
Artix Connect User’s Guide
Version 3.0, June 2005

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work
Together are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies
PLC makes no warranty of any kind to this material including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. IONA shall not
be liable for errors contained herein, or for incidental or consequential damages in con-
nection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 15-Jun-2005

Contents

List of Figures vii

Preface ix

Chapter 1 Introduction to Artix Connect 1
Artix Connect Overview 2
Artix Connect System Components 5
Artix Connect Usage Scenarios 6

.NET Client Invoking on Web service using SOAP over HTTP 7

.NET Client Invoking on a CORBA Server using IIOP 10

Chapter 2 Getting Started 13
Introduction 14
Running the Hello World Demo 15
Background Information 23

Chapter 3 Developing .NET Clients 27
Prerequisites 28
Developing .NET Clients 29

Generating .NET Metadata from a WSDL file Using the GUI 30
Writing a C# Client 38
Building and Running the Client 41

Chapter 4 Client Callbacks 45
Introduction to Callbacks 46
Implementing Callbacks 47

Callback Demonstration 48
Callback WSDL Contract 50
Implementing the Client in C# 54
Implementing the Server 57

Chapter 5 Development Support Tools 59
iii

CONTENTS
Artix Connect Wizard 60
wsdltodotnet Command-line Utility 63

Chapter 6 Deploying an Artix Connect Application 65
Deployment Model 66
Deployment Steps 68

Chapter 7 Introduction to WSDL 69
WSDL Basics 70
Abstract Data Type Definitions 73
Abstract Message Definitions 76
Abstract Interface Definitions 79
Mapping to the Concrete Details 82

Chapter 8 WSDL to .NET Mapping 83
Mapping a WSDL Contract to CTS 84

Port Types 85
Operations 87
Messages 88
Document/Literal Wrapped Style 90

Simple Types 93
Atomic Types 94
Lists 96
Unsupported Simple Types 98

Complex Types 99
Sequence and All Complex Types 100
Arrays 102
Choice Complex Type 104
Attributes 106
Enumerations 108

Occurance Constraints 109
SOAP Arrays 110

Chapter 9 Configuration 111
Overview 112
Environment Variables 113
 iv

CONTENTS
Index 119
v

CONTENTS
 vi

List of Figures

Figure 1: Artix Connect Overview 3

Figure 2: .NET client invoking on SOAP over HTTP Web Service 7

Figure 3: .NET client invoking on a CORBA server over IIOP 10

Figure 4: Selecting Artix Connect Demos 16

Figure 5: Artix Connect Demos Loaded into Visual Studio .NET 2003 17

Figure 6: Building Demos from Visual Studio .NET 2003 18

Figure 7: Running the Hello World Server—Set as StartUp Project 19

Figure 8: Running the Hello World Server—Start Without Debugging 20

Figure 9: Running Hello World Client—Set as StartUp Project 21

Figure 10: Running the Hello World Client—Start Without Debugging 22

Figure 11: Creating a New Project 31

Figure 12: Starting a New Project 32

Figure 13: C# Project 33

Figure 14: Launching the Add New Item Dialog Box 34

Figure 15: Launching the Artix Connect Wizard 35

Figure 16: Selecting WSDL File Using Artix Connect Wizard 36

Figure 17: Required Files Added to Project by Artix Connect Wizard 37

Figure 18: Greeter.cs 38

Figure 19: Building the Client 41

Figure 20: Opening the Hello World Demo Solution 42

Figure 21: Opening Demo Solution 43

Figure 22: Running the Client 44

Figure 23: Callback in Progress 48

Figure 24: Artix Connect Wizard 61

Figure 25: Typical Deployment Scenario 66

Figure 26: Selecting My Computer 117
vii

LIST OF FIGURES
Figure 27: Setting Environment Variables Manually 118
 viii

Preface
Artix Connect is a .NET custom remoting channel that enables transparent
communication between clients that are running in a Microsoft .NET
environment and servers using any of the transports and protocols supported
by Artix, including:

• HTTP

• IIOP

• CORBA

• BEA Tuxedo*

• IBM WebSphere MQ (formerly MQSeries)*

• TIBCO Rendezvous*

• Java Messaging Service*

In addition, Artix Connect supports all of the bindings (marshalling schemes)
supported by Artix, including

• SOAP

• CORBA Common Data Representation (CDR)

• Pure XML

• Fixed record length (FRL)*

• Tagged (variable record length)*

• TibrvMsg (a TIBCO Rendevous format)*

• Tuxedo Field Manipulation Language (FML)*

Note: To use any of the transports, protocols and bindings marked with
a *, you must have a license for Artix Advanced.
ix

PREFACE
Artix Connect is designed to allow .NET programmers to use any .NET
language (for example, Visual Basic .NET, C#, J#, and so on) to easily
access services running in Windows, UNIX, or OS/390 environments that
have been described in Artix WSDL contracts. It enables .NET programmers
to use the tools familiar to them to build heterogeneous systems that use
both .NET and any of the middleware platforms supported by Artix.

What is Covered in this Guide
This book describes how to use Artix Connect in a .NET environment.

Who Should Read this Guide
This guide is intended for .NET application programmers who want to use
Artix Connect to develop and deploy distributed applications that can
communicate with any of the middleware platforms supported by Artix.

This guide assumes that the reader already has a working knowledge of
.NET-based tools, such as Visual Basic .NET and C#.

The reader does not need an in-depth knowledge of Artix or WSDL concepts
to use Artix Connect. However, some knowledge would help, particularly
with more complex WSDL contracts. The following Artix guides are a good
place to start learning:

• Getting Started with Artix

• Designing Artix Solutions

In addition, the following may provide useful background information:

• Understanding Web Services: XML, WSDL, SOAP, and UDDI, written
by Eric Newcomer, published by Addison Wesley, ISBN
0-201-75081-3.

• Understanding SOA with Web Services, written by Eric Newcomer
and Greg Lomow, published by Addison Wesley, ISBN
0-321-18086-0.

• The W3C XML Schema page at: www.w3.org/XML/Schema.

• The W3C WSDL specification at: www.w3.org/TR/wsdl.

Required Versions
To use Artix Connect, you need at least Microsoft .NET Framework 1.1 and
Microsoft Visual Studio .NET 2003 installed on your machine.
 x

http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm
http://www.w3.org/XML/Schema
http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.w3.org/TR/wsdl

PREFACE
Organization of this Guide
This guide is divided as follows:

Chapter 1, “Introduction to Artix Connect”

This chapter introduces Artix Connect, its system components and some
usage models.

Chapter 2, “Getting Started”

This chapter gets you up and running quickly with Artix Connect by walking
you though a simple demo application.

Chapter 3, “Developing .NET Clients”

This chapter helps to get you up and running quickly with application
programming with Artix Connect. It explains the basics you need to know to
develop a simple .NET client, written in C#, which can invoke on an
existing Web service.

Chapter 4, “Client Callbacks”

.NET clients can implement some of the functionality associated with
servers, and all servers can act as clients. A callback invocation is a
programming technique that takes advantage of this. This chapter describes
how to implement client callbacks.

Chapter 5, “Development Support Tools”

This chapter describes the Artix Connect Web service wizard and the
wsdltodotnet command-line utility.

Chapter 6, “Deploying an Artix Connect Application”

This chapter provides an overview of the deployment model you can adopt
when deploying a distributed application with Artix Connect. It also
describes the steps you must follow to deploy a distributed Artix Connect
application.

Chapter 7, “Introduction to WSDL”

Although you do not need to understand WSDL in any great detail to use
Artix Connect, understanding the basics can help. This chapter introduces
basic WSDL concepts.

Chapter 8, “WSDL to .NET Mapping”

WSDL types are defined in XML, and .NET types are defined in Microsoft
Intermediate Language (MSIL). To allow interworking between .NET clients
and Web services, .NET clients must be presented with metadata that
xi

PREFACE
describes the interfaces exposed by the Web service. When using .NET
Remoting, the .NET types must use the .NET Common Type System (CTS).
This chapter outlines how Artix Connect maps WSDL-to-.NET CTS.

Chapter 9, “Configuration”

This chapter describes the environment variables that are specific to Artix
Connect, and their associated values.

Additional Resources

Knowledge base The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about Artix
Connect and other IONA products.

Update center The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

Support If you need help with Artix Connect or any other IONA product, contact
IONA at: support@iona.com.

Documentation feedback Comments on IONA documentation can be sent to:
docs-support@iona.com.

Newsgroup The IONA newsgroup and discussion forums provide feedback and answers
to questions about IONA products:

http://www.iona.com/products/newsgroups.htm
 xii

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
mailto:docs-support@iona.com
http://www.iona.com/products/newsgroups.htm
mailto:support@iona.com

PREFACE
Typographical conventions
This book uses the following typographical and keying conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values that you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes (for example, the User Preferences
dialog.)
xiii

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 xiv

CHAPTER 1

Introduction to
Artix Connect
Artix Connect is a custom .NET remoting channel that enables
transparent communication between clients that are running
in a Microsoft .NET environment and services deployed on any
of the middleware platforms supported by Artix.

In this chapter This chapter discusses the following topics:

Artix Connect Overview page 2

Artix Connect System Components page 5

Artix Connect Usage Scenarios page 6
1

CHAPTER 1 | Introduction to Artix Connect
Artix Connect Overview

Overview This section provides an introductory overview of Artix Connect in terms of
how it facilitates communication between .NET clients and any of the
middleware platforms supported by Artix.

In this section The following topics are discussed:

• What is Artix Connect?

• Graphical Overview of Role

• WSDL contract

• Supported Transports, Protocols, and Bindings

What is Artix Connect? The Artix Connect is a custom .NET remoting channel, referred to as
Artix.Remoting. Its purpose is to support application integration across
network boundaries, different operating systems, and different programming
languages. Specifically, it provides a high performance bridge that enables
.NET clients to communicate with servers using any of the transports,
protocols, and bindings (marshalling schemes) supported by Artix.
 2

Artix Connect Overview
Graphical Overview of Role Figure 1 provides a conceptual overview of how Artix Connect facilitates the
integration of .NET clients and the middleware platforms supported by Artix:

WSDL contract To connect your .NET client to any of the middleware platforms supported
by Artix, all Artix Connect requires is the WSDL contract for that service.

Artix uses Web Services Description Language (WSDL) contracts to express
the logical interaction between services. With Artix, IONA has taken WSDL
beyond simple SOAP over HTTP Web services by extending the features of
WSDL to model diverse enterprise systems in a technology neutral way.

It separates the service from its underlying middleware mechanism, and
allows the service to be invoked over an optimized connection using existing
transport mechanisms such as WebSphere MQ (previously known as
MQSeries) and Tuxedo.

The main elements of an Artix WSDL contract are as follows:

• Port types—a port type defines remotely callable operations that have
parameters and return values.

• Types—user defined data types used to describe messages.

Figure 1: Artix Connect Overview
3

CHAPTER 1 | Introduction to Artix Connect
• Binding—a binding describes how to encode all of the operations and
data types associated with a particular port type. A binding is specific
to a particular protocol; for example, SOAP or CORBA.

• Port definitions—a port contains endpoint data that enables clients to
locate and connect to a remote server; for example, a CORBA port
might contain a stringified IOR.

For a basic introduction to WSDL, see “Introduction to WSDL” on page 69.

For more information about Artix and WSDL, see the Artix 3.0
documentation, available online at:
http://www.iona.com/support/docs/artix/3.0/index.xml

Supported Transports, Protocols,
and Bindings

A key feature of Artix Connect is that it supports all of the transports,
protocols that Artix supports, including:

• HTTP

• IIOP

• CORBA

• BEA Tuxedo*

• IBM WebSphere MQ (formerly MQSeries)*

• TIBCO Rendezvous*

• Java Messaging Service*

In addition, Artix Connect supports all of the bindings (marshalling schemes)
supported by Artix, including

• SOAP

• CORBA Common Data Representation (CDR)

• Pure XML

• Fixed record length (FRL)*

• Tagged (variable record length)*

• TibrvMsg (a TIBCO Rendevous format)*

• Tuxedo Field Manipulation Language (FML)*

The same binding can be used by multiple protocols or a binding can be
used by only one protocol.

Note: To use any of the transports, protocols and bindings marked with
a *, you must have a license for Artix Advanced.
 4

http://www.iona.com/support/docs/artix/3.0/index.xml

Artix Connect System Components
Artix Connect System Components

Overview This section describes the various components that comprise an Artix
Connect system. The following topics are discussed:

• Bridge

• .NET client

• Artix service

Bridge The bridge is a synonym for Artix Connect itself. It is implemented as a
custom .NET remoting channel, referred to as Artix.Remoting. It is
implemented in a mixture of managed and unmanaged DLLs. This channel
uses a dynamic marshaller and the WSDL contract to formulate dynamic
requests that can be invoked on the service defined in the WSDL contract.
The bridge provides the mappings and performs the necessary translation
between .NET common type system (CTS) and WSDL types.

The bridge is used in conjunction with the Artix Connect Wizard, which
generates .NET metadata from a WSDL contract, from within the Microsoft
Visual Studio .NET 2003 development environment.

.NET client A .NET client can use Artix Connect to communicate with any service
described in an Artix WSDL contract. This client can be written in any
language compatible with .NET, including Visual Basic .NET, Visual C++,
C#, J#, and Jscript.

Artix service Any service that has been defined in an Artix WSDL contract can be
contacted by .NET clients, using Artix Connect.
5

CHAPTER 1 | Introduction to Artix Connect
Artix Connect Usage Scenarios

Overview Artix Connect can be used to connect .NET clients to any middleware
platform supported by Artix, once the back-end service is defined in a WSDL
contract.

In this section This section gives an overview of two such scenarios:

.NET Client Invoking on Web service using SOAP over HTTP page 7

.NET Client Invoking on a CORBA Server using IIOP page 10
 6

Artix Connect Usage Scenarios
.NET Client Invoking on Web service using SOAP over HTTP

Overview This subsection describes a scenario in which Artix Connect connects a
.NET client to a Web service using SOAP over HTTP. It discusses the
following topics:

• Graphical overview

• Web service

• WSDL contract

• .NET client and Artix Connect

• Using a transport other than SOAP over HTTP

• Demo

Graphical overview Figure 2 is a graphical overview of this usage model:

Web service The Web service can be any SOAP over HTTP Web service. In this case, it is
implemented in C++, using Artix. The advantage of using Artix is that
clients can use the enhanced quality of services that it provides; for
example, callbacks.

Figure 2: .NET client invoking on SOAP over HTTP Web Service
7

CHAPTER 1 | Introduction to Artix Connect
For more detail on using Artix to develop a SOAP over HTTP Web service,
see the Artix documentation on the IONA documentation website.

WSDL contract The types and protocols that can be used to contact the Web service are
contained in its WSDL contract. In this case, the Artix Designer, which is
part of the Artix product, is used to design the WSDL contract.

For more details on using Artix to design WSDL contracts, see the Designing
Artix Solutions guide.

.NET client and Artix Connect Artix Connect provides a dynamic bridge for .NET in the form of a custom
remoting channel, referred to as Artix.Remoting. The .NET client loads this
bridge in-process (that is, in the client’s address space). Artix Connect uses
the transport and protocol details contained in the WSDL file to
communicate between the .NET client machine and SOAP over HTTP Web
service. The WSDL file is the only thing required by Artix Connect to enable
the .NET client to successfully invoke on the Web service. No changes are
required on the server side.

The .NET client registers the Artix.Remoting custom remoting channel. The
.NET client then creates a proxy for the remote service. The .NET client can
subsequently make calls on this proxy as if it were a local .NET object. The
proxy uses the Artix.Remoting channel to make a corresponding call on the
target Web service.

Artix Connect provides a Web service wizard that generates .NET metadata
from the WSDL contract from within the Microsoft Visual Studio .NET 2003
development environment. The Artix.Remoting channel exposes the
mapped .NET types as metadata contained in a .NET assembly, allowing
automatic mapping of .NET object references to the interfaces and object
references defined in the WSDL file at runtime.

The client does not need to know that the target object is, for example, a
SOAP over HTTP Web service. A .NET client can be written in Visual Basic,
C#, J#, C++ or any language that supported by .NET.

Using a transport other than SOAP
over HTTP

If required, the deployed .NET client can use different transports and
protocols; for example, if the SOAP over HTTP transport preforms too slowly
in a deployed system. You can simply change the WSDL file to reflect the
new transport details and Artix Connect takes care of the rest. You do not
need to make any changes to the client.
 8

http://www.iona.com/support/docs/index.xml

Artix Connect Usage Scenarios
Demo Artix Connect includes a demo that illustrates a .NET client invoking on a
SOAP over HTTP Web service. It is located in:

For details on how to run this demo, see the README.txt file in the demo
directory.

ArtixConnectInstallDir/artix/Version/demos/dotnet/hello_world
9

CHAPTER 1 | Introduction to Artix Connect
.NET Client Invoking on a CORBA Server using IIOP

Overview This subsection describes a scenario in which Artix Connect connects a
.NET client to a CORBA server. It discusses the following topics:

• Graphical overview

• CORBA server

• WSDL contract

• .NET client and Artix Connect

• Demo

Graphical overview Figure 3 is a graphical overview of this usage model:

CORBA server The server can be any CORBA-compliant server. In this case it is
implemented in C++ using Orbix. No changes are required on the server
side.

For more detail on CORBA and Orbix, see the Orbix documentation,
available on the IONA documentation website.

Figure 3: .NET client invoking on a CORBA server over IIOP
 10

http://www.iona.com/support/docs/index.xml

Artix Connect Usage Scenarios
WSDL contract The CORBA server’s interface is specified in a CORBA IDL file. The Artix
Designer, which is part of the Artix product, is used to generate an Artix
WSDL contract from the IDL file. The WSDL contract specifies that clients
should communicate with the server using IIOP. In addition, the WSDL
contract contains details of the CORBA server’s location (IOR, corbaname or
corbaloc).

For more detail on how to use Artix to expose a CORBA service as a Web
service, see the Artix for CORBA guide.

.NET client and Artix Connect Artix Connect provides a dynamic bridge for .NET in the form of a custom
remoting channel, referred to as Artix.Remoting. The .NET client loads this
remoting channel in-process (that is, in the client’s address space). Artix
Connect uses the transport and protocol details contained in the WSDL
contract to communicate between the .NET client machine and the CORBA
server. The WSDL file is the only thing required by Artix Connect to enable
the .NET client to successfully invoke on the CORBA server. No changes are
required on the server side.

The .NET client registers the Artix.Remoting custom remoting channel and
creates a proxy for the remote object. The .NET client can subsequently
make calls on this proxy as if it were a local .NET object. The proxy uses the
Artix.Remoting channel to make a corresponding call on the target object.

Artix Connect provides a Web service wizard that generates .NET metadata
from the WSDL contract from within the Microsoft Visual Studio .NET 2003
development environment. The Artix.Remoting channel exposes the
mapped .NET types as metadata contained in a .NET assembly, allowing
automatic mapping of .NET object references to the interfaces and object
references defined in the WSDL file at runtime.

The client does not need to know that the target object is, for example, a
CORBA object. A .NET client can be written in Visual Basic, C#, J#, C++
or any language supported by .NET.

Demo Artix Connect includes a demo that illustrates a .NET client invoking on a
CORBA server. It is located in:

ArtixConnectInstallDir/artix/Version/demos/dotnet/corba_grid
11

http://www.iona.com/support/docs/artix/3.0/corba_ws/index.htm

CHAPTER 1 | Introduction to Artix Connect
For details on how to run this demo, see the README.txt file in the demo
directory.
 12

CHAPTER 2

Getting Started
This chapter focuses on getting started with Artix Connect. It
walks you through a simple Hello World demo that shows you
how a Web service can be invoked from a standard C# .NET
client using Artix Connect.

In this chapter This chapter contains the following sections:

Introduction page 14

Running the Hello World Demo page 15

Background Information page 23
13

CHAPTER 2 | Getting Started
Introduction

Overview This chapter is based on running Artix Connect Hello World demo. It shows
how you use Artix Connect to connect a .NET client to a SOAP over HTTP
Artix Web service.

In this section This section gives details of the prerequisites to running the demo and
provides some basic details. The following topics are covered:

• Prerequisites

• Demo location

• Running from the command line

Prerequisites The Artix Connect demos are designed to run on Windows only.

In addition, you must have Microsoft Visual Studio .NET 2003 installed into
the default location on your Windows system.

Demo location The demo can be found in:

Running from the command line This chapter details how you can build and run the demo from within the
Visual Studio .NET 2003 development environment. You can, however, also
build and run the demo from the command line. For details, see the
README.txt file in the demo directory.

ArtixConnectInstallDir\artix\Version\demos\dotnet\hello_world
 14

Running the Hello World Demo
Running the Hello World Demo

Overview To run the Hello World demo from within the Microsoft Visual Studio .NET
2003 development environment, complete the following steps:

Set Artix Connect environment The Artix Connect installer sets the environment variables for you. If,
however, you chose not set the environment variables while installing the
product, you must set them manually before building and running the demo.
See “Configuration” on page 111 for more detail.

Step Action

1 Set Artix Connect environment

2 Select the Artix Connect Demos

3 Build the demo

4 Run the server

5 Run the client
15

CHAPTER 2 | Getting Started
Select the Artix Connect Demos From the Windows Start menu, select the Artix Connect 3.0 Demos, as
shown in Figure 4:

Figure 4: Selecting Artix Connect Demos
 16

Running the Hello World Demo
The demos load into the Visual Studio .NET 2003 development
environment as shown in Figure 5. In the example shown the
README_DOTNET.txt file is selected. This is a high-level readme that comes
with the demos.

Figure 5: Artix Connect Demos Loaded into Visual Studio .NET 2003
17

CHAPTER 2 | Getting Started
Build the demo To build the demos, select Build|Build Solution, as shown in Figure 6:

Figure 6: Building Demos from Visual Studio .NET 2003
 18

Running the Hello World Demo
Run the server To run the server, complete the following steps:

1. Right-click on the hellotestserver icon and select Set as StartUp
Project, as shown in Figure 7:

Figure 7: Running the Hello World Server—Set as StartUp Project
19

CHAPTER 2 | Getting Started
2. Select Debug|Start Without Debugging, as shown in Figure 8:

The server will open in a new DOS command window and output
Server Ready to the screen.

Figure 8: Running the Hello World Server—Start Without Debugging
 20

Running the Hello World Demo
Run the client To run the client, complete the following steps:

1. Right-click on the hellotestclient icon and select Set as StartUp
Project, as shown in Figure 9:

Figure 9: Running Hello World Client—Set as StartUp Project
21

CHAPTER 2 | Getting Started
2. Select Debug|Start Without Debugging, as shown in Figure 10:

The client starts in a new DOS command window, invokes on the
server and outputs Hello .NET Connector to the screen.

Figure 10: Running the Hello World Client—Start Without Debugging
 22

Background Information
Background Information

Overview This section describes what happens when the demo runs and provides
some background information on the Hello World demo files. The following
topics are covered:

• What happens when the demo runs

• Server

• Client

• WSDL contract

• Using other transports and protocols

What happens when the demo
runs

When the Hello World server process starts, it starts to listen for SOAP over
HTTP requests and outputs Server Ready to the screen. When the Hello
World client application starts, it reads the hello_world.wsdl contract,
which is located in:

The WSDL contract contains details of the types and protocols that can be
used by the client to contact the Web service, as well as details of the
location of the Web service.

Server The Web service is implemented in C++ and was developed using Artix.

For more information on Artix development, see the Artix 3.0 library.

Client The Artix Connect Web service wizard was used to generate the type
information required by the .NET client to invoke on the Web service. All it
required was the WSDL contract; in this case, hello_world.wsdl. It
generated a Greeter.dll .NET assembly, which contains the type
information, and client starting point code in a Greeter.cs file. Application
logic was added to the Greeter.cs file.

For more information on developing .NET clients, see “Developing .NET
Clients” on page 27.

ArtixConnectInstallDir\artix\Version\demos\dotnet\hello_world\
etc
23

http://www.iona.com/support/docs/artix/3.0/index.xml

CHAPTER 2 | Getting Started
WSDL contract The hello_world.wsdl contract contains all the information required by the
.NET C# client to invoke on the Web service successfully. It is located in:

It was designed using the Artix Designer, which is a GUI that ships with
Artix. The WSDL file specifies that clients should communicate with the
server using SOAP/HTTP in the following XML fragment:

For more information on designing Artix WSDL contracts, see the Designing
Artix Solutions guide.

Using other transports and
protocols

The .NET C# client can use any of the transports and protocols supported
by Artix, including:

• HTTP

• IIOP

• CORBA

• BEA Tuxedo*

• IBM WebSphere MQ (formerly MQSeries)*

• TIBCO Rendezvous*

• Java Messaging Service*

The .NET client only requires the WSDL contract. Therefore, by simply
editing the contents of the WSDL file if, for example, the SOAP/HTTP
transport performed too slowly in a deployed system, or the enterprise
qualities of service features provided by a different transport are required

ArtixConnectInstallDir\artix\Version\demos\dotnet\hello_world\
etc

...
<wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </wsdl:port>
</wsdl:service>

Note: To use any of the transports and protocols marked with a *, you
must have a valid Artix Advanced license.
 24

http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/design/index.htm

Background Information
and it proves necessary to change the server, the transports and protocols
used by deployed C# clients can be changed by simply changing the
contents of the WSDL contract.
25

CHAPTER 2 | Getting Started
 26

CHAPTER 3

Developing .NET
Clients
This chapter explains how to develop a simple .NET client,
written in C#, which can invoke on an existing Artix Web
service using SOAP over HTTP.

In this chapter This chapter discusses the following topics:

Prerequisites page 28

Developing .NET Clients page 29
27

CHAPTER 3 | Developing .NET Clients
Prerequisites

Overview This section describes the prerequisites to starting application development
with Artix Connect. The following topics are discussed:

• Required versions

• Client-side requirements

• Server-side requirements

• Adding Artix Connect to the Global Assembly Cache

Required versions To use the Artix Connect runtime, you need at least Microsoft .NET
Framework 1.1 installed on your machine. To use Artix Connect for
development, you need Microsoft Visual Studio .NET 2003 installed on your
machine.

Client-side requirements Ensure that Artix Connect is installed and configured correctly. See the Artix
Connect Installation Guide for details.

Server-side requirements Artix Connect requires no changes to existing services. All it needs is access
to the WSDL contract that defines the service.

This guide assumes that you do not have to design the WSDL contract. It is
assumed that the WSDL contract is provided for you. If, however, you need
to know how to design an Artix WSDL contract for a new or existing service,
see the Designing Artix Solutions guide.

Adding Artix Connect to the Global
Assembly Cache

Artix Connect is implemented as a custom remoting channel in managed
C++. This custom remoting channel is called Artix.Remoting and is
contained in the Artix.Remoting.dll assembly. To use the Artix.Remoting
channel, the .NET framework must be able to obtain and access the
Artix.Remoting.dll assembly from either of the following:

• The directory from which the client program is run.

• The Global Assembly Cache (GAC).

By default, Artix.Remoting is registered with the GAC during the
installation of Artix Connect.
 28

http://www.iona.com/support/docs/artix/connect/3.0/install_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/design/index.htm

Developing .NET Clients
Developing .NET Clients

Overview This section describes how to develop a .NET client that can invoke on Artix
service using Artix Connect. The Hello World demo is used as an example
application. The Hello World demo shows a C# .NET client invoking on an
Artix Web service, using SOAP over HTTP. It is located in:

In this section This section discusses the steps that you must complete to develop a .NET
client that can connect to an Artix Web service. The steps are:

ArtixConnectInstallDir/artix/Version/demos/dotnet/hello_world

Generating .NET Metadata from a WSDL file Using the GUI page 30

Writing a C# Client page 38

Building and Running the Client page 41
29

CHAPTER 3 | Developing .NET Clients
Generating .NET Metadata from a WSDL file Using the GUI

Overview The first task in implementing a .NET client that can communicate with a
server that supports any of the transports and protocols supported by Artix,
is to generate the .NET metadata that describes the target service interface.
.NET metadata is required so that .NET applications that are to make
invocations on remote objects can be compiled, and to allow .NET to create
proxy objects.

Ordinarily, when .NET applications are communicating with each other, the
metadata for .NET objects can be found as part of the .NET assembly.
However, this is not the case for Artix services. Artix Connect includes a
GUI, the Artix Connect Wizard, which enables you to generate .NET
metadata and client starting point code from an Artix WSDL contract from
within the Microsoft Visual Studio .NET 2003 development environment.

In this section This section walks you through the steps to generating .NET metadata and
client starting point code from a WSDL contract using the Artix Connect
Wizard.

Note: This guide assumes that the WSDL contract already exists and that
you have been provided with it as a starting point.

For more information on using Artix to develop WSDL contracts, see the
Designing Artix Solutions guide.
 30

http://www.iona.com/support/docs/artix/3.0/design/index.htm

Developing .NET Clients
Using the Artix Connect Wizard To generate .NET metadata from within the Microsoft Visual Studio .NET
2003 development environment, using the Artix Connect Wizard, do the
following:

1. Select File | New | Project to start a new project as shown in
Figure 11:

Figure 11: Creating a New Project
31

CHAPTER 3 | Developing .NET Clients
2. The New Project dialog box appears as shown in Figure 12. Select the
project type that you want to create—in this case, a Visual C# project
using the Empty Project template:

3. Enter a name for your project and a directory into which you want your
project to be stored.

Figure 12: Starting a New Project

Note: The Artix Connect GUI supports C# console projects only. For
projects that do not use the console or use other languages, you should
use the wsdltodotnet command-line utility to generate the .NET metadata
for you. See “wsdltodotnet Command-line Utility” on page 63 for more
detail.
 32

Developing .NET Clients
4. Click OK. The Visual Studio .NET 2003 Development Environment
creates a C# project, as shown in Figure 13:

Figure 13: C# Project
33

CHAPTER 3 | Developing .NET Clients
5. Next you need to add the server WSDL file to the project. To do this
select File | Add New Item, as shown in Figure 14, to launch the Add
New Item dialog box:

Figure 14: Launching the Add New Item Dialog Box
 34

Developing .NET Clients
6. The Add New Item dialog box appears as shown in Figure 15. Select
the IONA Artix Web Service wizard and click Open:

Figure 15: Launching the Artix Connect Wizard
35

CHAPTER 3 | Developing .NET Clients
7. The Artix Connect Wizard appears as shown in Figure 16. Click the
Select button and browse for the WSDL contract associated with the
Artix service to which you want the client to connect. In this example,
select the hello_world.wsdl file, located in
ArtixInstallDir\Artix\Version\demos\dotnet\hello_world\etc

The Artix Connect Wizard fills in the Filename, Target NameSpace,
Service, Port, and PortType fields with values taken from the WSDL
contract. You should verify that the service selected is the one you
want. The Generate starting-point C# client code check box is
selected by default.

8. Click Finish to import the WSDL file and generate client starting point
code for this service.

Figure 16: Selecting WSDL File Using Artix Connect Wizard
 36

Developing .NET Clients
The Artix Connect Wizard adds three required items to the client
project, as shown in Figure 17):

It adds the following references:

♦ The Artix.Remoting assembly, which is required at runtime by
all Artix Connect clients.

♦ The PortType_Name.dll metadata assembly, which has been
generated by the wsdltodotnet command-line tool, and contains
the type information for the server. In this example, the file in
called Greeter.dll.

And the following file:

♦ Client starting point code in a .cs file—in this case, Greeter.cs.
This is where you add your client application code.

Figure 17: Required Files Added to Project by Artix Connect Wizard
37

CHAPTER 3 | Developing .NET Clients
Writing a C# Client

Overview The next task in implementing a .NET client that can communicate with an
Artix Web service is to write the C# client. As shown in the previous
subsection, the Artix Connect Wizard generates a client mainline with
starting point code. In this example, the file is called Greeter.cs and is
shown in Figure 18. You simply uncomment the relevant line of client
application code and add the client logic.

Figure 18: Greeter.cs
 38

Developing .NET Clients
In this subsection This subsection walks you through the code, which:

1. Registers the remoting channel

2. Creates a remote proxy

3. Invokes on remote proxy

Registers the remoting channel The following line registers the remoting channel that the client wants to
use. The custom remoting channel should be registered in the same way as
any other .NET remoting channel.

The preceding code tells the .NET application that when it is attempting to
access an object outside of its application domain, it should use the
ArtixClientChannel remoting channel.

Creates a remote proxy The following code creates a proxy instance of the remote target object in
the client’s address space:

// C#
ChannelServices.RegisterChannel(new ArtixClientChannel());

Note: If you use the wsdltodotnet command-line utility to generate the
.NET metadata, you must add the Artix.Remoting.dll and the
PortType_Name.dll metadata assembly, which contains the type
information for the server, to your project. You can do this by right-clicking
on your project and selecting the Add References option. Select the
Artix.Remoting.dll from the list that appears and select the generated
PortType_Name.dll by browsing to the location where you have it stored.

Example 1: Creating a remote proxy

//C#
//GetObject() call.
Greeter greeterObj = (Greeter),

1 Activator.GetObject(typeof (Greeter),
2 "artixref:C:\\Program Files\\artix\\3.0\\

 demos\\dotnet\\hello_world\\etc\\hello_world.wsdl
 http://www.iona.com/hello_world_soap_http
 SOAPService SoapPort");
39

CHAPTER 3 | Developing .NET Clients
1. The call to GetObject() specifies the .NET type that corresponds to
the name of the target object to which the client wants to connect (in
this case, Greeter).

2. It also specifies an Artix reference, which points the client to the WSDL
contract that defines the service that it wants to connect to. It is made
up of four parts, each separated by a space and all specified on one
line. The parts are:

i. The location and name of the WSDL contract—in this example,
the hello_world.wsdl, which is located in
ArtixInstallDir\artix\Version\demos\dotnet\hello_world\

etc.

ii. The target namespace—in this example,
http://www.iona.com/hello_world_soap_http. This is taken
from the WSDL contract.

iii. The name of the service that the client wants to use—in this
example, SOAPService. This is taken from the WSDL contract.

iv. The name of the port that the client wants to use—in this
example, Greeter. This is taken from the WSDL contract.

Invokes on remote proxy To complete the client you need to uncomment the code that invokes on the
remote proxy—in this case, greeterObj—and add the client logic. For
example, you can have the client invoke on the remote proxy greetMe()
operation and have the client print the response to the screen by adding the
code shown below:

// C#
String response;
response = greeterObj.greetMe(".NET Connector");
Console.WriteLine(response);
 40

Developing .NET Clients
Building and Running the Client

Overview This subsection describes how to build the client that you wrote in the
previous subsection.

Building the client To build the client, select Build | Build Solution, as shown in Figure 19:

Figure 19: Building the Client
41

CHAPTER 3 | Developing .NET Clients
Running the client To run the client successfully, you must:

1. Start the server. In this case you can use the server that is provided
with the Hello World demo. To open the demo solution, from the File
menu select Open Solution, as shown in Figure 20:

Figure 20: Opening the Hello World Demo Solution
 42

Developing .NET Clients
2. The Open Solution dialog box appears as shown in Figure 21:

3. Select the dotnot solution file, as shown in Figure 21, and click Open.

4. Follow the instructions for running the server in “Run the server” on
page 19.

Figure 21: Opening Demo Solution
43

CHAPTER 3 | Developing .NET Clients
5. Reopen your client project and run the client by selecting Debug|Start
Without Debugging, as shown in Figure 22:

6. The client starts in a new DOS command window, invokes on the
server and prints Hello .NET Connector to the screen.

Figure 22: Running the Client
 44

CHAPTER 4

Client Callbacks
.NET clients can implement some of the functionality
associated with servers, and all servers can act as clients. A
callback invocation is a programming technique that takes
advantage of this. This chapter describes how to implement
client callbacks.

In this chapter This chapter discusses the following topics:

Introduction to Callbacks page 46

Implementing Callbacks page 47
45

CHAPTER 4 | Client Callbacks
Introduction to Callbacks

Overview This section introduces the concept of client callbacks. The following topics
are discussed:

• What is a callback?

• Typical use

What is a callback? A callback is an operation invocation made from a server to an object that is
implemented in a client. A callback allows a server to send information to
clients without forcing clients to explicitly request the information.

Typical use Callbacks are typically used to allow a server to notify a client to update
itself. For example, in a banking application, clients might maintain a local
cache to hold the balance of accounts for which they hold references. Each
client that uses the server’s account object maintains a local copy of its
balance. If the client accesses the balance attribute, the local value is
returned if the cache is valid. If the cache is invalid, the remote balance is
accessed and returned to the client, and the local cache is updated.

When a client makes a deposit to, or withdrawal from, an account, it
invalidates the cached balance in the remaining clients that hold a reference
to that account. These clients must be informed that their cached value is
invalid. To do this, the real account object in the server must notify (that is,
call back) its clients whenever its balance changes.
 46

Implementing Callbacks
Implementing Callbacks

Overview This section describes how to implement callbacks using Artix Connect.
Artix Connect supports callbacks on any of the middleware platforms
supported by Artix.

In this section This section discusses the following topics:

Callback Demonstration page 48

Callback WSDL Contract page 50

Implementing the Client in C# page 54

Implementing the Server page 57
47

CHAPTER 4 | Client Callbacks
Callback Demonstration

Overview The callback example described in this section is based on the CORBA
Callback demonstration, which is located in:

For details on how to run this demo, see the README.txt file in the demo
directory.

Graphical view Example 23 illustrates how the callback proceeds:

ArtixConnectInstallDir/artix/Version/demos/dotnet/corba_callback

Figure 23: Callback in Progress
 48

Implementing Callbacks
Example 23 can be explained as follows:

1. When the CORBA server process starts, it creates a CORBA object,
CallBackDemoServer, and writes a reference to the object to a file,
callback_corba_service.ior. It then starts to listen for
communications from the client over the Internet Inter-ORB Protocol
(IIOP).

2. When the client starts, it reads the WSDL contract. The WSDL contract
contains details of the types and protocols that can be used to contact
the CORBA server. It also contains details of the location of the
callback_corba_service.ior file, which the client uses to locate the
server.

3. The client creates a proxy of the target CORBA server.

4. The client creates a native .NET object, clientObj, of type
ClientObjectImpl, which in turn inherits and implements the
ClientCallbackObject interface.

5. The client calls RegisterCallBackObject() on the CORBA server and
passes it a reference to clientObj. This notifies the server of the
callback service.

6. When the server receives the callback reference, it calls back to the
client by invoking on the client’s callMe() operation.
49

CHAPTER 4 | Client Callbacks
Callback WSDL Contract

Overview The first step in implementing client callback functionality is to define the
client and server in a WSDL contract. The WSDL contract is the only thing
required by the .NET client to invoke on the CORBA server.

In this subsection This subsection describes the WSDL contract that defines the interaction
between the client and the server in the CORBA Callback demonstration. It
was automatically generated from the CORBA server’s IDL file using the
Artix Designer, which is available in Artix 3.0.

WSDL contract Example 2 shows the WSDL contract, callback.wsdl, used in the CORBA
Callback demonstration. It is located in:

Note: This guide assumes that the WSDL contract already exists.

For more information on using Artix to develop WSDL contracts, see the
Designing Artix Solutions guide. For more information on using Artix to
expose CORBA servers as Web services, including generating WSDL from
IDL, see the Artix for CORBA guide.

ArtixInstallDir/artix/Version/demos/dotnet/corba_callback/etc

Example 2: Example Callback WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions
 targetNamespace="http://schemas.iona.com/idl/callback.idl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.iona.com/idl/callback.idl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.iona.com/idltypes/callback.idl"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/typemap/corba/
 callback.idl"
 xmlns:references="http://schemas.iona.com/references">
 <types>
 <schema targetNamespace=
 "http://schemas.iona.com/idltypes/callback.idl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 50

http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/corba_ws/index.htm

Implementing Callbacks
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:import schemaLocation=
 "http://schemas.iona.com/references/references.xsd"
 namespace="http://schemas.iona.com/references"/>
 <xsd:element name="ClientCallbackObject.callMe">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="s" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element
 name="CallBackDemoServer.RegisterCallBackObject">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="obj" type="references:Reference"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </schema>
 </types>
 <message name="ClientCallbackObject.callMe">
 <part name="parameters"
 element="xsd1:ClientCallbackObject.callMe"/>
 </message>
 <message name="CallBackDemoServer.RegisterCallBackObject">
 <part name="parameters"
 element="xsd1:CallBackDemoServer.RegisterCallBackObject"/>
 </message>

1 <portType name="ClientCallbackObject">
 <operation name="callMe">
 <input message="tns:ClientCallbackObject.callMe"
 name="callMe"/>
 </operation>
 </portType>

2 <portType name="CallBackDemoServer">
 <operation name="RegisterCallBackObject">
 <input message=
 "tns:CallBackDemoServer.RegisterCallBackObject"
 name="RegisterCallBackObject"/>
 </operation>
 </portType>

Example 2: Example Callback WSDL Contract
51

CHAPTER 4 | Client Callbacks
 <binding name="ClientCallbackObjectCORBABinding"
type="tns:ClientCallbackObject">

 <corba:binding repositoryID="IDL:ClientCallbackObject:1.0"/>
 <operation name="callMe">
 <corba:operation name="callMe">
 <corba:param name="s" mode="in" idltype="corba:string"/>
 </corba:operation>
 <input/>
 </operation>
 </binding>
 <binding name="CallBackDemoServerCORBABinding"

type="tns:CallBackDemoServer">
 <corba:binding repositoryID="IDL:CallBackDemoServer:1.0"/>
 <operation name="RegisterCallBackObject">
 <corba:operation name="RegisterCallBackObject">
 <corba:param name="obj" mode="in"
 idltype="corbatm:ClientCallbackObject"/>
 </corba:operation>
 <input/>
 </operation>
 </binding>

3 <service name="ClientCallbackObjectCORBAService">
 <port name="ClientCallbackObjectCORBAPort"
 binding="tns:ClientCallbackObjectCORBABinding">
 <corba:address location="ior:"/>
 </port>
 </service>

4 <service name="CallBackDemoServerCORBAService">
 <port name="CallBackDemoServerCORBAPort"
 binding="tns:CallBackDemoServerCORBABinding">

5 <corba:address location=
 "file:..\..\etc\callback_corba_service.ior"/>
 </port>
 </service>

 <corba:typeMapping targetNamespace=
 "http://schemas.iona.com/typemap/corba/callback.idl">
 <corba:object name="ClientCallbackObject"
 type="references:Reference"
 repositoryID="IDL:ClientCallbackObject:1.0"
 binding="tns:ClientCallbackObjectCORBABinding"/>
 </corba:typeMapping>
</definitions>

Example 2: Example Callback WSDL Contract
 52

Implementing Callbacks
The WSDL definitions shown in the preceding example, callback.wsdl, can
be explained as follows:

1. The ClientCallbackObject port type is implemented on the client
side. It contains a callMe operation that takes a single string argument.
The server calls back on this operation after it receives a reference to
the client’s service.

2. The CallBackDemoServer port type is implemented on the server side
and supports a single WSDL operation—RegisterCallBackObject.
The RegisterCallBackObject operation takes a single Artix reference
argument, which is used to pass a reference to the client callback
object.

3. Specifies that the client callback object receives messages via IIOP.
The client callback address, ior:, acts as a placeholder for the address
generated dynamically at runtime.

4. Specifies that clients should communicate with the server using IIOP.

5. When the CORBA server process starts, it creates a CORBA object and
writes a reference to the object to a file. The server’s address is
contained in that file—
file:..\..\etc\callback_corba_service.ior.
53

CHAPTER 4 | Client Callbacks
Implementing the Client in C#

Overview This subsection describes how to implement a client based on the WSDL
contract shown “Callback WSDL Contract” on page 50. The client is an
implementation of the ClientObject port type. The following topics are
covered:

• Main client code.

• Client implementation code

Main client code Example 3 shows code contained in the CorbaCallback.cs file. It contains
the C# mainline code that invokes on the server:

Example 3: CorbaCallback.cs

...
1 ChannelServices.RegisterChannel(new ArtixClientChannel());

...
2 callBackSrvObj = (CallbackDemoNameSpace.CallBackDemoServer)

Activator.GetObject(typeof(CallbackDemoNameSpace.CallBackDemo
Server), "artixref:../../etc/callback.wsdl
http://schemas.iona.com/idl/callback.idl
CallBackDemoServerCORBAService CallBackDemoServerCORBAPort");

 // Test the callback, allow 30 secs for it to occur.
3 ClientObjectImpl clientObj = new ClientObjectImpl();

 Console.WriteLine("Registering the Callback object");
4 callBackSrvObj.RegisterCallBackObject(clientObj);

 Thread.Sleep(1000);
 int i = 0;
 while ((!clientObj.called) && (i < 30))
 {
 Thread.Sleep(1000);
 i++;
 }
...
 54

Implementing Callbacks
The code shown in Example 3 can be explained as follows:

1. Registers the Artix remoting channel. This can be specified in an Artix
configuration file rather than programmatically.

2. Creates a proxy of the target object in the client’s address space.
Specifies an Artix reference, which is made up of four parts:

i. The location of the WSDL contract.

ii. The target namespace. Each Web service requires a unique
namespace that makes it possible for client applications to
differentiate between Web services that might use the same
method name. Although the namespace resembles a typical URL,
do not assume that it is viewable in a Web browser—it is merely
a unique identifier.

iii. The name of the service that the clients should use; in this case,
CallBackDemoServerCORBAService.

iv. The name of the port that the client should use; in this case
CallBackDemoServerCORBAPort.

3. Creates an implementation object, clientObj, of the ClientObject
type.

4. Calls the RegisterCallBackObject() operation on the callBackSrvObj
server object, and passes it a reference to its implementation object,
clientObj. This allows the server to subsequently invoke operations on
the client callback object.

Client implementation code Example 4 shows code contained in the ClientObjectImpl.cs file. It
implements the .NET object that receives the server callback:

Example 4: ClientObjectImpl.cs

using System;

1 [System.Web.Services.WebService(Name=
 "ClientCallbackObjectCORBAService",

Namespace="http://schemas.iona.com/idl/callback.idl")]
2 public class ClientObjectImpl :

CallbackDemoNameSpace.ClientCallbackObject
{

3 public System.Boolean called;
 public ClientObjectImpl()
55

CHAPTER 4 | Client Callbacks
1. Specifies Web service meta information for the class:

i. The Name property specifies the name of the service, as defined in
the WSDL contract.

ii. The Namespace property specifies a unique namespace for the
Web service, as defined in the WSDL contract.

2. Specifies the name of the client’s callback implementation class. You
can use any name for this, but you must specify that it inherits from
the CallbackDemoNameSpace.ClientCallbackObject base class, which
is taken from the PortType element in the WSDL contract.

3. It is possible to add operations and properties to the client that are not
defined in the WSDL contract. These can only be used by the client.
Here, for example, the called property lets the client to know when
the server has called back.

4. Implements the callMe() operation defined in the WSDL contract.

 {
 called = false;
 }
 #region ClientCallbackObject Members

4 public void callMe(string s)
 {
 Console.WriteLine("ClientObjectImpl::callMe(): called.");
 Console.WriteLine(" " + s);
 Console.WriteLine("ClientObjectImpl::callMe():
 returning.");
 called = true;
 }
 #endregion
}

Example 4: ClientObjectImpl.cs

Note: You do not need to include a Description property for the Web
service attribute if the client and server port types are defined in the same
WSDL contract. This is normally the case for callbacks. If, however, the
client port type is defined in a different WSDL contract from the server port
type, you must add a Description property that specifies the client WSDL
contract; for example, Description="../../etc/callback.wsdl"
 56

Implementing Callbacks
Implementing the Server

Overview Artix Connect can communicate with any server that supports the transports
and protocols supported by Artix, including SOAP over HTTP, CORBA, IIOP,
BEA Tuxedo, IBM WebSphere MQ (formerly MQSeries), TIBCO Rendezvous,
and the Java Messaging Service. To use Artix Connect, you do not have to
make any changes to such servers. All that Artix Connect requires is the
WSDL contract that defines the server.

In this subsection This section describes the CORBA server that is used in the CORBA Callback
demonstration. The steps used to implement it were:

• Step 1—Implementing the CallBackDemoServer port type

• Step 2—Invoking the callMe() operation on the client

Step 1—Implementing the
CallBackDemoServer port type

An implementation class was provided for the CallBackDemoServer port
type.

The implementation of the RegisterCallBackObject() operation receives a
CORBA object reference from the client. When the client invokes the
RegisterCallBackObject() operation on the server, a CORBA proxy object
for the client’s ClientObject object is created in the Artix Connect bridge.
Artix Connect transforms the .NET object reference in the client code to a
CORBA object reference, which it passes to the CORBA servant.

The server uses the CORBA proxy object to call back to the client. The
implementation of the RegisterCallBackObject() operation stores the
reference to the CORBA proxy for this purpose.

Step 2—Invoking the callMe()
operation on the client

After the CORBA proxy object for the client’s ClientObject object has been
created in the Artix Connect bridge, the server can then invoke the callMe()
operation on this proxy object.
57

CHAPTER 4 | Client Callbacks
 58

CHAPTER 5

Development
Support Tools
The first step in writing a .NET client that can communicate
with an Artix Web service is to obtain .NET metadata, which
describes the target service interfaces and types as .NET
interfaces and types. Artix Connect includes a Web service
wizard that generates the .NET metadata and client starting
point code for you, from within the Visual Studio .NET 2003
development environment. All it requires is the Web service
WSDL contract. In addition, Artix Connect includes a
wsdltodotnet command-line utility that you can use, as an
alternative to the wizard, to generate .NET metadata from a
WSDL contract.

In this chapter This chapter discusses the following topics:

Artix Connect Wizard page 60

wsdltodotnet Command-line Utility page 63
59

CHAPTER 5 | Development Support Tools
Artix Connect Wizard

Overview Artix Connect provides Web service wizard, Artix Connect Wizard, which
you can use to generate .NET metadata, which describes the target service
interfaces and types as .NET interfaces and types. You can use the wizard
from within the Microsoft Visual Studio .NET 2003 development
environment. It enables you to select the WSDL contract for the service to
which you want the client to connect and, as well as producing the .NET
metadata from the WSDL contract, the wizard produces client starting point
code that you can use to develop your client application. The .NET
metadata assembly is stored in a DLL file that is generated, behind the
scenes, by the wsdltodotnet command-line utility.

In this section This section describes the Artix Connect Wizard and points you to an
example of using the wizard. The following topics are covered:

• Main screen

• Fields

• Example of using the Artix Connect Wizard
 60

Artix Connect Wizard
Main screen Figure 24 shows the Artix Connect Wizard main screen:

Fields The Artix Connect Wizard fields are described below. They are populated
automatically when you select the WSDL contract for the service to which
you want your client to connect. The values are taken directly from the
WSDL contract

Figure 24: Artix Connect Wizard

Filename The WSDL filename and location.

Target NameSpace Specifies the target namespace.

Service Specifies the name of the service that the client wants
to use.

Port Specifies the name of the port that the client wants to
use.

PortType Specifies the port type of the server that the client
wants to connect to.
61

CHAPTER 5 | Development Support Tools
Example of using the Artix
Connect Wizard

For an example of using the Artix Connect Wizard, see “Developing .NET
Clients” on page 27.

Note: If the WSDL contract contains more than one service, the wizard
selects the first service. If you want to select a different service, you must
change the values in the generated starting point code. You cannot change
the values in the wizard.
 62

wsdltodotnet Command-line Utility
wsdltodotnet Command-line Utility

Overview Artix Connect provides an wsdltodotnet command-line utility that you can
use to map WSDL types to .NET types. The .NET metadata assembly is
stored in a DLL file that is generated by the wsdltodotnet utility. The
wsdltodotnet command-line utility is provided as an alternative to using the
Artix Connect Wizard and is useful if you want to view the C# files that are
used to generate the type DLL file.

Generating metadata You can generate metadata at the command line using the following
command:

You must specify the location of a valid WSDL contract file, wsdlurl, for the
wsdltodotnet metadata generator to work. You can also supply the
following optional parameters:

Note: If you use the wsdltodotnet command-line utility to generate the
.NET metadata, you must add the Artix.Remoting.dll and the
PortType_Name.dll metadata assembly, which contains the type
information for the server, to your project. You can do this by right-clicking
on your project and selecting the Add References option. Select the
Artix.Remoting.dll from the list that appears and select the generated
PortType_Name.dll by browsing to the location where you have it stored.

wsdltodotnet.exe [-source] [-quiet] [-verbose]
[-namespace <C# NameSpace>] [-name <C# Assembly Name>]
[-v] [-?] [<wsdlurl>]

-source Outputs C# source code as well as an assembly
containing .NET metadata. This is not generated by
default and is not required to build and run the demos. It
is useful if you want to examine the type mapping.

-quiet Specifies quiet mode.

-verbose Specifies verbose mode.

-namespace <C#
NameSpace>

Specifies the namespace to use for the generated code. If
not specified the namespace defaults to
[<FirstPortTypeinWSDLfile>NameSpace]
63

CHAPTER 5 | Development Support Tools
Usage examples Example 1

The following command generates a .NET metadata assembly within a
Greeter.dll file, based on the Greeter port type described in the
hello_world.wsdl file in the Artix Connect Hello World demo. In this case,
the command is being run from the directory in which the WSDL file exists;
that is:
ArtixConnectInstallDir\artix\Version\demos\dotnet\hello_world\etc:

Example 2

The following command generates a .NET metadata assembly called
TestGreeter and the C# source file, Greeter.cs. Again, the command is
being run from the directory in which the WSDL file is stored:

-name <C#
Assembly
Name>

Specifies the name of the assembly containing the .NET
metadata. If not specified, the names defaults to
[<FirstPortTypeinWSDLfile>].

-v Displays the version of the tool.

-? Displays the wsdltodotnet’s usage message.

wsdltodotnet hello_world.wsdl

wsdltodotnet -source -name TestGreeter hello_world.wsdl
 64

CHAPTER 6

Deploying an Artix
Connect
Application
This chapter provides an overview of the deployment model
you can adopt when deploying a distributed application with
Artix Connect. It also describes the steps you must follow to
deploy a distributed Artix Connect application.

In This Chapter This chapter discusses the following topics:

Deployment Model page 66

Deployment Steps page 68
65

CHAPTER 6 | Deploying an Artix Connect Application
Deployment Model

Overview Figure 25 provides a graphical overview of a typical deployment scenario.
Although WebSphere MQ Server is chosen as the server in this example, any
server that uses the transports and protocols supported by Artix can be
used, including SOAP over HTTP, CORBA, IIOP, BEA Tuxedo, TIBCO
Rendezvous, and Java Messaging Service.

Figure 25: Typical Deployment Scenario
 66

Deployment Model
Explanation The deployment scenario overview in Figure 25 can be outlined as follows:

• Each .NET client machine must be running on Windows 2000, NT, XP
or 2003 Server.

• The Artix Connect bridge (that is, Artix.Remoting custom remoting
channel) always runs in-process (that is, within the client process).

• The .NET metadata DLL file is also exposed within the client process.

• Each client machine uses the protocol specified in the WSDL file to
communicate with the back-end server—in this case WebSphere MQ.

• The back-end server process can be running on any platform that is
supported by Artix.
67

CHAPTER 6 | Deploying an Artix Connect Application
Deployment Steps

Overview This section describes the steps involved in deploying an Artix Connect
application.

Required components Four components are required for successful deployment of an Artix Connect
client:

• The .NET client executable.

• The .NET metadata assembly DLL.

• Artix Connect runtime installation.

• WSDL contract.

These must be copied from the development host to every deployment host.

Steps The steps to deploy an Artix Connect client application are:

1. Install the Artix Connect runtime on the deployment host. The
Artix.Remoting assembly must be in the client directory or in the GAC
of the client machine. The Artix Connect installer places the
Artix.Remoting assembly in the GAC by default.

2. Configure Artix Connect. The installer allows you to set the
environment variables that Artix Connect requires during installation. If
you choose not to set them during installation, you can either run the
artix_env.bat script or set them manually later. See “Configuration”
on page 111 for more details.

3. Copy the client executable and the .NET metadata DLL to the
deployment host.

4. Copy the WSDL contract for the service to which you want to connect.

Repeat these steps as necessary for each deployment host on your system.
 68

CHAPTER 7

Introduction to
WSDL
Artix uses WSDL documents to describe services and the data
they use.

In this chapter This chapter discusses the following topics:

WSDL Basics page 70

Abstract Data Type Definitions page 73

Abstract Message Definitions page 76

Abstract Interface Definitions page 79

Mapping to the Concrete Details page 82

Note: This chapter is taken from the Getting Started with Artix guide. For
more information, please refer to that guide.
69

http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm

CHAPTER 7 | Introduction to WSDL
WSDL Basics

Overview Web Services Description Language (WSDL) is an XML document format
used to describe services offered over the Web. WSDL is standardized by
the World Wide Web Consortium (W3C) and is currently at revision 1.1.
You can find the standard on the W3C website, www.w3.org.

Abstract operations The abstract definition of operations and messages is separated from the
concrete data formatting definitions and network protocol details. As a
result, the abstract definitions can be reused and recombined to define
several endpoints. For example, a service can expose identical operations
with slightly different concrete data formats and two different network
addresses. Or, one WSDL document could be used to define several services
that use the same abstract messages.

Port types A portType is a collection of abstract operations that define the actions
provided by an endpoint. When a port type is mapped to a concrete data
format, the result is a concrete representation of the abstract definition, in
the form of an endpoint or service access point.

Concrete details The mapping of a particular port type to a concrete data format results in a
reusable binding. A port is defined by associating a network address with a
reusable binding, and a collection of ports define a service.

Because WSDL was intended to describe services offered over the Web, the
concrete message format is typically SOAP and the network protocol is
typically HTTP. However, WSDL documents can use any concrete message
format and network protocol. In fact, Artix WSDL contracts bind operations
to several data formats and describe the details for a number of network
protocols.

Namespaces and imported
descriptions

WSDL supports the use of XML namespaces defined in the definition
element as a way of specifying predefined extensions and type systems in a
WSDL document. WSDL also supports importing WSDL documents and
fragments for building modular WSDL collections.
 70

http://www.w3.org/TR/wsdl

WSDL Basics
Elements of a WSDL document A WSDL document is made up of the following elements:

• import—allows you to import another WSDL or XSD file

• types—the definition of complex data types based on in-line type
descriptions and/or external definitions such as those in an XML
Schema (XSD).

• message—the abstract definition of the data being communicated.

• operation—the abstract description of an action.

• portType—the set of operations representing an absract endpoint.

• binding—the concrete data format specification for a port type.

• port—the endpoint defined by a binding and a physical address.

• service—a set of ports.

Example Example 5 shows a simple WSDL document. It defines a SOAP over HTTP
service access point that returns the date.

Example 5: Simple WSDL

<?xml version="1.0"?>
<definitions name="DateService"

targetNamespace="urn:dateservice"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="urn:dateservice"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://iona.com/dates/schemas">

 <types>
 <schema targetNamespace="http://iona.com/dates/schemas"

xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="dateType">
 <complexType>
 <all>
 <element name="day" type="xsd:int"/>
 <element name="month" type="xsd:int"/>
 <element name="year" type="xsd:int"/>
 </all>
 </complexType>
 <element>
 </schema>
 </types>
71

CHAPTER 7 | Introduction to WSDL
 <message name="DateResponse">
 <part name="date" element="xsd1:dateType"/>
 </message>
 <portType name="DatePortType">
 <operation name="sendDate">
 <output message="tns:DateResponse" name="sendDate"/>
 </operation>
 </portType>
 <binding name="DatePortBinding" type="tns:DatePortType">
 <soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sendDate">
 <soap:operation soapAction="" style="rpc"/>
 <output name="sendDate">
 <soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:dateservice" use="encoded"/>

 </output>
 </operation>
 </binding>
 <service name="DateService">
 <port binding="tns:DatePortBinding" name="DatePort">
 <soap:address location="http://www.iona.com/DatePort/"/>
 </port>
 </service>
</definitions>

Example 5: Simple WSDL (Continued)
 72

Abstract Data Type Definitions
Abstract Data Type Definitions

Overview Applications typically use data types that are more complex than the
primitive types, like int, defined by most programming languages. WSDL
documents represent these complex data types using a combination of
schema types defined in referenced external XML schema documents and
complex types described in types elements.

Complex type definitions Complex data types are described in a types element. The W3C
specification states the XSD is the preferred canonical type system for a
WSDL document. Therefore, XSD is treated as the intrinsic type system.
Because these data types are abstract descriptions of the data passed over
the wire and not concrete descriptions, there are a few guidelines on using
XSD schemas to represent them:

• Use elements, not attributes.

• Do not use protocol-specific types as base types.

• Define arrays using the SOAP 1.1 array encoding format.

WSDL does allow for the specification and use of alternative type systems
within a document.

Example The structure, personalInfo, defined in Example 6, contains a string, an
int, and an enum. The string and the int both have equivalent XSD types
and do not require special type mapping. The enumerated type
hairColorType, however, does need to be described in XSD.

Example 6: personalInfo

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

73

CHAPTER 7 | Introduction to WSDL
Example 7 shows one mapping of personalInfo into XSD. This mapping is
a direct representation of the data types defined in Example 6.
hairColorType is described using a named simpleType because it does not
have any child elements. personalInfo is defined as an element so that it
can be used in messages later in the contract.

Another way to map personalInfo is to describe hairColorType in-line as
shown in Example 8. WIth this mapping, however, you cannot reuse the
description of hairColorType.

Example 7: XSD type definition for personalInfo

<types>
 <xsd:schema targetNamespace="http://iona.com/personal/schema"

xmlns:xsd1="http://iona.com/personal/schema"
xmlns="http://www.w3.org/2000/10/XMLSchema">

 <simpleType name="hairColorType">
 <restriction base="xsd:string">
 <enumeration value="red"/>
 <enumeration value="brunette"/>
 <enumeration value="blonde"/>
 </restriction>
 </simpleType>
 <element name="personalInfo">
 <complexType>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="hairColor" type="xsd1:hairColorType"/>
 </complexType>
 </element>
 </schema>
</types>

Example 8: Alternate XSD mapping for personalInfo

<types>
 <xsd:schema targetNamespace="http://iona.com/personal/schema"

xmlns:xsd1="http://iona.com/personal/schema"
xmlns="http://www.w3.org/2000/10/XMLSchema">

 <element name="personalInfo">
 <complexType>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 74

Abstract Data Type Definitions
 <element name="hairColor">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="red"/>
 <enumeration value="brunette"/>
 <enumeration value="blonde"/>
 </restriction>
 </simpleType>
 </element>
 </complexType>
 </element>
 </schema>
</types>

Example 8: Alternate XSD mapping for personalInfo (Continued)
75

CHAPTER 7 | Introduction to WSDL
Abstract Message Definitions

Overview WSDL is designed to describe how data is passed over a network. It
describes data that is exchanged between two endpoints in terms of abstract
messages described in message elements. Each abstract message consists of
one or more parts, defined in part elements. These abstract messages
represent the parameters passed by the operations defined by the WSDL
document and are mapped to concrete data formats in the WSDL
document’s binding elements.

Messages and parameter lists For simplicity in describing the data consumed and provided by an
endpoint, WSDL documents allow abstract operations to have only one
input message, the representation of the operation’s incoming parameter
list, and one output message, the representation of the data returned by the
operation.

In the abstract message definition, you cannot directly describe a message
that represents an operation's return value, therefore any return value must
be included in the output message

Messages allow for concrete methods defined in programming languages
like C++ to be mapped to abstract WSDL operations. Each message
contains a number of part elements that represent one element in a
parameter list. Therefore, all of the input parameters for a method call are
defined in one message and all of the output parameters, including the
operation’s return value, would be mapped to another message.

Example For example, imagine a server that stored personal information as defined in
Example 6 on page 73 and provided a method that returned an employee’s
data based on an employee ID number. The method signature for looking up
the data would look similar to Example 9.

Example 9: personalInfo lookup method

personalInfo lookup(long empId)
 76

Abstract Message Definitions
This method signature could be mapped to the WSDL fragment shown in
Example 10.

Message naming Each message in a WSDL document must have a unique name within its
namespace. It is also recommended that you name messages in a way that
shows whether they are input messages (requests) or output messages
(responses).

Message parts Message parts are the formal data elements of the abstract message. Each
part is identified by a name and an attribute specifying its data type. The
data type attributes are listed in Table 1

Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, which is passed by reference or is an in/out, it can be a part
in both the request message and the response message as shown in
Example 11.

Example 10:WSDL Message Definitions

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
</message>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo" />
</message>

Table 1: Part Data Type Attributes

Attribute Description

type="type_name" The datatype of the part is defined by a
simpleType or complexType called type_name

element="elem_name" The datatype of the part is defined by an
element called elem_name.

Example 11:Reused part

<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
</message>
77

CHAPTER 7 | Introduction to WSDL
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
</message>

Example 11:Reused part (Continued)
 78

Abstract Interface Definitions
Abstract Interface Definitions

Overview WSDL portType elements define, in an abstract way, the operations offered
by a service. The operations defined in a port type list the input, output, and
any fault messages used by the service to complete the transaction the
operation describes.

Port types A portType can be thought of as an interface description and in many Web
service implementations there is a direct mapping between port types and
implementation objects. Port types are the abstract unit of a WSDL
document that is mapped into a concrete binding to form the complete
description of what is offered over a port.

Port types are described using the portType element in a WSDL document.
Each port type in a WSDL document must have a unique name, specified
using the name attribute, and is made up of a collection of operations,
described in operation elements. A WSDL document can describe any
number of port types.

Operations Operations, described in operation elements in a WSDL document are an
abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation within a port type must have a unique name, specified using
the name attribute. The name attribute is required to define an operation.

Elements of an operation Each operation is made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.
The elements that can describe an operation are listed in Table 2.

Table 2: Operation Message Elements

Element Description

input Specifies a message that is received from another
endpoint. This element can occur at most once for each
operation.
79

CHAPTER 7 | Introduction to WSDL
An operation is required to have at least one input or output element. The
elements are defined by two attributes listed inTable 3.

It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation’s name. If only one element is used in the operation, the element
name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation
with Request or Response respectively appended to the name.

Return values Because the port type is an abstract definition of the data passed during an
operation, WSDL does not provide for return values to be specified for an
operation. If a method returns a value it will be mapped into the output
message as the last part of that message. The concrete details of how the
message parts are mapped into a physical representation are described in
the binding section.

output Specifies a message that is sent to another endpoint. This
element can occur at most once for each operation.

fault Specifies a message used to communicate an error
condition between the endpoints. This element is not
required and can occur an unlimited number of times.

Table 2: Operation Message Elements

Element Description

Table 3: Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced when
mapping the operation to a concrete data format. The name
must be unique within the enclosing port type.

message Specifies the abstract message that describes the data
being sent or received. The value of the message attribute
must correspond to the name attribute of one of the abstract
messages defined in the WSDL document.
 80

Abstract Interface Definitions
Example For example, in implementing a server that stored personal information in
the structure defined in Example 6 on page 73, you might use an interface
similar to the one shown in Example 12.

This interface could be mapped to the port type in Example 13.

Example 12:personalInfo lookup interface

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

Example 13:personalInfo lookup port type

<types>
...
 <element name="idNotFound" type="idNotFoundType">
 <complexType name="idNotFoundType">
 <sequence>
 <element name="ErrorMsg" type="xsd:string"/>
 <element name="ErrorID" type="xsd:int"/>
 </sequence>
 </complexType>
</types>
<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
</message>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo" />
</message>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound" />
</message>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest" />
 <output name="return" message="personalLookupResponse" />
 <fault name="exception" message="idNotFoundException" />
 </operation>
</portType>
81

CHAPTER 7 | Introduction to WSDL
Mapping to the Concrete Details

Overview The abstract definitions in a WSDL document are intended to be used in
defining the interaction of real applications that have specific network
addresses, use specific network protocols, and expect data in a particular
format. To fully define these real applications, the abstract definitions need
to be mapped to concrete representations of the data passed between the
applications and the details of the network protocols need to be added.

This is done by the WSDL bindings and ports. WSDL binding and port
syntax is not tightly specified by W3C. While there is a specification defining
the mechanism for defining the syntaxes, the syntaxes for bindings other
than SOAP and network transports other than HTTP are not bound to a
W3C specification.

Bindings To define an endpoint that corresponds to a running service, port types are
mapped to bindings which describe how the abstract messages defined for
the port type map to the data format used on the wire. The bindings are
described in binding elements. A binding can map to only one port type,
but a port type can be mapped to any number of bindings.

It is within the bindings that details such as parameter order, concrete data
types, and return values are specified. For example, the parts of a message
can be reordered in a binding to reflect the order required by an RPC call.
Depending on the binding type, you can also identify which of the message
parts, if any, represent the return type of a method.

Services The final piece of information needed to describe how to connect a remote
service is the network information needed to locate it. This information is
defined inside a port element. Each port specifies the address and
configuration information for connecting the application to a network.

Ports are grouped within service elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example all of the ports might be bound
to the same port type, but use different network protocols, like HTTP and
WebSphere MQ.
 82

CHAPTER 8

WSDL to .NET
Mapping
To enable interworking between .NET clients and services
described in WSDL contracts, .NET clients must be presented
with metadata that describes the interfaces exposed by the
WSDL contract. When using .NET Remoting, the .NET types
must use the .NET Common Type System (CTS). This chapter
describes how Artix Connect maps WSDL types to .NET CTS
types.

In this chapter This chapter discusses the following topics:

Mapping a WSDL Contract to CTS page 84

Simple Types page 93

Complex Types page 99

Occurance Constraints page 109

SOAP Arrays page 110
83

CHAPTER 8 | WSDL to .NET Mapping
Mapping a WSDL Contract to CTS

Overview Artix Connect maps WSDL contracts into C# using the mapping described
in this section.

In this section This section contains the following subsections:

Port Types page 85

Operations page 87

Messages page 88

Document/Literal Wrapped Style page 90
 84

Mapping a WSDL Contract to CTS
Port Types

Overview A C# interface is generated for each portType element in an Artix WSDL
contract. The name of the generated interface is taken from the name
attribute of the portType element.

WSDL contract example For example, the WSDL contract shown in Example 14 generates a C#
interface called sportsCenterPortType. which contains one operation,
called update. (see Example 15)

Example 14:Segment of Sports Center WSDL Contract

<message name="scoreRequest">
 <part name="teamName" type="xsd:string" />
</message>
<message name="scoreReply">
 <part name="score" type="xsd:int" />
</message>
<portType name="sportsCenterPortType">
 <operation name="update">
 <input message="scoreRequest" name="request" />
 <ouput message="scoreReply" name="reply" />
 </operation>
</portType>
<binding name="scoreBinding" type="tns:sportsCenterPortType">
...
<service name="sportsService">
 <port name="sportsCenterPort" binding="tns:scoreBinding">
...
85

CHAPTER 8 | WSDL to .NET Mapping
CTS mapping Example 15 shows how the preceding WSDL contract maps to a C#
interface defined using the Common Type System:

Example 15:C# Mapping for Sports Center WSDL Contract

// C#
public interface sportsCenterPortType
{
 System.Int32 update(System.String teamName);
}

 86

Mapping a WSDL Contract to CTS
Operations

Overview Every operation element contained in a WSDL contract generates a C#
method within the interface defined for the operation element's portType.
The generated method's name is taken from the operation element's name
attribute.

WSDL contract example Example 16 shows a WSDL contract that contains an operation called
greetMe:

CTS mapping The WSDL contract shown in Example 16 maps to a C# interface defined
using the Common Type System as follows:

Example 16:WSDL Contract containing greetMe Operation

<wsdl:portType name="Greeter">
 <wsdl:operation name="sayHi">
 <wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
 <wsdl:output message="tns:sayHiResponse"
 name="sayHiResponse"/>
 </wsdl:operation>
 <wsdl:operation name="greetMe">
 <wsdl:input message="tns:greetMeRequest"
 name="greetMeRequest"/>
 <wsdl:output message="tns:greetMeResponse"
 name="greetMeResponse"/>
 </wsdl:operation>
</wsdl:portType>

public interface Greeter {
System.String sayHi();
System.String greetMe(System.String me);
}

87

CHAPTER 8 | WSDL to .NET Mapping
Messages

Overview The message parts of an operation’s input and output elements are mapped
as parameters in the generated method’s signature. The parameter names
are taken from the name attribute of the part element.

The order of the mapped parameters is based on the order in which they
appear in the WSDL contract.

Input message parts are listed before output message parts. Message parts
that are listed in both the input and output messages are considered inout
parameters and are listed according to their position in the input message.

The first part in output messages are mapped to a return types. For the
remaining message parts, each part is mapped to either ref parameter or an
out parameter. If the message part is listed in both the input and output
message, it is mapped to a ref parameter. If the message part is only listed
in the output message, it is mapped to an out parameter.

WSDL contract example For example, the WSDL contract fragment shown in Example 17 maps to a
SimpleTestPortType interface that contains a test_short operation, which
has a return type of String and a parameter list that contains two input
parameters and two output parameters.

Example 17:Segment of WSDL Contract

<message name="test_short">
 <part name="x" element="s:short_x"/>
 <part name="y" element="s:short_y"/>
</message>
<message name="test_short_response">
 <part name="return" element="s:short_return"/>
 <part name="y" element="s:short_y"/>
 <part name="z" element="s:short_z"/>
</message>
 <portType name="SimpleTestPortType">
 <operation name="test_short">
 <input name="test_short" message="tns:test_short"/>
 <output name="test_short_response"

message="tns:test_short_response"/>
 </operation>
</portType>
 88

Mapping a WSDL Contract to CTS
CTS mapping Example 18 shows how the preceding WSDL contract maps to a C#
interface defined using the Common Type System:

Example 18:C# Mapping of SimpleTestPortType

// C#
public interface SimpleTestPortType
{
System.Int16 test_short(System.Int16 x, ref System.Int16 y, out

System.Int16 z);
}

89

CHAPTER 8 | WSDL to .NET Mapping
Document/Literal Wrapped Style

Overview This subsection describes the document/literal wrapped style for defining
WSDL operations and parameters. The document/literal wrapped style is
distinguished by the fact that it uses single-part messages. The single part is
defined as a schema element that contains a sequence of elements, one for
each parameter.

Request message The request message in document/literal wrapped style must obey the
following conventions:

• The single element that wraps the input parameters must have the
same name as the WSDL operation, OperationName.

• The single part must have the name, parameters.

Reply message The reply message in document/literal wrapped style must obey the
following conventions:

• The single element that wraps the output parameters must have the
form, OperationNameResult.

• The single part must have the name, parameters.

You can declare a WSDL operation in document/literal wrapped style as
follows:

• In the schema section of the WSDL contract, define an element (the
input part wrapping element) as a sequence type containing elements
for each of the in and inout parameters.

• In the schema section of the WSDL contract, define another element
(the output part wrapping element) as a sequence type containing
elements for each of the inout and out parameters.

• Declare a single-part input message, including all of the in and inout
parameters for the new operation.

• Declare a single-part output message, including all of the out and inout
parameters for the operation.

• Within the scope of portType, declare a single operation that includes
a single input message and a single output message.
 90

Mapping a WSDL Contract to CTS
Artix Connect automatically detects that document/literal wrapped style is
being used, as long as the WSDL contract obeys the conventions outlined
above. If document/literal wrapped style is detected, Artix Connect unwraps
the operation parameters to generate a normal function signature in C#.

WSDL contract example Example 19 shows how the WSDL contract shown in Example 17 could be
expressed in WSDL using the document/literal style:

Example 19:Segment of Sports Final WSDL Contract using
Document/Literal Style

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <wsdl:types>
 <schema targetNamespace="..."
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="final">
 <complexType>
 <sequence>
 <element name="team1" type="xsd:string"/>
 <element name="team2" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="finalResult">
 <complexType>
 <sequence>
 <element name="winTeam"
 type="xsd:string"/>
 <element name="team1score"
 type="xsd:int"/>
 <element name="team2score"
 type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>
 <message name="final">
 <part name="parameters" element="tns:final"/>
 </message>
 <message name="finalResult">
 <part name="parameters" element="tns:finalResult"/>
 </message>
91

CHAPTER 8 | WSDL to .NET Mapping
CTS mapping Example 20 shows how the preceding WSDL contract maps, for example, to
a C# interface defined using the Common Type System:

 <wsdl:portType name="sportsFinalPortType">
 <wsdl:operation name="final">
 <wsdl:input message="tns:final"
 name="final"/>
 <wsdl:output message="tns:finalResult"
 name="finalResult"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
<binding name="scoreBinding" type="tns:sportsFinalPortType">
...
<service name="sportsService">
 <port name="sportsFinalPort" binding="tns:scoreBinding">
...
</definitions>

Example 19:Segment of Sports Final WSDL Contract using
Document/Literal Style

Example 20:C# Mapping for Sports Final WSDL Contract that uses
Document/Literal style

// C#
public interface sportsFinal
{
 System.String final(System.String team1, System.String team2,
 out System.Int32 team1score,
 out System.Int32 team2score);
}

 92

Simple Types
Simple Types

Overview This section describes the mapping of simple WSDL types to CTS.

In this section This section includes the following subsections:

Atomic Types page 94

Lists page 96

Unsupported Simple Types page 98
93

CHAPTER 8 | WSDL to .NET Mapping
Atomic Types

Table of atomic types Table 4 shows how the XSD schema atomic types map to .NET CTS types:

Table 4: XSD Schema Simple Types Mapping to .NET CTS Types

XSD Schema Type CTS Type

xsd:anySimpleType System.String

xsd:anyURI System.String

xsd:base64Binary System.Byte[]

xsd:boolean System.Boolean

xsd:byte System.SByte

xsd:unsignedByte System.Byte

xsd:dateTime System.DateTime

xsd:double System.Double

xsd:decimal System.Decimal

xsd:float System.Single

xsd:gDay System.String

xsd:gMonth System.String

xsd:gMonthDay System.String

xsd:gYear System.String

xsd:gYearMonth System.String

xsd:hexBinary System.Byte[]

xsd:ID System.String

xsd:int System.Int32

xsd:unsignedInt System.UInt32

xsd:integer System.String
 94

Simple Types
xsd:long System.Int64

xsd:unsignedLong System.UInt64

xsd:negativeInteger System.String

xsd:nonPositiveInteger System.String

xsd:nonNegativeInteger System.String

xsd:positiveInteger System.String

xsd:QName System.Xml.XmlQualifiedName

xsd:short System.Int16

xsd:unsignedShort System.UInt16

xsd:string System.String

xsd:time System.DateTime

Table 4: XSD Schema Simple Types Mapping to .NET CTS Types

XSD Schema Type CTS Type
95

CHAPTER 8 | WSDL to .NET Mapping
Lists

Overview XML schema supports a mechanism for defining data types that are a list of
space separated simple types. Artix Connect maps these lists onto .NET
arrays.

WSDL contract example Example 21 shows a WSDL definition for a list of strings:

Example 21:WSDL for List of Strings

<types>
...
 <simpleType name="StringList">
 <list itemType="xsd:string"/>
 </simpleType>
 <element name="StringList_x" type="tns:StringList"/>
 <element name="StringList_y" type="tns:StringList"/>
 <element name="StringList_z" type="tns:StringList"/>
 <element name="StringList_return" type="tns:StringList"/>
...
</types>
 <message name="test_StringList">
 <part element="tns:StringList_x" name="x"/>
 <part element="tns:StringList_y" name="y"/>
 </message>
 <message name="test_StringList_response">
 <part element="tns:StringList_return" name="return"/>
 <part element="tns:StringList_y" name="y"/>
 <part element="tns:StringList_z" name="z"/>
 </message>
 <portType name="TypeTestPortType">
 <operation name="test_StringList">
 <input message="tns:test_StringList"

name="test_StringList"/>
 <output message="tns:test_StringList_response"

name="test_StringList_response"/>
 </operation>
</portType>
 96

Simple Types
CTS mapping The WSDL contract shown in Example 21 maps to a .NET array as shown
in Example 22:

Example 22: C# Mapping for StringList

//C#:
System.String[] test_StringList(System.String[] x, ref
 System.String[] y, out System.String[] z);
97

CHAPTER 8 | WSDL to .NET Mapping
Unsupported Simple Types

Overview The following simple types are not supported:

• xsd:duration

• xsd:NOTATION

• xsd:IDREF

• xsd:IDREFS

• xsd:ENTITY

• xsd:ENTITIES

• xsd:anySimpleType

• xsd:simpleType/xs:union
 98

Complex Types
Complex Types

Overview This section describes the mapping of complex WSDL types to .NET CTS
types.

In this section This section contains the following subsections:

Sequence and All Complex Types page 100

Arrays page 102

Choice Complex Type page 104

Attributes page 106

Enumerations page 108
99

CHAPTER 8 | WSDL to .NET Mapping
Sequence and All Complex Types

Overview Complex types often describe basic structures that contain a number of
fields or elements. XML schema provides two mechanisms for describing a
structure. One method is to describe the structure inside of a sequence
element. The other is to describe the structure inside of an all element.
Both methods of describing a structure result in the same generated C#
classes.

Difference between sequence and
all

The difference between using a sequence and an all is in how the elements
of the structure are passed on the wire. When a structure is described using
a sequence, the elements are passed on the wire in the exact order that they
are specified in the WSDL contract. When the structure is described using
an all element, the elements of the structure can be passed on the wire in
any order.

Mapping Artix Connect maps WSDL sequence and all complex types to CTS classes
with properties that represent each element.

WSDL contract example Example 23 shows an XSD sequence type with three simple elements:

Example 23:WSDL Definition for a Sequence Complex Type

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SequenceType">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 </complexType>
 ...
</schema>
 100

Complex Types
CTS mapping Example 24 shows the result of mapping the SequenceType type (from the
preceding Example 23) to C# defined using CTS:

Example 24:C# Mapping for SequenceType

// C#
[System.Serializable()]
public class SequenceType {

 private System.Single _varFloat;
 private System.Int32 _varInt;
 private System.String _varString;

 public virtual System.Single varFloat {
 get {
 return this._varFloat;
 }
 set {
 this._varFloat = value;
 }
 }

 public virtual System.Int32 varInt {
 get {
 return this._varInt;
 }
 set {
 this._varInt = value;
 }
 }

 public virtual System.String varString {
 get {
 return this._varString;
 }
 set {
 this._varString = value;
 }
 }
101

CHAPTER 8 | WSDL to .NET Mapping
Arrays

Overview If a sequence only includes one element and this element has minOccurs
and maxOccurs attributes, then Artix Connect generates a class for this
sequence, which includes the array properties. Unlike the other mappings
listed in this chapter, this differs from the .NET WSDL.exe data mapping tool.
The WSDL.exe tool will not generate a class for this sequence—it directly
maps it to an array parameter in the method.

See also SOAP Arrays and Occurance Constraints.

WSDL contract example Example 25 shows an example of such a sequence:

Example 25: WSDL Definition for Sequence with one Element containing
minOccurs and maxOccurs Attributes

<complexType name="UnboundedArray">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item"

type="xsd:string"/>
 </sequence>
</complexType>
<element name="UnboundedArray_x" type="s:UnboundedArray"/>
<element name="UnboundedArray_y" type="s:UnboundedArray"/>
<element name="UnboundedArray_z" type="s:UnboundedArray"/>
<element name="UnboundedArray_return" type="s:UnboundedArray"/>
...
<message name="test_UnboundedArray">
 <part element="s:UnboundedArray_x" name="x"/>
 <part element="s:UnboundedArray_y" name="y"/>
</message>
<message name="test_UnboundedArray_response">
 <part element="s:UnboundedArray_return" name="return"/>
 <part element="s:UnboundedArray_y" name="y"/>
 <part element="s:UnboundedArray_z" name="z"/>
</message>
<portType name="TypeTestPortType">
 <operation name="test_UnboundedArray">
 <input message="tns:test_UnboundedArray"
 name="test_UnboundedArray"/>
 <output message="tns:test_UnboundedArray_response"
 name="test_UnboundedArray_response"/>
 </operation>
 102

Complex Types
CTS mapping Artix Connect maps the WSDL contract shown in Example 25 to C# as
shown in Example 26:

The .NET WSDL.exe tool maps the WSDL contract shown in Example 25 to
C# as shown below:

</portType>

Example 25: WSDL Definition for Sequence with one Element containing
minOccurs and maxOccurs Attributes

Example 26:Artix Connect C# Mapping for Sequence with one Element
containing minOccurs and maxOccurs Attributes

//C#
UnboundedArray test_UnboundedArray(UnboundedArray x, ref
UnboundedArray y, out UnboundedArray z);

public class UnboundedArray {
 private System.String[] _item;
 public virtual System.String[] item {
 get {
 return this._item;
 }
 set {
 this._item = value;
 }
 }
}

public string[] test_UnboundedArray(string[] UnboundedArray_x,
ref string[] UnboundedArray_y, out string[] UnboundedArray_z)
103

CHAPTER 8 | WSDL to .NET Mapping
Choice Complex Type

Overview The .NET CTS has no concept of a choice or union type. As a result, Artix
Connect maps XML schema choice complex types to a generated C# class.
Accessor and modifier functions are defined for each element in the choice
complex type. The choice complex type is equivalent to a C++ union.
Therefore, only one of the elements is accessible at a time.

WSDL contract example Example 27 shows an XSD choice type with three elements:

CTS mapping Example 28 shows the result of mapping the ChoiceType (from the
preceding Example 27) to C#:

Example 27:WSDL Definition for a Choice Complex Type

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="ChoiceType">
 <choice>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </choice>
 </complexType>
 ...
</schema>

Example 28:C# Mapping of ChoiceType

// C#
public class ChoiceType
{
 [System.Xml.Serialization.XmlElement("varFloat",

Type=typeof(System.Single), DataType="float")]
 [System.Xml.Serialization.XmlElement("varInt",

Type=typeof(System.Int32), DataType="int")]
 [System.Xml.Serialization.XmlElement("varString",

Type=typeof(System.String), DataType="string")]
 private object _Item;
 104

Complex Types
 public virtual object Item {
 get {
 return this._Item;
 }
 set {
 this._Item = value;
 }
 }
}

Example 28:C# Mapping of ChoiceType
105

CHAPTER 8 | WSDL to .NET Mapping
Attributes

Overview An attribute is mapped to a field by Artix Connect.

WSDL contract example Example 29 shows a segment of a WSDL contract that includes an
attribute, called "varAttrString":

CTS mapping The WSDL segment shown in Example 29 maps to C# as shown in
Example 30:

Example 29:WSDL Definition including an Attribute

<complexType name="SimpleStruct">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 <attribute name="varAttrString" type="xsd:string"/>
</complexType>

Example 30:C# Mapping for Attribute varAttrString

public class SimpleStruct {
private System.Single _varFloat;
private System.Int32 _varInt;
private System.String _varString;
public System.String varAttrString;
public virtual System.Single varFloat {
 get {
 return this._varFloat;
 }

 set {
 this._varFloat = value;
 }
}
public virtual System.Int32 varInt {
 get {
 return this._varInt;
 }
 106

Complex Types
 set {
 this._varInt = value;
 }
}

public virtual System.String varString {
 get {
 return this._varString;
 }

 set {
 this._varString = value;
 }
 }
}

Example 30:C# Mapping for Attribute varAttrString
107

CHAPTER 8 | WSDL to .NET Mapping
Enumerations

Overview Artix Connect maps enumerations defined in WSDL onto .NET
enumerations.

WSDL contract example Example 31 shows a WSDL definition for an enumeration, DecimalEnum:

CTS mapping This maps to a .NET enumeration as shown in Example 32

Example 31:WSDL Definition of Enumeration

<simpleType name="DecimalEnum">
 <restriction base="xsd:decimal">
 <enumeration value="-10.34"/>
 <enumeration value="11.22"/>
 <enumeration value="14.55"/>
 </restriction>
</simpleType>

Example 32: C# Mapping of DecimalEnum

// C#
[System.Serializable()]
public enum DecimalEnum {

 [System.Xml.Serialization.XmlEnum(Name="-10.34")]
 Item1034,

 [System.Xml.Serialization.XmlEnum(Name="11.22")]
 Item1122,

 [System.Xml.Serialization.XmlEnum(Name="14.55")]
 Item1455,
}

 108

Occurance Constraints
Occurance Constraints

Overview Certain XML schema tags—for example, element, sequence, choice, and
any—can be declared to occur multiple times using occurrence constraints.
The occurrence constraints are specified by assigning integer values (or the
special value unbounded) to the minOccurs and maxOccurs attributes.

Currently, minOccurs and maxOccurs are only supported in sequence
elements. If an element in a sequence has minOccurs and maxOccurs
attributes, Artix Connect generates an array for that element.

WSDL contract example Example 33 shows a WSDL sequence element with minOccurs and
maxOccurs constraints:

CTS mapping Example 33 maps to C# as follows:}

Example 33: WSDL Sequence with Occurrence Constraints

<complexType name="FixedArray">
 <sequence>
 element maxOccurs="3" minOccurs="3" name="item"
 type="xsd:int"/>
 </sequence>
</complexType>

Example 34:C# Mapping of WSDL Sequence with Occurrence Constraints

//C#
public class FixedArray {
 private System.Int32 _item;
 public virtual System.Int32 item {

 get {
 return this._item;
 }

 set {
 this._item = value;
 }
 }
109

CHAPTER 8 | WSDL to .NET Mapping
SOAP Arrays

Overview SOAP arrays have a relatively rich feature set, including support for sparse
arrays and partially transmitted arrays. SOAP arrays map to .NET arrays.

WSDL contract example Example 35 shows a WSDL definition of a SOAP array:

CTS mapping The WSDL shown in Example 35 maps to C# as follows:

Example 35: SOAP Array defined in WSDL

<complexType name="ArrayOfInt">
 <complexContent>
 <restriction base="soap-enc:Array">
 <attribute ref="soap-enc:arrayType" wsdl:arrayType="int[]"/>
 </restriction>
 </complexContent>
</complexType>
...
<message name="echoIntArrayFaultRequest">
 <part name="param" type="ns2:ArrayOfInt"/>
</message>
...
<portType name="SimpleRpcEncPortType">
 <operation name="echoIntArrayFault" parameterOrder="param">
 <input message="tns:echoIntArrayFaultRequest"/>
 <output message="tns:echoFaultResponse"/>
 </operation>
</portType>

//C#
void echoIntArrayFault(System.Int32[] param);
 110

CHAPTER 9

Configuration
This chapter describes the configuration variables that are
specific to the Artix Connect, and their associated values.

In this chapter This chapter discusses the following topics:

Overview page 112

Environment Variables page 113
111

CHAPTER 9 | Configuration
Overview

Configuration domains Artix Connect configuration variables are stored in a configuration domain.
An Artix Connect configuration domain is a collection of configuration
information in an Artix Connect runtime environment. This information
consists of configuration variables and their values. When you install Artix
Connect, you are provided with a default configuration. The default Artix
Connect configuration domain file is located in:

More information See the Deploying and Managaing Artix Solutions guide for more detail on
configuring Artix.

ArtixConnectInstallDir/artix/Version/etc/domains/artix.cfg
 112

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

Environment Variables
Environment Variables

Overview The Artix Connect installer automatically sets the environment variables that
are required by Artix Connect. If, however, you chose not to set the variables
during installation, you must either run the artix_env.bat script or set the
the variables manually.

In this section This section gives details of the variables and how to set them if you have
not already set them while installing the product. The following topics are
covered:

• Artix Connect Environment variables

• Running the artix_env.bat script

• Setting manually
113

CHAPTER 9 | Configuration
Artix Connect Environment
variables

This section describes the environment variables used by Artix Connect.
They include:

• IT_PRODUCT_DIR

• IT_LICENSE_FILE

• IT_CONFIG_DOMAINS_DIR

• IT_DOMAIN_NAME

• PATH

• JETVMPROP

The environment variables are explained in Table 5:

Note: You do not have to manually set your environment variables. You
can configure them during installation, or set them later by running the
provided artix_env.bat script.

Table 5:Artix Connect Environment Variables

Variable Description

IT_PRODUCT_DIR IT_PRODUCT_DIR points to the top level of your
Artix Connect installation. For example, if you
install Artix Connect into the C:\Program
Files\IONA directory, IT_PRODUCT_DIR should
be set to that directory.

Note: If you have other IONA products
installed and you choose not to install them
into the same directory tree, you must reset
IT_PRODUCT_DIR each time you switch IONA
products.

IT_LICENSE_FILE IT_LICENSE_FILE specifies the location of
your Artix Connect license file. The default
value is
ArtixConnectInstallDir\etc\licenses.txt
 114

Environment Variables
IT_DOMAIN_NAME IT_DOMAIN_NAME specifies the name of the
configuration domain used by Artix Connect to
locate its configuration. This variable also
specifies the name of the file in which the
configuration is stored.

It should be set to artix.

IT_CONFIG_DOMAINS_DIR IT_CONFIG_DOMAINS_DIR specifies the
directory where Artix Connect searches for its
configuration file, artix.cfg. It should be set
to:

ArtixConnectInstallDir\artix\Version

\etc\domains

For example:
C:\iona\ArtixConnect\artix\3.0\etc

\domains

PATH The Artix bin directories are added to the
PATH variable to ensure that the proper
configuration files, libraries, and utility
programs are used.

The default bin directories are:

%IT_PRODUCT_DIR%\artix\Version\bin

and

%IT_PRODUCT_DIR%\bin

JETVMPROP JETVMPROP specifies where the Artix Connect
license file is stored. It is required for the Artix
Connect wsdltodotnet metadata generator to
work. The default value is:

-Dcom.iona.artix.LicenseFile=
ArtixConnectInstallDir\etc\licenses.txt

For example:

-Dcom.iona.artix.LicenseFile=
C:\iona\ArtixConnect\etc\licenses.txt

Table 5:Artix Connect Environment Variables

Variable Description
115

CHAPTER 9 | Configuration
Running the artix_env.bat script The Artix Connect installation process creates a script named
artix_env.bat, which captures the information required to set your host’s
environment variables. Running this script configures your system to use
Artix Connect. The script is located in the Artix Connect bin directory:

The artix_env.bat script takes the following arguments. You must specify
-compiler vc71. The rest of the arguments described are optional:

ArtixConnectInstallDir\artix\Version\bin

Table 6: Options to artix_env Script

Option Description

-compiler vc71 Enables support for Microsoft Visual Studio
.NET 2003. You must specify this option.

-preserve Preserves the settings of any environment
variables that have already been set. When
this argument is specified, artix_env.bat
does not overwrite the values of variables
that are already set. This option applies to
the following environment variables:

IT_PRODUCT_DIR
IT_LICENSE_FILE
IT_CONFIG_DOMAINS_DIR
IT_DOMAIN_NAME
CLASSPATH
PATH
JETVMPROP

For more detailed information, see “Artix
Connect Environment variables” on
page 114.

Note: Before using the -preserve option,
always ensure that the existing environment
variable values are set correctly.

-verbose artix_env.bat outputs an audit trail of all
its actions to stdout.
 116

Environment Variables
Setting manually To set the environment variables manually:

1. Right-click on the Windows My Computer desktop icon and select
View system information. The System Properties dialog box appears
as shown in Figure 26:

Figure 26: Selecting My Computer
117

CHAPTER 9 | Configuration
2. Select the Advanced tab and cick Environment Variables, as shown in
Figure 26. The Environment Variables dialog box appears as shown in
Figure 27:

3. Add each of the environment variables, including the correct value for
your installation, as described in “Artix Connect Environment
variables”.

Figure 27: Setting Environment Variables Manually

Note: The variables must be set at a system level for IIS.
 118

Index

Symbols
.NET clients

building and running 41
implementing in C# 38
introduction to 5

.NET metadata
generating from WSDL using GUI 30

-? 64

A
all complex types

WSDL-to.NET mapping 100
arrays

WSDL-to-.NET mapping 102
artix.cfg 112
Artix Connect Wizard 60, 61

fields 61
artix_env.bat script 116

-compiler vc71 116
-preserve 116
-verbose 116

atomic types
WSDL-to.NET mapping 94

attributes
WSDL-to.NET mapping 106

B
bindings 70, 82

supported 4
bridge

introduction to 5

C
C#

writing clients in 38
callbacks 45–57

demonstration 48
implementing 47
implementing the client in C# 54
implementing the server 57
introduction to 46
typical use case 46
WSDL contract 50
choice complex types

WSDL-to.NET mapping 104
clients. See .NET clients
-compiler vc71 116
complex types

WSDL-to-.NET mapping 99
configuration domain 112

D
deployment

required components 68
steps 68
typical scenario 66

document/literal wrapped style
WSDL-to-.NET mapping 90

E
enumerations

WSDL-to.NET mapping 108
environment variables 111–118

IT_CONFIG_DOMAINS_DIR 115
IT_DOMAIN_NAME 115
IT_LICENSE_FILE 114
IT_PRODUCT_DIR 114
JETVMPROP 115
PATH 115
setting 113
setting manually 117

F
Filename 61

G
graphical overview 3

H
Hello World demo

background information 23
building and running 15
client 23
119

INDEX
location of 14
server 23
WSDL file 24

I
IT_CONFIG_DOMAINS_DIR 115
IT_DOMAIN_NAME 115
IT_LICENSE_FILE 114
IT_PRODUCT_DIR 114

J
JETVMPROP 115

L
lists

WSDL-to.NET mapping 96

M
main screen 61
marshalling schemes

supported 4
messages

WSDL-to.NET mapping 88

N
-name 64
-namespace 63

O
occurance contraints

WSDL-to.NET mapping 109
operations 79

WSDL-to-.NET mapping 87

P
PATH 115
Port 61
ports 70
PortType 61
PortTypes

WSDL-to-.NET mapping 85
portTypes 70, 79
-preserve 116
protocols

supported 4
 120
Q
-quiet 63

S
sequence types

WSDL-to.NET mapping 100
servers

implementing for client callbacks 57
Service 61
services 82
simple types

WSDL-to-.NET mapping 93
SOAP arrays

WSDL-to.NET mapping 110
-source 63
system components 5

T
Target NameSpace 61
transports

supported 4

U
unsupported simple types

WSDL-to.NET mapping 98
usage scenarios 6

V
-v 64
-verbose 63, 116
Visual Studio .NET 2003 116

W
W3C 70
Web Services Description Language, see WSDL
World Wide Web Consortium, see W3C
WSDL 69–82
WSDL contract

introduction to 3
WSDL-to-.NET mapping 83–110

all complex types 100
arrays 102
atomic types 94
attributes 106
choice complex types 104
complex types 99
document/literal wrapped style 90

INDEX
enumerations 108
lists 96
massages 88
occurance constraints 109
operations 87
PortTypes 85
sequence types 100
simple types 93
SOAP arrays 110
unsupported simple types 98

wsdltodotnet
arguments 63
examples if using 64
using 63

X
XSD 71, 73
121

INDEX
 122

	List of Figures
	Preface
	Introduction to Artix Connect
	Artix Connect Overview
	Artix Connect System Components
	Artix Connect Usage Scenarios
	.NET Client Invoking on Web service using SOAP over HTTP
	.NET Client Invoking on a CORBA Server using IIOP

	Getting Started
	Introduction
	Running the Hello World Demo
	Background Information

	Developing .NET Clients
	Prerequisites
	Developing .NET Clients
	Generating .NET Metadata from a WSDL file Using the GUI
	Writing a C# Client
	Building and Running the Client

	Client Callbacks
	Introduction to Callbacks
	Implementing Callbacks
	Callback Demonstration
	Callback WSDL Contract
	Implementing the Client in C#
	Implementing the Server

	Development Support Tools
	Artix Connect Wizard
	wsdltodotnet Command-line Utility

	Deploying an Artix Connect Application
	Deployment Model
	Deployment Steps

	Introduction to WSDL
	WSDL Basics
	Abstract Data Type Definitions
	Abstract Message Definitions
	Abstract Interface Definitions
	Mapping to the Concrete Details

	WSDL to .NET Mapping
	Mapping a WSDL Contract to CTS
	Port Types
	Operations
	Messages
	Document/Literal Wrapped Style

	Simple Types
	Atomic Types
	Lists
	Unsupported Simple Types

	Complex Types
	Sequence and All Complex Types
	Arrays
	Choice Complex Type
	Attributes
	Enumerations

	Occurance Constraints
	SOAP Arrays

	Configuration
	Overview
	Environment Variables

	Index

