
Artix ESB
Developing Applications in JavaScript

Version 5.0
July 2007

Making Software Work Together™

Developing Applications in JavaScript
IONA Technologies

Version 5.0

Published 19 Jul 2007
Copyright © 1999-2007 IONA Technologies PLC

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together, Adaptive Runtime Technology, Orbacus,
IONA University, and IONA XMLBus are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice.

Table of Contents
Preface .. vi

What is Covered in This Book .. vi
Who Should Read This Book ... vi
How to Use This Book ... vi

1. Using ECMAScript to Implement Services ... 1
Implementing a Service in JavaScript .. 1

Defining the Metadata ... 1
Implementing the Service Logic .. 2

Implementing a Service in ECMAScript for XML (E4X) ... 3
2. Publishing Services Developed in a Dynamic Language .. 5

Deploying JavaScript Services .. 5
Index ... 8

iii

List of Tables
2.1. Optional Arguments to ServerApp .. 6

iv

List of Examples
1.1. JavaScript Web Service Metadata ... 2
1.2. JavaScript Service Implementation ... 3
1.3. E4X Service Implementation ... 3
2.1. Deploying a Service at a Specified Address ... 6
2.2. Deploying a Group of Services to a Base Address ... 6
2.3. Combining the Command Line Arguments .. 7

v

Preface
What is Covered in This Book

This book describes how to use the Artix ESB APIs to develop applications.

Who Should Read This Book
This book is intended for developers using Artix ESB. It assumes that you have a good understanding of the
following:

• general programming concepts.

• general SOA concepts.

• JavaScript.

• the runtime environment into which you are deploying services.

How to Use This Book
This book is organized so that it follows the general workflow for developing and deploying services with
Artix ESB. It begins with a discussion of implementing your services, progresses through how to set up the
physical details of how your service will be exposed as an endpoint, and concludes by discussing how to
deploy endpoints into Artix ESB.

vi

Chapter 1. Using ECMAScript to
Implement Services

Summary

JavaScript, also known by its formal name ECMAScript, is one of the many dynamic languages that are
growing in prevalence in development environments. It provides a quick and lightweight means of creating
functionality that can be run on a number of platforms. Another strength of JavaScript is that applications
can be quickly rewritten.

Artix ESB provides support for developing services using JavaScript and ECMAScript for XML(E4X). The
pattern used to develop these services are similar to JAX-WS Provider implementations that handle their

requests and responses (either SOAP messages or SOAP payloads) as DOM documents.

Implementing a Service in JavaScript
Writing a service in JavaScript is a two step process:

1. Define the JAX-WS style metadata.

2. Implement the service's business logic.

Defining the Metadata
Java based service providers typically use annotations to specify JAX-WS metadata. Since JavaScript does
not support annotations, you use ordinary JavaScript variables to specify metadata for JavaScript
implementations. Artix ESB treats any JavaScript variable in your code whose name equals or begins with
WebServiceProvider as a JAX-WS metadata variable.

Required properties

Properties of the variable are expected to specify the same metadata that the JAX-WS WebServiceProvider

annotation specifies, including:

• wsdlLocation specifies a URL for the WSDL document that defines the service.

• serviceName specifies the name of the service.

1

• portName specifies the service's port/interface name.

• targetNamespace specifies the target namespace of the service.

Optional properties

The JavaScript WebServiceProvider can also specify the following optional properties:

• ServiceMode indicates whether the specified service handles SOAP payload documents or full SOAP

message documents. This property mimics the JAX-WS ServiceMode annotation. The default value is

PAYLOAD.

• BindingMode indicates the service binding ID URL. The default is the SOAP 1.1/HTTP binding.

• EndpointAddress indicates the URL consumer applications use to communicate with this service. The

property is optional but has no default.

Example

Example 1.1, “JavaScript Web Service Metadata” shows a metadata description for a JavaScript service
implementation.

Example 1.1. JavaScript Web Service Metadata
var WebServiceProvider1 = {

'wsdlLocation': 'file:./wsdl/hello_world.wsdl',
'serviceName': 'SOAPService1',
'portName': 'SoapPort1',
'targetNamespace': 'http://objectweb.org/hello_world_soap_http',

};

Implementing the Service Logic
You implement the service's logic using the required invoke property of the WebServiceProvider

variable. This property is a function that accepts one input argument, a
javax.xml.transform.dom.DOMSource node, and returns a document of the same type. The invoke

function can manipulate either the input or output documents using the regular Java DOMSource class

interface just as a Java application would.

2

Using ECMAScript to Implement
Services

Example

Example 1.2, “JavaScript Service Implementation” shows an invoke function for a simple JavaScript

service implementation.

Example 1.2. JavaScript Service Implementation
WebServiceProvider.invoke = function(document) {

var ns4 = "http://apache.org/hello_world_soap_http/types";
var list = document.getElementsByTagNameNS(ns4, "requestType");
var name = list.item(0).getFirstChild().getNodeValue();
var newDoc = document.getImplementation().createDocument(ns4, "ns4:greetMeResponse",

null);
var el = newDoc.createElementNS(ns4, "ns4:responseType");
var txt = newDoc.createTextNode("Hi " + name);
el.insertBefore(txt, null);
newDoc.getDocumentElement().insertBefore(el, null);
return newDoc;

}

Implementing a Service in ECMAScript for XML (E4X)
Developing a service using E4X is very similar to developing a service using JavaScript. You define the JAX-WS
metadata using the same WebServiceProvider variable in JavaScript. You also implement the service's

logic in the WebServiceProvider variable's invoke property.

The only difference between the two approaches is the type of document the implementation manipulates.
When working with E4X, the implementation receives requests as an E4X XML document and returns a
document of the same type. These documents are manipulated using built-in E4X XML features.

Example
Example 1.3, “E4X Service Implementation” shows an invoke function for a simple E4X service

implementation.

Example 1.3. E4X Service Implementation
var SOAP_ENV = new Namespace('SOAP-ENV',

'http://schemas.xmlsoap.org/soap/envelope/');
var xs = new Namespace('xs', 'http://www.w3.org/2001/XMLSchema');
var xsi = new Namespace('xsi', 'http://www.w3.org/2001/XMLSchema-instance');
var ns = new Namespace('ns', 'http://apache.org/hello_world_soap_http/types');

3

Using ECMAScript to Implement
Services

WebServiceProvider1.invoke = function(req) {
default xml namespace = ns;
var name = (req..requestType)[0];
default xml namespace = SOAP_ENV;
var resp = <SOAP-ENV:Envelope xmlns:SOAP-ENV={SOAP_ENV} xmlns:xs={xs}

xmlns:xsi={xsi}/>;
resp.Body = <Body/>;
resp.Body.ns::greetMeResponse = <ns:greetMeResponse xmlns:ns={ns}/>;
resp.Body.ns::greetMeResponse.ns::responseType = 'Hi ' + name;
return resp;

}

4

Using ECMAScript to Implement
Services

Chapter 2. Publishing Services
Developed in a Dynamic Language

Summary

Most dynamic languages require an interpreter to run. Artix ESB provides a lightweight container for hosting
services developed using dynamic languages.

Exposing a scripted service through Artix ESB's runtime is handled by a lightweight container. The container
loads the required runtime interpreters for the service, runs the code, and connects the application's logic to
the underlying runtime. The scripted services can take advantage of most of the features offered by the
runtime through the container.

Deploying JavaScript Services
Artix ESB provides a lightweight container that allows you to deploy your JavaScript and E4X services and
take advantage of Artix ESB's pluggable transport infrastructure.

Important
JavaScript based services work with SOAP messages. So, while they are multi-transport, they can
only use the SOAP binding.

Deployment command
You deploy them into the container using the following command:

java org.apache.cxf.js.rhino.ServerApp [-a addressURL] [-b baseAddressURL] {

file ...}

The org.apache.cxf.js.rhino.ServerApp class, shorted to ServerApp below, takes one or more

JavaScript files, suffixed with a .js, or E4X files, suffixed with a .jsx, and loads them into the Artix ESB

runtime. If ServerApp locates JAX-WS metadata in the files it creates and registers a JAX-WS

Provider<DOMSource> object for each service. The Provider<DOMSource> object delegates the

processing of requests to the implementation stored in the associated file. ServerApp can also take the

name of a directory containing JavaScript and E4X files. It will load all of the scripts that contain JAX-WS
metadata, load them, and publish a service endpoint for each one.

5

ServerApp has three optional arguments:

Table 2.1. Optional Arguments to ServerApp

DescriptionArgument

Specifies the address at which ServerApp publishes the service endpoint

implementation found in the script file following the URL.

-a addressURL

Specifies the base address used by ServerApp when publishing the service

endpoints defined by the script files. The full address for the service endpoints is
formed by appending the service's port name to the base address.

-b baseAddressURL

Specifies that ServerApp is to run in verbose mode.-v

The optional arguments take precedence over any addressing information provided in EndpointAddress

properties that appear in the JAX-WS metadata.

Examples
For example, if you deployed a JavaScript service using the command shown in Example 2.1, “Deploying
a Service at a Specified Address”, your service would be deployed at
http://cxf.apache.org/goodness.

Example 2.1. Deploying a Service at a Specified Address

java org.apache.cxf.js.rhino.ServerApp -a http://cxf.apache.org/goodness

hello_world.jsx

To deploy a number of services using a common base URL you could use the command shown in
Example 2.2, “Deploying a Group of Services to a Base Address”. If the service defined by
hello_world.jsx had port name of helloWorld, ServerApp would publish it at

http://cxf.apache.org/helloWorld. If the service defined by goodbye_moon.js had a port

name of blue, ServerApp would be published at http://cxf.apache.org/blue.

Example 2.2. Deploying a Group of Services to a Base Address

java org.apache.cxf.js.rhino.ServerApp -b http://cxf.apache.org hello_world.jsx

goodbye_moon.js

6

Publishing Services Developed in a
Dynamic Language

You can also combine the arguments as shown in Example 2.3, “Combining the Command Line Arguments”.
Your service would be deployed at http://cxf.apache.org/goodness. ServerApp would publish

three service endpoints:

Example 2.3. Combining the Command Line Arguments

java org.apache.cxf.js.rhino.ServerApp -b http://cxf.apache.org hello_world.jsx

goodbye_moon.js -a http://cxf.apache.org/goodness chocolate.jsx

1. The service defined by hello_world.jsx at http://cxf.apache.org/helloWorld.

2. The service defined by goodbye_moon.js at http://cxf.apache.org/blue.

3. The service defined by chocolate.jsx at http://cxf.apache.org/goodness.

7

Publishing Services Developed in a
Dynamic Language

Index
B
BindingMode property, 2

D
deploying, 5
DOMSource, 2

E
endpoint

specifying the address, 2
EndpointAddress property, 2

I
invoke(), 2, 3

J
JAX-WS

WebServiceProvider annotation, 1

M
message manipulation, 2, 3

P
portName property, 2

S
ServerApp, 5
service metadata, 1

optional, 2
reqired, 1

ServiceMode property, 2
serviceName property, 1

T
targetNamespace property, 2

W
WebServiceProvider variable, 1
wsdlLocation property, 1

X
XML documents, 3

8

	Developing Applications in JavaScript
	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book

	Chapter 1. Using ECMAScript to Implement Services
	Implementing a Service in JavaScript
	Defining the Metadata
	Implementing the Service Logic

	Implementing a Service in ECMAScript for XML (E4X)

	Chapter 2. Publishing Services Developed in a Dynamic Language
	Deploying JavaScript Services

	Index

