
Artix ESB
Developing Artix Applications with JAX-WS

Version 5.0
July 2007

Making Software Work Together™

Developing Artix Applications with JAX-WS
IONA Technologies

Version 5.0

Published 04 Oct 2007
Copyright © 1999-2007 IONA Technologies PLC

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together, Adaptive Runtime Technology, Orbacus,
IONA University, and IONA XMLBus are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
Preface ... 13

What is Covered in This Book ... 14
Who Should Read This Book .. 15
How to Use This Book .. 16

I. Basic Programming Tasks ... 17
Starting from Java Code .. 21

Service Enabling a Java Class ... 22
Creating the SEI .. 23
Annotating the Code ... 26
Generating WSDL .. 38

Developing a Consumer without a WSDL Contract ... 40
Creating a Service Object ... 41
Adding a Port to a Service .. 44
Getting a Proxy for an Endpoint ... 46
Implementing the Consumer's Business Logic ... 48

Starting from a WSDL Contract .. 51
A WSDL Contract .. 52
Developing a Service Starting from a WSDL Contract .. 55

Generating the Starting Point Code ... 56
Implementing the Service Provider ... 59

Developing a Consumer Starting from a WSDL Contract .. 61
Generating the Stub Code .. 62
Implementing a Consumer ... 64

Publishing a Service .. 69
Generating a Server Mainline .. 70
Writing a Server Mainline ... 71

Developing RESTful Services ... 75
Introduction to RESTful Services .. 76
Using Automatic REST Mappings ... 80
Using Java REST Annotations ... 83
Publishing a RESTful Service .. 87

II. Advanced Programming Tasks .. 91
Developing Asynchronous Applications ... 95

WSDL for Asynchronous Examples ... 96
Generating the Stub Code .. 98
Implementing an Asynchronous Client with the Polling Approach 101
Implementing an Asynchronous Client with the Callback Approach 105

Using Raw XML Messages ... 109
Using XML in a Consumer with the Dispatch Interface ... 110

Usage Modes .. 111
Data Types ... 113

3

Working with Dispatch Objects ... 116

Using XML in a Service Provider with the Provider Interface .. 123

Messaging Modes .. 124
Data Types ... 126
Implementing a Provider Object ... 128

Working with Contexts .. 133
Understanding Contexts ... 134
Working with Contexts in a Service Implementation .. 138
Working with Contexts in a Consumer Implementation .. 146
Working with JMS Message Properties .. 150

Inspecting JMS Message Headers .. 151
Inspecting the Message Header Properties .. 153
Setting JMS Properties .. 155

Index .. 159

4

Developing Artix Applications with
JAX-WS

List of Figures
1. Message Contexts and Message Processing Path 135

5

6

List of Tables
1. @WebService Properties ... 27

2. @SOAPBinding Properties .. 30

3. @WebMethod Properties ... 32

4. @RequestWrapper Properties .. 32

5. @ResponseWrapper Properties .. 33

6. @WebFault Properties ... 34

7. @WebParam Properties ... 35

8. @WebResult Properties ... 36

9. Generated Classes for a Service Provider 57
10. Parameters for createDispatch() 117

11. @WebServiceProvider Properties 129

12. Properties Available in the Service Implementation Context 141
13. Consumer Context Properties ... 149
14. JMS Header Properties .. 153
15. Settable JMS Header Properties ... 155

7

8

List of Examples
1. Simple SEI ... 24
2. Simple Implementation Class .. 25
3. Interface with the @WebService Annotation 28

4. Annotated Service Implementation Class 29
5. Specifying an RPC/LITERAL SOAP Binding with the @SOAPBinding

Annotation ... 31
6. SEI with Annotated Methods ... 34
7. Fully Annotated SEI .. 37
8. Generated WSDL from an SEI ... 38
9. Service create() Methods ... 41

10. Creating a Service Object .. 42

11. The addPort() Method ... 44

12. Adding a Port to a Service Object .. 45

13. The getPort() Method ... 46

14. Getting a Service Proxy .. 46
15. Consumer Implemented without a WSDL Contract 48
16. HelloWorld WSDL Contract ... 52
17. Implementation of the Greeter Service 59
18. Outline of a Generated Service Class 64
19. The Greeter Service Endpoint Interface 65
20. Consumer Implementation Code .. 66
21. Generated Server Mainline ... 70
22. Custom Server Mainline ... 73
23. Invalid REST Request .. 78
24. Wrapped REST Request ... 78
25. Widget Catalog CRUD Class ... 80
26. URI Template Syntax .. 84
27. Using a URI Template ... 84
28. SEI for a Widget Ordering Service ... 84
29. WidgetOrdering with REST Annotations 85

30. Setting a Server Factory's Service Class 87
31. Setting Wrapped Mode .. 87
32. Selecting the REST Binding .. 88
33. Setting the Base URI .. 88
34. Setting the Service Invoker ... 88
35. Publishing the WidgetCatalog Service as a RESTful Endpoint 88
36. WSDL Contract for Asynchronous Example 96
37. Template for an Asynchronous Binding Declaration 98

9

38. Service Endpoint Interface with Methods for Asynchronous
Invocations .. 99
39. Non-Blocking Polling Approach for an Asynchronous Operation
Call .. 101
40. Blocking Polling Approach for an Asynchronous Operation
Call .. 103
41. The javax.xml.ws.AsyncHandler Interface 106

42. Callback Implementation Class .. 106
43. Callback Approach for an Asynchronous Operation Call 107
44. The createDispatch() Method 116

45. Creating a Dispatch Object .. 117

46. The Dispatch.invoke() Method 119

47. Making a Synchronous Invocation Using a Dispatch Object 119

48. The Dispatch.invokeAsync() Method for Polling 120

49. The Dispatch.invokeAsync() Method Using a

Callback .. 120
50. The Dispatch.invokeOneWay() Method 121

51. Making a One Way Invocation Using a Dispatch Object 121

52. Specifying that a Provider Implementation Uses Message

Mode .. 124
53. Specifying that a Provider Implementation Uses Payload

Mode .. 125
54. Provider<SOAPMessage> Implementation 130

55. Provider<DOMSource> Implementation 132

56. The MessageContext.setScope() Method 136

57. Obtaining a Context Object in a Service Implementation 139
58. The MessageContext.get() Method 139

59. Getting a Property from a Service's Message Context 140
60. The MessageContext.put() Method 140

61. Setting a Property in a Service's Message Context 141
62. The getRequestContext() Method 147

63. The getResponseContext() Method 147

64. Getting a Consumer's Request Context 147
65. Reading a Response Context Property 148
66. Setting a Request Context Property 148
67. Getting JMS Message Headers in a Service Implementation 151
68. Getting the JMS Headers from a Consumer Response Header 152

10

Developing Artix Applications with
JAX-WS

69. Reading the JMS Header Properties 153
70. Setting JMS Properties using the Request Context 156

11

Developing Artix Applications with
JAX-WS

12

Preface

Table of Contents
What is Covered in This Book ... 14
Who Should Read This Book .. 15
How to Use This Book .. 16

13

What is Covered in This Book
This book describes how to use the JAX-WS 2.0 APIs to develop applications
with Artix ESB.

14

What is Covered in This Book

Who Should Read This Book
This book is intended for developers using Artix ESB. It assumes that you
have a good understanding of the following:

• general programming concepts.

• general SOA concepts.

• Java 5.

• the runtime environment into which you are deploying services.

15

Who Should Read This Book

How to Use This Book
This book is organized into the following chapters:

• Starting from Java Code describes how to develop SOA applications with
out using WSDL documents.

• Starting from aWSDL Contract describes how to develop SOA applications
using a WSDL document as a starting point.

• Publishing a Service describes how to publish a service using a stand alone
Java application.

• Developing Asynchronous Applications describes how to develop service
consumers that can interact with service providers asynchronously.

• Using Raw XML Messages describes how to use the Dispatch and

Provider interfaces to develop applications that work with raw XML

instead of JAXB object.

• Working with Contexts describes how to manipulate message and transport
properties programaticaly.

• Developing RESTful Services describes how to use the Artix ESB API's
annotations to create RESTful services.

16

How to Use This Book

Part I. Basic Programming Tasks
Summary

The JAX-WS programming model makes it easy to develop service providers and consumers. You can either start
directly with Java code, or you can start from WSDL documents. This part guides you through the steps for
creating and publishing endpoints. It also inclludes a chapter on developing services that follow REST principles.

Table of Contents
Starting from Java Code .. 21

Service Enabling a Java Class ... 22
Creating the SEI .. 23
Annotating the Code ... 26
Generating WSDL .. 38

Developing a Consumer without a WSDL Contract ... 40
Creating a Service Object ... 41
Adding a Port to a Service .. 44
Getting a Proxy for an Endpoint ... 46
Implementing the Consumer's Business Logic ... 48

Starting from a WSDL Contract .. 51
A WSDL Contract .. 52
Developing a Service Starting from a WSDL Contract .. 55

Generating the Starting Point Code ... 56
Implementing the Service Provider ... 59

Developing a Consumer Starting from a WSDL Contract .. 61
Generating the Stub Code .. 62
Implementing a Consumer ... 64

Publishing a Service .. 69
Generating a Server Mainline .. 70
Writing a Server Mainline ... 71

Developing RESTful Services ... 75
Introduction to RESTful Services .. 76
Using Automatic REST Mappings ... 80
Using Java REST Annotations ... 83
Publishing a RESTful Service .. 87

19

20

Starting from Java Code
Summary

One of the advantages of JAX-WS is that it does not require you to start
with a WSDL document that defines their service. You can start with Java
code that defines the features you want to expose as services. The code may
be a class, or classes, from a legacy application that is being upgraded. It
may also be a class that is currently being used as part of a non-distributed
application and implements features that you want to use in a distributed
manner. You annotate the Java code and generate a WSDL document from
the annotated code. If you do not wish to work with WSDL at all, you can
create the entire application without ever generating WSDL.

Table of Contents
Service Enabling a Java Class ... 22

Creating the SEI .. 23
Annotating the Code ... 26
Generating WSDL .. 38

Developing a Consumer without a WSDL Contract ... 40
Creating a Service Object ... 41
Adding a Port to a Service .. 44
Getting a Proxy for an Endpoint ... 46
Implementing the Consumer's Business Logic ... 48

21

Service Enabling a Java Class

Table of Contents
Creating the SEI .. 23
Annotating the Code ... 26
Generating WSDL .. 38

To create a service starting from Java you need to do the following:

1. Create a Service Endpoint Interface (SEI) that defines the methods you
wish to expose as a service.

Tip
You can work directly from a Java class, but working from an
interface is the recommended approach. Interfaces are better
for sharing with the developers who will be responsible for
developing the applications consuming your service. The
interface is smaller and does not provide any of the service's
implementation details.

2. Add the required annotations to your code.

3. Generate the WSDL contract for your service.

Tip
If you intend to use the SEI as the service's contract, it is not
necessary to generate a WSDL contract.

4. Publish the service as a service provider.

22

Service Enabling a Java Class

Creating the SEI
The service endpoint interface (SEI) is the piece of Java code that is shared
between a service implementation and the consumers that make requests on
it. It defines the methods implemented by the service and provides details
about how the service will be exposed as an endpoint. When starting with a
WSDL contract, the SEI is generated by the code generators. However, when
starting from Java, it is the up to a developer to create the SEI.

There are two basic patterns for creating an SEI:

• Green field development

You are developing a new service from the ground up. When starting fresh,
it is best to start by creating the SEI first. You can then distribute the SEI
to any developers that are responsible for implementing the service providers
and consumers that use the SEI.

Note
The recommended way to do green field service development is
to start by creating a WSDL contract that defines the service and
its interfaces. See Starting from a WSDL Contract.

• Service enablement

In this pattern, you typically have an existing set of functionality that is
implemented as a Java class and you want to service enable it. This means
that you will need to do two things:

1. Create an SEI that contains only the operations that are going to be
exposed as part of the service.

2. Modify the existing Java class so that it implements the SEI.

23

Creating the SEI

Note
You can add the JAX-WS annotations to a Java class, but that is
not recommended.

Writing the interface
The SEI is a standard Java interface. It defines a set of methods that a class
will implement. It can also define a number of member fields and constants
to which the implementing class has access.

In the case of an SEI the methods defined are intended to be mapped to
operations exposed by a service. The SEI corresponds to a wsdl:portType

element. The methods defined by the SEI correspond to wsdl:operation

elements in the wsdl:portType element.

Tip
JAX-WS defines an annotation that allows you to specify methods
that are not exposed as part of a service. However, the best practice
is to leave such methods out of the SEI.

Example 1, “Simple SEI” shows a simple SEI for a stock updating service.

Example 1. Simple SEI
package com.iona.demo;

public interface quoteReporter
{
public Quote getQuote(String ticker);

}

Implementing the interface
Because the SEI is a standard Java interface, the class that implements it is
just a standard Java class. If you started with a Java class you will need to
modify it to implement the interface. If you are starting fresh, the
implementation class will need to implement the SEI.

Example 2, “Simple Implementation Class” shows a class for implementing
the interface in Example 1, “Simple SEI”.

24

Creating the SEI

Example 2. Simple Implementation Class
package com.iona.demo;

import java.util.*;

public class stockQuoteReporter implements quoteReporter
{
...

public Quote getQuote(String ticker)
{
Quote retVal = new Quote();
retVal.setID(ticker);
retVal.setVal(Board.check(ticker));1

Date retDate = new Date();
retVal.setTime(retDate.toString());
return(retVal);

}
}

1Board is an assumed class whose implementation is left to the reader.

25

Creating the SEI

Annotating the Code

Table of Contents

JAX-WS relies on the annotation feature of Java 5. The JAX-WS annotations
are used to specify the metadata used to map the SEI to a fully specified
service definition. Among the information provided in the annotations are the
following:

• The target namespace for the service.

• The name of the class used to hold the request message.

• The name of the class used to hold the response message.

• If an operation is a one way operation.

• The binding style the service uses.

• The name of the class used for any custom exceptions.

• The namespaces under which the types used by the service are defined.

Tip
Most of the annotations have sensible defaults and do not need to
be specified. However, the more information you provide in the
annotations, the better defined your service definition. A solid service
definition increases the likelihood that all parts of a distributed
application will work together.

Required Annotations

In order to create a service from Java code you are only required to add one
annotation to your code. You must add the @WebService() annotation on

both the SEI and the implementation class.

The @WebService annotation
The @WebService annotation is defined by the javax.jws.WebService

interface and it is placed on an interface or a class that is intended to be used
as a service. @WebService has the following properties:

26

Annotating the Code

Table 1. @WebService Properties

DescriptionProperty

Specifies the name of the service interface. This property is mapped to the name attribute of

the wsdl:portType element that defines the service's interface in a WSDL contract. The

default is to append PortType to the name of the implementation class. a

name

Specifies the target namespace under which the service is defined. If this property is not
specified, the target namespace is derived from the package name.

targetNamespace

Specifies the name of the published service. This property is mapped to the name attribute of

the wsdl:service element that defines the published service. The default is to use the name

of the service's implementation class. a

serviceName

Specifies the URI at which the service's WSDL contract is stored. The default is the URI at
which the service is deployed.

wsdlLocation

Specifies the full name of the SEI that the implementation class implements. This property is
only used when the attribute is used on a service implementation class.

endpointInterface

Specifies the name of the endpoint at which the service is published. This property is mapped
to the name attribute of the wsdl:port element that specifies the endpoint details for a

portName

published service. The default is the append Port to the name of the service's implementation

class. a

aWhen you generate WSDL from an SEI the interface's name is used in place of the implementation class' name.

Tip
You do not need to provide values for any of the @WebService

annotation's properties. However, it is recommended that you provide
as much information as you can.

Annotating the SEI
The SEI requires that you add the @WebService annotation. Since the SEI

is the contract that defines the service, you should specify as much detail as
you can about the service in the @WebService annotation's properties.

Example 3, “Interface with the @WebService Annotation” shows the

interface defined in Example 1, “Simple SEI” with the @WebService

annotation.

27

Example 3. Interface with the @WebService Annotation

package com.iona.demo;

import javax.jws.*;

@WebService(name="quoteUpdater", ❶
targetNamespace="http:\\demos.iona.com", ❷

serviceName="updateQuoteService", ❸
wsdlLocation="http:\\demos.iona.com\quoteExampleService?wsdl", ❹
portName="updateQuotePort") ❺

public interface quoteReporter
{
public Quote getQuote(String ticker);

}

The @WebService annotation in Example 3, “Interface with the

@WebService Annotation” does the following:

❶ Specifies that the value of the name attribute of the wsdl:portType

element defining the service interface is quoteUpdater.

❷ Specifies that the target namespace of the service is
http:\\demos.iona.com.

❸ Specifies that the value of the name of the wsdl:service element

defining the published service is updateQuoteService.

❹ Specifies that the service will publish its WSDL contract at
http:\\demos.iona.com\quoteExampleService?wsdl.

❺ Specifies that the value of the name attribute of the wsdl:port element

defining the endpoint exposing the service is updateQuotePort.

Annotating the service
implementation In addition to annotating the SEI with the @WebService annotation, you

also have to annotate the service implementation class with the
@WebService annotation. When adding the annotation to the service

implementation class you only need to specify the endpointInterface property.
As shown in Example 4, “Annotated Service Implementation Class” the
property needs to be set to the full name of the SEI.

28

Example 4. Annotated Service Implementation Class
package org.eric.demo;

import javax.jws.*;

@WebService(endpointInterface="com.iona.demo.quoteReporter")
public class stockQuoteReporter implements quoteReporter
{
public Quote getQuote(String ticker)
{
...
}

}

Optional Annotations

While the @WebService annotation is sufficient for service enabling a Java

interface or a Java class, it does not provide a lot of information about how
the service will be exposed as a service provider. The JAX-WS programming
model uses a number of optional annotations for adding details about your
service, such as the binding it uses, to the Java code. You add these
annotations to the service's SEI.

Tip
The more details you provide in the SEI the easier it will be for
developers to implement applications that can use the functionality
it defines. It will also provide for better generated WSDL contracts.

Defining the Binding Properties with Annotations

If you are using a SOAP binding for your service, you can use JAX-WS
annotations to specify a number of the bindings properties. These properties
correspond directly to the properties you can specify in a service's WSDL
contract.

The @SOAPBinding annotation
The @SOAPBinding annotation is defined by the

javax.jws.soap.SOAPBinding interface. It provides details about the

SOAP binding used by the service when it is deployed. If the @SOAPBinding

annotation is not specified, a service is published using a wrapped doc/literal
SOAP binding.

29

You can put the @SOAPBinding annotation on the SEI and any of the SEI's

methods. When it is used on a method, setting of the method's
@SOAPBinding annotation take precedent.

Table 2, “@SOAPBinding Properties” shows the properties for the

@SOAPBinding annotation.

Table 2. @SOAPBinding Properties

DescriptionValuesProperty

Specifies the style of the SOAP message. If RPC style is specified,

each message part within the SOAP body is a parameter or

Style.DOCUMENT (default)

Style.RPC

style

return value and will appear inside a wrapper element within
the soap:body element. The message parts within the wrapper

element correspond to operation parameters and must appear
in the same order as the parameters in the operation. If
DOCUMENT style is specified, the contents of the SOAP body

must be a valid XML document, but its form is not as tightly
constrained.

Specifies how the data of the SOAP message is streamed.Use.LITERAL (default)use

Use.ENCODED

Specifies how the method parameters, which correspond to
message parts in a WSDL contract, are placed into the SOAP

ParameterStyle.BARE

ParameterStyle.WRAPPED

(default)

parameterStylea

message body. A parameter style of BARE means that each

parameter is placed into the message body as a child element
of the message root. A parameter style of WRAPPED means that

all of the input parameters are wrapped into a single element
on a request message and that all of the output parameters are
wrapped into a single element in the response message.

aIf you set the style to RPC you must use the WRAPPED parameter style.

Example 5, “Specifying an RPC/LITERAL SOAP Binding with the
@SOAPBinding Annotation” shows an SEI that uses rpc/literal SOAP

messages.

30

Example 5. Specifying an RPC/LITERAL SOAP Binding with
the @SOAPBinding Annotation

package org.eric.demo;

import javax.jws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;

@WebService(name="quoteReporter")
@SOAPBinding(style=Style.RPC, use=Use.LITERAL)
public interface quoteReporter
{
...

}

Defining Operation Properties with Annotations

When the runtime maps your Java method definitions into XML operation
definitions it fills in details such as:

• what the exchanged messages look like in XML.

• if the message can be optimized as a one way message.

• the namespaces where the messages are defined.

The @WebMethod annotation
The @WebMethod annotation is defined by the javax.jws.WebMethod

interface. It is placed on the methods in the SEI. The @WebMethod annotation

provides the information that is normally represented in the
wsdl:operation element describing the operation to which the method

is associated.

Table 3, “@WebMethod Properties” describes the properties of the

@WebMethod annotation.

31

Table 3. @WebMethod Properties

DescriptionProperty

Specifies the value of the associated wsdl:operation

element's name. The default value is the name of the

method.

operationName

Specifies the value of the soapAction attribute of the

soap:operation element generated for the method. The

default value is an empty string.

action

Specifies if the method should be excluded from the service
interface. The default is false.

exclude

The @RequestWrapper
annotation The @RequestWrapper annotation is defined by the

javax.xml.ws.RequestWrapper interface. It is placed on the methods

in the SEI. As the name implies, @RequestWrapper specifies the Java class

that implements the wrapper bean for the method parameters that are included
in the request message sent in a remote invocation. It is also used to specify
the element names, and namespaces, used by the runtime when marshalling
and unmarshalling the request messages.

Table 4, “@RequestWrapper Properties” describes the properties of the

@RequestWrapper annotation.

Table 4. @RequestWrapper Properties

DescriptionProperty

Specifies the local name of the wrapper element in the
XML representation of the request message. The default

localName

value is the name of the method or the value of the
@WebMethod annotation's operationName property.

Specifies the namespace under which the XML wrapper
element is defined. The default value is the target
namespace of the SEI.

targetNamespace

Specifies the full name of the Java class that implements
the wrapper element.

className

32

Tip
Only the className property is required.

The @ResponseWrapper
annotation The @ResponseWrapper annotation is defined by the

javax.xml.ws.ResponseWrapper interface. It is placed on the methods

in the SEI. As the name implies, @ResponseWrapper specifies the Java

class that implements the wrapper bean for the method parameters that are
included in the response message sent in a remote invocation. It is also used
to specify the element names, and namespaces, used by the runtime when
marshalling and unmarshalling the response messages.

Table 5, “@ResponseWrapper Properties” describes the properties of the

@ResponseWrapper annotation.

Table 5. @ResponseWrapper Properties

DescriptionProperty

Specifies the local name of the wrapper element in the
XML representation of the response message. The default

localName

value is the name of the method with Response

appended or the value of the @WebMethod annotation's

operationName property with Response appended.

Specifies the namespace under which the XML wrapper
element is defined. The default value is the target
namespace of the SEI.

targetNamespace

Specifies the full name of the Java class that implements
the wrapper element.

className

Tip
Only the className property is required.

The @WebFault annotation
The @WebFault annotation is defined by the javax.xml.ws.WebFault

interface. It is placed on exceptions that are thrown by your SEI. The
@WebFault annotation is used to map the Java exception to a wsdl:fault

33

element. This information is used to marshall the exceptions into a
representation that can be processed by both the service and its consumers.

Table 6, “@WebFault Properties” describes the properties of the @WebFault

annotation.

Table 6. @WebFault Properties

DescriptionProperty

Specifies the local name of the fault element.name

Specifies the namespace under which the fault element
is defined. The default value is the target namespace of
the SEI.

targetNamespace

Specifies the full name of the Java class that implements
the exception.

faultName

Important
The name property is required.

The @OneWay annotation
The @OneWay annotation is defined by the javax.jws.OneWay interface.

It is placed on the methods in the SEI that will not require a response from
the service. The @OneWay annotation tells the run time that it can optimize

the execution of the method by not waiting for a response and not reserving
any resources to process a response.

Example
Example 6, “SEI with Annotated Methods” shows an SEI whose methods
are annotated.

Example 6. SEI with Annotated Methods
package com.iona.demo;

import javax.jws.*;
import javax.xml.ws.*;

@WebService(name="quoteReporter")
public interface quoteReporter
{
@WebMethod(operationName="getStockQuote")

34

@RequestWrapper(targetNamespace="http://demo.iona.com/types",
className="java.lang.String")

@ResponseWrapper(targetNamespace="http://demo.iona.com/types",
className="org.eric.demo.Quote")

public Quote getQuote(String ticker);
}

Defining Parameter Properties with Annotations

The method parameters in the SEI coresspond to the wsdl:message

elements and their wsdl:part elements. JAX-WS provides annotations that

allow you to describe the wsdl:part elements that are generated for the

method parameters.

The @WebParam annotation
The @WebParam annotation is defined by the javax.jws.WebParam

interface. It is placed on the parameters on the methods defined in the SEI.
The @WebParam annotation allows you to specify the direction of the

parameter, if the parameter will be placed in the SOAP header, and other
properties of the generated wsdl:part.

Table 7, “@WebParam Properties” describes the properties of the @WebParam

annotation.

Table 7. @WebParam Properties

DescriptionValuesProperty

Specifies the name of the parameter as it appears in the WSDL. For RPC
bindings, this is name of the wsdl:part representing the parameter. For

name

document bindings, this is the local name of the XML element representing
the parameter. Per the JAX-WS specification, the default is argN, where

N is replaced with the zero-based argument index (i.e., arg0, arg1, etc.).

Specifies the namespace for the parameter. It is only used with document
bindings where the parameter maps to an XML element. The defaults is to
use the service's namespace.

targetNamespace

Specifies the direction of the parameter.Mode.IN (default)mode

Mode.OUT

35

DescriptionValuesProperty

Mode.INOUT

Specifies if the parameter is passed as part of the SOAP header.false (default)header

true

Specifies the value of the name attribute of the wsdl:part element for

the parameter when the binding is document.

partName

The @WebResult annotation
The @WebResult annotation is defined by the javax.jws.WebResult

interface. It is placed on the methods defined in the SEI. The @WebResult

annotation allows you to specify the properties of the generated wsdl:part

that is generated for the method's return value.

Table 8, “@WebResult Properties” describes the properties of the

@WebResult annotation.

Table 8. @WebResult Properties

DescriptionProperty

Specifies the name of the return value as it appears in the
WSDL. For RPC bindings, this is name of the wsdl:part

name

representing the return value. For document bindings, this
is the local name of the XML element representing the
return value. The default value is return.

Specifies the namespace for the return value. It is only
used with document bindings where the return value maps

targetNamespace

to an XML element. The defaults is to use the service's
namespace.

Specifies if the return value is passed as part of the SOAP
header.

header

36

DescriptionProperty

Specifies the value of the name attribute of the

wsdl:part element for the return value when the

binding is document.

partName

Example
Example 7, “Fully Annotated SEI” shows an SEI that is fully annotated.

Example 7. Fully Annotated SEI
package com.iona.demo;

import javax.jws.*;
import javax.xml.ws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;
import javax.jws.WebParam.*;

@WebService(targetNamespace="http://demo.iona.com",
name="quoteReporter")

@SOAPBinding(style=Style.RPC, use=Use.LITERAL)
public interface quoteReporter
{
@WebMethod(operationName="getStockQuote")
@RequestWrapper(targetNamespace="http://demo.iona.com/types",

className="java.lang.String")
@ResponseWrapper(targetNamespace="http://demo.iona.com/types",

className="org.eric.demo.Quote")
@WebResult(targetNamespace="http://demo.iona.com/types",

name="updatedQuote")
public Quote getQuote(

@WebParam(targetNamespace="http://demo.iona.com/types",
name="stockTicker",
mode=Mode.IN)

String ticker
);

}

37

Generating WSDL
Using command line tools

Once you have annotated your code, you can generate a WSDL contract for
your service using the artix java2wsdl command. For a detailed listing of
options for the artix java2wsdl command see artix java2wsdl in Artix ESB
Command Reference.

Using Artix Designer
Artix Designer automatically generates WSDL as you edit your Java code.

Example
Example 8, “Generated WSDL from an SEI” shows the WSDL contract
generated for the SEI shown in Example 7, “Fully Annotated SEI”.

Example 8. Generated WSDL from an SEI
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://demo.eric.org/"

xmlns:tns="http://demo.eric.org/"
xmlns:ns1=""
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns2="http://demo.eric.org/types"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:types>
<xsd:schema>
<xs:complexType name="quote">
<xs:sequence>
<xs:element name="ID" type="xs:string"

minOccurs="0"/>
<xs:element name="time" type="xs:string"

minOccurs="0"/>
<xs:element name="val" type="xs:float"/>

</xs:sequence>
</xs:complexType>

</xsd:schema>
</wsdl:types>
<wsdl:message name="getStockQuote">
<wsdl:part name="stockTicker" type="xsd:string">
</wsdl:part>

</wsdl:message>
<wsdl:message name="getStockQuoteResponse">
<wsdl:part name="updatedQuote" type="tns:quote">
</wsdl:part>

</wsdl:message>
<wsdl:portType name="quoteReporter">
<wsdl:operation name="getStockQuote">
<wsdl:input name="getQuote" message="tns:getStockQuote">

38

Generating WSDL

http://www.iona.com/support/docs/artix/5.0/command_ref/command_ref.pdf

</wsdl:input>
<wsdl:output name="getQuoteResponse"

message="tns:getStockQuoteResponse">
</wsdl:output>
</wsdl:operation>

</wsdl:portType>
<wsdl:binding name="quoteReporterBinding"

type="tns:quoteReporter">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="getStockQuote">
<soap:operation style="rpc"/>
<wsdl:input name="getQuote">
<soap:body use="literal"/>

</wsdl:input>
<wsdl:output name="getQuoteResponse">
<soap:body use="literal"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="quoteReporterService">
<wsdl:port name="quoteReporterPort"

binding="tns:quoteReporterBinding">
<soap:address

location="http://localhost:9000/quoteReporterService"/>
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

39

Generating WSDL

Developing a Consumer without a WSDL Contract

Table of Contents
Creating a Service Object ... 41
Adding a Port to a Service .. 44
Getting a Proxy for an Endpoint ... 46
Implementing the Consumer's Business Logic ... 48

To create a consumer without a WSDL contract you need to do the following:

1. Create a Service object for the service on which the consumer will

invoke operations.

2. Add a port to the Service object.

3. Get a proxy for the service using the Service object's getPort()

method.

4. Implement the consumer's business logic.

40

Developing a Consumer without a
WSDL Contract

Creating a Service Object
The javax.xml.ws.Service class represents the wsdl:service element

that contains the definition of all of the endpoints that expose a service. As
such it provides methods that allow you to get endpoints, defined by
wsdl:port elements, that are proxies for making remote invocations on a

service.

Note
The Service class provides the abstractions that allow the client

code to work with Java types as opposed to XML documents.

The create() methods
The Service class has two static create() methods that can be used to

create a new Service object. As shown in Example 9, “Service

create() Methods”, both of the create() methods take the QName of

the wsdl:service element the Service object will represent and one

takes a URI specifying the location of the WSDL contract.

Tip
All services publish there WSDL contracts. For SOAP/HTTP services
the URI is usually the URI at which the service is published appended
with ?wsdl.

Example 9. Service create() Methods

public static Service create(URL wsdlLocation,
QName serviceName)

throws WebServiceException;

public static Service create(QName serviceName)
throws WebServiceException;

The value of the serviceName parameter is a QName. The value of its

namespace part is the target namespace of the service. The service's target
namespace is specified in the targetNamespace property of the @WebService

annotation. The value of the QName's local part is the value of

41

Creating a Service Object

wsdl:service element's name attribute. You can determine this value in

a number of ways:

1. It is specified in the serviceName property of the @WebService

annotation.

2. You append Service to the value of the name property of the

@WebService annotation.

3. You append Service to the name of the SEI.

Example
Example 10, “Creating a Service Object” shows code for creating a

Service object for the SEI shown in Example 7, “Fully Annotated SEI”.

Example 10. Creating a Service Object

package com.iona.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{

❶ QName serviceName = new QName("http://demo.iona.com", "stockQuoteReporter");
❷ Service s = Service.create(serviceName);

...
}

}

The code in Example 10, “Creating a Service Object” does the following:

❶ Builds the QName for the service using the targetNamespace property
and the name property of the @WebService annotation.

❷ Call the single parameter create() method to create a new Service

object.

42

Creating a Service Object

Note
Using the single parameter create() frees you from having

any dependencies on accessing an WSDL contract.

43

Creating a Service Object

Adding a Port to a Service
The endpoint information for a service is defined in a wsdl:port element

and the Service object will create a proxy instance for each of the endpoints

defined in a WSDL contract if one is specified. If you do not specify a WSDL
contract when you create your Service object, the Service object has no

information about the endpoints that implement your service and cannot
create any proxy instances. In this case, you must provide the Service

object with the information that would be in a wsdl:port element using

the addPort() method.

The addPort() method
The Service class defines an addPort() method, shown in Example 11,

“The addPort() Method”, that is used in cases where there is no WSDL

contract available to the consumer implementation. The addPort() method

allows you to give a Service object the information, which is typically stored

in a wsdl:port element, needed to create a proxy for a service

implementation.

Example 11. The addPort() Method

void addPort(QName portName,
String bindingId,
String endpointAddress)

throws WebServiceException;

The value of the portName is a QName. The value of its namespace part is

the target namespace of the service. The service's target namespace is
specified in the targetNamespace property of the @WebService annotation.

The value of the QName's local part is the value of wsdl:port element's

name attribute. You can determine this value in a number of ways:

1. It is specified in the portName property of the @WebService annotation.

2. You append Port to the value of the name property of the @WebService

annotation.

3. You append Port to the name of the SEI.

44

Adding a Port to a Service

The value of the bindingId parameter is a string that uniquely identifies

the type of binding used by the endpoint. For a SOAP binding you would use
the standard SOAP namespace: http://schemas.xmlsoap.org/soap/.

If the endpoint is not using a SOAP binding, the value of the bindingId

parameter will be determined by the binding developer.

The value of the endpointAddress parameter is the address at which the

endpoint is published. For a SOAP/HTTP endpoint, the address will be an
HTTP address. Transports other than HTTP will use different address schemes.

Example
Example 12, “Adding a Port to a Service Object” shows code for adding

a port to the Service object created in Example 10, “Creating a Service

Object”.

Example 12. Adding a Port to a Service Object

package com.iona.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{
...

❶ QName portName = new QName("http://demo.iona.com", "stockQuoteReporterPort");
❷ s.addPort(portName,
❸ "http://schemas.xmlsoap.org/soap/",
❹ "http://localhost:9000/StockQuote");

...
}

}

The code in Example 12, “Adding a Port to a Service Object” does the

following:

❶ Creates the QName for the portName parameter.

❷ Calls the addPort() method.

❸ Specifies that the endpoint uses a SOAP binding.

❹ Specifies the address at which the endpoint is published.

45

Adding a Port to a Service

Getting a Proxy for an Endpoint
A service proxy is an object that provides all of the methods exposed by a
remote service and handles all of the details required to make the remote
invocations. The Service object provides service proxies for all of the

endpoints of which it is aware through the getPort() method. Once you

have a service proxy, you can invoke its methods. The proxy forwards the
invocation to the remote service endpoint using the connection details specified
in the service's contract.

The getPort() method
The getPort()method, shown in Example 13, “The getPort()Method”,

returns a service proxy for the specified endpoint. The returned proxy is of
the same class as the SEI.

Example 13. The getPort() Method

public <T> T getPort(QName portName,
Class<T> serviceEndpointInterface)

throws WebServiceException;

The value of the portName parameter is a QName that identifies the

wsdl:port element that defines the endpoint for which the proxy is created.

The value of the serviceEndpointInterface parameter is the class of

the SEI.

Tip
When you are working without a WSDL contract the value of the
portName parameter is typically the same as the value used for the

portName parameter when calling addPort().

Example
Example 14, “Getting a Service Proxy” shows code for getting a service proxy
for the endpoint added in Example 12, “Adding a Port to a Service Object”.

Example 14. Getting a Service Proxy
package com.iona.demo;

import javax.xml.namespace.QName;

46

Getting a Proxy for an Endpoint

import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{
...
quoteReporter proxy = s.getPort(portName, quoteReporter.class);
...

}
}

47

Getting a Proxy for an Endpoint

Implementing the Consumer's Business Logic
Once you a service proxy for a remote endpoint, you can invoke its methods
as if it were a local object. The calls will block until the remote method
completes.

Note
If a method is annotated with the @OneWay annotation, the call will

return immediately.

Example
Example 15, “Consumer Implemented without a WSDL Contract” shows a
consumer for the service defined in Example 7, “Fully Annotated SEI”.

Example 15. Consumer Implemented without a WSDL Contract
package com.iona.demo;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{
QName serviceName = new QName("http://demo.eric.org", "stockQuoteReporter");

❶ Service s = Service.create(serviceName);

QName portName = new QName("http://demo.eric.org", "stockQuoteReporterPort");
❷ s.addPort(portName, "http://schemas.xmlsoap.org/soap/",
"http://localhost:9000/EricStockQuote");

❸ quoteReporter proxy = s.getPort(portName, quoteReporter.class);

❹ Quote quote = proxy.getQuote("ALPHA");
System.out.println("Stock "+quote.getID()+" is worth "+quote.getVal()+" as of

"+quote.getTime());
}

}

The code in Example 15, “Consumer Implemented without a WSDL Contract”
does the following:

48

Implementing the Consumer's Business
Logic

❶ Creates a Service object.

❷ Adds an endpoint definition to the Service object.

❸ Gets a service proxy from the Service object.

❹ Invokes an operation on the service proxy.

49

Implementing the Consumer's Business
Logic

50

Starting from a WSDL Contract
Summary

The recommended way to develop service-oriented applications is to start
from a WSDL contract. The WSDL contract provides an implementation
neutral way of defining the operations a service exposes and the data that
is exchanged with the service. Artix ESB provides tools to generate JAX-WS
annotated starting point code from a WSDL contract. The code generators
create all of the classes needed to implement any abstract data types defined
in the contract. This approach simplifies the development of widely
distributed applications.

Table of Contents
A WSDL Contract .. 52
Developing a Service Starting from a WSDL Contract .. 55

Generating the Starting Point Code ... 56
Implementing the Service Provider ... 59

Developing a Consumer Starting from a WSDL Contract .. 61
Generating the Stub Code .. 62
Implementing a Consumer ... 64

51

A WSDL Contract
Example 16, “HelloWorld WSDL Contract” shows the HelloWorld WSDL
contract. This contract defines a single interface, Greeter, in the

wsdl:portType element. The contract also defines the endpoint which

will implement the service in the wsdl:port element.

Example 16. HelloWorld WSDL Contract
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorld"

targetNamespace="http://apache.org/hello_world_soap_http"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://apache.org/hello_world_soap_http"
xmlns:x1="http://apache.org/hello_world_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>
<schema targetNamespace="http://apache.org/hello_world_soap_http/types"

xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"><element name="sayHi">

<complexType/>
</element>
<element name="sayHiResponse">
<complexType>
<sequence>
<element name="responseType" type="string"/>

</sequence>
</complexType>

</element>
<element name="greetMe">
<complexType>
<sequence>
<element name="requestType" type="string"/>

</sequence>
</complexType>

</element>
<element name="greetMeResponse">
<complexType>
<sequence>
<element name="responseType" type="string"/>

</sequence>
</complexType>

</element>
<element name="greetMeOneWay">

52

A WSDL Contract

<complexType>
<sequence>
<element name="requestType" type="string"/>

</sequence>
</complexType>

</element>
<element name="pingMe">
<complexType/>

</element>
<element name="pingMeResponse">
<complexType/>

</element>
<element name="faultDetail">
<complexType>
<sequence>
<element name="minor" type="short"/>
<element name="major" type="short"/>

</sequence>
</complexType>

</element>
</schema>

</wsdl:types>

<wsdl:message name="sayHiRequest">
<wsdl:part element="x1:sayHi" name="in"/>

</wsdl:message>
<wsdl:message name="sayHiResponse">
<wsdl:part element="x1:sayHiResponse" name="out"/>

</wsdl:message>
<wsdl:message name="greetMeRequest">
<wsdl:part element="x1:greetMe" name="in"/>

</wsdl:message>
<wsdl:message name="greetMeResponse">
<wsdl:part element="x1:greetMeResponse" name="out"/>

</wsdl:message>
<wsdl:message name="greetMeOneWayRequest">
<wsdl:part element="x1:greetMeOneWay" name="in"/>

</wsdl:message>
<wsdl:message name="pingMeRequest">
<wsdl:part name="in" element="x1:pingMe"/>

</wsdl:message>
<wsdl:message name="pingMeResponse">
<wsdl:part name="out" element="x1:pingMeResponse"/>

</wsdl:message>
<wsdl:message name="pingMeFault">
<wsdl:part name="faultDetail" element="x1:faultDetail"/>

</wsdl:message>

<wsdl:portType name="Greeter">

53

A WSDL Contract

❶ <wsdl:operation name="sayHi">
<wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
<wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>

</wsdl:operation>

❷ <wsdl:operation name="greetMe">
<wsdl:input message="tns:greetMeRequest" name="greetMeRequest"/>
<wsdl:output message="tns:greetMeResponse" name="greetMeResponse"/>

</wsdl:operation>

❸ <wsdl:operation name="greetMeOneWay">
<wsdl:input message="tns:greetMeOneWayRequest" name="greetMeOneWayRequest"/>

</wsdl:operation>

❹ <wsdl:operation name="pingMe">
<wsdl:input name="pingMeRequest" message="tns:pingMeRequest"/>
<wsdl:output name="pingMeResponse" message="tns:pingMeResponse"/>
<wsdl:fault name="pingMeFault" message="tns:pingMeFault"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="Greeter_SOAPBinding" type="tns:Greeter">
...

</wsdl:binding>

<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<soap:address location="http://localhost:9000/SoapContext/SoapPort"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

The Greeter interface defined in Example 16, “HelloWorld WSDL Contract”

defines the following operations:

❶ sayHi — has a single output parameter, of xsd:string.

❷ greetMe — has an input parameter, of xsd:string, and an output
parameter, of xsd:string.

❸ greetMeOneWay — has a single input parameter, of xsd:string. Because
this operation has no output parameters, it is optimized to be a oneway
invocation (that is, the consumer does not wait for a response from the
server).

❹ pingMe — has no input parameters and no output parameters, but it
can raise a fault exception.

54

A WSDL Contract

Developing a Service Starting from a WSDL Contract

Table of Contents
Generating the Starting Point Code ... 56
Implementing the Service Provider ... 59

Once you have a WSDL document, the process for developing a JAX-WS
service provider is three steps:

1. Generate starting point code.

2. Implement the service provider's operations.

3. Publish the implemented service.

55

Developing a Service Starting from a
WSDL Contract

Generating the Starting Point Code
JAX-WS specifies a detailed mapping from a service defined in WSDL to the
Java classes that will implement that service as a service provider. The logical
interface, defined by the wsdl:portType element, is mapped to a service

endpoint interface (SEI). Any complex types defined in the WSDL are mapped
into Java classes following the mapping defined by the Java Architecture for
XML Binding (JAXB) specification. The endpoint defined by the
wsdl:service element is also generated into a Java class that is used by

consumers to access service providers implementing the service.

Artix Designer provides a wizard for generating starting point code from a
WSDL document. This wizard provides you with options for control the code
generation.

The artix wsdl2java command automates the generation of this code. It also
provides options for generating starting point code for your implementation
and an ant based makefile to build the application. artix wsdl2java provides
a number of arguments for controlling the generated code.

Using Artix Designer
When starting a WSDL first project by importing a WSDL document, Artix
Designer asks you what code to generate. If you create the WSDl document
using Artix Designer or need to regenerate the JAX-WS code, you used the
Artix → Generate Code from any WSDL document's context menu.

Using the command line tools
You can generate the code needed to develop your service provider using the
following command:

artix wsdl2java -ant -impl -server -d outputDirmyService.wsdl

The command does the following:

• The -ant argument generates a Ant makefile, called build.xml, for your

application.

• The -impl argument generates a shell implementation class for each

wsdl:portType element in the WSDL contract.

• The -server argument generates a simple main() to launch your service

provider as a stand alone application.

56

Generating the Starting Point Code

• The -d outputDir argument tells wsdl2java to write the generated code

to a directory called outputDir.

• myService.wsdl is the WSDL contract from which code is generated.

For a complete list of the arguments for artix wsdl2java see artix wsdl2java
in Artix ESB Command Reference.

Generated code
Table 9, “Generated Classes for a Service Provider” describes the files
generated for creating a service provider.

Table 9. Generated Classes for a Service Provider

DescriptionFile

The SEI. This file contains the interface
your service provider implements. You
should not edit this file.

portTypeName.java

The endpoint. This file contains the Java
class consumers will use to make requests
on the service.

serviceName.java

The skeleton implementation class. You
will modify this file to build your service
provider.

portTypeNameImpl.java

A basic server mainline that allows you to
deploy your service provider as a stand

portTypeNameServer.java

alone process. For more information see
Publishing a Service.

In addition, the tools will generate Java classes for all of the types defined in
the WSDL contract.

Generated packages
The generated code is placed into packages based on the namespaces used
in the WSDL contract. The classes generated to support the service (based
on the wsdl:portType element, the wsdl:service element, and the

wsdl:port element) are placed in a package based on the target namespace

of the WSDL contract. The classes generated to implement the types defined
in the types element of the contract are placed in a package based on the

targetNamespace attribute of the types element.

57

Generating the Starting Point Code

http://www.iona.com/support/docs/artix/5.0/command_ref/command_ref.pdf

The mapping algorithm is as follows:

1. The leading http:// or urn:// are stripped off the namespace.

2. If the first string in the namespace is a valid Internet domain, for example
it ends in .com or .gov, the leading www. is stripped off the string,

and the two remaining components are flipped.

3. If the final string in the namespace ends with a file extension of the
pattern .xxx or .xx, the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting
string and separated by dots.

5. All letters are made lowercase.

58

Generating the Starting Point Code

Implementing the Service Provider
Once the starting point code is generated, you must provide the business logic
for each of the operations defined in the service's interface.

Generating the implementation
code You generate the implementation class used to build your service provider

with wsdl2java's -impl flag.

Tip
If your service's contract includes any custom types defined in XML
Schema, you will also need to ensure that the classes for the types
are also generated and available.

Generated code
The implementation code consists of two files:

• portTypeName.java is the service interface(SEI) for the service.

• portTypeNameImpl.java is the class you will use to implement the

operations defined by the service.

Implement the operation's logic
You provide the business logic for your service's operations by completing the
stub methods in portTypeNameImpl.java. For the most part, you use

standard Java to implement the business logic. If your service uses custom
XML Schema types, you will need to use the generated classes for each type
to manipulate them. There are also some Artix ESB specific APIs that you
can use to access some advanced features.

Example
For example, an implementation class for the service defined in Example 16,
“HelloWorld WSDL Contract” may look like Example 17, “Implementation
of the Greeter Service”. Only the code portions highlighted in bold must be
inserted by the programmer.

Example 17. Implementation of the Greeter Service
package demo.hw.server;

import org.apache.hello_world_soap_http.Greeter;

@javax.jws.WebService(portName = "SoapPort", serviceName = "SOAPService",

59

Implementing the Service Provider

targetNamespace = "http://apache.org/hello_world_soap_http",
endpointInterface = "org.apache.hello_world_soap_http.Greeter")

public class GreeterImpl implements Greeter {

public String greetMe(String me) {
System.out.println("Executing operation greetMe");
System.out.println("Message received: " + me + "\n");
return "Hello " + me;

}

public void greetMeOneWay(String me) {
System.out.println("Executing operation greetMeOneWay\n");
System.out.println("Hello there " + me);

}

public String sayHi() {
System.out.println("Executing operation sayHi\n");
return "Bonjour";

}

public void pingMe() throws PingMeFault {
FaultDetail faultDetail = new FaultDetail();
faultDetail.setMajor((short)2);
faultDetail.setMinor((short)1);
System.out.println("Executing operation pingMe, throwing PingMeFault exception\n");

throw new PingMeFault("PingMeFault raised by server", faultDetail);
}

}

60

Implementing the Service Provider

Developing a Consumer Starting from aWSDL Contract

Table of Contents
Generating the Stub Code .. 62
Implementing a Consumer ... 64

61

Developing a Consumer Starting from
a WSDL Contract

Generating the Stub Code
You use Artix ESB's code generation tools to generate the stub code from the
WSDL document. The stub code provides the supporting code that is required
to invoke operations on the remote service.

For consumers, the code generation tools can generate the following kinds of
code:

• Stub code — supporting files for implementing a consumer.

• Starting point code — sample code that connects to the remote service
and invokes every operation on the remote service.

• Ant build file — a build.xml file intended for use with the ant build

utility. It has targets for building and for running the sample consumer.

Using Artix Designer
When starting a WSDL first project by importing a WSDL document, Artix
Designer asks you what code to generate. If you create the WSDl document
using Artix Designer or need to regenerate the JAX-WS code, you used the
Artix → Generate Code from any WSDL document's context menu.

Using the command line tools
You generate consumer code using the artix wsdl2java tool. Enter the following
command at a command-line prompt:

artix wsdl2java -ant -client -d outputDir hello_world.wsdl

Where outputDir is the location of a directory where you would like to put

the generated files and hello_world.wsdl is a file containing the contract

shown in Example 16, “HelloWorld WSDL Contract”. The -ant option

generates an ant build.xml file, for use with the ant build utility. The

-client option generates starting point code for the consumer's main()

method.

For a complete list of the arguments available for artix wsdl2java see artix
wsdl2java in Artix ESB Command Reference.

Generated code
The preceding command generates the following Java packages:

• org.apache.hello_world_soap_http

62

Generating the Stub Code

http://www.iona.com/support/docs/artix/5.0/command_ref/command_ref.pdf
http://www.iona.com/support/docs/artix/5.0/command_ref/command_ref.pdf

This package name is generated from the
http://apache.org/hello_world_soap_http target namespace.

All of the WSDL entities defined in this target namespace (for example, the
Greeter port type and the SOAPService service) map to Java classes in the
corresponding Java package.

• org.apache.hello_world_soap_http.types

This package name is generated from the
http://apache.org/hello_world_soap_http/types target

namespace. All of the XML types defined in this target namespace (that is,
everything defined in the wsdl:types element of the HelloWorld contract)

map to Java classes in the corresponding Java package.

The stub files generated by tools fall into the following categories:

• Classes representing WSDL entities (in the
org.apache.hello_world_soap_http package) — the following

classes are generated to represent WSDL entities:

• Greeter is a Java interface that represents the Greeter

wsdl:portType element. In JAX-WS terminology, this Java interface

is the service endpoint interface (SEI).

• SOAPService is a Java service class (extending

javax.xml.ws.Service) that represents the SOAPService

wsdl:service element.

• PingMeFault is a Java exception class (extending

java.lang.Exception) that represents the pingMeFault

wsdl:fault element.

• Classes representing XML types (in the
org.objectweb.hello_world_soap_http.types package) — in

the HelloWorld example, the only generated types are the various wrappers
for the request and reply messages. Some of these data types are useful
for the asynchronous invocation model.

63

Generating the Stub Code

Implementing a Consumer
This section describes how to write the code for a simple Java client, based
on the WSDL contract from Example 16, “HelloWorld WSDL Contract”. To
implement the consumer, you need to use the following stubs:

• Service class (SOAPService).

• SEI (Greeter).

Generated service class
Example 18, “Outline of a Generated Service Class” shows the typical outline
of a generated service class, ServiceName_Service1, which extends the

javax.xml.ws.Service base class.

Example 18. Outline of a Generated Service Class
@WebServiceClient(name="..." targetNamespace="..."

wsdlLocation="...")
public class ServiceName extends javax.xml.ws.Service
{
...
public ServiceName(URL wsdlLocation, QName serviceName) { }

public ServiceName() { }

@WebEndpoint(name="SoapPort")
public Greeter getPortName() { }
.
.
.

}

The ServiceName class in Example 18, “Outline of a Generated Service

Class” defines the following methods:

• Constructor methods — the following forms of constructor are defined:

1If the name attribute of the wsdl:service element ends in Service the _Service is not used.

64

Implementing a Consumer

• ServiceName(URL wsdlLocation, QName serviceName)

constructs a service object based on the data in the ServiceName

service in the WSDL contract that is obtainable from wsdlLocation.

• ServiceName() is the default constructor, which constructs a service

object based on the service name and WSDL contract that were provided
at the time the stub code was generated (for example, when running
wsdl2java). Using this constructor presupposes that the WSDL contract
remains available at its original location.

• getPortName() methods — for every PortName port defined on the

ServiceName service, wsdl2java generates a corresponding

getPortName() method in Java. Therefore, a wsdl:service element

that defines multiple endpoints will generate a service class with multiple
getPortName() methods.

Service endpoint interface
For every port type defined in the original WSDL contract, you can generate
a corresponding SEI. A service endpoint interface is the Java mapping of a
wsdl:portType element. Each operation defined in the original

wsdl:portType element maps to a corresponding method in the SEI. The

operation's parameters are mapped as follows:

1. The input parameters are mapped to method arguments.

2. The first output parameter is mapped to a return value.

3. If there is more than one output parameter, the second and subsequent
output parameters map to method arguments (moreover, the values of
these arguments must be passed using Holder types).

For example, Example 19, “The Greeter Service Endpoint Interface” shows
the Greeter SEI, which is generated from the wsdl:portType element

defined in Example 16, “HelloWorld WSDL Contract”. For simplicity,
Example 19, “The Greeter Service Endpoint Interface” omits the standard
JAXB and JAX-WS annotations.

Example 19. The Greeter Service Endpoint Interface
/* Generated by WSDLToJava Compiler. */

65

Implementing a Consumer

package org.apache.hello_world_soap_http;
...

public interface Greeter
{
public String sayHi();
public String greetMe(String requestType);
public void greetMeOneWay(String requestType);
public void pingMe() throws PingMeFault;

}

Consumer main function
Example 20, “Consumer Implementation Code” shows the generated code
that implements the HelloWorld consumer. The consumer connects to the
SoapPort port on the SOAPService service and then proceeds to invoke each
of the operations supported by the Greeter port type.

Example 20. Consumer Implementation Code
package demo.hw.client;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.SOAPService;

public final class Client {

private static final QName SERVICE_NAME =
new QName("http://apache.org/hello_world_soap_http",

"SOAPService");

private Client()
{
}

public static void main(String args[]) throws Exception
{

❶ if (args.length == 0)
{
System.out.println("please specify wsdl");
System.exit(1);

}

❷ URL wsdlURL;
File wsdlFile = new File(args[0]);
if (wsdlFile.exists())

66

Implementing a Consumer

{
wsdlURL = wsdlFile.toURL();

}
else
{
wsdlURL = new URL(args[0]);

}

System.out.println(wsdlURL);
❸ SOAPService ss = new SOAPService(wsdlURL,SERVICE_NAME);
❹ Greeter port = ss.getSoapPort();

String resp;

❺ System.out.println("Invoking sayHi...");
resp = port.sayHi();
System.out.println("Server responded with: " + resp);
System.out.println();

System.out.println("Invoking greetMe...");
resp = port.greetMe(System.getProperty("user.name"));
System.out.println("Server responded with: " + resp);
System.out.println();

System.out.println("Invoking greetMeOneWay...");
port.greetMeOneWay(System.getProperty("user.name"));
System.out.println("No response from server as method is OneWay");
System.out.println();

❻ try {
System.out.println("Invoking pingMe, expecting exception...");
port.pingMe();

} catch (PingMeFault ex) {
System.out.println("Expected exception: PingMeFault has occurred.");
System.out.println(ex.toString());

}
System.exit(0);

}
}

The Client.main()method from Example 20, “Consumer Implementation

Code” proceeds as follows:

❶ The runtime is implicitly initialized — that is, provided the Artix ESB
runtime classes are loaded. Hence, there is no need to call a special
function in order to initialize Artix ESB.

67

Implementing a Consumer

❷ The consumer expects a single string argument that gives the location
of the WSDL contract for HelloWorld. The WSDL contract's location is
stored in wsdlURL.

❸ You create a service object (passing in the WSDL contract's location and
service name).

❹ Call the appropriate getPortName() method to obtain an instance of

the particular port you need. In this case, the SOAPService service
supports only the SoapPort port, which is of Greeter type.

❺ The consumer invokes each of the methods supported by the Greeter

service endpoint interface.
❻ In the case of the pingMe() method, the example code shows how to

catch the PingMeFault fault exception.

68

Implementing a Consumer

Publishing a Service
Summary

When you want to deploy a JAX-WS service as a standalone Java application,
you need to write a server mainline. This mainline publishes an endpoint
for your service.

Table of Contents
Generating a Server Mainline .. 70
Writing a Server Mainline ... 71

Artix ESB provides a number of ways to publish a service as a service provider.
How you publish a service depends on the deployment environment you are
using. If you are deploying your service into one of the containers supported
by Artix ESB you do not need to write any additional code. However, if you
are going to deploy your service as a stand-alone Java application, you will
need to write a main() that publishes the service as a self-contained service

provider.

69

Generating a Server Mainline
The wsdl2java tool's -server flag causes the tool to generate a simple server

mainline. The generated server mainline, as shown in Example 21, “Generated
Server Mainline”, publishes one service provider for each port defined in

the WSDL contract.

Example
Example 21, “Generated Server Mainline” shows a generated server mainline.

Example 21. Generated Server Mainline
package org.apache.hello_world_soap_http;

import javax.xml.ws.Endpoint;

public class GreeterServer {

protected GreeterServer() throws Exception {
System.out.println("Starting Server");

❶ Object implementor = new GreeterImpl();
❷ String address = "http://localhost:9000/SoapContext/SoapPort";
❸ Endpoint.publish(address, implementor);

}

public static void main(String args[]) throws Exception {
new GreeterServer();
System.out.println("Server ready...");

Thread.sleep(5 * 60 * 1000);
System.out.println("Server exiting");
System.exit(0);

}
}

The code in Example 21, “Generated Server Mainline” does the following:

❶ Instantiates a copy of the service implementation object.

❷ Creates the address for the endpoint based on the contents of the
address child of the wsdl:port element in the endpoint's contract.

❸ Publishes the endpoint.

70

Generating a Server Mainline

Writing a Server Mainline
If you used the Java first development model or you do not want to use the
generated server mainline you can write your own. To write your server
mainline you must do the following:

1. Instantiate an javax.xml.ws.Endpoint object for the service

provider.

2. Create an optional server context to use when publishing the service
provider.

3. Publish the service provider using one of the publish().

Instantiating an service provider
You can instantiate an Endpoint using one of the following three methods

provided by Endpoint:

• static Endpoint create(Object implementor);

This create() method returns an Endpoint for the specified service

implementation. The created Endpoint is created using the information

provided by the implementation class'javax.xml.ws.BindingType

annotation if it is present. If the annotation is not present, the Endpoint

will use a default SOAP 1.1/HTTP binding.

• static Endpoint create(URI bindingID,
Object implementor);

This create() method returns an Endpoint for the specified

implementation object using the specified binding. This method overrides
the binding information provided by the javax.xml.ws.BindingType

annotation if it is present. If the bindingID cannot be resolved, or is

null, the binding specified in the javax.xml.ws.BindingType is

used to create the Endpoint. If neither the bindingID or the

javax.xml.ws.BindingType can be used, the Endpoint is created

using a default SOAP 1.1/HTTP binding.

71

Writing a Server Mainline

• static Endpoint publish(String address,
Object implementor);

The publish() method creates an Endpoint for the specified

implementation and publishes it. The binding used for the Endpoint is

determined by the URL scheme of the provided address. The list of

bindings available to the implementation are scanned for a binding that
supports the URL scheme. If one is found the Endpoint is created and

published. If one is not found, the method fails.

Tip
Using publish() is the same as invoking one of the create()

methods and then invoking the publish() method used to

publish to an address.

Important
The implementation object passed to any of the Endpoint creation

methods must either be an instance of a class annotated with
javax.jws.WebService and meeting the requirements for being

an SEI implementation or be an instance of a class annotated with
javax.xml.ws.WebServiceProvider and implementing the

Provider interface.

Publishing a service provider
You can publish a service provider using one of the following Endpoint

methods:

• void publish(String address);

This publish() method publishes the service provider at the address

specified.

Important
The address's URL scheme must be compatible with one of the

service provider's bindings.

72

Writing a Server Mainline

• void publish(Object serverContext);

This publish() method publishes the service provider based on the

information provided in the specified server context. The server context
must define an address for the endpoint and it also must be compatible
with one of the service provider's available bindings.

Example
Example 22, “Custom Server Mainline” shows code for publishing a service
provider.

Example 22. Custom Server Mainline
package org.apache.hello_world_soap_http;

import javax.xml.ws.Endpoint;

public class GreeterServer
{
protected GreeterServer() throws Exception
{
}

public static void main(String args[]) throws Exception
{

❶ GreeterImpl impl = new GreeterImpl();
❷ Endpoint endpt.create(impl);
❸ endpt.publish("http://localhost:9000/SoapContext/SoapPort");

boolean done = false;
❹ while(!done)

{
...

}

System.exit(0);
}

}

The code in Example 22, “Custom Server Mainline” does the following:

❶ Instantiates a copy of the service's implementation object.

❷ Creates an unpublished Endpoint for the service implementation.

❸ Publish the service provider at
http://localhost:9000/SoapContext/SoapPort.

73

Writing a Server Mainline

❹ Loop until the server should be shutdown.

74

Writing a Server Mainline

Developing RESTful Services
Summary

RESTful services take the concepts of lose coupling and coarse grained
interfaces one step farther than standard Web services. Built using the
REST architectural style, they rely solely on the four HTTP verbs to access
the operations provided by a service. Artix ESB provides a robust mechanism
for building RESTful services using straightforward Java classes and
annotations.

Table of Contents
Introduction to RESTful Services .. 76
Using Automatic REST Mappings ... 80
Using Java REST Annotations ... 83
Publishing a RESTful Service .. 87

75

Introduction to RESTful Services
Overview

Representational State Transfer (REST) is an architectural style first described
in a doctoral dissertation by a researcher named Roy Fielding. In REST, servers
expose resources using a URI, and clients access these resources using the
four HTTP verbs. As clients receive representations of a resource they are
placed in a state. When they access a new resource, typically by following a
link, they change, or transition, their state. In order to work, REST assumes
that resources are capable of being represented using a pervasive standard
grammar.

The World Wide Web is the most ubiquitous example of a system designed
on REST principles. Web browsers act as clients accessing resources hosted
on Web servers. The resources are represented using HTML or XML grammars
that all Web browsers can consume. The browsers can also easily follow the
links to new resources.

The advantages of REST style systems is that they are highly scalable and
highly flexible. Because the resources are accessed and manipulated using
the four HTTP verbs, the resources are exposed using a URI, and the resources
are represented using standard grammars, clients are not as affected by
changes to the servers. Also, REST style systems can take full advantage of
the scalability features of HTTP such as caching and proxies.

Basic REST principles
RESTful architectures adhere to the following basic principles:

• Application state and functionality are divided into resources.

• Resources are addressable using standard URIs that can be used as
hypermedia links.

• All resources use only the four HTTP verbs.

• DELETE

• GET

• POST

• PUT

• All resources provide information using the MIME types supported by HTTP.

76

Introduction to RESTful Services

• The protocol is stateless.

• The protocol is cacheable.

• The protocol is layered.

Resources
Resources are central to REST. A resource is a source of information that can
be addressed using a URI. In the early days of the Web, resources were largely
static documents. In the modern Web, a resource can be any source of
information. For example a Web service can be a resource if it can be accessed
using a URI.

RESTful endpoints exchange representations of the resources they address.
A representation is a document containing the data provided by the resource.
For example, the method of a Web service that provides access to a customer
record wourld be a resource, the copy of the customer record exchanged
between the service and the consumer is a representation of the resource.

REST best practices
When designing RESTful services it is helpful to keep in mind the following:

• Provide a distinct URI for each resource you wish to expose.

For example, if you are building a system that deals with driving records,
each record should have a unique URI. If the system also provides
information on parking violations and speeding fines, each type of resource
should also have a unique base. For example, speeding fines could be
accessed through /speeding/driverID and parking violations could

be accessed through /parking/driverID.

• Use nouns in your URIs.

Using nouns highlights the fact that resources are things and not actions.
URIs such as /ordering imply an actions, whereas /orders implies a

thing.

• Methods that map to GET should not change any data.

• Use links in your responses.

Putting links to other resources in your responses makes it easier for clients
to follow a chain of data. For example, if your service returns a collection
of resources, it would be easier for a client to access each of the individual

77

Introduction to RESTful Services

resources using the provided links. If links are not included, a client needs
to have additional logic to follow the chain to a specific node.

• Make your service stateless.

Requiring the client or the service to maintain state information forces a
tight coupling between the two. Tight couplings make upgrading and
migrating more difficult. Maintaining state can also make recovery from
communication errors more difficult.

Wrapped mode vs. unwrapped
mode RESTful services can only send or receive one XML element. To enable the

mapping of methods that use more than one parameter, Artix ESB can use
wrapped mode. In wrapped mode, Artix ESB wraps the parameters with a
root element derived from the operation name. For example, the operation
Car findCar(String make, String model) could not be mapped

to an XML POST request like the one shown in Example 23, “Invalid REST

Request”.

Example 23. Invalid REST Request
<name>Dodge</name>
<model>Daytona</company>

Example 23, “Invalid REST Request” is invalid because it has two root XML
elements, which is not allowed. Instead, the parameters would have to be
wrapped with the operation name to make the POST valid. The resulting

request is shown in Example 24, “Wrapped REST Request”.

Example 24. Wrapped REST Request
<findCar>
<make>Dodge</make>
<model>Daytona</model>

</findCar>

By default, Artix ESB uses unwrapped mode, because, for cases where
operations use a single parameter, it creates prettier XML. Using unwrapped
mode, however, requires that you constrain your service interfaces to sending
and receiving single elements. If your operation needs to take multiple
parameters, you must combine them in an object. With the findCar()

78

Introduction to RESTful Services

example above, you would want to create a FindCar class that holds the

make and model data.

Implementing REST with Artix
ESB Artix ESB uses an HTTP binding to map Java interfaces into RESTful services.

There are two ways to map the methods of the Java interface into resources:

• Convention based mapping (see Using Automatic REST Mappings)

• Java REST annotations (see Using Java REST Annotations)

79

Introduction to RESTful Services

Using Automatic REST Mappings
Overview

To simplify the creation of RESTful service endpoints, Artix ESB can map the
methods of a CRUD (Create, Read, Update, and Destroy) based Java bean
class to URIs automatically. The mapping looks for keywords in the method
names of the bean, such as get, add, update, or remove, and maps them
onto HTTP verbs. It then uses the remainder of the method name to create
a URI by pluralizing the field name and appending it to the base URI at which
the endpoint is published.

Note
For more information about publishing RESTful endpoints, see
Publishing a RESTful Service.

Typical CRUD class
Example 25, “Widget Catalog CRUD Class” shows a CRUD based class for
updating a catalog of widgets.

Example 25. Widget Catalog CRUD Class
import javax.jws.WebService;

@WebService
public interface WidgetCatalog
{
Collection<Widget> getWidgets();
Widget getWidget(long id);
void addWidget(Widget widget);
void updateWidget(Widget widget);
void removeWidget(String type, long num);
void deleteWidget(Widget widget);

}

Important
You must use the @WebService annotation on any class or interface

that you wish to expose as a RESTful endpoint.

The class has six operations that are mapped to a URI/verb pair:

• getWidgets() is mapped to a GET at baseURI/widgets.

80

Using Automatic REST Mappings

• getWidget() is mapped to a GET at baseURI/widgets/id.

• addWidget() is mapped to a POST at baseURI/widgets.

• updateWidget() is mapped to a PUT at baseURI/widgets.

• removeWidget() is mapped to a DELETE at

baseURI/widgets/type/num.

• deleteWidget() is mapped to a DELETE at baseURI/widgets.

Mapping to GET
When Artix ESB sees a method name in the form of getResource(), it

maps the method to a GET. The URI is generated by appending the plural

form of Resource to the base URI at which the endpoint is published. If

Resource is already plural, it is not pluralized. For example,

getCustomer() is mapped to a GET on /customers. The method

getCustomers() would result in the same mapping.

Any method parameters are appended to the URI. For example,
getWidget(long id) is mapped to /widgets/id and getCar(String

make, String model) would be mapped to /cars/make/model. A

call to getCar(plymouth, roadrunner) would be executed by a GET

to /cars/plymouth/roadrunner.

81

Using Automatic REST Mappings

Important
Artix ESB only supports get methods that use XML primitives in their
parameter list.

Mapping to POST
Methods of the form addResource() or createResource() are mapped

to POST. The URI is generated by pluralizing Resource. For example

createCar(Car car) would be mapped to a POST at /cars.

Mapping to PUT
Methods of the form updateResource() are mapped to PUT. The URI is

generated by pluralizing Resource and appending any parameters except

the resource to be updated. For example updateHitter(long number,

long rotation, Hitter hitter) would be mapped to a PUT at

/hitters/number/rotation.

Important
Artix ESB only supports get methods that use XML primitives in their
parameter list.

Mapping to DELETE
Methods of the form deleteResource() or removeResource() are

mapped to DELETE. The URI is generated by pluralizing Resource and

appending any parameters. For example removeCar(String make,

long num) would be mapped to a DELETE at /cars/make/num.

Important
Artix ESB only supports get methods that use XML primitives in their
parameter list.

82

Using Automatic REST Mappings

Using Java REST Annotations
Overview

While the convention-based REST mappings provide an easy way to create
a service that maintains a collection of data, or looks like it does, it does not
provide the flexibility to create a full range of RESTful services that require
operations whose names don't fit into the CRUD format. Artix ESB provides
a collection of annotations that allows you to define the mapping of an
operation to an HTTP verb/URI combination. The REST annotations allow
you to specify which verb to use for an operation and to specify a template
for creating a URI for the exposed resource.

Specifying the HTTP verb
Artix ESB uses four annotations for specifying the HTTP verb that will be used
for a method:

• org.codehaus.jra.Delete specifies that the method maps to a

DELETE.

• org.codehaus.jra.Get specifies that the method maps to a GET.

• org.codehaus.jra.Post specifies that the method maps to a POST.

• org.codehaus.jra.Put specifies that the method maps to a PUT.

When you map your methods to HTTP verbs, you must ensure that the
mapping makes sense. For example, if you map a method that is intended
to submit a purchase order, you would map it to a PUT or a POST. Mapping

it to a GET or a DELETE would result in unpredictable behavior.

Specifying the URI
You specify the URI of the resource using the
org.codehaus.jra.HttpResource annotation. HttpResource has

one required attribute, location, that specifies the location of the resource

in relationship to the base URI specified when publishing the service (see
Publishing a RESTful Service. For example, if you specify carts as the

location of the resource and the base URI is

83

Using Java REST Annotations

http://myexample.iona.org, the full URI for the resource will be

http://myexample.iona.org/carts.

Using URI templates
In addition to specifying hard coded resource locations, Artix ESB provides a
facility for creating URIs on the fly using either the method's parameters or a
field from the JAXB bean in the parameter list. When providing a value for
the HttpResource annotation's location parameter you provide a URI

template using the syntax in Example 26, “URI Template Syntax”.

Example 26. URI Template Syntax
@HttpResource(location="resourceName/{param1}/../{paramN}")

resourceName can be any valid string, and forms the base of the location.

Each param is the name of either a method parameter or a field in the JAXB

bean in the parameter list. To create the URI, Artix ESB replaces param with

the value of the associated parameter. For example, if you have the method
shown in Example 27, “Using a URI Template” and wanted to access the
record at id 42, you would perform a GET at

http://myexample.iona.com/records/42.

Example 27. Using a URI Template
@Get
@HttpResource(location="\records\{id}")
Record fetchRecord(long id);

Important
Artix ESB only supports XML primitives in URI templates.

Example
If you wanted to implement a system for ordering widgets out of the catalog
defined by Example 25, “Widget Catalog CRUD Class” you may use an SEI
like the one shown in Example 28, “SEI for a Widget Ordering Service”.

Example 28. SEI for a Widget Ordering Service
@WebService
public interface WidgetOrdering
{

84

Using Java REST Annotations

void placeOrder(WidgetOrder order);
OrderStatus checkOrder(long orderNum);
void changeOrder(WidgetOrder order, long orderNum);
void cancelOrder(long orderNum);

}

WidgetOrdering does not match any of the naming conventions outlined

in Using Automatic REST Mappings so the RESTful binding cannot
automatically map the methods to verb/URI combinations. You will need to
provide the mappings using the Java REST annotations. To do this, you need
to consider what each method in the interface does and how it correlates to
one of the HTTP verbs:

• placeOrder() creates a new order on the system. Resource creation

correlates with POST.

• checkOrder() looks up an order's status and returns it to the user.

Returning resources correlates with GET.

• changeOrder() updates an order that has already been placed. Updating

an existing record correlates with PUT.

• cancelOrder() removes an order from the system. Removing a resource

correlates with DELETE.

For the URI, you would use a resource name that hinted at the purpose of
the resource. For this example, the resource name used is orders because

it is assumed that the base URI at which the endpoint is published provides
information about what is being ordered. For the methods that use orderNum

to identify a particular order, URI templating is used to append the value of
the parameter to the end of the URI.

Example 29, “WidgetOrdering with REST Annotations” shows

WidgetOrdering with the required annotations.

Example 29. WidgetOrdering with REST Annotations

import org.codehause.jra.*;

@WebService
public interface WidgetOrdering

85

Using Java REST Annotations

{
@Post
@HttpResource(location="\orders")
void placeOrder(WidgetOrder order);

@Get
@HttpResource(location="\orders\{orderNum}")
OrderStatus checkOrder(long orderNum);

@Put
@HttpResource(location="\orders\{orderNum}")
void changeOrder(WidgetOrder order, long orderNum);

@Delete
@HttpResource(location="\orders\{orderNum}")
void cancelOrder(long orderNum);

}

To check the status of order number 236, you would perform a GET at

baseURI/orders/236.

86

Using Java REST Annotations

Publishing a RESTful Service
Overview

You publish RESTful services using the JaxWsServerFactoryBean object.

Using the JaxWsServerFactoryBean object, you specify the base URI

for the resources implemented by the service and whether the resources use
wrapped messages. You can then create a Server object to start listening

for requests to access the service's resources.

Procedure
To publish your RESTful service, do the following:

1. Create a new JaxWsServerFactoryBean.

2. Set the server factory's service class to the class of your RESTful service's
SEI using the factory's setServiceClass() method as shown in

Example 30, “Setting a Server Factory's Service Class”.

Example 30. Setting a Server Factory's Service Class
// Service factory sf obtained previously
sf.setServiceClass(widgetService.class);

3. If you want to use wrapped mode, set the factory's wrapped property to
true using the setWrapped() method as shown in Example 31,

“Setting Wrapped Mode”.

Example 31. Setting Wrapped Mode
sf.getServiceFactory().setWrapped(true);

Note
For more information about using wrapped mode or unwrapped
mode, see Wrapped mode vs. unwrapped mode.

4. Set the server factory's binding to the REST binding using the
setBindingId() method.

87

Publishing a RESTful Service

The REST binding is selected using the constant
HttpBindingFactory.HTTP_BINDING_ID as shown in

Example 32, “Selecting the REST Binding”.

Example 32. Selecting the REST Binding
// Server factory sf obtained previously
sf.setBindingId(HttpBindingFactory.HTTP_BINDING_ID);

5. Set the base URI for the service's resources using the setAddress()

method as shown in Example 33, “Setting the Base URI”.

Example 33. Setting the Base URI
sf.setAddress("http://localhost:9000");

6. Set server factory's service invoker to an instance of your service's
implementation class as shown in Example 34, “Setting the Service
Invoker”.

Example 34. Setting the Service Invoker
widgetService service = new widgetServiceImpl();
sf.getServiceFactory().setInvoker(new
BeanInvoker(service));

7. Create a new Server object from the server factory using the factory's

create() method.

Example
Example 35, “Publishing the WidgetCatalog Service as a RESTful Endpoint”
shows the code for publishing a RESTful service at http://jfu:9000. All

of the resources implemented by the service will use the published URI as
the base address.

Example 35. Publishing the WidgetCatalog Service as a
RESTful Endpoint
JaxWsServerFactoryBean sf = new JaxWsServerFactoryBean();
sf.setServiceClass(WidgetCatalog.class);

88

Publishing a RESTful Service

sf.setBindingId(HttpBindingFactory.HTTP_BINDING_ID);
sf.setAddress("http://jfu:9000");

widgetService service = new WidgetCatalogImpl();
sf.setServiceFactory.setInvoker(new BeanInvoker(service));

Server svr = sf.create();

If you used Example 35, “Publishing the WidgetCatalog Service as a RESTful
Endpoint” to publish the service defined by Example 25, “Widget Catalog
CRUD Class”, you would:

• Retrieve a list of all widgets in the catalog using a GET at

http://jfu:9000/widgets.

• Retrieve information about widget 34 using a GET at

http://jfu:9000/widgets/34.

• Modify a widget using a PUT at http://jfu:9000/widgets with an

XML document describing the widget to modify.

• Delete 15 round widgets from the catalog using a DELETE at

http://jfu:9000/widgets/round/15.

89

Publishing a RESTful Service

90

Part II. Advanced Programming Tasks
Summary

The JAX-WS programming model offers a number of advanced features.

Table of Contents
Developing Asynchronous Applications ... 95

WSDL for Asynchronous Examples ... 96
Generating the Stub Code .. 98
Implementing an Asynchronous Client with the Polling Approach ... 101
Implementing an Asynchronous Client with the Callback Approach ... 105

Using Raw XML Messages ... 109
Using XML in a Consumer with the Dispatch Interface ... 110

Usage Modes .. 111
Data Types ... 113
Working with Dispatch Objects ... 116

Using XML in a Service Provider with the Provider Interface .. 123

Messaging Modes .. 124
Data Types ... 126
Implementing a Provider Object ... 128

Working with Contexts .. 133
Understanding Contexts ... 134
Working with Contexts in a Service Implementation .. 138
Working with Contexts in a Consumer Implementation .. 146
Working with JMS Message Properties .. 150

Inspecting JMS Message Headers .. 151
Inspecting the Message Header Properties .. 153
Setting JMS Properties .. 155

93

94

Developing Asynchronous Applications
Summary

JAX-WS provides an easy mechanism for accessing services asynchronously.
The SEI can specify additional methods that a can use to access a service
asynchronously. The Artix ESB code generators will generate the extra
methods for you. You simply need to add the business logic.

Table of Contents
WSDL for Asynchronous Examples ... 96
Generating the Stub Code .. 98
Implementing an Asynchronous Client with the Polling Approach ... 101
Implementing an Asynchronous Client with the Callback Approach ... 105

In addition to the usual synchronous mode of invocation, Artix ESB also
supports two forms of asynchronous invocation:

• Polling approach

In this case, to invoke the remote operation, you call a special method that
has no output parameters, but returns a javax.xml.ws.Response

object. The Response object (which inherits from the

javax.util.concurrency.Future interface) can be polled to check

whether or not a response message has arrived.

• Callback approach

In this case, to invoke the remote operation, you call another special method
that takes a reference to a callback object (of
javax.xml.ws.AsyncHandler type) as one of its parameters.

Whenever the response message arrives at the client, the runtime calls
back on the AsyncHandler object to give it the contents of the response

message.

95

WSDL for Asynchronous Examples
Example 36, “WSDL Contract for Asynchronous Example” shows the WSDL
contract that is used for the asynchronous examples. The contract defines a
single interface, GreeterAsync, which contains a single operation,

greetMeSometime.

Example 36. WSDL Contract for Asynchronous Example
<?xml version="1.0" encoding="UTF-8"?><wsdl:definitions
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://apache.org/hello_world_async_soap_http"
xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://apache.org/hello_world_async_soap_http"
name="HelloWorld">

<wsdl:types>
<schema targetNamespace="http://apache.org/hello_world_async_soap_http/types"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
elementFormDefault="qualified">

<element name="greetMeSometime">
<complexType>
<sequence>
<element name="requestType" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="greetMeSometimeResponse">
<complexType>
<sequence>
<element name="responseType"

type="xsd:string"/>
</sequence>

</complexType>
</element>

</schema>
</wsdl:types>

<wsdl:message name="greetMeSometimeRequest">
<wsdl:part name="in" element="x1:greetMeSometime"/>

</wsdl:message>
<wsdl:message name="greetMeSometimeResponse">
<wsdl:part name="out"

element="x1:greetMeSometimeResponse"/>

96

WSDL for Asynchronous Examples

</wsdl:message>

<wsdl:portType name="GreeterAsync">
<wsdl:operation name="greetMeSometime">
<wsdl:input name="greetMeSometimeRequest"

message="tns:greetMeSometimeRequest"/>
<wsdl:output name="greetMeSometimeResponse"

message="tns:greetMeSometimeResponse"/>
</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="GreeterAsync_SOAPBinding"
type="tns:GreeterAsync">

...
</wsdl:binding>

<wsdl:service name="SOAPService">
<wsdl:port name="SoapPort"

binding="tns:GreeterAsync_SOAPBinding">
<soap:address location="http://localhost:9000/SoapContext/SoapPort"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

97

WSDL for Asynchronous Examples

Generating the Stub Code
The asynchronous style of invocation requires extra stub code for the dedicated
asynchronous methods defined on the SEI. This special stub code is not
generated by default, however. To switch on the asynchronous feature and
generate the requisite stub code, you must use the mapping customization
feature from the WSDL 2.0 specification.

Defining the customization
Customization enables you to modify the way the wsdl2java generates stub
code. In particular, it enables you to modify the WSDL-to-Java mapping and
to switch on certain features. Here, customization is used to switch on the
asynchronous invocation feature. Customizations are specified using a binding
declaration, which you define using a jaxws:bindings tag (where the

jaxws prefix is tied to the http://java.sun.com/xml/ns/jaxws

namespace). There are two alternative ways of specifying a binding declaration:

• External binding declaration — the jaxws:bindings element is defined

in a file separately from the WSDL contract. You specify the location of the
binding declaration file to wsdl2java when you generate the stub code.

• Embedded binding declaration — you can also embed the
jaxws:bindings element directly in a WSDL contract, treating it as a

WSDL extension. In this case, the settings in jaxws:bindings apply

only to the immediate parent element.

This section considers only the external binding declaration. The template for
a binding declaration file that switches on asynchronous invocations is shown
in Example 37, “Template for an Asynchronous Binding Declaration”.

Example 37. Template for an Asynchronous Binding
Declaration
<bindings xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
wsdlLocation="AffectedWSDL"
xmlns="http://java.sun.com/xml/ns/jaxws">

<bindings node="AffectedNode">
<enableAsyncMapping>true</enableAsyncMapping>

</bindings>
</bindings>

98

Generating the Stub Code

Where AffectedWSDL specifies the URL of the WSDL contract that is

affected by this binding declaration. The AffectedNode is an XPath value

that specifies which node (or nodes) from the WSDL contract are affected by
this binding declaration. You can set AffectedNode to

wsdl:definitions, if you want the entire WSDL contract to be affected.

The jaxws:enableAsyncMapping element is set to true to enable the

asynchronous invocation feature.

For example, if you want to generate asynchronous methods only for the
GreeterAsync interface, you could specify <bindings

node="wsdl:definitions/wsdl:portType[@name='GreeterAsync']"> in the
preceding binding declaration.

Running wsdl2java
Assuming that the binding declaration is stored in a file,
async_binding.xml, you can generate the requisite stub files with

asynchronous support by entering the following command:

wsdl2java -ant -client -d ClientDir -b async_binding.xml
hello_world.wsdl

When you run wsdl2java, you specify the location of the binding declaration
file using the -b option.

Generated code
After generating the stub code in this way, the GreeterAsync SEI (in the

file GreeterAsync.java) is defined as shown in Example 38, “Service

Endpoint Interface with Methods for Asynchronous Invocations”.

Example 38. Service Endpoint Interface with Methods for Asynchronous Invocations
/* Generated by WSDLToJava Compiler. */
package org.apache.hello_world_async_soap_http;

import org.apache.hello_world_async_soap_http.types.GreetMeSometimeResponse;
...

public interface GreeterAsync
{
public Future<?> greetMeSometimeAsync(

java.lang.String requestType,
AsyncHandler<GreetMeSometimeResponse> asyncHandler

);

99

Generating the Stub Code

public Response<GreetMeSometimeResponse> greetMeSometimeAsync(
java.lang.String requestType

);

public java.lang.String greetMeSometime(
java.lang.String requestType

);
}

In addition to the usual synchronous method, greetMeSometime(), two

asynchronous methods are also generated for the greetMeSometime operation:

• public Future<?> greetMeSomtimeAsync(java.lang.String requestType,
AsyncHandler<GreetMeSomtimeResponse> asyncHandler);

Call this method for the callback approach to asynchronous invocation.

• public Response<GreetMeSomeTimeResponse> greetMeSometimeAsync(java.lang.String requestType);

Call this method for the polling approach to asynchronous invocation.

100

Generating the Stub Code

Implementing an Asynchronous Client with the Polling
Approach

The polling approach is the more straightforward of the two approaches to
developing an asynchronous application. The client invokes the asynchronous
method called OperationNameAsync() and is returned a Response<T>

object that it can poll for a response. What the client does while it is waiting
for a response is up to the requirements of the application. There are two
basic patterns for how to handle the polling:

• Non-blocking polling

You periodically check to see if the result is ready by calling the non-blocking
Response<T>.isDone() method. If the result is ready, the client can

process it. If it not, the client can continue doing other things.

• Blocking polling

You call Response<T>.get() right away and block until the response

arrives (optionally specifying a timeout).

Using the non-blocking pattern
Example 39, “Non-Blocking Polling Approach for an Asynchronous Operation
Call” illustrates using non-blocking polling to make an asynchronous invocation
on the greetMeSometime operation defined in Example 36, “WSDL Contract
for Asynchronous Example”. The client invokes the asynchronous operation
and periodically checks to see if the result has returned.

Example 39. Non-Blocking Polling Approach for an Asynchronous Operation Call
package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
private static final QName SERVICE_NAME
= new QName("http://apache.org/hello_world_async_soap_http",

101

Implementing an Asynchronous Client
with the Polling Approach

"SOAPService");

private Client() {}

public static void main(String args[]) throws Exception {

// set up the proxy for the client

❶ Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
port.greetMeSometimeAsync(System.getProperty("user.name"));

❷ while (!greetMeSomeTimeResp.isDone()) {
// client does some work
}

❸ GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
// process the response

System.exit(0);
}

}

The code in Example 39, “Non-Blocking Polling Approach for an
Asynchronous Operation Call” does the following:

❶ Invokes the greetMeSometimeAsync() on the proxy.

The method call returns the
Response<GreetMeSometimeResponse> object to the client

immediately. The Artix ESB runtime handles the details of receiving the
reply from the remote endpoint and populating the
Response<GreetMeSometimeResponse> object.

Note
The runtime transmits the request to the remote endpoint's
greetMeSometime() method and handles the details of the

asynchronous nature of the call under the covers. The endpoint,
and therefore the service implementation, never needs to worry
about the details of how the client intends to wait for a
response.

❷ Checks to see if a response has arrived by checking the isDone() of

the returned Response object.

102

Implementing an Asynchronous Client
with the Polling Approach

If the response has not arrived, the client does some work before
checking again.

❸ If the response has arrived, the client retrieves it from the Response

object using the get().

Using the blocking pattern
Using blocking polling to make asynchronous invocations on a remote
operation follows the same steps as non-blocking polling. However, instead
of using the Response object's isDone() to check if a response has been

returned before calling the get() to retrieve the response, you immediately

call the get(). The get() blocks until the response is available.

Tip
You can also pass a timeout limit to the get() method.

Example 40, “Blocking Polling Approach for an Asynchronous Operation
Call” shows a client that uses blocking polling.

Example 40. Blocking Polling Approach for an Asynchronous Operation Call
package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
private static final QName SERVICE_NAME
= new QName("http://apache.org/hello_world_async_soap_http",

"SOAPService");

private Client() {}

public static void main(String args[]) throws Exception {

// set up the proxy for the client

Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
port.greetMeSometimeAsync(System.getProperty("user.name"));

GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();

103

Implementing an Asynchronous Client
with the Polling Approach

// process the response
System.exit(0);

}
}

104

Implementing an Asynchronous Client
with the Polling Approach

Implementing an Asynchronous Client with the
Callback Approach

An alternative approach to making an asynchronous operation invocation is
to implement a callback class. You then call the asynchronous remote method
that takes the callback object as a parameter. The runtime returns the response
to the callback object.

To implement an application that uses callbacks you need to do the following:

1. Create a callback class that implements the AsyncHandler interface.

Note
Your callback object can perform any amount of response
processing required by your application.

2. Make remote invocations using the operationNameAsync() that

takes the callback object as a parameter and returns a Future<?>

object.

3. If your client needs to access the response data, you can periodically use
the returned Future<?> object's isDone()method to see if the remote

endpoint has sent the response.

Tip
If the callback object does all of the response processing, you
do not need to check if the response has arrived.

Implementing the callback
Your callback class must implement the javax.xml.ws.AsyncHandler

interface. The interface defines a single method:

void handleResponse(Response<T> res);

The Artix ESB runtime calls the handleResponse() to notify the client

that the response has arrived. Example 41, “The

105

Implementing an Asynchronous Client
with the Callback Approach

javax.xml.ws.AsyncHandler Interface” shows an outline of the

AsyncHandler interface that you need to implement.

Example 41. The javax.xml.ws.AsyncHandler Interface

public interface javax.xml.ws.AsyncHandler
{
void handleResponse(Response<T> res)

}

Example 42, “Callback Implementation Class” shows a callback class for
the greetMeSometime operation defined in Example 36, “WSDL Contract for
Asynchronous Example”.

Example 42. Callback Implementation Class
package demo.hw.client;

import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.types.*;

public class GreeterAsyncHandler implements AsyncHandler<GreetMeSometimeResponse>
{
❶ private GreetMeSometimeResponse reply;

❷ public void handleResponse(Response<GreetMeSometimeResponse>
response)

{
try
{
reply = response.get();

}
catch (Exception ex)
{
ex.printStackTrace();

}
}

❸ public String getResponse()
{
return reply.getResponseType();

}
}

106

Implementing an Asynchronous Client
with the Callback Approach

The callback implementation shown in Example 42, “Callback Implementation
Class” does the following:

❶ Defines a member variable, response, to hold the response returned

from the remote endpoint.
❷ Implements handleResponse().

This implementation simply extracts the response and assigns it to the
member variable reply.

❸ Implements an added method called getResponse().

This method is a convenience method that extracts the data from reply

and returns it.

Implementing the consumer
Example 43, “Callback Approach for an Asynchronous Operation Call”
illustrates a client that uses the callback approach to make an asynchronous
call to the GreetMeSometime operation defined in Example 36, “WSDL
Contract for Asynchronous Example”.

Example 43. Callback Approach for an Asynchronous Operation Call
package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
...

public static void main(String args[]) throws Exception
{
...
// Callback approach

❶ GreeterAsyncHandler callback = new GreeterAsyncHandler();

❷ Future<?> response =
port.greetMeSometimeAsync(System.getProperty("user.name"),

callback);
❸ while (!response.isDone())

107

Implementing an Asynchronous Client
with the Callback Approach

{
// Do some work

}
❹ resp = callback.getResponse();

...
System.exit(0);

}
}

The code in Example 43, “Callback Approach for an Asynchronous Operation
Call” does the following:

❶ Instantiates a callback object.

❷ Invokes the greetMeSometimeAsync() that takes the callback object

on the proxy.

The method call returns the Future<?> object to the client immediately.

The Artix ESB runtime handles the details of receiving the reply from
the remote endpoint, invoking the callback object's handleResponse()

method, and populating the
Response<GreetMeSometimeResponse> object.

Note
The runtime transmits the request to the remote endpoint's
greetMeSometime() method and handles the details of the

asynchronous nature of the call without the remote endpoint's
knowledge. The endpoint, and therefore the service
implementation, never needs to worry about the details of how
the client intends to wait for a response.

❸ Uses the returned Future<?> object's isDone() method to check if

the response has arrived from the remote endpoint.
❹ Invokes the callback object's getResponse() method to get the

response data.

108

Implementing an Asynchronous Client
with the Callback Approach

Using Raw XML Messages
Summary

The high-level JAX-WS APIs shield the developer from using native XML
messages by marshelling the data into JAXB objects. However, there are
cases when it is better to have direct access to the raw XML message data
that is passing on the wire. The JAX-WS APIs provide two interfaces that
provide access to the raw XML: Dispatch is the client-side interface.

Provider is the server-side interface.

Table of Contents
Using XML in a Consumer with the Dispatch Interface ... 110

Usage Modes .. 111
Data Types ... 113
Working with Dispatch Objects ... 116

Using XML in a Service Provider with the Provider Interface .. 123

Messaging Modes .. 124
Data Types ... 126
Implementing a Provider Object ... 128

109

Using XML in a Consumer with the Dispatch

Interface

Table of Contents
Usage Modes .. 111
Data Types ... 113
Working with Dispatch Objects ... 116

The Dispatch interface is a low-level JAX-WS API that allows you work

directly with raw messages. It accepts and returns messages, or payloads, of
a number of types including DOM objects, SOAP messages, and JAXB objects.
Because it is a low-level API, Dispatch does not perform any of the message

preparation that the higher-level JAX-WS APIs perform. You must ensure that
the messages, or payloads, that you pass to the Dispatch object are properly

constructed and make sense for the remote operation being invoked.

110

Using XML in a Consumer with the
Dispatch Interface

Usage Modes
Overview

Dispatch objects have two usage modes:

• Message mode

• Message Payload mode (Payload mode)

The usage mode you specify for a Dispatch object determines the amount

of detail is passed to the user level code.

Message mode
In message mode, a Dispatch object works with complete messages. A

complete message includes any binding specific headers and wrappers. For
example, a consumer interacting with a service that requires SOAP messages
would need to provide the Dispatch object's invoke() method a fully

specified SOAP message. The invoke() method will also return a fully

specified SOAP message. The consumer code is responsible for completing
and reading the SOAP message's headers and the SOAP message's envelope
information.

Tip
Message mode is not ideal when you wish to work with JAXB objects.

You specify that a Dispatch object uses message mode by providing the

value java.xml.ws.Service.Mode.MESSAGE when creating the

Dispatch object. For more information about creating a Dispatch object

see Creating a Dispatch object.

Payload mode
In payload mode, also called message payload mode, a Dispatch object

works with only the payload of a message. For example, a Dispatch object

working in payload mode works only with the body of a SOAP message. The
binding layer processes any binding level wrappers and headers. When a
result is returned from invoke() the binding level wrappers and headers

are already striped away and only the body of the message is left.

111

Usage Modes

Tip
When working with a binding that does not use special wrappers,
such as the Artix ESB XML binding, payload mode and message
mode provide the same results.

You specify that a Dispatch object uses payload mode by providing the

value java.xml.ws.Service.Mode.PAYLOAD when creating the

Dispatch object. For more information about creating a Dispatch object

see Creating a Dispatch object.

112

Usage Modes

Data Types
Overview

Dispatch objects, because they are low-level objects, are not optimized for

using the same JAXB generated types as the higher level consumer APIs.
Dispatch objects work with the following types of objects:

• javax.xml.transform.Source

• javax.xml.soap.SOAPMessage

• javax.activation.DataSource

• JAXB

Using Source objects
A Dispatch object can accept and return objects that are derived from the

javax.xml.transform.Source interface. Source objects are low level

objects that hold XML documents. Each Source implementation provides

methods that access the stored XML documents and manipulate its contents.
The following objects implement the Source interface:

DOMSource

Holds XML messages as a Document Object Model(DOM) tree. The XML
message is stored as a set of Node objects that can be accessed using

the getNode() method. Nodes can be updated or added to the DOM

tree using the setNode() method.

SAXSource

Holds XML messages as a Simple API for XML (SAX) object. SAX objects
contain an InputSource object that contains the raw data and an

XMLReader object that parses the raw data.

StreamSource

Holds XML messages as a data stream. The data stream can be
manipulated as would any other data stream.

113

Data Types

Important
When using Source objects the developer is responsible for ensuring

that all required binding specific wrappers are added to the message.
For example, when interacting with a service expecting SOAP
messages, the developer must ensure that the required SOAP
envelope is added to the outgoing request and that the SOAP
envelope's contents are correct.

Using SOAPMessage objects
Dispatch objects can use javax.xml.soap.SOAPMessage objects

when the following conditions are true:

• the Dispatch object is using the SOAP binding.

• the Dispatch object is using message mode.

A SOAPMessage object, as the name implies, holds a SOAP message. They

contain one SOAPPart object and zero or more AttachmentPart objects.

The SOAPPart object contains the SOAP specific portions of the SOAP

message including the SOAP envelope, any SOAP headers, and the SOAP
message body. The AttachmentPart objects contain binary data that was

passed as an attachment.

Using DataSource objects
Dispatch objects can use objects that implement the

javax.activation.DataSource interface when the following conditions

are true:

• the Dispatch object is using the HTTP binding.

• the Dispatch object is using message mode.

DataSource objects provide a mechanism for working with MIME typed

data from a variety of sources including URLs, files, and byte arrays.

Using JAXB objects
While Dispatch objects are intended to be low level API that allows you to

work with raw messages, they also allow you to work with JAXB objects. To
work with JAXB objects a Dispatch object must be passed a JAXBContext

114

Data Types

that knows how to marshal and unmarshal the JAXB objects in use. The
JAXBContext is passed when the Dispatch object is created.

You can pass any JAXB object understood by the JAXBContext object as

the parameter to the invoke() method. You can also cast the returned

message into any JAXB object understood by the JAXBContext object.

115

Data Types

Working with Dispatch Objects

Procedure
To use a Dispatch object to invoke a remote service you do the following:

1. Create a Dispatch object.

2. Construct a request message.

3. Call the proper invoke() method.

4. Parse the response message.

Creating a Dispatch object
To create a Dispatch object do the following:

1. Create a Service object to represent the wsdl:service element

defining the service on which the Dispatch object will make

invocations. See Creating a Service Object.

2. Create the Dispatch object using the Service object's

createDispatch() method shown in Example 44, “The

createDispatch() Method”.

Example 44. The createDispatch() Method

public Dispatch<T> createDispatch(QName portName,
java.lang.Class<T> type,
Service.Mode mode)

throws WebServiceException;

Note
If you are using JAXB objects the method signature for
createDispatch() is:

public Dispatch<T> createDispatch(QName portName,
javax.xml.bind.JAXBContext context,
Service.Mode mode)

throws WebServiceException;

116

Working with Dispatch Objects

Table 10, “Parameters for createDispatch()” describes the

parameters for createDispatch().

Table 10. Parameters for createDispatch()

DescriptionParameter

Specifies the QName of the wsdl:port element that represent the service provider on which the

Dispatch object will make invocations.

portName

Specifies the data type of the objects used by the Dispatch object. See Data Types.type

Note
If you are working with JAXB objects, this parameter is where you would specify the
JAXBContext object used to marshal and unmarshal the JAXB objects.

Specifies the usage mode for the Dispatch object. See Usage Modes.mode

Example 45, “Creating a Dispatch Object” shows code for creating a

Dispatch object that works with DOMSource objects in payload mode.

Example 45. Creating a Dispatch Object

package com.iona.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{
QName serviceName = new QName("http://org.apache.cxf", "stockQuoteReporter");
Service s = Service.create(serviceName);

QName portName = new QName("http://org.apache.cxf", "stockQuoteReporterPort");
Dispatch<DOMSource> dispatch = createDispatch(portName,

DOMSource.class,

117

Working with Dispatch Objects

Service.Mode.PAYLOAD);
...

Constructing request messages
When working with Dispatch objects requests must be built from scratch.

The developer is responsible for ensuring that the messages passed to a
Dispatch object match a request that the targeted service provider can

process. This requires precise knowledge about the messages used by the
service provider and what, if any, header information it requires.

This information can be provided by a WSDL document or an XMLSchema
document that defines the messages. While service providers vary greatly
there are a few guidelines that can be followed:

• The root element of the request is based in the value of the name attribute

of the wsdl:operation element that corresponds to the operation being

invoked.

Warning
If the service being invoked uses doc/literal bare messages, the
root element of the request will be based on the value of name

attribute of the wsdl:part element refered to by the

wsdl:operation element.

• The root element of the request will be namespace qualified.

• If the service being invoked uses rpc/literal messages, the top-level elements
in the request will not be namespace qualified.

Important
The children of top-level elements may be namespace qualified.
To be certain you will need to check their schema definitions.

• If the service being invoked uses rpc/literal messages, none of the top-level
elements can be null.

• If the service being invoked uses doc/literal messages, the schema definition
of the message determines if any of the elements are namespace qualified.

118

Working with Dispatch Objects

For more information about how services use XML messages see the WS-I
Basic Profile [http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html].

Synchronous invocation
For consumers that make synchronous invocations that generate a response,
you use the Dispatch object's invoke() method shown in Example 46,

“The Dispatch.invoke() Method”.

Example 46. The Dispatch.invoke() Method

T invoke(T msg)
throws WebServiceException;

The type of both the response and the request passed to the invoke()

method are determined when the Dispatch object is created. For example

if you created a Dispatch object using createDispatch(portName,

SOAPMessage.class, Service.Mode.MESSAGE) the response and

the request would both be SOAPMessage objects.

Note
When using JAXB objects, the response and the request can be of
any type the provided JAXBContext object can marshal and

unmarshal. Also, the response and the request can be different JAXB
objects.

Example 47, “Making a Synchronous Invocation Using a Dispatch Object”

shows code for making a synchronous invocation on a remote service using
a DOMSource object.

Example 47. Making a Synchronous Invocation Using a Dispatch Object

// Creating a DOMSource Object for the request
DocumentBuilder db = DocumentBuilderFactory.newDocumentBuilder();
Document requestDoc = db.newDocument();
Element root = requestDoc.createElementNS("http://org.apache.cxf/stockExample",

"getStockPrice");
root.setNodeValue("DOW");
DOMSource request = new DOMSource(requestDoc);

119

Working with Dispatch Objects

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

// Dispatch disp created previously
DOMSource response = disp.invoke(request);

Asynchronous invocation
Dispatch objects also support asynchronous invocations. As with the higher

level asynchronous APIs discussed in Developing Asynchronous Applications,
Dispatch objects can use both the polling approach and the callback

approach.

When using the polling approach the invokeAsync() method returns a

Response<t> object that can be periodically polled to see if the response

has arrived. Example 48, “The Dispatch.invokeAsync() Method for

Polling” shows the signature of the method used to make an asynchronous
invocation using the polling approach.

Example 48. The Dispatch.invokeAsync() Method for

Polling
Response <T> invokeAsync(T msg)
throws WebServiceException;

For detailed information on using the polling approach for asynchronous
invocations see Implementing an Asynchronous Client with the Polling
Approach.

When using the callback approach the invokeAsync() method takes an

AsyncHandler implementation that processes the response when it is

returned. Example 49, “The Dispatch.invokeAsync() Method Using

a Callback” shows the signature of the method used to make an asynchronous
invocation using the callback approach.

Example 49. The Dispatch.invokeAsync()Method Using

a Callback
Future<?> invokeAsync(T msg,

AsyncHandler<T> handler)
throws WebServiceException;

For detailed information on using the callback approach for asynchronous
invocations see Implementing an Asynchronous Client with the Callback
Approach.

120

Working with Dispatch Objects

Note
As with the synchronous invoke()method, the type of the response

and the type of the request are determined when you create the
Dispatch object.

Oneway invocation
When a request does not generate a response, you make remote invocations
using the Dispatch object's invokeOneWay(). Example 50, “The

Dispatch.invokeOneWay()Method” shows the signature for this method.

Example 50. The Dispatch.invokeOneWay() Method

void invokeOneWay(T msg)
throws WebServiceException;

The type of object used to package the request is determined when the
Dispatch object is created. For example if the Dispatch object is created

using createDispatch(portName, DOMSource.class,

Service.Mode.PAYLOAD) the request would be packaged into a

DOMSource object.

Note
When using JAXB objects, the response and the request can be of
any type the provided JAXBContext object can marshal and

unmarshal. Also, the response and the request can be different JAXB
objects.

Example 51, “Making a One Way Invocation Using a Dispatch Object”

shows code for making a oneway invocation on a remote service using a JAXB
object.

Example 51. Making a One Way Invocation Using a Dispatch Object

// Creating a JAXBContext and an Unmarshaller for the request
JAXBContext jbc = JAXBContext.newInstance("org.apache.cxf.StockExample");
Unmarshaller u = jbc.createUnmarshaller();

// Read the request from disk

121

Working with Dispatch Objects

File rf = new File("request.xml");
GetStockPrice request = (GetStockPrice)u.unmarshal(rf);

// Dispatch disp created previously
disp.invokeOneWay(request);

122

Working with Dispatch Objects

Using XML in a Service Provider with the Provider

Interface

Table of Contents
Messaging Modes .. 124
Data Types ... 126
Implementing a Provider Object ... 128

The Provider interface is a low-level JAX-WS API that allows you to

implement a service provider that works directly with messages as raw XML.
The messages are not packaged into JAXB objects before being passed to an
object that implements the Provider interface as they are with the higher

level SEI based objects.

123

Using XML in a Service Provider with
the Provider Interface

Messaging Modes
Overview

Objects that implement the Provider interface have two messaging modes:

• Message mode

• Payload mode

The messaging mode you specify determines the level of messaging detail
that is passed to your implementation.

Message mode
When using message mode, a Provider implementation works with

complete messages. A complete message includes any binding specific headers
and wrappers. For example, a Provider implementation that uses a SOAP

binding would receive requests as fully specified SOAP message. Any response
returned from the implementation would also need to be a fully specified
SOAP message.

You specify that a Provider implementation uses message mode by

providing the value java.xml.ws.Service.Mode.MESSAGE as the value

to the javax.xml.ws.ServiceMode annotation as shown in Example 52,

“Specifying that a Provider Implementation Uses Message Mode”.

Example 52. Specifying that a Provider Implementation

Uses Message Mode
@WebServiceProvider
@ServiceMode(value=Service.Mode.MESSAGE)
public class stockQuoteProvider implements
Provider<SOAPMessage>
{
...

}

Payload mode
In payload mode a Provider implementation works with only the payload

of a message. For example, a Provider implementation working in payload

mode works only with the body of a SOAP message. The binding layer
processes any binding level wrappers and headers.

124

Messaging Modes

Tip
When working with a binding that does not use special wrappers,
such as the Artix ESB XML binding, payload mode and message
mode provide the same results.

You specify that a Provider implementation uses payload mode by providing

the value java.xml.ws.Service.Mode.PAYLOAD as the value to the

javax.xml.ws.ServiceMode annotation as shown in Example 53,

“Specifying that a Provider Implementation Uses Payload Mode”.

Example 53. Specifying that a Provider Implementation

Uses Payload Mode
@WebServiceProvider
@ServiceMode(value=Service.Mode.PAYLOAD)
public class stockQuoteProvider implements Provider<DOMSource>
{
...

}

Tip
If you do not provide the @ServiceMode annotation, the Provider

implementation will default to using payload mode.

125

Messaging Modes

Data Types
Overview

Provider implementations, because they are low-level objects, cannot use

the same JAXB generated types as the higher level consumer APIs. Provider

implementations work with the following types of objects:

• javax.xml.transform.Source

• javax.xml.soap.SOAPMessage

• javax.activation.DataSource

Using Source objects
A Provider implementation can accept and return objects that are derived

from the javax.xml.transform.Source interface. Source objects are

low level objects that hold XML documents. Each Source implementation

provides methods that access the stored XML documents and manipulate its
contents. The following objects implement the Source interface:

DOMSource

Holds XML messages as a Document Object Model(DOM) tree. The XML
message is stored as a set of Node objects that can be accessed using

the getNode() method. Nodes can be updated or added to the DOM

tree using the setNode() method.

SAXSource

Holds XML messages as a Simple API for XML (SAX) object. SAX objects
contain an InputSource object that contains the raw data and an

XMLReader object that parses the raw data.

StreamSource

Holds XML messages as a data stream. The data stream can be
manipulated as would any other data stream.

126

Data Types

Important
When using Source objects the developer is responsible for ensuring

that all required binding specific wrappers are added to the message.
For example, when interacting with a service expecting SOAP
messages, the developer must ensure that the required SOAP
envelope is added to the outgoing request and that the SOAP
envelope's contents are correct.

Using SOAPMessage objects
Provider implementations can use javax.xml.soap.SOAPMessage

objects when the following conditions are true:

• the Provider implementation is using the SOAP binding.

• the Provider implementation is using message mode.

A SOAPMessage object, as the name implies, holds a SOAP message. They

contain one SOAPPart object and zero or more AttachmentPart objects.

The SOAPPart object contains the SOAP specific portions of the SOAP

message including the SOAP envelope, any SOAP headers, and the SOAP
message body. The AttachmentPart objects contain binary data that was

passed as an attachment.

Using DataSource objects
Provider implementations can use objects that implement the

javax.activation.DataSource interface when the following conditions

are true:

• the implementation is using the HTTP binding.

• the implementation is using message mode.

DataSource objects provide a mechanism for working with MIME typed

data from a variety of sources including URLs, files, and byte arrays.

127

Data Types

Implementing a Provider Object

Overview
The Provider interface is relatively easy to implement. It only has one

method, invoke(), that needs to be implemented. In addition it has three

simple requirements:

• An implementation must have the @WebServiceProvider annotation.

• An implementation must have a default public constructor.

• An implementation must implement a typed version of the Provider

interface.

In other words, you cannot implement a Provider<T> interface. You

must implement a version of the interface that uses a concrete data type
as listed in Data Types. For example, you can implement an instance of a
Provider<SAXSource>.

The complexity of implementing the Provider interface surrounds handling

the request messages and building the proper responses.

Working with messages
Unlike the higher-level SEI based service implementations, Provider

implementations receive requests as raw XML data and must send responses
as raw XML data. This requires that the developer has intimate knowledge
of the messages used by the service being implemented. These details can
typically be found in the WSDL document describing the service.

WS-I Basic Profile
[http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html] provides
guidelines about the messages used by services including:

• The root element of a request is based in the value of the name attribute

of the wsdl:operation element that corresponds to the operation being

invoked.

Warning
If the service uses doc/literal bare messages, the root element of
the request will be based on the value of name attribute of the

128

Implementing a Provider Object

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

wsdl:part element referred to by the wsdl:operation

element.

• The root element of all messages will be namespace qualified.

• If the service uses rpc/literal messages, the top-level elements in the
messages will not be namespace qualified.

Important
The children of top-level elements may be namespace qualified.
To be certain you will need to check their schema definitions.

• If the service uses rpc/literal messages, none of the top-level elements can
be null.

• If the service uses doc/literal messages, the schema definition of the
message determines if any of the elements are namespace qualified.

The @WebServiceProvider
annotation To be recognized by JAX-WS as a service implementation, a Provider

implementation must be decorated with the @WebServiceProvider

annotation.

Table 11, “@WebServiceProvider Properties” describes the properties

you can set for the @WebServiceProvider annotation.

Table 11. @WebServiceProvider Properties

DescriptionProperty

Specifies the value of name attribute of the wsdl:port element that defines the service's

endpoint.

portName

Specifies the value of name attribute of the wsdl:service element that contains the service's

endpoint.

serviceName

Specifies the targetname space fop the service's WSDL definition.targetNamespace

Specifies the URI for the WSDL document definig the service.wsdlLocation

129

Implementing a Provider Object

All of these properties are optional and are empty by default. If you leave
them empty, Artix ESB will create values using information from the
implementation class.

Implementing the invoke()
method The Provider interface has only one method, invoke(), that needs to be

implemented. invoke() receives the incoming request packaged into the

type of object declared by the type of Provider interface being implemented

and returns the response message packaged into the same type of object. For
example, an implementation of a Provider<SOAPMessage> interface

would receive the request as a SOAPMessage object and return the response

as a SOAPMessage object.

The messaging mode used by the Provider implementation determines the

amount of binding specific information the request and response messages
contain. Implementation using message mode receive all of the binding specific
wrappers and headers along with the request. They must also add all of the
binding specific wrappers and headers to the response message.
Implementations using payload mode only receive the body of the request.
The XML document returned by an implementation using payload mode will
be placed into the body of the request message.

Examples
Example 54, “Provider<SOAPMessage> Implementation” shows a

Provider implementation that works with SOAPMessage objects in

message mode.

Example 54. Provider<SOAPMessage> Implementation

import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

❶@WebServiceProvider(portName="stockQuoteReporterPort"
serviceName="stockQuoteReporter")

❷@ServiceMode(value="Service.Mode.MESSAGE")
public class stockQuoteReporterProvider implements Provider<SOAPMessage>
{
❸public stockQuoteReporterProvider()
{
}

130

Implementing a Provider Object

❹public SOAPMessage invoke(SOAPMessage request)
{

❺ SOAPBody requestBody = request.getSOAPBody();
❻ if(requestBody.getElementName.getLocalName.equals("getStockPrice"))

{
❼ MessageFactory mf = MessageFactory.newInstance();

SOAPFactory sf = SOAPFactory.newInstance();

❽ SOAPMessage response = mf.createMessage();
SOAPBody respBody = response.getSOAPBody();
Name bodyName = sf.createName("getStockPriceResponse");
respBody.addBodyElement(bodyName);
SOAPElement respContent = respBody.addChildElement("price");
respContent.setValue("123.00");
response.saveChanges();

❾ return response;
}
...

}
}

The code in Example 54, “Provider<SOAPMessage> Implementation”

does the following:

❶ Specifies that the following class implements a Provider object that

implements the service whose wsdl:service element is named

stockQuoteReporter and whose wsdl:port element is named

stockQuoteReporterPort.
❷ Specifies that this Provider implementation uses message mode.

❸ Provides the required default public constructor.

❹ Provides an implementation of the invoke() method that takes a

SOAPMessage object and returns a SOAPMessage object.

❺ Extracts the request message from the body of the incoming SOAP
message.

❻ Checks the root element of the request message to determine how to
process the request.

❼ Creates the factories needed for building the response.

❽ Builds the SOAP message for the response.

❾ Returns the response as a SOAPMessage object.

131

Implementing a Provider Object

Example 55, “Provider<DOMSource> Implementation” shows an example

of a Provider implementation using DOMSource objects in payload mode.

Example 55. Provider<DOMSource> Implementation

import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

❶@WebServiceProvider(portName="stockQuoteReporterPort"
serviceName="stockQuoteReporter")
❷@ServiceMode(value="Service.Mode.PAYLOAD")
public class stockQuoteReporterProvider implements
Provider<DOMSource>
❸public stockQuoteReporterProvider()
{
}

❹public DOMSource invoke(DOMSource request)
{
DOMSource response = new DOMSource();
...
return response;

}
}

The code in Example 55, “Provider<DOMSource> Implementation” does

the following:

❶ Specifies that the class implements a Provider object that implements

the service whose wsdl:service element is named

stockQuoteReporter and whose wsdl:port element is named

stockQuoteReporterPort.
❷ Specifies that this Provider implementation uses payload mode.

❸ Provides the required default public constructor.

❹ Provides an implementation of the invoke() method that takes a

DOMSource object and returns a DOMSource object.

132

Implementing a Provider Object

Working with Contexts
Summary

JAX-WS uses contexts to pass metadata along the messaging chain. This
metadata, depending on its scope, is accessible to implementation level
code. It is also accessible to JAX-WS handlers that operate on the message
below the implementation level.

Table of Contents
Understanding Contexts ... 134
Working with Contexts in a Service Implementation .. 138
Working with Contexts in a Consumer Implementation .. 146
Working with JMS Message Properties .. 150

Inspecting JMS Message Headers .. 151
Inspecting the Message Header Properties .. 153
Setting JMS Properties .. 155

133

Understanding Contexts
In many instances it is necessary to pass information about a message to
other parts of an application. Artix ESB does this using a context mechanism.
Contexts are maps that hold properties relating to an outgoing or incoming
message. The properties stored in the context are typically metadata about
the message and the underlying transport used to communicate the message.
For example, the transport specific headers used in transmitting the message,
such as the HTTP response code or the JMS correlation ID, are stored in the
JAX-WS contexts.

The contexts are available at all levels of a JAX-WS application. However,
they differ in subtle ways depending upon where in the message processing
stack you are accessing the context. JAX-WS Handler implementations have

direct access to the contexts and can access all properties that are set in
them. Service implementations access contexts by having them injected and
can only access properties that are set in the APPLICATION scope. Consumer

implementations can only access properties that are set in the APPLICATION

scope.

Figure 1, “Message Contexts and Message Processing Path” shows how the
context properties pass through Artix ESB. As a message passes through the
messaging chain, its associated message context passes along with it.

134

Understanding Contexts

Figure 1. Message Contexts and Message Processing Path

How properties are stored in a
context The message contexts are all implementations of the

javax.xml.ws.handler.MessageContext interface. The

MessageContext interface extends the java.util.Map<String key,

Object value> interface. Map objects store information as key value pairs.

In a message context, properties are stored as name value pairs. A property's
key is a String that identifies the property. The value of a property can be

any stored in any Java object. When the value is returned from a message
context, the application must know the type to expect and cast accordingly.
For example if a property's value is stored in a UserInfo object it will still

135

Understanding Contexts

be returned from a message context as a plain Object object that must be

cast back into a UserInfo object.

Properties in a message context also have a scope. The scope determines
where in the message processing chain a property can be accessed.

Property scopes
Properties in a message context are scoped. A property can have one of two
scopes:

APPLICATION

Properties scoped as APPLICATION are available to JAX-WS Handler

implementations, consumer implementation code, and service provider
implementation code. If a handler needed to pass a property to the service
provider implementation, it would set the property's scope to
APPLICATION. All properties set from either the consumer

implementation or the service provider implementation contexts are
automatically scoped as APPLICATION.

HANDLER

Properties scoped as HANDLER are only available to JAX-WS Handler

implementations. Properties stored in a message context from a Handler

implementation are scoped as HANDLER by default.

You can change a property's scope using the message context's setScope()

method. Example 56, “The MessageContext.setScope() Method”

shows the method's signature.

Example 56. The MessageContext.setScope() Method

void setScope(String key,
MessageContext.Scope scope)

throws java.lang.IllegalArgumentException;

The first parameter specifies the property's key. The second specifies the new
scope for the property. The scope can be either

136

Understanding Contexts

MessageContext.Scope.APPLICATION or

MessageContext.Scope.HANDLER.

Overview contexts in Handler
implementations Classes that implement the JAX-WS Handler interface have direct access

to a message's context information. The message's context information is
passed into the Handler implementation's handleMessage(),

handleFault(), and close() methods.

Handler implementations have access to all of the properties stored in the

message context. In addition, logical handlers can access the contents of the
message body through the message context.

Overview of contexts in service
implementations Service implementations can access properties scoped as APPLICATION

from the message context. The service provider's implementation object
accesses the message context through the WebServiceContext object.

For more information see Working with Contexts in a Service Implementation.

Overview of contexts in consumer
implementations Consumer implementations have indirect access to the contents of the message

context. The consumer implementation has two separate message contexts.
One, the request context, holds a copy of the properties used for outgoing
requests. The other, the response context, holds a copy of the properties from
an incoming response. The dispatch layer transfers the properties between
the consumer implementation's message contexts and the message context
used by the Handler implementations.

When a request is passed to the dispatch layer from the consumer
implementation, the contents of the request context are copied into the
message context used by the dispatch layer. When the response is returned
from the service, the dispatch layer processes the message and sets the
appropriate properties into its message context. After the dispatch layer
processes a response, it copies all of the properties scoped as APPLICATION

in its message context to the consumer implementation's response context.

For more information see Working with Contexts in a Consumer
Implementation.

137

Understanding Contexts

Working with Contexts in a Service Implementation
Overview

Context information is made available to service implementations using the
WebServiceContext interface. From the WebServiceContext object

you can obtain a MessageContext object that is populated with the current

request's context properties that are in the application scope. You can
manipulate the values of the properties and they are propagated back through
the response chain.

Note
The MessageContext interface inherits from the java.util.Map

interface. Its contents can be manipulated using the Map interface's

methods.

Obtaining a context
To obtain the message context in a service implementation you need to do
the following:

1. Declare a variable of type WebServiceContext.

2. Decorate the variable with the javax.annotation.Resource

annotation to indicate that the context information is to be injected into
the variable.

3. Obtain the MessageContext object from the WebServiceContext

object using the getMessageContext() method.

Important
getMessageContext() can only be used in methods that

are decorated with the @WebMethod annotation.

Example 57, “Obtaining a Context Object in a Service Implementation” shows
code for obtaining a context object.

138

Working with Contexts in a Service
Implementation

Example 57. Obtaining a Context Object in a Service
Implementation
import javax.xml.ws.*;
import javax.xml.ws.handler.*;
import javax.annotation.*;

@WebServiceProvider
public class WidgetServiceImpl
{
@Resource
WebServiceContext wsc;

@WebMethod
public String getColor(String itemNum)
{
MessageContext context = wsc.getMessageContext();

}

...
}

Reading a property from a context
Once you have obtained the MessageContext object for your

implementation, you can access the properties stored in it using the get()

method shown in Example 58, “The MessageContext.get() Method”.

Example 58. The MessageContext.get() Method

V get(Object key);

Note
This get() is inherited from the Map interface.

The key parameter is the string representing the property you wish to retrieve

from the context. The get() returns an object that must be cast to the proper

type for the property. Table 12, “Properties Available in the Service
Implementation Context” lists a number of the properties that are available
in a service implementation's context.

139

Working with Contexts in a Service
Implementation

Important
Changing the values of the object returned from the context will also
change the value of the property in the context.

Example 59, “Getting a Property from a Service's Message Context” shows
code for getting the name of the WSDL operation element that represents

the invoked operation.

Example 59. Getting a Property from a Service's Message
Context
import javax.xml.ws.handler.MessageContext;
import org.apache.cxf.message.Message;

...
// MessageContext context retrieved in a previous example
QName wsdl_operation =

(QName)context.get(Message.WSDL_OPERATION);

Setting properties in a context
Once you have obtained the MessageContext object for your

implementation, you can set properties, and change existing properties, using
the put() method shown in Example 60, “The MessageContext.put()

Method”.

Example 60. The MessageContext.put() Method

V put(K key,
V value)

throws ClassCastException, IllegalArgumentException, NullPointerException;

If the property being set already exists in the message context, the put()

method will replace the existing value with the new value and return the old
value. If the property does not already exist in the message context, the put()

method will set the property and return null.

Example 61, “Setting a Property in a Service's Message Context” shows code
for setting the response code for an HTTP request.

140

Working with Contexts in a Service
Implementation

Example 61. Setting a Property in a Service's Message Context
import javax.xml.ws.handler.MessageContext;
import org.apache.cxf.message.Message;

...
// MessageContext context retrieved in a previous example
context.put(Message.RESPONSE_CODE, new Integer(404));

Supported contexts
Table 12, “Properties Available in the Service Implementation Context” lists
the properties accessible through the context in a service implementation
object.

Table 12. Properties Available in the Service Implementation Context

Base Class

DescriptionProperty Name

org.apache.cxf.message.Message

Specifies the transport specific header information. The value is stored
as a java.util.Map<String, List<String>>.

PROTOCOL_HEADERSa

Specifies the response code returned to the consumer. The value is stored
as a Integer.

RESPONSE_CODEa

Specifies the address of the service provider. The value is stored as a
String.

ENDPOINT_ADDRESS

Specifies the HTTP verb sent with a request. The value is stored as a
String.

HTTP_REQUEST_METHODa

Specifies the path of the resource being requested. The value is stored
as a String.

PATH_INFOa

The path is the portion of the URI after the hostname and before any
query string. For example, if an endpoint's URL is
http://cxf.apache.org/demo/widgets the path would be

/demo/widgets.

Specifies the query, if any, attached to the URI used to invoke the request.
The value is strored as a String.

QUERY_STRINGa

141

Working with Contexts in a Service
Implementation

Base Class

DescriptionProperty Name

Queries appear at the end of the URI after a ?. For example, if a request

was made to http://cxf.apache.org/demo/widgets?color

the query would be color.

Specifies whether or not the service provider can use MTOM for SOAP
attachments. The value is stored as a Boolean.

MTOM_ENABLED

Specifies whether or not the service provider validates messages against
a schema. The value is stored as a Boolean.

SCHEMA_VALIDATION_ENABLED

Specifies if the runtime will provide a stack trace along with a fault
message. The value is stored as a Boolean.

FAULT_STACKTRACE_ENABLED

Specifies the MIME type of the message. The value is stored as a
String.

CONTENT_TYPE

Specifies the path of the resource being requested. The value is stored
as a java.net.URL.

BASE_PATH

The path is the portion of the URI after the hostname and before any
query string. For example, if an endpoint's URL is
http://cxf.apache.org/demo/widgets the path would be

/demo/widgets.

Specifies the encoding of the message. The value is stored as a String.ENCODING

Specifies whether the parameters must appear in the message in a
particular order. The value is stored as a Boolean.

FIXED_PARAMETER_ORDER

Specifies if the consumer wants to maintain the current session for future
requests. The value is stored as a Boolean.

MAINTAIN_SESSION

Specifies the WSDL document defining the service being implemented.
The value is stored as a org.xml.sax.InputSource.

WSDL_DESCRIPTIONa

Specifies the qualified name of the wsdl:service element defining

the service being implemented. The value is stored as a QName.

WSDL_SERVICEa

Specifies the qualified name of the wsdl:port element defining the

endpoint used to access the service. The value is stored as a QName.

WSDL_PORTa

142

Working with Contexts in a Service
Implementation

Base Class

DescriptionProperty Name

Specifies the qualified name of the wsdl:portType element defining

the service being implemented. The value is stored as a QName.

WSDL_INTERFACEa

Specifies the qualified name of the wsdl:operation element

corresponding to the operation invoked by the consumer. The value is
stored as a QName.

WSDL_OPERATIONa

javax.xml.ws.handler.MessageContext

Specifies if a message is outbound. The value is stored as a Boolean.

true specifies that a message is outbound.

MESSAGE_OUTBOUND_PROPERTY

Contains any attachments included in the request message. The value
is stored as a java.util.Map<String, DataHandler>.

INBOUND_MESSAGE_ATTACHMENTS

The key value for the map is the MIME Content-ID for the header.

Contains any attachments for the response message. The value is stored
as a java.util.Map<String, DataHandler>.

OUTBOUND_MESSAGE_ATTACHMENTS

The key value for the map is the MIME Content-ID for the header.

Specifies the WSDL document defining the service being implemented.
The value is stored as a org.xml.sax.InputSource.

WSDL_DESCRIPTION

Specifies the qualified name of the wsdl:service element defining

the service being implemented. The value is stored as a QName.

WSDL_SERVICE

Specifies the qualified name of the wsdl:port element defining the

endpoint used to access the service. The value is stored as a QName.

WSDL_PORT

Specifies the qualified name of the wsdl:portType element defining

the service being implemented. The value is stored as a QName.

WSDL_INTERFACE

Specifies the qualified name of the wsdl:operation element

corresponding to the operation invoked by the consumer. The value is
stored as a QName.

WSDL_OPERATION

Specifies the response code returned to the consumer. The value is stored
as a Integer.

HTTP_RESPONSE_CODE

143

Working with Contexts in a Service
Implementation

Base Class

DescriptionProperty Name

Specifies the HTTP headers on a request. The value is stored as a
java.util.Map<String, List<String>>.

HTTP_REQUEST_HEADERS

Specifies the HTTP headers for the response.The value is stored as a
java.util.Map<String, List<String>>.

HTTP_RESPONSE_HEADERS

Specifies the HTTP verb sent with a request. The value is stored as a
String.

HTTP_REQUEST_METHOD

Contains the servlet's request object. The value is stored as a
javax.servlet.http.HttpServletRequest.

SERVLET_REQUEST

Contains the servlet's response object. The value is stored as a
javax.servlet.http.HttpResponse.

SERVLET_RESPONSE

Contains the servlet's context object. The value is stored as a
javax.servlet.ServletContext.

SERVLET_CONTEXT

Specifies the path of the resource being requested. The value is stored
as a String.

PATH_INFO

The path is the portion of the URI after the hostname and before any
query string. For example, if an endpoint's URL is
http://cxf.apache.org/demo/widgets the path would be

/demo/widgets.

Specifies the query, if any, attached to the URI used to invoke the request.
The value is stored as a String.

QUERY_STRING

Queries appear at the end of the URI after a ?. For example, if a request

was made to http://cxf.apache.org/demo/widgets?color

the query would be color.

Specifies the WS-Addressing reference parameters. This includes all of
the SOAP headers whose wsa:IsReferenceParameter attribute is

set to true. The value is stored as a java.util.List.

REFERENCE_PARAMETERS

org.apache.cxf.transport.jms.JMSConstants

144

Working with Contexts in a Service
Implementation

Base Class

DescriptionProperty Name

Contains the JMS message headers. For more information see Working
with JMS Message Properties.

JMS_SERVER_HEADERS

aWhen using HTTP this property is the same as the standard JAX-WS defined property.

145

Working with Contexts in a Service
Implementation

Working with Contexts in a Consumer Implementation
Overview

Consumer implementations have access to context information through the
BindingProvider interface. The BindingProvider instance holds

context information in two separate contexts:

request context

The request context enables you to set properties that affect outbound
messages. Request context properties are applied to a specific port
instance and, once set, the properties affect every subsequent operation
invocation made on the port, until such time as a property is explicitly
cleared. For example, you might use a request context property to set a
connection timeout or to initialize data for sending in a header.

response context

The response context enables you to read the property values set by the
inbound message from the last operation invocation from the current
thread. Response context properties are reset after every operation
invocation. For example, you might access a response context property
to read header information received from the last inbound message.

Important
Only information that is placed in the application scope of a message
context can be accessed by the consumer implementation.

Obtaining a context
Contexts are obtained using the javax.xml.ws.BindingProvider

interface. The BindingProvider interface has two methods for obtaining

a context:

getRequestContext()

The getRequestContext() method, shown in Example 62, “The

getRequestContext() Method”, returns the request context as a

Map object. The returned Map object can be used to directly manipulate

the contents of the context.

146

Working with Contexts in a Consumer
Implementation

Example 62. The getRequestContext() Method

Map<String, Object> getRequestContext();

getResponseContext()

The getResponseContext(), shown in Example 63, “The

getResponseContext() Method”, returns the response context as

a Map object. The returned Map object's contents reflect the state of the

response context's contents from the most recent successful remote
invocation in the current thread.

Example 63. The getResponseContext() Method

Map<String, Object> getResponseContext();

Since proxy objects implement the BindingProvider interface, a

BindingProvider object can be obtained by casting the a proxy object.

The contexts obtained from the BindingProvider object are only valid for

operations invoked on the proxy object used to create it.

Example 64, “Getting a Consumer's Request Context” shows code for
obtaining the request context for a proxy.

Example 64. Getting a Consumer's Request Context
// Proxy widgetProxy obtained previously
BindingProvider bp = (BindingProvider)widgetProxy
Map<String, Object> responseContext = bp.getResponseContext();

Reading a property from a context
Consumer contexts are stored in java.util.Map<String, Object>

object. The maps have keys String and values of arbitrary type. Use
java.util.Map.get() to access an entry in the hash map of response

context properties.

To retrieve a particular context property, ContextPropertyName, use the

code shown in Example 65, “Reading a Response Context Property”.

147

Working with Contexts in a Consumer
Implementation

Example 65. Reading a Response Context Property
// Invoke an operation.
port.SomeOperation();

// Read response context property.
java.util.Map<String, Object> responseContext =
((javax.xml.ws.BindingProvider)port).getResponseContext();

PropertyType propValue = (PropertyType) responseContext.get(ContextPropertyName);

Setting properties in a context
Consumer contexts are hash maps stored in java.util.Map<String,

Object> object. The map has keys of String and values of arbitrary type.

To set a property in the context you use the java.util.Map.put()

method.

Tip
While you can set properties in both the request and the response
context, only the changes made to the request context have any
impact on message processing. The properties in the response context
are reset when each remote invocation is completed on the current
thread.

The code shown in Example 66, “Setting a Request Context Property” changes
the address of the target service provider by setting the value of the
BindingProvider.ENDPOINT_ADDRESS_PROPERTY.

Example 66. Setting a Request Context Property
// Set request context property.
java.util.Map<String, Object> requestContext =

((javax.xml.ws.BindingProvider)port).getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
"http://localhost:8080/widgets");

// Invoke an operation.
port.SomeOperation();

148

Working with Contexts in a Consumer
Implementation

Important
Once a property is set in the request context its value is used for all
subsequent remote invocations. You can change the value and the
changed value will then be used.

Supported contexts
Artix ESB supports the following context properties in consumer
implementations:

Table 13. Consumer Context Properties

Base Class

DescriptionProperty Name

javax.xml.ws.BindingProvider

Specifies the address of the target service. The value is stored as a
String.

ENDPOINT_ADDRESS_PROPERTY

Specifies the username used for HTTP basic authentication. The value
is stored as a String.

USERNAME_PROPERTYa

Specifies the password used for HTTP basic authentication. The value
is stored as a String.

PASSWORD_PROPERTYb

Specifies if the client wishes to maintain session information. The value
is stored as a Boolean.

SESSION_MAINTAIN_PROPERTYc

org.apache.cxf.ws.addressing.JAXWSAConstants

Specifies the WS-Addressing information used by the consumer to
contact the desired service provider. The value is stored as a
org.apache.cxf.ws.addressing.AddressingProperties.

CLIENT_ADDRESSING_PROPERTIES

org.apache.cxf.transports.jms.context.JMSConstants

Contains the JMS headers for the message. For more information see
Working with JMS Message Properties.

JMS_CLIENT_REQUEST_HEADERS

aThis property is overridden by the username defined in the HTTP security settings.
bThis property is overridden by the password defined in the HTTP security settings.
cThe Artix ESB ignores this property.

149

Working with Contexts in a Consumer
Implementation

Working with JMS Message Properties

Table of Contents
Inspecting JMS Message Headers .. 151
Inspecting the Message Header Properties .. 153
Setting JMS Properties .. 155

The Artix ESB JMS transport has a context mechanism that can be used to
inspect a JMS message's properties. The context mechanism can also be used
to set a JMS message's properties.

150

Working with JMS Message Properties

Inspecting JMS Message Headers
Consumers and services use different context mechanisms to access the JMS
message header properties. However, both mechanisms return the header
properties as a
org.apache.cxf.transports.jms.context.JMSMessageHeadersType

object.

Getting the JMSMessage Headers
in a Service To get the JMS message header properties from the WebServiceContext

do the following:

1. Obtain the context as described in Obtaining a context.

2. Get the message headers from the message context using the message
context's get() method with the parameter

org.apache.cxf.transports.jms.JMSConstants.JMS_SERVER_HEADERS.

Example 67, “Getting JMS Message Headers in a Service Implementation”
shows code for getting the JMS message headers from a service's message
context:

Example 67. Getting JMS Message Headers in a Service Implementation
import org.apache.cxf.transport.jms.JMSConstants;
import org.apache.cxf.transports.jms.context.JMSMessageHeadersType;

@WebService(serviceName = "HelloWorldService",
portName = "HelloWorldPort",
endpointInterface =

"org.apache.cxf.hello_world_jms.HelloWorldPortType",
targetNamespace = "http://cxf.apache.org/hello_world_jms")

public class GreeterImplTwoWayJMS implements HelloWorldPortType
{
@Resource
protected WebServiceContext wsContext;
...

@WebMethod
public String greetMe(String me)
{
MessageContext mc = wsContext.getMessageContext();
JMSMessageHeadersType headers = (JMSMessageHeadersType)

mc.get(JMSConstants.JMS_SERVER_HEADERS);
...

151

Inspecting JMS Message Headers

}
...

}

Getting JMS Message Header
Properties in a Consumer Once a message has been successfully retrieved from the JMS transport you

can inspect the JMS header properties using the consumer's response context.
In addition, you can see how long the client will wait for a response before
timing out.

You can To get the JMS message headers from a consumer's response context
do the following:

1. Get the response context as described in Obtaining a context.

2. Get the JMS message header properties from the response context using
the context's get() method with

org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_RESPONSE_HEADERS

as the parameter.

Example 68, “Getting the JMS Headers from a Consumer Response Header”
shows code for getting the JMS message header properties from a consumer's
response context.

Example 68. Getting the JMS Headers from a Consumer Response Header
import org.apache.cxf.transports.jms.context.*;
// Proxy greeter initialized previously
❶BindingProvider bp = (BindingProvider)greeter;
❷Map<String, Object> responseContext = bp.getResponseContext();
❸JMSMessageHeadersType responseHdr = (JMSMessageHeadersType)

responseContext.get(JMSConstants.JMS_CLIENT_REQUEST_HEADERS);
...
}

The code in Example 68, “Getting the JMS Headers from a Consumer
Response Header” does the following:

❶ Casts the proxy to a BindingProvider.

❷ Gets the response context.

❸ Retrieves the JMS message headers from the response context.

152

Inspecting JMS Message Headers

Inspecting the Message Header Properties
Standard JMS Header Properties

Table 14, “JMS Header Properties” lists the standard properties in the JMS
header that you can inspect.

Table 14. JMS Header Properties

Getter MethodProperty TypeProperty Name

getJMSCorralationID()stringCorrelation ID

getJMSDeliveryMode()intDelivery Mode

getJMSExpiration()longMessage Expiration

getJMSMessageID()stringMessage ID

getJMSPriority()intPriority

getJMSRedlivered()booleanRedelivered

getJMSTimeStamp()longTime Stamp

getJMSType()stringType

getTimeToLive()longTime To Live

Optional Header Properties
In addition, you can inspect any optional properties stored in the JMS header
using JMSMessageHeadersType.getProperty(). The optional

properties are returned as a List of

org.apache.cxf.transports.jms.context.JMSPropertyType.

Optional properties are stored as name/value pairs.

Example
Example 69, “Reading the JMS Header Properties” shows code for inspecting
some of the JMS properties using the response context.

Example 69. Reading the JMS Header Properties
// JMSMessageHeadersType messageHdr retrieved previously
❶System.out.println("Correlation ID: "+messageHdr.getJMSCorrelationID());
❷System.out.println("Message Priority: "+messageHdr.getJMSPriority());
❸System.out.println("Redelivered: "+messageHdr.getRedelivered());

153

Inspecting the Message Header
Properties

JMSPropertyType prop = null;
❹List<JMSPropertyType> optProps = messageHdr.getProperty();
❺Iterator<JMSPropertyType> iter = optProps.iterator();
❻while (iter.hasNext())
{
prop = iter.next();
System.out.println("Property name: "+prop.getName());
System.out.println("Property value: "+prop.getValue());

}

The code in Example 69, “Reading the JMS Header Properties” does the
following:

❶ Prints the value of the message's correlation ID.

❷ Prints the value of the message's priority property.

❸ Prints the value of the message's redelivered property.

❹ Gets the list of the message's optional header properties.

❺ Gets an Iterator to traverse the list of properties.

❻ Iterates through the list of optional properties and prints their name and
value.

154

Inspecting the Message Header
Properties

Setting JMS Properties
Using the request context in a consumer endpoint, you can set a number of
the JMS message header properties and the consumer endpoint's timeout
value. These properties are valid for a single invocation. You will need to reset
them each time you invoke an operation on the service proxy.

Note
You cannot set header properties in a service.

JMS Header Properties
Table 15, “Settable JMS Header Properties” lists the properties in the JMS
header that you can set using the consumer endpoint's request context.

Table 15. Settable JMS Header Properties

Setter MethodProperty TypeProperty Name

setJMSCorralationID()stringCorrelation ID

setJMSDeliveryMode()intDelivery Mode

setJMSPriority()intPriority

setTimeToLive()longTime To Live

To set these properties do the following:

1. Create an
org.apache.cxf.transports.jms.context.JMSMessageHeadersType

object.

2. Populate the values you wish to set using the appropriate setter methods
from Table 15, “Settable JMS Header Properties”.

3. Set the values into the request context by calling the request context's
put() method using

org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_REQUEST_HEADERS

155

Setting JMS Properties

as the first argument and the new JMSMessageHeadersType object

as the second argument.

Optional JMS Header Properties
You can also set optional properties into the JMS header. Optional JMS header
properties are stored in the JMSMessageHeadersType object that is used

to set the other JMS header properties. They are stored as a List of

org.apache.cxf.transports.jms.context.JMSPropertyType.

To add optional properties to the JMS header do the following:

1. Create a JMSPropertyType object.

2. Set the property's name field using setName().

3. Set the property's value field using setValue().

4. Add the property to the JMS message header to the JMS message header
using
JMSMessageHeadersType.getProperty().add(JMSPropertyType).

5. Repeat the procedure until all of the properties have been added to the
message header.

Client Receive Timeout
In addition to the JMS header properties, you can set the amount of time a
consumer endpoint will wait for a response before timing out. You set the
value by calling the request context's put() method with

org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_RECEIVE_TIMEOUT

as the first argument and a long representing the amount of time in
milliseconds that you want to consumer to wait as the second argument.

Example
Example 70, “Setting JMS Properties using the Request Context” shows code
for setting some of the JMS properties using the request context.

Example 70. Setting JMS Properties using the Request Context
import org.apache.cxf.transports.jms.context.*;
// Proxy greeter initialized previously
❶InvocationHandler handler = Proxy.getInvocationHandler(greeter);

156

Setting JMS Properties

BindingProvider bp= null;
❷if (handler instanceof BindingProvider)
{
❸ bp = (BindingProvider)handler;
❹ Map<String, Object> requestContext = bp.getRequestContext();

❺ JMSMessageHeadersType requestHdr = new JMSMessageHeadersType();
❻ requestHdr.setJMSCorrelationID("WithBob");
❼ requestHdr.setJMSExpiration(3600000L);

❽ JMSPropertyType prop = new JMSPropertyType;
❾ prop.setName("MyProperty");
prop.setValue("Bluebird");

❿ requestHdr.getProperty().add(prop);

11 requestContext.put(JMSConstants.CLIENT_REQUEST_HEADERS, requestHdr);

12 requestContext.put(JMSConstants.CLIENT_RECEIVE_TIMEOUT, new Long(1000));
}

The code in Example 70, “Setting JMS Properties using the Request Context”
does the following:

❶ Gets the InvocationHandler for the proxy whose JMS properties

you want to change.
❷ Checks to see if the InvocationHandler is a BindingProvider.

❸ Casts the returned InvocationHandler object into a

BindingProvider object to retrieve the request context.

❹ Gets the request context.

❺ Creates a JMSMessageHeadersType object to hold the new message

header values.
❻ Sets the Correlation ID.

❼ Sets the Expiration property to 60 minutes.

❽ Creates a new JMSPropertyType object.

❾ Sets the values for the optional property.

❿ Adds the optional property to the message header.

11 Sets the JMS message header values into the request context.
12 Sets the client receive timeout property to 1 second.

157

Setting JMS Properties

158

Index
Symbols
@Delete, 83
@Get, 83
@HttpResource, 83
@OneWay, 34
@Post, 83
@Put, 83
@RequestWrapper, 32

className property, 32
localName property, 32
targetNamespace property, 32

@Resource, 138
@ResponseWrapper, 33

className property, 33
localName property, 33
targetNamespace property, 33

@ServiceMode, 124
@SOAPBinding, 29

parameterStyle property, 30
style property, 30
use property, 30

@WebFault, 33
faultName property, 34
name property, 34
targetNamespace property, 34

@WebMethod, 31, 138
action property, 32
exclude property, 32
operationName property, 32

@WebParam, 35
header property, 36
mode property, 35
name property, 35
partName property, 36
targetNamespace property, 35

@WebResult, 36
header property, 36
name property, 36
partName property, 37

targetNamespace property, 36
@WebService, 26

endpointInterface property, 27
name property, 27
portName property, 27
serviceName property, 27
targetNamespace property, 27
wsdlLocation property, 27

@WebServiceProvider, 129

A
annotations

@Delete (see @Delete)
@Get (see @Get)
@HttpResource (see @HttpResource)
@OneWay (see @OneWay)
@Post (see @Post)
@Put (see @Post)
@RequestWrapper (see @RequestWrapper)
@Resource (see @Resource)
@ResponseWrapper (see @ResponseWrapper)
@ServiceMode (see @ServiceMode)
@SOAPBinding (see @SOAPBinding)
@WebFault (see @WebFault)
@WebMethod (see @WebMethod)
@WebParam (see @WebParam)
@WebResult (see @WebResult)
@WebService (see @WebService)
@WebServiceProvider (see @WebServiceProvider)

Artix Designer, 62
artix java2wsdl, 38
artix wsdl2java, 56, 62
asynchronous applications

callback approach, 95
implementation

callback approach, 105, 120
polling approach, 101, 120

polling approach, 95
implementation patterns, 101

using a Dispatch object, 120
asynchronous methods, 100

callback approach, 100
pooling approach, 100

159

B
BindingProvider

getRequestContext() method, 146
getResponseContext() method, 147

C
code generation

asynchronous consumers, 99
consumer, 62
customization, 98
service provider, 56
service provider implementation, 59
WSDL contract, 38

consumer
implementing business logic, 48, 67

consumer contexts, 146
context

request
consumer, 146

WebServiceContext (see WebServiceContext)
createDispatch(), 116

D
DataSource, 114, 127
deploying

JAX-WS service endpoint, 69
RESTful service endpoint, 87

Dispatch object
creating, 116
invoke() method, 119
invokeAsync() method, 120
invokeOneWay() method, 121
message mode, 111
message payload mode, 111
payload mode, 111

DOMSource, 113, 126

E
endpoint

adding to a Service object, 44
determining the address, 45
determining the binding type, 44

determining the port name, 44
getting, 46, 65, 71

Endpoint object
create() method, 71
creating, 71
publish() method, 72

G
generated code

asynchronous operations, 99
consumer, 62
packages, 57, 62
server mainline, 70
service implementation, 59
service provider, 57
stub code, 63
WSDL contract, 38

getRequestContext(), 146
getResource(), 81
getResponseContext(), 147

H
handleResponse(), 105
HTTP

DELETE, 82, 83
GET, 81, 83
POST, 82, 83
PUT, 82, 83

I
implementation

asynchronous callback object, 105
asynchronous client

callback approach, 105
callbacks, 107
polling approach, 101

consumer, 48, 67, 110
SEI, 24
server mainline, 71
service, 128
service operations, 24, 59

160

J
javax.xml.ws.AsyncHandler, 105
javax.xml.ws.Service (see Service object)
JMS

getting JMS message headers in a service, 151
getting optional header properties, 153
inspecting message header properties, 151
setting message header properties, 155
setting optional message header properties, 156
setting the client's timeout, 156

M
message context

getting a property, 139
properties, 135, 136
property scopes

APPLICATION, 136
HANDLER, 136

reading values, 147
request

consumer, 155
response

consumer, 146, 152
setting a property, 140
setting properties, 148

MessageContext, 138
get() method, 139
put() method, 140
setScope() method, 136

P
package name mapping, 57
parameter mapping, 65
Provider

invoke() method, 130
message mode, 124
payload mode, 124

publishing
JAX-WS service endpoint, 69
RESTful service endpoint, 87

R
request context, 146, 155

accessing, 146
consumer, 146
setting properties, 148

response context, 146
accessing, 146
consumer, 146, 152
getting JMS message headers, 152
reading values, 147

REST binding
activating, 87

S
SAXSource, 113, 126
SEI, 23, 63, 65

annotating, 26
creating, 24
creation patterns, 23
generated from WSDL contract, 57
relationship to wsdl:portType, 24, 65
required annotations, 27

service
implementing the operations, 59

service enablement, 23
service endpoint interface (see SEI)
service implementation, 57, 128

operations, 24
required annotations, 28

Service object, 41
adding an endpoint, 44

determining the port name, 44
addPort() method, 44

bindingId parameter, 44
endpointAddress parameter, 45
portName parameter, 44

create() method, 41
serviceName parameter, 42

createDispatch() method, 116
creating, 41, 65
determining the service name, 42
generated from a WSDL contract, 63
generated methods, 64

161

getPort() method, 46
portName parameter, 46

getting a service proxy, 46
relationship to wsdl:service element, 41, 63

service provider
implementation, 128
publishing, 72

service provider implementation
generating, 59

service providers contexts, 138
service proxy

getting, 46, 65, 68
Service.Mode.MESSAGE, 111, 124
Service.Mode.PAYLOAD, 111, 124
setAddress(), 88
setBindingId(), 87
setServiceClass(), 87
setWrapped(), 87
SOAPMessage, 114, 127
Source, 113, 126
StreamSource, 113, 126

W
WebServiceContext

getMessageContext() method, 138
getting the JMS message headers, 151

wrapped mode, 78
activating, 87

WSDL contract
generation, 38

wsdl2java, 59, 70, 99
wsdl:portType, 24, 63, 65
wsdl:service, 41, 63

162

	Developing Artix Applications with JAX-WS
	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book

	Part I. Basic Programming Tasks
	Starting from Java Code
	Service Enabling a Java Class
	Creating the SEI
	Annotating the Code
	Required Annotations
	Optional Annotations
	Defining the Binding Properties with Annotations
	Defining Operation Properties with Annotations
	Defining Parameter Properties with Annotations

	Generating WSDL

	Developing a Consumer without a WSDL Contract
	Creating a Service Object
	Adding a Port to a Service
	Getting a Proxy for an Endpoint
	Implementing the Consumer's Business Logic

	Starting from a WSDL Contract
	A WSDL Contract
	Developing a Service Starting from a WSDL Contract
	Generating the Starting Point Code
	Implementing the Service Provider

	Developing a Consumer Starting from a WSDL Contract
	Generating the Stub Code
	Implementing a Consumer

	Publishing a Service
	Generating a Server Mainline
	Writing a Server Mainline

	Developing RESTful Services
	Introduction to RESTful Services
	Using Automatic REST Mappings
	Using Java REST Annotations
	Publishing a RESTful Service

	Part II. Advanced Programming Tasks
	Developing Asynchronous Applications
	WSDL for Asynchronous Examples
	Generating the Stub Code
	Implementing an Asynchronous Client with the Polling Approach
	Implementing an Asynchronous Client with the Callback Approach

	Using Raw XML Messages
	Using XML in a Consumer with the Dispatch Interface
	Usage Modes
	Data Types
	Working with Dispatch Objects

	Using XML in a Service Provider with the Provider Interface
	Messaging Modes
	Data Types
	Implementing a Provider Object

	Working with Contexts
	Understanding Contexts
	Working with Contexts in a Service Implementation
	Working with Contexts in a Consumer Implementation
	Working with JMS Message Properties
	Inspecting JMS Message Headers
	Inspecting the Message Header Properties
	Setting JMS Properties

	Index

