PRINTER.

WINPRINT-SETUP-EX 

Usage
CALL "WIN$PRINTER" 
     USING WINPRINT-SETUP-EX WPRTDATA-SETUP-EX-FLAGS.
or
        CALL "WIN$PRINTER" USING WINPRINT-SETUP-EX.

Parameters

This op-code has an optional parameter (described in winprint.def):

WPRTDATA-SETUP-EX-FLAGS



I-424  ACUCOBOL-GT Library Routines
This parameter may be set to one of these values:

WPRT-PRINTTOFILE (32) — By setting this, the Print To File checkbox is 
checked when the dialog is shown, which means when you open the print, a 
file save dialog will automatically show.  You can also see this if, after this 
call, you use the WINPRINT-GET-CURRENT-INFO-EX to update the 
content of WINPRINT-SELECTION, in which case the WINPRINT-PORT 
will contain the string “FILE:”.  Note that if you want to print to file and do 
not want to have the dialog show, set the environment variable 
WIN-SPOOLER-PORT to a filename of your choice prior to the OPEN 
statement.  Note that this file does not have to exist, but it must be a valid 
filename.  If it does exist, it will be overwritten.  This flag may be combined 
with WPRT-DISABLEPRINTTOFILE, for example:
ADD 32 524288 GIVING WPRTDATA-SETUP-EX-FLAGS

WPRT-DISABLEPRINTTOFILE (524288)  — By setting this, the Print to 
File checkbox will show, but appears disabled so the user cannot change it.  
This flag may be combined with WPRT-PRINTTOFILE, for example:
ADD 32 524288 GIVING WPRTDATA-SETUP-EX-FLAGS

WPRT-HIDEPRINTTOFILE (1048576)  — This will remove the Print to 
File checkbox, so it will not appear on the printer selection dialog.

Description

This op-code is used to invoke the Microsoft SDK PrintDlgEx printer dialog.  
Note that this printer dialog is considered a more modern and feature-rich 
function than its predecessors (PrintDlg, PageSetup) and is fully supported 
on Windows Vista. 

Comments

This op-code requires Windows 2000 or later; if you try to execute this call 
on a machine equipped with Win9x, WinME, or Win NT of any version, it 
will return the error code:

WPRTERR-UNSUPPORTED (0)



General Syntax and Library List  I-425
It also requires that the application display a window prior to the call of this 
op-code.  If your application has not displayed a window and you call this 
op-code, the following error code is returned:

WPRTERR-WINDOW-REQUIRED (-14)

This works also in thin client environments. Note that in thin client 
environments, Windows print will occur on the client side with the resources 
available to the client.

If you experience problems with execution, use the A-TRACE environment 
variable. By setting this and a trace file, both the return code from the dialog 
and the COM error that may have happened will be written to the trace file.

WINPRINT-COLUMN op-codes

WINPRINT-COLUMN takes the standard print line supplied by the COBOL 
program and breaks it up into “zones” of data, where each zone is printed at 
a specified column position on the page.  Initially, there is only one column 
that starts at the left margin, has no “separation zone” between columns and 
has an alignment of WPRTALIGN-NONE.  When printing, if there are more 
input columns than output columns, the unmatched input columns are not 
printed.  If there are more output columns than input columns, the unmatched 
output columns are printed as if the data for those columns consisted of 
spaces. 

Note: You should INITIALIZE WINPRINT-COLUMN first to ensure 
compatibility with future versions of the runtime. 

WINPRINT-COLUMN is not part of the WINPRINT-DATA structure.  
When using WINPRINT-SET-PAGE-COLUMN, pass the 
WINPRINT-COLUMN structure instead of the WINPRINT-DATA 
structure.  This will ensure that changes to WINPRINT-COLUMN can be 
detected dynamically by the routine. 

Two op-codes control the “input” by specifying the zones in the print line.  
(This is similar to the DATA-COLUMNS property of the LIST-BOX 
control.):

• WINPRINT-SET-DATA-COLUMNS



I-426  ACUCOBOL-GT Library Routines
• WINPRINT-CLEAR-DATA-COLUMNS

Three op-codes control the “output” by specifying the page layout.  (This is 
similar to the DISPLAY-COLUMNS property of the LIST-BOX control.)  

• WINPRINT-SET-PAGE-COLUMN

• WINPRINT-CLEAR-PAGE-COLUMNS

• WINPRINT-GET-PAGE-COLUMN

These operation codes use the data item WINPRINT-COLUMN (defined in 
“winprint.def”).

WINPRINT-SET-DATA-COLUMNS

This operation code defines columns in the data when printing with a 
proportionally spaced font.  

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SET-DATA-C0LUMNS, CHARACTER-POSITION
    GIVING RESULT

Parameters

CHARACTER-POSITION   Numeric value 

One or more numeric values indicating each position that starts a new column 
of data.

Description

This is one of two op-codes that control the “input” by specifying the zones 
in the print line.  (This is similar to the DATA-COLUMNS property of the 
LIST-BOX control.)

Specify one or more numeric values that represent the character position 
from the left side of the print record that begins a new column of data.  Data 
starting at this column and extending to the beginning of the next column (or 
end of the print record) will be printed together as a single column on the 



General Syntax and Library List  I-427
page.  The first column always starts at position “1” of the print record.  
Initially, there is only one data column, which starts from the beginning of the 
print record and extends to the end of the print record.   

Column specifications are additive.  If you call WIN$PRINTER with this 
operation multiple times, all the columns specified are combined and appear 
in the resulting printout.  Column specifications last until they are cleared, or 
the process that is running shuts down.  See 
WINPRINT-CLEAR-DATA-COLUMNS for information on how to clear 
column specifications. 

Note: The current column definitions apply to any report being printed.  
One advantage to this is that you can change the column definitions 
mid-report.  To do this, simply change them before writing the print record.  

Example

In the following example, the print line of a three column report is made 
ready for printing using a proportional font:
01  PRINT-RECORD.
    03  CUST-NAME     PIC X(30).
    03  FILLER        PIC X.
    03  CUST-PHONE    PIC X(15).
    03  FILLER        PIC X.
    03  CUST-BALANCE  PIC ZZZ,ZZZ,ZZZ.99-.

CALL "WIN$PRINTER" USING WINPRINT-SET-DATA-COLUMNS, 31, 47.

Note that this is the same as the following:
CALL "WIN$PRINTER" USING WINPRINT-SET-DATA-COLUMNS, 
     RECORD-POSITION OF CUST-PHONE, 
     RECORD-POSITION OF CUST-BALANCE.

WINPRINT-CLEAR-DATA-COLUMNS  

This operation code clears all columns settings that have been specified in the 
print line.



I-428  ACUCOBOL-GT Library Routines
Usage
CALL "WIN$PRINTER"
    USING WINPRINT-CLEAR-DATA-COLUMNS
    GIVING RESULT

Description

This is one of two op-codes that control the “input” by specifying the zones 
in the print line.  (This is similar to the DATA-COLUMNS property of the 
LIST-BOX control.)  This operation takes no parameters. 

When executed, the printer setup returns to the default print record for 
columns.  This is one column starting at the beginning of the print record and 
ending at the end of the print record.  

WINPRINT-SET-PAGE-COLUMN

This operation code describes how the columns appear when printed.  

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SET-PAGE-COLUMN, WINPRINT-COLUMN
    GIVING RESULT

Parameters

WINPRINT-COLUMN   Group item defined in “winprint.def” as follows:
01  WINPRINT-COLUMN, SYNC.
    03  WINPRINT-COL-START              PIC 9(7)V99 COMP-5.
    03  WINPRINT-COL-INDENT             PIC 9(7)V99 COMP-5.
    03  WINPRINT-COL-SEPARATION         PIC 9(7)V99 COMP-5.
    03  WINPRINT-COL-FONT               HANDLE OF FONT.
    03  WINPRINT-COL-UNITS              PIC 99 COMP-X.
    03  WINPRINT-COL-ALIGNMENT          PIC X.
    03  WINPRINT-TRANSPARENCY           PIC 99 COMP-X.
        88  WINPRINT-TRANSPARENT        VALUE 1, FALSE 0.
    03  WINPRINT-COL-FONTCOLOR          PIC 9(9) COMP-5 SYNC.
    03  WINPRINT-COL-FONTCOLOR-NEG      PIC 9(9) COMP-5 SYNC.

        78  WPRTUNITS-CELLS                     VALUE 0.
        78  WPRTUNITS-INCHES                    VALUE 1.



General Syntax and Library List  I-429
        78  WPRTUNITS-CENTIMETERS               VALUE 2.
        78  WPRTUNITS-PIXELS                    VALUE 3.
        78  WPRTALIGN-NONE                      VALUE SPACE.
        78  WPRTALIGN-LEFT                      VALUE "L".
        78  WPRTALIGN-RIGHT                     VALUE "R".
        78  WPRTALIGN-CENTER                    VALUE "C".
        78  WPRTALIGN-DECIMAL                   VALUE "D".
        78  WPRTALIGN-DECIMAL-SUPPRESS          VALUE "S".

Description

This is one of three op-codes that control the “output” by specifying the page 
layout.  (This is similar to the DISPLAY-COLUMNS property of the 
LIST-BOX control.)

Each column of data is mapped to an output column in the print record: the 
first data column maps to the leftmost output column, the second data column 
to the next output column to the right, and so on.  Each time 
WINPRINT-SET-PAGE-COLUMN is used, a new output column is defined.  
To reset the output columns, use WINPRINT-CLEAR-PAGE-COLUMNS 
as described below.  Once set, output columns remain in effect until 
explicitly cleared or the runtime process shuts down.  

Note: Changing the output device will also reset the columns (this occurs 
if you use of any of these op-codes: WINPRINT-SETUP, 
WINPRINT-SETUP-USE-MARGINS, WINPRINT-SET-SETTINGS, 
WINPRINT-SET-PRINTER). 

If you describe a new column that starts in exactly the same position as a 
previously described column, then the new column replaces the previous 
column definition (replacement detection is calculated using output device 
units). 

The fields in WINPRINT-COLUMN define the output column.  The fields 
have the following meaning:

WINPRINT-COL-START -- Sets the leftmost point of the column on the 
page.  The units of measurement are defined by WINPRINT-COL-UNITS.  
The measurement is made with respect to the left margin of the page.  This 
position is calculated at the time that the column is defined.  However, it is 



I-430  ACUCOBOL-GT Library Routines
always relative to the left margin, so changing the left margin will shift the 
columns.  The column ends at the beginning of the next column or the right 
margin if there is no next column. 

You may use this with WPRTUNITS-CELLS-ABS, 
WPRT-CENTIMETERS-ABS, or WPRTUNITS-INCHES-ABS to set the 
start position using an absolute value from the left edge of the paper.

WINPRINT-COL-INDENT -- Modifies the left edge of the column by 
adding its value to the WINPRINT-COL-START value.  The units of 
measurement are defined by WINPRINT-COL-UNITS.  The indent is 
normally set to zero.  You can use a non-zero value to specify an indented 
column in a convenient fashion.  You would typically use this when you 
wanted to indent a column for a particular set of output lines.  Otherwise, you 
would have to clear all the columns and redefine them in order to change the 
left edge of one column. 

Note: The values of WPRTUNITS-CENTIMETERS-ABS, 
WPRTUNITS-INCHES-ABS, and WPRTUNITS-CELLS-ABS do not 
affect this field because the field is always calculated as the given value.

WINPRINT-COL-SEPARATION -- Defines the width of the separation 
zone.  This zone appears at the rightmost edge of the column.  This zone is 
generally kept blank, but see WINPRINT-COL-ALIGNMENT for 
exceptions.  The value specified is the width of this zone (which must be less 
than the width of the column).  It is expressed in the units defined by 
WINPRINT-COL-UNITS.

Note: The values of WPRTUNITS-CENTIMETERS-ABS, 
WPRTUNITS-INCHES-ABS, and WPRTUNITS-CELLS-ABS do not 
affect this field because the field is always calculated as the given value.

WINPRINT-COL-FONT --  Sets the handle of the font to be used when 
printing the column.  Set to NULL to use the font currently selected for the 
printer (this is the default).  If you place a valid printer font handle in this 
field, then that font is used when printing this column regardless of the 
printer’s font.  Note that the printer’s font still defines the height of the line.



General Syntax and Library List  I-431
WINPRINT-COL-UNITS -- Defines the measurement units used for 
WINPRINT-COL-START, WINPRINT-COL-INDENT and 
WINPRINT-COL-SEPARATION.  

The following values are valid:

WPRTUNITS-CELLS Values are measured using the 
“cell size” of the currently 
selected font.  A font’s “cell size” 
is the size of the ‘0’ digit in the 
font.  This is roughly equivalent to 
measuring in “characters”.  

    If you use a proportional font, it is 
common for uppercase characters 
to be wider than this 
measurement.  If a column 
contains mostly uppercase data, 
you will need to make it wider 
than the number of characters in 
the data if you do not want to 
truncate the text.  If a column 
contains numbers or mixed-case 
data, you can usually just set the 
column width to be the same as 
the number of characters in the 
data when measuring in cells.  
Non-integer values are allowed in 
the measurements. 

WPRTUNITS-INCHES Values are measured using inches.

WPRTUNITS-CENTIMETERS Values are measured using 
centimeters.

WPRTUNITS-PIXELS Values are measured using the 
resolution of the output device.  
Only integer values are allowed in 
the measurements.  Note that the 
device resolution varies from 
device to device, and so these 
units are rarely used. 



I-432  ACUCOBOL-GT Library Routines
To measure units using an absolute value from the left edge of the page, you 
use WPRTUNITS-CELLS-ABS.  To specify an absolute value from the left 
edge of the page for WINPRINT-COL-START only, you can use the 
following counterparts:
WPRTUNITS-CELLS-ABS
WPRTUNITS-INCHES-ABS
WPRTUNITS-CENTIMETERS-ABS

Other settings of WINPRINT-COL-UNITS are invalid.

WINPRINT-COL-ALIGNMENT -- Describes how data should be aligned 
in the column.  The following values are allowed:

WPRTALIGN-NONE No alignment is performed on the data, 
it is printed “as is”.  In addition, the 
data is not truncated to fit the column.  
Any data that extends into the next 
column will be visible if you are 
printing with transparent text 
background, otherwise it may not be 
visible, as it will be overwritten when 
the following column is written.  

WPRTALIGN-LEFT Leading and trailing spaces are 
removed from the data and it is printed 
left aligned in the column.  The text is 
truncated so that it does not extend into 
the separation zone.  

WPRTALIGN-CENTER Leading and trailing spaces are 
removed from the data and it is printed 
centered between the start of the 
column and the start of the column’s 
separation zone.  Text is truncated so 
that it does not extend into the 
separation zone.



General Syntax and Library List  I-433
WPRTALIGN-RIGHT Leading and trailing spaces are 
removed from the data and it is right 
aligned with respect to the beginning of 
the separation zone.  Leading text is 
truncated so that it does not extend past 
the left edge of the column.  

WPRTALIGN-RIGHT-SIG
N

This is identical to 
WPRTALIGN-RIGHT, with the 
additional trait that space padding is 
automatically added to accommodate a 
trailing negative sign (“-”).  For 
example, when printing a variable 
defined as “PIC ZZZ9-”, 
WPRTALIGN-RIGHT would align the 
column as follows:

   220
 220-

WPRTALIGN-RIGHT-SIGN would align 
the column as follows:

    220
    220- 



I-434  ACUCOBOL-GT Library Routines
Any other setting of WINPRINT-COL-ALIGNMENT is invalid.  

WPRTDATA-TRANSPARENCY -- When the level 88 item 
WPRTDATA-TRANSARENT is set to “true”, then the column’s foreground 
text is printed, but its background is left alone.  This allows you to print text 
over something else, such as a bitmap, without erasing it.  When 
WPRTDATA-TRANSPARENT is set to “false”, then the column’s 
background is also printed, writing over anything else on the page.  Note that 
only the background behind the actual text printed is affected.  Suppressed 
leading and trailing spaces are not printed.

WINPRINT-COL-FONTCOLOR -- This member of 
WINPRINT-COLUMN is used to specify a column’s font color. This 
member should be set to a COLORREF (real color) value.  See the Color 
Reference section below for details.  If this member is 0 (NULL), it defaults 
to the color black.  If this color is set, it will only be applied to the print of the 
column that it is associated with.  It is a foreground color only.

WPRTALIGN-DECIMAL Leading and trailing spaces are 
removed from the data.  The data is 
then examined to find the leftmost 
occurrence of the runtime’s current 
notion of the decimal point character.  
The rightmost edge of the decimal 
point is aligned with the beginning of 
the separation zone.  If no decimal 
point is found, the right edge of the data 
is aligned there instead.  Data may 
extend into the separation zone and is 
truncated at the beginning and end of 
the column.  

WPRTALIGN-DECIMAL-S
UPPRESS

This is identical to 
WPRTALIGN-DECIMAL, with the 
additional trait that the decimal point 
used to align the data is replaced by a 
space when the data is printed.  
Columns with this style are limited to 
256 data characters.  



General Syntax and Library List  I-435
For example, to make the entire contents of a column blue, set all other 
WINPRINT-COLUMN members first then code the following:
INITIALIZE WINPRINT-COL-FONTCOLOR-NEG.
MOVE16711680 TO WINPRINT-COL-FONTCOLOR.
CALL"WIN$PRINTER"    USING 
WINPRINT-SET-PAGE-COLUMN
WINPRINT-COLUMN.

See the Columns with Color code example for a detailed demonstration of 
printing columns and values in color.

WINPRINT-COL-FONTCOLOR-NEG --  This member of 
WINPRINT-COLUMN enables you to specify an alternate color for negative 
numbers in a column.   where the text terminates with the negative symbol, 
as defined on the host computer. This member should be set to a COLORREF 
(real color) value.  See the Color Reference section below for details.  If this 
member is 0 (NULL), it defaults to the color black. If this color is set and the 
last symbol of the column text equals the computer negative sign, it will 
overrule a possible use of WINPRINT-COL-FONTCOLOR and be applied 
only to the text that is about to be printed.  It is a foreground color only.

For example, to make negative values red, set all other 
WINPRINT-COLUMN members first then code the following:
INITIALIZE WINPRINT-COL-FONTCOLOR.
MOVE X#000000FF TO 
WINPRINT-COL-FONTCOLOR-NEG.
CALL"WIN$PRINTER" USING 
WINPRINT-SET-PAGE-COLUMN
WINPRINT-COLUMN.

See the Columns with Color code example for a detailed demonstration of 
printing columns and values in color.

Real Colors (COLORREF)

COLORREF is a Windows native data item and should be declared in 
working storage as a PIC X(4) COMP-N item. You may also apply the 
SYNC clause when used internal to a group.



I-436  ACUCOBOL-GT Library Routines
COLORREF is a value that can be created from the RGB (See WPAL-RED, 
WPAL-GREEN and WPAL-BLUE in palette.def) colors returned from the 
palette dialog. You can do this by using the following COMPUTE statement:
COMPUTE COLORREF-VAR=
WPAL-RED)+
WPAL-GREEN * 256)+
WPAL-BLUE * 65536).

You can also create it yourself. For instance, to create a blue color:
MOVE X#00FF0000 TO COLORREF-VAR.

To get a green color:
MOVE X#0000FF00 TO COLORREF-VAR.

To get a red color:
MOVE X#000000FF TO COLORREF-VAR.

If you want colors in between, just mix between the three values. Remember 
you only use 3 byte colors, so the most significant byte should be NULL.

Columns with Colors Code Example

The following code example demonstrates the use of several 
WIN$PRINTER operation codes and their members including: 
WINPRINT-SET-PAGE-COLUMN and its members: 
WINPRINT-COL-FONTCOLOR; 
WINPRINT-COL-FONTCOLOR-NEG.

The output of the program is three columns of data where the first column is 
blue, the second column is black, and the third column is negative numbers 
red, positive numbers black.  Like this:
       

PROGRAM-ID. ColumnWithColors.

Amount 1: 500.00 1,500.00-

Amount 2: 2,500.00- 2,500.00

Amount 3: 33,500.00 33,500.00-

Amount 4: 444,500.00- 444,500.00



General Syntax and Library List  I-437
       FILE-CONTROL.
       SELECT      PRINT-FILE       ASSIGN TO "-P SPOOLER"
                   ORGANIZATION     IS LINE SEQUENTIAL.

       FILE SECTION.
       FD PRINT-FILE.
       01 PRINT-LINE                PIC X(80).

       WORKING-STORAGE SECTION.
       COPY "WINPRINT.DEF".
       COPY "FONTS.DEF".
       77  COLUMN-FONT             HANDLE OF FONT.
       77  STANDARD-FONT           HANDLE OF FONT.

       PROCEDURE DIVISION.
       MAIN.        

           INITIALIZE               WINPRINT-SELECTION.
           CALL    "WIN$PRINTER"    USING 
                   WINPRINT-GET-CURRENT-INFO-EX
                   WINPRINT-SELECTION.
           SET     WPRT-COLOR       TO TRUE.
           CALL    "WIN$PRINTER"    USING 
                   WINPRINT-SET-PRINTER-EX
                   WINPRINT-SELECTION.

           OPEN    OUTPUT           PRINT-FILE.
           INITIALIZE               WFONT-DATA 
               STANDARD-FONT.
           MOVE    "Courier New"    TO WFONT-NAME.
           MOVE    12               TO WFONT-SIZE.
           SET     WFONT-BOLD       TO FALSE.
           SET     WFDEVICE-WIN-PRINTER TO TRUE.
           CALL    "W$FONT"         USING 
                   WFONT-GET-FONT
                   STANDARD-FONT
                   WFONT-DATA.
           INITIALIZE               WINPRINT-DATA        
           MOVE    STANDARD-FONT    TO WPRTDATA-FONT
           CALL    "WIN$PRINTER"    USING 
                   WINPRINT-SET-FONT
                   WINPRINT-DATA.

           INITIALIZE               WFONT-DATA 



I-438  ACUCOBOL-GT Library Routines
                                    COLUMN-FONT.
           MOVE    "Arial"          TO WFONT-NAME.
           MOVE    12               TO WFONT-SIZE.
           SET     WFONT-BOLD       TO TRUE.
           SET     WFDEVICE-WIN-PRINTER TO TRUE.
           CALL    "W$FONT"         USING 
                   WFONT-GET-FONT
                   COLUMN-FONT
                   WFONT-DATA.                   

           WRITE   PRINT-LINE       FROM
                   "This demo requires a COLOR printer to show 
colors."
                   BEFORE ADVANCING 1 LINE.
           WRITE   PRINT-LINE       FROM
                   "It is also required with 8.1 runtime version"
                   BEFORE ADVANCING 1 LINE.
           WRITE   PRINT-LINE       FROM
                   "The first column should be blue."
                   BEFORE ADVANCING 1 LINE.
           WRITE   PRINT-LINE       FROM
                   "The second column should print the regular 
black."
                   BEFORE ADVANCING 1 LINE.
           WRITE   PRINT-LINE       FROM
                   "The third column should print the regular 
black,"
                   BEFORE ADVANCING 1 LINE.
           WRITE   PRINT-LINE       FROM
                   "except of negative numbers, they should be 
in red."
                   BEFORE ADVANCING 1 LINE.
           WRITE   PRINT-LINE       FROM
                   "Column 3 is using ARIAL font, the rest is 
Courier."
                   BEFORE ADVANCING 2 LINES.
      
           CALL    "WIN$PRINTER"    USING 
                   WINPRINT-SET-DATA-COLUMNS
                   1
                   12
                   24.
      
           INITIALIZE               WINPRINT-COLUMN
                                    WINPRINT-COL-UNITS



General Syntax and Library List  I-439
                                    WINPRINT-COL-FONTCOLOR
                                    WINPRINT-COL-FONTCOLOR-NEG.
           MOVE    1                TO WINPRINT-COL-START.
           MOVE    0.2              TO WINPRINT-COL-SEPARATION.
           MOVE    WPRTALIGN-LEFT   TO WINPRINT-COL-ALIGNMENT.
           MOVE    1                TO WINPRINT-TRANSPARENCY.
           MOVE    ZEROS            TO WINPRINT-COL-INDENT.
           
           MOVE    16711680         TO WINPRINT-COL-FONTCOLOR.
           CALL    "WIN$PRINTER"    USING 
                   WINPRINT-SET-PAGE-COLUMN
                   WINPRINT-COLUMN.

           MOVE    5                TO WINPRINT-COL-SEPARATION.
           MOVE    WPRTALIGN-DECIMAL TO WINPRINT-COL-ALIGNMENT.
           MOVE    0                TO WINPRINT-COL-FONTCOLOR.           
           MOVE    12               TO WINPRINT-COL-START.

           CALL    "WIN$PRINTER"    USING 
                   WINPRINT-SET-PAGE-COLUMN
                   WINPRINT-COLUMN.

           MOVE    COLUMN-FONT      TO WINPRINT-COL-FONT.
           MOVE    WPRTALIGN-RIGHT-SIGN TO 
                   WINPRINT-COL-ALIGNMENT.
           MOVE    28               TO WINPRINT-COL-START.
           MOVE    0                TO WINPRINT-COL-FONTCOLOR.
           MOVE    255              TO WINPRINT-COL-FONTCOLOR-NEG.
           CALL    "WIN$PRINTER"    USING 
                   WINPRINT-SET-PAGE-COLUMN
                   WINPRINT-COLUMN.

           MOVE    50               TO WINPRINT-COL-START.
           INITIALIZE               WINPRINT-COL-FONTCOLOR
                                    WINPRINT-COL-FONTCOLOR-NEG.
           CALL    "WIN$PRINTER"    USING 
                   WINPRINT-SET-PAGE-COLUMN
                   WINPRINT-COLUMN.

           MOVE "Amount 1:      500.00     1,500.00- " TO 
PRINT-LINE.
           WRITE PRINT-LINE BEFORE ADVANCING 1 LINE.
           MOVE "Amount 2:    2,500.00-    2,500.00  " TO 
PRINT-LINE.
           WRITE PRINT-LINE BEFORE ADVANCING 1 LINE.



I-440  ACUCOBOL-GT Library Routines
           MOVE "Amount 3:   33,500.00    33,500.00- " TO 
PRINT-LINE.
           WRITE PRINT-LINE BEFORE ADVANCING 1 LINE.
           MOVE "Amount 4:  444,500.00-  444,500.00  " TO 
PRINT-LINE.
           WRITE PRINT-LINE BEFORE ADVANCING 1 LINE.
           
           CALL "WIN$PRINTER" USING WINPRINT-CLEAR-DATA-COLUMNS.
      
           CLOSE PRINT-FILE.

WINPRINT-CLEAR-PAGE-COLUMNS 

This operation code clears all columns settings that have been specified in the 
page layout.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-CLEAR-PAGE-COLUMNS,
    GIVING RESULT

Description

This is one of three op-codes that control the “output” by specifying the page 
layout.  (This is similar to the DISPLAY-COLUMNS property of the 
LIST-BOX control.)  This operation takes no additional parameters. 

The operation removes all the output column definitions and restore to the 
initial state of one output column that starts at the left margin, has no 
separation zone and has an alignment of WPRTALIGN-NONE.  

WINPRINT-GET-PAGE-COLUMN

This operation code retrieves information about a particular column on the 
page.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-PAGE-COLUMN, COLUMN-POSITION,



General Syntax and Library List  I-441
        WINPRINT-COLUMN
    GIVING RESULT

Parameters

COLUMN-POSITION   Numeric value 

A numeric value indicating which column to retrieve.

WINPRINT-COLUMN   Group item defined in “winprint.def” as follows:
01  WINPRINT-COLUMN, SYNC.
    03  WINPRINT-COL-START              PIC 9(7)V99 COMP-5.
    03  WINPRINT-COL-INDENT             PIC 9(7)V99 COMP-5.
    03  WINPRINT-COL-SEPARATION         PIC 9(7)V99 COMP-5.
    03  WINPRINT-COL-FONT               HANDLE OF FONT.
    03  WINPRINT-COL-UNITS              PIC 99 COMP-X.
    03  WINPRINT-COL-ALIGNMENT          PIC X.
    03  WINPRINT-TRANSPARENCY           PIC 99 COMP-X.
        88  WINPRINT-TRANSPARENT        VALUE 1, FALSE 0.

        78  WPRTUNITS-CELLS                     VALUE 0.
        78  WPRTUNITS-INCHES                    VALUE 1.
        78  WPRTUNITS-CENTIMETERS               VALUE 2.
        78  WPRTUNITS-PIXELS                    VALUE 3.
        78  WPRTALIGN-NONE                      VALUE SPACE.
        78  WPRTALIGN-LEFT                      VALUE "L".
        78  WPRTALIGN-RIGHT                     VALUE "R".
        78  WPRTALIGN-CENTER                    VALUE "C".
        78  WPRTALIGN-DECIMAL                   VALUE "D".
        78  WPRTALIGN-DECIMAL-SUPPRESS          VALUE "S".

Description

This is one of three op-codes that control the “output” by specifying the page 
layout.  (This is similar to the DISPLAY-COLUMNS property of the 
LIST-BOX control.)  

This operation takes two additional parameters.  The first is a numeric 
parameter that indicates which column to retrieve.  Columns are numbered 
from left-to-right on the printed page, starting with “1”.  The second 
parameter retrieves the current definition of the specified column and stores 
it in WINPRINT-COLUMN.  This is useful if you want to change the 



I-442  ACUCOBOL-GT Library Routines
characteristics of a particular column.  You can use this operation to get the 
current settings, change the ones you want, and use 
WINPRINT-SET-PAGE-COLUMN to apply the changed settings.  

The units used for the various measurements are determined by setting 
WINPRINT-COL-UNITS in the WINPRINT-COLUMN structure passed 
into the call.  You should set this to the desired units before calling 
“WIN$PRINTER”.  If WINPRINT-COL-UNITS contains an invalid setting, 
the units used by default are WPRTUNITS-CELLS.  

Example

In the following example, the first column is retrieved and its current indent 
is set to 3 characters.  
MOVE WPRTUNITS-CELLS TO WINPRINT-COL-UNITS
CALL "WIN$PRINTER" 
   USING WINPRINT-GET-PAGE-COLUMN, 1, WINPRINT-COLUMN
MOVE 3 TO WINPRINT-COL-INDENT
CALL "WIN$PRINTER" 
   USING WINPRINT-SET-PAGE-COLUMN, WINPRINT-COLUMN

WINPRINT-COLUMN-ALIGN-VERT

Usage
CALL "WIN$PRINTER“
USING WINPRINT-COLUMN-ALIGN-VERT
GIVING result

Return Values

This op-code returns one of the following statuses:

Positive value Success

WPRTERR-SPOOLER-CLOSE
D (-6)

The op-code has been called before the print 
job has been started (before OPEN has been 
executed).  This is not possible.

WPRTERR-NO-COLUMNS 
(-13)

The op-code has been called before any 
columns have been set.  This is not possible.



General Syntax and Library List  I-443
Description

WINPRINT-COLUMN-ALIGN-VERT enables your COBOL application to 
support printing requests that contain fonts of alternate heights.  This op-code  
tells the runtime to find the tallest font, and align the print so that all the print 
on one line comes out without any overlap of print from another line that 
immediately precedes or follows. Using this op-code only has meaning if you 
use alternate height fonts within the same line in conjunction with the 
WINPRINT-COLUMN feature. If you do not use alternate fonts, you do not 
need to call WINPRINT-COLUMN-ALIGN-VERT.

Do not call WINPRINT-COLUMN-ALIGN-VERT until all columns are set; 
if you do, the alignment calculations will be incorrect and the result 
unpredictable.

The new op-code WINPRINT-COLUMN-ALIGN-VERT is fully supported 
in thin client environments.

Comments

When using alternate fonts simultaneously, the runtime’s internal line 
counter does not stay accurate with the actual line height.  If you are using a 
variety of font heights you should  take measures to control how much space 
there is left on the page.

WINPRINT-JOB-STATUS op-codes

The following operation codes use the data item WINPRINT-JOB-STATUS 
(defined in “winprint.def”).  These operations are used check and modify the 
status of a particular printer.
WINPRINT-GET-JOB-STATUS
WINPRINT-SET-JOB-STATUS

WINPRINT-GET-JOB-STATUS

This operation code allows you to check the current status of a print job. This 
is useful for determining if a printer is paused or out of paper.



I-444  ACUCOBOL-GT Library Routines
Note: Due to a limitation in the Windows API, computers that run 
Windows 9x (Windows 98, and Windows ME) do not return the spooler job 
ID when opening a print job. This means that you cannot use the 
WINPRINT-GET-JOB-STATUS operation on these machines

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-JOB-STATUS, WINPRINT-JOB-STATUS
    GIVING RESULT

Parameters

WINPRINT-JOB-STATUS   Group item defined in “winprint.def” as 
follows:
01  WINPRINT-JOB-STATUS.
   03  WINPRINT-JOB-PRINTER            PIC X(80).
   03  WINPRINT-JOB-ID                 SIGNED-INT.
   03  WINPRINT-JOB-STATUS-NO          PIC 9(9) COMP-5.
      88 WPRT-JOB-PAUSE                VALUE 1.
      88 WPRT-JOB-RESUME               VALUE 2.
      88 WPRT-JOB-CANCEL               VALUE 3.
      88 WPRT-JOB-RESTART              VALUE 4.
   03  WINPRINT-JOB-POSITION           SIGNED-INT.
   03  WINPRINT-JOB-PAGE-TOTAL         SIGNED-INT.
   03  WINPRINT-JOB-PAGE-PRINTED       SIGNED-INT.
   03  WINPRINT-JOB-STATUS-TEXT        PIC X(80).

Return Values

This operation returns the printer status as defined in the Windows API.  

A great variety of conditions can affect a single print job and printer status 
may be the result of a combination of values.  This makes it impossible to 
catalog all possible status settings in “winprint.def”.  Refer to the Windows 
API documentation for a description of any status not covered in that file.



General Syntax and Library List  I-445
Description

This operation may be called at any time a print job has started, or has started 
and closed.  There is no need to reset this function.  
WINPRINT-JOB-STATUS should be initialized prior to use.

Note: If this function is executed on a networked printer with a missing or 
malfunctioning network, your application may appear to hang.   Once the 
timeout has completed, your application will resume. This is a feature of 
the Windows API, not an effect of the runtime.

WINPRINT-GET-JOB-STATUS has the following values:

WINPRINT-JOB-PRINTER -- Should be set to the value of 
WINPRINT-NAME as obtained through a call to 
WINPRINT-GET-PRINTER-INFO(-EX) or 
WINPRINT-GET-CURRENT-INFO(-EX). 

WINPRINT-JOB-ID -- Returns the Windows Job ID of the last print job.  
The printer must be open.  The Job ID may be used for subsequent calls to the 
same printer, even if multiple jobs are printing.    

WINPRINT-JOB-STATUS-NO -- Specifies the current condition of the 
printer, which may be one or more of the JOB-CONDITIONS defined in 
“winprint.def”.

WINPRINT-JOB-POSITION -- Specifies a print job’s current position in 
the queue of a particular printer.  For example, if your job is third in the 
queue, this value is  3.  This does not necessarily mean that the print job will 
wait until the two prior jobs in the queue have printed.  

WINPRINT-JOB-PAGE-TOTAL -- Specifies the total number of pages to 
print.

WINPRINT-JOB-PAGE-PRINTED -- Specifies the total number of pages 
printed at the time of inquiry. 



I-446  ACUCOBOL-GT Library Routines
WINPRINT-JOB-STATUS-TEXT -- Specifies the status of the printer as a 
text string.  Depending on the error condition, this string may be empty. This 
is a feature of the Windows API. Use both this parameter and 
WINPRINT-JOB-STATUS-NO when checking job status to be sure that you 
have determined the correct error condition. 

WINPRINT-SET-JOB-STATUS

This operation code allows you to modify the current status of a print job. 

Note: Due to a limitation in the Windows API, computers that run 
Windows 9x (Windows 98, and Windows ME) do not return the spooler job 
ID when opening a print job. This means that you cannot use the 
WINPRINT-SET-JOB-STATUS operation on these machines.  

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SET-JOB-STATUS, WINPRINT-JOB-STATUS
    GIVING RESULT

Parameters

WINPRINT-JOB-STATUS   Group item defined in “winprint.def” as 
follows:
01  WINPRINT-JOB-STATUS.
   03  WINPRINT-JOB-PRINTER            PIC X(80).
   03  WINPRINT-JOB-ID                 SIGNED-INT.
   03  WINPRINT-JOB-STATUS-NO          PIC 9(9) COMP-5.
      88 WPRT-JOB-PAUSE                VALUE 1.
      88 WPRT-JOB-RESUME               VALUE 2.
      88 WPRT-JOB-CANCEL               VALUE 3.
      88 WPRT-JOB-RESTART              VALUE 4.
   03  WINPRINT-JOB-POSITION           SIGNED-INT.
   03  WINPRINT-JOB-PAGE-TOTAL         SIGNED-INT.
   03  WINPRINT-JOB-PAGE-PRINTED       SIGNED-INT.
   03  WINPRINT-JOB-STATUS-TEXT        PIC X(80).

Return Values

This operation returns the printer status as defined in the Windows API.  



General Syntax and Library List  I-447
A great variety of conditions can affect a single print job and printer status 
may be the result of a combination of values.  This makes it impossible to 
catalog all possible status settings in “winprint.def”.  Refer to the Windows 
API documentation for a description of any status not covered in that file.

Description

This operation may not be called while the printer is open.  
WINPRINT-JOB-STATUS should be initialized prior to use.

Note: If this function is executed on a networked printer with a missing or 
malfunctioning network, your application may appear to hang.   Once the 
timeout has completed, your application will resume. This is a feature of 
the Windows API, not an effect of the runtime.

WINPRINT-GET-JOB-STATUS has the following values:

WINPRINT-JOB-PRINTER -- Should be set to the value of 
WINPRINT-NAME as obtained through a call to 
WINPRINT-GET-PRINTER-INFO(-EX) or 
WINPRINT-GET-CURRENT-INFO(-EX). 

WINPRINT-JOB-ID -- Specifies the print job to be modified.  You must get 
the job ID number with WINPRINT-GET-JOB-STATUS, before you can set 
this value.  If set to “0”, the runtime will automatically look up the most 
recent print job. If a job is currently printing, that is the job that will be 
modified.  

WINPRINT-JOB-STATUS-NO -- Modify the current print job by setting 
one of the following values: WPRT-JOB-PAUSE, WPRT-JOB-RESUME, 
WPRT-JOB-CANCEL, or WPRT-JOB-RESTART.

WINPRINT-JOB-PAGE-TOTAL -- Specifies the total number of pages to 
print.

WINPRINT-JOB-STATUS-TEXT -- Specifies the status of the printer as a 
text string.  Depending on the error condition, this string may be empty. This 
is a feature of the Windows API. Use both this parameter and 
WINPRINT-JOB-STATUS-NO when checking job status to be sure that you 
have determined the correct error condition. 



I-448  ACUCOBOL-GT Library Routines
WINPRINT-MEDIA op-codes

The following operation code uses the data item WINPRINT-MEDIA 
(defined in “winprint.def”) to access the paper sizes and paper trays 
supported by a printer driver.  

WINPRINT-GET-PRINTER-MEDIA

WINPRINT-GET-PRINTER-MEDIA

This operation code allows you to access the paper sizes and paper trays 
supported by the printer driver.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-PRINTER-MEDIA, WINPRINT-MEDIA
    GIVING RESULT

Parameters

WINPRINT-MEDIA   Group item defined in “winprint.def” as follows:
01  WINPRINT-MEDIA.
   03  WINPRINT-MEDIA-PRINTER       PIC X(80).
   03  WINPRINT-MEDIA-PORT          PIC X(80).
   03  WINPRINT-MEDIA-PAPERCOUNT    SIGNED-SHORT.
   03  WINPRINT-MEDIA-TRAYCOUNT     SIGNED-SHORT.
   03  WINPRINT-MEDIA-PAPER         SIGNED-SHORT
                                    OCCURS MAX-PAPER-SIZES.
   03  WINPRINT-MEDIA-TRAYS         SIGNED-SHORT
                                    OCCURS MAX-PAPER-TRAYS.

Description

This operation may be called at any time a print job has started, or has started 
and closed.  There is no need to reset this function.  WINPRINT-MEDIA 
should be initialized prior to use.

WINPRINT-MEDIA has the following values:



General Syntax and Library List  I-449
WINPRINT-MEDIA-PRINTER -- Should be set to the value of 
WINPRINT-NAME as obtained through a call to 
WINPRINT-GET-PRINTER-INFO(-EX) or 
WINPRINT-GET-CURRENT-INFO(-EX). 

WINPRINT-MEDIA-PORT -- Should be set to the value of 
WINPRINT-PORT from the WINPRINT-SELECTION op-code.

WINPRINT-MEDIA-PAPERCOUNT -- Returns the total number of paper 
sizes supported by the selected printer driver. This number varies from 
printer to printer. The maximum value is 41, even if the printer driver actually 
supports more sizes of paper.

WINPRINT-MEDIA-TRAYCOUNT -- Returns the total number of paper 
trays supported by the printer driver.  This number varies from printer to 
printer. The maximum value is 13, even if the printer driver actually supports 
more paper trays.

WINPRINT-MEDIA-PAPER -- Returns an array of supported paper sizes. 
The array is limited to a maximum of 41 possible sizes.  Each number in the 
array corresponds to a paper size defined by 
WINPRINT-CURR-PAPERSIZE in “winprint.def”.  The numbers in the 
array may not appear in sequential order (1,2,3...).  If 
WINPRINT-MEDIA-PAPERCOUNT returns a value less than 41, values 
between the returned count and 41 are undefined.  Values over 41 are not 
defined by the Windows API, and may be undefined, device specific or 
user-defined.  

WINPRINT-MEDIA-TRAYS -- Returns an array of supported paper trays. 
The array is limited to a maximum of 13 possible trays.  Each number in the 
array corresponds to a paper tray defined by WINPRINT-CURR-TRAY in 
“winprint.def”.  The numbers in the array may not appear in sequential order 
(1,2,3...).  If WINPRINT-MEDIA-TRAYS returns a value less than 13, 
values between the returned count and 13 are undefined.  Values over 13 are 
not defined by the Windows API, and may be undefined, device specific or 
user-defined.  

USER-DATA op-codes

The following operation codes use data items defined by the user in 
Working-Storage.  



I-450  ACUCOBOL-GT Library Routines
WINPRINT-GET-SETTINGS
WINPRINT-SET-SETTINGS

WINPRINT-GET-SETTINGS

This operation code retrieves information about the destination device.

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-GET-SETTINGS, BUFFER
    GIVING RESULT

Return Values

This operation returns the number of bytes used in the buffer to hold the 
spooler’s configuration settings.  

The number of bytes needed to hold the configuration can change when new 
settings are selected by the user, often by several hundred bytes.  You should 
allow for a wide range of configuration sizes.  Experiments suggest that 1000 
bytes is adequate to hold typical configurations, but there is no guaranteed 
upper boundary. 

Comments

The parameter, BUFFER, is a PIC X(n) data item containing the spooler’s 
current configuration.  BUFFER should be the second argument to 
WIN$PRINTER.  The spooler’s configuration includes information about 
the destination device, its paper size, and page orientation.  It does not 
include information about the current font selection.  The information stored 
in the buffer is binary data that corresponds to some internal structures used 
by Windows.  This information should be left unchanged.   This operation 
should be called before calling WINPRINT_SET_SETTINGS.

Note: This operation is not supported in our Thin Client environment.  Use 
the WINPRINT-GET-PRINTER-INFO-EX operation instead.



General Syntax and Library List  I-451
WINPRINT-SET-SETTINGS 

This operation code sets the spooler’s configuration to match information 
stored in the specified buffer.  

Usage
CALL "WIN$PRINTER"
    USING WINPRINT-SET-SETTINGS, BUFFER
    GIVING RESULT

Description

BUFFER must contain the same spooler configuration data returned by an 
earlier call to WINPRINT-GET-SETTINGS.  Passing other data is an error 
that can cause a variety of problems, including unexpected printout results or 
a General Protection Fault in Windows.  

Changing the output device with this operation will reset any columns you 
have set using WINPRINT-COLUMN op-codes.

Note:  This operation is not supported in our Thin Client environment.  
Use the WINPRINT-SET-PRINTER operation instead.

WIN$VERSION

The WIN$VERSION routine returns version information for Windows and 
Windows NT host platforms.  It provides more information about the system 
than is returned by the ACCEPT FROM SYSTEM-INFO statement.

Usage
CALL "WIN$VERSION" 
    USING WINVERSION-DATA

Parameters

WINVERSION-DATA   Group item as follows:
01  WINVERSION-DATA.
    03  WIN-MAJOR-VERSION     PIC X COMP-X.



I-452  ACUCOBOL-GT Library Routines
    03  WIN-MINOR-VERSION     PIC X COMP-X.
    03  WIN-PLATFORM          PIC X COMP-X.
        88  PLATFORM-WIN-31   VALUE 1.
        88  PLATFORM-WIN-95   VALUE 2.
        88  PLATFORM-WIN-9X   VALUE 2.
        88  PLATFORM-WIN-NT   VALUE 3.
    03  WIN-WORDSIZE          PIC X COMP-X.
        88  WIN-WORDSIZE-16   VALUE 1.
        88  WIN-WORDSIZE-32   VALUE 2.

WINVERSION-DATA is found in the COPY library “winvers.def”.

Comments

Upon return from WIN$VERSION, all of the data elements contained in 
WINVERSION-DATA are filled in.  If you call WIN$VERSION and the 
host machine is not a Windows or Windows NT system, the fields are set to 
zero.  

The WINVERSION-DATA fields have the following meaning:

WIN-MAJOR-VERSION — The major version number reported by 
Windows. See table below for possible values.

WIN-MINOR-VERSION — The minor version number reported by 
Windows.  See table below for possible values.

WIN-PLATFORM — Provides a general description of the host system.  If 
the host is Windows NT/Windows 2000, the value is set to 
PLATFORM-WIN-NT.  If the host is Windows 98, the value is set to 
PLATFORM-WIN-9X.  

Windows Version WIN-MAJOR-VERSION WIN-MINOR-VERSION

Windows 98 4 10

Windows ME 4 90

Windows XP 5 1

Windows NT 4 0

Windows 2000 5 0

Windows Vista 6 0



General Syntax and Library List  I-453
WIN-WORDSIZE — This item is set to WIN-WORDSIZE-32 for a 32-bit 
runtime.





Index

Symbols
$WINHELP routine

commonly used operations  I-302
description  I-300

Numerics
132_MODE configuration variable  C-11
3-D lines and boxes, displaying in Windows  H-5
3D_LINES configuration variable  H-5
4GL_COLUMN_CASE configuration variable  H-6
64-bit machines  C-30
7_BIT configuration variable  H-7
7-bit communication support  H-7

A
A_CHECKDIV configuration variable  H-7
A_DEBUG configuration variable  H-8
A_DISPLAY configuration variable  H-8
A_EXTFH_FUNC configuration variable  H-8
A_EXTFH_IDX_FUNC configuration variable  H-8
A_EXTFH_IDX_LIB configuration variable  H-9
A_EXTFH_LIB configuration variable  H-9
A_EXTFH_REL_FUNC configuration variable  H-8
A_EXTFH_REL_LIB configuration variable  H-9
A_EXTFH_SEQ_FUNC configuration variable  H-8
A_EXTFH_SEQ_LIB configuration variable  H-9
A_LICENSE_RETRIES configuration variable  H-13
A_OPERATING_SYSTEM configuration variable  H-14
A_REMOVE_EMPTY_ERROR_FILE configuration variable  H-14



Index-2
A_RETRY_DELAY configuration variable  H-14
A_SEQ_DEFAULT_BLOCK_SIZE configuration variable  H-15
A_SYSLOG_HOSTNAME configuration variable  H-15
A_SYSLOG_ON_RUNTIME_ERROR configuration variable  H-15
A_WAIT_FOR_LICENSE configuration variable  C-11
Abend Diagnostic Report

ACU_DUMP configuration variable  H-17
ACU_DUMP_FILE configuration variable  H-17
ACU_DUMP_TABLE_LIMIT configuration variable  H-18
ACU_DUMP_WIDTH configuration variable  H-18

ABSOLUTE-VALUE intrinsic function  F-7
ACCEPT

PROMPT SPACES clause with AUTO_PROMPT configuration variable  H-24
time out, specifying  H-16

ACCEPT_AUTO configuration variable  H-16
ACCEPT_TIMEOUT configuration variable  H-16
ACOS intrinsic function  F-8
ACTIVE_BORDER_COLOR configuration variable  H-16
ActiveX controls, ignoring events  H-161
ActiveX events, freezing  H-90,  H-91
ActiveX library routines

C$EXCEPINFO  I-61
C$GETEVENTDATA  I-75
C$GETEVENTPARAM  I-77
C$RESOURCE  I-144
C$SETEVENTDATA  I-149
C$SETEVENTPARAM  I-150

ACU_DUMP configuration variable  H-17
ACU_DUMP_FILE configuration variable  H-17
ACU_DUMP_TABLE_LIMIT configuration variable  H-18
ACU_DUMP_WIDTH configuration variable  H-18
ACU_USER_DIR configuration variable  H-18
ACUCOBOL configuration variable  H-19
acucobol.def  I-170,  I-282
ACUCOBOL-GT

extensions to COBOL  A-4
installation directory path  H-19



 Index-3
library routines  I-2
limits and ranges  A-2
restrictions  A-10
special features  B-2
specifications  A-2

AcuConnect, connecting asynchronously  I-49
acugui.def  I-224,  I-267,  I-309,  I-320,  I-342,  I-345
acuserve, setting time out  H-55
AcuServer

ACUCOBOL configuration variable  H-19
DEFAULT_TIMEOUT configuration variable  H-55
USE_LOCAL_SERVER configuration variable  H-172

AcuXML configuration variables
AXML_CREATE_SCHEMA  H-24
AXML_CREATE_STYLE  H-25
AXML_ENCODING  H-25
AXML_EXACT_TABLE_MATCH  H-26
AXML_IGNORE_EMPTY_DATA  H-26
AXML_SCHEMA_DOC  H-27
AXML_SCHEMA_NAME  H-28
AXML_SCHEMA_NAMESPACE_DATA  H-28
AXML_STYLESHEET_HREF  H-29
AXML_STYLESHEET_TYPE  H-29

AGS_MAX_SEND_SIZE configuration variable  H-19
AGS_RECEIVE_BUFFER_SIZE configuration variable  H-19
AGS_SEND_BUFFER_SIZE configuration variable  H-20
AGS_SOCKET_COMPRESS configuration variable  H-20
AGS_SOCKET_ENCRYPT configuration variable  H-21
AGS_TCP_NODELAY configuration variable  H-21
allocating dynamic memory  I-214
ALLOW_FS_OVERRIDE configuration variable  H-22
AND (CBL_AND) routine  I-3
ANNUITY intrinsic function  F-9
ANSI

character set  H-87
X3.23-1985 COBOL specifications  A-2

ANSI_OUTPUT_IN_DEBUG configuration variable  H-22



Index-4
APPLY_CODE_PATH configuration variable  H-23
APPLY_FILE_PATH configuration variable  H-23
ASCII, translation to EBCDIC  I-55
ASCII2HEX routine  I-2
ASCII2OCTAL routine  I-3
Asian character sets  H-43
ASIN intrinsic function  F-10
associating registry key values  I-244
asynchronous AcuConnect connections  I-49
asynchronous read for Vision files  H-177
ATAN intrinsic function  F-10
audio file support (.WAV)  I-344
AUTO_BUFFER configuration variable  C-11
AUTO_DECIMAL configuration variable  H-24
AUTO_PROMPT configuration variable  H-24
automatic trailing space removal  H-147
automatic update

download progress dialog  H-155,  H-156
failure  H-148,  H-154,  H-162
log file  H-162
query message box  H-149,  H-150
Windows installer interface  H-159

AXML_CREATE_SCHEMA configuration variable  H-24
AXML_CREATE_STYLE configuration variable  H-25
AXML_ENCODING configuration variable  H-25
AXML_EXACT_TABLE_MATCH configuration variable  H-26
AXML_SCHEMA_DOC configuration variable  H-27
AXML_SCHEMA_NAME configuration variable  H-28
AXML_SCHEMA_NAMESPACE_DATA configuration variable  H-28
AXML_STYLESHEET_HREF configuration variable  H-29
AXML_STYLESHEET_TYPE configuration variable  H-29
AXML-IGNORE-EMPTY-DATA configuration variable  H-26

B
background brush  H-191



 Index-5
background debugging
XTERM_PROGRAM config variable  H-201

background setting  I-405
BACKGROUND_INTENSITY configuration variable  H-29
BELL runtime configuration variable  H-30
BITMAP control, V52_BITMAP configuration variable  H-185
bitmapped graphics in Windows  I-266
bitmaps

determining printer support for  I-373,  I-374
printing in Windows  I-387
scaling  I-387
WIN$BITMAP routine  I-266

border attributes, specifying on character-based hosts  H-16
BOXED_FLOATING_WINDOWS configuration variable  H-30
browser

displaying a message in the status bar  I-341
passing a URL to  I-298

BROWSERINFO-DATA  I-282
Btrieve file, using in exclusive mode  H-30
BTRV_MASS_UPDATE configuration variable  H-30
BTRV_NOWRITE_WAIT configuration variable  H-31
BTRV_USE_REPEAT_DUPS configuration variable  H-31
buffer, Windows print spooler  I-366
BUFFERED_SCREEN configuration variable  H-31
buffers, V_BUFFERS configuration variable  H-175
built-in functions, intrinsics  F-2
bulk addition, logging rejected records  H-60
BY CONTENT, parameter size limitation  C-5
BY VALUE, change in Version 2.3  C-31

C
C subroutines

DLL_SUB_INTERFACE configuration variable  H-57
Version 2.1 restrictions  C-30

C$ASYNCPOLL routine  I-48



Index-6
C$ASYNCRUN routine  I-49
C$CALLEDBY routine  I-49
C$CALLERR routine  I-50
C$CHAIN routine  I-51

returning from  I-52
C$CHDIR routine  I-53
C$CODESET routine  I-55
C$CONFIG routine  I-56
C$COPY routine  I-57

special directory identifiers  I-59
C$DELETE routine  I-59
C$DISCONNECT routine  I-60
C$EXCEPINFO routine  I-61
C$EXITINFO routine  I-68
C$FILEINFO routine  I-69
C$FILESYS routine  I-70
C$FULLNAME routine  I-71
C$GETCGI routine  I-73
C$GETERRORFILE routine  I-75
C$GETEVENTDATA routine  I-75
C$GETEVENTPARAM routine  I-77
C$GETLASTFILEOP routine  I-79
C$GETNETEVENTDATA routine  I-80
C$GETPID routine  I-82
C$GETVARIANT routine  I-82
C$JAVA library routine  H-103
C$JAVA routine  H-128,  I-84
C$JUSTIFY routine  I-94
C$KEYMAP routine  I-95
C$KEYPROGRESS routine  I-96
C$LIST-DIRECTORY routine  I-97
C$LOCALPRINT routine  I-101
C$LOCKPID routine  I-104
C$MAKEDIR routine  I-104
C$MEMCPY (Dynamic Memory Routine)  I-105
C$MYFILE routine  I-106
C$NARG routine  I-107



 Index-7
C$OPENSAVEBOX routine  I-108
error handling  I-115
OPENSAVE-BROWSE-FOLDER operation  I-109
OPENSAVE-OPEN-BOX operation  I-109
OPENSAVE-SAVE-BOX operation  I-109
OPENSAVE-SUPPORTED operation  I-109

C$PARAMSIZE routine  I-116
C$PARSEXFD routine, PARSEXFD-PARSE operation  I-119
C$RECOVER routine  I-131
C$REDIRECT routine  I-133
C$REGEXP routine  I-135
C$RERR routine  I-142
C$RERRNAME routine  I-144
C$RESOURCE routine  I-144
C$RUN routine  I-147
C$SETERRORFILE routine  I-147
C$SETEVENTDATA routine  I-149
C$SETEVENTPARAM routine  I-150
C$SETVARIANT routine  I-152
C$SLEEP routine  I-154
C$SOCKET routine  I-155
C$SYSLOG routine  I-164
C$SYSTEM routine

description  I-166
flags  I-167

C$TOLOWER routine  I-171
C$TOUPPER routine  I-171
C$XML routine  I-172
cache setting for HTML output from CGI programs  H-36
CALL performance

OPTIMIZE_INDIVIDUAL_LINKAGE  H-126
CALL statement

error messages  I-50
how to return after a C$CHAIN  I-51

CALL, CHAIN, and CANCEL names, modifying at runtime  H-40
CALL_HASH_SIZE configuration variable  H-32
callers, identifying  I-49



Index-8
calling ACUCOBOL-GT from other programming languages
C$GETVARIANT  I-82
C$SETVARIANT  I-152

calling conventions, specifying for DLLs  H-41,  H-57
calling Java from COBOL  I-84
CANCEL ALL statement, changing the default behavior of  H-32
CANCEL_ALL_DLLS configuration variable  H-32
carriage control characters, treatment in LINE SEQUENTIAL data files  H-32
CARRIAGE_CONTROL_FILTER configuration variable  H-32
case

converting with a library routine  I-171
leaving in XFDs unchanged  H-6
UPPER_LOWER_MAP configuration variable  H-170

CBL_AND routine  I-3
CBL_CLEAR_SCR routine  I-4
CBL_CLOSE_FILE routine  I-5
CBL_COPY_FILE routine  I-6
CBL_CREATE_DIR routine  I-7
CBL_CREATE_FILE routine  I-8
CBL_DELETE_DIR routine  I-10
CBL_DELETE_FILE routine  I-10
CBL_EQ routine  I-11
CBL_ERROR_PROC routine  I-12
CBL_EXIT_PROC routine  I-15
CBL_FLUSH_FILE routine  I-17
CBL_GET_CSR_POS routine  I-18
CBL_GET_EXIT_INFO routine  I-19
CBL_GET_SCR_SIZE routine  I-21
CBL_NOT routine  I-22
CBL_OR routine  I-24
CBL_READ_FILE routine  I-25
CBL_READ_SCR_ATTRS routine  I-27
CBL_READ_SCR_CHARS routine  I-28
CBL_READ_SCR_CHATTRS routine  I-30
CBL_SET_CSR_POS routine  I-31
CBL_SUBSYTEM  I-32
CBL_SWAP_SCR_CHATTRS routine  I-34



 Index-9
CBL_WRITE_FILE routine  I-35
CBL_WRITE_SCR_ATTRS routine  I-37
CBL_WRITE_SCR_CHARS routine  I-38
CBL_WRITE_SCR_CHARS_ATTR routine  I-39
CBL_WRITE_SCR_CHATTRS routine  I-41
CBL_WRITE_SCR_N_ATTR routine  I-42
CBL_WRITE_SCR_N_CHAR routine  I-43
CBL_WRITE_SCR_N_CHATTR routine  I-44
CBL_WRITE_SCR_TTY routine  I-46
CBL_XOR routine  I-47
CBLHELP configuration variable  H-33
cell grid, displaying in a window (debugging aid)  H-194
centering data with C$JUSTIFY  I-94
CGI (Common Gateway Interface)

retrieving a CGI variable  I-73
setting the HTML output cache option  H-36

CGI programs
caching HTML output to requesting client  H-36
removing carriage return characters in HTML TEXTAREAS  H-36
suppressing HTML header  H-34

CGI_AUTO_HEADER configuration variable  H-34
CGI_CLEAR_MISSING_VALUES configuration variable  H-34
CGI_CONTENT_TYPE configuration variable  H-34
CGI_NO_CACHE configuration variable  H-36
CGI_STRIP_CR configuration variable  H-36
CHAIN_MENUS configuration variable  H-37
changes affecting previous versions of the runtime and compiler  C-2

changes affecting Version 1.3  C-39
changes affecting Version 1.4  C-36
changes affecting Version 1.5  C-33
changes affecting Version 2.0  C-33
changes affecting Version 2.1  C-30
changes affecting Version 2.3  C-29
changes affecting Version 2.4  C-28
changes affecting Version 3.1  C-27
changes affecting Version 3.2  C-24
changes affecting Version 4.0  C-23



Index-10
changes affecting Version 4.1  C-23
changes affecting Version 4.2  C-21
changes affecting Version 4.3  C-19
changes affecting Version 5.0  C-17
changes affecting Version 5.1  C-14
changes affecting Version 5.2  C-10
changes affecting Version 6.0  C-9
changes affecting Version 6.1  C-5,  C-8
changes affecting Version 6.2  C-5
changes affecting Version 7.0  C-5
changes affecting Version 7.1  C-4

font widths  H-187
changes affecting Version 7.2  C-3

CHAR intrinsic function  F-11
character encoding, CGI content  H-35
character mapping

map file  H-55,  H-160
server_MAP_FILE configuration variable  H-138

character-based applications, when moving to graphical environments
color transformations  H-48
performing uniform color scheme changes  H-44
transforming color combinations  H-46

character-based hosts
border attributes  H-16
displaying floating windows  H-30
distinguishing enabled screen controls  H-56
emulating graphical controls  H-92
specifying attributes of inactive floating window border  H-99

charset, CGI content  H-35
CHECK_USING configuration variable  H-37
CHM files  I-304
CICS, USE_CICS configuration variable  H-171
C-ISAM files, and C$COPY routine  I-57
CISAM_COMPRESS_KEYS configuration variable  H-38
clearing the screen  I-4
CLOSE_ON_EXIT configuration variable  H-38
closing files routine  I-5



 Index-11
closing registry keys  I-222
COBLPFORM routine  H-39
COBOL/Java interoperability  I-84
code file search  H-68
CODE_CASE configuration variable  H-39
CODE_MAPPING configuration variable  H-40
CODE_PREFIX configuration variable  H-23,  H-42

with C$CHDIR  I-53
CODE_SUFFIX configuration variable  C-25,  H-42
CODE_SYSTEM configuration variable  H-43
color

assigning with COLOR-MAP  H-44
setting text color with WIN$PRINTER  I-396
values, list of  H-47
Windows machines  I-328

color defaults for menus  I-319
COLOR_MAP configuration variable  C-42,  H-44
COLOR_MODEL configuration variable  H-44
COLOR_TABLE configuration variable  H-46
COLOR_TRANS configuration variable  H-48
COLORREF  I-435
COLUMN clause in Screen Section, ICOBOL compatibility  H-136
column font color

WINPRINT-COL-FONTCOLOR  I-434
COLUMN_SEPARATION configuration variable  C-27,  H-49
columns

clearing in Windows  I-427
defining in Windows  I-426,  I-428,  I-440
selecting in Windows  I-440

command
executing an operating system  I-258
executing an operating system from Windows  I-147

compiler, error messages, list of  D-2
COMPRESS_FACTOR configuration variable  H-49
COMPRESS_FILES configuration variable  H-49
computing character width in Windows  H-187
configuration files



Index-12
names  H-3
nested  H-4
rules  H-2

configuration variables
3D_LINES  H-5
4GL_COLUMN_CASE  H-6
7_BIT  H-7
A_CHECKDIV  H-7
A_DEBUG  H-8
A_DISPLAY  H-8
A_EXTFH_FUNC  H-8
A_EXTFH_IDX_FUNC  H-8
A_EXTFH_IDX_LIB  H-9
A_EXTFH_LIB  H-9
A_EXTFH_REL_FUNC  H-8
A_EXTFH_REL_LIB  H-9
A_EXTFH_SEQ_FUNC  H-8
A_EXTFH_SEQ_LIB  H-9
A_LICENSE_RETRIES  H-13
A_OPERATING_SYSTEM  H-14
A_RETRY_DELAY  H-14
ACCEPT_AUTO  H-16
ACCEPT_TIMEOUT  H-16
ACTIVE_BORDER_COLOR  H-16
ACU_DUMP  H-17
ACU_DUMP_FILE  H-17
ACU_DUMP_TABLE_LIMIT  H-18
ACU_DUMP_WIDTH  H-18
ACU_USER_DIR  H-18
ACUCOBOL  H-19
AGS_MAX_SEND_SIZE  H-19
AGS_RECEIVE_BUFFER_SIZE  H-19
AGS_SEND_BUFFER_SIZE  H-20
AGS_SOCKET_COMPRESS  H-20
AGS_SOCKET_ENCRYPT  H-21
AGS_TCP_NODELAY  H-21
APPLY_CODE_PATH  H-23



 Index-13
APPLY_FILE_PATH  H-23
AUTO_DECIMAL  H-24
AUTO_PROMPT  H-24
AXML_CREATE_SCHEMA  H-24
AXML_CREATE_STYLE  H-25
AXML_ENCODING  H-25
AXML_EXACT_TABLE_MATCH  H-26
AXML_SCHEMA_DOC  H-27
AXML_SCHEMA_NAME  H-28
AXML_SCHEMA_NAMESPACE_DATA  H-28
AXML_STYLESHEET_HREF  H-29
AXML_STYLESHEET_TYPE  H-29
AXML-IGNORE-EMPTY-DATA  H-26
BACKGROUND_INTENSITY  H-29
BELL  H-30
BOXED_FLOATING_WINDOWS  H-30
BTRV_MASS_UPDATE  H-30
BTRV_NOWRITE_WAIT  H-31
BTRV_USE_REPEAT_DUPS  H-31
BUFFERED_SCREEN  H-31
C_ISAM_COMPRESS_KEYS  H-38
CALL_HASH_SIZE  H-32
CANCEL_ALL_DLLS  H-32
CARRIAGE_CONTROL_FILTER  H-32
CBLHELP  H-33
CGI_AUTO_HEADER  H-34
CGI_CONTENT_TYPE  H-34
CGI_NO_CACHE  H-36
CGI_STRIP_CR  H-36
CHAIN_MENUS  H-37
CHECK_USING  H-37
CISAM_COMPRESS_KEYS  H-38
CODE_CASE  H-39
CODE_MAPPING  H-40
CODE_PREFIX  H-42
CODE_SUFFIX  C-25,  H-42
CODE_SYSTEM  H-43



Index-14
COLOR_MAP  C-42,  H-44
COLOR_MODEL  H-44
COLOR_TABLE  H-46
COLOR_TRANS  H-48
COLUMN_SEPARATION  C-27,  H-49
COMPRESS_FACTOR  H-49
COMPRESS_FILES  H-49
CONTROL_CREATION_EVENTS  H-50
CURRENCY  H-50
CURSOR_MODE  H-50
CURSOR_TYPE  H-51
DEBUG_NEWCOPY  H-51
DECIMAL_POINT  H-52
DEFAULT_FILESYSTEM  H-52,  H-77
DEFAULT_FONT  H-53
DEFAULT_HOST  H-54,  H-77
DEFAULT_IDX_FILESYSTEM  H-52
DEFAULT_MAP_FILE  H-55
DEFAULT_PROGRAM  H-55
DEFAULT_REL_FILESYSTEM  H-52
DEFAULT_SEQ_FILESYSTEM  H-52
DEFAULT_TIMEOUT  H-55
DISABLED_CONTROL_COLOR  H-56
DISPLAY_SWITCH_PERIOD  H-56
DLL_CONVENTION  H-57
DLL_SUB_INTERFACE  H-57
DLL_USE_SYSTEM_DIR  H-58
DOS_BOX_CHARS  H-58
DOS_SYS_EMULATE  H-59
DOUBLE_CLICK_TIME  H-59
DUPLICATES_LOG  H-60
DYNAMIC_MEMORY_LIMIT  H-62
EDIT_MODE  C-41,  H-62
EF_UPPER_WIDE  H-63
EF_WIDE_SIZE  H-63
EOF_ABORTS  H-63
EOL_CHAR  H-64



 Index-15
ERRORS_OK  H-64
EXIT_CURSOR  H-65
EXPAND_ENV_VARS  H-65,  H-69
EXTEND_CREATES  C-41,  H-66
EXTERNAL_SIZE  H-66
EXTFH_KEEP_TRAILING_SPACES  H-66
EXTRA_KEYS_OK  H-66
F10_IS_MENU  H-67
FAST_ESCAPE  H-67
FIELDS_UNBOXED  H-68
FILE_ALIAS_PREFIX  H-68
FILE_CASE  H-70
FILE_CONDITION  H-71
FILE_IO_PEEKS_MESSAGES  H-71
FILE_IO_PROCESSES_MESSAGES  C-28,  H-71
FILE_PREFIX  H-72
FILE_STATUS_CODES  H-73
FILE_SUFFIX  H-73
FILE_TRACE  H-73
FILE_TRACE_FLUSH  H-74
FILE_TRACE_TIMESTAMP  H-74
filename  H-74
filename_DATA_FMT  H-75
filename_INDEX_FMT  H-78
filename_LOG  H-80
FILENAME_SPACES  H-80
filename_VERSION  H-81
filesystem_DETACH  H-82
FLUSH_ALL  H-83
FLUSH_COUNT  H-85
FLUSH_ON_ACCEPT  H-85
FLUSH_ON_CLOSE  H-86
FLUSH_ON_COMMIT  H-86
FLUSH_ON_OPEN  H-86
FONT  H-86
FONT_AUTO_ADJUST  H-87
FONT_SIZE_ADJUST  H-88



Index-16
FONT_WIDE_SIZE_ADJUST  H-89
FOREGROUND_INTENSITY  H-90
FREEZE_AX_EVENTS  H-90
FULL_BOXES  H-91
GRID_BUTTONS_CAUSE_GOTO  H-91
GUI_CHARS  H-92
HELP_PROGRAM  H-93
HINTS_OFF  H-93
HINTS_ON  H-94
HOT_KEY  H-94
HTML_TEMPLATE_PREFIX  H-96
ICOBOL_FILE_SEMANTICS  H-97
ICON  H-97
IMPORT_USES_CELL_SIZE  H-98
INACTIVE_BORDER_COLOR  H-99
INCLUDE_PGM_INFO  H-99
INPUT_STATUS_DEFAULT  H-99
INSERT_MODE  H-100
INTENSITY_FLAGS  H-100
IO_CREATES  H-102
IO_READ_LOCK_TEST  H-102
ISOLATE_FILE_CREATES  H-103
JAVA_LIBRARY_NAME  H-103
JAVA_OPTIONS  H-104
JUSTIFY_NUM_FIELDS  H-104
KEY_MAP  C-41,  H-105
KEYBOARD  H-105
KEYSTROKE  H-105
LC_ALL  H-105
LICENSE_ERROR_MESSAGE_BOX  H-109
LISTS_UNBOXED  H-110
LITERAL_ENTRY  H-110
LOCK_DIR  H-110
LOCK_OUTPUT  H-110
LOCK_SORT  H-111
LOCKING_RETRIES  H-111
LOCKS_PER_FILE  E-7,  H-111



 Index-17
LOG_BUFFER_SIZE  H-111
LOG_DEVICE  H-112
LOG_DIR  E-11,  H-112
LOG_ENCRYPTION  H-112
LOG_FILE  H-112
LOGGING  H-113
LOGICAL_CANCELS  H-113
MAKE_ZERO  H-114
MASS_UPDATE  H-114
MAX_ERROR_AND_EXIT_PROCS  H-115
MAX_ERROR_LINES  H-115
MAX_FILES  H-115
MAX_LOCKS  E-7,  H-116
MENU_ITEM  H-116
MESSAGE_BOX_COLOR  H-117
MESSAGE_QUEUE_SIZE  H-117
MIN_REC_SIZE  H-117
MONOCHROME  H-117
MOUSE  H-118
MOUSE_FLAGS  H-121
NO_BARE_KEY_LETTERS

alt key
NO_BARE_KEY_LETTERS  H-124

NO_CONSOLE  H-122
NO_LOG_FILE_OK  H-122
NO_TRANSACTIONS  H-122
NT_OPP_LOCK_STATUS  H-123
NUMERIC_VALIDATION  H-125
OLD_ARIAL_DIMENSIONS  C-20,  H-125
OPEN_FILES_ONCE  H-125
OPTIMIZE_CONTROL_RESIZE  H-126
OPTIMIZE_INDIVIDUAL_LINKAGE  H-126
PAGE_EJECT_ON_CLOSE  H-126
PERFORM_STACK  H-127
PRELOAD_JAVA_LIBRARY  H-128
PROMPTING  H-128
QUEUE_READERS  H-129



Index-18
QUIT_MODE  H-129
QUIT_ON_FATAL_ERROR  H-131
RECURSION  H-131
RECURSION_DATA_GLOBAL  H-133
REL_DELETED_VALUE  H-133
RENEW_TIMEOUT  H-134
RESIZE_FRAMES  H-134
RESIZE_FREELY  H-134
RESTRICTED_VIDEO_MODE  H-135
RMS_NATIVE_KEYS  H-135
SCREEN  H-136
SCREEN_COL_PLUS_BASE  H-136
SCRIPT_STATUS  H-137
SCRN  H-137
SCROLL  C-42,  H-137
server_MAP_FILE  H-138
SHARED_CODE  H-140
SHARED_LIBRARY_EXTENSION  H-141
SHARED_LIBRARY_LIST  H-57,  H-141
SHARED_LIBRARY_PREFIX  H-143
SHUTDOWN_MESSAGE_BOX  H-143
SORT_DIR  H-143
SORT_FILES  H-144
SORT_MEMORY  H-144
SPACES_ZERO  C-34,  H-145
SPOOL_FILE  H-145
STD_FIXED_FONT  H-146
STOP_RUN_ROLLBACK  H-146
STRIP_TRAILING_SPACES  H-147
SWITCH_PERIOD  H-147
SYSINTR_NAME  H-147
TC_AUTO_UPDATE_FAILED_MESSAGE  H-148
TC_AUTO_UPDATE_FAILED_TITLE  H-148
TC_AUTO_UPDATE_NOTIFY_FAIL  H-148
TC_AUTO_UPDATE_QUERY  H-149
TC_AUTO_UPDATE_QUERY_MESSAGE  H-149
TC_AUTO_UPDATE_QUERY_TITLE  H-150



 Index-19
TC_AX_EVENT_LIST  H-150
TC_CHECK_ALIVE_INTERVAL  H-151
TC_CHECK_INSTALLER_TIMESTAMP  H-151
TC_CONTINUITY_WINDOW  H-151
TC_CONTROL_SYNC_LEVEL  H-152
TC_DELAY_ACTIVATE  H-153
TC_DELAY_PRE_EVENT_OPS  H-154
TC_DISABLE_AUTO_UPDATE  H-154
TC_DISABLE_SERVER_LOG  H-154
TC_DOWNLOAD_CANCEL_MESSAGE  H-155
TC_DOWNLOAD_DESCRIPTION  H-155
TC_DOWNLOAD_DIALOG  H-156
TC_DOWNLOAD_DIALOG_TITLE  H-156
TC_EVENT_LIST  H-156
TC_EXCLUDE_EVENT_LIST  H-157
TC_INSTALLER_ARGS  H-157
TC_INSTALLER_CLIENT_FILE  H-157
TC_INSTALLER_RUN_ASYNC  H-158
TC_INSTALLER_SERVER_FILE  H-158
TC_INSTALLER_TARGET_DIR  H-159
TC_INSTALLER_UI_LEVEL  H-159
TC_MAP_FILE  H-160
TC_NESTED_AX_EVENTS  H-160
TC_QUIT_MODE  H-160
TC_REQUIRES_BUILD_NUMBER  H-161
TC_RESTRICT_AX_EVENTS  H-161
TC_SERVER_LOG_FILE  H-162
TC_SERVER_TIMEOUT  H-162
TC_TV_SELCHANGING  H-163
TEMP_DIR  H-164
TEMPORARY_CONTROLS  H-164
TEXT  H-164
TRACE_STYLE  H-167
TRANSLATE_TO_ANSI  H-167
TREE_ROOT_SPACE  H-168
TREE_TAB_SIZE  H-169
TRX_HOLDS_LOCKS  H-169



Index-20
UPPER_LOWER_MAP  H-170
USE_CICS  H-171
USE_EXECUTABLE_MEMORY  H-171
USE_EXTSM  H-172
USE_LARGE_FILE_API  H-172
USE_LOCAL_SERVER  H-172
USE_MPE_REDIRECTION  H-172
USE_MQSERIES  H-173
USE_SYSTEM_QSORT  H-173
USE_WINSYSFILES  H-173
V_BASENAME_TRANSLATION  H-174
V_BUFFER_DATA  H-175
V_BUFFERS  H-175
V_BULK_MEMORY  H-175
V_FORCE_OPEN  H-176
V_INDEX_BLOCK_PERCENT  H-176
V_INTERNAL_LOCKS  H-177
V_LOCK_METHOD  H-177
V_MARK_READ_CORRUPT  H-180
V_NO_ASYNC_CACHE_DATA  H-180
V_OPEN_STRICT  H-181
V_READ_AHEAD  H-181
V_SEG_SIZE  H-181
V_STRIP_DOT_EXTENSION  H-182
V_VERSION  H-182
V23_GRAPHICS_CHARACTERS  H-183
V30_MEASUREMENTS  H-183
V31_FLOATING_POINT  H-183
V42_FLOATING_POINT  H-184
V43_PRINTER_CELLS  H-184
V52_BITMAPS  H-185
V52_GRID_GOTO  H-185
V60_LIST_VALUE  H-185
V62_MAX_WINDOW  H-186
V70_ALIGNED_ENTRY_FIELD  C-4,  H-187
V71_FONT_WIDTHS  H-187
WAIT_FOR_ALL_PIPES  H-188



 Index-21
WAIT_FOR_FILE_ACCESS  H-188
WAIT_FOR_LOCKS  H-189
WARNING_ON_RECURSIVE_ACCEPTS  H-191
WARNINGS  H-190
WHITE_FILL  H-191
WIN_ERROR_HANDLING  H-192
WIN_F4_DROPS_COMBOBOX  H-192
WIN_SPOOLER_PORT  H-193
WIN3_CLIP_CONTROLS  H-193
WIN3_EF_PADDED  H-194
WIN3_GRID  H-194
WIN32_3D  H-195
WIN32_NATIVECTLS  H-196
WINDOW_INTENSITY  H-197
WINDOW_TITLE  H-198
WINPRINT_NAMES_ONLY  H-198
WRAP  C-42,  H-200
XFD_DIRECTORY  H-200
XFD_PREFIX  H-201
XTERM_PROGRAM  H-201

configuration variables, described  H-5
configuration variables, resetting with C$CONFIG  I-57
configurations, saving keyboard  I-95
connecting AcuConnect asynchronously  I-49
content type, MIME  H-35
CONTROL_CREATION_EVENTS configuration variable  H-50
controlling menus with the W$MENU routine  I-309
controlling mouse behavior  I-320
controls

optimizing resize requests  H-126
screen repainting with WIN3_CLIP_CONTROLS  H-193
TEMPORARY_CONTROLS configuration variable  H-164
text-mode configuration variables

ACTIVE_BORDER_COLOR  H-16
BOXED_FLOATING_WINDOWS  H-30
FULL-BOXES  H-91
GUI_CHARS  H-92



Index-22
INACTIVE_BORDER_COLOR  H-99
MESSAGE_BOX_COLOR  H-117
PROMPTING  H-128
RESIZE_FRAMES  H-134
SHUTDOWN_MESSAGE_BOX  H-143

converting
ASCII to hexadecimal  I-2
ASCII to octal  I-3
hexadecimal to ASCII  I-192
octal to ASCII  I-219
text to upper or lower case  I-171

copying a file
C$COPY routine  I-57
CBL_COPY_FILE routine  I-6

COS intrinsic function  F-11
creating

dialog boxes with C$OPENSAVEBOX  I-108
directories with C$MAKEDIR  I-104
files  I-6,  I-9,  I-18,  I-26,  I-36
registry keys  I-223,  I-225
subdirectories  I-7

CURRENCY configuration variable  H-50
CURRENT-DATE intrinsic function  F-12
cursor

defining appearance of  H-51
position after STOP RUN  H-65
position within field  H-118
refresh  I-283
setting visibility of  H-50

CURSOR_MODE configuration variable  H-50
CURSOR_TYPE configuration variable  H-51

D
data compression, AGS_SOCKET_COMPRESS variable  H-20
data encryption, AGS_SOCKET_ENCRYPT variable  H-21



 Index-23
data execution protection
USE_EXECUTABLE_MEMORY  H-171
Windows

data execution protection  H-171
data file names, adjusting the case of  H-70
data file search  H-68
data files, searching directories for  H-72
data items, 31-digit support  F-26,  F-27
data sharing in recursively called programs  H-133
data validation, NUMERIC_VALIDATION configuration variable  H-125
data, large data handling on UNIX  H-172
DATE-OF-INTEGER intrinsic function  F-13
DAY-OF-INTEGER intrinsic function  F-14
DBCS  H-43
DEBUG_NEWCOPY configuration variable  H-51
debugger

FILE_TRACE configuration variable  H-73
FILE_TRACE_FLUSH configuration variable  H-74
FILE_TRACE_TIMESTAMP configuration variable  H-74

debugging, displaying a character cell grid  H-194
DEC Alpha machine  C-30
DECIMAL_POINT configuration variable  H-52
.def files

acucobol.def  I-170,  I-282
acugui.def  I-224,  I-267,  I-309,  I-320,  I-342,  I-345
fonts.def  I-287
opensave.def  I-109,  I-115
palette.def  I-329
winhelp.def  I-302
winprint.def  I-119,  I-361,  I-373,  I-406,  I-426,  I-443,  I-448
winvers.def  I-452

default font, determining  H-53
default host, designating  H-54
default program, designating  H-55
DEFAULT_FILESYSTEM configuration variable  H-52,  H-77
DEFAULT_FONT configuration variable  H-53
DEFAULT_HOST configuration variable  H-54,  H-77



Index-24
DEFAULT_IDX_FILESYSTEM configuration variable  H-52
DEFAULT_MAP_FILE configuration variable  H-55
DEFAULT_PROGRAM configuration variable  H-55
DEFAULT_REL_FILESYSTEM configuration variable  H-52
DEFAULT_SEQ_FILESYSTEM configuration variable  H-52
DEFAULT_TIMEOUT configuration variable  H-55
defaults

color menu  I-319
monochrome menus  I-320

delays, creating with C$SLEEP  I-154
deleting

directories with CBL_DELETE_DIR  I-10
files with CBL_DELETE_FILES  I-10
registry key values  I-229
registry keys  I-228
resource files  I-144

DEP  H-171
device locking, under UNIX  H-110
devices, retrieving information about  I-450
dialog boxes

creating with C$OPENSAVEBOX  I-108
error handling  I-115
memory management  I-110

directories
changing current with C$CHDIR  I-53
creating with C$MAKEDIR  I-104
deleting with CBL_DELETE_DIR  I-10

DISABLED_CONTROL_COLOR configuration variable  H-56
display themes  H-196
display, refreshing  I-283
DISPLAY_REG_CLOSE_KEY routine  I-222
DISPLAY_REG_CREATE_KEY routine  I-223
DISPLAY_REG_CREATE_KEY_EX routine  I-225
DISPLAY_REG_DELETE_KEY routine  I-228
DISPLAY_REG_DELETE_VALUE routine  I-229
DISPLAY_REG_ENUM_KEY routine  I-231
DISPLAY_REG_ENUM_VALUE routine  I-232



 Index-25
DISPLAY_REG_OPEN_KEY routine  I-236
DISPLAY_REG_OPEN_KEY_EX routine  I-237
DISPLAY_REG_QUERY_VALUE routine  I-239
DISPLAY_REG_QUERY_VALUE_EX routine  I-241
DISPLAY_REG_SET_VALUE routine  I-244
DISPLAY_REG_SET_VALUE_EX routine  I-245
DISPLAY_SWITCH_PERIOD configuration variable  H-56
DLL calling conventions  H-41
DLL_CONVENTION configuration variable  H-57
DLL_SUB_INTERFACE configuration variable  H-57
DLL_USE_SYSTEM_DIR configuration variable  H-58
DLLs

C$GETVARIANT routine  I-82
C$SETVARIANT routine  I-152
setting the sub interface routine under Windows  H-57
specifying calling conventions for  H-57

DOS_BOX_CHARS configuration variable  H-58
DOS_OUTPUT_METHOD configuration variable  C-11
DOS_SYS_EMULATE configuration variable  H-59

Windows Console runtime  H-59
DOS_WATCOM_10 configuration variable  C-11
DOS-box, redefining line drawing characters  H-58
DOUBLE_CLICK_TIME configuration variable  H-59
double-byte characters

code system  H-43
download progress dialog, automatic update  H-155,  H-156
DPI, getting the resolution of a printer  I-363
DUPLICATES_LOG configuration variable  H-60
dynamic memory

allocating with M$ALLOC routine  I-214
freeing previously allocated  I-217
retrieving data from allocated  I-217
routines to handle  I-213
setting a constant value M$FILL routine  I-216
storing data in allocated block  I-218

DYNAMIC_FUNCTION_CALLS configuration variable  H-61
DYNAMIC_MEMORY_LIMIT configuration variable  H-62



Index-26
E
EBCDIC, translation to ASCII  I-55
EDIT_MODE configuration variable  C-41,  H-62
EF_UPPER_WIDE configuration variable  H-63
EF_WIDE_SIZE configuration variable  H-63
encoding, character, CGI content  H-35
entry field control, wheel mouse behavior  H-187
ENTRY point, name matching logic  H-110
ENTRY-FIELD control

computing UPPER style  H-63
EF_UPPER_WIDE configuration variable  H-63
EF_WIDE_SIZE configuration variable  H-63
FIELDS_UNBOXED configuration variable  H-68
globally removing boxes on  H-68
justifying numeric fields  H-104
setting boundary size  H-63

EOF_ABORTS configuration variable  H-63
EOL_CHAR configuration variable  H-64
EQUALS operation  I-11
error 98

codes  E-8
opening broken files  H-176

error and exit procedures, described  I-191
error codes

for bitmapped graphics  I-278
IBM DOS/VS COBOL  E-13
primary errors for transactions  E-11
secondary error codes for error 98s  E-8
secondary errors for transactions  E-12
transactions  E-10

error files
C$GETERRORFILE  I-75
C$SETERRORFILE  I-147
file trace feature of debugger  H-73
flush file trace data  H-74
timestamp data  H-74



 Index-27
error handling
dialog boxes  I-115
hardware  H-192
W$BITMAP routine  I-278
W$FONT routine  I-296
W$MENU routine  I-316
W$PALETTE routine  I-335
WIN$PRINTER routine  I-364

error messages, list of compiler  D-2
error procedures  I-12
ERRORS_OK configuration variable  H-64
escape key, setting the "wait time" in runtime  H-67
event notification system  I-164
event parameters

retrieving with C$GETEVENTDATA  I-75
retrieving with C$GETEVENTPARAM  I-77
setting in ActiveX  I-149,  I-150

examples
C$OPENSAVEBOX routine  I-115
C$SOCKET routine  I-163
W$FLUSH routine  I-284
WIN$PRINTER

printing a 3-column report  I-427
printing bitmaps  I-391
printing graphics  I-381,  I-384,  I-386
setting text color  I-398
specifying a printer  I-421
specifying column layout  I-442

exclusive OR operation  I-47
exit procedures  I-15
EXIT_CURSOR configuration variable  H-65
EXIT-STATUS routine  I-258
EXPAND_ENV_VARS configuration variable  H-65,  H-69
EXTEND_CREATES configuration variable  C-41,  H-66
extended file status  I-143
extensions to COBOL  A-4
external data, setting minimum size of pools  H-66



Index-28
external sort, USE_EXTSM  H-172
EXTERNAL_SIZE configuration variable  H-66
EXTFH

A_EXTFH_IDX_FUNC configuration variable  H-8
A_EXTFH_IDX_LIB configuration variable  H-9
A_EXTFH_REL_FUNC configuration variable  H-8
A_EXTFH_REL_LIB configuration variable  H-9
A_EXTFH_SEQ_FUNC configuration variable  H-8
A_EXTFH_SEQ_LIB configuration variable  H-9

EXTFH related variables
A_EXTFH_FUNC  H-8
A_EXTFH_LIB  H-9
A_EXTFH_SIMPLE_OPEN_OUTPUT  H-10
A_EXTFH_VARIABLE_IDX, A_EXTFH_VARIABLE_REL, 

A_EXTFH_VARIABLE_SEQ  H-10
EXTFH_KEEP_TRAILING_SPACES configuration variable  H-66
EXTRA_KEYS_OK configuration variable  H-66

F
F10_IS_MENU configuration variable  H-67
FACTORIAL intrinsic function  F-15
FAST_ESCAPE configuration variable  H-67
fields, excluding from mouse selection  H-118
FIELDS_UNBOXED configuration variable  H-68
file errors  E-2

allowing the runtime to continue  H-64
file format, setting file-by-file  H-81
file handler interface

I$IO routine  I-193
R$IO routine  I-249
S$IO routine  I-260

file handling
automatically closing files  H-38
install I/O handler  I-133

file segment, setting with V_SEG_SIZE  H-181
file status codes  E-2



 Index-29
determining  H-73
different standards (table)  E-2

file status condition, altering file status value  H-71
FILE STATUS variable  I-143
file system

designating  H-77
detaching from runtime  H-82

file tracing
FILE_TRACE configuration variable  H-73
FILE_TRACE_FLUSH configuration variable  H-74
FILE_TRACE_TIMESTAMP configuration variable  H-74

file types
CHM  I-304
HLP  I-301
WAV  I-344

FILE_ALIAS_PREFIX configuration variable  H-69
FILE_CASE configuration variable  H-70
FILE_CONDITION configuration variable  H-71
FILE_IO_PEEKS_MESSAGES configuration variable  H-71
FILE_IO_PROCESSES_MESSAGES configuration variable  C-28,  H-71
FILE_PREFIX configuration variable  H-72

applying to files with full path names  H-23
FILE_STATUS_CODES configuration variable  H-73
FILE_SUFFIX configuration variable  H-73
FILE_TRACE configuration variable  H-73
FILE_TRACE_FLUSH configuration variable  H-74
FILE_TRACE_TIMESTAMP configuration variable  H-74
filename configuration variable  H-74
filename_DATA_FMT configuration variable  H-75
filename_INDEX_FMT configuration variable  H-78
filename_LOG configuration variable  H-80
FILENAME_SPACES configuration variable  H-80
filename_VERSION configuration variable  H-81
filenames

adjusting case of data file names  H-70
adjusting case of object file names  H-39
appending suffixes to  H-42



Index-30
embedded spaces in  H-80
files

appending suffixes to names  H-73
copying with C$COPY  I-57
creating  H-102,  H-103
creating using OPEN EXTEND statements  H-66
creating when program attempts to open nonexistent file for I/O  H-102
deleting resource  I-144
deleting with C$DELETE  I-59
extended status  I-143
extensions with SYSTEM calls  I-258
flushing local and operating system cache  H-83
full path names

applying CODE_PREFIX  H-23
applying FILE_PREFIX  H-23

loading resource  I-144
locking input while allowing readers  H-111
locking output  H-110
recovery routine for  I-131
renaming with the RENAME routine  I-248
retrieving information with C$FILEINFO  I-69
retrieving resource  I-144
retrieving system information with C$FILESYS  I-70
search routine to find full name  I-71
status information  I-142,  I-144

filesystem_DETACH configuration variable  H-82
floating windows, displaying on character-based host  H-30
floating-point calculations, configuration variables  H-183,  H-184
FLUSH_ALL configuration variable  H-83
FLUSH_COUNT configuration variable  H-85
FLUSH_ON_ACCEPT configuration variable  H-85
FLUSH_ON_CLOSE configuration variable  H-86
FLUSH_ON_COMMIT configuration variable  H-86
FLUSH_ON_OPEN configuration variable  H-86
flushing

after first I/O operation in indexed file  H-86
local and operating system cache  H-83



 Index-31
on file close under Windows  H-86
pending screen output  H-102
regulating using COMMIT verb  H-86
setting number of updates before  H-85
using ACCEPT statement  H-85

flusing files routine  I-17
FONT configuration variable  H-86
FONT_AUTO_ADJUST configuration variable  H-87
FONT_SIZE_ADJUST configuration variable  H-88
FONT_WIDE_SIZE_ADJUST configuration variable  H-89
fonts

assigning to a printer  I-398
changing with W$FONT  I-349
DEFAULT_FONT configuration variable  H-53
determining default  H-53
determining on graphical systems  H-86
disabling automatic adjustment on Windows  H-87
measuring with W$TEXTSIZE  I-342
printing columns  I-425
printing under Windows  I-359
selecting  I-403
selecting with W$FONT  I-285
STD_FIXED_FONT configuration variable  H-146
TrueType fonts, using with WIN$PRINTER  I-403
window title  H-198

fonts.def  I-287
FOREGROUND_INTENSITY configuration variable  H-90
freeing dynamic memory  I-217
FREEZE_AX_EVENTS configuration variable  H-90
freezing ActiveX events  H-90
FULL_BOXES configuration variable  H-91
functions, intrinsic  F-2

G
GetPrinterResolution.cbl sample program  I-364



Index-32
graphical controls, emulating on character-based hosts  H-92
graphical systems, determining font for  H-86
Graphics Device Interface (GDI)  I-348

Windows API errors  I-369
graphics, bitmapped in Windows  I-266
GRID_BUTTONS_CAUSE_GOTO configuration variable  H-91
GRID_NO_CELL_DRAG configuration variable  H-92
group items

BROWSERINFO-DATA  I-282
FILE-INFO  I-69
OPENSAVE-DATA  I-108
WFONT-DATA  I-285
WINPRINT-DATA  I-119,  I-361
WINVERSION-DATA  I-451
WPALETTE-DATA  I-329

GUI_CHARS configuration variable  H-92

H
help

interfacing to Windows help files  I-300
Windows help compiler  I-301

HELP_PROGRAM configuration variable  H-93
HEX2ASCII routine  I-192
hexadecimal values, converting to ASCII  I-192
HINTS_OFF configuration variable  H-93
HINTS_ON configuration variable  H-94
.HLP files, Windows Help  I-301
hot keys  H-94
HOT_KEY configuration variable  H-94
HP attribute handling  H-96
HP_TERMINAL_ATTRIBUTE_HANDLING configuration variable  H-96
HTML

locating template files  H-96
output cache, setting this option  H-36

HTML_TEMPLATE_PREFIX configuration variable  H-96



 Index-33
hyphens, leaving in XFDs unchanged  H-6

I
I$IO routine  I-193
I/O file handling  I-133
IBM DOS/VS COBOL error codes  E-13
ICO, icon files  H-97
ICOBOL

file status codes  E-2
Screen Section, COLUMN clause  H-136

ICOBOL_FILE_SEMANTICS configuration variable  H-97
ICON configuration variable  H-97
icon, designating minimized icon on graphical systems  H-97
identifying callers  I-49
ImageLists

destroying  I-273
loading  I-271

IMPORT_USES_CELL_SIZE configuration variable  H-98
inactive floating window, specify attributes of border on character-based hosts  H-99
INACTIVE_BORDER_COLOR configuration variable  H-99
INCLUDE_PGM_INFO configuration variable  H-99
indexed files

creating  H-102
flushing after first I/O operation  H-86
logging rejected Vision files  H-60
opening without specifying all alternate keys  H-66
specifying compression for  H-49

input files, locking but allowing readers  H-111
input, simulating  I-305
INPUT_STATUS_DEFAULT configuration variable  H-99
INSERT_MODE configuration variable  H-100
installation directory path, ACUCOBOL-GT  H-19
INTEGER intrinsic function  F-15
integer keys on VMS systems  H-135
INTEGER-OF-DATE intrinsic function  F-16



Index-34
INTEGER-OF-DAY intrinsic function  F-16
INTEGER-PART intrinsic function  F-17
INTENSITY_FLAGS configuration variable  H-100
interfacing

with the indexed file handler  I-193
with the relative file handler  I-249
with the sequential file handler  I-260

international character mapping, CGI content  H-35
international character sets, server_MAP_FILE  H-138
Internet

displaying a message in the browser status bar  I-341
locating HTML template files  H-96
passing a URL to a browser  I-298
retrieving CGI variables  I-73

intrinsic functions
ACOS  F-8
ANNUITY  F-9
ASIN  F-10
ATAN  F-10
CHAR  F-11
COS  F-11
CURRENT-DATE  F-12
DATE-OF-INTEGER  F-13
DAY-OF-INTEGER  F-14
FACTORIAL  F-15
INTEGER  F-15
INTEGER-OF-DATE  F-16
INTEGER-OF-DAY  F-16
INTEGER-PART  F-17
LENGTH  F-18
LOG  F-19
LOG10  F-19
LOWER-CASE  F-20
MAX  F-21
MEAN  F-22
MEDIAN  F-22
MIDRANGE  F-23



 Index-35
MIN  F-24
MOD  F-24
NUMVAL  F-25
NUMVAL-C  F-26
ORD  F-28
ORD-MAX  F-28
ORD-MIN  F-29
PRESENT-VALUE  F-30
RANDOM  F-31
RANGE  F-32
REM  F-32
REVERSE  F-33
SIN  F-33
SQRT  F-34
STANDARD-DEVIATION  F-34
SUM  F-35
TAN  F-36
UPPER-CASE  F-37
VARIANCE  F-37
WHEN-COMPILED  F-38

intrinsic functions, definitions  F-3
intrinsic functions, introduction  F-2
intrinsic functions, return values  F-3
IO_CREATES configuration variable  H-102
IO_FLUSH_COUNT configuration variable  H-102
IO_READ_LOCK_TEST configuration variable  H-102
IO_SWITCH_PERIOD configuration variable  H-102
IS NUMERIC, test for COMP-3 fields  C-28
ISOLATE_FILE_CREATES configuration variable  H-103

J
Java related variables

A_JAVA_CHARSET  H-11
A_JAVA_GC_COUNT  H-11
A_JAVA_TRACE_FILENAME  H-12



Index-36
A_JAVA_TRACE_VALUE  H-12
JAVA_LIBRARY_NAME configuration variable  H-103
JAVA_OPTIONS configuration variable  H-104
justification, C$JUSTIFY routine  I-94
JUSTIFY_NUM_FIELDS configuration variable  H-104

K
KBD (keyboard variables)  H-104
key compression, turning off in C-ISAM files  H-38
KEY_MAP configuration variable  C-41,  H-105
keyboard  H-105

configuration, saving  I-95
input buffer, adding characters to  I-305
KBD variables  H-104

KEYBOARD configuration variable  H-105
keys

associating registry values with  I-244
closing registry  I-222
creating registry  I-223,  I-225
deleting registry  I-228
deleting registry values  I-229
Extra-Keys-OK option  H-66
opening registry  I-236,  I-237
retrieving registry  I-239
retrieving registry key values  I-232
retrieving registry subkeys  I-231
retrieving registry values  I-241
setting registry values  I-245
VMS systems, with numeric types  H-135

keystroke
inserting in front of existing text  H-100
library routine to retrieve next  I-297

KEYSTROKE configuration variable  H-105



 Index-37
L
large data handling, on UNIX  H-172
LC_ALL configuration variable  H-105
LENGTH intrinsic function  F-18
LIB$GET_SYMBOL routine  I-212
LIB$SET_SYMBOL routine  I-212
library routines  I-2,  I-213

$WINHELP  I-300
ASCII2HEX  I-2
ASCII2OCTAL  I-3
C$ASYNCPOLL  I-48
C$ASYNCRUN  I-49
C$CALLEDBY  I-49
C$CALLERR  I-50
C$CHAIN  I-51
C$CHDIR  I-53
C$CODESET  I-55
C$CONFIG  I-56
C$COPY  I-57
C$DELETE  I-59
C$DISCONNECT  I-60
C$EXCEPINFO  I-61
C$EXITINFO  I-68
C$FILEINFO  I-69
C$FILESYS  I-70
C$FULLNAME  I-71
C$GETCGI  I-73
C$GETEVENTDATA  I-75
C$GETEVENTPARAM  I-77
C$GETLASTFILEOP  I-79
C$GETNETEVENTDATA  I-80
C$GETVARIANT  I-82
C$JAVA  I-84
C$JUSTIFY  I-94
C$KEYMAP  I-95
C$KEYPROGRESS  I-96



Index-38
C$LIST-DIRECTORY  I-97
C$LOCALPRINT  I-101
C$LOCKPID  I-104
C$MAKEDIR  I-104
C$MYFILE  I-106
C$NARG  I-107
C$OPENSAVEBOX  I-108
C$PARAMSIZE  I-116
C$RECOVER  I-131
C$REDIRECT  I-133
C$REGEXP  I-135
C$RERR  I-142
C$RERRNAME  I-144
C$RESOURCE  I-144
C$RUN  I-147
C$SETEVENTDATA  I-149
C$SETEVENTPARAM  I-150
C$SETVARIANT  I-152
C$SLEEP  I-154
C$SOCKET  I-155
C$SYSLOG  I-164
C$SYSTEM  I-166
C$TOLOWER  I-171
C$TOUPPER  I-171
C$XML  I-172
CBL_AND  I-3
CBL_CLEAR_SCR  I-4
CBL_COPY_FILE  I-6
CBL_CREATE_DIR  I-7
CBL_DELETE_DIR  I-10
CBL_DELETE_FILE  I-10
CBL_EQ  I-11
CBL_ERROR_PROC  I-12
CBL_EXIT_PROC  I-15
CBL_GET_CSR_POS  I-18
CBL_GET_EXIT_INFO  I-19
CBL_GET_SCR_SIZE  I-21



 Index-39
CBL_NOT  I-22
CBL_OR  I-24
CBL_READ_SCR_ATTRS  I-27
CBL_READ_SCR_CHARS  I-28
CBL_READ_SCR_CHATTRS  I-30
CBL_SET_CSR_POS  I-31
CBL_SWAP_SCR_CHATTRS  I-34
CBL_WRITE_SCR_ATTRS  I-37
CBL_WRITE_SCR_CHARS  I-38
CBL_WRITE_SCR_CHARS_ATTR  I-39
CBL_WRITE_SCR_CHATTRS  I-41
CBL_WRITE_SCR_N_ATTR  I-42
CBL_WRITE_SCR_N_CHAR  I-43
CBL_WRITE_SCR_N_CHATTR  I-44
CBL_WRITE_SCR_TTY  I-46
CBL_XOR  I-47
DISPLAY_REG_CLOSE_KEY  I-222
DISPLAY_REG_CREATE_KEY  I-223
DISPLAY_REG_CREATE_KEY_EX  I-225
DISPLAY_REG_DELETE_KEY  I-228
DISPLAY_REG_DELETE_VALUE  I-229
DISPLAY_REG_ENUM_KEY  I-231
DISPLAY_REG_ENUM_VALUE  I-232
DISPLAY_REG_OPEN_KEY  I-236
DISPLAY_REG_OPEN_KEY_EX  I-237
DISPLAY_REG_QUERY_VALUE  I-239
DISPLAY_REG_QUERY_VALUE_EX  I-241
DISPLAY_REG_SET_VALUE  I-244
DISPLAY_REG_SET_VALUE_EX  I-245
HEX2ASCII  I-192
I$IO  I-193
LIB$GET_SYMBOL  I-212
LIB$SET_SYMBOL  I-212
M$ALLOC  I-214
M$FREE  I-217
M$GET  I-217
M$PUT  I-218



Index-40
OCTAL2ASCII  I-219
R$IO  I-249
REG_CLOSE_KEY  I-222
REG_CREATE_KEY  I-223,  I-228
REG_CREATE_KEY_EX  I-225
REG_DELETE_VALUES  I-229
REG_EMUM_KEY  I-231
REG_ENUM_VALUE  I-232
REG_OPEN_KEY  I-236
REG_OPEN_KEY_EX  I-237
REG_QUERY_VALUE  I-239
REG_QUERY_VALUE_EX  I-241
REG_SET_VALUE  I-244
REG_SET_VALUE_EX  I-245
RENAME  I-248
S$IO  I-260
SYSTEM  I-258
W$BITMAP  I-266
W$BROWSERINFO  I-281
W$FLUSH  I-283
W$FONT  I-285
W$FORGET  I-296
W$GETC  I-297
W$GETURL  I-298
W$KEYBUF  I-305
W$MENU  I-309
W$MOUSE  I-320
W$PALETTE  I-328
W$STATUS  I-341
W$TEXTSIZE  I-342
WIN$PLAYSOUND  I-344
WIN$PRINTER  I-359
WIN$VERSION  I-451

library routines, handling dynamic memory with  I-213
library routines, introduction  I-2
license errors

LICENSE_ERROR_MESSAGE_BOX  H-109



 Index-41
limits and ranges of the compiler  A-2
line drawing, defining characters for Windows console (DOS-box) programs  H-58
LINES phrase, optimizing resize requests with  H-126
linkage

OPTIMIZE_INDIVIDUAL_LINKAGE  H-126
LIST-BOX control

COLUMN SEPARATION configuration variable  H-49
columns, setting default separation distance  H-49
data truncated  C-27
unboxed on character-based systems  H-110

LISTS_UNBOXED configuration variable  H-110
LITERAL_ENTRY configuration variable  H-110
loading resource files  I-144
local printers  I-101
LOCK_DIR configuration variable  H-110
LOCK_OUTPUT configuration variable  H-110
LOCK_PER_FILE configuration variable  E-7
LOCK_SORT configuration variable  H-111
LOCKED_RECORD_DELAY configuration variable  C-11
locking files

method for Vision files  H-177
REL_LOCK_READ_THROUGH configuration variable  H-133

LOCKING_RETRIES configuration variable  H-111
LOCKS_PER_FILE configuration variable  H-111
log files, specifying for transaction logging system  H-80
LOG intrinsic function  F-19
LOG_BUFFER_SIZE configuration variable  H-111
LOG_DEVICE configuration variable  H-112
LOG_DIR configuration variable  E-11,  H-112
LOG_ENCRYPTION configuration variable  H-112
LOG_FILE configuration variable  H-112,  H-113
LOG10 intrinsic function  F-19
LOGGING configuration variable  H-113
logging system information  I-164
LOGICAL_CANCELS configuration variable  H-113
LOWER-CASE intrinsic function  F-20
lower-case, converting with C$TOLOWER  I-171



Index-42
M
M$ALLOC routine  I-214
M$COPY dynamic memory copy routine  I-215
M$FREE routine  I-217
M$GET routine  I-217
M$PUT routine  I-218
magic cookie terminals  H-135
MAKE_ZERO configuration variable  H-114
margins, setting in Windows  I-401
MASS_UPDATE configuration variable  H-114
MAX intrinsic function  F-21
MAX_ERROR_AND_EXIT_PROCS configuration variable  H-115
MAX_ERROR_LINES configuration variable  H-115
MAX_FILES configuration variable  H-115
MAX_LOCKS configuration variable  E-7,  H-116
MEAN intrinsic function  F-22
measuring fonts  I-342
MEDIAN intrinsic function  F-22
memory

copying with C$MEMCPY  I-105
copying with M$COPY  I-215
more through C$CHAIN  I-51
routines to manage  I-213
shared  H-140

memory management  H-144
dialog boxes  I-110

memory, allocated
freeing  I-217
retrieving data from  I-217
storing data in  I-218

menu color defaults  I-319
menu monochrome defaults  I-320
MENU_ITEM configuration variable  H-116
menus

W$MENU, controlling with  I-309
message processing during file I/O  C-28



 Index-43
message queue, controlling the size of  H-117
MESSAGE_BOX_COLOR configuration variable  H-117
MESSAGE_QUEUE_SIZE configuration variable  H-117
MIDRANGE intrinsic function  F-23
MIME content type  H-34
MIN intrinsic function  F-24
MIN_REC_SIZE configuration variable  H-117
MOD intrinsic function  F-24
MONOCHROME configuration variable  H-117
monochrome defaults for menus  I-320
mouse

controlling with W$MOUSE  I-320
excluding fields from selection  H-118
pointer shape  H-119
setting the double-click rate  H-59

MOUSE configuration variable  H-118
MOUSE_FLAGS configuration variable  H-121
MQSeries, USE_MQSERIES configuration variable  H-173
MSG-TV-SELCHANGING event  H-163
multiple configuration files  H-4

N
Nagel algorithm, AGS_TCP_NODELAY variable  H-21
negative value font color

WINPRINT-COL-FONTCOLOR-NEG  I-435
negative values

printing in different colors  I-436
nested ActiveX events  H-91
nested configuration files  H-4
NESTED_AX_EVENTS  H-123
.NET, C$GETNETEVENTDATA  I-80
NO_CONSOLE configuration variable  H-122
NO_LOG_FILE_OK configuration variable  H-122
NO_TRANSACTIONS configuration variable  H-122
nonnumeric data in numeric field  H-114,  H-190



Index-44
NOT operation  I-22
NT_OPP_LOCK_STATUS configuration variable  H-123
numeric entry fields

checking data item descriptions of  H-24
justifying  H-104

NUMERIC_VALIDATION configuration variable  H-125
NUMVAL intrinsic function  F-25
NUMVAL-C intrinsic function  F-26

O
object files

changing file name case  H-39
searching for  H-42

object library, identifying filename of disk file  I-106
octal values, converting to ASCII  I-219
OCTAL2ASCII routine  I-219
OEM character set  H-86
OLD_ARIAL_DIMENSIONS configuration variable  C-20,  H-125
OLE Automation Server

C$GETVARIANT routine  I-82
C$SETVARIANT routine  I-152

Open dialog box  I-108
error handling  I-115
memory management  I-110

OPEN statement, OPEN EXTEND, creating new files with  H-66
OPEN_FILES_ONCE configuration variable  H-125
opening registry keys  I-236,  I-237
opensave.def  I-109,  I-115
OPENSAVE-DATA structure, C$OPENSAVEBOX routine  I-108
operating system command

executing  I-258
executing from Windows  I-147

operations
CBL_AND library routine  I-3
commonly used in $WINHELP  I-302



 Index-45
EQUALS  I-11
exclusive OR  I-47
NOT  I-22
OR  I-24

operations routines
CBL_ERROR_PROC  I-12
CBL_EXIT_PROC  I-15
CBL_GET_EXIT_INFO  I-19

opportunistic locking in Windows  H-123
OPTIMIZE_CONTROL_RESIZE configuration variable  H-126
OR operation  I-24
ORD intrinsic function  F-28
ORD-MAX intrinsic function  F-28
ORD-MIN intrinsic function  F-29
output files, locking for exclusive use  H-110
overlapping print  I-443

P
packed decimal keys on VMS systems  H-135
PAGE_EJECT_ON_CLOSE configuration variable  H-126
PAGED_LIST_SCROLL_BAR configuration variable  H-127
palette.def  I-329
parameters

event, setting in ActiveX  I-149,  I-150
finding size of passed  I-116
number passed to current program  I-107
retrieving event

C$GETEVENTDATA routine  I-75
C$GETEVENTPARAM routine  I-77

parsing XML documents, C$XML routine  I-172
Passing Variant type data

C$GETVARIANT routine  I-82
C$SETVARIANT routine  I-152

pausing program with C$SLEEP  I-154
PERFORM_STACK configuration variable  H-127



Index-46
performance, improving
with configuration variables  H-102
with shared memory  H-140

PICTURE clause, 31-digit support  F-26,  F-27
PID (process ID)  I-82,  I-104
pointer shape  H-119
pop-up hints, configuration variables

HINTS_OFF configuration variable  H-93
HINTS_ON configuration variable  H-94

PRELOAD_JAVA_LIBRARY configuration variable  H-128
PRESENT-VALUE intrinsic function  F-30
print alignment  I-443
print spooler

buffer size available  I-366
handling  I-347
-Q option  I-350
-Q option settings  I-350
traditional, described  I-348
Windows  I-348

PrintDlgEX  I-424
printer channels, configuration variable for  H-39
printerlist, updating  I-372
printers

C$LOCALPRINT routine  I-101
getting the resolution of  I-363
specifying  I-419

printing
accessing Windows Setup Printer dialog box  I-366,  I-368
bitmaps  I-387
columns in Windows  I-425

clearing  I-427
defining  I-426,  I-428,  I-440
selecting  I-440

determining lines per page  I-375
determining status of a print job  I-443
directly to a file  H-193
getting information about a printer  I-412,  I-414



 Index-47
getting information about selected printer  I-406,  I-408
modifying status of a print job  I-446
number of available printers  I-410
setting lines per page  I-399
setting text color with WIN$PRINTER  I-396
specifying a printer in Windows  I-418,  I-421
support for bitmaps in Windows  I-373,  I-374
support under Windows  I-359
user-defined operations in WIN$PRINTER  I-449
WIN$PRINTER error handling  I-364

printing columns with colors  I-436
Process ID (PID)

how to get current  I-82
how to return  I-104

PROFILE_TYPE configuration variable  H-128
program menus, activating under Windows  H-67
programs, running from a COBOL application  I-166
progress status, how to show  I-335
PROMPTING configuration variable  H-128
proportional fonts

printing columns  I-425
selecting  I-398

protecting fields from mouse selection  H-118

Q
-Q option

printername  I-350
setting options  I-350

-Q option, Windows print spooler  H-193,  I-347,  I-349,  I-359
-Q option, Windows pritnt spooler  I-409
Q option  I-350
QUEUE_READERS configuration variable  H-129
QUIT_MODE configuration variable  H-129
QUIT_ON_FATAL_ERROR configuration variable  H-131
QUIT_TO_EXIT configuration variable  H-131



Index-48
R
R$IO routine  I-249
RANDOM intrinsic function  F-31
RANGE intrinsic function  F-32
READ statement, REL_LOCK_READ_THROUGH configuration variable  H-133
reading attributes from a screen  I-27
reading characters and their attributes from a screen  I-30
reading characters from a screen  I-28
reading file routine  I-6,  I-18,  I-26,  I-36
real colors  I-435
record locking, REL_LOCK_READ_THROUGH configuration variable  H-133
recovery, routine for file  I-131
RECURSION configuration variable  H-131
RECURSION_DATA_GLOBAL configuration variable  H-133
recursive PERFORM statements, potential problem with  C-27
recursively calling programs, sharing data  H-133
redirect file I/O  I-133
reference modification, range errors  C-7,  H-190
refresh screen or cursor  I-283
REG_CLOSE_KEY routine  I-222
REG_CREATE_KEY routine  I-223
REG_CREATE_KEY_EX routine  I-225
REG_DELETE_VALUE routine  I-229
REG_DELETE-KEY routine  I-228
REG_ENUM_KEY routine  I-231
REG_ENUM_VALUE routine  I-232
REG_OPEN_KEY routine  I-236
REG_OPEN_KEY_EX routine  I-237
REG_QUERY_VALUE routine  I-239
REG_QUERY_VALUE_EX routine  I-241
REG_SET_VALUE routine  I-244
REG_SET_VALUE_EX routine  I-245
registry routines  I-220
regular expressions, searching strings for  I-135
reinitializing Terminal Manager  I-296
REL_DELETED_VALUE configuration variable  H-133



 Index-49
relative file handler interface, R$IO routine  I-249
relative files, REL_LOCK_READ_THROUGH configuration variable  H-133
REM intrinsic function  F-32
remote name notation

CODE_PREFIX  H-42
DEFAULT-PROGRAM  H-55
FILE_PREFIX  H-72
hot keys  H-95
limitations for W$BITMAP  I-270
LOG_FILE  H-113
with C$COPY  I-57
with SORT_DIR  H-143
with XFD_DIRECTORY  H-200
with XFD_PREFIX  H-201

RENAME routine  I-248
renaming files  I-248
RENEW_TIMEOUT configuration variable  H-134
REPLACING, limits in INSPECT statement  C-5
reserved words, complete list of  B-2
RESIZE_FRAMES configuration variable  H-134
RESIZE_FREELY configuration variable  H-134
resource files  I-144

as used by W$BITMAP  I-266
RESTRICTED_VIDEO_MODE configuration variable  H-135
restrictions on compiler  A-10
retrieving

data from allocated memory  I-217
destination device information  I-450
event parameters with C$GETEVENTDATA  I-75
event parameters with C$GETEVENTPARAM  I-77
next keystrokes using W$GETC routine  I-297
registry key values  I-232,  I-241
registry keys  I-239
registry subkeys  I-231
resource files  I-144
symbol values  I-212
system information with C$KEYPROGRESS  I-96



Index-50
Windows version information  I-451
return values, from intrinsic functions  F-3
RETURN-CODE

change in version 2.3  C-31
Version 2.1 restriction  C-30

returning Process ID  I-104
RETURN-UNSIGNED special register  C-32
REVERSE intrinsic function  F-33
RM/COBOL

PAGE_EJECT_ON_CLOSE configuration variable  H-126
RM/COBOL-85 (ANSI 85) file status codes  E-2
version 2 (ANSI 74) file status codes  E-2

RMS_NATIVE_KEYS configuration variable  H-135
routine to handle the Windows print spooler  I-347
routines, library  I-2
running programs

from a COBOL application  I-166
simultaneously  I-147

runtime
configuration file  H-2
designating default host  H-54
destroying menus  H-37
messages, controlling text of  H-164
modifying CALL, CHAIN, and CANCEL names  H-40
multiple-user licenses on UNIX networks  H-14
opening broken files  H-176
setting

escape key  H-67
time out  H-55

standard font  H-146
runtime messages, controlling text of  H-164

S
S$IO routine  I-260
Save As dialog box  I-108



 Index-51
error handling  I-115
memory management  I-110

saving
keyboard configuration  I-95

scaling bitmaps  I-387
screen attribute library routines

CBL_CLEAR_SCR  I-4
CBL_GET_CSR_POS  I-18
CBL_GET_SCR_SIZE  I-21
CBL_READ_SCR_ATTRS  I-27
CBL_READ_SCR_CHARS  I-28
CBL_READ_SCR_CHATTRS  I-30
CBL_SET_CSR_POS  I-31
CBL_SWAP_SCR_CHATTRS  I-34
CBL_WRITE_SCR_ATTRS  I-37
CBL_WRITE_SCR_CHARS  I-38
CBL_WRITE_SCR_CHARS_ATTR  I-39
CBL_WRITE_SCR_CHATTRS  I-41
CBL_WRITE_SCR_N_ATTR  I-42
CBL_WRITE_SCR_N_CHAR  I-43
CBL_WRITE_SCR_N_CHATTR  I-44
CBL_WRITE_SCR_TTY  I-46

screen capture, using W$BITMAP  I-273
SCREEN configuration variable  H-136
screen import utility, configuration variable  H-98
screen refresh  I-283
Screen Section, ICOBOL compatibility, COLUMN clause  H-136
SCREEN_COL_PLUS_BASE configuration variable  H-136
SCRIPT_STATUS configuration variable  H-137
SCRN configuration variable  H-137
SCROLL configuration variable  C-42,  H-137
scrolling  H-137
secondary error codes for error 98s  E-8
selecting a printer from Windows Setup Printer dialog box  I-366,  I-368
selecting fonts  I-285
sequential file handler interface, S$IO routine  I-260
server status, checking  I-48



Index-52
server_MAP_FILE configuration variable  H-138
server_PASSWORD environment variable  H-139
server_port_PASSWORD environment variable  H-139
setting

colors  I-328
event parameters in ActiveX  I-149,  I-150
registry key values  I-245
symbol values  I-212

shape of mouse pointer  H-119
SHARED_CODE configuration variable  H-140
SHARED_LIBRARY_EXTENSION configuration variable  H-141
SHARED_LIBRARY_LIST configuration variable  H-141
SHARED_LIBRARY_PREFIX configuration variable  H-143
sharing data in recursively called programs  H-133
SHUTDOWN_MESSAGE_BOX configuration variable  H-143
simulating input  I-305
SIN intrinsic function  F-33
SIZE phrase, optimizing resize requests  H-126
size, passed parameters  I-116
sockets

AGS_MAX_SEND_SIZE configuration variable  H-19
AGS_RECEIVE_BUFFER_SIZE configuration variable  H-19
AGS_SEND_BUFFER_SIZE configuration variable  H-20
AGS_SOCKET_COMPRESS configuration variable  H-20
AGS_SOCKET_ENCRYPT configuration variable  H-21
AGS_TCP_NODELAY configuration variable  H-21
C$SOCKET library routine  I-155

SORT_DIR configuration variable  H-143
SORT_FILES configuration variable  H-144
SORT_MEMORY configuration variable  H-144
sound, playing .WAV files and Windows system sounds  I-344
spaces

embedded in file names  H-80
STRIP_TRAILING_SPACES configuration variable  H-147

SPACES_ZERO configuration variable  C-34,  H-145
special registers, RETURN-UNSIGNED  C-32
specifications for ACUCOBOL-GT  A-2



 Index-53
specifying a printer  I-419
SPOOL_FILE configuration variable  H-145
spooler, print

buffer size available  I-366
handling  I-347

SQRT intrinsic function  F-34
standard font measures, adjusting with FONT-SIZE-ADJUST  H-88
STANDARD-DEVIATION intrinsic function  F-34
status

checking server  I-48
extended file status information  I-142
last file used  I-144

status codes  E-2
STD_FIXED_FONT configuration variable  H-146
STOP_RUN_ROLLBACK configuration variable  H-146
storing data in allocated memory  I-218
STRIP_TRAILING_SPACES configuration variable  H-147
subsytem

CBL_SUBSYTEM routine  I-32
SUM intrinsic function  F-35
support for printing under Windows  I-359
SWITCH_PERIOD configuration variable  H-147
symbol values

retrieving  I-212
setting  I-212

SYSINTR_NAME configuration variable  H-147
syslog function  I-164
system information

retrieving with C$KEYPROGRESS  I-96
UNIX operating system  H-14

system logging  I-164
system messages, controlling whether processed during file I/O  H-71
SYSTEM routine  I-258



Index-54
T
TAN intrinsic function  F-36
TC_AUTO_UPDATE_FAILED_MESSAGE configuration variable  H-148
TC_AUTO_UPDATE_FAILED_TITLE configuration variable  H-148
TC_AUTO_UPDATE_NOTIFY_FAIL configuration variable  H-148
TC_AUTO_UPDATE_QUERY configuration variable  H-149
TC_AUTO_UPDATE_QUERY_MESSAGE configuration variable  H-149
TC_AUTO_UPDATE_QUERY_TITLE configuration variable  H-150
TC_AX_EVENT_LIST configuration variable  H-150
TC_CHECK_ALIVE_INTERVAL configuration variable  H-151
TC_CHECK_INSTALLER_TIMESTAMP configuration variable  H-151
TC_CONTINUITY_WINDOW configuration variable  H-151
TC_CONTROL_SYNC_LEVEL configuration variable  H-152
TC_DELAY_ACTIVATE configuration variable  H-153
TC_DELAY_PRE_EVENT_OPS configuration variable  H-154
TC_DISABLE_AUTO_UPDATE configuration variable  H-154
TC_DISABLE_SERVER_LOG configuration variable  H-154
TC_DOWNLOAD_CANCEL_MESSAGE configuration variable  H-155
TC_DOWNLOAD_DESCRIPTION configuration variable  H-155
TC_DOWNLOAD_DIALOG configuration variable  H-156
TC_DOWNLOAD_DIALOG_TITLE configuration variable  H-156
TC_EVENT_LIST configuration variable  H-156
TC_EXCLUDE_EVENT_LIST configuration variable  H-157
TC_INSTALLER_ARGS configuration variable  H-157
TC_INSTALLER_CLIENT_FILE configuration variable  H-157
TC_INSTALLER_RUN_ASYNC configuration variable  H-158
TC_INSTALLER_SERVER_FILE configuration variable  H-158
TC_INSTALLER_TARGET_DIR configuration variable  H-159
TC_INSTALLER_UI_LEVEL configuration variable  H-159
TC_MAP_FILE configuration variable  H-160
TC_NESTED_AX_EVENTS configuration variable  H-160
TC_QUIT_MODE configuration variable  H-160
TC_REQUIRES_BUILD_NUMBER configuration variable  H-161
TC_RESTRICT_AX_EVENTS configuration variable  H-161
TC_SERVER_LOG_FILE configuration variable  H-162
TC_SERVER_TIMEOUT configuration variable  H-162



 Index-55
TC_TV_SELCHANGING configuration variable  H-163
TEMP_DIR configuration variable  H-164
TEMPORARY_CONTROLS configuration variable  H-164
terminal input status, handling when undetermined  H-99
Terminal Manager

buffering output on UNIX systems  H-31
reinitializing  I-296

TEXT configuration variable  H-164
TEXTSIZE-DATA  I-342
thin client

special directory identifiers  I-59
thin client automatic update

failure  H-148,  H-154,  H-162
log file  H-162
query message box  H-149,  H-150
Windows installer interface  H-159

thin client configuration variables
TC_AX_EVENT_LIST  H-150
TC_CHECK_ALIVE_INTERVAL  H-151
TC_CONTINUITY_WINDOW  H-151
TC_CONTROL_SYNC_LEVEL  H-152
TC_DELAY_ACTIVATE  H-153
TC_EVENT_LIST  H-156
TC_EXCLUDE_EVENT_LIST  H-157
TC_NESTED_AX_EVENTS  H-160
TC_QUIT_MODE  H-160
TC_SERVER_TIMEOUT  H-162
TC_TV_SELCHANGING  H-163

threads
controlling the switching period of  H-147
determining switch control of  H-56

threads controlling the switching period of  H-56
timeout, setting  H-55
trace

flush file information from error file  H-74
save file information to error file  H-73
timestamp information  H-74



Index-56
trace messages, formatting  H-167
TRACE_STYLE configuration variable  H-167
tracing

paragraph configuration variable  H-127
screen tracing configuration variable  H-136

trailing space removal  H-147
transaction error codes  E-10
transaction management

disabling  H-122
filename_LOG configuration variable  H-80
NO_TRANSACTIONS configuration variable  H-122

transactions
primary error codes  E-11
secondary error codes for error 01  E-12

TRANSACTION-STATUS codes  E-10
TRANSLATE_TO_ANSI configuration variable  H-167
TREE_ROOT_SPACE configuration variable  H-168
TREE_TAB_SIZE configuration variable  H-169
TrueType fonts

printing  I-359
using with WIN$PRINTER  I-403

TRX_HOLDS_LOCKS configuration variable  H-169

U
unallocated memory, preventing accidental reference to  H-37
UNIX

large data handling  H-172
shared library file extension  H-141
shared library list  H-141
syslog function  I-164

UNIX configuration variables
BUFFERED_SCREEN  H-31
FLUSH_COUNT  H-85
LOCK_DIR  H-110
QUEUE_READERS  H-129



 Index-57
V32_GRAPHICS_CHARACTERS  H-183
updating printerlist  I-372
UPPER_LOWER_MAP configuration variable  H-170
UPPER-CASE intrinsic function  F-37
upper-case, converting data to  I-171
USAGE clause, POINTER

change in Version 2.3  C-31
Version 2.1 restriction  C-30

USE_CICS configuration variable  H-171
USE_EXTSM configuration variable  H-172
USE_LARGE_FILE_API configuration variable  H-172
USE_LOCAL_SERVER configuration variable  H-172
USE_MOUSE configuration variable  C-11
USE_MPE_REDIRECTION configuration variable  H-172
USE_MQSERIES configuration variable  H-173
USE_SYSTEM_QSORT configuration variable  H-173
USE_WINSYSFILES configuration variable  H-173
user-defined keys, F10 key  H-67
using colors  I-328
using nested configuration files  H-4

V
V_BASENAME_TRANSLATION configuration variable  H-174
V_BUFFER_DATA configuration variable  H-175
V_BUFFERS configuration variable  H-175
V_BULK_MEMORY configuration variable  H-175
V_FORCE_OPEN configuration variable  H-176
V_INDEX_BLOCK_PERCENT configuration variable  H-176
V_INTERNAL _LOCKS configuration variable  H-177
V_LOCK_METHOD configuration variable  H-177
V_MARK_READ_CORRUPT configuration variable  H-180
V_NO_ASYNC_CACHE_DATA configuration variable  H-180
V_OPEN_STRICT configuration variable  H-181
V_READ_AHEAD configuration variable  H-181
V_SEG_SIZE configuration variable  H-181



Index-58
V_STRIP_DOT_EXTENSION configuration variable  H-182
V_VERSION configuration variable  H-182
V30_MEASUREMENTS configuration variable  H-183
V31_FLOATING_POINT configuration variable  H-183
V32_GRAPHICS_CHARACTERS configuration variable  H-183
V42_FLOATING_POINT configuration variable  H-184
V43_PRINTER_CELLS configuration variable  H-184
V52_BITMAP_BUTTONS configuration variable  H-184
V52_BITMAPS configuration variable  H-185
V52_GRID_GOTO configuration variable  H-185
V60_LIST_VALUE configuration variable  H-185
V62_MAX_WINDOW configuration variable  H-186
V70_ALIGNED_ENTRY_FIELD configuration variable  C-4,  H-187
V71_FONT_WIDTHS configuration variable  H-187
values, symbol

retrieving  I-212
setting  I-212

VARIANCE intrinsic function  F-37
VAX COBOL

ACUCOBOL-85 Version 1.3  C-42
ACUCOBOL-85 Version 1.4  C-36
file status codes  E-2

versions
changes affecting version 1.3  C-39
changes affecting version 1.4  C-36
changes affecting version 1.5  C-33
changes affecting version 2.0  C-33
changes affecting version 2.1  C-30
changes affecting version 2.3  C-29
changes affecting version 2.4  C-28
changes affecting version 3.1  C-27
changes affecting version 3.2  C-24
changes affecting version 4.0  C-23
changes affecting version 4.1  C-23
changes affecting version 4.2  C-21
changes affecting version 4.3  C-19
changes affecting version 5.0  C-17



 Index-59
changes affecting version 5.1  C-14
changes affecting version 5.2  C-10
changes affecting version 6.0  C-9
changes affecting version 6.1  C-5,  C-8
changes affecting version 6.2  C-5

Vision
secondary error codes for error 98s  E-8

Vision files
accessing for read when record is locked  H-102
logging records rejected in bulk addition  H-60
mapping to a different directory  H-74
naming data segments of  H-75
naming index segments of  H-78
preventing errors caused by simultaneous file name use during file creation  H-103

Vista styles
WIN32NATIVECTLS  H-196

visual styles
WIN32_NATIVECTLS  H-196

VMS
FLUSH-COUNT configuration variable  H-85
improved performance  H-110

vutil, opening broken files  H-176

W
W$BITMAP routine

description  I-266
error handling  I-278
limitations for remote name notation  I-270
WBITMAP-CAPTURE-CLIPBOARD operation  I-276
WBITMAP-CAPTURE-DESKTOP operation  I-275
WBITMAP-CAPTURE-IMAGE operation  I-273
WBITMAP-DESTROY operation  I-270
WBITMAP-DESTROY-IMAGELIST operation  I-273
WBITMAP-DISPLAY operation  I-268
WBITMAP-LOAD operation  I-270



Index-60
WBITMAP-LOAD-IMAGELIST operation  I-271
WBITMAP-LOAD-PICTURE operation  I-277

W$BROWSERINFO routine  I-281
W$FLUSH routine  I-283
W$FONT routine

description  I-285
error handling  I-296
obtaining a font handle  I-399
using with print spooler  I-349
WFONT-CHOOSE-FONT operation  I-288
WFONT-DATA operation  I-289
WFONT-DESCRIBE-FONT operation  I-288
WFONT-GET-CLOSEST-FONT operation  I-288
WFONT-GET-FONT operation  I-287
WFONT-SUPPORTED operation  I-287

W$FORGET routine, description  I-296
W$GETC routine  I-297
W$GETURL routine  I-298
W$KEYBUF routine

description  I-305
operations  I-305
special keystrokes  I-308

W$MENU routine
description  I-309

W$MOUSE routine
description  I-320

W$MOUSE routine operations
CAPTURE-MOUSE  I-325
ENABLE-MOUSE  I-322
GET-MOUSE-SCREEN-STATUS  I-323
GET-MOUSE-SHAPE  I-325
GET-MOUSE-STATUS  I-322
RELEASE-MOUSE  I-326
SET-DELAYED-MOUSE-SHAPE  I-325
SET-MOUSE-HELP  I-326
SET-MOUSE-POSITION  I-323
SET-MOUSE-POSITION-EX  I-324



 Index-61
SET-MOUSE-POSITION-PIXEL  I-324
SET-MOUSE-SCREEN-POSITION  I-324
SET-MOUSE-SCREEN-POSITION-EX  I-324
SET-MOUSE-SCREEN-POSITION-PIXEL  I-324
SET-MOUSE-SHAPE  I-325
TEST-MOUSE-PRESENCE  I-322

W$PALETTE routine
description  I-328
error handling  I-335

W$PALETTE routine operations
WPALETTE-CHOOSE-COLOR  I-333
WPALETTE-GET-COLOR  I-331
WPALETTE-NUM-COLORS  I-330
WPALETTE-SET-COLOR  I-332
WPALETTE-SET-USER-COLOR  I-334
WPALETTE-SUPPORTED  I-330
WPALETTE-UPDATE  I-333

W$PROGRESSDIALOG routine  I-335
op-codes and parameters  I-336

W$STATUS routine  I-341
W$TEXTSIZE routine  I-342
WAIT_FOR_ALL_PIPES configuration variable  H-188
WAIT_FOR_FILE_ACCESS configuration variable  H-188
WAIT_FOR_LOCKS configuration variable  H-189
WARNING_ON_RECURSIVE_ACCEPTS configuration variable  H-191
WARNINGS configuration variable  C-7,  H-190
.WAV file support  I-344
WAV file support  I-344
Web deployment  I-298
Web plug-in, discontinued  C-11
Web runtime

displaying a message in the browser status bar  I-341
passing a URL to a browser  I-298
W$BROWSERINFO routine  I-281
W$GETURL routine  I-298
W$STATUS routine  I-341

WebSphere MQ



Index-62
USE_MQSERIES configuration variable  H-173
WFONT-DATA  I-285
WHEN-COMPILED intrinsic function  F-38
WHITE_FILL configuration variable  H-191
wide font measure

adjusting with FONT-WIDE-SIZE-ADJUST  H-89
WIN$PLAYSOUND routine  I-344
WIN$PRINTER routine  I-357

description  I-359
error handling  I-364
printer information op-codes

WINPRINT-GET-SETTINGS-SIZE operation  I-366
WINPRINT-GET-SPOOL-ERR operation  I-369
WINPRINT-SET-JOB operation  I-370
WINPRINT-SETUP operation  I-366
WINPRINT-SETUP-USE-MARGINS operation  I-368
WINPRINT-SUPPORTED operation  I-368

user defined op-codes
WINPRINT-GET-SETTINGS operation  I-450
WINPRINT-SET-SETTINGS operation  I-451

WINPRINT_NAMES_ONLY configuration variable  H-198
WINPRINT-COLUMN op-codes

WINPRINT-CLEAR-DATA-COLUMNS operation  I-427
WINPRINT-CLEAR-PAGE-COLUMNS operation  I-440
WINPRINT-GET-PAGE-COLUMN operation  I-440
WINPRINT-SET-DATA-COLUMNS operation  I-426
WINPRINT-SET-PAGE-COLUMN operation  I-428

WINPRINT-DATA op-codes
WINPRINT-GET-CAPABILITIES operation  I-373,  I-374
WINPRINT-GET-PAGE-LAYOUT operation  I-375
WINPRINT-GRAPH-BRUSH operation  I-382
WINPRINT-GRAPH-DRAW operation  I-376
WINPRINT-GRAPH-PEN operation  I-384
WINPRINT-PRINT-BITMAP operation  I-387
WINPRINT-SET-CURSOR operation  I-392
WINPRINT-SET-FONT operation  I-398
WINPRINT-SET-LINES-PER-PAGE operation  I-399



 Index-63
WINPRINT-SET-MARGINS operation  I-401
WINPRINT-SET-STD-FONT operation  I-403
WINPRINT-SET-TEXT-COLOR operation  I-396

WINPRINT-JOB-STATUS op-codes
WINPRINT-GET-JOB-STATUS operation  I-443
WINPRINT-SET-JOB-STATUS operation  I-446

WINPRINT-MEDIA op-codes
WINPRINT-GET-PRINTER-MEDIA operation  I-448

WINPRINT-SELECTION op-codes
WINPRINT-GET-CURRENT-INFO operation  I-406
WINPRINT-GET-CURRENT-INFO-EX operation  I-408
WINPRINT-GET-NO-PRINTERS operation  I-410
WINPRINT-GET-PRINTER-INFO operation  I-412
WINPRINT-GET-PRINTER-INFO-EX operation  I-414
WINPRINT-GET-PRINTER-STATUS operation  I-416
WINPRINT-SET-PRINTER operation  I-418
WINPRINT-SET-PRINTER-EX operation  I-421

WIN$VERSION routine  I-451
WIN_ERROR_HANDLING configuration variable  H-192
WIN_F4_DROPS_COMBOBOX, configuration variable  H-192
WIN_SPOOLER_PORT configuration variable  H-193
WIN3_CLIP_CONTROLS configuration variable  H-193
WIN3_EF_PADDED configuration variable  H-194
WIN3_GRID configuration variable  H-194
WIN32_3D configuration variable  H-195
WIN32_CTL_INPUT_STATUS configuration variables

WIN32_CTL_INPUT_STATUS  H-196
WIN32-NATIVECTLS  H-196
window title font  H-198
WINDOW_INTENSITY

configuration variable  H-197
WINDOW_TITLE configuration variable  H-198
Windows

determining print job status  I-443
event log  I-164
font width  H-187
get information about a printer  I-414



Index-64
get information about selected printer  I-408
Graphics Device Interface (GDI)  I-348

API errors  I-369
interface to Microsoft Help  I-300
modifying print job status  I-446
opportunistic locking  H-123
printing

bitmaps  I-373,  I-374,  I-387
clearing columns in print record  I-427
columns  I-425
defining columns in print record  I-426
defining columns on page  I-428,  I-440
get information about a printer  I-406,  I-412
get number of available printers  I-410
print spooler  I-347
print support  I-359
Printer Setup dialog box  I-366,  I-368
specifying a printer  I-418
to a file  H-193

resizing  H-134
retrieving operating system information  I-451
scaling bitmaps  I-387
selecting a font  I-398,  I-403
selecting columns on page  I-440
setting margins  I-401
specifying a printer  I-421
user-defined operations in WIN$PRINTER  I-449

Windows console runtime, redefining line-drawing characters  H-58
Windows print spooler  I-350
Windows registry routines

description  I-220
DISPLAY_REG_CLOSE_KEY  I-222
DISPLAY_REG_CREATE_KEY  I-223
DISPLAY_REG_CREATE_KEY_EX  I-225
DISPLAY_REG_DELETE_KEY  I-228
DISPLAY_REG_DELETE_VALUE  I-229
DISPLAY_REG_ENUM_KEY  I-231



 Index-65
DISPLAY_REG_ENUM_VALUE  I-232
DISPLAY_REG_OPEN_KEY  I-236
DISPLAY_REG_OPEN_KEY_EX  I-237
DISPLAY_REG_QUERY_VALUE  I-239
DISPLAY_REG_QUERY_VALUE_EX  I-241
DISPLAY_REG_SET_VALUE  I-244
DISPLAY_REG_SET_VALUE_EX  I-245
REG_CLOSE_KEY  I-222
REG_CREATE_KEY  I-223
REG_CREATE_KEY_EX  I-225
REG_DELETE_KEY  I-228
REG_DELETE_VALUE  I-229
REG_ENUM_KEY  I-231
REG_ENUM_VALUE  I-232
REG_OPEN_KEY  I-236
REG_QUERY_VALUE  I-239
REG_QUERY_VALUE_EX  I-241
REG_SET_VALUE  I-244
REG_SET_VALUE_EX  I-245
REG_OPEN_KEY_EX  I-237

Windows special directory identifiers  I-59
winhelp.def  I-302
winprint.def  I-119,  I-361,  I-373,  I-406,  I-426,  I-443,  I-448
WINPRINT_NAMES_ONLY configuration variable  H-198
WINPRINT-COLUMN-ALIGN-VERT routine  I-442
WINPRINT-DATA  I-119,  I-361
WINPRINT-SET-BKMODE op-code  I-405
WINPRINT-SETUP-EX op-code  I-423
WINPRINT-UPDATE-PRINTERS op-code  I-372
winvers.def  I-452
WINVERSION-DATA  I-451
Working-Storage, user defined operations in WIN$PRINTER  I-449
WPALETTE-DATA  I-329
WRAP configuration variable  C-42,  H-200
writing a specified attribute to a string of positions on the screen  I-42
writing a specified character and attribute to a string of positions on a screen  I-44
writing a specified character to a string of positions on a screen  I-43



Index-66
writing attributes to a screen  I-37
writing characters and their attributes to a screen  I-41
writing characters to a screen  I-38,  I-39
writing files routine  I-35
WS_CLIPCHILDREN  H-194

X
XFD

4GL_COLUMN_CASE configuration variable  H-6
XFD_DIRECTORY configuration variable  H-200
XFD_PREFIX configuration variable  H-201
XML data, parsing with C$XML routine  I-172
XP styles

WIN32_NATIVECTLS  H-196
xterm

XTERM_PROGRAM config variable  H-201


	ACUCOBOL-GT®
	Specifications
	A.1 COBOL Modules
	A.2 Limits and Ranges
	A.3 Extensions
	A.4 Restrictions

	ACUCOBOL-GT Reserved Words
	B.1 Conventions
	B.2 Reserved Word List

	Changes Affecting Previous Versions
	C.1 Changes Affecting Version 8.1
	C.2 Changes Affecting Version 8.0
	C.3 Changes Affecting Version 7.2
	C.4 Changes Affecting Version 7.1
	C.5 Changes Affecting Version 7.0
	C.6 Changes Affecting Version 6.2
	C.7 Changes Affecting Version 6.1
	C.8 Changes Affecting Version 6.0
	C.9 Changes Affecting Version 5.2
	C.10 Changes Affecting Version 5.1
	C.11 Changes Affecting Version 5.0
	C.12 Changes Affecting Version 4.3
	C.13 Changes Affecting Version 4.2
	C.14 Changes Affecting Version 4.1
	C.15 Changes Affecting Version 4.0
	C.16 Changes Affecting Version 3.2
	C.17 Changes Affecting Version 3.1
	C.18 Changes Affecting Version 2.4
	C.19 Changes Affecting Version 2.3
	C.20 Changes Affecting Version 2.1
	C.21 Changes Affecting Version 2.0
	C.22 Changes Affecting Version 1.5
	C.23 Changes Affecting Version 1.4
	C.24 Changes Affecting Version 1.3

	Compiler Error Messages
	D.1 Introduction
	D.2 List of Errors

	File Status Codes
	E.1 Introduction
	E.2 Table of Codes
	E.3 Vision Secondary Error Codes for Error 98s
	E.4 Transaction Error Codes
	E.4.1 Primary Error Codes
	E.4.2 Secondary Error Codes for Error 01

	E.5 IBM DOS/VS Error Codes

	Intrinsic Functions
	F.1 Introduction
	F.2 Function Definitions and Returned Values
	F.2.1 Function Definitions

	F.3 ABSOLUTE-VALUE (ABS) Function
	F.4 ACOS Function
	F.5 ANNUITY Function
	F.6 ASIN Function
	F.7 ATAN Function
	F.8 CHAR Function
	F.9 COS Function
	F.10 CURRENT-DATE Function
	F.11 DATE-OF-INTEGER Function
	F.12 DAY-OF-INTEGER Function
	F.13 FACTORIAL Function
	F.14 INTEGER Function
	F.15 INTEGER-OF-DATE Function
	F.16 INTEGER-OF-DAY Function
	F.17 INTEGER-PART Function
	F.18 LENGTH Function
	F.19 LOG Function
	F.20 LOG10 Function
	F.21 LOWER-CASE Function
	F.22 MAX Function
	F.23 MEAN Function
	F.24 MEDIAN Function
	F.25 MIDRANGE Function
	F.26 MIN Function
	F.27 MOD Function
	F.28 NUMVAL Function
	F.29 NUMVAL-C Function
	F.30 ORD Function
	F.31 ORD-MAX Function
	F.32 ORD-MIN Function
	F.33 PRESENT-VALUE Function
	F.34 RANDOM Function
	F.35 RANGE Function
	F.36 REM Function
	F.37 REVERSE Function
	F.38 SIN Function
	F.39 SQRT Function
	F.40 STANDARD-DEVIATION Function
	F.41 SUM Function
	F.42 TAN Function
	F.43 UPPER-CASE Function
	F.44 VARIANCE Function
	F.45 WHEN-COMPILED Function

	Reserved for Future Use
	Configuration Variables
	H.1 Introduction
	H.1.1 Variable Syntax
	H.1.2 Variable Usage
	H.1.3 Nested configuration files

	H.2 Configuration variables
	3D_LINES
	4GL_COLUMN_CASE
	7_BIT
	A_CHECKDIV
	A_DEBUG
	A_DISPLAY
	A_EXTFH_FUNC
	A_EXTFH_LIB
	A_EXTFH_SIMPLE_OPEN_OUTPUT
	A_EXTFH_VARIABLE_IDX, A_EXTFH_VARIABLE_REL, A_EXTFH_VARIABLE_SEQ
	A_JAVA_CHARSET
	A_JAVA_GC_COUNT
	A_JAVA_TRACE_FILENAME
	A_JAVA_TRACE_VALUE
	A_LICENSE_RETRIES
	A_OPERATING_SYSTEM
	A_REMOVE_EMPTY_ERROR_FILE
	A_RETRY_DELAY
	A_SEQ_DEFAULT_BLOCK_SIZE
	A_SYSLOG_HOSTNAME
	A_SYSLOG_ON_RUNTIME_ERROR
	ACCEPT_AUTO
	ACCEPT_TIMEOUT
	ACTIVE_BORDER_COLOR
	ACU_DUMP, ACU_DUMP_FILE, ACU_DUMP_WIDTH, ACU_DUMP_TABLE_LIMIT
	ACU_USER_DIR
	ACUCOBOL
	AGS_MAX_SEND_SIZE
	AGS_RECEIVE_BUFFER_SIZE
	AGS_SEND_BUFFER_SIZE
	AGS_SOCKET_COMPRESS
	AGS_SOCKET_ENCRYPT
	AGS_TCP_NODELAY
	alfred Configuration variables
	ALLOW_FS_OVERRIDE
	ANSI_OUTPUT_IN_DEBUG
	APPLY_CODE_PATH
	APPLY_FILE_PATH
	AUTO_DECIMAL
	AUTO_PROMPT
	AXML_CREATE_SCHEMA
	AXML_CREATE_STYLE
	AXML_ENCODING
	AXML_EXACT_TABLE_MATCH
	AXML_IGNORE_EMPTY_DATA
	AXML_SCHEMA_DOC
	AXML_SCHEMA_NAME
	AXML_SCHEMA_NAMESPACE_DATA
	AXML_STYLESHEET_HREF and AXML_STYLESHEET_TYPE
	BACKGROUND_INTENSITY
	BELL
	BOXED_FLOATING_WINDOWS
	BTRV_MASS_UPDATE
	BTRV_NOWRITE_WAIT
	BTRV_USE_REPEAT_DUPS
	BUFFERED_SCREEN
	CALL_HASH_SIZE
	CANCEL_ALL_DLLS
	CARRIAGE_CONTROL_FILTER
	CBLHELP
	CGI_AUTO_HEADER
	CGI_CLEAR_MISSING_VALUES
	CGI_CONTENT_TYPE
	CGI_NO_CACHE
	CGI_STRIP_CR
	CHAIN_MENUS
	CHECK_USING
	CISAM_COMPRESS_KEYS
	CLOSE_ON_EXIT
	COBLPFORM
	CODE_CASE
	CODE_MAPPING
	CODE_PREFIX
	CODE_SUFFIX
	CODE_SYSTEM
	COLOR_MAP
	COLOR_MODEL
	COLOR_TABLE
	COLOR_TRANS
	COLUMN_SEPARATION
	COMPRESS_FACTOR
	COMPRESS_FILES
	CONTROL_CREATION_EVENTS
	CURRENCY
	CURSOR_MODE
	CURSOR_TYPE
	DEBUG_NEWCOPY
	DECIMAL_POINT
	DEFAULT_FILESYSTEM
	DEFAULT_FONT
	DEFAULT_HOST
	DEFAULT_MAP_FILE
	DEFAULT_PROGRAM
	DEFAULT_TIMEOUT
	DISABLED_CONTROL_COLOR
	DISPLAY_SWITCH_PERIOD
	DLL_CONVENTION
	DLL_SUB_INTERFACE
	DLL_USE_SYSTEM_DIR
	DOS_BOX_CHARS
	DOS_SYS_EMULATE
	DOUBLE_CLICK_TIME
	DUPLICATES_LOG
	DYNAMIC_FUNCTION_CALLS
	DYNAMIC_MEMORY_LIMIT
	EDIT_MODE
	EF_UPPER_WIDE
	EF_WIDE_SIZE
	EOF_ABORTS
	EOL_CHAR
	ERRORS_OK
	EXIT_CURSOR
	EXPAND_ENV_VARS
	EXTEND_CREATES
	EXTFH_KEEP_TRAILING_SPACES
	EXTERNAL_SIZE
	EXTRA_KEYS_OK
	F10_IS_MENU
	FAST_ESCAPE
	FIELDS_UNBOXED
	FILE_ALIAS_PREFIX
	FILE_CASE
	FILE_CONDITION
	FILE_IO_PEEKS_MESSAGES
	FILE_IO_PROCESSES_MESSAGES
	FILE_PREFIX
	FILE_STATUS_CODES
	FILE_SUFFIX
	FILE_TRACE
	FILE_TRACE_FLUSH
	FILE_TRACE_TIMESTAMP
	filename
	filename_DATA_FMT
	filename_FILESYSTEM
	filename_HOST
	filename_INDEX_FMT
	filename_LOG
	FILENAME_SPACES
	filename_VERSION
	filesystem_DETACH
	FLUSH_ALL
	FLUSH_COUNT
	FLUSH_ON_ACCEPT
	FLUSH_ON_CLOSE
	FLUSH_ON_COMMIT
	FLUSH_ON_OPEN
	FONT
	FONT_AUTO_ADJUST
	FONT_SIZE_ADJUST
	FONT_WIDE_SIZE_ADJUST
	FOREGROUND_INTENSITY
	FREEZE_AX_EVENTS
	FULL_BOXES
	GRID_BUTTONS_CAUSE_GOTO
	GRID_NO_CELL_DRAG
	GUI_CHARS
	HELP_PROGRAM
	HINTS_OFF
	HINTS_ON
	HOT_KEY
	HP_TERMINAL_ATTRIBUTE_HANDLING
	HTML_TEMPLATE_PREFIX
	ICOBOL_FILE_SEMANTICS
	ICON
	IMPORT_USES_CELL_SIZE
	INACTIVE_BORDER_COLOR
	INCLUDE_PGM_INFO
	INPUT_STATUS_DEFAULT
	INSERT_MODE
	INTENSITY_FLAGS
	IO_CREATES
	IO_FLUSH_COUNT
	IO_READ_LOCK_TEST
	IO_SWITCH_PERIOD
	ISOLATE_FILE_CREATES
	JAVA_LIBRARY_NAME
	JAVA_OPTIONS
	JUSTIFY_NUM_FIELDS
	KBD
	KEY_MAP
	KEYBOARD
	KEYSTROKE
	LC_ALL
	LICENSE_ERROR_MESSAGE_BOX
	LISTS_UNBOXED
	LITERAL_ENTRY
	LOCK_DIR
	LOCK_OUTPUT
	LOCK_SORT
	LOCKING_RETRIES
	LOCKS_PER_FILE
	LOG_BUFFER_SIZE
	LOG_DEVICE
	LOG_DIR
	LOG_ENCRYPTION
	LOG_FILE
	LOGGING
	LOGICAL_CANCELS
	MAKE_ZERO
	MASS_UPDATE
	MAX_ERROR_AND_EXIT_PROCS
	MAX_ERROR_LINES
	MAX_FILES
	MAX_LOCKS
	MENU_ITEM
	MESSAGE_BOX_COLOR
	MESSAGE_QUEUE_SIZE
	MIN_REC_SIZE
	MONOCHROME
	MOUSE
	MOUSE_FLAGS
	NO_CONSOLE
	NO_LOG_FILE_OK
	NO_TRANSACTIONS
	NT_OPP_LOCK_STATUS
	NESTED_AX_EVENTS
	NO_BARE_KEY_LETTERS
	NUMERIC_VALIDATION
	OLD_ARIAL_DIMENSIONS
	OPEN_FILES_ONCE
	OPTIMIZE_CONTROL_RESIZE
	OPTIMIZE_INDIVIDUAL_LINKAGE
	PAGE_EJECT_ON_CLOSE
	PAGED_LIST_SCROLL_BAR
	PARAGRAPH_TRACE
	PERFORM_STACK
	PRELOAD_JAVA_LIBRARY
	PROFILE_TYPE
	PROMPTING
	QUEUE_READERS
	QUIT_MODE
	QUIT_ON_FATAL_ERROR
	QUIT_TO_EXIT
	RECURSION
	RECURSION_DATA_GLOBAL
	REL_DELETED_VALUE
	REL_LOCK_READ_THROUGH
	RENEW_TIMEOUT
	RESIZE_FRAMES
	RESIZE_FREELY
	RESTRICTED_VIDEO_MODE
	RMS_NATIVE_KEYS
	SCREEN
	SCREEN_COL_PLUS_BASE
	SCREEN_TRACE
	SCRIPT_STATUS
	SCRN
	SCROLL
	server_MAP_FILE
	server_PASSWORD
	server_port_PASSWORD
	SHARED_CODE
	SHARED_LIBRARY_EXTENSION
	SHARED_LIBRARY_LIST
	SHARED_LIBRARY_PREFIX
	SHUTDOWN_MESSAGE_BOX
	SORT_DIR
	SORT_FILES
	SORT_MEMORY
	SPACES_ZERO
	SPOOL_FILE
	STD_FIXED_FONT
	STOP_RUN_ROLLBACK
	STRIP_TRAILING_SPACES
	SWITCH_PERIOD
	SYSINTR_NAME
	TC_AUTO_UPDATE_FAILED_MESSAGE
	TC_AUTO_UPDATE_FAILED_TITLE
	TC_AUTO_UPDATE_NOTIFY_FAIL
	TC_AUTO_UPDATE_QUERY
	TC_AUTO_UPDATE_QUERY_MESSAGE
	TC_AUTO_UPDATE_QUERY_TITLE
	TC_AX_EVENT_LIST
	TC_CHECK_ALIVE_INTERVAL
	TC_CHECK_INSTALLER_TIMESTAMP
	TC_CONTINUITY_WINDOW
	TC_CONTROL_SYNC_LEVEL
	TC_DELAY_ACTIVATE
	TC_DELAY_PRE_EVENT_OPS
	TC_DISABLE_AUTO_UPDATE
	TC_DISABLE_SERVER_LOG
	TC_DOWNLOAD_CANCEL_MESSAGE
	TC_DOWNLOAD_DESCRIPTION
	TC_DOWNLOAD_DIALOG
	TC_DOWNLOAD_DIALOG_TITLE
	TC_EVENT_LIST
	TC_EXCLUDE_EVENT_LIST
	TC_INSTALLER_ARGS
	TC_INSTALLER_CLIENT_FILE
	TC_INSTALLER_RUN_ASYNC
	TC_INSTALLER_SERVER_FILE
	TC_INSTALLER_TARGET_DIR
	TC_INSTALLER_UI_LEVEL
	TC_MAP_FILE
	TC_NESTED_AX_EVENTS
	TC_QUIT_MODE
	TC_REQUIRES_BUILD_NUMBER
	TC_RESTRICT_AX_EVENTS
	TC_SERVER_LOG_FILE
	TC_SERVER_TIMEOUT
	TC_TV_SELCHANGING
	TEMP_DIR
	TEMPORARY_CONTROLS
	TEXT
	TRACE_STYLE
	TRANSLATE_TO_ANSI
	TREE_ROOT_SPACE
	TREE_TAB_SIZE
	TRX_HOLDS_LOCKS
	UPPER_LOWER_MAP
	USE_CICS
	USE_EXECUTABLE_MEMORY
	USE_EXTSM
	USE_LARGE_FILE_API
	USE_LOCAL_SERVER
	USE_MPE_REDIRECTION
	USE_MQSERIES
	USE_SYSTEM_QSORT
	USE_WINSYSFILES
	V_BASENAME_TRANSLATION
	V_BUFFERS
	V_BUFFER_DATA
	V_BULK_MEMORY
	V_FORCE_OPEN
	V_INDEX_BLOCK_PERCENT
	V_INTERNAL_LOCKS
	V_LOCK_METHOD
	V_MARK_READ_CORRUPT
	V_NO_ASYNC_CACHE_DATA
	V_OPEN_STRICT
	V_READ_AHEAD
	V_SEG_SIZE
	V_STRIP_DOT_EXTENSION
	V_VERSION
	V23_GRAPHICS_CHARACTERS
	V30_MEASUREMENTS
	V31_FLOATING_POINT
	V42_FLOATING_POINT
	V43_PRINTER_CELLS
	V52_BITMAP_BUTTONS
	V52_BITMAPS
	V52_GRID_GOTO
	V60_LIST_VALUE
	V62_MAX_WINDOW
	V71_ALIGNED_ENTRY_FIELD
	V71_FONT_WIDTHS
	WAIT_FOR_ALL_PIPES
	WAIT_FOR_FILE_ACCESS
	WAIT_FOR_LOCKS
	WARNINGS
	WARNING_ON_RECURSIVE_ACCEPTS
	WHITE_FILL
	WIN_ERROR_HANDLING
	WIN_F4_DROPS_COMBOBOX
	WIN_SPOOLER_PORT
	WIN3_CLIP_CONTROLS
	WIN3_EF_PADDED
	WIN3_GRID
	WIN32_3D
	WIN32_CTL_INPUT_STATUS
	WIN32_NATIVECTLS
	WINDOW_INTENSITY
	WINDOW_TITLE
	WINPRINT_NAMES_ONLY
	WRAP
	XFD_DIRECTORY
	XFD_PREFIX
	XTERM_PROGRAM


	ACUCOBOL-GT Library Routines
	I.1 General Syntax and Library List
	ASCII2HEX
	ASCII2OCTAL
	CBL_AND
	CBL_CLEAR_SCR
	CBL_CLOSE_FILE
	CBL_COPY_FILE
	CBL_CREATE_DIR
	CBL_CREATE_FILE
	CBL_DELETE_DIR
	CBL_DELETE_FILE
	CBL_EQ
	CBL_ERROR_PROC
	CBL_EXIT_PROC
	CBL_FLUSH_FILE
	CBL_GET_CSR_POS
	CBL_GET_EXIT_INFO
	CBL_GET_SCR_SIZE
	CBL_NOT
	CBL_OPEN_FILE
	CBL_OR
	CBL_READ_FILE
	CBL_READ_SCR_ATTRS
	CBL_READ_SCR_CHARS
	CBL_READ_SCR_CHATTRS
	CBL_SET_CSR_POS
	CBL_SUBSYSTEM
	CBL_SWAP_SCR_CHATTRS
	CBL_WRITE_FILE
	CBL_WRITE_SCR_ATTRS
	CBL_WRITE_SCR_CHARS
	CBL_WRITE_SCR_CHARS_ATTR
	CBL_WRITE_SCR_CHATTRS
	CBL_WRITE_SCR_N_ATTR
	CBL_WRITE_SCR_N_CHAR
	CBL_WRITE_SCR_N_CHATTR
	CBL_WRITE_SCR_TTY
	CBL_XOR
	C$ASYNCPOLL
	C$ASYNCRUN
	C$CALLEDBY
	C$CALLERR
	C$CHAIN
	C$CHDIR
	C$CODESET
	C$CONFIG
	C$COPY
	C$DELETE
	C$DISCONNECT
	C$EXCEPINFO
	C$EXITINFO
	C$FILEINFO
	C$FILESYS
	C$FULLNAME
	C$GETCGI
	C$GETERRORFILE
	C$GETEVENTDATA
	C$GETEVENTPARAM
	C$GETLASTFILEOP
	C$GETNETEVENTDATA
	C$GETPID
	C$GETVARIANT
	C$JAVA
	C$JUSTIFY
	C$KEYMAP
	C$KEYPROGRESS
	C$LIST-DIRECTORY
	C$LOCALPRINT
	C$LOCKPID
	C$MAKEDIR
	C$MEMCPY (Dynamic Memory Routine)
	C$MYFILE
	C$NARG
	C$OPENSAVEBOX
	C$PARAMSIZE
	C$PARSEXFD
	C$RECOVER
	C$REDIRECT
	C$REGEXP
	C$RERR
	C$RERRNAME
	C$RESOURCE
	C$RUN
	C$SETERRORFILE
	C$SETEVENTDATA
	C$SETEVENTPARAM
	C$SETVARIANT
	C$SLEEP
	C$SOCKET
	C$SYSLOG
	C$SYSTEM
	C$TOUPPER and C$TOLOWER
	C$XML
	DISPLAY_REG_*
	Error and Exit Procedures
	HEX2ASCII
	I$IO
	LIB$GET_SYMBOL
	LIB$SET_SYMBOL
	Routines to Handle Dynamic Memory
	M$ALLOC (Dynamic Memory Routine)
	M$COPY (Dynamic Memory Routine)
	M$FILL (Dynamic Memory Routine)
	M$FREE (Dynamic Memory Routine)
	M$GET (Dynamic Memory Routine)
	M$PUT (Dynamic Memory Routine)
	OCTAL2ASCII
	Routines to Handle the Windows Registry
	REG_CLOSE_KEY, DISPLAY_REG_CLOSE_KEY
	REG_CREATE_KEY, DISPLAY_REG_CREATE_KEY
	REG_CREATE_KEY_EX, DISPLAY_REG_CREATE_KEY_EX
	REG_DELETE_KEY, DISPLAY_REG_DELETE_KEY
	REG_DELETE_VALUE, DISPLAY_REG_DELETE_VALUE
	REG_ENUM_KEY, DISPLAY_REG_ENUM_KEY
	REG_ENUM_VALUE, DISPLAY_REG_ENUM_VALUE
	REG_OPEN_KEY, DISPLAY_REG_OPEN_KEY
	REG_OPEN_KEY_EX, DISPLAY_REG_OPEN_KEY_EX
	REG_QUERY_VALUE, DISPLAY_REG_QUERY_VALUE
	REG_QUERY_VALUE_EX, DISPLAY_REG_QUERY_VALUE_EX
	REG_SET_VALUE, DISPLAY_REG_SET_VALUE
	REG_SET_VALUE_EX, DISPLAY_REG_SET_VALUE_EX
	RENAME
	R$IO
	SYSTEM
	S$IO
	W$BITMAP
	W$BROWSERINFO
	W$FLUSH
	W$FONT
	W$FORGET
	W$GETC
	W$GETURL
	$WINHELP
	W$KEYBUF
	W$MENU
	W$MOUSE
	Mouse Handling: Sample Code

	W$PALETTE
	W$PROGRESSDIALOG
	W$STATUS
	W$TEXTSIZE
	WIN$PLAYSOUND
	Printing with theWindows Print Spooler (-Q and -P)
	-Q <printername>
	-P SPOOLER
	Direct Control
	Printing Multiple Jobs Simultaneously

	WIN$PRINTER
	WIN$PRINTER op-codes
	Printer Information op-codes
	WINPRINT-GET-SETTINGS-SIZE
	WINPRINT-SETUP
	WINPRINT-SETUP-USE-MARGINS
	WINPRINT-SUPPORTED
	WINPRINT-GET-SPOOL-ERR
	WINPRINT-SET-JOB
	WINPRINT-UPDATE-PRINTERS
	WINPRINT-DATA op-codes
	WINPRINT-GET-CAPABILITIES
	WINPRINT-GET-MARGINS
	WINPRINT-GET-PAGE-LAYOUT
	WINPRINT-GRAPH-DRAW
	WINPRINT-GRAPH-BRUSH
	WINPRINT-GRAPH-PEN
	WINPRINT-PRINT-BITMAP
	WINPRINT-SET-CURSOR
	WINPRINT-SET-TEXT-COLOR
	WINPRINT-SET-FONT
	WINPRINT-SET-LINES-PER-PAGE
	WINPRINT-SET-MARGINS
	WINPRINT-SET-STD-FONT
	WINPRINT-SET-BKMODE
	WINPRINT-SELECTION op-codes
	WINPRINT-GET-CURRENT-INFO
	WINPRINT-GET-CURRENT-INFO-EX
	WINPRINT-GET-NO-PRINTERS
	WINPRINT-GET-PRINTER-INFO
	WINPRINT-GET-PRINTER-INFO-EX
	WINPRINT-GET-PRINTER-STATUS
	WINPRINT-SET-PRINTER
	WINPRINT-SET-PRINTER-EX
	WINPRINT-SETUP-EX
	WINPRINT-COLUMN op-codes
	WINPRINT-SET-DATA-COLUMNS
	WINPRINT-CLEAR-DATA-COLUMNS
	WINPRINT-SET-PAGE-COLUMN
	WINPRINT-CLEAR-PAGE-COLUMNS
	WINPRINT-GET-PAGE-COLUMN
	WINPRINT-COLUMN-ALIGN-VERT
	WINPRINT-JOB-STATUS op-codes
	WINPRINT-GET-JOB-STATUS
	WINPRINT-SET-JOB-STATUS
	WINPRINT-MEDIA op-codes
	WINPRINT-GET-PRINTER-MEDIA
	USER-DATA op-codes
	WINPRINT-GET-SETTINGS
	WINPRINT-SET-SETTINGS

	WIN$VERSION


	Index




