
Artix 5.6.3

WSDL Extension
Reference: C++

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2015. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-02-11

 Artix WSDL Extension Reference: C++ ii i

Contents

Preface... ix
Contacting Micro Focus ..x

Part I Bindings

SOAP 1.1 Binding ..3
Runtime Compatibility ...3
soap:binding ..3
soap:operation ...4
soap:body ...4
soap:header...6
soap:fault ..7

SOAP 1.2 Binding ..9
Runtime Compatibility ...9
wsoap12:binding ..9
wsoap12:operation ...10
wsoap12:body..11
wsoap12:header ...12
wsoap12:fault ..13

MIME Multipart/Related Binding ...15
Runtime Compatibility ...15
Namespace ..15
mime:multipartRelated ..15
mime:part ...15
mime:content...16

CORBA Binding and Type Map..17
CORBA Binding Extension Elements ...17

Runtime Compatibility ...17
C++ Runtime Namespace ..17
Primitive Type Mapping..17
corba:binding ...19
corba:operation ..19
corba:param ..19
corba:return ..20
corba:raises ...20

Type Map Extension Elements...21
corba:typeMapping ...21
corba:struct ...21
corba:member ...22
corba:enum ...23
corba:enumerator...23
corba:fixed ..23
corba:union ...24
corba:unionbranch ..25

iv Artix WSDL Extension Reference: C++

corba:case ...25
corba:alias ...26
corba:array ..27
corba:sequence ..28
corba:exception ..28
corba:anonsequence..29
corba:anonstring...31
corba:object...32

Tuxedo FML Binding.. 37
Runtime Compatibility..37
Namespace ..37
FML\XMLSchema Support...37
tuxedo:binding ...37
tuxedo:fieldTable ..38
tuxedo:field..38
tuxedo:operation ..38

Fixed Binding.. 39
Runtime Compatibility..39
Namespace ..39
fixed:binding ..39
fixed:operation ...39
fixed:body ...40
fixed:field ..40
fixed:enumeration...43
fixed:choice..44
fixed:case ..44
fixed:sequence ...46

Tagged Binding... 49
Runtime Compatibility..49
Namespace ..49
tagged:binding ...49
tagged:operation ..50
tagged:body...51
tagged:field..51
tagged:enumeration ..51
tagged:sequence ..52
tagged:choice...53
tagged:case ...54

XML Binding.. 57
Runtime Compatibility..57
Namespace ..57
xformat:binding ..57
xformat:body ...57

Pass Through Binding ... 59
Runtime Compatibility..59
Namespace ..59
tagged:binding ...59

Artix WSDL Extension Reference: C++ v

Part II Ports

HTTP Port ..63
Standard WSDL Elements .. 63

http:address .. 63
soap:address ... 63
wsoap12:address.. 63

Configuration Extensions for C++ ... 64
Namespace.. 64
http-conf:client .. 64
http-conf:server ... 66

Attribute Details ... 68
AuthorizationType... 68
Authorization ... 68
Accept... 68
AcceptLanguage ... 69
AcceptEncoding .. 69
ContentType .. 70
ContentEncoding .. 71
Host ... 71
Connection .. 71
CacheControl ... 71
BrowserType.. 74
Referer.. 74
ProxyServer ... 75
ProxyAuthorizationType ... 75
ProxyAuthorization.. 75
UseSecureSockets .. 75
RedirectURL ... 76
ServerCertificateChain... 76

CORBA Port ...77
Runtime Compatibility ... 77
C++ Runtime Namespace .. 77
corba:address .. 77
corba:policy ... 78

IIOP Tunnel Port ...79
Runtime Compatibility ... 79
Namespace.. 79
iiop:address... 79
iiop:payload... 80
iiop:policy.. 80

WebSphere MQ Port ..83
Artix Extension Elements ... 83

Runtime Compatibility ... 83
Namespace.. 83
mq:client... 83
mq:server ... 85

Attribute Details ... 87
Server_Client ... 87
AliasQueueName .. 87
UsageStyle .. 89

vi Artix WSDL Extension Reference: C++

CorrelationStyle ..90
AccessMode..90
MessagePriority ..91
Delivery...92
Transactional..92
ReportOption..93
Format ..94

Tuxedo Port .. 97
Runtime Compatibility..97
Namespace ..97
tuxedo:server...97
tuxedo:service..97
tuxedo:input ..97

JMS Port ... 99
C++ Runtime Extensions..99

Namespace ..99
jms:address ...99
jms:JMSNamingProperty ..100
jms:client ..100
jms:server ...101

File Transfer Protocol Port .. 103
Runtime Compatibility..103
Namespace ..103
ftp:port..103
ftp:properties ...104
ftp:property ...104

Part III Other Extensions

Routing... 107
Runtime Compatibility..107
Namespace ..107
routing:expression ..107
routing:route..107
routing:source ..108
routing:query ...108
routing:destination..109
routing:transportAttribute ..109
routing:equals ..110
routing:greater ...110
routing:less..111
routing:startswith ...111
routing:endswith...112
routing:contains..112
routing:empty ..113
routing:nonempty ...113
Transport Attribute Context Names..113

Security .. 115
Runtime Compatibility..115

Artix WSDL Extension Reference: C++ vii

Namespace.. 115
bus-security:security... 115

Codeset Conversion ...117
Runtime Compatibility ... 117
Namespace.. 117
i18n-context:client.. 117
i18n-context:server .. 117

Index...119

viii Artix WSDL Extension Reference: C++

 Artix WSDL Extension Reference: C++ ix

Preface

What is Covered in this Book
This book is a reference to all of the Artix ESB specific WSDL
extensions used in Artix contracts.

Who Should Read this Book
This book is intended for Artix users who are familiar with Artix
concepts including:
• WSDL
• XMLSchema
• Artix interface design
In addition, this book assumes that the reader is familiar with the
transports and middleware implementations with which they are
working.

How to Use this Book
This book contains the following parts:
• Part I “Bindings”—contains descriptions for all the WSDL

extensions used to define the payload formats supported by
Artix.

• Part II “Ports”—contains descriptions for all the WSDL
extensions used to define the transports supported by Artix.

• Part III “Other Extensions”—contains descriptions for the
WSDL extensions used by Artix to support features like
routing.

The Artix Documentation Library
For information on the organization of the Artix library, the
document conventions used, and where to find additional
resources, see Using the Artix Library, available with the Artix
documentation at
https://supportline.microfocus.com/productdoc.aspx.

https://supportline.microfocus.com/productdoc.aspx

 x Artix WSDL Extension Reference: C++

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

http://www.microfocus.com
http://www.microfocus.com

Artix WSDL Extension Reference: C++ xi

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/artix.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp

http://www.microfocus.com
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 xii Artix WSDL Extension Reference: C++

Part I
Bindings

In this part
This part contains the following chapters:

SOAP 1.1 Binding page 3

SOAP 1.2 Binding page 9

MIME Multipart/Related Binding page 15

CORBA Binding and Type Map page 17

Tuxedo FML Binding page 37

Fixed Binding page 39

Tagged Binding page 49

XML Binding page 57

Pass Through Binding page 59

 2 Artix WSDL Extension Reference: C++

 Artix WSDL Extension Reference: C++ 3

SOAP 1.1 Binding
This chapter describes the extensions used to define a SOAP 1.1 message.

Runtime Compatibility

The SOAP binding is defined by a standard set of WSDL extensors.

soap:binding

Synopsis <soap:binding style="..." transport="..." />

Description The soap:binding element specifies that the payload format to use
is a SOAP 1.1 message. It is a child of the WSDL binding element.

Attributes The following attributes are defined within the soap:binding
element.
• style

• transport

style
The value of the style attribute within the soap:binding element
acts as the default for the style attribute within each
soap:operation element. It indicates whether request/response
operations within this binding are RPC-based (that is, messages
contain parameters and return values) or document-based (that
is, messages contain one or more documents).
Valid values are rpc and document. The specified value determines
how the SOAP Body element within a SOAP message is structured.
If rpc is specified, each message part within the SOAP Body
element is a parameter or return value and will appear inside a
wrapper element within the SOAP Body element. The name of the
wrapper element must match the operation name. The namespace
of the wrapper element is based on the value of the soap:body
namespace attribute. The message parts within the wrapper
element correspond to operation parameters and must appear in
the same order as the parameters in the operation. Each part
name must match the parameter name to which it corresponds.
For example, the SOAP Body element of a SOAP request message
is as follows if the style is RPC-based:

If document is specified, message parts within the SOAP Body
element appear directly under the SOAP Body element as body
entries and do not appear inside a wrapper element that

<SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="URL">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
</SOAP-ENV:Envelope>

 4 Artix WSDL Extension Reference: C++

corresponds to an operation. For example, the SOAP Body element
of a SOAP request message is as follows if the style is
document-based:

transport
The transport attribute defaults to the URL that corresponds to the
HTTP binding in the W3C SOAP specification
(http://schemas.xmlsoap.org/soap/http). If you want to use
another transport (for example, SMTP), modify this value as
appropriate for the transport you want to use.

soap:operation

Synopsis <soap:operation style="..." soapAction="..." />

Description The soap:operation element is a child of the WSDL operation
element. A soap:operation element is used to encompass
information for an operation as a whole, in terms of input criteria,
output criteria, and fault information.

Attributes The following attributes are defined within a soap:operation
element:
• style

• soapAction

style
This indicates whether the relevant operation is RPC-based (that
is, messages contain parameters and return values) or
document-based (that is, messages contain one or more
documents).
Valid values are rpc and document. The default value for
soap:operation style is based on the value specified for the
soap:binding style attribute.
See “style” on page 3 for more details of the style attribute.

soapAction
This specifies the value of the SOAPAction HTTP header field for the
relevant operation. The value must take the form of the absolute
URI that is to be used to specify the intent of the SOAP message.

soap:body

Synopsis <soap:body use="..." encodingStyle="..." namespace="..."
parts="..." />

Description The soap:body element in a binding is a child of the input, output,
and fault child elements of the WSDL operation element. A
soap:body element is used to provide information on how message

<SOAP-ENV:Body>
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
</SOAP-ENV:Envelope>

Note: This attribute is mandatory only if you want to use
SOAP over HTTP. Leave it blank if you want to use SOAP
over any other transport.

Artix WSDL Extension Reference: C++ 5

parts are to be appear inside the body of a SOAP message. As
explained in “soap:operation” on page 4, the structure of the SOAP
Body element within a SOAP message is dependent on the setting
of the soap:operation style attribute.

Attributes The following attributes are defined within a soap:body element:
• use

• encodingStyle

• namespace

• parts

use
This mandatory attribute indicates how message parts are used to
denote data types. Each message part relates to a particular data
type that in turn might relate to an abstract type definition or a
concrete schema definition.
An abstract type definition is a type that is defined in some remote
encoding schema whose location is referenced in the WSDL
contract via an encodingStyle attribute. In this case, types are
serialized based on the set of rules defined by the specified
encoding style.
A concrete schema definition relates to types that are defined in
the WSDL contract itself, within a schema element within the types
component of the contract.
The following are valid values for the use attribute:
• encoded
• literal

If encoded is specified, the type attribute that is specified for each
message part (within the message component of the WSDL
contract) is used to reference an abstract type defined in some
remote encoding schema. In this case, a concrete SOAP message
is produced by applying encoding rules to the abstract types. The
encoding rules are based on the encoding style identified in the
soap:body encodingStyle attribute. The encoding takes as input the
name and type attribute for each message part (defined in the
message component of the WSDL contract). If the encoding style
allows variation in the message format for a given set of abstract
types, the receiver of the message must ensure they can
understand all the format variations.
If literal is specified, either the element or type attribute that is
specified for each message part (within the message component of
the WSDL contract) is used to reference a concrete schema
definition (defined within the types component of the WSDL
contract). If the element attribute is used to reference a concrete
schema definition, the referenced element in the SOAP message
appears directly under the SOAP Body element (if the operation
style is document-based) or under a part accessor element that
has the same name as the message part (if the operation style is
RPC-based). If the type attribute is used to reference a concrete
schema definition, the referenced type in the SOAP message
becomes the schema type of the SOAP Body element (if the
operation style is documented-based) or of the part accessor
element (if the operation style is document-based).

 6 Artix WSDL Extension Reference: C++

encodingStyle
This attribute is used when the soap:body use attribute is set to
encoded. It specifies a list of URIs (each separated by a space) that
represent encoding styles that are to be used within the SOAP
message. The URIs should be listed in order, from the most
restrictive encoding to the least restrictive.
This attribute can also be used when the soap:body use attribute is
set to literal, to indicate that a particular encoding was used to
derive the concrete format, but that only the specified variation is
supported. In this case, the sender of the SOAP message must
conform exactly to the specified schema.

namespace
If the soap:operation style attribute is set to rpc, each message
part within the SOAP Body element of a SOAP message is a
parameter or return value and will appear inside a wrapper
element within the SOAP Body element. The name of the wrapper
element must match the operation name. The namespace of the
wrapper element is based on the value of the soap:body namespace
attribute.

parts
This attribute is a space separated list of parts from the parent
input, output, or fault element. When parts is set, only the
specified parts of the message are included in the SOAP Body
element. The unlisted parts are not transmitted unless they are
placed into the SOAP header.

soap:header

Synopsis <soap:header message="..." part="..." use="..."
encodingStyle="..." namespace="..."/>

Description The soap:header element in a binding is an optional child of the input,
output, and fault elements of the WSDL operation element. A
soap:header element defines the information that is placed in a SOAP
header element. You can define any number of soap:header
elements for an operation. As explained in “soap:operation” on
page 4, the structure of the SOAP header within a SOAP message
is dependent on the setting of the soap:operation element’s style
attribute.

Artix WSDL Extension Reference: C++ 7

Attributes The soap:header element has the following attributes.

soap:fault

Synopsis <soap:fault name="..." use="..." encodingStyle="..." />

Description The soap:fault element is a child of the WSDL fault element within
an operation component. Only one soap:fault element is defined for
a particular operation. The operation must be a request-response
or solicit-response type of operation, with both input and output
elements. The soap:fault element is used to transmit error and
status information within a SOAP response message.

Attributes The soap:fault element has the following attributes:

message Specifies the qualified name of the message from
which the contents of the SOAP header is taken.

part Specifies the name of the message part that is
placed into the SOAP header.

use Used in the same way as the use attribute within
the soap:body element. See “use” on page 5 for
more details.

encodingStyle Used in the same way as the encodingStyle attribute
within the soap:body element. See “encodingStyle”
on page 6 for more details.

namespace If the soap:operation style attribute is set to rpc,
each message part within the SOAP header of a
SOAP message is a parameter or return value and
will appear inside a wrapper element within the
SOAP header. The name of the wrapper element
must match the operation name. The namespace of
the wrapper element is based on the value of the
soap:header namespace attribute.

Note: A fault message must consist of only a single message
part. Also, it is assumed that the soap:operation element’s style
attribute is set to document, because faults do not contain
parameters.

name Specifies the name of the fault. This relates back to
the name attribute for the fault element specified for
the corresponding operation within the portType
component of the WSDL contract.

use This attribute is used in the same way as the use
attribute within the soap:body element. See “use” on
page 5 for more details.

encodingStyle This attribute is used in the same way as the
encodingStyle attribute within the soap:body
element. See “encodingStyle” on page 6 for more
details.

 8 Artix WSDL Extension Reference: C++

 Artix WSDL Extension Reference: C++ 9

SOAP 1.2 Binding
This chapter describes the extensions used to define a SOAP 1.2 message.

Runtime Compatibility

The SOAP 1.2 binding is defined by a standard set of WSDL
extensors.

wsoap12:binding

Synopsis <wsoap12:binding style="..." transport="..." />

Description The wsoap12:binding element specifies that the payload format to
use is a SOAP 1.2 message. It is a child of the WSDL binding
element.

Attributes The following attributes are defined within the wsoap12:binding
element.
• style

• transport

style
The value of the style attribute acts as the default for the style
attribute within each wsoap12:operation element. It indicates
whether request/response operations within this binding are
RPC-based (that is, messages contain parameters and return
values) or document-based (that is, messages contain one or
more documents).
Valid values are rpc and document. The specified value determines
how the SOAP Body element within a SOAP message is structured.
If rpc is specified, each message part within the SOAP Body
element is a parameter or return value and will appear inside a
wrapper element within the SOAP Body element. The name of the
wrapper element must match the operation name. The namespace
of the wrapper element is based on the value of the soap:body
namespace attribute. The message parts within the wrapper
element correspond to operation parameters and must appear in
the same order as the parameters in the operation. Each part
name must match the parameter name to which it corresponds.
For example, the SOAP Body element of a SOAP request message
is as follows if the style is RPC-based:

If document is specified, message parts within the SOAP Body
element appear directly under the SOAP Body element as body
entries and do not appear inside a wrapper element that

<SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="URL">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
</SOAP-ENV:Envelope>

 10 Artix WSDL Extension Reference: C++

corresponds to an operation. For example, the SOAP Body element
of a SOAP request message is as follows if the style is
document-based:

transport
The transport attribute specifies a URL describing the SOAP
transport to which this binding corresponds. The URL that
corresponds to the HTTP binding in the W3C SOAP specification is
http://schemas.xmlsoap.org/soap/http. If you want to use another
transport (for example, SMTP), modify this value as appropriate
for the transport you want to use.

wsoap12:operation

Synopsis <wsoap12:operation style="..." soapAction="..."
soapActionRequired="..."/>

Description The wsoap12:operation element is a child of the WSDL operation
element. A soap:operation element is used to encompass
information for an operation as a whole, in terms of input criteria,
output criteria, and fault information.

Attributes The following attributes are defined within a wsoap12:operation
element:
• style

• soapAction

• soapActionRequired

style
This indicates whether the relevant operation is RPC-based (that
is, messages contain parameters and return values) or
document-based (that is, messages contain one or more
documents).
Valid values are rpc and document. The default value for the
wsoap12:operation element’s style attribute is based on the value
specified for the wsoap12:binding element’s style attribute.

soapAction
This specifies the value of the SOAPAction HTTP header field for the
relevant operation. The value must take the form of the absolute
URI that is to be used to specify the intent of the SOAP message.

soapActionRequired
The soapActionRequired is a boolean that specifies if the value of
the soapAction attribute must be conveyed in the request
message. When the value of soapActionRequired is true, the
soapAction attribute must be present. The default is to true.

<SOAP-ENV:Body>
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
</SOAP-ENV:Envelope>

Note: This attribute is mandatory only if you want to use
SOAP 1.2 over HTTP. Leave it blank if you want to use
SOAP 1.2 over any other transport.

Artix WSDL Extension Reference: C++ 11

wsoap12:body

Synopsis <wsoap12:body use="..." encodingStyle="..." namespace="..."
parts="..." />

Description The wsoap12:body element in a binding is a child of the input, output,
and fault child elements of the WSDL operation element. A
wsoap12:body element is used to provide information on how
message parts are to be appear inside the body of a SOAP 1.2
message. As explained in “wsoap12:operation” on page 10, the
structure of the SOAP Body element within a SOAP message is
dependent on the setting of the soap:operation style attribute.

Attributes The following attributes are defined within a wsoap12:body element:
• use

• encodingStyle

• namespace

• parts

use
This mandatory attribute indicates how message parts are used to
denote data types. Each message part relates to a particular data
type that in turn might relate to an abstract type definition or a
concrete schema definition.
An abstract type definition is a type that is defined in some remote
encoding schema whose location is referenced in the WSDL
contract via an encodingStyle attribute. In this case, types are
serialized based on the set of rules defined by the specified
encoding style.
A concrete schema definition relates to types that are defined in
the WSDL contract itself, within a schema element within the types
component of the contract.
The following are valid values for the use attribute:
• literal
• encoded

If literal is specified, either the element or type attribute that is
specified for each message part (within the message component of
the WSDL contract) is used to reference a concrete schema
definition (defined within the types component of the WSDL
contract). If the element attribute is used to reference a concrete
schema definition, the referenced element in the SOAP 1.2
message appears directly under the SOAP Body element (if the
operation style is document-based) or under a part accessor
element that has the same name as the message part (if the
operation style is RPC-based). If the type attribute is used to
reference a concrete schema definition, the referenced type in the
SOAP 1.2 message becomes the schema type of the SOAP Body
element (if the operation style is documented-based) or of the
part accessor element (if the operation style is document-based).

Note: Artix does not support encoded messages when
using SOAP 1.2.

 12 Artix WSDL Extension Reference: C++

encodingStyle
This attribute is only used when the wsoap12:body element’s use
attribute is set to encoded. and the wsoap12:binding element’s
style attribute is set to rpc. It specifies the URI that represents
the encoding rules that used to construct the SOAP 1.2 message.

namespace
If the soap:operation element’s style attribute is set to rpc, each
message part within the SOAP Body element of a SOAP 1.2
message is a parameter or return value and will appear inside a
wrapper element within the SOAP Body element. The name of the
wrapper element must match the operation name. The namespace
of the wrapper element is based on the value of the soap:body
namespace attribute.

parts
This attribute is a space separated list of parts from the parent
input, output, or fault element. When the parts attribute is set,
only the specified parts of the message are included in the SOAP
Body element. The unlisted parts are not transmitted unless they
are placed into the SOAP header.

wsoap12:header

Synopsis <wsoap12:header message="..." part="..." use="..."
encodingStyle="..." namespace="..."/>

Description The wsoap12:header element in a binding is an optional child of the
input, output, and fault elements of the WSDL operation element.
A wsoap12:header element defines the information that is placed in
a SOAP 1.2 header element. You can define any number of
wsoap12:header elements for an operation. As explained in
“wsoap12:operation” on page 10, the structure of the header within
a SOAP 1.2 message is dependent on the setting of the
wsoap12:operation element’s style attribute.

Attributes The wsoap12:header element has the following attributes.

message Specifies the qualified name of the message from
which the contents of the SOAP header is taken.

part Specifies the name of the message part that is
placed into the SOAP header.

use Used in the same way as the wsoap12:body
element’s use attribute.

encodingStyle Used in the same way as the wsoap12:body
element’s encodingStyle attribute.

namespace Specifies the namespace to be assigned to the
header element when the use attribute is set to
encoded. The header is constructed in all cases as if
the wsoap12:binding element’s style attribute had
a value of document.

Artix WSDL Extension Reference: C++ 13

wsoap12:fault

Synopsis <wsoap12:fault name="..." namespace="..." use="..."
encodingStyle="..." />

Description The wsoap12:fault element is a child of the WSDL fault element
within a WSDL operation element. The operation must have both
input and output elements. The wsoap12:fault element is used to
transmit error details and status information within a SOAP 1.2
response message.

Attributes The wsoap12:fault element has the following attributes:

Note: A fault message must consist of only a single
message part. Also, it is assumed that the
wsoap12:operation element’s style attribute is set to
document, because faults do not contain parameters.

name Specifies the name of the fault. This relates back to
the name attribute for the fault element specified for
the corresponding operation within the portType
component of the WSDL contract.

namespace Specifies the namespace to be assigned to the
wrapper element for the fault. This attribute is
ignored if the style attribute of either the
wsoap12:binding element of the containing binding
or of the wsoap12:operation element of the
containing operation is either omitted or has a
value of document. This attribute is required if the
value of the wsoap12:binding element’s style
attribute is set to rpc.

use This attribute is used in the same way as the
wsoap12:body element’s use attribute.

encodingStyle This attribute is used in the same way as the
wsoap12:body element’s encodingStyle attribute

 14 Artix WSDL Extension Reference: C++

 Artix WSDL Extension Reference: C++ 15

MIME
Multipart/Related
Binding
This chapter describes the extensions that are used to define a SOAP
message binding that contains binary data.

Runtime Compatibility

The MIME extensions are defined by a standard.

Namespace

The WSDL extensions used to define the MIME multipart/related
messages are defined in the namespace
http://schemas.xmlsoap.org/wsdl/mime/.
In the discussion that follows, it is assumed that this namespace is
prefixed with mime. The entry in the WSDL defintion element to set
this up is shown in Example 1.

mime:multipartRelated

Synopsis <mime:multipartRelated>

 <mime:part ...>

 ...

 </mime:part>

 ...

</mime:multipartRelated>

Description The mime:multipartRelated element is the child of an input element
or an output element that is part of a SOAP binding. It tells Artix
that the message body is going to be a multipart message that
potentially contains binary data. mime:multipartReleated elements
in Artix contain one or more mime:part elements that describe the
individual parts of the message.

mime:part

Synopsis <mime:part name="...">

 ...

</mime:part>

Description The mime:part element is the child of a mime:multipartRelated
element. It is used to define the parts of a multi-part message. The
first mime:part element must contain the soap:body element or the
wsoap12:body element that would normally appear in a SOAP
binding. The remaining mime:part elements define the attachments
that are being sent in the message using a mime:content element.

Example 1: MIME Namespace Specification in a Contract

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

 16 Artix WSDL Extension Reference: C++

Attributes The mime:part element has a single attribute called name. name is a
unique string that is used to identify the part being described.

mime:content

Synopsis <mime:content part="..." type="..." />

Description The mime:content element is the child of a mime:part element. It
defines the binary content being passed as an attachment to a SOAP
message.

Attributes The mime:content element has the following attributes:

part Specifies the name of the WSDL part element, from
the parent message definition, that is used as the
content of this part of the MIME multipart message
being placed on the wire.

type Specifies the MIME type of the data in this message
part. MIME types are defined as a type and a
subtype using the syntax type/subtype.
There are a number of predefined MIME types such
as image/jpeg and text/plain. The MIME types are
maintained by IANA and described in the following:
• Multipurpose Internet Mail Extensions (MIME)

Part One: Format of Internet Message Bodies
(https://www.ietf.org/rfc/rfc2045.txt)

• Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types
(https://www.ietf.org/rfc/rfc2046.txt).

https://www.ietf.org/rfc/rfc2046.txt
https://www.ietf.org/rfc/rfc2045.txt

 Artix WSDL Extension Reference: C++ 17

CORBA Binding and
Type Map
Artix CORBA support uses a combination of a WSDL binding element
and a corba:typeMapping element to unambiguously define CORBA
Messages.

This chapter discusses the following topics:
• CORBA Binding Extension Elements
• Type Map Extension Elements

CORBA Binding Extension Elements
Runtime Compatibility

The CORBA binding extensions are compatible with the C++
runtime.

C++ Runtime Namespace

The WSDL extensions used for the C++ Runtime CORBA binding
and the CORBA data mappings are defined in the namespace
http://schemas.iona.com/bindings/corba. The Artix designer adds
the following namespace declaration to any contract that uses the
C++ runtime CORBA binding:

Primitive Type Mapping

Most primitive IDL types are directly mapped to primitive XML
Schema types. Table 1 lists the mappings for the supported IDL
primitive types.

xmlns:corba="http://schemas.iona.com/bindings/corba"

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding
Type

Artix C++ Type

Any xsd:anyType corba:any IT_Bus::AnyHolder

boolean xsd:boolean corba:boolean IT_Bus::Boolean

char xsd:byte corba:char IT_Bus::Char

wchar xsd:string corba:wchar

double xsd:double corba:double IT_Bus::Double

float xsd:float corba:float IT_Bus::Float

octet xsd:unsignedByte corba:octet IT_Bus::Octet

long xsd:int corba:long IT_Bus::Long

long long xsd:long corba:longlong IT_Bus::LongLong

 18 Artix WSDL Extension Reference: C++

Unsupported types
The following CORBA types are not supported:
• long double

• Value types
• Boxed values
• Local interfaces
• Abstract interfaces
• Forward-declared interfaces

Unsupported time/date values
The following xsd:dateTime values cannot be mapped to
TimeBase::UtcT:
• Values with a local time zone. Local time is treated as a 0 UTC

time zone offset.
• Values prior to 15 October 1582.
• Values greater than approximately 30,000 A.D.
The following TimeBase::UtcT values cannot be mapped to
xsd:dateTime:
• Values with a non-zero inacclo or inacchi.
• Values with a time zone offset that is not divisible by 30

minutes.
• Values with time zone offsets greater than 14:30 or less than

-14:30.
• Values with greater than millisecond accuracy.
• Values with years greater than 9999.

short xsd:short corba:short IT_Bus::Short

string xsd:string corba:string IT_Bus::String

wstring xsd:string corba:wstring

unsigned short xsd:unsignedShort corba:ushort IT_Bus::UShort

unsigned long xsd:unsignedInt corba:ulong IT_Bus::ULong

unsigned long
long

xsd:unsignedLong corba:ulonglong IT_Bus::ULongLong

Object wsa:EndpointReferenceType corba:object WS_Addressing::Endpoint
ReferenceType

TimeBase::UtcT xsd:dateTimea corba:dateTime IT_Bus::DateTime

a. The mapping between xsd:dateTime and TimeBase:UtcT is only partial. For the restrictions see “Unsupported
time/date values” on page 18

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding
Type

Artix C++ Type

Artix WSDL Extension Reference: C++ 19

corba:binding

Synopsis <corba:binding repositoryID="..." bases=".." />

Description The corba:binding element indicates that the binding is a CORBA
binding.

Attributes This element has two attributes:

Examples For example, the following IDL:

would produce the following corba:binding:

corba:operation

Synopsis <corba:operation name="..." >

 <corba:param ... />

 ...

 <corba:return ... />

 <corba:raises ... />

</corba:operation>

Description The corba:operation element is a child element of the WSDL
operation element and describes the parts of the operation’s
messages. It has one or more of the following children:
• corba:param
• corba:return
• corba:raises

Attributes The corba:operation attribute takes a single attribute, name, which
duplicates the name given in operation.

corba:param

Synopsis <corba:param name="..." mode="..." idltype="..." />

Description The corba:param element is a child of corba:operation. Each part
element of the input and output messages specified in the logical
operation, except for the part representing the return value of the
operation, must have a corresponding corba:param element. The
parameter order defined in the binding must match the order
specified in the IDL definition of the operation.

repositoryID A required attribute whose value is the full type ID
of the CORBA interface. The type ID is embedded in
an object’s IOR and must conform to the format
IDL:module/interface:1.0.

bases An optional attribute whose value is the type ID of
the interface from which the interface being bound
inherits.

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
 bases="IDL:clash:1.0"/>

 20 Artix WSDL Extension Reference: C++

Attributes The corba:param element has the following required attributes:

corba:return

Synopsis <corba:return name="..." idltype="..." />

Description The corba:return element is a child of corba:operation and specifies
the return type, if any, of the operation.

Attributes The corba:return element has two attributes:

corba:raises

Synopsis <corba:raises exception="..." />

Description The corba:raises element is a child of corba:operation and describes
any exceptions the operation can raise. The exceptions are defined
as fault messages in the logical definition of the operation. Each
fault message must have a corresponding corba:raises element.

Attributes The corba:raises element has one required attribute, exception,
which specifies the type of data returned in the exception.

mode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: in, inout,
out. Parameters set to in must be included in the
input message of the logical operation. Parameters
set to out must be included in the output message
of the logical operation. Parameters set to inout
must appear in both the input and output messages
of the logical operation.

idltype Specifies the IDL type of the parameter. The type
names are prefaced with corba: for primitive IDL
types, and corbatm: for complex data types, which
are mapped out in the corba:typeMapping portion of
the contract. See “Type Map Extension Elements”
on page 21.

name Specifies the name of the parameter as given in the
name attribute of the corresponding part element.

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type
names are prefaced with corba: for primitive IDL
types and corbatm: for complex data types which
are mapped out in the corba:typeMapping portion of
the contract.

Artix WSDL Extension Reference: C++ 21

Type Map Extension Elements
corba:typeMapping

Synopsis <corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typemap"
>

...

</corba:typeMapping>

Description Because complex types (such as structures, arrays, and exceptions)
require a more involved mapping to resolve type ambiguity, the full
mapping for a complex type is described in a corba:typeMapping
element in an Artix contract. This element contains a type map
describing the metadata required to fully describe a complex type
as a CORBA data type. This metadata may include the members of
a structure, the bounds of an array, or the legal values of an
enumeration.

Attributes The corba:typeMapping element requires a targetNamespace attribute
that specifies the namespace for the elements defined by the type
map.

Examples Table 2 shows the mappings from complex IDL types to Artix CORBA
types.

corba:struct

Synopsis <corba:struct name="..." type="..." repositoryID="..." />

 <corba:member ... />

 ...

</corba:struct>

The corba:struct element is used to represent XMLSchema types
that are defined using complexType elements. The elements of the
structure are described by a series of corba:member elements.

Table 2: Complex IDL Type Mappings

IDL Type CORBA Binding Type

struct corba:struct

enum corba:enum

fixed corba:fixed

union corba:union

typedef corba:alias

array corba:array

sequence corba:sequence

exception corba:exception

 22 Artix WSDL Extension Reference: C++

Attributes A corba:struct element requires three attributes:

corba:member

Synopsis <corba:member name="..." idlType="..." />

Description The corba:member element is used to define the parts of the structure
represented by the parent element. The elements must be declared
in the same order used in the IDL representation of the CORBA type.

Attributes A corba:member requires two attributes:

Examples For example, you may have a structure, personalInfo, similar to the
one in Example 2.

It can be represented in the CORBA type map as shown in
Example 3.

The idltype corbatm:hairColorType refers to a complex type that is
defined earlier in the CORBA type map.

name A unique identifier used to reference the
CORBA type in the binding.

type The logical type the structure is mapping.
repositoryID The fully specified repository ID for the

CORBA type.

name The name of the element
idltype The IDL type of the element. This type can be

either a primitive type or another complex
type that is defined in the type map.

Example 2: personalInfo

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

Example 3: CORBA Type Map for personalInfo

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:struct name="personalInfo" type="xsd1:personalInfo"

repositoryID="IDL:personalInfo:1.0">
 <corba:member name="name" idltype="corba:string"/>
 <corba:member name="age" idltype="corba:long"/>
 <corba:member name="hairColor" idltype="corbatm:hairColorType"/>
 </corba:struct>
</corba:typeMapping>

Artix WSDL Extension Reference: C++ 23

corba:enum

Synopsis <corba:enum name="..." type="..." repositoryID="...">

 <corba:enumerator ... />

 ...

</corba:enum>

The corba:enum element is used to represent enumerations. The
values for the enumeration are described by a series of
corba:enumerator elements.

Attributes A corba:enum element requires three attributes:

corba:enumerator

Synopsis <corba:enumerator value="..." />

Description The corba:enumerator element represents the values of an
enumeration. The values must be listed in the same order used in
the IDL that defines the CORBA enumeration.

Attributes A corba:enumerator element takes one attribute, value.

Examples For example, the enumeration defined in Example 2 on page 22,
hairColorType, can be represented in the CORBA type map as shown
in Example 4:

corba:fixed

Synopsis <corba:fixed name="..." repositoryID="..." type="..."
digits="..." scale="..." />

Description Fixed point data types are a special case in the Artix contract
mapping. A CORBA fixed type is represented in the logical portion
of the contract as the XML Schema primitive type xsd:decimal.
However, because a CORBA fixed type requires additional
information to be fully mapped to a physical CORBA data type, it
must also be described in the CORBA type map section of an Artix
contract using a corba:fixed element.

name A unique identifier used to reference the
CORBA type in the binding.

type The logical type the structure is mapping.
repositoryID The fully specified repository ID for the

CORBA type.

Example 4: CORBA Type Map for hairColorType

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:enum name="hairColorType" type="xsd1:hairColorType"

repositoryID="IDL:hairColorType:1.0">
 <corba:enumerator value="red"/>
 <corba:enumerator value="brunette"/>
 <corba:enumerator value="blonde"/>
 </corba:enum>
</corba:typeMapping>

 24 Artix WSDL Extension Reference: C++

Attributes A corba:fixed element requires five attributes:

Examples For example, the fixed type defined in Example 5, myFixed, would

be described by a type entry in the logical type description of the
contract, as shown in Example 6.

In the CORBA type map portion of the contract, it would be
described by an entry similar to Example 7. Notice that the
description in the CORBA type map includes the information
needed to fully represent the characteristics of this particular fixed
data type.

corba:union

Synopsis <corba:union name="..." type="..." discriminator="..."

 repositoryID="...">

 <corba:unionbranch ... />

 ...

</corba:union>

Description The corba:union element is used to resolve the relationship between
a union’s discriminator and its members. A corba:union element is
required for every CORBA union defined in an IDL contract. The
members of the union are described using a series of nested
corba:unionbranch elements.

name A unique identifier used to reference the CORBA
type in the binding.

repositoryID The fully specified repository ID for the CORBA
type.

type The logical type the structure is mapping (for
CORBA fixed types, this is always xsd:decimal).

digits The upper limit for the total number of digits
allowed. This corresponds to the first number in the
fixed type definition.

scale The number of digits allowed after the decimal
point. This corresponds to the second number in
the fixed type definition.

Example 5: myFixed Fixed Type

\\IDL
typedef fixed<4,2> myFixed;

Example 6: Logical description from myFixed

<xsd:element name="myFixed" type="xsd:decimal"/>

Example 7: CORBA Type Map for myFixed

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:fixed name="myFixed" repositoryID="IDL:myFixed:1.0" type="xsd:decimal"

digits="4" scale="2"/>
</corba:typeMapping>

Artix WSDL Extension Reference: C++ 25

Attributes A corba:union element has four mandatory attributes:

corba:unionbranch

Synopsis <corba:unionbranch name="..." idltype="..." default="...">

 <corba:case ... />

 ...

</corba:unionbranch>

Description The corba:unionbranch element defines the members of a union.
Each corba:unionbranch except for one describing the union’s default
member will have at least one corba:case element as a child.

Attributes A corba:unionbranch element has two required attributes and one
optional attribute.

corba:case

Synopsis <corba:case label="..." />

Description The corba:case element defines the explicit relationship between the
discriminator’s value and the associated union member.

Attributes The corba:case element’s only attribute, label, specifies the value
used to select the union member described by the
corba:unionbranch.

name A unique identifier used to reference the CORBA
type in the binding.

type The logical type the structure is mapping.
discriminator The IDL type used as the discriminator for the

union.
repositoryID The fully specified repository ID for the CORBA

type.

name A unique identifier used to reference the
union member.

idltype The IDL type of the union member. This type
can be either a primitive type or another
complex type that is defined in the type map.

default The optional attribute specifying if this
member is the default case for the union. To
specify that the value is the default set this
attribute to true.

 26 Artix WSDL Extension Reference: C++

Examples For example consider the union, myUnion, shown in Example 8:

For example myUnion, Example 8, would be described with a
CORBA type map entry similar to that shown in Example 9.

corba:alias

Synopsis <corba:alias name="..." type="..." repositoryID="..." />

Description The corba:alias element is used to represent a typedef statement
in an IDL contract.

Attributes The corba:alias element has three attributes:

Example 8: myUnion IDL

//IDL
union myUnion switch (short)
{
 case 0:
 string case0;
 case 1:
 case 2:
 float case12;
 default:
 long caseDef;
};

Example 9: myUnion CORBA type map

<corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/t
ypemap">

...
 <corba:union name="myUnion" type="xsd1:myUnion"

discriminator="corba:short"
repositoryID="IDL:myUnion:1.0">

 <corba:unionbranch name="case0" idltype="corba:string">
 <corba:case label="0"/>
 </corba:unionbranch>
 <corba:unionbranch name="case12" idltype="corba:float">
 <corba:case label="1"/>
 <corba:case label="2"/>
 </corba:unionbranch>
 <corba:unionbranch name="caseDef" idltype="corba:long"

default="true"/>
 </corba:union>
</corba:typeMapping>

name The value of the name attribute from the
XMLSchema simpleType element representing the
renamed type.

type The XMLSchema type for the base type.
repositoryID The fully specified repository ID for the CORBA

type.

Artix WSDL Extension Reference: C++ 27

Examples For example, the definition of myLong in Example 10, can be

described as shown in Example 11:

corba:array

Synopsis <corba:array name="..." repositoryID="..." type="..."
elemtype="..." bound="..." />

Description In the CORBA type map, arrays are described using a corba:array
element.

Attributes A corba:array has the following required attributes:

Examples For example, consider an array, myArray, as defined in Example 12.

Example 10: myLong IDL

//IDL
typedef long myLong;

Example 11: myLong WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="typedef.idl" ...>
 <types>
 ...
 <xsd:simpleType name="myLong">
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 ...
 </types>
...
 <corba:typeMapping

targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:alias name="myLong" type="xsd:int"

repositoryID="IDL:myLong:1.0" basetype="corba:long"/>
 </corba:typeMapping>
</definitions>

name A unique identifier used to reference the CORBA
type in the binding.

repositoryID The fully specified repository ID for the CORBA
type.

type The logical type the structure is mapping.
elemtype The IDL type of the array’s element. This type can

be either a primitive type or another complex type
that is defined within the type map.

bound The size of the array.

Example 12: myArray IDL

//IDL
typedef long myArray[10];

 28 Artix WSDL Extension Reference: C++

The array myArray will have a CORBA type map description similar
to the one shown in Example 13.

corba:sequence

Synopsis <corba:sequence name="..." repositoryID="..." elemtype="..."
bound="..." />

Description The corba:sequence element represents an IDL sequence.

Attributes A corba:sequence has five required attributes.

Examples For example, consider the two sequences defined in Example 14,
longSeq and charSeq.

The sequences described in Example 14 has a CORBA type map
description similar to that shown in Example 15.

corba:exception

Synopsis <corba:exception name="..." type="..." repositoryID="...">

 <corba:member ... />

 ...

</corba:exception>

Example 13: myArray CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:array name="myArray" repositoryID="IDL:myArray:1.0" type="xsd1:myArray"

elemtype="corba:long" bound="10"/>
</corba:typeMapping>

name A unique identifier used to reference the CORBA
type in the binding.

repositoryID The fully specified repository ID for the CORBA
type.

type The logical type the structure is mapping.
elemtype The IDL type of the sequence’s elements. This type

can be either a primitive type or another complex
type that is defined within the type map.

bound The size of the sequence.

Example 14: IDL Sequences

\\ IDL
typedef sequence<long> longSeq;
typedef sequence<char, 10> charSeq;

Example 15: CORBA type map for Sequences

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:sequence name="longSeq" repositoryID="IDL:longSeq:1.0" type="xsd1:longSeq"

elemtype="corba:long" bound="0"/>
 <corba:sequence name="charSeq" repositoryID="IDL:charSeq:1.0" type="xsd1:charSeq"

elemtype="corba:char" bound="10"/>
 </corba:typeMapping>

Artix WSDL Extension Reference: C++ 29

Description The corba:exception element is a child of a corba:typeMapping
element. It describes an exception in the CORBA type map. The
pieces of data returned with the exception are described by a series
of corba:member elements. The elements must be declared in the
same order as in the IDL representation of the exception.

Attributes A corba:exception element has the following required attributes:

Examples For example, consider the exception idNotFound defined in
Example 16.

In the CORBA type map portion of the contract, idNotFound is
described by an entry similar to that shown in Example 17:

corba:anonsequence

Synopsis <corba:anonsequence name="..." bound="..." elemtype="..."
type="..." />

Description The corba:anonsequence element is used when representing
recursive types. Because XMLSchema recursion requires the use of
two defined types and IDL recursion does not, the CORBA type map
uses the corba:anonsequence element as a means of bridging the
gap. When Artix generates IDL from a contract, it will not generate
new IDL types for XMLSchema types that are used in a
corba:anonsequence element.

Attributes The corba:anonsequence element has four required attributes:

name A unique identifier used to reference the CORBA
type in the binding.

type The logical type the structure is mapping.
repositoryID The fully specified repository ID for the CORBA

type.

Example 16: idNotFound Exception

\\IDL
exception idNotFound
{
 short id;
};

Example 17: CORBA Type Map for idNotFound

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:exception name="idNotFound" type="xsd1:idNotFound"

repositoryID="IDL:idNotFound:1.0">
 <corba:member name="id" idltype="corba:short"/>
 </corba:exception>
</corba:typeMapping>

name A unique identifier used to reference the CORBA
type in the binding.

bound The size of the sequence.
elemtype The name of the CORBA type map element that

defines the contents of the sequence.

 30 Artix WSDL Extension Reference: C++

Examples Example 18 shows a recursive XMLSchema type, allAboutMe,
defined using a named type.

Example 19 shows the how Artix maps the recursive type into the
CORBA type map of an Artix contract.

While the XML in the CORBA typemap does not explicitly retain the
recursive nature of recursive XMLSchema types, the IDL
generated from the typemap restores the recursion in the IDL
type. The IDL generated from the type map in Example 19 defines
allAboutMe using recursion. Example 20 shows the generated IDL.

type The logical type the element represents.

Example 18: Recursive XML Schema Type

<complexType name="allAboutMe">
 <sequence>
 <element name="shoeSize" type="xsd:int"/>
 <element name="mated" type="xsd:boolean"/>
 <element name="conversation" type="tns:moreMe"/>
 </sequence>
</complexType>
<complexType name="moreMe">
 <sequence>
 <element name="item" type="tns:allAboutMe"
 maxOccurs="unbounded"/>
 </sequence>
</complexType>

Example 19: Recursive CORBA Typemap

<corba:anonsequence name="moreMe" bound="0"
 elemtype="ns1:allAboutMe"

type="xsd1:moreMe"/>
<corba:struct name="allAboutMe"
 repositoryID="IDL:allAboutMe:1.0"
 type="xsd1:allAboutMe">
 <corba:member name="shoeSize" idltype="corba:long"/>
 <corba:member name="mated" idltype="corba:boolean"/>
 <corba:member name="conversation"

idltype="ns1:moreMe"/>
</corba:struct>

Example 20: IDL for a Recursive Data Type

\\IDL
struct allAboutMe
{
 long shoeSize;
 boolean mated;
 sequence<allAboutMe> conversation;
};

Artix WSDL Extension Reference: C++ 31

corba:anonstring

Synopsis <corba:anonstring name="..." bound="..." type="..." />

Description The corba:anonstring element is used to represent instances of
anonymous XMLSchema simple types that are derived from
xsd:string. As with corba:anonsequence elements, corba:anonstring
elements do not result in generated IDL types.

Attributes corba:anonstring elements have three attributes.

Examples The complex type, madAttr, described in Example 21 contains a
member, style, that is an instance of an anonymous type derived
from xsd:string.

madAttr would generate the CORBA typemap shown in
Example 22. Notice that style is given an IDL type defined by a
corba:anonstring element.

name A unique identifier used to reference the CORBA
type in the binding.

bound The maximum length of the string.
type The XMLSchema type of the base type. Typically

this is xsd:string.

Example 21: madAttr XML Schema

<complexType name="madAttr">
 <sequence>
 <element name="style">
 <simpleType>
 <restriction base="xsd:string">
 <maxLength value="3"/>
 </restriction>
 </simpleType>
 </element>
 <element name="gender" type="xsd:byte"/>
 </sequence>
</complexType>

Example 22: madAttr CORBA typemap

<corba:typeMapping targetNamespace="http://schemas.iona.com/anonCat/corba/typemap/">
 <corba:struct name="madAttr" repositoryID="IDL:madAttr:1.0" type="xsd1:madAttr">
 <corba:member idltype="ns1:styleType" name="style"/>
 <corba:member idltype="corba:char" name="gender"/>
 </corba:struct>
 <corba:anonstring bound="3" name="styleType" type="xsd:string"/>
</corba:typeMapping>

 32 Artix WSDL Extension Reference: C++

corba:object

Synopsis <corba:object binding="..." name="..." repositoryID="..."
type="..." />

Description The corba:object element is used to represent Artix references in
the CORBA type map.

Arguments corba:object elements have four attributes:

Examples Example 23 shows an Artix contract fragment that uses Artix
references.

binding Specifies the binding to which the object refers. If
the annotation element is left off the reference
declaration in the schema, this attribute will be
blank.

name Specifies the name of the CORBA type. If the
annotation element is left off the reference
declaration in the schema, this attribute will be
Object. If the annotation is used and the binding
can be found, this attribute will be set to the name
of the interface that the binding represents.

repositoryID Specifies the repository ID of the generated IDL
type. If the annotation element is left off the
reference declaration in the schema, this attribute
will be set to IDL:omg.org/CORBA/Object/1.0. If the
annotation is used and the binding can be found,
this attribute will be set to a properly formed
repository ID based on the interface name.

type Specifies the schema type from which the CORBA
type is generated. This attribute is always set to
references:Reference.

Example 23: Reference Sample

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="bankService"
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.myBank.com/bankService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.myBank.com/bankTypes"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/typemap/corba/bank.idl"
 xmlns:references="http://schemas.iona.com/references">
 <types>
 <schema
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:import schemaLocation="./references.xsd"

namespace="http://schemas.iona.com/references"/>

Artix WSDL Extension Reference: C++ 33

...
 <xsd:element name="account" type="references:Reference">
 <xsd:annotation>
 <xsd:appinfo>
 corba:binding=AccountCORBABinding
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 </schema>
</types>
...
 <message name="find_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <message name="create_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <portType name="Account">
 <operation name="account_id">
 <input message="tns:account_id" name="account_id"/>
 <output message="tns:account_idResponse"
 name="account_idResponse"/>
 </operation>
 <operation name="balance">
 <input message="tns:balance" name="balance"/>
 <output message="tns:balanceResponse"
 name="balanceResponse"/>
 </operation>
 <operation name="withdraw">
 <input message="tns:withdraw" name="withdraw"/>
 <output message="tns:withdrawResponse"
 name="withdrawResponse"/>
 <fault message="tns:InsufficientFundsException"

name="InsufficientFunds"/>
 </operation>
 <operation name="deposit">
 <input message="tns:deposit" name="deposit"/>
 <output message="tns:depositResponse"
 name="depositResponse"/>
 </operation>
 </portType>
 <portType name="Bank">
 <operation name="find_account">
 <input message="tns:find_account" name="find_account"/>
 <output message="tns:find_accountResponse"
 name="find_accountResponse"/>
 <fault message="tns:AccountNotFound"
 name="AccountNotFound"/>
 </operation>

Example 23: Reference Sample (Continued)

 34 Artix WSDL Extension Reference: C++

The element named account is a reference to the interface defined
by the Account port type and the find_account operation of Bank
returns an element of type account. The annotation element in the
definition of account specifies the binding, AccountCORBABinding, of
the interface to which the reference refers.
Example 24 shows the generated CORBA typemap resulting from
generating both the Account and the Bank interfaces into the same
contract.

There are two entries because wsdltocorba was run twice on the
same file. The first CORBA object is generated from the first pass
of wsdltocorba to generate the CORBA binding for Account. Because
wsdltocorba could not find the binding specified in the annotation,
it generated a generic Object reference. The second CORBA
object, Account, is generated by the second pass when the binding
for Bank was generated. On that pass, wsldtocorba could inspect
the binding for the Account interface and generate a type-specific
object reference.
Example 25 shows the IDL generated for the Bank interface.

 <operation name="create_account">
 <input message="tns:create_account"

name="create_account"/>
 <output message="tns:create_accountResponse"
 name="create_accountResponse"/>
 <fault message="tns:AccountAlreadyExistsException"
 name="AccountAlreadyExists"/>
 </operation>
 </portType>
</definitions>

Example 23: Reference Sample (Continued)

Example 24: CORBA Typemap with References

<corba:typeMapping
 targetNamespace="http://schemas.myBank.com/bankService/corba/typemap/">
...
 <corba:object binding="" name="Object"
 repositoryID="IDL:omg.org/CORBA/Object/1.0"

type="references:Reference"/>
 <corba:object binding="AccountCORBABinding" name="Account"
 repositoryID="IDL:Account:1.0" type="references:Reference"/>
</corba:typeMapping>

Example 25: IDL Generated From Artix References

//IDL
...
interface Account
{
 string account_id();
 float balance();
 void withdraw(in float amount)
 raises(::InsufficientFundsException);
 void deposit(in float amount);
};

Artix WSDL Extension Reference: C++ 35

interface Bank
{
 ::Account find_account(in string account_id)
 raises(::AccountNotFoundException);
 ::Account create_account(in string account_id,
 in float initial_balance)
 raises(::AccountAlreadyExistsException);
};

Example 25: IDL Generated From Artix References (Continued)

 36 Artix WSDL Extension Reference: C++

 Artix WSDL Extension Reference: C++ 37

Tuxedo FML Binding
Artix supports the use of Tuxedo’s FML buffers. It uses a set of Artix
specific elements placed in the WSDL binding element.

Runtime Compatibility

The Tuxedo FML extension elements are only compatible with the
C++ runtime.

Namespace

The WSDL extensions used for the FML binding are defined in the
namespace http://schemas.iona.com/transports/tuxedo. Add the
following namespace declaration to any contracts that use an FML
binding:

FML\XMLSchema Support

An FML buffer can only contain the data types listed in Table 3.

Due to FML limitations, support for complex types is limited to
xsd:sequence and xsd:all.

tuxedo:binding

Synopsis <tuxedo:binding />

Description The tuxedo:binding element informs Artix that the payload being
described is an FML buffer. It is a child of the WSDL binding element
and has no children.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"

Table 3: FML Type Support

XML Schema Type FML Type

xsd:short short

xsd:unsignedShort short

xsd:int long

xsd:unsignedInt long

xsd:float float

xsd:double double

xsd:string string

xsd:base64Binary string

xsd:hexBinary string

 38 Artix WSDL Extension Reference: C++

tuxedo:fieldTable

Synopsis <tuxedo:fieldTable type="...">

 <tuxedo:field ... />

 ...

</tuxedo:fieldTable>

Description The tuxedo:fieldTable element contains the mappings between the
elements defined in the logical section of the contract and their
associated FML fieldid.

Attributes The tuxedo:fieldTable element has one required attribute, type, that
specifies if the FML buffer is an FML16 buffer or an FML32 buffer.
Table 4 shows the values of the type attribute.

tuxedo:field

Synopsis <tuxedo:field name="..." id="..." />

Description The tuxedo:field element defines the association between an
element in the logical contract and its corresponding entry in the
physical FML buffer. Each element in a message, either a message
part or an element in a complex type, must have a corresponding
tuxedo:field element in the FML binding.

Attributes The tuxedo:field element takes two attributes:

tuxedo:operation

Synopsis <tuxedo:operaiton />

Description The tuxedo:operation element is a child of the WSDL binding’s
operation element. It informs Artix that the messages used by the
operation are being passed as FML buffers.

Table 4: Values of tuxedo:fieldTable Element’s type Attribute

Value Meaning

FML The represented FML buffer is a FML16
buffer.

FML32 The represented FML buffer is an FML32
buffer.

name The value of the name attribute from the
logical message element to which this
tuxedo:field element corresponds.

id The fieldId value of the corresponding
element in the generated C++ header
defining the FML buffer.

 Artix WSDL Extension Reference: C++ 39

Fixed Binding
The fixed binding supports mapping between XML Schema message
definitions and messages formatted in fixed length records.

Runtime Compatibility

The fixed binding’s extension elements are only compatible with
the C++ runtime.

Namespace

The extensions used to describe fixed record length messages are
defined in the namespace http://schemas.iona.com/bindings/fixed.
Artix tools use the prefix fixed to represent the fixed record length
extensions. Add the following line to your contract:

fixed:binding

Synopsis <fixed:binding justification="..." encoding="..."

 padHexCode="..." />

Description The fixed:binding element is a child of the WSDL binding element.
It specifies that the binding defines a mapping between fixed record
length data and the XMLSchema representation of the data.

Attributes The fixed:binding element has three attributes:

The settings for the attributes on the fixed:binding element
become the default settings for all the messages being mapped to
the current binding.

fixed:operation

Synopsis <fixed:operation discriminator="..." />

Description The fixed:operation element is a child element of the WSDL
operation element and specifies that the operation’s messages are
being mapped to fixed record length data.

Attributes The fixed:operation element has one attribute, discriminator, that
assigns a unique identifier to the operation. If your service only
defines a single operation, you do not need to provide a
discriminator. However, if your operation has more than one
service, you must define a unique discriminator for each operation

xmlns:fixed="http://schemas.iona.com/bindings/fixed

justification Specifies the default justification of the data
contained in the messages. Valid values are left
and right. Default is left.

encoding Specifies the codeset used to encode the text
data. Valid values are any valid ISO locale or
IANA codeset name. Default is UTF-8.

padHexCode Specifies the hex value of the character used to
pad the record.

 40 Artix WSDL Extension Reference: C++

in the service. Not doing so will result in unpredictable behavior
when the service is deployed.

fixed:body

Synopsis <fixed:body justification="..." encoding="..." padHexCode="...">

 ...

</fixed:body>

Description The fixed:body element is a child element of the input, output, and
fault messages being mapped to fixed record length data. It
specifies that the message body is mapped to fixed record length
data on the wire and describes the exact mapping for the message’s
parts.
The order in which the message parts are listed in the fixed:body
element represent the order in which they are placed on the wire.
It does not need to correspond to the order in which they are
specified in the WSDL message element defining the logical
message.
The following child elements are used in defining how logical data
is mapped to a concrete fixed format message:
• fixed:field maps message parts defined using a simple type.
• fixed:sequence maps message parts defined using a sequence

complex type.

• fixed:choice maps message parts defined using a choice
complex type.

Attributes The fixed:body element has three attributes:

fixed:field

Synopsis <fixed:field name="..." "size="..." format="..."

 justification="..." fixedValue="..." bindingOnly="...">

 <fixed:enumeration ... />

 ...

</fixed:field>

Description The fixed:field element is used to map simple data types to a field
in a fixed record length message. It is the child of a fixed:body
element.

Note: Complex types defined using all are not supported
by the fixed binding.

justification Specifies how the data in the messages are
justified. Valid values are left and right.

encoding Specifies the codeset used to encode text data.
Valid values are any valid ISO locale or IANA
codeset name.

padHexCode Specifies the hex value of the character used to
pad the record.

Artix WSDL Extension Reference: C++ 41

Attributes The fixed:field element has the following attributes:

Examples The following examples show different ways of representing data
using a fixed:field element:
• String data
• Numeric data
• Dates
• Binding only records

name Specifies the name of the logical message part
that this element represents. It is a required
attribute.

size Specifies the maximum number of characters in
a message part whose base type is xsd:string.
Also used to specify the number of characters in
the on-wire values used to represent the values
of an enumerated type. For more information
see “fixed:enumeration” on page 43.

format Specifies how non-string data is formatted when
it is placed on the wire. For numerical data,
formats are entered using # to represent
numerical fields and . to represent decimal
places. For example ##.## would be used to
represent 12.04.
Also can be used for string data that is a date.
Date formats use the standard date format
syntax. For example, mm/dd/yy would represent
dates such as 02/23/04 and 11/02/98.

justification Specifies the default justification of the data
contained in the field. Valid values are left and
right. Default is left.

fixedValue Specifies the value to use for the represented
logical message part. The value of fixedValue is
always the value placed on the wire for the
represented message part. It will override any
values set in the application code.

bindingOnly Specifies if the field appears in the logical
definition of the message. The default value is
false.
When set to true, this attribute signals Artix that
it needs to insert a field into the on-wire
message that does not appear in the logical
message.
bindingOnly is used in conjunction with the
fixedValue attribute. The fixedValue attribute is
used to specify the data to be written into the
binding-only field.

 42 Artix WSDL Extension Reference: C++

String data
The logical message part, raverID, described in Example 26 would
be mapped to a fixed:field similar to Example 27.

In order to complete the mapping, you must know the length of
the record field and supply it. In this case, the field, raverID, can
contain no more than twenty characters.

Numeric data
If a field contains a 2-digit numeric value with one decimal place,
it would be described in the logical part of the contract as an
xsd:float, as shown in Example 28.

From the logical description of the message, Artix has no way of
determining that the value of rageLevel is a 2-digit number with
one decimal place because the fixed record length binding treats
all data as characters. When mapping rageLevel in the fixed
binding you would specify its format with ##.#, as shown in
Example 29. This provides Artix with the metadata needed to
properly handle the data.

Dates
Dates are specified in a similar fashion. For example, the format of
the date 12/02/72 is MM/DD/YY. When using the fixed binding it is
recommended that dates are described in the logical part of the
contract using xsd:string. For example, a message containing a
date would be described in the logical part of the contract as
shown in Example 30.

Example 26: Fixed String Message

<message name="fixedStringMessage">
 <part name="raverID" type="xsd:string"/>
</message>

Example 27: Fixed String Mapping

<fixed:field name="raverID" size="20"/>

Example 28: Fixed Record Numeric Message

<message name="fixedNumberMessage">
 <part name="rageLevel" type="xsd:float"/>
</message>

Example 29: Mapping Numerical Data to a Fixed Binding

<fixed:field name="rageLevel" format="##.#"/>

Example 30: Fixed Date Message

<message name="fixedDateMessage">
 <part name="goDate" type="xsd:string"/>
</message>

Artix WSDL Extension Reference: C++ 43

If goDate is entered using the standard short date format for US
English locales, mm/dd/yyyy, you would map it to a fixed record field
as shown in Example 31.

Binding only records
If you were sending reports that included a fixed expiration date
that you did not want exposed to the application, you could create
a binding only record called expDate. It would be mapped to the
fixed field shown in Example 32.

fixed:enumeration

Synopsis <fixed:enumeration value="..." fixedValue="..." />

Description The fixed:enumeration element is a child of a fixed:body element.
It is used to represent the possible values of an enumerated type
and define how those values are represented on the wire.

Attributes The fixed:enumeration element has two required attributes:

Examples If you had an enumerated type with the values FruityTooty, Rainbow,
BerryBomb, and OrangeTango the logical description of the type would
be similar to Example 33.

When you map the enumerated type, you need to know the
concrete representation for each of the enumerated values. The
concrete representations can be identical to the logical definitions
or some other value. The enumerated type in Example 33 could be

Example 31: Fixed Format Date Mapping

<fixed:field name="goDate" format="mm/dd/yyyy"/>

Example 32: fixedValue Mapping

<fixed:field name="goDate" bindingOnly="true"
 fixedValue="11/11/2112"/>

value Is the value of the corresponding enumeration
value in the logical description of the message part.

fixedValue Specifies the string value that will be used to
represent the logical value on the wire. The length
of the string used is determined by the value of the
parent fixed:field element’s length attribute.

Example 33: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

 44 Artix WSDL Extension Reference: C++

mapped to the fixed field shown in Example 34. Using this
mapping Artix will write OT to the wire for this field if the
enumerations value is set to OrangeTango.

fixed:choice

Synopsis <fixed:choice name="..." discriminatorName="...">

 <fixed:case ... >

 ...

 </fixed:case>

 ...

</fixed:choice>

Description The fixed:choice element is a child of a fixed:body element. It maps
choice complex types to a field in a fixed record length message.
The actual values of the choice are defined using fixed:case child
elements. A fixed:choice element must have a fixed:case child
element for each possible value defined in the choice complex type
it represents.

Attributes The fixed:choice element has the following attributes:

fixed:case

Synopsis <fixed:case name="..." fixedValue="...">

 ...

</fixed:case>

Description The fixed:case element is a child of the fixed:choice element. It
describes the complete mapping for an element of a choice complex
type to a field in a fixed record length message.
To fully describe how the logical data that is represented by a
fixed:case element is mapped into a field in a fixed record length
message, you need to create a mapping for the logical element
using children to the fixed:case element. The child elements used
to map the part’s type to the fixed message are the same as the
possible child elements of a fixed:body element. fixed:field

Example 34: Fixed Ice Cream Mapping

<fixed:field name="flavor" size="2">
 <fixed:enumeration value="FruityTooty"

fixedValue="FT"/>
 <fixed:enumeration value="Rainbow" fixedValue="RB"/>
 <fixed:enumeration value="BerryBomb" fixedValue="BB"/>
 <fixed:enumeration value="OrangeTango"

fixedValue="OT"/>
</fixed:field>

name Specifies the name of the logical message part
the choice element is mapping. This attribute is
required.

discriminatorName Specifies the name of a binding-only field that
is used as the discriminator for the union. The
binding-only field must defined as part of the
parent fixed:body element and must be capable
of representing the discriminator.

Artix WSDL Extension Reference: C++ 45

elements describe simple types. fixed:choice elements describe
choice complex types. fixed:sequence elements describe sequence
complex types.

Attributes The fixed:case element has the following required attributes:

Examples Example 35 shows an Artix contract fragment mapping a choice
complex type to a fixed record length message.

name Specifies the value of the name attribute of the
corresponding element in the choice complex type
being mapped.

fixedValue Specifies the discriminator value that selects this
case. If the parent fixed:choice element has its
discriminatorName attribute set, the value must
conform to the format specified for that field.

Example 35: Mapping a Union to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding/>
...
 <fixed:field name="disc" format="##" bindingOnly="true"/>

 46 Artix WSDL Extension Reference: C++

fixed:sequence

Synopsis <fixed:sequence name="..." occurs="..." counterName="...">

 ...

</fixed:field>

Description The fixed:sequence element can be a child to a fixed:body element,
a fixed:case element, or another fixed:sequence element. It maps
a sequence complex type to a field in a fixed record length message.
To fully describe how the complex type that is represented by a
fixed:sequence element is mapped into a field in a fixed record
length message, you need to create a mapping for each of the
complex type’s elements using children to the fixed:sequence
element. The child elements used to map the part’s type to the
fixed message are the same as the possible child elements of a
fixed:body element. fixed:field elements describe simple types.
fixed:choice elements describe choice complex types.
fixed:sequence elements describe sequence complex types.

Attributes The fixed:sequence element has the following attributes:

 <fixed:choice name="stationPart"
 descriminatorName="disc">
 <fixed:case name="train" fixedValue="01">
 <fixed:field name="name" size="20"/>
 </fixed:case>
 <fixed:case name="bus" fixedValue="02">
 <fixed:field name="number" format="###"/>
 </fixed:case>
 <fixed:case name="cab" fixedValue="03">
 <fixed:field name="number" format="###"/>
 </fixed:case>
 <fixed:case name="subway" fixedValue="04">
 <fixed:field name="name" format="10"/>
 </fixed:case>
 </fixed:choice>
...
</binding>
...
</definition>

Example 35: Mapping a Union to a Fixed Record Length Message (Continued)

name Specifies the value of the name attribute from the
corresponding logical complex type. This attribute
is required.

occurs Specifies the number of times this sequence occurs
in the message buffer. This value corresponds the
value of the maxOccurs attribute of the
corresponding logical complex type.

counterName Specifies the name of the binding-only field that is
used to store the actual number of times this
sequence occurs in the on-wire message. The
corresponding fixed:field element must have
enough digits to hold the any whole number up the
value of the occurs attribute.

Artix WSDL Extension Reference: C++ 47

Examples A structure containing a name, a date, and an ID number would
contain three fixed:field elements to fully describe the mapping of
the data to the fixed record message. Example 36 shows an Artix
contract fragment for such a mapping.

Example 36: Mapping a Sequence to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="personPart" type="tns:person"/>
</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding/>
...
 <fixed:sequence name="personPart">
 <fixed:field name="name" size="20"/>
 <fixed:field name="date" format="MM/DD/YY"/>
 <fixed:field name="ID" format="#####"/>
 </fixed:sequence>
...
</binding>
...
</definition>

 48 Artix WSDL Extension Reference: C++

Artix WSDL Extension Reference: C++ 49

Tagged Binding
The tagged binding maps between XMLSchema message definitions and
self-describing, variable record length messages.

Runtime Compatibility

The tagged binding’s extension elements are only compatible with
the C++ runtime.

Namespace

The extensions used to describe tagged data bindings are defined
in the namespace http://schemas.iona.com/bindings/tagged. Artix
tools use the prefix tagged to represent the tagged data
extensions. Add the following line to the definitions element of
your contract:

tagged:binding

Synopsis <tagged:binding selfDescribing="..." fieldSeperator="..."

 fieldNameValueSeperator="..." scopeType="..."

 flattened="..." messageStart="..." messageEnd="..."

 unscopedArrayElement="..." ignoreUnknownElement="..."

 ignoreCase="..." />

Description The tagged:binding element specifies that the binding maps logical
messages to tagged data messages.

Attributes The tagged:binding element has the following ten attributes:

xmlns:tagged="http://schemas.iona.com/bindings/tagged"

selfDescribing Specifies if the message data on the wire
includes the field names. Valid values are
true or false. If this attribute is set to
false, the setting for
fieldNameValueSeparator is ignored. This
attribute is required.

fieldSeparator Specifies the delimiter the message uses
to separate fields. Valid values include
any character that is not a letter or a
number. This attribute is required.

fieldNameValueSeparator Specifies the delimiter used to separate
field names from field values in
self-describing messages. Valid values
include any character that is not a letter
or a number.

scopeType Specifies the scope identifier for complex
messages. Supported values are tab(\t),
curlybrace({data}), and none. The default
is tab.

 50 Artix WSDL Extension Reference: C++

The settings for the attributes on these elements become the
default settings for all the messages being mapped to the current
binding.

tagged:operation

Synopsis <tagged:operation discriminator="..." discrininatorStyle="..." />

Description The tagged:operation element is a child element of the WSDL
operation element. It specifies that the operation’s messages are
being mapped to a tagged data message.

Attributes The tagged:operation element takes two optional attributes:

flattened Specifies if data structures are flattened
when they are put on the wire. If
selfDescribing is false, then this
attribute is automatically set to true.

messageStart Specifies a special token at the start of a
message. It is used when messages that
require a special character at the start of
a the data sequence. Valid values include
any character that is not a letter or a
number.

messageEnd Specifies a special token at the end of a
message. Valid values include any
character that is not a letter or a number.

unscopedArrayElement Specifies if array elements need to be
scoped as children of the array. If set to
true arrays take the form
echoArray{myArray=2;item=abc;item=def}.
If set to false arrays take the form
echoArray{myArray=2;{0=abc;1=def;}}.
Default is false.

ignoreUnknownElements Specifies if Artix ignores undefined
element in the message payload. Default
is false.

ignoreCase Specifies if Artix ignores the case with
element names in the message payload.
Default is false.

discriminator Specifies a discriminator to be used by the
Artix runtime to identify the WSDL operation
that will be invoked by the message receiver.

discriminatorStyle Specifies how the Artix runtime will locate the
discriminator as it processes the message.
Supported values are msgname, partlist,
fieldvalue, and fieldname.

Artix WSDL Extension Reference: C++ 51

tagged:body

Synopsis <tagged:body>

 ...

</tagged:body>

Description The tagged:body element is a child element of the input, output, and
fault messages being mapped to a tagged data format. It specifies
that the message body is mapped to tagged data on the wire and
describes the exact mapping for the message’s parts.
The tagged:body element will have one or more of the following
child elements:
• tagged:field
• tagged:sequence
• tagged:choice
The children describe the detailed mapping of the XMLSchema
message to the tagged data to be sent on the wire.

tagged:field

Synopsis <tagged:field name="..." alias="...">

 <tagged:enumeration ... />

 ...

</tagged:field>

The tagged:field element is a child of a tagged:body element. It
maps simple types and enumerations to a field in a tagged data
message. When describing enumerated types a tagged:field
element will have one or more tagged:enumeration child
elements.

Attributes The tagged:field element has two attributes:

tagged:enumeration

Synopsis <tagged:enumeration value="..." />

Description The tagged:enumeration element is a child element of a tagged:field
element. It is used to map the value of an enumerated types to a
field in a tagged data message.

Parameters The tagged:enumeration element has one required attribute, value, that corresponds
to the enumeration value as specified in the logical description of the enumerated type.

Examples If you had an enumerated type, flavorType, with the values
FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical

name A required attribute that must correspond to the
name of the logical message part that is being
mapped to the tagged data field.

alias An optional attribute specifying an alias for the field
that can be used to identify it on the wire.

 52 Artix WSDL Extension Reference: C++

description of the type would be similar to Example 37.

flavorType would be mapped to a tagged data field as shown in
Example 38.

tagged:sequence

Synopsis <tagged:sequence name="..." alias="..." occurs="...">

 ...

</tagged:sequence>

Description The taggeded:sequence element is a child of a tagged:body element,
a tagged:sequence element, or a tagged:case element. It maps
arrays and sequence complex types to fields in a tagged data
message. A tagged:sequence element contains one or more children
to map the corresponding logical type’s parts to fields in a tagged
data message. The child elements can be of the following types:
• tagged:field
• tagged:sequence
• tagged:choice

Attributes The taggeded:sequence element has three attributes:

Examples A structure containing a name, a date, and an ID number would
contain three tagged:field elements to fully describe the mapping
of the data to the fixed record message. Example 39 shows an Artix

Example 37: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 38: Tagged Data Ice Cream Mapping

<tagged:field name="flavor">
 <tagged:enumeration value="FruityTooty"/>
 <tagged:enumeration value="Rainbow"/>
 <tagged:enumeration value="BerryBomb"/>
 <tagged:enumeration value="OrangeTango"/>
</tagged:field>

name Specifies the name of the logical message
part that is being mapped into the tagged
data message. This is a required attribute.

alias Specifies an alias for the sequence that can
be used to identify it on the wire.

occurs Specifying the number of times the sequence
appears. This attribute is used to map arrays.

Artix WSDL Extension Reference: C++ 53

contract fragment for such a mapping.

tagged:choice

Synopsis <tagged:choice name="..." discriminatorName="..." alais="...">

 <tagged:case ...>

 ...

</tagged:choice>

The tagged:choice element is a child of a tagged:body element, a
tagged:sequence element, or a tagged:case element. It maps
unions to a field in a tagged data message. A tagged:choice
element may contain one or more tagged:case child elements to
map the cases for the union to a field in a tagged data message.

Example 39: Mapping a Sequence to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="taggedDataMappingsample"

targetNamespace="http://www.iona.com/taggedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/taggedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/taggedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="taggedSequence">
 <part name="personPart" type="tns:person"/>
</message>
<portType name="taggedSequencePortType">
...
</portType>
<binding name="taggedSequenceBinding"
 type="tns:taggedSequencePortType">
 <tagged:binding selfDescribing="false"

fieldSeparator="pipe"/>
...
 <tagged:sequence name="personPart">
 <tagged:field name="name"/>
 <tagged:field name="date"/>
 <tagged:field name="ID"/>
 </tagged:sequence>
...
</binding>
...
</definition>

 54 Artix WSDL Extension Reference: C++

Parameters The tagged:choice element has three attributes:

tagged:case

Synopsis <tagged:case value="..." />

Description The tagged:case element is a child element of a tagged:choice
element. It describes the complete mapping of a union’s individual
cases to a field in a tagged data message. A tagged:case element
must have one child element to describe the mapping of the case’s
data to a field, or fields, to a tagged data message. Valid child
elements are tagged:field, tagged:sequence, and tagged:choice.

Attributes The tagged:case element has one required attribute, name, that
corresponds to the name of the case element in the union’s logical
description.

Examples Example 40 shows an Artix contract fragment mapping a union to
a tagged data format.

name Specifies the name of the logical message
part being mapped into the tagged data
message. This is a required attribute.

discriminatorName Specifies the message part used as the
discriminator for the union.

alias Specifies an alias for the union that can be
used to identify it on the wire.

Example 40: Mapping a Union to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/tagService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/tagService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/tagService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="tagUnion">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
<portType name="tagUnionPortType">
...
</portType>

Artix WSDL Extension Reference: C++ 55

<binding name="tagUnionBinding" type="tns:tagUnionPortType">
 <tagged:binding selfDescribing="false"
 fieldSeparator="comma"/>
...
 <tagged:choice name="stationPart" descriminatorName="disc">
 <tagged:case name="train">
 <tagged:field name="name"/>
 </tagged:case>
 <tagged:case name="bus">
 <tagged:field name="number"/>
 </tagged:case>
 <tagged:case name="cab">
 <tagged:field name="number"/>
 </tagged:case>
 <tagged:case name="subway">
 <tagged:field name="name"/>
 </tagged:case>
 </tagged:choice>
...
</binding>
...
</definition>

Example 40: Mapping a Union to a Tagged Data Format

 56 Artix WSDL Extension Reference: C++

 Artix WSDL Extension Reference: C++ 57

XML Binding
Artix includes a binding that supports the exchange of XML documents
without the overhead of a SOAP envelope.

Runtime Compatibility

The XML binding’s extensions are compatible with the C++
runtime.

Namespace

The extensions used to describe XML format bindings are defined
in the namespace
http://celtix.objectweb.org/bindings/xmlformat. Artix tools use
the prefix xformat to represent the XML binding extensions. Add
the following line to your contracts:

xformat:binding

Synopsis <xformat:binding rootNode="..." />

Description The xformat:binding element is the child of the WSDL binding
element. It signifies that the messages passing through this binding
will be sent as XML documents without a SOAP envelope.

Attributes The xformat:binding element has a single optional attribute called
rootNode. The rootNode attribute specifies the QName for the
element that serves as the root node for the XML document
generated by Artix. When the rootNode attribute is not set, Artix
uses the root element of the message part as the root element when
using doc style messages or an element using the message part
name as the root element when using RCP style messages.

xformat:body

Synopsis <xformat:body rootNode="..." />

Description The xformat:body element is an optional child of the WSDL input
element, the WSDL output element, and the WSDL fault element.
It is used to override the value of the rootNode attribute specified in
the binding’s xformat:binding element.

Attributes The xformat:body element has a single attribute called rootNode. The
rootNode attribute specifies the QName for the element that serves
as the root node for the XML document generated by Artix. When
the rootNode attribute is not set, Artix uses the root element of the
message part as the root element when using doc style messages
or an element using the message part name as the root element
when using RCP style messages.

xmlns:xformat="http://celtix.objectweb.org/bindings/xmlformat"

 58 Artix WSDL Extension Reference: C++

 Artix WSDL Extension Reference: C++ 59

Pass Through Binding
The pass through binding is a simple binding that passes blobs through
the message layers. The application level code must know how to handle
the incoming data.

Runtime Compatibility

The pass through binding’s extension elements are only
compatible with the C++ runtime.

Namespace

The extensions used to describe tagged data bindings are defined
in the namespace http://schemas.iona.com/bindings/tagged. Artix
tools use the prefix tagged to represent the tagged data
extensions. Add the following line to the definitions element of
your contract:

tagged:binding

Synopsis <passthru:binding />

Description The passthru:binding element specifies that the binding passes the
message through as a blob.

xmlns:passthru="http://schemas.iona.com/bindings/passthru"

 60 Artix WSDL Extension Reference: C++

Part II
Ports

In this part
This part contains the following chapters:

HTTP Port page 63

CORBA Port page 77

IIOP Tunnel Port page 79

WebSphere MQ Port page 83

JMS Port page 99

Tuxedo Port page 97

File Transfer Protocol Port page 103

 62 Artix WSDL Extension Reference: C++

 Artix WSDL Extension Reference: C++ 63

HTTP Port
Along with the standard WSDL elements used to specify the location of
an HTTP port, Artix uses a number of extensions for fine tuning the
configuration of an HTTP port.

Standard WSDL Elements
http:address

Synopsis <http:address location="..." />

Description The http:address element is a child of the WSDL port element. It
specifies the address of the HTTP port of a service that is not using
SOAP messages to communicate.

Attributes The http:address element has a single required attribute called
location. The location attribute specifies the service’s address as a
URL.

soap:address

Synopsis <soap:address location="..." />

Description The soap:address element is a child of the WSDL port element. It
specifies the address of the HTTP port of a service that uses SOAP
1.1 messages to communicate.

Attributes The soap:address element has a single required attribute called
location. The location attribute specifies the service’s address as a
URL.

wsoap12:address

Synopsis <wsoap12:address location="..." />

Description The wsoap12:address element is a child of the WSDL port element.
It specifies the address of the HTTP port of a service that uses SOAP
1.2 messages to communicate.

Attributes The wsoap12:address element has a single required attribute called
location. The location attribute specifies the service’s address as a
URL.

 64 Artix WSDL Extension Reference: C++

Configuration Extensions for C++
Namespace

Example 41 shows the namespace entries you need to add to the
definitions element of your contract to use the Artix C++
runtime’s HTTP extensions.

http-conf:client

Synopsis <http-conf:client SendTimeout="..." RecieveTimeout="..."

 AutoRedirect="..." UserName="..."

 Password="..." AuthorizationType="..."

 Authorization="..." Accept="..."

 AcceptLanguage="..." AcceptEncoding="..."

 ContentType="..." Connection="..."

 Host="..." ConnectionAttempts="..."

 CacheControl="..." Cookie="..."

 BrowserType="..." Refferer="..."

 ProxyServer="..." ProxyUsername="..."

 ProxyPassword="..." ProxyAuthorizationType="..."

 ProxyAuthorization="..." UseSecureSockets="..."

 ClientCertificates="..." ClientCertificateChain="..."

 ClientPrivateKey="..." ClientPrivateKeyPassword="..."

 TrustedRootCertificate="..." />

Description The http-conf:client element is a child of the WSDL port element.
It is used to specify client-side configuration details.

Attributes The http-conf:client element has the following attributes:

Example 41: Artix HTTP Extension Namespaces

<definitions
 ...
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 ... >

SendTimeout Specifies the length of time, in
milliseconds, the client tries to send a
request to the server before the
connection is timed out. Default is
30000.

ReceiveTimeout Specifies the length of time, in
milliseconds, the client tries to receive
a response from the server before the
connection is timed out. The default is
30000.

AutoRedirect Specifies if a request should be
automatically redirected when the
server issues a redirection reply via
RedirectURL. The default is false, to let
the client redirect the request itself.

Artix WSDL Extension Reference: C++ 65

UserName Specifies the user name that the client
will use for authentication with a
service. This value is passed as an
attribute in each request’s transport
header.

Password Specifies the password that the client
will use for authentication with a
service. This value is passed as an
attribute in each request’s transport
header.

AuthorizationType Specifies the name of the authorization
scheme the client wishes to use.

Authorization Specifies the authorization credentials
used to perform the authorization.

Accept Specifies what media types the client is
prepared to handle.

AcceptLanguage Specifies the client’s preferred
language for receiving responses.

AcceptEncoding Specifies what content codings the
client is prepared to handle.

ContentType Specifies the media type of the data
being sent in the body of the client
request.

Host Specifies the Internet host and port
number of the resource on which the
client request is being invoked.

Connection Specifies if the client wants a particular
connection to be kept open after each
request/response dialog.

ConnectionAttempts Specifies the number of times a client
will transparently attempt to connect to
server.

CacheControl Specifies directives about the behavior
that must be adhered to by caches
involved in the chain comprising a
request from a client to a server.

Cookie Specifies a static cookie to be sent to
the server along with all requests.

BrowserType Specifies information about the browser
from which the client request
originates.

Referer Specifies the URL of the resource that
directed the client to make requests on
a particular service.

ProxyServer Specifies the URL of the proxy server, if
one exists along the message path.

ProxyUserName Specifies the username to use for
authentication on the proxy server if it
requires separate authorization.

 66 Artix WSDL Extension Reference: C++

http-conf:server

Synopsis <http_conf:server SendTimeout="..." RecieveTimeout="..."

 SurpressClientSendErrors="..."

 SurpressClientRecieveErrors="..."

 HonnorKeepAlive="..." RedirectURL="..."

 CacheControl="..." ContentLocation="..."

 ContentType="..." ContentEncoding="..."

 ServerType="..." UseSecureSockets="..."

 ServerCertificate="..." ServerCertificateChain="..."

 ServerPrivateKey="..." ServerPrivateKeyPassword="..."

 TrustedRootCertificate="..." />

Description The http-conf:server element is a child of the WSDL port element.
It is used to specify server-side configuration details.

Attributes The http-conf:server element has the following attributes:

ProxyPassword Specifies the password to use for
authentication on the proxy server if it
requires separate authorization.

ProxyAuthorizationType Specifies the name of the authorization
scheme used with the proxy server.

ProxyAuthorization Specifies the authorization credentials
used to perform the authorization with
the proxy server.

UseSecureSockets Indicates if the client wants to open a
secure connection.

ClientCertificate Specifies the full path to the
PKCS12-encoded X509 certificate
issued by the certificate authority for
the client.

ClientCertificateChain Specifies the full path to the file that
contains all the certificates in the chain.

ClientPrivateKey Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509 certificate
specified by ClientCertificate.

ClientPrivateKeyPassword Specifies a password that is used to
decrypt the PKCS12-encoded private
key.

TrustedRootCertificate Specifies the full path to the
PKCS12-encoded X509 certificate for
the certificate authority.

SendTimeout Sets the length of time, in
milliseconds, the server tries to send
a response to the client before the
connection times out. The default is
30000.

Artix WSDL Extension Reference: C++ 67

ReceiveTimeout Sets the length of time, in
milliseconds, the server tries to
receive a client request before the
connection times out. The default is
30000.

SuppressClientSendErrors Specifies whether exceptions are to
be thrown when an error is
encountered on receiving a client
request. The default is false;
exceptions are thrown on
encountering errors.

SuppressClientReceiveErrors Specifies whether exceptions are to
be thrown when an error is
encountered on sending a response
to a client. The default is false;
exceptions are thrown on
encountering errors.

HonorKeepAlive Specifies whether the server honors
client requests for a connection to
remain open after a response has
been sent. The default is Keep-Alive;
Keep-alive requests are honored.
false specifies that keep-alive
requests are ignored.

RedirectURL Sets the URL to which the client
request should be redirected if the
URL specified in the client request is
no longer appropriate for the
requested resource.

CacheControl Specifies directives about the
behavior that must be adhered to by
caches involved in the chain
comprising a response from a server
to a client.

ContentLocation Sets the URL where the resource
being sent in a server response is
located.

ContentType Sets the media type of the
information being sent in a server
response, for example, text/html or
image/gif.

ContentEncoding Specifies what additional content
codings have been applied to the
information being sent by the
server.

ServerType Specifies what type of server is
sending the response to the client.
Values take the form
program-name/version. For example,
Apache/1.2.5.

UseSecureSockets Indicates whether the server wants
a secure HTTP connection running
over SSL or TLS.

 68 Artix WSDL Extension Reference: C++

Attribute Details
AuthorizationType

Description The AuthorizationType attribute corresponds to the HTTP
AuthorizationType property. It specifies the name of the
authorization scheme the client wishes to use. This information is
specified and handled at the application level. Artix does not perform
any validation on this value. It is the user’s responsibility to ensure
that the correct scheme name is specified, as appropriate.

Authorization

Description The Authorization attribute corresponds to the HTTP Authorization
property. It specifies the authorization credentials the client wants
the server to use when performing the authorization. The
credentials are encoded and handled at the application-level. Artix
does not perform any validation on the specified value. It is the
user’s responsibility to ensure that the correct authorization
credentials are specified, as appropriate.

Accept

Description The Accept attribute corresponds to the HTTP Accept property. It
specifies what media types the client is prepared to handle. The

ServerCertificate Sets the full path to the
PKCS12-encoded X509 certificate
issued by the certificate authority for
the server.

ServerCertificateChain Sets the full path to the file that
contains all the certificates in the
server’s certificate chain.

ServerPrivateKey Sets the full path to the
PKCS12-encoded private key that
corresponds to the X509 certificate
specified by ServerCertificate.

ServerPrivateKeyPassword Sets a password that is used to
decrypt the PKCS12-encoded private
key, if it has been encrypted with a
password.

TrustedRootCertificate Sets the full path to the
PKCS12-encoded X509 certificate for
the certificate authority. This is used
to validate the certificate presented
by the client.

Note: If the client wants to use basic username and
password-based authentication this does not need to be set.

Note: If the client wants to use basic username and
password-based authentication this does not need to be set.

Artix WSDL Extension Reference: C++ 69

value of the attribute is specified using as multipurpose internet
mail extensions (MIME) types.

MIME type values MIME types are regulated by the Internet Assigned Numbers
Authority (IANA). They consist of a main type and sub-type,
separated by a forward slash. For example, a main type of text
might be qualified as follows: text/html or text/xml. Similarly, a
main type of image might be qualified as follows: image/gif or
image/jpeg.
An asterisk (*) can be used as a wildcard to specify a group of
related types. For example, if you specify image/*, this means that
the client can accept any image, regardless of whether it is a GIF
or a JPEG, and so on. A value of */* indicates that the client is
prepared to handle any type.
Examples of typical types that might be set are:
• text/xml
• text/html
• text/text
• image/gif
• image/jpeg
• application/jpeg
• application/msword
• application/xbitmap
• audio/au
• audio/wav
• video/avi

• video/mpeg

See Also See http://www.iana.org/assignments/media-types/ for more
details.

AcceptLanguage

Description The AcceptLanguage attribute corresponds to the HTTP
AcceptLanguage property. It specifies what language (for example,
American English) the client prefers for the purposes of receiving a
response.

Specifying the language Language tags are regulated by the International Organization for
Standards (ISO) and are typically formed by combining a
language code, determined by the ISO-639 standard, and country
code, determined by the ISO-3166 standard, separated by a
hyphen. For example, en-US represents American English.

See Also A full list of language codes is available at
http://www.w3.org/WAI/ER/IG/ert/iso639.htm.
A full list of country codes is available at
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-
code-lists/list-en1.html.

AcceptEncoding

Description The AcceptEncoding attribute corresponds to the HTTP
AcceptEncoding Property. It specifies what content encodings the
client is prepared to handle. Content encoding labels are regulated
by the Internet Assigned Numbers Authority (IANA). Possible

http://www.iana.org/assignments/media-types/
http://www.w3.org/WAI/ER/IG/ert/iso639.htm
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

 70 Artix WSDL Extension Reference: C++

content encoding values include zip, gzip, compress, deflate, and
identity.
The primary use of content encodings is to allow documents to be
compressed using some encoding mechanism, such as zip or gzip.
Artix performs no validation on content codings. It is the user’s
responsibility to ensure that a specified content coding is
supported at application level.

See Also See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for
more details on content encodings.

ContentType

Description The ContentType attribute corresponds to the HTTP ContentType
property. It specifies the media type of the data being sent in the
body of a message. Media types are specified using multipurpose
internet mail extensions (MIME) types.

MIME type values MIME types are regulated by the Internet Assigned Numbers
Authority (IANA). MIME types consist of a main type and
sub-type, separated by a forward slash. For example, a main type
of text might be qualified as follows: text/html or text/xml.
Similarly, a main type of image might be qualified as follows:
image/gif or image/jpeg.
The default type is text/xml. Other specifically supported types
include:
• application/jpeg
• application/msword
• application/xbitmap
• audio/au
• audio/wav
• text/html
• text/text
• image/gif
• image/jpeg
• video/avi

• video/mpeg.
Any content that does not fit into any type in the preceding list
should be specified as application/octet-stream.

Client settings For clients this attribute is only relevant if the client request
specifies the POST method to send data to the server for
processing.
For web services, this should be set to text/xml. If the client is
sending HTML form data to a CGI script, this should be set to
application/x-www-form-urlencoded. If the HTTP POST request is
bound to a fixed payload format (as opposed to SOAP), the
content type is typically set to application/octet-stream.

See Also See http://www.iana.org/assignments/media-types/ for more
details.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html
http://www.iana.org/assignments/media-types/

Artix WSDL Extension Reference: C++ 71

ContentEncoding

Description The ContentEncoding attribute corresponds to the HTTP
ContentEncoding property. This property specifies any additional
content encodings that have been applied to the information being
sent by the server. Content encoding labels are regulated by the
Internet Assigned Numbers Authority (IANA). Possible content
encoding values include zip, gzip, compress, deflate, and identity.
The primary use of content encodings is to allow documents to be
compressed using some encoding mechanism, such as zip or gzip.
Artix performs no validation on content codings. It is the user’s
responsibility to ensure that a specified content coding is
supported at application level.

See Also See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for
more details on content encodings.

Host

Description The Host attribute corresponds to the HTTP Host property. It
specifies the internet host and port number of the resource on which
the client request is being invoked. This attribute is typically not
required. Typically, this attribute does not need to be set. It is only
required by certain DNS scenarios or application designs. For
example, it indicates what host the client prefers for clusters (that
is, for virtual servers mapping to the same internet protocol (IP)
address).

Connection

Description The Connection attribute specifies whether a particular connection
is to be kept open or closed after each request/response dialog.
Valid values are close and Keep-Alive. The default, Keep-Alive,
specifies that the client want to keep its connection open after the
initial request/response sequence. If the server honors it, the
connection is kept open until the client closes it. close specifies that
the connection to the server is closed after each request/response
sequence.

CacheControl

Description The CacheControl attribute specifies directives about the behavior
of caches involved in the message chain between clients and
servers. The attribute is used for both client and server. However,
clients and servers have different settings for specifying cache
behavior.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

 72 Artix WSDL Extension Reference: C++

Client-side Table 5 shows the valid settings for CacheControl in
http-conf:client.

Table 5: Settings for http-conf:client CacheControl

Directive Behavior

no-cache Caches cannot use a particular response to
satisfy subsequent client requests without
first revalidating that response with the
server. If specific response header fields are
specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are
specified, the restriction applies to the entire
response.

no-store Caches must not store any part of a
response or any part of the request that
invoked it.

max-age The client can accept a response whose age
is no greater than the specified time in
seconds.

max-stale The client can accept a response that has
exceeded its expiration time. If a value is
assigned to max-stale, it represents the
number of seconds beyond the expiration
time of a response up to which the client can
still accept that response. If no value is
assigned, it means the client can accept a
stale response of any age.

min-fresh The client wants a response that will be still
be fresh for at least the specified number of
seconds indicated.

no-transform Caches must not modify media type or
location of the content in a response
between a server and a client.

only-if-cached Caches should return only responses that
are currently stored in the cache, and not
responses that need to be reloaded or
revalidated.

cache-extension Specifies additional extensions to the other
cache directives. Extensions might be
informational or behavioral. An extended
directive is specified in the context of a
standard directive, so that applications not
understanding the extended directive can at
least adhere to the behavior mandated by
the standard directive.

Artix WSDL Extension Reference: C++ 73

Server-side Table 6 shows the valid values for CacheControl in
http-conf:server.

Table 6: Settings for http-conf:server CacheControl

Directive Behavior

no-cache Caches cannot use a particular response to
satisfy subsequent client requests without
first revalidating that response with the
server. If specific response header fields
are specified with this value, the restriction
applies only to those header fields within
the response. If no response header fields
are specified, the restriction applies to the
entire response.

public Any cache can store the response.

private Public (shared) caches cannot store the
response because the response is intended
for a single user. If specific response
header fields are specified with this value,
the restriction applies only to those header
fields within the response. If no response
header fields are specified, the restriction
applies to the entire response.

no-store Caches must not store any part of
response or any part of the request that
invoked it.

no-transform Caches must not modify the media type or
location of the content in a response
between a server and a client.

must-revalidate Caches must revaildate expired entries
that relate to a response before that entry
can be used in a subsequent response.

proxy-revelidate Means the same as must-revalidate, except
that it can only be enforced on shared
caches and is ignored by private unshared
caches. If using this directive, the public
cache directive must also be used.

max-age Clients can accept a response whose age is
no greater that the specified number of
seconds.

s-maxage Means the same as max-age, except that it
can only be enforced on shared caches and
is ignored by private unshared caches. The
age specified by s-maxage overrides the age
specified by max-age. If using this directive,
the proxy-revalidate directive must also be
used.

 74 Artix WSDL Extension Reference: C++

BrowserType

Description The BrowserType attribute specifies information about the browser
from which the client request originates. In the HTTP specification
from the World Wide Web consortium (W3C) this is also known as
the user-agent. Some servers optimize based upon the client that
is sending the request.

Referer

The Referer attribute corresponds to the HTTP Referer property. It
specifies the URL of the resource that directed the client to make
requests on a particular service. Typically this HTTP property is
used when a request is the result of a browser user clicking on a
hyperlink rather than typing a URL. This can allow the server to
optimize processing based upon previous task flow, and to
generate lists of back-links to resources for the purposes of
logging, optimized caching, tracing of obsolete or mistyped links,
and so on. However, it is typically not used in web services
applications.
If the AutoRedirect attribute is set to true and the client request is
redirected, any value specified in the Referer attribute is
overridden. The value of the HTTP Referer property will be set to
the URL of the service who redirected the client’s original request.

cache-extension Specifies additional extensions to the other
cache directives. Extensions might be
informational or behavioral. An extended
directive is specified in the context of a
standard directive, so that applications not
understanding the extended directive can
at least adhere to the behavior mandated
by the standard directive.

Table 6: Settings for http-conf:server CacheControl

Directive Behavior

Artix WSDL Extension Reference: C++ 75

ProxyServer

Description The ProxyServer attribute specifies the URL of the proxy server, if
one exists along the message path. A proxy can receive client
requests, possibly modify the request in some way, and then
forward the request along the chain possibly to the target server.
A proxy can act as a special kind of security firewall.

ProxyAuthorizationType

Description The ProxyAuthorizationType attribute specifies the name of the
authorization scheme the client wants to use with the proxy server.
This name is specified and handled at application level. Artix does
not perform any validation on this value. It is the user’s
responsibility to ensure that the correct scheme name is specified,
as appropriate.

ProxyAuthorization

Description The ProxyAuthorization attribute specifies the authorization
credentials the client will use to perform authorization with the
proxy server. These are encoded and handled at application-level.
Artix does not perform any validation on the specified value. It is
the user’s responsibility to ensure that the correct authorization
credentials are specified, as appropriate.

UseSecureSockets

Description The UseSecureSockets attribute indicates if the application wants to
open a secure connection using SSL or TLS. A secure HTTP
connection is commonly referred to as HTTPS. Valid values are true
and false. The default is false; the endpoint does not want to open
a secure connection.

Note: Artix does not support the existence of more than
one proxy server along the message path.

Note: If basic username and password-based
authentication is being used by the proxy server, this does
not need to be set.

Note: If basic username and password-based
authentication is being used by the proxy server, this does
not need to be set.

Note: If the http:address element’s location attribute, or
the soap:address element’s location attribute, has a value
with a prefix of https://, a secure HTTP connection is
automatically enabled, even if UseSecureSockets is not set
to true.

 76 Artix WSDL Extension Reference: C++

RedirectURL

Description The RedirectURL attribute corresponds to the HTTP RedirectURL
property. It specifies the URL to which the client request should be
redirected if the URL specified in the client request is no longer
appropriate for the requested resource. In this case, if a status code
is not automatically set in the first line of the server response, the
status code is set to 302 and the status description is set to Object
Moved.

ServerCertificateChain

Description PKCS12-encoded X509 certificates can be issued by intermediate
certificate authorities that are not trusted by the client, but which
have had their certificates issued in turn by a trusted certificate
authority. If this is the case, you can use the ServerCertificateChain
attribute to allow the certificate chain of PKCS12-encoded X509
certificates to be presented to the client for verification. It specifies
the full path to the file that contains all the certificates in the chain.

 Artix WSDL Extension Reference: C++ 77

CORBA Port
Artix supports a robust mechanism for configuring a CORBA endpoint.

Runtime Compatibility

The CORBA transport’s extension elements are compatible with
the C++ runtime.

C++ Runtime Namespace

The namespace under which the C++ runtime CORBA extensions
are defined is http://schemas.iona.com/bindings/corba. If you are
going to add a C++ runtime CORBA port by hand you will need to
add this to your contract’s definition element as shown below.

corba:address

Synopsis <corba:address location="..."/>

Description The corba:address element is a child of a WSDL port element. It
specifies the IOR for the service’s CORBA object.

Attributes The corba:address element has one required attribute named
location. The location attribute contains a string specifying the IOR.
You have four options for specifying IORs in Artix contracts:
• Entering the object’s IOR directly into the contract using the

stringified IOR format:

• Entering a file location for the IOR using the following syntax:

• Entering the object’s name using the corbaname format:

When you use the corbaname format for specifying the IOR,
Artix will look-up the object’s IOR in the CORBA name service.

• Entering the port at which the service exposes itself, using the
corbaloc syntax.

xmlns:corba="http://schemas.iona.com/bindings/corba"

IOR:22342...

file:///file_name

Note: The file specification requires three backslashes
(///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name

 78 Artix WSDL Extension Reference: C++

corba:policy

Synopsis <corba:policy
poaname="..."|persistent="..."|serviceid="..." />

Description The corba:policy element is a child of a WSDL port element.
It specifies the POA polices the Artix service will use when
creating the POA for connecting to a CORBA object. Each
corba:policy element can only specify one policy. Therefore
to define multiple policies you must use multiple corba:policy
elements.

Attributes The corba:policy element uses attributes to specify the policy
it is describing. The following attributes are used:

See Also For more information about CORBA POA policies see the Orbix
documentation.

poaname Specifies the POA name to use when
connecting to the CORBA object. The default
POA name is WS_ORB.

persistent Specifies the value of the POA’s persistence
policy. The default is false; the POA is not
persistent.

serviceid Specifies the value of the POA’s ID. By
default, Artix POAs are assigned their IDs by
the ORB.

 Artix WSDL Extension Reference: C++ 79

IIOP Tunnel Port
The IIOP tunnel transport allows you to send non-CORBA data over
IIOP. This allows you to use a number of the CORBA services.

Runtime Compatibility

The IIOP tunnel transport’s extensions are only compatible with
the C++ runtime.

Namespace

The namespace under which the IIOP tunnel extensions are
defined is http://schemas.iona.com/bindings/iiop_tunnel. If you
are going to add an IIOP tunnel port by hand you will need to add
this to your contract’s definition element as shown below.

iiop:address

Synopsis <iiop:address location="..."/>

Description The iiop:address element is a child of a WSDL port element. It
specifies the IOR for the CORBA object created for the service.

Attributes The iiop:address element has one required attribute named
location. The location attribute contains a string specifying the IOR.
You have four options for specifying IORs in Artix contracts:
• Entering the object’s IOR directly into the contract using the

stringified IOR format:

• Entering a file location for the IOR using the following syntax:

• Entering the object’s name using the corbaname format:

When you use the corbaname format for specifying the IOR,
Artix will look-up the object’s IOR in the CORBA name service.

• Entering the port at which the service exposes itself, using the
corbaloc syntax.

xmlns:iiop="http://schemas.iona.com/bindings/iiop_tunnel"

IOR:22342...

file:///file_name

Note: The file specification needs three backslashes (///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name

 80 Artix WSDL Extension Reference: C++

iiop:payload

Synopsis <iiop:payload type="..." />

Description The iiop:payload element is a child of the WSDL port element.
It specifies the type of payload being passed through the IIOP
tunnel. If the iiop:payload element is set, Artix will use the
information to attempt codeset negotiation on the contents
of the payload being sent through the tunnel. If you do not
want codeset negotiation attempted, do not use this element
in your IIOP Tunnel port definition.

Attributes The iiop:payload element has a single required element
named type. The type attribute specifies the type of data
contained in the payload.

Examples If your payload contains string data and you want Artix to
attempt codeset negotiation you would use the following:

iiop:policy

Synopsis <iiop:policy
poaname="..."|persistent="..."|serviceid="..." />

Description The iiop:policy element is a child of a WSDL port element.
It specifies the POA polices the Artix service will use when
creating the POA for the IIOP port. Each iiop:policy element
can only specify one policy. Therefore to define multiple
policies you must use multiple iiop:policy elements.

Attributes The iiop:policy element uses attributes to specify the policy
it is describing. The following attributes are used:

<iiop:payload type="string"/>

poaname Specifies the POA name to use when creating
the IIOP port. The default POA name is
WS_ORB.

persistent Specifies the value of the POA’s persistence
policy. The default is false; the POA is not
persistent.

Artix WSDL Extension Reference: C++ 81

See Also For more information about CORBA POA policies see the Orbix
documentation.

serviceid Specifies the value of the POA’s ID. By
default, Artix POAs are assigned their IDs by
the ORB.

 82 Artix WSDL Extension Reference: C++

Artix WSDL Extension Reference: C++ 83

WebSphere MQ Port
Artix provides a number of WSDL extensions to configure a WebSphere
MQ service.

Artix Extension Elements
Runtime Compatibility

The WebSphere MQ transport’s extension elements are only
compatible with the C++ runtime.

Namespace

The WSDL extensions used to describe WebSphere MQ transport
details are defined in the WSDL namespace
http://schemas.iona.com/transports/mq. If you are going to use a
WebSphere MQ port you need to include the following in the
definitions tag of your contract:

mq:client

Synopsis <mq:client QueueManager="..." QueueName="..."

 ReplyQueueManager="..." ReplyQueueName="..."

 Server_Client="..." ModelQueueName="..."

 AliasQueueName="..." ConnectionName="..."

 ConnectionReusable="..." ConnectionFastPath="..."

 UsageStyle="..." CorrelationStyle="..." AccessMode="..."

 Timeout="..." MessageExpiry="..." MessagePriority="..."

 Delivery="..." Transactional="..." ReportOption="..."

 Format="..." MessageID="..." CorrelationID="..."

 ApplicationData="..." AccountingToken="..."

 ApplicationIdData="..." ApplicationOriginData="..."

 UserIdentification="..." />

Description The mq:client element is used to configure a client endpoint for
connecting to WebSphere MQ. For an MQ client endpoint that
receives replies you must provide values for the QueueManager,
QueueName, ReplyQueueManager, and ReplyQueueName attributes. If the
endpoint is not going to receive replies, you do not need to supply
settings for the reply queue.

Attributes The mq:client element has the following attributes:

xmlns:mq="http://schemas.iona.com/transports/mq"

QueueManager Specifies the name of the queue manager
used for making requests.

QueueName Specifies the name of the queue used for
making requests.

ReplyQueueName Specifies the name of the queue used for
receiving responses.

 84 Artix WSDL Extension Reference: C++

ReplyQueueManager Specifies the name of the queue manager
used for receiving responses.

Server_Client Specifies which MQ libraries are to be
used.

ModelQueueName Specifies the name of the queue to use as
a model for creating dynamic queues.

AliasQueueName Specifies the local name of the reply
queue when the reply queue manager is
not on the same host as the client’s local
queue manager.

ConnectionName Specifies the name of the connection Artix
uses to connect to its queue.

ConnectionReusable Specifies if the connection can be used by
more than one application. The default is
false; the connection is not reusable.

ConnectionFastPath Specifies if the queue manager will be
loaded in process. The default is false; the
queue manager runs as a separate
process.

UsageStyle Specifies if messages can be queued
without expecting a response.

CorrelationStyle Specifies what identifier is used to
correlate request and response messages.

AccessMode Specifies the level of access applications
have to the queue.

Timeout Specifies the amount of time, in
milliseconds, between a request and the
corresponding reply before an error
message is generated.

MessageExpiry Specifies the value of the MQ message
descriptor’s Expiry field. It specifies the
lifetime of a message in tenths of a
second. The default value is INFINITE;
messages never expire.

MessagePriority Specifies the value of the MQ message
descriptor’s Priority field.

Delivery Specifies the value of the MQ message
descriptor’s Persistence field.

Transactional Specifies if transaction operations must be
performed on the messages.

ReportOption Specifies the value of the MQ message
descriptor’s Report field.

Format Specifies the value of the MQ message
descriptor’s Format field.

MessageID Specifies the value of the MQ message
descriptor’s MsgId field. A value must be
specified if CorrelationStyle is set to none.

CorrelationID Specifies the value for the MQ message
descriptor’s CorrelId field. A value must be
specified if CorrelationStyle is set to none.

Artix WSDL Extension Reference: C++ 85

mq:server

Synopsis <mq:server QueueManager="..." QueueName="..."

 ReplyQueueManager="..." ReplyQueueName="..."

 Server_Client="..." ModelQueueName="..."

 ConnectionName="..." ConnectionReusable="..."

 ConnectionFastPath="..." UsageStyle="..."

 CorrelationStyle="..." AccessMode="..." Timeout="..."

 MessageExpiry="..." MessagePriority="..." Delivery="..."

 Transactional="..." ReportOption="..." Format="..."

 MessageID="..." CorrelationID="..." ApplicationData="..."

 AccountingToken="..." ApplicationOriginData="..."

 PropogateTransactions="..." />

Description The mq:server element is used to configure a server endpoint for
connecting to WebSphere MQ. For an MQ server endpoint you must
provide values for the QueueManager and QueueName attributes.

Attributes The mq:server element has the following attributes:

ApplicationData Specifies any application-specific
information that needs to be set in the
message header.

AccountingToken Specifies the value for the MQ message
descriptor’s AccountingToken field.

ApplicationIdData Specifies the value for the MQ message
descriptor’s ApplIdentityData field.

ApplicationOriginData Specifies the value for the MQ message
descriptor’s ApplOriginData field.

UserIdentification Specifies the value for the MQ message
descriptor’s UserIdentifier field.

QueueManager Specifies the name of the queue manager
used for receiving requests.

QueueName Specifies the name of the queue used to
receive requests.

ReplyQueueName Specifies the name of the queue where
responses are placed. This setting is
ignored if the client specifies a ReplyToQ in
a request’s message descriptor.

ReplyQueueManager Specifies the name of the reply queue
manager. This setting is ignored if the
client specifies a ReplyToQMgr in a request’s
message descriptor.

Server_Client Specifies which MQ libraries are to be
used.

ModelQueueName Specifies the name of the queue to use as
a model for creating dynamic queues.

ConnectionName Specifies the name of the connection Artix
uses to connect to its queue.

 86 Artix WSDL Extension Reference: C++

Options Table 10 describes the correlation between the Artix attribute
settings and the MQOPEN settings.

ConnectionReusable Specifies if the connection can be used by
more than one application. The default is
false; the connection is not reusable.

ConnectionFastPath Specifies if the queue manager will be
loaded in process. The default is false; the
queue manager runs as a separate
process.

UsageStyle Specifies if messages can be queued
without expecting a response.

CorrelationStyle Specifies what identifier is used to
correlate request and response messages.

AccessMode Specifies the level of access applications
have to the queue.

Timeout Specifies the amount of time, in
milliseconds, between a request and the
corresponding reply before an error
message is generated.

MessageExpiry Specifies the value of the MQ message
descriptor’s Expiry field. It specifies the
lifetime of a message in tenths of a
second. The default value is INFINITE;
messages never expire.

MessagePriority Specifies the value of the MQ message
descriptor’s Priority field.

Delivery Specifies the value of the MQ message
descriptor’s Persistence field.

Transactional Specifies if transaction operations must be
performed on the messages.

ReportOption Specifies the value of the MQ message
descriptor’s Report field.

Format Specifies the value of the MQ message
descriptor’s Format field.

MessageID Specifies the value of the MQ message
descriptor’s MsgId field. A value must be
specified if CorrelationStyle is set to none.

CorrelationID Specifies the value for the MQ message
descriptor’s CorrelId field. A value must be
specified if CorrelationStyle is set to none.

ApplicationData Specifies any application-specific
information that needs to be set in the
message header.

AccountingToken Specifies the value for the MQ message
decscriptor’s AccountingToken field.

ApplicationOriginData Specifies the value for the MQ message
descriptor’s ApplOriginData field.

PropogateTransactions Specifies if local MQ transactions should
be included in flowed transactions. Default
is true.

Artix WSDL Extension Reference: C++ 87

Attribute Details
Server_Client

Description The Server_Client attribute specifies which shared libraries to load
on systems with a full WebSphere MQ installation.

Parameters Table 7 describes the settings for this attribute for each type of WebSphere MQ
installation.

AliasQueueName

Description The AliasQueueName attribute specifies the local name of the reply
queue when the service’s queue manager is running a different host
from the client. Using this attribute ensures that the server will put
the replies on the proper queue. Otherwise, the server will receive
a request message with the ReplyToQ field set to a queue that is
managed by a queue manager on a remote host and will be unable
to send the reply.

Table 7: Server_Client Attribute Settings

MQ
Installation

Server_Client
Setting

Behavior

Full The server shared library
(libmqm) is loaded and the
application will use queues
hosted on the local machine.

Full server The server shared library
(libmqm) is loaded and the
application will use queues
hosted on the local machine.

Full client The client shared library
(libmqic) is loaded and the
application will use queues
hosted on a remote machine.

Client The application will attempt to
load the server shared library
(libmqm) before loading the client
shared library(libmqic). The
application accesses queues
hosted on a remote machine.

Client server The application will fail because
it cannot load the server shared
libraries.

Client client The client shared library
(libmqic) is loaded and the
application accesses queues
hosted on a remote machine.

 88 Artix WSDL Extension Reference: C++

Effect of AliasQueueName
When you specify a value for the AliasQueueName attribute in an
mq:client element, you alter how Artix populates the request’s
ReplyToQ field and ReplyToQMgr field. Typically, Artix populates the
reply queue information in the request’s message descriptor with
the values specified in ReplyQueueManager and ReplyQueueName.
Setting AliasQueueName causes Artix to leave ReplytoQMgr empty
and to set ReplyToQ to the value of AliasQueueName. When the
ReplyToQMgr field of the message descriptor is left empty, the
sending queue manager inspects the queue named in the ReplyToQ
field to determine who its queue manager is and uses that value
for ReplyToQMgr. The server puts the message on the remote queue
that is configured as a proxy for the client’s local reply queue.

Examples If you had a system defined similar to that shown in Figure 1, you
would need to use the AliasQueueName attribute setting when
configuring your WebSphere MQ client. In this set up the client is
running on a host with a local queue manager QMgrA. QMgrA has two
queues configured. RqA is a remote queue that is a proxy for RqB and
RplyA is a local queue. The server is running on a different machine
whose local queue manager is QMgrB. QMgrB also has two queues. RqB
is a local queue and RplyB is a remote queue that is a proxy for
RplyA. The client places its request on RqA and expects replies to
arrive on RplyA.

The Artix WebSphere MQ port definitions for the client and server
for this deployment are shown in Example 42. AliasQueueName is
set to RplyB because that is the remote queue proxying for the
reply queue in server’s local queue manager. ReplyQueueManager
and ReplyQueueName are set to the client’s local queue manager so
that it knows where to listen for responses. In this example, the
server’s ReplyQueueManager and ReplyQueueName do not need to be

Figure 1: MQ Remote Queues

Artix WSDL Extension Reference: C++ 89

set because you are assured that the client is populating the
request’s message descriptor with the needed information for the
server to determine where replies are sent.

UsageStyle

Description The UsageStyle specifies if a message can be queued without
expecting a response. The default value is Requester.

Options The valid settings for UsageStyle are described in Table 8.

Examples In Example 43, the WebSphere MQ client wants a response from
the server and needs to be able to associate the response with the
request that generated it. Setting the UsageStyle to responder
ensures that the server’s response will properly populate the
response message descriptor’s CorrelID field according to the
defined correlation style. In this case, the correlation style is set to
correlationId.

Example 42: Setting Up WebSphere MQ Ports for
Intercommunication

<mq:client QueueManager="QMgrA" QueueName="RqA"
 ReplyQueueManager="QMgrA"

ReplyQueueName="RplyA"
 AliasQueueName="RplyB"
 Format="string" Convert="true"/>
<mq:server QueueManager="QMgrB" QueueName="RqB"
 Format="String" Convert="true"/>

Table 8: UsageStyle Settings

Attribute
Setting

Description

Peer Specifies that messages can be queued
without expecting any response.

Requester Specifies that the message sender expects a
response message. This is the default.

Responder Specifies that the response message must
contain enough information to facilitate
correlation of the response with the original
message.

Example 43: MQ Client with UsageStyle Set

<mq:client QueueManager="postmaster" QueueName="eddie"
 ReplyQueueManager="postmaster"

ReplyQueueName="fred"
 UsageStyle="responder"
 CorrelationStyle="correlationId"/>

 90 Artix WSDL Extension Reference: C++

CorrelationStyle

Description The CorrelationStyle attribute specifies how WebSphere MQ
matches both the message identifier and the correlation identifier
to select a particular message to be retrieved from the queue (this
is accomplished by setting the corresponding MQMO_MATCH_MSG_ID and
MQMO_MATCH_CORREL_ID in the MatchOptions field in MQGMO to indicate
that those fields should be used as selection criteria).

Options The valid correlation styles for an Artix WebSphere MQ port are
messageId, correlationId, and messageId copy.

Table 9 shows the actions of MQGET and MQPUT when receiving a
message using a WSDL specified message ID and a WSDL
specified correlation ID.

AccessMode

Description The AccessMode attribute controls the action of MQOPEN and MQPUT in
the Artix WebSphere MQ transport.

Note: When a value is specified for ConnectionName, you
cannot use messageId copy as the correlation style.

Table 9: MQGET and MQPUT Actions

Artix Port
Setting

Action for MQGET Action for MQPUT

messageId Set the CorrelId of
the message
descriptor to value of
the MessageID.

Copy the value of the
MessageID onto the
message descriptor’s
CorrelId.

correlationId Set CorrelId of the
message descriptor
to that value of the
CorrelationID.

Copy value of the
CorrelationID onto
message descriptor’s
CorrelId.

messageId copy Set MsgId of the
message descriptor
to value of the
messageID.

Copy the value of the
MessageID onto
message descriptor’s
MsgId.

Table 10: Artix WebSphere MQ Access Modes

Attribute
Setting

Description

peek peek opens a queue to browse messages. Equivalent
to MQOO_BROWSE. This setting is not valid for remote
queues.

send send has the same effect as send+setall for backward
compatibility reasons.

Artix WSDL Extension Reference: C++ 91

MessagePriority

Description The MessagePriority attribute specifies the value for the MQ
message descriptor’s Priority field. Its value must be greater than
or equal to zero; zero is the lowest priority. Special values for
MessagePriority include highest (9), high (7), medium (5), low (3) and
lowest (0). The default is normal.

send+setall send+setall opens a queue to put messages into. The
queue is opened for use with subsequent MQPUT calls.
Equivalent to:
MQOPEN => MQOO_SET_ALL_CONTEXT | MQOO_OUTPUT
MQPUT => MQPMO_SET_ALL_CONTEXT

You can specify different authorizations using other
send+ settings (for example, send+setid).

send+setid Equivalent to:
MQOPEN => MQOO_SET_IDENTITY_CONTEXT | MQOO_OUTPUT
MQPUT => MQPMO_SET_IDENTITY_CONTEXT

send+passall Equivalent to:
MQOPEN => MQOO_PASS_ALL_CONTEXT | MQOO_OUTPUT
MQPUT => MQPMO_PASS_ALL_CONTEXT

send+passid Equivalent to:
MQOPEN => MQOO_PASS_IDENTITY_CONTEXT | MQOO_OUTPUT
MQPUT => MQPMO_PASS_IDENTITY_CONTEXT

send+none Equivalent to MQOO_OUTPUT only. This setting has no
associated authorization level.

receive (default) receive opens a queue to get messages using a
queue-defined default. Equivalent to
MQOO_INPUT_AS_Q_DEF. The default value depends on
the DefInputOpenOption queue attribute
(MQOO_INPUT_EXCLUSIVE or MQOO_INPUT_SHARED).

receive exclusive receive exclusive opens a queue to get messages
with exclusive access. Equivalent to
MQOO_INPUT_EXCLUSIVE. The queue is opened for use
with subsequent MQGET calls. The call fails with reason
code MQRC_OBJECT_IN_USE if the queue is currently open
(by this or another application) for input of any type.

receive shared receive shared opens queue to get messages with
shared access. Equivalent to MQOO_INPUT_SHARED. The
queue is opened for use with subsequent MQGET calls.
The call can succeed if the queue is currently open by
this or another application with MQOO_INPUT_SHARED.

Table 10: Artix WebSphere MQ Access Modes

Attribute
Setting

Description

 92 Artix WSDL Extension Reference: C++

Delivery

Description The Delivery attribute specifies the value of the MQ message
descriptor’s Persistence field.

Options Table 11 describes the settings for Delviery.

To support transactional messaging, you must make the
messages persistent.

Transactional

Description The Transactional controls how messages participate in transactions
and what role WebSphere MQ plays in the transactions.

Options The values of the Transactional attribute are explained in Table 12.

When the transactional attribute to internal for an Artix service,
the following happens during request processing:
1. When a request is placed on the service’s request queue, MQ

begins a transaction.
2. The service processes the request.
3. Control is returned to the server transport layer.
4. If no reply is required, the local transaction is committed and

the request is permanently discarded.
5. If a reply message is required, the local transaction is

committed and the request is permanently discarded only
after the reply is successfully placed on the reply queue.

6. If an error is encountered while the request is being
processed, the local transaction is rolled back and the request
is placed back onto the service’s request queue.

Table 11: Delivery Attribute Settings

Artix WebSphere MQ

persistent MQPER_PERSISTENT

not persistent (Default) MQPER_NOT_PERSISTENT

Table 12: Transactional Attribute Settings

Attribute
Setting

Description

none (Default) The messages are not part of a
transaction. No rollback actions will be
taken if errors occur.

internal The messages are part of a transaction
with WebSphere MQ serving as the
transaction manager.

xa The messages are part of a flowed
transaction with WebSphere MQ serving as
an enlisted resource manager.

Artix WSDL Extension Reference: C++ 93

Examples Example 44 shows the settings for a WebSphere MQ server port
whose requests will be part of transactions managed by WebSphere
MQ. Note that the Delivery attribute must be set to persistent when
using transactions.

ReportOption

Description The ReportOption attribute is mapped to the MQ message
descriptor’s Report field. It enables the application sending the
original message to specify which report messages are required,
whether the application message data is to be included in them,
and how the message and correlation identifiers in the report or
reply message are to be set. Artix only allows you to specify one
ReportOption per Artix port. Setting more than one will result in
unpredictable behavior.

Options The values of this attribute are explained in Table 13.

Example 44: MQ Client Setup to use Transactions

<mq:server QueueManager="herman" QueueName="eddie"
 ReplyQueueManager="gomez"

ReplyQueueName="lurch"
 UsageStyle="responder" Delivery="persistent"
 CorrelationStyle="correlationId"
 Transactional="internal"/>

Table 13: ReportOption Attribute Settings

Attribute
Setting

Description

none (Default) Corresponds to MQRO_NONE. none specifies
that no reports are required. You should
never specifically set ReportOption to none;
it will create validation errors in the
contract.

coa Corresponds to MQRO_COA. coa specifies that
confirm-on-arrival reports are required.
This type of report is generated by the
queue manager that owns the destination
queue, when the message is placed on the
destination queue.

cod Corresponds to MQRO_COD. cod specifies that
confirm-on-delivery reports are required.
This type of report is generated by the
queue manager when an application
retrieves the message from the destination
queue in a way that causes the message to
be deleted from the queue.

 94 Artix WSDL Extension Reference: C++

Format

Description The Format attribute is mapped to the MQ message descriptor’s
Format field. It specifies an optional format name to indicate to the
receiver the nature of the data in the message.

Options The value may contain any character in the queue manager's
character set, but it is recommended that the name be restricted
to the following:
• Uppercase A through Z
• Numeric digits 0 through 9
In addition, the FormatType attribute can take the special values
none, string, event, programmable command, and unicode. These
settings are described in Table 14.

exception Corresponds to MQRO_EXCEPTION. exception
specifies that exception reports are
required. This type of report can be
generated by a message channel agent
when a message is sent to another queue
manager and the message cannot be
delivered to the specified destination
queue. For example, the destination queue
or an intermediate transmission queue
might be full, or the message might be too
big for the queue.

expiration Corresponds to MQRO_EXPIRATION. expiration
specifies that expiration reports are
required. This type of report is generated
by the queue manager if the message is
discarded prior to delivery to an application
because its expiration time has passed.

discard Corresponds to MQRO_DISCARD_MSG. discard
indicates that the message should be
discarded if it cannot be delivered to the
destination queue. An exception report
message is generated if one was requested
by the sender

Table 13: ReportOption Attribute Settings

Attribute
Setting

Description

Table 14: FormatType Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQFMT_NONE. No format
name is specified.

Artix WSDL Extension Reference: C++ 95

When you are interoperating with WebSphere MQ applications
hosted on a mainframe and the data needs to be converted into
the systems native data format, you should set Format to string.
Not doing so will result in the mainframe receiving corrupted data.

string Corresponds to MQFMT_STRING. string
specifies that the message consists
entirely of character data. The message
data may be either single-byte
characters or double-byte characters.

unicode Corresponds to MQFMT_STRING. unicode
specifies that the message consists
entirely of Unicode characters. (Unicode
is not supported in Artix at this time.)

event Corresponds to MQFMT_EVENT. event
specifies that the message reports the
occurrence of an WebSphere MQ event.
Event messages have the same
structure as programmable commands.

programmable command Corresponds to MQFMT_PCF. programmable
command specifies that the messages are
user-defined messages that conform to
the structure of a programmable
command format (PCF) message.
For more information, consult the IBM
Programmable Command Formats and
Administration Interfaces
documentation at
http://publibfp.boulder.ibm.com/epubs/
html/csqzac03/csqzac030d.htm#Heade
r_12.

Table 14: FormatType Attribute Settings

Attribute Setting Description

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12

 96 Artix WSDL Extension Reference: C++

 Artix WSDL Extension Reference: C++ 97

Tuxedo Port
Artix can connect to applications that use BEA’s Tuxedo as their
messaging backbone.

Runtime Compatibility

The Tuxedo transport’s extension elements are only compatible
with the C++ runtime.

Namespace

The extensions used to describe a Tuxedo port are defined in the
namespace http://schemas.iona.com/transports/tuxedo. When a
Tuxedo endpoint is defined in a contract, the contract will need the
following namespace declaration in the contract’s definition
element:

tuxedo:server

Synopsis <tuxedo:server>

 <tuxedo:service ...>

 ...

 </tuxedo:service>

</tuxedo:server>

Description The tuxedo:server element is a child of a WSDL port element. It
contains the definition of a Tuxedo endpoint.

tuxedo:service

Synopsis <tuxedo:service name="...">

 <tuxedo:input .../>

 ...

</tuxedo:service>

Description The tuxedo:service element is the child of a tuxedo:server element.
It specifies the bulletin board name used to post and receive
messages. It has a number of tuxedo:input child elements that
provide a map to the operations from which messages are routed.

Attributes The tuxedo:service element has a single required attribute called
name. The name attribute specifies the bulletin board name for the
service.

tuxedo:input

Synopsis <tuxedo:input operation="..." />

Description The tuxedo:input element specify which of the operations bound to
the port being defined are handled by the Tuxedo service.

Attributes The tuxedo:input element has a single required attribute called
operation. The operation attribute specifies the WSDL operation that

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"

 98 Artix WSDL Extension Reference: C++

is handled by the Tuxedo service. The value must correspond
the value of the name attribute of the appropriate WSDL
operation element.

Artix WSDL Extension Reference: C++ 99

JMS Port
JMS is a powerful messaging system used by Java applications.

C++ Runtime Extensions
Namespace

The WSDL extensions used to describe JMS transport details for
the C++ runtime are defined in the namespace
http://celtix.objectweb.org/transports/jms. If you are going to
use a JMS port you need to include the following in the definitions
tag of your contract:

jms:address

Synopsis <jms:address destinationStyle="..."

 jndiConnectionFactoryName="..."

 jndiDestinationName="..."

 jndiReplyDestinationName="..."

 jmsDestinationName="..."

 jmsReplyDestinationName="..."

 connectionUserName="..." connectionPassword="...">

 <jms:JMSNamingProperty ... />

 ...

</jms:address>

Description The jms:address element specifies the information needed to
connect to a JMS system.

Attributes The jms:address element has the following attributes:

xmlns:jms="http://celtix.objectweb.org/transports/jms"

destinationStyle Specifies if the JMS destination is a
JMS queue or a JMS topic.

jndiConnectionFactoryName Specifies the JNDI name bound to the
JMS connection factory to use when
connecting to the JMS destination.

jndiDestinationName Specifies the JNDI name bound to the
JMS destination to which Artix
connects.

jndiReplyDestinationName Specifies the JNDI name bound to the
JMS destination where replies are
sent. This attribute allows you to use a
user defined destination for replies.

jmsDestinationName Specifies the JMS name of the JMS
destination to which requests are
sent.

jmsReplyDestinationName Specifies the JMS name of the JMS
destination where replies are sent.
This attribute allows you to use a user
defined destination for replies.

 100 Artix WSDL Extension Reference: C++

jms:JMSNamingProperty

Synopsis <jms:JMSNamingProperty name="..." value="..." />

Description The jms:JMSNamingProperty element is a child of the jms:address
element. It is used to provide the values used to populate the
properties object used when connecting to a JNDI provider.

Attributes The jms:JMSNamingProperty element has the following attributes:

JNDI property names The following is a list of common JNDI properties that can be set:
• java.naming.factory.initial
• java.naming.provider.url
• java.naming.factory.object
• java.naming.factory.state
• java.naming.factory.url.pkgs
• java.naming.dns.url
• java.naming.authoritative
• java.naming.batchsize
• java.naming.referral
• java.naming.security.protocol
• java.naming.security.authentication
• java.naming.security.principal
• java.naming.security.credentials
• java.naming.language
• java.naming.applet

For more details on what information to use in these attributes,
check your JNDI provider’s documentation and consult the Java
API reference material.

jms:client

Synopsis <jms:client messageType="..." />

Description The jms:client element is a child of the WSDL port element. It is
used to specify the types of messages being used by a JMS client
endpoint and the timeout value for a JMS client endpoint.

Attributes The jms:client element has the following attributes:

connectionUserName Specifies the username to use when
connecting to a JMS broker.

connectionPassword Specifies the password to use when
connecting to a JMS broker.

name Specifies the name of the JNDI property to
set.

value Specifies the value for the specified property.

messageType Specifies how the message data will be
packaged as a JMS message. text specifies
that the data will be packaged as a
TextMessage. binary specifies that the data will
be packaged as an ObjectMessage.

Artix WSDL Extension Reference: C++ 101

jms:server

Synopsis <jms:server useMessageIDAsCorrelationID="..."

 durableSubscriberName="..."

 messageSelector="..." transactional="..." />

Description The jms:server element is a child of the WSDL port element. It
specifies settings used to configure the behavior of a JMS service
endpoint.

Attributes The jms:server element has the following attributes:

useMessageIDAsCorrealationID Specifies whether JMS will use the
message ID to correlate messages.
The default is false.

durableSubscriberName Specifies the name used to register
a durable subscription.

messageSelector Specifies the string value of a
message selector to use.

transactional Specifies whether the local JMS
broker will create transactions
around message processing. The
default is false.

 102 Artix WSDL Extension Reference: C++

 Artix WSDL Extension Reference: C++ 103

File Transfer Protocol
Port
Artix can use an FTP server as a middle-tier message broker.

Runtime Compatibility

The FTP transport’s extensions are compatible with the C++
runtime.

Namespace

The extensions used to describe a File Transfer Protocol (FTP) port
are defined in the namespace
http://schemas.iona.com/transports/ftp. When an FTP endpoint is
defined in a contract, the contract will need the following
namespace declaration in the contract’s definition element:

ftp:port

Synopsis <ftp:port host="..." port="..." requestLocation="..."

 replyLocation="..." connectMode="..." scanInterval="...">

 <ftp:properties>

 ...

 </ftp:properties>

</ftp:port>

Description The ftp:port element is a child of a WSDL port element. It defines
the connection details for an FTP endpoint. It may contain an
ftp:properties element.

Attributes The ftp:port element has the following attributes:

xmlns:ftp="http://schemas.iona.com/transports/ftp"

host Specifies the domain name or IP address of the
machine hosting the FTPD used by the
endpoint.

port Specifies the port number on which the
endpoint will contact the FTPD.

requestLocation Specifies the path on the FTPD host the
endpoint will use for requests. The default is /.

replyLocation Specifies the path on the FTPD host the
endpoint will use for replies. The default is /.

connectMode Specifies the connection mode used to connect
to the FTPD. Valid values are passive and
active. The default is passive.

scanInterval Specifies the interval, in seconds, at which the
request and reply directories are scanned for
updates. The default is 5.

 104 Artix WSDL Extension Reference: C++

ftp:properties

Synopsis <ftp:properties>

 <ftp:property ... />

 ...

</ftp:property>

Description The ftp:properties element defines a number of file naming
properties used by the endpoint for storing requests and
replies. It contains one or more ftp:property elements.

ftp:property

Synopsis <ftp:property name="..." value="..." />

Description The ftp:property element defines specific file naming
properties to use when reading and writing messages on the
FTPD host. The properties are defined by the implementation
used for the naming scheme classes. Artix provides a default
implementation. However, a custom naming scheme
implementation may have different properties.

Attributes The ftp:property element has the following attributes:

Default Naming
Properties

The default naming implementation provided with Artix
supports the following properties:

name Specifies the name of the property to set.
value Specifies the value of the property.

staticFilenames Determines if the endpoint uses a
static, non-unique, naming scheme for
its files. Valid values are true and
false. The default is true.

requestFilenamePrefix Specifies the prefix to use for file
names when staticFilenames is set to
false.

Part III
Other Extensions

In this part
This part contains the following chapters:

Routing page 107

Security page 115

Codeset Conversion page 117

 106 Artix WSDL Extension Reference: C++

Artix WSDL Extension Reference: C++ 107

Routing
Artix provides a number of WSDL extensions for defining how messages
are routed between services.

Runtime Compatibility

The extensions described below are only recognized by the Artix
router.

Namespace

The Artix routing elements are defined in the
http://schemas.iona.com/routing namespace. When describing
routes in an Artix contract your contract’s definition element
must have the following entry:

routing:expression

Synopsis <routing:expression name="..." evaluator="..."

 ...

</routing:expression>

Description The routing:expression element is a child of the WSDL definitions
element. It specifies an XPATH expression that evaluates messages
for content-based routing.

Attributes The routing:expression requires the following two attributes:

routing:route

Synopsis <routing:route name="..." mulitRoute="...">

 ...

</routing:route>

Description The routing:route element is the root element of each route
described in a contract.

Attributes The routing:route element takes the following attributes:

xmlns:routing="http://schemas.iona.com/routing"

name Specifies a string that is used to refer to the
expression when defining routes.

evaluator Specifies the name of the grammar used in the
expression. Currently the only valid value is xpath.

name Specifies a unique identifier for the route. This
attribute is required.

multiRoute An optional attribute that specifies how messages
are sent to the listed destinations. Values are
fanout, failover, or loadBalance. Default is to
route messages to a single destination.

 108 Artix WSDL Extension Reference: C++

Options Standard routes define a single source/destination pair. When the
mulitRoute attribute is specified, your route description will contain
more than one destination.
Setting the multiRoute attribute has the following effects:
• fanout instructs Artix to send messages from the source to all

the listed destinations.
• failover instructs Artix to move through the list of

destinations until it can successfully send the message.
• loadBalance instructs Artix to use a round-robin algorithm to

spread messages across all of the listed destinations.

routing:source

Synopsis <routing:source service="..." port="..." />

Description The routing:source element is a child of a routing:route element. It
specifies the port from which the route will redirect messages. A
route can have several source elements as long as they all meet
the compatibility rules for port-based routing.

Attributes The routing:source element requires two attributes:

routing:query

Synopsis <routing:query expression="...">

 <routing:desitination id="..." ... />

 ...

</routing:query>

Description The routing:query element is a child of a routing:route element. It
specifies the destinations for a content-based route. The child
routing:destination elements must use the id attribute to specify
the value used to select the destination.

Attributes The routing:query element has one attribute:

service Specifies the WSDL service element in which
the source port is defined.

port Specifies the name of the WSDL port element
from which messages are being received. The
router will create a proxy to listen for
messages on this port.

expression Specifies the value of the name attribute from the
routing:expression element defining the XPATH
expression used to select the destination of the
message. The query selects the destination with
the id value that matches the result of applying
the expression to the message content.

Artix WSDL Extension Reference: C++ 109

routing:destination

Synopsis <routing:destination value="..." service="..."

 port="..." route="..." />

Description The routing:destination element is a child of a routing:route
element. It specifies the port to which the source messages are
directed. The destination must be compatible with all of the source
elements.

Attributes The routing:destination element has the following attributes:

routing:transportAttribute

Synopsis <routing:transportAttribute>

 ...

</routing:transportAttribute>

Description The routing:transportAttribute element is a child of a routing:route
element. It defines routing rules based on the transport attributes
set in a message’s header when using HTTP, CORBA, or WebSphere
MQ. The criteria for determining if a message meets the transport
attribute rule are specified using the following child elements:
• routing:equals
• routing:greater
• routing:less
• routing:startswith
• routing:endswith
• routing:contains
• routing:empty
• routing:nonempty
A message passes the rule if it meets each criterion specified by
the child elements.
Transport attribute rules are defined after all of the
operation-based routing rules and before any destinations are
listed.

Examples Example 45 shows a route using transport attribute rules based on
HTTP header attributes. Only messages sent to the server whose

value Specifies the value of the content-based routing
query that triggers the destination. This attribute
is required when the element is the child of a
routing:query element and ignored otherwise.

service Specifies the WSDL service element in which the
destination port is defined.

port Specifies the name of the port WSDL element to
which messages are routed.

route Specifies a linked route to use for selecting the
ultimate destination. When this attribute is used,
you should not use the service attribute or the
port attribute.

 110 Artix WSDL Extension Reference: C++

UserName is equal to JohnQ will be passed through to the destination
port.

routing:equals

Synopsis <routing:equals contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:equals element is a child of a routing:transportAttribute
element. It defines a rule that is triggered when the specified
attribute equals the value given. It applies to string or numeric
attributes.

Attributes The routing:equals element has the following attributes:

routing:greater

Synopsis <routing:greater contextName="..."

 contextAttributeName="..."

 value="..." />

Description The routing:greater element is a child of a
routing:transportAttribute element. It defines a rule that is
triggered when the value of the specified attribute is greater than
the value given. It applies to numeric attributes.

Example 45: Transport Attribute Rules

<routing:route name="httpTransportRoute">
 <routing:source service="tns:httpService"
 port="tns:httpPort"/>
 <routing:trasnportAttributes>
 <rotuing:equals
 contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="JohnQ"/>
 </routing:transportAttributes>
 <routing:destination service="tns:httpDest"
 port="tns:httpDestPort"/>
</routing:route>

contextName Specifies the QName of the context in
which the desired transport attributes are
stored.

contextAttributeName Specifies the QName of the transport
attribute the rule evaluates.

value Specifies the value against which the
specified attribute is evaluated.

ignorecase Specifies whether the case of characters in
a string are ignored. The default is no;
case is considered when evaluating string
data.

Artix WSDL Extension Reference: C++ 111

Attributes The routing:greater element has the following attributes:

routing:less

Synopsis <routing:less contextName="..."

 contextAttributeName="..."

 value="..." />

Description The routing:less element is a child of a routing:transportAttribute
element. It defines a rule that is triggered when the value of the
specified attribute is less than the value given. It applies to numeric
attributes.

Attributes The routing:less element has the following attributes:

routing:startswith

Synopsis <routing:startswith contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:startswith element is a child of a
routing:transportAttribute element. It applies to string attributes
and tests whether the attribute starts with the specified value.

Attributes The routing:startswith element has the following attributes:

contextName Specifies the QName of the context in
which the desired transport attributes are
stored.

contextAttributeName Specifies the QName of the transport
attribute the rule evaluates.

value Specifies the value against which the
specified attribute is evaluated.

contextName Specifies the QName of the context in
which the desired transport attributes are
stored.

contextAttributeName Specifies the QName of the transport
attribute the rule evaluates.

value Specifies the value against which the
specified attribute is evaluated.

contextName Specifies the QName of the context in
which the desired transport attributes are
stored.

contextAttributeName Specifies the QName of the transport
attribute the rule evaluates.

value Specifies the value against which the
specified attribute is evaluated.

ignorecase Specifies whether the case of characters in
a string are ignored. The default is no;
case is considered when evaluating string
data.

 112 Artix WSDL Extension Reference: C++

routing:endswith

Synopsis <routing:endswith contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:endswith element is a child of a
routing:transportAttribute element. It applies to string attributes
and tests whether the attribute ends with the specified value.

Attributes The routing:endswith element has the following attributes:

routing:contains

Synopsis <routing:contains contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:contains element is a child of a
routing:transportAttribute element. It applies to string or list
attributes. For strings, it tests whether the attribute contains the
value. For lists, it tests whether the value is a member of the list.

Attributes The routing:contains element has the following attributes:

contextName Specifies the QName of the context in
which the desired transport attributes are
stored.

contextAttributeName Specifies the QName of the transport
attribute the rule evaluates.

value Specifies the value against which the
specified attribute is evaluated.

ignorecase Specifies whether the case of characters in
a string are ignored. The default is no;
case is considered when evaluating string
data.

contextName Specifies the QName of the context in
which the desired transport attributes are
stored.

contextAttributeName Specifies the QName of the transport
attribute the rule evaluates.

value Specifies the value against which the
specified attribute is evaluated.

ignorecase Specifies whether the case of characters in
a string are ignored. The default is no;
case is considered when evaluating string
data.

Artix WSDL Extension Reference: C++ 113

routing:empty

Synopsis <routing:empty contextName="..."

 contextAttributeName="..." />

Description The routing:empty element is a child of a routing:transportAttribute
element. It applies to string or list attributes. For lists, it tests
whether the list is empty. For strings, it tests for an empty string.

Attributes The routing:empty element has the following attributes:

routing:nonempty

Synopsis <routing:nonempty contextName="..."

 contextAttributeName="..." />

Description The routing:nonempty element is a child of a
routing:transportAttribute element. It applies to string or list
attributes. For lists, it passes if the list is not empty. For strings, it
passes if the string is not empty.

Attributes The routing:nonempty element has the following attributes:

Transport Attribute Context Names

The contextName attribute is specified using the QName of the
context in which the attribute is defined. The contexts shipped
with Artix are described in Table 15.

contextName Specifies the QName of the context in
which the desired transport attributes are
stored.

contextAttributeName Specifies the QName of the transport
attribute the rule evaluates.

contextName Specifies the QName of the context in
which the desired transport attributes are
stored.

contextAttributeName Specifies the QName of the transport
attribute the rule evaluates.

Table 15: Context QNames

Context QName Details

http-conf:HTTPServerIncomingContexts Contains the
attributes for HTTP
messages being
received by a server.

corba:corba_input_attributes Contains the data
stored in the CORBA
principle

mq:MQConnectionAttributes Contains the
attributes used to
connect to an MQ
queue.

 114 Artix WSDL Extension Reference: C++

mq:MQIncomingMessageAttributes Contains the
attributes in the
message header of an
MQ message.

bus-security Contains the
attributes used by the
security service to
secure your services.

Table 15: Context QNames

Context QName Details

Artix WSDL Extension Reference: C++ 115

Security
Artix uses a special WSDL extension element to specify security policies
for endpoints.

Runtime Compatibility

The security extensions are only compatible with C++ runtime.

Namespace

The elements Artix uses for specifying security policies are defined
in the http://schemas.iona.com/bus/security namespace. When
defining security policies in an Artix contract your contract’s
definition element must have the following entry:

bus-security:security

Synopsis <bus-security:security enableSecurity="..."

 is2AuthorizationActionRoleMapping="..."

 enableAuthorization="..."

 authenticationCacheSize="..."

 authenticationCacheTimeout ="..."

 securityType="..."

 securityLevel="..."

 authorizationRealm="..."

 defaultPassword="..." />

Description The bus-security:security element is a child of a WSDL port
element. It’s attributes specify security policies for the endpoint.

Attributes The bus-security:security element has the following attributes:

xmlns:bus-security="http://schemas.iona.com/bus/security"

enableSecurity Specifies if the service should
loud the ASP plug-in. Default
is false.

is2AuthorizationActionRoleMapping Specifies the URL of the action
role mapping file the Artix
security framework uses to
authenticate requests for this
endpoint.

enableAuthorization Specifies if the endpoint
should use the Artix security
framework for authentication.
Default is false.

enableSSO Specifies if the service can use
single-sign on (SSO). Default
is false.

 116 Artix WSDL Extension Reference: C++

See Also For more information about Artix security policies, see the Artix Security
Guide.

authenticationCacheSize Specifies the maximum
number of credentials stored
in the authentication cache. A
value of -1 (the default)
means unlimited size. A value
of 0 disables the cache.

authenticationCacheTimeout Specifies the time (in seconds)
after which a credential is
considered stale. A value of -1
(the default) means an infinite
time-out. A value of 0 disables
the cache.

securityLevel Specifies the level from which
security credentials are picked
up.
The following options are
supported by the Artix security
framework:
• MESSAGE_LEVEL—Get

security information from
the transport header. This
is the default.

• REQUEST_LEVEL—Get the
security information from
the message header.

authorizationRealm Specifies the Artix
authorization realm to which
an Artix server belongs. The
value of this variable
determines which of a user's
roles are considered when
making an access control
decision.The default is
IONAGlobalRealm.

defaultPassword Specifies the password to use
on the server side when the
client credentials originate
either from a CORBA Principal
(embedded in a SOAP header)
or from a certificate subject.
The default is
default_password.

 Artix WSDL Extension Reference: C++ 117

Codeset Conversion
For transports that do not natively support codeset conversion Artix has
the ability to perform codeset conversion.

Runtime Compatibility

The extension elements used to configure codeset conversion are
only compatible with the C++ runtime.

Namespace

The elements Artix uses for defining codeset conversion rules are
defined in the http://schemas.iona.com/bus/i18n/context namespace.
When defining codeset conversion rules in an Artix contract your
contract’s definition element must have the following entry:

i18n-context:client

Synopsis <i18n-context:client LocalCodeSet="..." OutboundCodeSet="..."

 InboundCodeSet="..." />

Description The i18n-context:client element is a child of a WSDL port element.
It specifies codeset conversion rules for Artix endpoints that are
acting as servers.

Attributes The i18n-context:client element has the following attributes for
defining how message codesets are converted:

i18n-context:server

Synopsis <i18n-context:server LocalCodeSet="..." OutboundCodeSet="..."

 InboundCodeSet="..." />

Description The i18n-context:server element is a child of a WSDL port element.
It specifies codeset conversion rules for Artix endpoints that are
acting as servers.

xmlns:i18n-context="http://schemas.iona.com/bus/i18n/cont
ext"

LocalCodeSet Specifies the client’s native codeset. Default is
the codeset specified by the local system’s locale
setting.

OutboundCodeSet Specifies the codeset into which requests are
converted. Default is the codeset specified in
LocalCodeSet.

InboundCodeSet Specifies the codeset into which replies are
converted. Default is the codeset specified in
OutboundCodeSet.

 118 Artix WSDL Extension Reference: C++

Attributes The i18n-context:server element has the following attributes
for defining how message codesets are converted:

LocalCodeSet Specifies the server’s native codeset. Default
is the codeset specified by the local system’s
locale setting.

OutboundCodeSet Specifies the codeset into which replies are
converted. Default is the codeset specified in
InboundCodeSet.

InboundCodeSet Specifies the codeset into which requests are
converted. Default is the codeset specified in
LocalCodeSet.

Artix WSDL Extension Reference: C++ 119

Index

A
adding a SOAP header 6, 12
arrays

mapping to a fixed binding 46
mapping to a tagged binding 52
mapping to CORBA 27

Artix reference
mapping to CORBA 32

attribute based routing 109

B
bus-security:security 115

authenticationCacheSize attribute 116
authenticationCacheTimeout
attribute 116

authorizationRealm attribute 116
defaultPassword attribute 116
enableAuthorization attribute 115
enableSecurity attribute 115
enableSSO attribute 115
is2AuthorizationActionRoleMapping
attribute 115

securityLevel attribute 116

C
choice complexType

mapping to a fixed binding 44
mapping to a tagged binding 53

complex types
mapping to CORBA 21

corba:address 77
location attribute 77

corba:alias 26
name attribute 26
repositoryID attribute 26
type attribute 26

corba:anonsequence 29
bound attribute 29
elemtype attribute 29
name attribute 29
type attribute 30

corba:array 27
bound attribute 27
elemtype attribute 27
name attribute 27
repositoryID attribute 27
type attribute 27

corba:binding 19
bases attribute 19
repositoryID attribute 19

corba:case 25
label attribute 25

corba:enumerator 23

corba:exception 29
name attribute 29
repositoryID attribute 29
type attribute 29

corba:fixed 23
digits attribute 24
name attribute 24
repositoryID attribute 24
scale attribute 24
type attribute 24

corba:member 22
idltype attribute 22
name attribute 22

corba:object
binding attribute 32
name attribute 32
repositoryID attribute 32
type attribute 32

corba:operation 19
name attribute 19

corba:param 19
idltype attribute 20
mode attribute 20
name attribute 20

corba:policy 78
persistent attribute 78
poaname attribute 78
serviceid attribute 78

corba:raises 20
exception attribute 20

corba:return 20
idltype attribute 20
name attribute 20

corba:sequence 28
bound attribute 28
elemtype attribute 28
name attribute 28
repositoryID attribute 28

corba:typeMapping 21
targetNamespace attribute 21

corba:union 24
discriminator attribute 25
name attribute 25
repositoryID attribute 25
type attribute 25

corba:unionbranch 25
default attribute 25
idltype attribute 25
name attribute 25

D
defining a fixed message body 40
defining a tagged message body 51

 120 Artix WSDL Extension Reference: C++

documentation
.pdf format xi
updates on the web xi

durable subscriptions 101

E
enumerations

mapping to a fixed binding 43
mapping to a tagged binding 51
mapping to CORBA 23

exceptions
mapping to CORBA 20, 28
mapping to SOAP 7, 13

F
failover routing 108
fanout routing 108
fixed:binding 39

encoding attribute 39
justification attribute 39
padHexCode attribute 39

fixed:body 40
encoding attribute 40
justification attribute 40
padHexCode attribute 40

fixed:case 44
fixedValue attribute 45
name attribute 45

fixed:choice 44
discriminatorName attribute 44
name attribute 44

fixed:enumeration 43
fixedValue attribute 43
value attribute 43

fixed:field 40
bindingOnly attribute 41
fixedValue attribute 41
format attribute 41
justification attribute 41
name attribute 41
size attribute 41

fixed:operation 39
discriminator attribute 39

fixed:sequence 46
counterName attribute 46
name attribute 46
occurs attribute 46

ftp:port 103
connectMode 103
host 103
port 103
replyLocation 103
requestLocation 103
scanInsterval 103

ftp:properties 104
ftp:property 104

name 104
value 104

H
http:address 63

location attribute 63
http-conf:client 64

Accept attribute 68
AcceptEncoding attribute 69
AcceptLanguage attribute 69
Authorization attribute 68
AuthorizationType attribute 68
AutoRedirect attribute 64
BrowserType attribute 74
CacheControl attribute 71

cache-extension directive 72
max-age directive 72
max-stale directive 72
min-fresh directive 72
no-cache directive 72
no-store directive 72
no-transform directive 72
only-if-cached directive 72

ClientCertificate attribute 66
ClientCertificateChain attribute 66
ClientPrivateKey attribute 66
ClientPrivateKeyPassword attribute 66
ConnectionAttempts attribute 65
Connection attribute 71
ContentType attribute 65
Cookie attribute 65
Host attribute 71
Password attribute 65
ProxyAuthorization attribute 75
ProxyAuthorizationType attribute 75
ProxyPassword attribute 66
ProxyServer attribute 75
ProxyUserName attribute 65
ReceiveTimeout attribute 64
Referer attribute 74
SendTimeout attribute 64
TrustedRootCertificate attribute 66
UserName attribute 65
UseSecureSockets attribute 75

http-conf:server 66
CacheControl attribute 71

cache-extension directive 74
max-age directive 73
must-revalidate directive 73
no-cache directive 73
no-store directive 73
no-transform directive 73
private directive 73
proxy-revelidate directive 73
public directive 73
s-maxage directive 73

ContentEncoding attribute 71
ContentLocation attribute 67
ContentType attribute 67
HonorKeepAlive attribute 67
ReceiveTimeout attribute 67
RedirectURL attribute 76
SendTimeout attrubute 66
ServerCertificate 68
ServerCertificateChain 76
ServerPrivateKey attribute 68
ServerPrivateKeyPassword attribute 68

Artix WSDL Extension Reference: C++ 121

ServerType attribute 67
SuppressClientReceiveErrors
attribute 67

SuppressClientSendErrors attribute 67
TrustedRootCertificate attribute 68
UseSecureSockets attribute 75

I
i18n-context:client 117

InboundCodeSet 117
LocalCodeSet 117
OutboundCodeSet 117

i18n-context:server 117
InboundCodeSet 118
LocalCodeSet 118
OutboundCodeSet 118

IDL types
fixed 23
Object 32
sequence 28
typedef 26

iiop:address 79
location attribute 79

iiop:payload 80
type attribute 80

iiop:policy 80
persistent attribute 80
poaname attribute 80
serviceid attribute 81

IOR 77, 79

J
jms:address 99

connectionPassword attribute 100
connectionUserName attribute 100
destinationStyle attribute 99
jmsDestinationName attribute 99
jmsReplyDestinationName 99
jndiConnectionFactoryName
attribute 99

jndiDestinationName attribute 99
jndiReplyDestinationName 99

jms:client 100
messageType attribute 100

jms:JMSNamingProperty 100
name attribute 100
value attribute 100

jms:server 101
durableSubscriberName attribute 101
messageSelector attribute 101
transactional attribute 101
useMessageIDAsCorrealationID
attribute 101

JNDI
connection factory 99

L
load balancing 108

M
message broadcasting 108

mime:content 16
part attribute 16
type attribute 16

mime:multipartRelated 15
mime:part 15

name attribute 16
mq:client 83

AccessMode attribute 90
AccountingToken attribute 85
AliasQueueName attribute 87
ApplicationData attribute 85
ApplicationIdData attribute 85
ApplicationOriginData attribute 85
ConnectionFastPath attribute 84
ConnectionName attribute 84
ConnectionReusable attribute 84
CorrelationId attribute 84
CorrelationStyle attribute 90
Delivery attribute 92
Format attribute 94
MessageExpiry attribute 84
MessageId attribute 84
MessagePriority attribute 91
ModelQueueName attribute 84
QueueManager attribute 83
QueueName attribute 83
ReplyQueueManager attribute 84
ReplyQueueName attribute 83
ReportOption attribute 93
Server_Client attribute 87
Timeout attribute 84
Transactional attribute 92
UsageStyle attribute 89
UserIdentification attribute 85

mq:server 85
AccessMode attribute 90
AccountingToken attribute 86
ApplicationData attribute 86
ApplicationOriginData attribute 86
ConnectionFastPath attribute 86
ConnectionName attribute 85
ConnectionReusable attribute 86
CorrelationId attribute 86
CorrelationStyle attribute 90
Delivery attribute 92
Format attribute 94
MessageExpiry attribute 86
MessageId attribute 86
MessagePriority attribute 91
ModelQueueName attribute 85
PropogateTransactions attributes 86
QueueManager attribute 85
QueueName attribute 85
ReplyQueueManager attribute 85
ReplyQueueName attribute 85
ReportOption attribute 93
Server_Client attribute 87
Timeout attribute 86
Transactional attribute 92
UsageStyle attribute 89

 122 Artix WSDL Extension Reference: C++

P
passthru:binding 59
POA policies 78, 80
port address

HTTP 63
primitive types

mapping to a fixed binding 40
mapping to a tagged binding 51
mapping to CORBA 17
mapping to FML 37

R
reply queue

queue manager 84, 85
queue name 83, 85

request queue
queue manager 83, 85
queue name 83, 85

routing:contains 112
contextAttributeName attribute 112
contextName attribute 112
ignorecase attribute 112
value attribute 112

routing:destination 109
port attribute 109
route attribute 109
service attribute 109
value attribute 109

routing:empty 113
contextAttributeName attribute 113
contextName attribute 113

routing:endswith 112
contextAttributeName attribute 112
contextName attribute 112
ignorecase attribute 112
value attribute 112

routing:equals 110
contextAttributeName attribute 110
contextName attribute 110
ignorecase attribute 110
value attribute 110

routing:expression 107
evaluator attribute 107
name attribute 107

routing:greater 110
contextAttributeName attribute 111
contextName attribute 111
value attribute 111

routing:less 111
contextAttributeName attribute 111
contextName attribute 111
value attribute 111

routing:nonempty 113
contextAttributeName attribute 113
contextName attribute 113

routing:query 108
routing:route 107

multiRoute attribute 107, 108
failover 108
fanout 108
loadBalance 108

name attribute 107
routing:source 108

port attribute 108
service attribute 108

routing:startswith 111
contextAttributeName attribute 111
contextName attribute 111
ignorecase attribute 111
value attribute 111

routing:transportAttribute 109

S
sequence complexType

mapping to a fixed binding 46
mapping to a tagged binding 52

service failover 108
soap:address 63

location attribute 63
soap:binding 3

style attribute 3
transport attribute 4

soap:body 4
encodingStyle attribute 6
namespace attribute 6
parts attribute 6
use attribute 5

encoded 5
literal 5

soap:fault 7
name attribute 7
use attribute 7

encoded 5
literal 5

soap:header 6
encodingStyle attribute 7
message attribute 7
namespace attribute 7
part attribute 7
use attribute 7, 12

encoded 5
literal 5

soap:operation 4
soapAction attribute 4
style attribute 4

specifying a password
HTTP 65

specifying a user name
HTTP 65

T
tagged:binding 49, 59

fieldNameValueSeparator attribute 49
fieldSeparator attribute 49
flattened attribute 50
ignoreCase attribute 50
ignoreUnknownElements attribute 50
messageEnd attribute 50
messageStart attribute 50
scopeType attribute 49
selfDescribing attribute 49
unscopedArrayElement attribute 50

Artix WSDL Extension Reference: C++ 123

tagged:body 51
tagged:case 54

name attribute 54
tagged:choice 53

alias attribute 54
discriminatorName attribute 54
name attribute 54

tagged:enumeration 51
value attribute 51

tagged:field 51
alias attribute 51
name attribute 51

tagged:operation 50
discriminator attribute 50
discriminatorStyle attribute 50

tagged:sequence 52
alias attribute 52
name attribute 52
occurs attribute 52

timeouts
HTTP 64
MQ 84, 86

transactions
MQ 92

tuxedo:binding 37
tuxedo:field 38

id attribute 38
name attribute 38

tuxedo:fieldTable 38
type attribute 38

tuxedo:input 97
operation attribute 97

tuxedo:operation 38
tuxedo:server 97
tuxedo:service 97

name attribute 97

U
unions

mapping to a fixed binding 44
mapping to a tagged binding 53
mapping to CORBA 24

W
wsoap12:address 63

location attribute 63
wsoap12:binding 9

style attribute 9
transport attribute 10

wsoap12:body 11
encodingStyle attribute 12
namespace attribute 12
parts attribute 12
use attribute 11

literal 11
wsoap12:fault 13

name attribute 13
namespace attribute 13
use attribute 13

literal 11
wsoap12:header 12

encodingStyle attribute 12
message attribute 12
namespace attribute 12
part attribute 12
use attribute

literal 11
wsoap12:operation 10

soapAction attribute 10
soapActionRequired attribute 10
style attribute 10

wsoap12/
fault

encodingStyle attribute 13

X
xformat:binding 57

rootNode attribute 57
xformat:body 57

rootNode attribute 57

 124 Artix WSDL Extension Reference: C++

	Preface
	Contacting Micro Focus

	Bindings
	SOAP 1.1 Binding
	Runtime Compatibility
	soap:binding
	soap:operation
	soap:body
	soap:header
	soap:fault

	SOAP 1.2 Binding
	Runtime Compatibility
	wsoap12:binding
	wsoap12:operation
	wsoap12:body
	wsoap12:header
	wsoap12:fault

	MIME Multipart/Related Binding
	Runtime Compatibility
	Namespace
	mime:multipartRelated
	mime:part
	mime:content

	CORBA Binding and Type Map
	CORBA Binding Extension Elements
	Runtime Compatibility
	C++ Runtime Namespace
	Primitive Type Mapping
	corba:binding
	corba:operation
	corba:param
	corba:return
	corba:raises

	Type Map Extension Elements
	corba:typeMapping
	corba:struct
	corba:member
	corba:enum
	corba:enumerator
	corba:fixed
	corba:union
	corba:unionbranch
	corba:case
	corba:alias
	corba:array
	corba:sequence
	corba:exception
	corba:anonsequence
	corba:anonstring
	corba:object

	Tuxedo FML Binding
	Runtime Compatibility
	Namespace
	FML\XMLSchema Support
	tuxedo:binding
	tuxedo:fieldTable
	tuxedo:field
	tuxedo:operation

	Fixed Binding
	Runtime Compatibility
	Namespace
	fixed:binding
	fixed:operation
	fixed:body
	fixed:field
	fixed:enumeration
	fixed:choice
	fixed:case
	fixed:sequence

	Tagged Binding
	Runtime Compatibility
	Namespace
	tagged:binding
	tagged:operation
	tagged:body
	tagged:field
	tagged:enumeration
	tagged:sequence
	tagged:choice
	tagged:case

	XML Binding
	Runtime Compatibility
	Namespace
	xformat:binding
	xformat:body

	Pass Through Binding
	Runtime Compatibility
	Namespace
	tagged:binding

	Ports
	HTTP Port
	Standard WSDL Elements
	http:address
	soap:address
	wsoap12:address

	Configuration Extensions for C++
	Namespace
	http-conf:client
	http-conf:server

	Attribute Details
	AuthorizationType
	Authorization
	Accept
	AcceptLanguage
	AcceptEncoding
	ContentType
	ContentEncoding
	Host
	Connection
	CacheControl
	BrowserType
	Referer
	ProxyServer
	ProxyAuthorizationType
	ProxyAuthorization
	UseSecureSockets
	RedirectURL
	ServerCertificateChain

	CORBA Port
	Runtime Compatibility
	C++ Runtime Namespace
	corba:address
	corba:policy

	IIOP Tunnel Port
	Runtime Compatibility
	Namespace
	iiop:address
	iiop:payload
	iiop:policy

	WebSphere MQ Port
	Artix Extension Elements
	Runtime Compatibility
	Namespace
	mq:client
	mq:server

	Attribute Details
	Server_Client
	AliasQueueName
	UsageStyle
	CorrelationStyle
	AccessMode
	MessagePriority
	Delivery
	Transactional
	ReportOption
	Format

	Tuxedo Port
	Runtime Compatibility
	Namespace
	tuxedo:server
	tuxedo:service
	tuxedo:input

	JMS Port
	C++ Runtime Extensions
	Namespace
	jms:address
	jms:JMSNamingProperty
	jms:client
	jms:server

	File Transfer Protocol Port
	Runtime Compatibility
	Namespace
	ftp:port
	ftp:properties
	ftp:property

	Other Extensions
	Routing
	Runtime Compatibility
	Namespace
	routing:expression
	routing:route
	routing:source
	routing:query
	routing:destination
	routing:transportAttribute
	routing:equals
	routing:greater
	routing:less
	routing:startswith
	routing:endswith
	routing:contains
	routing:empty
	routing:nonempty
	Transport Attribute Context Names

	Security
	Runtime Compatibility
	Namespace
	bus-security:security

	Codeset Conversion
	Runtime Compatibility
	Namespace
	i18n-context:client
	i18n-context:server

	Index

