
Security Guide
Version 3.0, June 2005

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-
ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 2003–2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 06-Jul-2006

Contents

List of Tables ix

List of Figures xi

Preface xiii
What is Covered in this Book xiii
Who Should Read this Book xiii
Finding Your Way Around the Library xiii
Searching the Artix Library xv
Online Help xv
Additional Resources xv
Document Conventions xvi

Chapter 1 Getting Started with Artix Security 1
Security for SOAP Bindings 2

Secure Hello World Example 3
HTTPS Connection 6
IIOP/TLS Connection 10
Security Layer 17

Chapter 2 Introduction to the Artix Security Framework 23
Artix Security Architecture 24

Types of Security Credential 25
Protocol Layers 27
Security Layer 29
Using Multiple Bindings 30

Caching of Credentials 31

Chapter 3 Security for HTTP-Compatible Bindings 33
Overview of HTTP Security 34
Securing HTTP Communications with SSL/TLS 37
HTTP Basic Authentication 47
iii

CONTENTS
X.509 Certificate-Based Authentication with HTTPS 51

Chapter 4 Security for SOAP Bindings 57
Overview of SOAP Security 58

Chapter 5 Security for CORBA Bindings 61
Overview of CORBA Security 62
Securing IIOP Communications with SSL/TLS 64
Securing Two-Tier CORBA Systems with CSI 70
Securing Three-Tier CORBA Systems with CSI 76
X.509 Certificate-Based Authentication for CORBA Bindings 82

Chapter 6 Single Sign-On 89
SSO and the Login Service 90
Username/Password-Based SSO for SOAP Bindings 93
SSO Sample Configuration for SOAP Bindings 99

Chapter 7 Configuring the Artix Security Service 103
Configuring the File Adapter 104
Configuring the LDAP Adapter 106
Configuring the SiteMinder Adapter 112
Configuring the Kerberos Adapter 114
Clustering and Federation 118

Federating the Artix Security Service 119
Failover and Replication 124
Client Load Balancing 130

Additional Security Configuration 132
Configuring Single Sign-On Properties 133
Configuring the Log4J Logging 135

Chapter 8 Managing Users, Roles and Domains 137
Introduction to Domains and Realms 138

Artix security domains 139
Artix Authorization Realms 141

Managing a File Security Domain 146
Managing an LDAP Security Domain 149
Managing a SiteMinder Security Domain 150
 iv

CONTENTS
Chapter 9 Managing Access Control Lists 151
Overview of Artix ACL Files 152
ACL File Format 153
Generating ACL Files 156
Deploying ACL Files 159

Chapter 10 Managing Certificates 161
What are X.509 Certificates? 162
Certification Authorities 164

Commercial Certification Authorities 165
Private Certification Authorities 166

Certificate Chaining 167
PKCS#12 Files 169
Creating Your Own Certificates 171

Set Up Your Own CA 172
Use the CA to Create Signed Certificates 175

Deploying Certificates 178
Overview of Certificate Deployment 179
Deploying Trusted Certificate Authority Certificates 181
Deploying Application Certificates 186

Chapter 11 Configuring HTTPS and IIOP/TLS Authentication 191
Requiring Authentication 192

Target-Only Authentication 193
Mutual Authentication 196

Specifying Trusted CA Certificates 199
Specifying an Application’s Own Certificate 200
Providing a Certificate Pass Phrase 201

Certificate Pass Phrase for HTTPS and IIOP/TLS 202
Advanced Configuration Options 204

Setting a Maximum Certificate Chain Length 205
Applying Constraints to Certificates 206

Chapter 12 Configuring HTTPS and IIOP/TLS Secure Associations 209
Overview of Secure Associations 210
Setting Association Options 212

Secure Invocation Policies 213
Association Options 215
v

CONTENTS
Choosing Client Behavior 217
Choosing Target Behavior 219
Hints for Setting Association Options 221

Specifying Cipher Suites 225
Supported Cipher Suites 226
Setting the Mechanism Policy 229
Constraints Imposed on Cipher Suites 232

Caching Sessions 235

Chapter 13 Principal Propagation 237
Introduction to Principal Propagation 238
Configuring 239
Programming 242
Interoperating with .NET 245

Explicitly Declaring the Principal Header 246
Modifying the SOAP Header 248

Chapter 14 Programming Authentication 251
Propagating a Username/Password Token 252
Propagating a Kerberos Token 257

Chapter 15 Configuring the Artix Security Plug-In 263
The Artix Security Plug-In 264
Configuring an Artix Configuration File 265
Configuring a WSDL Contract 267

Chapter 16 Developing an iSF Adapter 271
iSF Security Architecture 272
iSF Server Module Deployment Options 276
iSF Adapter Overview 278
Implementing the IS2Adapter Interface 279
Deploying the Adapter 289

Configuring iSF to Load the Adapter 290
Setting the Adapter Properties 291
Loading the Adapter Class and Associated Resource Files 292
 vi

CONTENTS
Appendix A Artix Security 295
Applying Constraints to Certificates 297
initial_references 299
plugins:asp 300
plugins:at_http 302
plugins:atli2_tls 306
plugins:csi 307
plugins:gsp 308
plugins:http 312
plugins:https 316
plugins:iiop_tls 317
plugins:kdm 321
plugins:kdm_adm 323
plugins:login_client 324
plugins:login_service 325
plugins:schannel 326
plugins:security 327
policies 328
policies:asp 334
policies:bindings:corba 335
policies:csi 336
policies:https 339
policies:iiop_tls 344
principal_sponsor 354
principal_sponsor:csi 358
principal_sponsor:https 361

Appendix B iSF Configuration 363
Properties File Syntax 364
iSF Properties File 365
Cluster Properties File 389
log4j Properties File 392

Appendix C ASN.1 and Distinguished Names 395
ASN.1 396
Distinguished Names 397
vii

CONTENTS
Appendix D Action-Role Mapping DTD 401

Appendix E OpenSSL Utilities 405
Using OpenSSL Utilities 406

The x509 Utility 407
The req Utility 409
The rsa Utility 411
The ca Utility 413

The OpenSSL Configuration File 415
[req] Variables 416
[ca] Variables 417
[policy] Variables 418
Example openssl.cnf File 419

Appendix F bus-security C++ Context Data 421

Appendix G bus-security Java Context Data 427

Appendix H License Issues 433
OpenSSL License 434

Index 437
 viii

List of Tables

Table 1: LDAP Properties in the com.iona.isp.adapter.LDAP.param Scope 110

Table 2: Description of Different Types of Association Option 221

Table 3: Setting EstablishTrustInTarget and EstablishTrustInClient Association Options 222

Table 4: Setting Quality of Protection Association Options 223

Table 5: Setting the NoProtection Association Option 224

Table 6: Cipher Suite Definitions 227

Table 7: Association Options Supported by Cipher Suites 233

Table 8: The Artix Security Plug-In Configuration Variables 265

Table 9: <bus-security:security> Attributes 267

Table 10: Mechanism Policy Cipher Suites 331

Table 11: Mechanism Policy Cipher Suites 341

Table 12: Mechanism Policy Cipher Suites 348

Table 13: Commonly Used Attribute Types 398
ix

LIST OF TABLES
 x

List of Figures

Figure 1: Overview of the Secure HelloWorld Example 3

Figure 2: A HTTPS Connection in the HelloWorld Example 6

Figure 3: An IIOP/TLS Connection in the HelloWorld Example 10

Figure 4: The Security Layer in the HelloWorld Example 17

Figure 5: Protocol Layers in a HTTP-Compatible Binding 27

Figure 6: Protocol Layers in a SOAP Binding 28

Figure 7: Protocol Layers in a CORBA Binding 28

Figure 8: Example of an Application with Multiple Bindings 30

Figure 9: HTTP-Compatible Binding Security Layers 34

Figure 10: Overview of Certificate-Based Authentication with HTTPS 52

Figure 11: Overview of Security for SOAP Bindings 58

Figure 12: A Secure CORBA Application within the Artix Security Framework 62

Figure 13: Two-Tier CORBA System Using CSI Credentials 70

Figure 14: Three-Tier CORBA System Using CSIv2 76

Figure 15: Overview of Certificate-Based Authentication 83

Figure 16: Client Requesting an SSO Token from the Login Service 91

Figure 17: Overview of Username/Password Authentication without SSO 93

Figure 18: Overview of Username/Password Authentication with SSO 94

Figure 19: An iSF Federation Scenario 120

Figure 20: Failover Scenario for a Cluster of Three Security Services 125

Figure 21: Architecture of an Artix security domain 139

Figure 22: Server View of Artix authorization realms 142

Figure 23: Role View of Artix authorization realms 143

Figure 24: Assignment of Realms and Roles to Users Janet and John 144

Figure 25: Locally Deployed Action-Role Mapping ACL File 152

Figure 26: A Certificate Chain of Depth 2 167
xi

LIST OF FIGURES
Figure 27: A Certificate Chain of Depth 3 168

Figure 28: Elements in a PKCS#12 File 169

Figure 29: Target Authentication Only 193

Figure 30: Mutual Authentication 196

Figure 31: Configuration of a Secure Association 211

Figure 32: Constraining the List of Cipher Suites 232

Figure 33: Overview of the Artix Security Service 273

Figure 34: iSF Server Module Deployed as a CORBA Service 276

Figure 35: iSF Server Module Deployed as a Java Library 277
 xii

Preface
What is Covered in this Book
This book describes how to develop and configure secure Artix solutions.

Who Should Read this Book
This book is aimed at the following kinds of reader: security administrators,
C++ programmers who need to write security code and Java programmers
who need to write security code.

If you would like to know more about WSDL concepts, see the Introduction
to WSDL in Getting Started with Artix.

Finding Your Way Around the Library
The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The Artix library is listed here, with a short
description of each book.

If you are new to Artix

You may be interested in reading:

• Release Notes contains release-specific information about Artix.

• Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

• Getting Started with Artix describes basic Artix and WSDL concepts.

To design and develop Artix solutions

Read one or more of the following:

• Designing Artix Solutions provides detailed information about
describing services in Artix contracts and using Artix services to solve
problems.
xiii

http://www.iona.com/support/docs/artix/3.0/release_notes/index.htm
http://www.iona.com/support/docs/artix/3.0/install_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm
http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm

PREFACE
• Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

• Developing Artix Plug-ins with C++ discusses the technical aspects of
implementing plug-ins to the Artix bus using the C++ API.

• Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

• Artix for CORBA provides detailed information on using Artix in a
CORBA environment.

• Artix for J2EE provides detailed information on using Artix to integrate
with J2EE applications.

• Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

To configure and manage your Artix solution

Read one or more of the following:

• Deploying and Managing Artix Solutions describes how to deploy
Artix-enabled systems, and provides detailed examples for a number of
typical use cases.

• Artix Configuration Guide explains how to configure your Artix
environment. It also provides reference information on Artix
configuration variables.

• IONA Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli.

• IONA BMC Patrol Integration Guide explains how to integrate Artix
with BMC Patrol.

• Artix Security Guide provides detailed information about using the
security features of Artix.

Reference material

In addition to the technical guides, the Artix library includes the following
reference manuals:

• Artix Command Line Reference

• Artix C++ API Reference

• Artix Java API Reference
 xiv

http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/plugin_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/3.0/corba_ws/index.htm
http://www.iona.com/support/docs/artix/3.0/j2ee/index.htm
http://www.iona.com/support/docs/artix/3.0/cookbook/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/config_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/tivoli/index.htm
http://www.iona.com/support/docs/artix/3.0/bmc/index.htm
http://www.iona.com/support/docs/artix/3.0/security_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/command_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/cpp_doc/index.html
http://www.iona.com/support/docs/artix/3.0/javadoc/index.html

PREFACE
Have you got the latest version?

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right. For example:

http://www.iona.com/support/docs/artix/3.0/index.xml

You can also search within a particular book. To search within an HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Online Help
Artix Designer includes comprehensive online help, providing:

• Detailed step-by-step instructions on how to perform important tasks.

• A description of each screen.

• A comprehensive index, and glossary.

• A full search feature.

• Context-sensitive help.

There are two ways that you can access the online help:

• Click the Help button on the Artix Designer panel, or

• Select Contents from the Help menu

Additional Resources
The IONA Knowledge Base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles written by IONA experts about Artix and
other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.
xv

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/3.0/index.xml
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
If you need help with this or any other IONA product, go to IONA Online
Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be
sent to .

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.
 xvi

http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Keying Conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
xvii

PREFACE
 xviii

CHAPTER 1

Getting Started
with Artix Security
This chapter introduces features of Artix security by explaining
the architecture and configuration of the secure HelloWorld
demonstration in some detail.

In this chapter This chapter discusses the following topics:

Security for SOAP Bindings page 2
1

CHAPTER 1 | Getting Started with Artix Security
Security for SOAP Bindings

Overview This section provides a brief overview of how the Artix Security Framework
provides security for SOAP bindings between Artix applications. The Artix
security framework is a comprehensive security framework that supports
authentication and authorization using data stored in a central security
service (the Artix security service). This discussion is illustrated by reference
to the secure HelloWorld demonstration.

In this section This section contains the following subsections:

Secure Hello World Example page 3

HTTPS Connection page 6

IIOP/TLS Connection page 10

Security Layer page 17
 2

Security for SOAP Bindings
Secure Hello World Example

Overview This section provides an overview of the secure HelloWorld demonstration,
which introduces several features of the Artix Security Framework. In
particular, this demonstration shows you how to configure a typical Artix
client and server that communicate with each other using a SOAP binding
over a HTTPS transport. Figure 1 shows all the parts of the secure
HelloWorld system, including the various configuration files.

Figure 1: Overview of the Secure HelloWorld Example

Artix Client

HTTPS

Security layer

Artix Server

HTTPS

Security layer

IIOP/TLS

WSDL X.509 ARMWSDL

Artix Security
Service

IIOP/TLS

X.509

File
Adapter

Props

User Data

HTTPS

HTTP Basic Authentication

Cert for HTTPSServer copyClient copy hello_world_action_role_mapping.xml

is2.propertiesCert for security service

is2_user_password_file.txt
3

CHAPTER 1 | Getting Started with Artix Security
Location The secure HelloWorld demonstration is located in the following directory:

ArtixInstallDir/artix/Version/demos/security/full_security

Main elements of the example The main elements of the secure HelloWorld example shown in Figure 1
are, as follows:

• HelloWorld client.

• HelloWorld server.

• Artix security service.

• File adapter.

HelloWorld client The HelloWorld client communicates with the HelloWorld server using
SOAP over HTTPS, thus providing confidentiality for transmitted data. In
addition, the HelloWorld client is configured to use HTTP BASIC
authentication to transmit a username and a password to the server.

HelloWorld server The HelloWorld server employs two different kinds of secure transport,
depending on which part of the system it is talking to:

• HTTPS—to receive SOAP invocations securely from the HelloWorld
client.

• IIOP/TLS—to communicate securely with the Artix security service,
which contains the central store of user data.

Artix security service The Artix security service manages a central repository of security-related
user data. The Artix security service can be accessed remotely by Artix
servers and offers the service of authenticating users and retrieving
authorization data.

File adapter The Artix security service supports a number of adapters that can be used to
integrate with third-party security products (for example, an LDAP adapter
and a SiteMinder adapter are available). This example uses the iSF file
adapter, which is a simple adapter provided for demonstration purposes.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.
 4

Security for SOAP Bindings
Security layers To facilitate the discussion of the HelloWorld security infrastructure, it is
helpful to analyze the security features into the following layers:

• HTTPS layer.

• IIOP/TLS layer.

• Security layer.

HTTPS layer The HTTPS layer provides a secure transport layer for SOAP bindings. In
Artix, the HTTPS transport is configured by editing the artix.cfg (or
artix-secure.cfg) file. Some of the HTTPS settings can optionally be set in
the WSDL contract instead (both the client copy and the server copy).

For more details, see “HTTPS Connection” on page 6.

IIOP/TLS layer The IIOP/TLS layer consists of the OMG’s Internet Inter-ORB Protocol (IIOP)
combined with the SSL/TLS protocol. The IIOP/TLS transport can be used
either with CORBA bindings or with the Artix Tunnel plug-in. In Artix, the
IIOP/TLS is configured by editing the artix.cfg (or artix-secure.cfg) file.

For more details, see “IIOP/TLS Connection” on page 10.

Security layer The security layer provides support for a simple username/password
authentication mechanism, a principal authentication mechanism and
support for authorization. A security administrator can edit an action-role
mapping file to restrict user access to particular WSDL port types and
operations.

For more details, see “Security Layer” on page 17.
5

CHAPTER 1 | Getting Started with Artix Security
HTTPS Connection

Overview Figure 2 shows an overview of the HelloWorld example, focusing on the
elements relevant to the HTTPS connection. HTTPS is used on the SOAP
binding between the Artix client and the Artix server.

Baltimore toolkit HTTPS transport security is provided by the Baltimore toolkit, which is a
commercial implementation of the SSL/TLS protocol.

The Baltimore toolkit supports a wide range of cipher suites—see
“Supported Cipher Suites” on page 226.

Target-only authentication The HelloWorld example is configured to use target-only authentication on
the HTTPS connection. That is, during the TLS handshake, the server
authenticates itself to the client (using an X.509 certificate), but the client
does not authenticate itself to the server. Hence, there is no X.509
certificate associated with the client.

Figure 2: A HTTPS Connection in the HelloWorld Example

Artix Client

HTTPS

Security layer

Artix Server

Security layer

IIOP/TLS

WSDL X.509WSDL

HTTPS

Cert for HTTPSServer copyClient copy

HTTPS
 6

Security for SOAP Bindings
Client HTTPS configuration Example 1 shows how to configure the client side of an HTTPS connection,
in the case of target-only authentication.

The preceding extract from artix-security.cfg can be explained as
follows:

1. You must include https explicitly in the list of ORB plug-ins, because
the https plug-in is not loaded automatically.

2. A HTTPS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other HTTPS applications. You must, therefore, edit the
policies:https:trusted_ca_list_policy variable to point at a list of
trusted certificate authority (CA) certificates. See “Specifying Trusted
CA Certificates” on page 199.

3. The following two lines set the required options and the supported
options for the HTTPS client secure invocation policy. In this example,
the client is configured to require a secure connection and to request
an X.509 certificate from the server.

Example 1: Extract from the Secure Client HTTPS Configuration

Artix Configuration File
...
security {
 ...
 full_security {
 ...
 client {

1 orb_plugins = ["xmlfile_log_stream", "https"];
2 policies:https:trusted_ca_list_policy =

"C:\artix_30/artix/3.0/demos/security/certificates/openssl/x5
09/ca/cacert.pem";

3 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 };
 };
};
7

CHAPTER 1 | Getting Started with Artix Security
Server HTTPS configuration Example 2 shows how to configure the server side of an HTTPS connection,
in the case of target-only authentication.

Example 2: Extract from the Secure Server HTTPS Configuration

Artix Configuration File
...
security {
 ...
 full_security {
 ...
 server {
 ...
 binding:client_binding_list = ["OTS+POA_Coloc",

"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
1 orb_plugins = ["xmlfile_log_stream", "iiop_profile",

"giop", "iiop_tls", "soap", "at_http", "artix_security",
"https"];

 ...
 # Secure HTTPS settings:

2 policies:target_secure_invocation_policy:requires =
["Confidentiality"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.p12", "password=testaspen"];

 };
 };
};
 8

Security for SOAP Bindings
The preceding extract from artix-security.cfg can be explained as
follows:

1. You must include https explicitly in the list of ORB plug-ins, because
the https plug-in is not loaded automatically.

2. The following two lines set the required options and the supported
options for the HTTPS target secure invocation policy. In this example,
the server target is configured to require a secure connection, but it
does not request a certificate from the client.

3. The principal_sponsor settings are used to attach a certificate to the
Artix server, which identifies the server to its peers during an IIOP/TLS
handshake.

Note: In this example, the certificate password is specified directly
in the configuration file, which implies that the artix-security.cfg
file should be readable only by the administrator. For alternative ways
of specifying the certificate password, see “Providing a Certificate
Pass Phrase” on page 201.
9

CHAPTER 1 | Getting Started with Artix Security
IIOP/TLS Connection

Overview Figure 3 shows an overview of the HelloWorld example, focusing on the
elements relevant to the IIOP/TLS connection between the Artix server and
the Artix security service. In general, the Artix security service is usually
accessed through the IIOP/TLS transport.

Baltimore toolkit IIOP/TLS transport security is provided by the Baltimore toolkit, which is a
commercial implementation of the SSL/TLS protocol.

The Baltimore toolkit supports a wide range of cipher suites—see
“Supported Cipher Suites” on page 226.

Figure 3: An IIOP/TLS Connection in the HelloWorld Example

Artix Security
Service

IIOP/TLS

X.509

File
AdapterUser Data

Cert for Artix security service

is2_user_password_file.txt

Artix Server

HTTPS

Security layer

IIOP/TLS
 10

Security for SOAP Bindings
Target-only authentication The HelloWorld example is configured to use target-only authentication on
the IIOP/TLS connection between the Artix server and the Artix security
service. That is, during the TLS handshake, the Artix security service
authenticates itself to the Artix server (using an X.509 certificate), but the
Artix server does not authenticate itself to the Artix security service. Hence,
in this example there is no X.509 certificate associated with the IIOP/TLS
transport in the Artix server.

Artix server IIOP/TLS
configuration

The Artix server’s IIOP/TLS transport is configured by the settings in the
ArtixInstallDir/artix/Version/etc/domains/artix-secure.cfg file.
Example 3 shows an extract from the artix-secure.cfg file, highlighting
some of the settings that are important for the HelloWorld Artix server.

WARNING: For a real deployment, you must modify the configuration of
the Artix security service so that it requires mutual authentication.
Otherwise, your system will be insecure.

Example 3: Extract from the Artix Server IIOP/TLS Configuration

artix-secure.cfg File
secure_artix
{
 ...

1 policies:trusted_ca_list_policy =
"C:\artix/artix/1.2/demos/secure_hello_world/http_soap/certif
icates/tls/x509/trusted_ca_lists/ca_list1.pem";

 ...
2 initial_references:IT_SecurityService:reference =

"corbaloc:iiops:1.2@localhost:55020,it_iiops:1.2@localhost:55
020/IT_SecurityService";

 ...
 full_security
 {
 server
 {
 # IIOP/TLS Settings

3 orb_plugins = ["xmlfile_log_stream", "iiop_profile",
"giop", "iiop_tls", "soap", "at_http", "artix_security",
"https"];

 binding:client_binding_list = ["OTS+POA_Coloc",
"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
11

CHAPTER 1 | Getting Started with Artix Security
The preceding extract from the artix.cfg file can be explained as follows:

1. The policies:trusted_ca_list_policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
Artix server over the IIOP/TLS transport. If a received certificate has not
been digitally signed by one of the CA certificates in the list, it will be
rejected by the Artix server.

For more details, see “Specifying Trusted CA Certificates” on
page 199.

4 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.p12", "password=testaspen"];

5
policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

6 # Security Layer Settings
 ...
 };
 };
};

Example 3: Extract from the Artix Server IIOP/TLS Configuration
 12

Security for SOAP Bindings
2. This IT_SecurityService initial reference gives the location of the
Artix security service. When login security is enabled, the Artix server
uses this information to open an IIOP/TLS connection to the Artix
security service. In this example, the Artix security service is presumed
to be running on localhost and listening on the 55020 IP port.

3. The ORB plugins list specifies which of the Artix plug-ins should be
loaded into the Artix server. Of particular relevance is the fact that the
iiop_tls plug-in is included in the list (thus enabling IIOP/TLS
connections), whereas the iiop plug-in is excluded (thus disabling
plain IIOP connections).

4. The principal_sponsor settings are used to attach a certificate to the
Artix server, which identifies the server to its peers during an IIOP/TLS
handshake.

5. The client secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix server can open when it acts in a client
role. In particular, these client invocation policies impose conditions on
the IIOP/TLS connection to the Artix security service.

For more details about the client secure invocation policy, see “Setting
Association Options” on page 212.

Note: If you want to change the location of the Artix security service,
you should replace both instances of localhost:55020 on this line. It
would also be necessary to change the listening details on the Artix
security service (see “Artix security service IIOP/TLS configuration” on
page 14).

Note: In this example, the certificate password is specified directly
in the configuration file, which implies that the artix-security.cfg
file should be readable only by the administrator. For alternative ways
of specifying the certificate password, see “Providing a Certificate
Pass Phrase” on page 201.

Note: In a realistic deployment, you should add the
EstablishTrustInClient association option to the list of supported
client invocation policies. This is needed for mutual authentication.
13

CHAPTER 1 | Getting Started with Artix Security
6. Independently of the IIOP/TLS settings, you also configure the security
layer using settings in the artix-secure.cfg file. These settings are
described in “Security Layer” on page 17.

Artix security service IIOP/TLS
configuration

Example 4 shows an extract from the artix-secure.cfg file, highlighting
the IIOP/TLS settings that are important for the Artix security service.

Example 4: Extract from the Artix security service IIOP/TLS Configuration

artix-secure.cfg File
secure_artix
{
 ...

1 policies:trusted_ca_list_policy =
"C:\artix/artix/1.2/demos/secure_hello_world/http_soap/certif
icates/tls/x509/trusted_ca_lists/ca_list1.pem";

 ...
 initial_references:IT_SecurityService:reference =

"corbaloc:iiops:1.2@localhost:55020,it_iiops:1.2@localhost:55
020/IT_SecurityService";

 ...
 full_security
 {
 ...
 security_service
 {
 # IIOP/TLS Settings
 ...

2 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_30/artix/3.0/demos/security/certificates/
tls/x509/certs/services/administrator.p12",
"password_file=C:\artix_30/artix/3.0/demos/security/certifica
tes/tls/x509/certs/services/administrator.pwf"];

 ...
3 policies:target_secure_invocation_policy:requires =

["Confidentiality"];
 policies:target_secure_invocation_policy:supports =

["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

4 policies:client_secure_invocation_policy:requires =
["Confidentiality"];
 14

Security for SOAP Bindings
The preceding extract from the artix.cfg file can be explained as follows:

1. The policies:trusted_ca_list_policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
Artix security service over the IIOP/TLS transport. If a received
certificate has not been digitally signed by one of the CA certificates in
the list, it will be rejected by the Artix security service.

2. The principal_sponsor settings are used to attach an X.509
certificate to the Artix security service. The certificate is used to identify
the Artix security service to its peers during an IIOP/TLS handshake.

In this example, the Artix security service’s certificate is stored in a
PKCS#12 file, administrator.p12, and the certificate’s private key
password is stored in another file, administrator.pwf.

For more details about configuring the IIOP/TLS principal sponsor, see
“principal_sponsor” on page 354 and “Providing a Certificate Pass
Phrase” on page 201.

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

5 orb_plugins = ["local_log_stream", "iiop_profile",
"giop", "iiop_tls"];

 ...
6 plugins:security:iiop_tls:port = "55020";

 plugins:security:iiop_tls:host = "localhost";
 ...
 };
 ...
 };
 ...
};

Example 4: Extract from the Artix security service IIOP/TLS Configuration
15

CHAPTER 1 | Getting Started with Artix Security
3. The target secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix security service can accept when it acts
in a server role. For more details about the target secure invocation
policy, see “Setting Association Options” on page 212.

4. The client secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix security service can open when it acts
in a client role.

5. The ORB plugins list specifies which plug-ins should be loaded into
the Artix security service. Of particular relevance is the fact that the
iiop_tls plug-in is included in the list (thus enabling IIOP/TLS
connections), whereas the iiop plug-in is excluded (thus disabling
plain IIOP connections).

6. If you want to relocate the Artix security service, you must modify the
plugins:security:iiop_tls:host and
plugins:security:iiop_tls:port settings to specify, respectively, the
host where the server is running and the IP port on which the server
listens for secure IIOP/TLS connections.

WARNING: The target secure invocation policies shown here are too weak
for a realistic deployment of the Artix security service. In particular, you
should also require EstablishTrustInClient. For example, see “Mutual
Authentication” on page 196.
 16

Security for SOAP Bindings
Security Layer

Overview Figure 4 shows an overview of the HelloWorld example, focusing on the
elements relevant to the security layer. The security layer, in general, takes
care of those aspects of security that arise after the initial SSL/TLS
handshake has occurred and the secure connection has been set up.

Figure 4: The Security Layer in the HelloWorld Example

Artix Client

HTTPS

Security layer

Artix Server

HTTPS IIOP/TLS

WSDL ARMWSDL

IIOP/TLS

File
Adapter

Props

User Data

HTTP Basic Authentication

Server copyClient copy hello_world_action_role_mapping.xml

is2.properties

is2_user_password_file.txt

Security layer

Artix Security
Service
17

CHAPTER 1 | Getting Started with Artix Security
The security layer normally uses a simple username/password combination
for authentication, because clients usually do not have a certificate with
which to identify themselves. The username and password are sent along
with every operation, enabling the Artix server to check every invocation and
make fine-grained access decisions.

HTTP BASIC login The mechanism that the Artix client uses to transmit a username and
password over a SOAP binding is HTTP BASIC login. This is a standard login
mechanism commonly used by Web browsers and Web services. On its
own, HTTP BASIC login would be relatively insecure, because the username
and password would be transmitted in plaintext. When combined with the
HTTPS protocol, however, the username and password are transmitted
securely over an encrypted connection, thus preventing eavesdropping.

The following extract from the client copy of the WSDL contract shows how
the UserName and Password attributes in the <http-conf:client> tag set
the HTTP BASIC login parameters for the Artix SOAP client.

<definitions name="HelloWorld"
targetNamespace="http://www.iona.com/full_security"

 xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:bus-security="http://schemas.iona.com/bus/security"
 ... >
 ...
 <service name="SOAPService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address location="https://localhost:9000"/>
 <http-conf:client
 ...
 UserName="user_test"
 Password="user_password"
 />
 <bus-security:security enableSecurity="true"/>
 </port>
 </service>
</definitions>
 18

Security for SOAP Bindings
Authentication through the iSF file
adapter

On the server side, the Artix server delegates authentication to the Artix
security service, which acts as a central repository for user data. The Artix
security service is configured by the is2.properties file, whose location is
specified in the artix-secure.cfg file as follows:

In this example, the is2.properties file specifies that the Artix security
service should use a file adapter. The file adapter is configured as follows:

artix-secure.cfg File
secure_artix {
 ...
 full_security {
 ...
 security_service {
 plugins:java_server:system_properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=C:\artix_30/artix/3.0/demos/security/full_sec
urity/cxx/security_service/is2.properties.FILE",
"java.endorsed.dirs=C:\artix_30/artix/3.0/lib/endorsed"];

 ...
 };
 ...
 };
 ...
};

is2.properties File
...
##
##
File Adapter Properties
##
##
com.iona.isp.adapter.file.class=com.iona.security.is2adapter.fil

e.FileAuthAdapter
com.iona.isp.adapter.file.params=filename
com.iona.isp.adapter.file.param.filename=../../etc/is2_user_pass

word_file.txt
19

CHAPTER 1 | Getting Started with Artix Security
The com.iona.isp.adapter.file.param.filename property is used to
specify the location of a file, is2_user_password_file.txt, which contains
the user data for the iSF file adapter. Example 5 shows the contents of the
user data file for the secure HelloWorld demonstration.

In order for the login step to succeed, an Artix client must supply one of the
usernames and passwords that appear in this file. The realm and role data,
which also appear, are used for authorization and access control.

For more details about the iSF file adapter, see “Managing a File Security
Domain” on page 146.

Server domain configuration and
access control

On the server side, authentication and authorization must be enabled by the
appropriate settings in the artix-secure.cfg file. Example 6 explains the
security layer settings that appear in the artix-secure.cfg file.

Example 5: User Data from the is2_user_password_file.txt File

<?xml version="1.0" encoding="utf-8" ?>

<ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
 <users>
 <user name="user_test" password="user_password">
 <realm name="IONAGlobalRealm">
 <role name="IONAUserRole"/>
 <role name="PaulOnlyRole"/>
 </realm>
 </user>
 </users>
</ns:securityInfo>

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

Example 6: Security Layer Settings from the artix-secure.cfg File

artix-secure.cfg File
secure_artix
{
 ...
 full_security
 {
 20

Security for SOAP Bindings
The security layer settings from the artix-secure.cfg file can be explained
as follows:

1. The Artix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix
security layer.

2. The server’s orb_plugins list must include the artix_security
plug-in.

3. The policies:asp:enable_authorization variable is set to true to
enable authorization.

4. This setting specifies the location of an action-role mapping file that
provides fine-grained access control to operations and port types.

5. The Artix authorization realm determines which of the user’s roles will
be considered during an access control decision. Artix authorization
realms provide a way of grouping user roles together. The
IONAGlobalRealm (the default) includes all user roles.

 server
 {
 # IIOP/TLS Settings
 ...

 # Security Layer Settings
 plugins:artix_security:shlib_name="it_security_plugin";

1 binding:artix:server_request_interceptor_list=
"security";

2 orb_plugins = ["xmlfile_log_stream", "iiop_profile",
"giop", "iiop_tls", "soap", "at_http", "artix_security",
"https"];

3 policies:asp:enable_authorization = "true";
4 plugins:is2_authorization:action_role_mapping =

"file://C:\artix/artix/1.2/demos/secure_hello_world/http_soap
/config/helloworld_action_role_mapping.xml";

5 plugins:asp:authorization_realm = "IONAGlobalRealm";
6 plugins:asp:security_level = "MESSAGE_LEVEL";

 plugins:asp:authentication_cache_size = "5";
 plugins:asp:authentication_cache_timeout = "10";
 };
 };
};

Example 6: Security Layer Settings from the artix-secure.cfg File
21

CHAPTER 1 | Getting Started with Artix Security
6. The plugins:asp:security_level variable specifies which client
credentials are used for the purposes of authentication and
authorization on the server side (in this case, the MESSAGE_LEVEL value
indicates that the username/password credentials sent in the HTTP
header).

Example 7 shows the contents of the action-role mapping file for the
HelloWorld demonstration.

For a detailed discussion of how to define access control using action-role
mapping files, see “Managing Users, Roles and Domains” on page 137.

Example 7: Action-Role Mapping file for the HelloWorld Demonstration

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>
 <action-role-mapping>

 <server-name>secure_artix.full_security.server</server-name>

 <interface>
 <name>http://www.iona.com/full_security:Greeter</name>
 <action-role>
 <action-name>sayHi</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 <action-role>
 <action-name>greetMe</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 </interface>

 </action-role-mapping>
</secure-system>
 22

CHAPTER 2

Introduction to the
Artix Security
Framework
This chapter describes the overall architecture of the Artix
Security Framework.

In this chapter This chapter discusses the following topics:

Artix Security Architecture page 24

Caching of Credentials page 31
23

CHAPTER 2 | Introduction to the Artix Security Framework
Artix Security Architecture

Overview The Artix security architecture embraces a variety of protocols and security
technologies. This section provides a brief overview of the security features
supported by the different kinds of Artix bindings.

In this section This section contains the following subsections:

Types of Security Credential page 25

Protocol Layers page 27

Security Layer page 29

Using Multiple Bindings page 30
 24

Artix Security Architecture
Types of Security Credential

Overview The following types of security credentials are supported by the Artix
security framework:

• WSSE username token.

• WSSE Kerberos token.

• CORBA Principal.

• HTTP Basic Authentication.

• X.509 certificate.

• CSI authorization over transport.

• CSI identity assertion.

• SSO token.

WSSE username token The Web service security extension (WSSE) UsernameToken is a
username/password combination that can be sent in a SOAP header. The
specification of WSSE UsernameToken is contained in the WSS
UsernameToken Profile 1.0 document from OASIS (www.oasis-open.org).

This type of credential is available for the SOAP binding in combination with
any kind of Artix transport.

WSSE Kerberos token The WSSE Kerberos specification is used to send a Kerberos security token
in a SOAP header. If you use Kerberos, you must also configure the Artix
security service to use the Kerberos adapter.

This type of credential is available for the SOAP binding in combination with
any kind of Artix transport.

CORBA Principal The CORBA Principal is a legacy feature originally defined in the early
versions of the CORBA GIOP specification. The CORBA Principal is
effectively just a username (no password can be propagated).

This type of credential is available only for the CORBA binding and for SOAP
over HTTP.
25

http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org

CHAPTER 2 | Introduction to the Artix Security Framework
HTTP Basic Authentication HTTP Basic Authentication is used to propagate username/password
credentials in a HTTP header.

This type of credential is available to any HTTP-compatible binding.

X.509 certificate Two different kinds of X.509 certificate-based authentication are provided,
depending on the type of Artix binding, as follows:

• HTTP-compatible binding—in this case, the common name (CN) is
extracted from the X.509 certificate’s subject DN. A combination of the
common name and a default password is then sent to the Artix security
service to be authenticated.

• CORBA binding—in this case, authentication is based on the entire
X.509 certificate, which is sent to the Artix security service to be
authenticated.

This type of credential is available to any transport that uses SSL/TLS.

CSI authorization over transport The OMG’s Common Secure Interoperability (CSI) specification defines an
authorization over transport mechanism, which passes username/password
data inside a GIOP service context. This kind of authentication is available
only for the CORBA binding.

This type of credential is available only for the CORBA binding.

CSI identity assertion The OMG’s Common Secure Interoperability (CSI) specification also defines
an identity assertion mechanism, which passes username data (no
password) inside a GIOP service context. The basic idea behind CSI identity
assertion is that the request message comes from a secure peer that can be
trusted to assert the identity of a user. This kind of authentication is
available only for the CORBA binding.

This type of credential is available only for the CORBA binding.

SSO token An SSO token is propagated in the context of a system that uses single
sign-on. For details of the Artix single sign-on feature, see “Single Sign-On”
on page 89.
 26

Artix Security Architecture
Protocol Layers

Overview Within the Artix security architecture, each binding type consists of a stack
of protocol layers, where a protocol layer is typically implemented as a
distinct Artix plug-in. This subsection describes the protocol layers for the
following binding types:

• HTTP-compatible binding.

• SOAP binding.

• CORBA binding.

HTTP-compatible binding HTTP-compatible means any Artix binding that can be layered on top of the
HTTP protocol. Figure 5 shows the protocol layers and the kinds of
authentication available to a HTTP-compatible binding.

Figure 5: Protocol Layers in a HTTP-Compatible Binding

SSL/TLS

HTTP Basic Authentication

X.509

HTTP

HTTP-compatible
binding
27

CHAPTER 2 | Introduction to the Artix Security Framework
SOAP binding The SOAP binding is a specific example of a HTTP-compatible binding. The
SOAP binding is special, because it defines several additional credentials
that can be propagated only in a SOAP header. Figure 6 shows the protocol
layers and the kinds of authentication available to the SOAP binding over
HTTP.

CORBA binding For the CORBA binding, there are only two protocol layers (CORBA binding
and IIOP/TLS). This is because CORBA is compatible with only one kind of
message format (that is, GIOP). Figure 7 shows the protocol layers and the
kinds of authentication available to the CORBA binding.

Figure 6: Protocol Layers in a SOAP Binding

SSL/TLS

HTTP Basic Authentication

X.509

HTTP

SOAP
CORBA Principal
WSSE Kerberos
WSSE UsernameToken

Figure 7: Protocol Layers in a CORBA Binding

IIOP/TLS

CORBA Principal

X.509

CORBA
binding

GIOP CSI identity assertion
CSI authentication over transport
 28

Artix Security Architecture
Security Layer

Overview The security layer is responsible for implementing a variety of different
security features with the exception, however, of propagating security
credentials, which is the responsibility of the protocol layers. The security
layer is at least partially responsible for implementing the following security
features:

• Authentication.

• Authorization.

• Single sign-on.

Authentication On the server side, the security layer selects one of the client credentials (a
server can receive more than one kind of credentials from a client) and calls
the central Artix security service to authenticate the credentials. If the
authentication call succeeds, the security layer proceeds to make an
authorization check; otherwise, an exception is thrown back to the client.

Authorization The security layer makes an authorization check by matching a user’s roles
and realms against the ACL entries in an action-role mapping file. If the
user does not have permission to invoke the current action (that is, WSDL
operation), an exception is thrown back to the client.

Single sign-on Single sign-on is an optional feature that increases security by reducing the
number of times that a user’s credentials are sent across the network. The
security layer works in tandem with the login service to provide the single
sign-on feature.

Artix security plug-in The Artix security plug-in provides the security layer for all Artix bindings
except CORBA. The ASP security layer is loaded, if artix_security is listed
in the orb_plugins list in the Artix domain configuration, artix.cfg.

GSP security plug-in The GSP security plug-in provides the security layer for the CORBA binding
only. The GSP security layer is loaded, if gsp is listed in the orb_plugins list
in the Artix domain configuration, artix.cfg.
29

CHAPTER 2 | Introduction to the Artix Security Framework
Using Multiple Bindings

Overview Figure 8 shows an example of an advanced application that uses multiple
secure bindings.

This type of application might be used as a bridge, for example, to link a
CORBA domain to a SOAP domain. Alternatively, the application might be a
server designed as part of a migration strategy, where the server can support
requests in multiple formats, such as G2++, SOAP, or CORBA.

Example bindings The following bindings are used in the application shown in Figure 8:

• G2++—consisting of the following layers: ASP security, G2++
binding, HTTP, SSL/TLS.

• SOAP—consisting of the following layers: ASP security, SOAP binding,
HTTP, SSL/TLS.

• CORBA—consisting of the following layers: GSP security, CORBA
binding, GIOP, IIOP/TLS.

Figure 8: Example of an Application with Multiple Bindings

IIOP/
TLS

CORBA

GIOP

SSL/TLS

HTTP

SOAPG2++

GSP
security

ASP security

Application
 30

Caching of Credentials
Caching of Credentials

Overview To improve the performance of servers within the Artix Security Framework,
both the GSP plug-in (CORBA binding only) and the artix security plug-in
(all other bindings) implement caching of credentials (that is, the
authentication and authorization data received from the Artix security
service).

The credentials cache reduces a server’s response time by reducing the
number of remote calls to the Artix security service. On the first call from a
given user, the server calls the Artix security service and caches the received
credentials. On subsequent calls from the same user, the cached credentials
are used, thereby avoiding a remote call to Artix security service.

Cache time-out The cache can be configured to time-out credentials, forcing the server to
call the Artix security service again after using cached credentials for a
certain period.

Cache size The cache can also be configured to limit the number of stored credentials.

GSP configuration variables The following variables configure the credentials cache for CORBA bindings:

plugins:gsp:authentication_cache_size

The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

plugins:gsp:authentication_cache_timeout

The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with the Artix security service on the next call from that
user.

A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.
31

CHAPTER 2 | Introduction to the Artix Security Framework
ASP configuration variables The following variables configure the credentials cache for all non-CORBA
bindings:

plugins:asp:authentication_cache_size

The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

plugins:asp:authentication_cache_timeout

The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with the Artix security service on the next call from that
user.

A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.
 32

CHAPTER 3

Security for
HTTP-Compatible
Bindings
This chapter describes the security features supported by the
Artix HTTP plug-in. These security features are available to any
Artix binding that can be layered on top of the HTTP transport.

In this chapter This chapter discusses the following topics:

Overview of HTTP Security page 34

Securing HTTP Communications with SSL/TLS page 37

HTTP Basic Authentication page 47

X.509 Certificate-Based Authentication with HTTPS page 51
33

CHAPTER 3 | Security for HTTP-Compatible Bindings
Overview of HTTP Security

Overview Figure 9 gives an overview of HTTP security within the Artix security
framework, showing the various security layers (ASP, binding layer, HTTP,
and SSL/TLS) and the different authentication types associated with the
security layers. Because many different binding types (for example, SOAP or
G2++) can be layered on top of HTTP, Figure 9 does not specify a
particular binding layer. Any HTTP-compatible binding could be substituted
into this architecture.

Security layers As shown in Figure 9, a HTTP-compatible binding has the following security
layers:

• SSL/TLS layer.

• HTTP layer.

• HTTP-compatible binding layer.

• ASP security layer.

SSL/TLS layer The SSL/TLS layer provides guarantees of confidentiality, message integrity,
and authentication (using X.509 certificates). The TLS functionality is
integrated into the https plug-in.

Figure 9: HTTP-Compatible Binding Security Layers

authorization

authentication

Action-role
mapping file

SSL/TLS

HTTP Basic Authentication

X.509

HTTP

HTTP-compatible
binding

ASP security

Artix Security Service

User Data

ARM
 34

Overview of HTTP Security
The https plug-in is configured by editing the Artix configuration file,
artix.cfg.

HTTP layer The HTTP layer supports the sending of username/password data in the
HTTP message header—that is, HTTP Basic Authentication. HTTP Basic
Authentication is configured by editing an application’s WSDL contract.

In Artix, the HTTP/S protocol is implemented by the following plug-ins:

• at_http plug-in—this plug-in is a thin layer that integrates the other
two plug-ins, http and https, with the Artix core. The at_http plug-in
is automatically loaded, if either the <http-conf:client> or
<http-conf:server> tags appear amongst the WSDL port settings.

• http plug-in—implements insecure HTTP only. The http plug-in is
automatically loaded by the at_http plug-in.

• https plug-in—implements secure HTTPS only. The https plug-in
must be added explicitly to the orb_plugins list in order to load.

HTTP-compatible binding layer The HTTP-compatible binding layer could provide additional security
features (for example, propagation of security credentials), depending on the
type of binding. The following binding types are HTTP-compatible:

• SOAP binding.

• XML format binding.

• G2++ binding.

• Fixed record length binding.

• Tagged data binding.

• MIME binding.

ASP security layer The ASP security layer is implemented by the Artix security plug-in, which
provides authentication and authorization checks for all binding types,
except the CORBA binding, as follows:

Note: In versions of Artix prior to 3.0, one plug-in, http, provided all of
the HTTP/S functionality. In Artix 3.0, it was refactored into three separate
plug-ins. Hence, the pre-Artix 3.0 http plug-in is a completely different
plug-in from the post-Artix 3.0 http plug-in.
35

CHAPTER 3 | Security for HTTP-Compatible Bindings
• Authentication—by selecting one of the available client credentials
and calling out to the Artix security service to check the credentials.

• Authorization—by reading an action-role mapping (ARM) file and
checking whether a user’s roles allow it to perform a particular action.

Authentication options The following authentication options are common to all HTTP-compatible
bindings:

• HTTP Basic Authentication.

• X.509 certificate-based authentication.

HTTP Basic Authentication HTTP Basic Authentication works by sending a username and password
embedded in the HTTP message header. This style of authentication is
commonly used by clients running in a Web browser.

For details of HTTP Basic Authentication, see “HTTP Basic Authentication”
on page 47.

X.509 certificate-based
authentication

X.509 certificate-based authentication is an authentication step that is
performed in addition to the checks performed at the socket layer during the
SSL/TLS security handshake.

For details of X.509 certificate-based authentication, see “X.509
Certificate-Based Authentication with HTTPS” on page 51.
 36

Securing HTTP Communications with SSL/TLS
Securing HTTP Communications with
SSL/TLS

Overview This subsection describes how to configure the HTTP transport to use
SSL/TLS security, a combination usually referred to as HTTPS. In Artix,
HTTPS security is implemented by a combination of the at_http and https
plug-ins and configured by settings in the artix.cfg file.

The following topics are discussed in this subsection:

• Generating X.509 certificates.

• HTTPS client with no certificate.

• HTTPS client with certificate.

• HTTPS server configuration.

Generating X.509 certificates A basic prerequisite for using SSL/TLS security is to have a collection of
X.509 certificates available to identify your server applications and,
optionally, your client applications. You can generate X.509 certificates in
one of the following ways:

• Use a commercial third-party to tool to generate and manage your
X.509 certificates.

• Use the free openssl utility provided with Artix—see “Creating Your
Own Certificates” on page 171 for details of how to use it.

HTTPS client with no certificate For example, consider the configuration for a secure HTTPS client with no
certificate. Example 8 shows how to configure such a sample client.

Example 8: Sample HTTPS Client with No Certificate

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.

1 orb_plugins = ["xml_log_stream", ..., "at_http", "https"];
37

CHAPTER 3 | Security for HTTP-Compatible Bindings
The preceding client configuration can be described as follows:

1. Make sure that the orb_plugins variable in this configuration scope
includes the at_http and https plug-ins.

If you plan to use the full Artix Security Framework, you should include
the ASP plug-in, artix_security, in the ORB plug-ins list as well.

2. A HTTPS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other HTTPS applications. You must, therefore, edit the

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

2 policies:https:trusted_ca_list_policy =
"ArtixInstallDir\artix\Version\demos\secure_hello_world\http_
soap\certificates\tls\x509\trusted_ca_lists\ca_list1.pem";

3 policies:https:mechanism_policy:protocol_version = "SSL_V3";
 policies:https:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

4 event_log:filters = ["IT_ATLI_TLS=*", "IT_IIOP=*",
"IT_IIOP_TLS=*", "IT_TLS=*"];

 ...
 my_client {
 # Specific HTTPS client configuration settings

5 principal_sponsor:use_principal_sponsor = "false";

6 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 };
};
...

Example 8: Sample HTTPS Client with No Certificate
 38

Securing HTTP Communications with SSL/TLS
policies:https:trusted_ca_list_policy variable to point at a list of
trusted certificate authority (CA) certificates. See “Specifying Trusted
CA Certificates” on page 199.

3. The mechanism policy specifies the default security protocol version
and the available cipher suites—see “Specifying Cipher Suites” on
page 225.

4. This line enables console logging for security-related events, which is
useful for debugging and testing. Because there is a performance
penalty associated with this option, you might want to comment out or
delete this line in a production system.

5. The SSL/TLS principal sponsor is a mechanism that can be used to
specify an application’s own X.509 certificate. Because this client
configuration does not use a certificate, the principal sponsor is
disabled by setting principal_sponsor:use_principal_sponsor to
false.

6. The following two lines set the required options and the supported
options for the HTTPS client secure invocation policy. In this example,
the policy is set as follows:

♦ Required options—the options shown here ensure that the client
can open only secure HTTPS connections.

♦ Supported options—the options shown include all of the
association options, except for the EstablishTrustInClient
option. The client cannot support EstablishTrustInClient,
because it has no X.509 certificate.

HTTPS client with certificate For example, consider a secure HTTPS client that is configured to have its
own certificate. Example 9 shows how to configure such a sample client.

Example 9: Sample HTTPS Client with Certificate

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 orb_plugins = ["xml_log_stream", ..., "at_http", "https"];
39

CHAPTER 3 | Security for HTTP-Compatible Bindings
 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

 policies:https:trusted_ca_list_policy =
"ArtixInstallDir\artix\Version\demos\secure_hello_world\http_
soap\certificates\tls\x509\trusted_ca_lists\ca_list1.pem";

 policies:https:mechanism_policy:protocol_version = "SSL_V3";
 policies:https:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

 event_log:filters = ["IT_ATLI_TLS=*", "IT_IIOP=*",
"IT_IIOP_TLS=*", "IT_TLS=*"];

 ...
 my_client {
 # Specific HTTPS client configuration settings

1 principal_sponsor:use_principal_sponsor = "true";
2 principal_sponsor:auth_method_id = "pkcs12_file";
3 principal_sponsor:auth_method_data =

["filename=C:\artix_30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.p12"];

4 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

 };
};
...

Example 9: Sample HTTPS Client with Certificate
 40

Securing HTTP Communications with SSL/TLS
The preceding client configuration can be described as follows:

1. The SSL/TLS principal sponsor is a mechanism that can be used to
specify an application’s own X.509 certificate. The principal sponsor is
enabled by setting principal_sponsor:use_principal_sponsor to
true.

2. This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 200.

3. Specify the X.509 certificate location by editing the filename value to
point at a custom X.509 certificate file, which should be in PKCS#12
format—see “Specifying an Application’s Own Certificate” on page 200
for more details.

For details of how to specify the certificate’s pass phrase, see
“Certificate Pass Phrase for HTTPS and IIOP/TLS” on page 202.

4. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the client
can open only secure HTTPS connections.

♦ Supported options—the association options shown here include
the EstablishTrustInClient option. This association option
must be supported when the client has an X.509 certificate.

Alternatively, you could configure security for a HTTPS client by editing the
port settings in the WSDL contract (but only for mutual authentication).
Example 10 shows how to configure the client side of a HTTPS connection
in Artix, in the case of mutual authentication.

Example 10:WSDL Contract for HTTPS Client with Certificate

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration" ... >
 ...
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"
 name="HelloWorldPort">
41

CHAPTER 3 | Security for HTTP-Compatible Bindings
The preceding WSDL contract can be described as follows:

1. The ClientCertificate attribute specifies the client’s own certificate
in PKCS#12 format.

2. The ClientPrivateKeyPassword attribute specifies the password to
decrypt the contents of the ClientCertificate file.

HTTPS server configuration Generally speaking, it is rarely necessary to configure such a thing as a pure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and a client role. The
sample server described here combines the following qualities: in the server
role, the application requests clients to send a certificate; in the client role,
the application requires security and includes a certificate.

 <soap:address location="https://localhost:55012"/>
 <http-conf:client
 UseSecureSockets="true"
TrustedRootCertificates="../certificates/openssl/x509/ca/cacert.

p12"
1 ClientCertificate="../certificates/openssl/x509/certs/client_cer

t.p12"
2 ClientPrivateKeyPassword="ClientPrivKeyPass"

 />
 </port>
 </service>
</definitions>

Example 10:WSDL Contract for HTTPS Client with Certificate

Note: The presence of the private key password in the WSDL
contract file implies that this file must be read and write-protected to
prevent unauthorized users from obtaining the password.

WARNING: If you include security settings in the WSDL contract, you
must ensure that the WSDL publish plug-in, wsdl_publish, is not loaded
by your application (either on the client side or on the server side). The
WSDL publish plug-in makes WSDL contracts available through an
insecure HTTP port.
 42

Securing HTTP Communications with SSL/TLS
Example 11 shows how to configure such a sample server.

The preceding server configuration can be described as follows:

1. You can use the same common SSL/TLS settings here as described in
the preceding “HTTPS client with no certificate” on page 37.

2. The following two lines set the required options and the supported
options for the target secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the server
accepts only secure HTTPS connection attempts.

Example 11:Sample HTTPS Server Configuration

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

1 # Common SSL/TLS configuration settings.
 ...
 my_server {
 # Specific HTTPS server configuration settings

2 policies:target_secure_invocation_policy:requires =
["Confidentiality"];

 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
4 principal_sponsor:auth_method_id = "pkcs12_file";
5 principal_sponsor:auth_method_data =

["filename=CertsDir\server_cert.p12"];

 # Specific HTTPS client configuration settings
6 policies:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 };
};
...
43

CHAPTER 3 | Security for HTTP-Compatible Bindings
♦ Supported options—all of the target association options are
supported.

3. A secure server must always be associated with an X.509 certificate.
Hence, this line enables the SSL/TLS principal sponsor, which
specifies a certificate for the application.

4. This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 200.

5. Specify the location of the X.509 certificate file, by editing the
filename value to point at a custom X.509 certificate, which should be
in PKCS#12 format—see “Specifying an Application’s Own Certificate”
on page 200 for more details.

For details of how to specify the certificate’s pass phrase, see
“Certificate Pass Phrase for HTTPS and IIOP/TLS” on page 202.

6. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the
application can open only secure SSL/TLS connections to other
servers.

♦ Supported options—all of the client association options are
supported. In particular, the EstablishTrustInClient option is
supported when the application is in a client role, because the
application has an X.509 certificate.

Alternatively, you could configure security for a HTTPS server by editing the
port settings in the WSDL contract (but only for mutual authentication).
Example 12 shows how to configure the server side of a HTTPS connection
for mutual authentication in Artix.

Example 12:WSDL Contract with Server HTTPS Configuration

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration" ... >
 ...
 44

Securing HTTP Communications with SSL/TLS
The preceding WSDL contract can be described as follows:

1. The fact that this is a secure connection is signalled by using https:
instead of http: in the location URL attribute.

2. The <http-conf:server> tag contains all the attributes for configuring
the server side of the HTTPS connection.

3. If the UseSecureSockets attribute is true, the server will open a port to
listen for secure connections.

4. The ServerCertificate attribute specifies the server’s own certificate
in PKCS#12 format. For more background details about X.509
certificates, see “Managing Certificates” on page 161.

 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"

name="HelloWorldPort">
1 <soap:address location="https://localhost:55012"/>
2 <http-conf:server
3 UseSecureSockets="true"
4 ServerCertificate="../certificates/openssl/x509/certs/server_cer

t.p12"
5 ServerPrivateKeyPassword="ServerPrivKeyPass"
6 TrustedRootCertificates="../certificates/openssl/x509/ca/cacert.

p12"
 />
 </port>
 </service>
</definitions>

Example 12:WSDL Contract with Server HTTPS Configuration

Note: If UseSecureSockets is false and the <soap:address>
location URL begins with https:, however, the server will listen for
secure connections.
45

CHAPTER 3 | Security for HTTP-Compatible Bindings
5. The ServerPrivateKeyPassword attribute specifies the password to
decrypt the server certificate’s private key.

6. The file specified by the TrustedRootCertificates contains a
concatenated list of CA certificates in PKCS#12 format. This attribute
value is needed for mutual authentication (for checking the certificates
sent by clients).

Note: The presence of the private key password in the WSDL
contract file implies that this file must be read and write-protected to
prevent unauthorized users from obtaining the password.

For the same reason, it is also advisable to remove the
<http-conf:server> tag from the copy of the WSDL contract that is
distributed to clients.

WARNING: If you include security settings in the WSDL contract, you
must ensure that the WSDL publish plug-in, wsdl_publish, is not loaded
by your application (either on the client side or on the server side). The
WSDL publish plug-in makes WSDL contracts available through an
insecure HTTP port.
 46

HTTP Basic Authentication
HTTP Basic Authentication

Overview This section describes how to configure an Artix client and server to use
HTTP Basic Authentication. With HTTP Basic Authentication,
username/password credentials are sent in a HTTP header.

For more details, see the W3 specification
(http://www.w3.org/Protocols/HTTP/1.0/spec.html) for HTTP/1.0.

HTTP Basic Authentication client
configuration

Example 13 shows how to configure a client WSDL contract to use HTTP
Basic Authentication.

Example 13:WSDL Contract with Client HTTP Basic Authentication

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
1 xmlns:bus-security="http://schemas.iona.com/bus/security"

... >
 ...
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"
 name="HelloWorldPort">

2 <soap:address location="https://localhost:55012"/>
 <http-conf:client
 ...

3 UserName="user_test"
4 Password="user_password"

 />
5 <bus-security:security enableSecurity="true" />

 </port>
 </service>
</definitions>
47

http://www.w3.org/Protocols/HTTP/1.0/spec.html

CHAPTER 3 | Security for HTTP-Compatible Bindings
The preceding WSDL contract can be described as follows:

1. The bus-security namespace prefix is needed for the ASP plug-in
settings.

2. In this example, HTTP Basic Authentication is combined with SSL/TLS
security (see “Securing HTTP Communications with SSL/TLS” on
page 37). This ensures that the username and password are
transmitted across an encrypted connection, protecting them from
snooping.

3. The UserName attribute sets the user name for the HTTP Basic
Authentication credentials.

4. The Password attribute sets the password for the HTTP Basic
Authentication credentials.

5. The presence of the <bus-security:security> tag ensures that the
ASP plug-in, artix_security, is loaded into your application. This
plug-in is responsible for the authentication and authorization features.

HTTP Basic Authentication server
configuration

There is no need to make any modifications to the WSDL contract for
servers that support HTTP Basic Authentication.

However, it is necessary to make modifications to the domain configuration
file, artix.cfg (in the ArtixInstallDir/artix/Version/etc/domains
directory), as shown in Example 14.

WARNING: If you include security settings in the WSDL contract, you
must ensure that the WSDL publish plug-in, wsdl_publish, is not loaded
by your application (either on the client side or on the server side). The
WSDL publish plug-in makes WSDL contracts available through an
insecure HTTP port.

Example 14:Artix Configuration for Server HTTP Basic Authentication

Artix Configuration File
security_artix {
 ...
 demos
 {
 hello_world
 {
 plugins:artix_security:shlib_name="it_security_plugin";
 48

HTTP Basic Authentication
The preceding extract from the domain configuration can be explained as
follows:

1. The Artix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix
security layer.

2. The orb_plugins list should include the artix_security plug-in,
which is responsible for enabling authentication and authorization.

3. The action-role mapping file is used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of
the roles assigned to that user.

See “Managing Access Control Lists” on page 151 for more details.

4. The policies:asp:enable_authorization variable must be set to
true to enable authorization.

5. The plugins:asp:security_type configuration variable specifies the
type of credentials authenticated on the server side. The
MESSAGE_LEVEL security type, selects the username/password
credentials from the HTTP Basic Authentication header.

1 binding:artix:server_request_interceptor_list=
"security";

 binding:client_binding_list = ["OTS+POA_Coloc",
"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];

2 orb_plugins = ["xmlfile_log_stream", ..., "at_http",
"artix_security", "https"];

3 plugins:is2_authorization:action_role_mapping =
"file://ArtixInstallDir/artix/Version/demos/secure_hello_worl
d/http_soap/config/helloworld_action_role_mapping.xml";

4 policies:asp:enable_authorization = "true";
5 plugins:asp:security_level = "MESSAGE_LEVEL";
6 plugins:asp:authentication_cache_size = "5";

 plugins:asp:authentication_cache_timeout = "10";
 };
 ...
 };
};

Example 14:Artix Configuration for Server HTTP Basic Authentication
49

CHAPTER 3 | Security for HTTP-Compatible Bindings
6. The next pair of configuration variables configure the asp caching
mechanism. For more details, see “ASP configuration variables” on
page 32.
 50

X.509 Certificate-Based Authentication with HTTPS
X.509 Certificate-Based Authentication with
HTTPS

Overview This section describes how to enable X.509 certificate authentication for
HTTP-compatible bindings, based on a simple two-tier client/server
scenario. In this scenario, the Artix security service authenticates the client’s
certificate and retrieves roles and realms based on the identity of the
certificate subject. When certificate-based authentication is enabled, the
X.509 certificate is effectively authenticated twice, as follows:

• SSL/TLS-level authentication—this authentication step occurs during
the SSL/TLS handshake and is governed by the https configuration
settings in the Artix configuration file, artix.cfg.

• ASP security-level authentication and authorization—this
authentication step occurs after the SSL/TLS handshake and is
performed by the Artix security service working in tandem with the
artix_security plug-in.
51

CHAPTER 3 | Security for HTTP-Compatible Bindings
Certificate-based authentication
scenario

Figure 10 shows an example of a two-tier system, where authentication of
the client’s X.509 certificate is integrated with the Artix security service.

Scenario description The scenario shown in Figure 10 can be described as follows:

Figure 10: Overview of Certificate-Based Authentication with HTTPS

Artix Security Service

TargetClient

User login
4 Apply access

control

3
Retrieve user's
realms and roles

2 authenticate()
X.509

1 SSL/TLS-level
authentication

Stage Description

1 When the client opens a connection to the server, the client
sends its X.509 certificate as part of the SSL/TLS handshake
(HTTPS). The server then performs SSL/TLS-level
authentication, checking the certificate as follows:

• The certificate is checked against the server’s trusted CA
list to ensure that it is signed by a trusted certification
authority.
 52

X.509 Certificate-Based Authentication with HTTPS
HTTPS prerequisites In general, a basic prerequisite for using X.509 certificate-based
authentication is that both client and server are configured to use HTTPS.

See “Securing HTTP Communications with SSL/TLS” on page 37.

Certificate-based authentication
client configuration

To enable certificate-based authentication on the client side, it is sufficient
for the client to be configured to use HTTPS with its own certificate. For
example, see “HTTPS client with certificate” on page 39.

2 The server performs security layer authentication by calling
authenticate() on the Artix security service, passing
username and password arguments as follows:

• Username—obtained by extracting the common name
(CN) from the client certificate’s subject DN.

• Password—obtained from the value of the
plugins:asp:default_password configuration variable in
the server’s artix.cfg domain configuration.

WARNING: This step is not a true authentication step,
because the password is cached on the server side. Effectively,
this authentication is performed with a dummy password.

3 If authentication is successful, the Artix security service returns
the user’s realms and roles.

4 The ASP security layer controls access to the target’s WSDL
operations by consulting an action-role mapping file to
determine what the user is allowed to do.

Stage Description
53

CHAPTER 3 | Security for HTTP-Compatible Bindings
Certificate-based authentication
server configuration

A prerequisite for using certificate-based authentication on the server side is
that the server’s WSDL contract is configured to use HTTPS. For example,
see “HTTPS server configuration” on page 42.

Additionally, on the server side it is also necessary to configure the ASP
security layer by editing the artix.cfg domain configuration file (in the
ArtixInstallDir/artix/Version/etc/domains directory), as shown in
Example 15.

Example 15:Artix Configuration for X.509 Certificate-Based
Authentication

Artix Configuration File
security_artix {
 ...
 demos
 {
 hello_world
 {
 plugins:artix_security:shlib_name="it_security_plugin";

1 binding:artix:server_request_interceptor_list=
"security";

 binding:client_binding_list = ["OTS+POA_Coloc",
"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];

2 orb_plugins = ["xmlfile_log_stream", ..., "at_http",
"artix_security", "https"];

3 plugins:is2_authorization:action_role_mapping =
"file://ArtixInstallDir/artix/2.0/demos/secure_hello_world/ht
tp_soap/config/helloworld_action_role_mapping.xml";

4 policies:asp:enable_authorization = "true";
5 plugins:asp:security_level = "MESSAGE_LEVEL";
6 plugins:asp:default_password = "CertPassword";
7 plugins:asp:authentication_cache_size = "5";

 plugins:asp:authentication_cache_timeout = "10";
 };
 ...
 };
};
 54

X.509 Certificate-Based Authentication with HTTPS
The preceding extract from the domain configuration can be explained as
follows:

1. The Artix server request interceptor list must include the
bus-security:security interceptor, which provides part of the
functionality for the Artix security layer.

2. The orb_plugins list should include the artix_security plug-in,
which is responsible for enabling authentication and authorization, and
the https plug-in, which implements the HTTPS transport protocol.

3. The action-role mapping file is used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of
the roles assigned to that user.

See “Managing Access Control Lists” on page 151 for more details.

4. policies:asp:enable_authorization variable must be set to true to
enable authorization.

5. The plugins:asp:security_type configuration variable specifies the
type of credentials authenticated on the server side. The particular
MESSAGE_LEVEL security type selects X.509 certificate-based
authentication.

In this case, the username is taken to be the common name (CN) from
the client certificate’s subject DN (for an explanation of X.509
certificate terminology, see “ASN.1 and Distinguished Names” on
page 395).

6. When certificate-based authentication is used with HTTPS, a default
password, CertPassword, must be supplied on the server side. This
password is then used in the authenticate() call to the Artix security
service.

7. The next pair of configuration variables configure the asp caching
mechanism. For more details, see “ASP configuration variables” on
page 32.

Note: The bus-security namespace prefix must be defined in the
application WSDL contract—see “HTTP Basic Authentication client
configuration” on page 47.
55

CHAPTER 3 | Security for HTTP-Compatible Bindings
 56

CHAPTER 4

Security for SOAP
Bindings
This chapter describes the security features that are specific
to the SOAP binding—for example, such as security
credentials that can be propagated in a SOAP header.

In this chapter This chapter discusses the following topic:

Overview of SOAP Security page 58
57

CHAPTER 4 | Security for SOAP Bindings
Overview of SOAP Security

Overview Figure 11 gives an overview of security for a SOAP binding within the Artix
security framework. SOAP security consists of four different layers (SSL/TLS,
HTTP, SOAP, and ASP) and support is provided for several different types of
authentication. Figure 11 shows you how the different authentication types
are associated with the different security layers.

Security layers As shown in Figure 11, the SOAP binding includes the following security
layers:

• SSL/TLS layer.

• HTTP layer.

• SOAP layer.

• ASP security layer.

Figure 11: Overview of Security for SOAP Bindings

authorization

authentication

Action-role
mapping file

SSL/TLS

HTTP Basic Authentication

X.509

HTTP

ASP security

Artix Security Service

User Data

ARM

SOAP
CORBA Principal
WSSE Kerberos

WSSE UsernameToken
 58

Overview of SOAP Security
SSL/TLS layer The SSL/TLS layer provides the SOAP binding with message encryption,
message integrity and authentication using X.509 certificates. The
implementation of SSL/TLS that underlies HTTPS is based on the Baltimore
security toolkit.

To enable SSL/TLS for HTTP, you must edit the artix.cfg file—see
“Securing HTTP Communications with SSL/TLS” on page 37.

HTTP layer The HTTP layer provides a means of sending username/password
credentials in a HTTP header (HTTP Basic Authentication). The HTTP layer
relies on SSL/TLS to prevent password snooping.

SOAP layer The SOAP layer can send various credentials (WSSE UsernameToken,
WSSE Kerberos and CORBA Principal) embedded in a SOAP message
header. The SOAP layer relies on SSL/TLS to prevent password snooping.

ASP security layer The ASP security layer implements a variety of security features for
non-CORBA bindings. The main features of the ASP security layer are, as
follows:

• Authentication—the ASP security layer calls the Artix security service
(which maintains a database of user data) to authenticate a user’s
credentials. If authentication is successful, the Artix security service
returns a list of the user’s roles and realms.

• Authorization—the ASP security layer matches the user’s roles and
realms against an action-role mapping file to determine whether the
user has permission to invoke the relevant WSDL operation.

Authentication options As shown in Figure 11 on page 58, the SOAP binding supports the following
authentication options:

• WSSE UsernameToken.

• WSSE Kerberos.

• CORBA Principal.

• HTTP Basic Authentication.

• X.509 certificate-based authentication.
59

CHAPTER 4 | Security for SOAP Bindings
WSSE UsernameToken The Web service security extension (WSSE) UsernameToken is a
username/password combination that can be sent in a SOAP header. The
specification of WSSE UsernameToken is contained in the WSS
UsernameToken Profile 1.0 document from OASIS (www.oasis-open.org).

Currently, the WSSE UsernameToken can be set only by programming. See
“Propagating a Username/Password Token” on page 252.

WSSE Kerberos The WSSE Kerberos specification is used to send a Kerberos security token
in a SOAP header. If you use Kerberos, you must also configure the Artix
security service to use the Kerberos adapter—see “Configuring the Kerberos
Adapter” on page 114.

Currently, the WSSE Kerberos token can be set only by programming. See
“Propagating a Kerberos Token” on page 257.

CORBA Principal The CORBA Principal is a legacy feature originally defined in the early
versions of the CORBA GIOP specification. To facilitate interoperability with
early CORBA implementations, the Artix SOAP binding is also able to
propagate CORBA Principals. This feature is available only for SOAP over
HTTP and a SOAP header is used to propagate the CORBA Principal.

For details, see “Principal Propagation” on page 237.

HTTP Basic Authentication HTTP Basic Authentication is used to propagate username/password
credentials in a HTTP header. This kind of authentication is available to any
HTTP-compatible binding.

For details, see “HTTP Basic Authentication” on page 47.

X.509 certificate-based
authentication

X.509 certificate-based authentication obtains credentials by extracting the
common name (CN) from a client certificate’s subject DN. This kind of
authentication is available to any HTTP-compatible binding.

For details, see “X.509 Certificate-Based Authentication with HTTPS” on
page 51.
 60

http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org

CHAPTER 5

Security for
CORBA Bindings
Using IONA’s modular ART technology, you make a CORBA
binding secure by configuring it to load the relevant security
plug-ins. This section describes how to load and configure
security plug-ins to reach the appropriate level of security for
applications with a CORBA binding.

In this chapter This chapter discusses the following topics:

Overview of CORBA Security page 62

Securing IIOP Communications with SSL/TLS page 64

Securing Two-Tier CORBA Systems with CSI page 70

Securing Three-Tier CORBA Systems with CSI page 76

X.509 Certificate-Based Authentication for CORBA Bindings page 82
61

CHAPTER 5 | Security for CORBA Bindings
Overview of CORBA Security

Overview There are three layers of security available for CORBA bindings: IIOP over
SSL/TLS (IIOP/TLS), which provides secure communication between client
and server; CSI, which provides a mechanism for propagating
username/password credentials; and the GSP plug-in, which is concerned
with higher-level security features such as authentication and authorization.

The following combinations are recommended:

• IIOP/TLS only—for a pure SSL/TLS security solution.

• IIOP/TLS, CSI, and GSP layers—for a highly scalable security solution,
based on username/password client authentication.

CORBA applications and the Artix
security framework

Figure 12 shows the main features of a secure CORBA application in the
context of the Artix security framework.

Figure 12: A Secure CORBA Application within the Artix Security
Framework

authorization

authentication

Action-role
mapping file

IIOP/TLS
X.509

GSP security

Artix Security Service

User Data

ARM

CORBA
binding

GIOP
CORBA Principal

CSI identity assertion
CSI authentication over transport
 62

Overview of CORBA Security
Security plug-ins Within the Artix security framework, a CORBA application becomes fully
secure by loading the following plug-ins:

• IIOP/TLS plug-in

• CSIv2 plug-in

• GSP plug-in

IIOP/TLS plug-in The IIOP/TLS plug-in, iiop_tls, enables a CORBA application to transmit
and receive IIOP requests over a secure SSL/TLS connection. This plug-in
can be enabled independently of the other two plug-ins.

See “Securing IIOP Communications with SSL/TLS” on page 64 for details
on how to enable IIOP/TLS in a CORBA application.

CSIv2 plug-in The CSIv2 plug-in, csi, provides a client authentication mechanism for
CORBA applications. The authentication mechanism is based on a
username and a password. When the CSIv2 plug-in is configured for use
with the Artix security framework, the username and password are
forwarded to a central Artix security service to be authenticated. This plug-in
is needed to support the Artix security framework.

GSP plug-in The GSP plug-in, gsp, provides authorization by checking a user’s roles
against the permissions stored in an action-role mapping file. This plug-in is
needed to support the Artix security framework.

Note: The IIOP/TLS plug-in also provides a client authentication
mechanism (based on SSL/TLS and X.509 certificates). The SSL/TLS and
CSIv2 authentication mechanisms are independent of each other and can
be used simultaneously.
63

CHAPTER 5 | Security for CORBA Bindings
Securing IIOP Communications with SSL/TLS

Overview This section describes how to configure a CORBA binding to use SSL/TLS
security. In this section, it is assumed that your initial configuration comes
from a secure location domain (that is, the artix.cfg domain configuration
file has been modified to include artix-secure.cfg).

Sample client configuration For example, consider the configuration for a secure SSL/TLS client with no
certificate. Example 16 shows how to configure such a sample client.

WARNING: The default certificates used in the CORBA configuration
samples are for demonstration purposes only and are completely insecure.
You must generate your own custom certificates for use in your own
CORBA applications.

Example 16:Sample SSL/TLS Client Configuration

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.

1 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls"];

2 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

3 policies:trusted_ca_list_policy =
"ArtixInstallDir\artix\Version\demos\secure_hello_world\http_
soap\certificates\tls\x509\trusted_ca_lists\ca_list1.pem";

4 policies:mechanism_policy:protocol_version = "SSL_V3";
 policies:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];
 64

Securing IIOP Communications with SSL/TLS
The preceding client configuration can be described as follows:

1. Make sure that the orb_plugins variable in this configuration scope
includes the iiop_tls plug-in.

If you plan to use the full Artix Security Framework, you should include
the gsp plug-in in the ORB plug-ins list as well—see “Securing
Two-Tier CORBA Systems with CSI” on page 70.

2. Make sure that the binding:client_binding_list variable includes
bindings with the IIOP_TLS interceptor. You can use the value of the
binding:client_binding_list shown here.

3. An SSL/TLS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other SSL/TLS applications. You must, therefore, edit the

5 event_log:filters = ["IT_ATLI_TLS=*", "IT_IIOP=*",
"IT_IIOP_TLS=*", "IT_TLS=*"];

 ...
 my_client {
 # Specific SSL/TLS client configuration settings

6 principal_sponsor:use_principal_sponsor = "false";

7 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 };
};
...

Example 16:Sample SSL/TLS Client Configuration

Note: For fully secure applications, you should exclude the iiop
plug-in (insecure IIOP) from the ORB plug-ins list. This renders the
application incapable of making insecure IIOP connections.

For semi-secure applications, however, you should include the iiop
plug-in before the iiop_tls plug-in in the ORB plug-ins list.
65

CHAPTER 5 | Security for CORBA Bindings
policies:trusted_ca_list_policy variable to point at a list of trusted
certificate authority (CA) certificates. See “Specifying Trusted CA
Certificates” on page 199.

4. The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “Specifying Cipher Suites”
on page 225.

5. This line enables console logging for security-related events, which is
useful for debugging and testing. Because there is a performance
penalty associated with this option, you might want to comment out or
delete this line in a production system.

6. The SSL/TLS principal sponsor is a mechanism that can be used to
specify an application’s own X.509 certificate. Because this client
configuration does not use a certificate, the principal sponsor is
disabled by setting principal_sponsor:use_principal_sponsor to
false.

7. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the client
can open only secure SSL/TLS connections.

♦ Supported options—the options shown include all of the
association options, except for the EstablishTrustInClient
option. The client cannot support EstablishTrustInClient,
because it has no X.509 certificate.

Sample server configuration Generally speaking, it is rarely necessary to configure such a thing as a pure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and a client role.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the policies:trusted_ca_list_policy variable is ignored.
Within Schannel, the trusted root CA certificates are obtained from
the Windows certificate store.
 66

Securing IIOP Communications with SSL/TLS
Example 17 shows how to configure a sample server that acts both as a
secure server and as a secure client.

The preceding server configuration can be described as follows:

1. You can use the same common SSL/TLS settings here as described in
the preceding “Sample client configuration” on page 64

2. The following two lines set the required options and the supported
options for the target secure invocation policy. In this example, the
policy is set as follows:

Example 17:Sample SSL/TLS Server Configuration

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

1 # Common SSL/TLS configuration settings.
 ...
 my_server {
 # Specific SSL/TLS server configuration settings

2 policies:target_secure_invocation_policy:requires =
["Confidentiality"];

 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
4 principal_sponsor:auth_method_id = "pkcs12_file";
5 principal_sponsor:auth_method_data =

["filename=CertsDir\server_cert.p12"];

 # Specific SSL/TLS client configuration settings
6 policies:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 };
};
...
67

CHAPTER 5 | Security for CORBA Bindings
♦ Required options—the options shown here ensure that the server
accepts only secure SSL/TLS connection attempts.

♦ Supported options—all of the target association options are
supported.

3. A server must always be associated with an X.509 certificate. Hence,
this line enables the SSL/TLS principal sponsor, which specifies a
certificate for the application.

4. This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 200.

5. Replace the X.509 certificate, by editing the filename option in the
principal_sponsor:auth_method_data configuration variable to point
at a custom X.509 certificate. The filename value should be initialized
with the location of a certificate file in PKCS#12 format—see
“Specifying an Application’s Own Certificate” on page 200 for more
details.

For details of how to specify the certificate’s pass phrase, see
“Certificate Pass Phrase for HTTPS and IIOP/TLS” on page 202.

6. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the
application can open only secure SSL/TLS connections to other
servers.

♦ Supported options—all of the client association options are
supported. In particular, the EstablishTrustInClient option is
supported when the application is in a client role, because the
application has an X.509 certificate.

Mixed security configurations Most realistic secure server configurations are mixed in the sense that they
include both server settings (for the server role), and client settings (for the
client role). When combining server and client security settings for an
application, you must ensure that the settings are consistent with each
other.
 68

Securing IIOP Communications with SSL/TLS
For example, consider the case where the server settings are secure and the
client settings are insecure. To configure this case, set up the server role as
described in “Sample server configuration” on page 66. Then configure the
client role by adding (or modifying) the following lines to the
my_secure_apps.my_server configuration scope:

The first line sets the ORB plug-ins list to make sure that the iiop plug-in
(enabling insecure IIOP) is included. The NoProtection association option,
which appears in the required and supported client secure invocation policy,
effectively disables security for the client role.

Customizing SSL/TLS security
policies

You can, optionally, customize the SSL/TLS security policies in various
ways. For details, see the following references:

• “Configuring HTTPS and IIOP/TLS Secure Associations” on page 209.

• “Configuring HTTPS and IIOP/TLS Authentication” on page 191.

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop", "iiop_tls"];

policies:client_secure_invocation_policy:requires =
["NoProtection"];

policies:client_secure_invocation_policy:supports =
["NoProtection"];
69

CHAPTER 5 | Security for CORBA Bindings
Securing Two-Tier CORBA Systems with CSI

Overview This section describes how to secure a two-tier CORBA system using the
OMG’s Common Secure Interoperability specification version 2.0 (CSIv2).
The client supplies username/password authentication data which is
transmitted as CSI credentials and then authenticated on the server side.
The following configurations are described in detail:

• Client configuration.

• Target configuration.

Two-tier CORBA system Figure 13 shows a basic two-tier CORBA system using CSI credentials,
featuring a client and a target server.

Figure 13: Two-Tier CORBA System Using CSI Credentials

Request + u/p/d

Artix Security
Service

1 2

3

Client
authentication
token

TargetClient
u/p/d

User login
Propagate
authentication
token

authenticate() 4
Retrieve user's
realms and roles

5
Apply access
control
 70

Securing Two-Tier CORBA Systems with CSI
Scenario description The scenario shown in Figure 13 can be described as follows:

Client configuration The CORBA client from Example 13 on page 70 can be configured as
shown in Example 18.

Stage Description

1 The user enters a username, password, and domain name on
the client side (user login).

Note: The domain name must match the value of the
policies:csi:auth_over_transport:server_domain_name
configuration variable set on the server side.

2 When the client makes a remote invocation on the server, the
CSI username/password/domain authentication data is
transmitted to the target along with the invocation request.

3 The server authenticates the received username and password
by calling out to the external Artix security service.

4 If authentication is successful, the Artix security service returns
the user’s realms and roles.

5 The GSP security layer controls access to the target’s IDL
interfaces by consulting an action-role mapping file to
determine what the user is allowed to do.

Example 18:Configuration of a CORBA client Using CSI Credentials

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

1 # Common SSL/TLS configuration settings.
 ...
 # Common Artix security framework configuration settings.

2 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "ots", "gsp"];
71

CHAPTER 5 | Security for CORBA Bindings
The preceding client configuration can be explained as follows:

1. The SSL/TLS configuration variables common to all of your applications
can be placed here—see “Securing IIOP Communications with
SSL/TLS” on page 64 for details of the SSL/TLS configuration.

2. Make sure that the orb_plugins variable in this configuration scope
includes both the iiop_tls and the gsp plug-ins in the order shown.

3. Make sure that the binding:client_binding_list variable includes
bindings with the CSI interceptor. Your can use the value of the
binding:client_binding_list shown here.

4. Make sure that the binding:server_binding_list variable includes
bindings with both the CSI and GSP interceptors. Your can use the
value of the binding:server_binding_list shown here.

5. The SSL/TLS configuration variables specific to the CORBA client can
be placed here—see “Securing IIOP Communications with SSL/TLS”
on page 64.

3 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

4 binding:server_binding_list = ["CSI+GSP+OTS", "CSI+GSP",
"CSI+OTS", "CSI"];

 ...
 my_client {

5 # Specific SSL/TLS configuration settings.
 ...
 # Specific Artix security framework settings.

6 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

7 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};
...

Example 18:Configuration of a CORBA client Using CSI Credentials
 72

Securing Two-Tier CORBA Systems with CSI
6. This configuration setting specifies that the client supports sending
username/password authentication data to a server.

7. The next three lines specify that the client uses the CSI principal
sponsor to obtain the user’s authentication data. With the configuration
as shown, the user would be prompted to enter the username and
password when the client application starts up.

Target configuration The CORBA target server from Figure 13 on page 70 can be configured as
shown in Example 19.

Example 19:Configuration of a Second-Tier Target Server in the Artix
Security Framework

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common Artix security framework configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
 my_two_tier_target {

1 # Specific SSL/TLS configuration settings.
 ...
 # Specific Artix security framework settings.

2 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

3 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

4 policies:csi:auth_over_transport:server_domain_name =
"CSIDomainName";

5 plugins:gsp:authorization_realm = "AuthzRealm";
6 plugins:is2_authorization:action_role_mapping =

"ActionRoleURL";
73

CHAPTER 5 | Security for CORBA Bindings
The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing IIOP Communications with
SSL/TLS” on page 64.

2. This configuration setting specifies that the target server supports
receiving username/password authentication data from the client.

3. This configuration setting specifies that the target server requires the
client to send username/password authentication data.

4. The server_domain_name configuration variable sets the server’s CSIv2
authentication domain name, CSIDomainName. The domain name
embedded in a received CSIv2 credential must match the value of the
server_domain_name variable on the server side.

5. This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms” on page 141.

6. The action_role_mapping configuration variable specifies the location
of an action-role mapping that controls access to the IDL interfaces
implemented by the server. The file location is specified in an URL
format, for example:
file:///security_admin/action_role_mapping.xml (UNIX) or
file:///c:/security_admin/action_role_mapping.xml (Windows).

For more details about the action-role mapping file, see “ACL File
Format” on page 153.

7 # Artix security framework client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};

Example 19:Configuration of a Second-Tier Target Server in the Artix
Security Framework
 74

Securing Two-Tier CORBA Systems with CSI
7. You should also set secure client configuration variables in the server
configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

Related administration tasks After securing your CORBA applications with the Artix security framework,
you might need to perform related administration tasks, for example:

• See “Managing Users, Roles and Domains” on page 137.

• See “ACL File Format” on page 153.
75

CHAPTER 5 | Security for CORBA Bindings
Securing Three-Tier CORBA Systems with CSI

Overview This section describes how to secure a three-tier CORBA system using
CSIv2. In this scenario there is a client, an intermediate server, and a target
server. The intermediate server is configured to propagate the client identity
when it invokes on the target server in the third tier. The following
configurations are described in detail:

• Intermediate configuration.

• Target configuration.

Three-tier CORBA system Figure 14 shows a basic three-tier CORBA system using CSIv2, featuring a
client, an intermediate server and a target server.

Figure 14: Three-Tier CORBA System Using CSIv2

Request + u/p/d

Artix Security
Service

1
2

u

Client
authentication
token

Identity token

Request + uIntermediate
Server

Target
Server

Client
u/p/d

Set own identity

Propagate identity

3
Obtain user's
realms and roles

4
Apply access
control
 76

Securing Three-Tier CORBA Systems with CSI
Scenario description The second stage of the scenario shown in Figure 14 (intermediate server
invokes an operation on the target server) can be described as follows:

Client configuration The client configuration for the three-tier scenario is identical to that of the
two-tier scenario, as shown in “Client configuration” on page 71.

Intermediate configuration The CORBA intermediate server from Figure 14 on page 76 can be
configured as shown in Example 20.

Stage Description

1 The intermediate server sets its own identity by extracting the
user identity from the received username/password CSI
credentials. Hence, the intermediate server assumes the same
identity as the client.

2 When the intermediate server makes a remote invocation on
the target server, CSI identity assertion is used to transmit the
user identity data to the target.

3 The target server then obtains the user’s realms and roles.

4 The GSP security layer controls access to the target’s IDL
interfaces by consulting an action-role mapping file to
determine what the user is allowed to do.

Example 20:Configuration of a Second-Tier Intermediate Server in the
Artix Security Framework

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common Artix security framework configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
77

CHAPTER 5 | Security for CORBA Bindings
The preceding intermediate server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA
intermediate server can be placed here—see “Securing IIOP
Communications with SSL/TLS” on page 64.

2. This configuration setting specifies that the intermediate server is
capable of propagating the identity it receives from a client. In other
words, the server is able to assume the identity of the client when
invoking operations on third-tier servers.

3. This configuration setting specifies that the intermediate server
supports receiving username/password authentication data from the
client.

 my_three_tier_intermediate {
1 # Specific SSL/TLS configuration settings.

 ...
 # Specific Artix security framework settings.

2 policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

3 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

4 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

5 policies:csi:auth_over_transport:server_domain_name =
"CSIDomainName";

6 plugins:gsp:authorization_realm = "AuthzRealm";
7 plugins:is2_authorization:action_role_mapping =

"ActionRoleURL";

8 # Artix security framework client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};

Example 20:Configuration of a Second-Tier Intermediate Server in the
Artix Security Framework
 78

Securing Three-Tier CORBA Systems with CSI
4. This configuration setting specifies that the intermediate server
requires the client to send username/password authentication data.

5. The server_domain_name configuration variable sets the server’s CSIv2
authentication domain name, CSIDomainName. The domain name
embedded in a received CSIv2 credential must match the value of the
server_domain_name variable on the server side.

6. This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms” on page 141.

7. This configuration setting specifies the location of an action-role
mapping that controls access to the IDL interfaces implemented by the
server. The file location is specified in an URL format, for example:
file:///security_admin/action_role_mapping.xml (UNIX) or
file:///c:/security_admin/action_role_mapping.xml (Windows).

For more details about the action-role mapping file, see “ACL File
Format” on page 153.

8. You should also set Artix security framework client configuration
variables in the intermediate server configuration scope, because a
secure server application usually behaves as a secure client of the core
CORBA services. For example, almost all CORBA servers need to
contact both the locator service and the CORBA naming service.

Target configuration The CORBA target server from Figure 14 on page 76 can be configured as
shown in Example 21.

Example 21:Configuration of a Third-Tier Target Server Using CSI

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common Artix security framework configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
79

CHAPTER 5 | Security for CORBA Bindings
The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing IIOP Communications with
SSL/TLS” on page 64.

2. It is recommended that the target server require its clients to
authenticate themselves using an X.509 certificate. For example, the
intermediate server (acting as a client of the target) would then be
required to send an X.509 certificate to the target during the SSL/TLS
handshake.

You can specify this option by including the EstablishTrustInClient
association option in the target secure invocation policy, as shown here
(thereby overriding the policy value set in the outer configuration
scope).

 my_three_tier_target {
 # Specific SSL/TLS configuration settings.

1 ...
2 policies:iiop_tls:target_secure_invocation_policy:requires

= ["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity", "EstablishTrustInClient"];

3 policies:iiop_tls:certificate_constraints_policy =
[ConstraintString1, ConstraintString2, ...];

 # Specific Artix security framework settings.
4 policies:csi:attribute_service:target_supports =

["IdentityAssertion"];

5 plugins:gsp:authorization_realm = "AuthzRealm";
6 plugins:is2_authorization:action_role_mapping =

"ActionRoleURL";

7 # Artix security framework client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};

Example 21:Configuration of a Third-Tier Target Server Using CSI
 80

Securing Three-Tier CORBA Systems with CSI
3. In addition to the preceding step, it is also advisable to restrict access
to the target server by setting a certificate constraints policy, which
allows access only to those clients whose X.509 certificates match one
of the specified constraints—see “Applying Constraints to Certificates”
on page 206.

4. This configuration setting specifies that the target server supports
receiving propagated user identities from the client.

5. This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms” on page 141.

6. This configuration setting specifies the location of an action-role
mapping that controls access to the IDL interfaces implemented by the
server. The file location is specified in an URL format, for example:
file:///security_admin/action_role_mapping.xml.

For more details about the action-role mapping file, see “ACL File
Format” on page 153.

7. You should also set secure client configuration variables in the target
server configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

Related administration tasks After securing your CORBA applications with the Artix security framework,
you might need to perform related administration tasks, for example:

• See “Managing Users, Roles and Domains” on page 137.

• See “ACL File Format” on page 153.

Note: The motivation for limiting access to the target server is that
clients of the target server obtain a special type of privilege:
propagated identities are granted access to the target server without
the target server performing authentication on the propagated
identities. Hence, the target server trusts the intermediate server to
do the authentication on its behalf.
81

CHAPTER 5 | Security for CORBA Bindings
X.509 Certificate-Based Authentication for
CORBA Bindings

Overview This section describes how to enable X.509 certificate authentication for
CORBA bindings, based on a simple two-tier client/server scenario. In this
scenario, the Artix security service authenticates the client’s certificate and
retrieves roles and realms based on the identity of the certificate subject.
When certificate-based authentication is enabled, the X.509 certificate is
effectively authenticated twice, as follows:

• SSL/TLS-level authentication—this authentication step occurs during
the SSL/TLS handshake and is governed by Artix configuration settings
and programmable SSL/TLS policies.

• GSP security-level authentication and authorization—this
authentication step occurs after the SSL/TLS handshake and is
performed by the Artix security service working in tandem with the gsp
plug-in.
 82

X.509 Certificate-Based Authentication for CORBA Bindings
Certificate-based authentication
scenario

Figure 15 shows an example of a two-tier system, where authentication of
the client’s X.509 certificate is integrated with the Artix security service.

Scenario description The scenario shown in Figure 15 can be described as follows:

Figure 15: Overview of Certificate-Based Authentication

Artix Security Service

TargetClient

User login
5 Apply access

control

4
Retrieve user's
realms and roles

2 authenticate()
X.509

X.509

3

Check certificate

1 SSL/TLS-level
authentication

Stage Description

1 When the client opens a connection to the server, the client
sends its X.509 certificate as part of the SSL/TLS handshake.
The server then performs SSL/TLS-level authentication,
checking the certificate as follows:

• The certificate is checked against the server’s trusted CA
list to ensure that it is signed by a trusted certification
authority.

• If a certificate constraints policy is set, the certificate is
checked to make sure it satisfies the specified constraints.

• If a certificate validator policy is set (by programming),
the certificate is also checked by this policy.
83

CHAPTER 5 | Security for CORBA Bindings
Client configuration Example 22 shows a sample client configuration that you can use for the
security-level certificate-based authentication scenario (Figure 15 on
page 83).

2 The server then performs security layer authentication by
calling authenticate() on the Artix security service, passing
the client’s X.509 certificate as the argument.

3 The Artix security service authenticates the client’s X.509
certificate by checking it against a cached copy of the
certificate. The type of checking performed depends on the
particular third-party enterprise security service that is
plugged into the Artix security service.

4 If authentication is successful, the Artix security service returns
the user’s realms and roles.

5 The security layer controls access to the target’s IDL interfaces
by consulting an action-role mapping file to determine what
the user is allowed to do.

Stage Description

Example 22:Client Configuration for Security-Level Certificate-Based
Authentication

Artix Configuration File
corba_cert_auth
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 client_x509
 {
 84

X.509 Certificate-Based Authentication for CORBA Bindings
The preceding client configuration is a typical SSL/TLS configuration. The
only noteworthy feature is that the client must have an associated X.509
certificate. Hence, the principal_sponsor settings are initialized with the
location of an X.509 certificate (provided in the form of a PKCS#12 file).

For a discussion of these client SSL/TLS settings, see “Sample client
configuration” on page 64 and “Deploying Application Certificates” on
page 186.

Target configuration Example 23 shows a sample server configuration that you can use for the
security-level certificate-based authentication scenario (Figure 15 on
page 83).

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bob.p12",
"password=bobpass"];

 };
};

Example 22:Client Configuration for Security-Level Certificate-Based
Authentication

Example 23:Server Configuration for Security-Level Certificate-Based
Authentication

Artix Configuration File
corba_cert_auth
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];
85

CHAPTER 5 | Security for CORBA Bindings
 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 server
 {
 policies:csi:auth_over_transport:authentication_service

= "com.iona.corba.security.csi.AuthenticationService";

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";

1 principal_sponsor:auth_method_data =
["filename=CertDir\target_cert.p12",
"password=TargetCertPass"];

 binding:server_binding_list = ["CSI+GSP", "CSI",
"GSP"];

 initial_references:IS2Authorization:plugin =
"it_is2_authorization";

 plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugIn
";

2 plugins:is2_authorization:action_role_mapping =
"file:///PathToARMFile";

 auth_x509
 {

3
plugins:gsp:enable_security_service_cert_authentication =
"true";

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

Example 23:Server Configuration for Security-Level Certificate-Based
Authentication
 86

X.509 Certificate-Based Authentication for CORBA Bindings
The preceding server configuration can be explained as follows:

1. As is normal for an SSL/TLS server, you must provide the server with
its own certificate, target_cert.p12. The simplest way to do this is to
specify the location of a PKCS#12 file using the principal sponsor.

2. This configuration setting specifies the location of an action-role
mapping file, which controls access to the server’s interfaces and
operations. See “ACL File Format” on page 153 for more details.

3. The plugins:gsp:enable_security_service_cert_authentication
variable is the key to enabling security-level certificate-based
authentication. By setting this variable to true, you cause the server to
perform certificate authentication in the GSP security layer.

4. The IIOP/TLS target secure invocation policy must require
EstablishTrustInClient. Evidently, if the client does not provide a
certificate during the SSL/TLS handshake, there will be no certificate
available to perform the security layer authentication.

Related administration tasks When using X.509 certificate-based authentication for CORBA bindings, it is
necessary to add the appropriate user data to your enterprise security
system (which is integrated with the Artix security service through an iSF
adapter), as follows:

• File adapter (do not use in deployed systems)—see “Certificate-based
authentication for the file adapter” on page 147.

• LDAP adapter—see “Certificate-based authentication for the LDAP
adapter” on page 149.

4
policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

 };
 };
};

Example 23:Server Configuration for Security-Level Certificate-Based
Authentication
87

CHAPTER 5 | Security for CORBA Bindings
 88

CHAPTER 6

Single Sign-On
Single sign-on (SSO) is an Artix security framework feature
which is used to minimize the exposure of usernames and
passwords to snooping. After initially signing on, a client
communicates with other applications by passing an SSO
token in place of the original username and password.

In this chapter This chapter discusses the following topics:

Note: The SSO feature is unavailable in some editions of Artix. Please
check the conditions of your Artix license to see whether your installation
supports SSO.

SSO and the Login Service page 90

Username/Password-Based SSO for SOAP Bindings page 93

SSO Sample Configuration for SOAP Bindings page 99
89

CHAPTER 6 | Single Sign-On
SSO and the Login Service

Overview There are two different implementations of the login service, depending on
the type of bindings you use in your application:

• SOAP binding.

• CORBA Binding.

SOAP binding For SOAP bindings, SSO is implemented by the following elements of the
Artix security framework:

• Artix login service—a central service that authenticates
username/password combinations and returns SSO tokens. Clients
connect to this service using the HTTP/S protocol.

• login_client plug-in—the login_client plug-in, which is loaded by
SOAP clients, is responsible for contacting the Artix login service to
obtain an SSO token.

• artix_security plug-in—on the server side, the artix_security plug-in
is responsible for parsing the received SSO credentials and
authenticating the SSO token with the Artix security service.

CORBA Binding For CORBA bindings, SSO is implemented by the following elements of the
Artix security framework:

• CORBA login service—a central service that authenticates
username/password combinations and generates SSO tokens. Clients
connect to this service using the IIOP/TLS protocol.

• GSP plug-in—the generic security plug-in is responsible for the
following:

♦ On the client side—contacts the CORBA login service to obtain an
SSO token.

♦ On the server side—sends a received SSO token to be
authenticated by the Artix security service.
 90

SSO and the Login Service
Advantages of SSO SSO greatly increases the security of an Artix security framework system,
offering the following advantages:

• Password visibility is restricted to the login service.

• Clients use SSO tokens to communicate with servers.

• Clients can be configured to use SSO with no code changes.

• SSO tokens are configured to expire after a specified length of time.

• When an SSO token expires, the Artix client automatically requests a
new token from the login service. No additional user code is required.

Login service Figure 16 shows an overview of a login service. The client Bus automatically
requests an SSO token by sending a username and a password to the login
service. If the username and password are successfully authenticated, the
login service returns an SSO token.

SSO token The SSO token is a compact key that the Artix security service uses to
access a user’s session details, which are stored in a cache.

Figure 16: Client Requesting an SSO Token from the Login Service

Client

User login

login(<username>,<password>)

<token>

Artix
Security
Service

Login
Service
91

CHAPTER 6 | Single Sign-On
SSO token expiry The Artix security service is configured to impose the following kinds of
timeout on an SSO token:

• SSO session timeout—this timeout places an absolute limit on the
lifetime of an SSO token. When the timeout is exceeded, the token
expires.

• SSO session idle timeout—this timeout places a limit on the amount
of time that elapses between authentication requests involving the SSO
token. If the central Artix security service receives no authentication
requests in this time, the token expires.

For more details, see “Configuring Single Sign-On Properties” on page 133.

Automatic token refresh In theory, the expiry of SSO tokens could prove a nuisance to client
applications, because servers will raise a security exception whenever an
SSO token expires. In practice, however, when SSO is enabled, the relevant
plug-in (login_service for SOAP and gsp for CORBA) catches the exception
on the client side and contacts the login service again to refresh the SSO
token automatically. The plug-in then automatically retries the failed
operation invocation.
 92

Username/Password-Based SSO for SOAP Bindings
Username/Password-Based SSO for SOAP
Bindings

Overview When using SOAP bindings, usernames and passwords can be transmitted
using one of the following mechanisms:

• WSSE UsernameToken.

• HTTP Basic Authentication.

• CORBA Principal (username only).

This section describes how to configure a client so that it transmits an SSO
token in place of a username and a password.

Username/password
authentication without SSO

Figure 17 gives an overview of ordinary username/password-based
authentication without SSO. In this case, the username, <username>, and
password, <password>, are passed directly to the target server, which then
contacts the Artix security service to authenticate the username/password
combination.

Figure 17: Overview of Username/Password Authentication without SSO

Artix Security
Service

TargetClient

User login

Retrieve user's
realms and roles

Authenticate username
and password

username = <username>
password = <password>
93

CHAPTER 6 | Single Sign-On
Username/password
authentication with SSO

Figure 18 gives an overview of username/password-based authentication
when SSO is enabled.

Prior to contacting the target server for the first time, the client Bus sends
the username, <username>, and password, <password>, to the login server,
getting an SSO token, <token>, in return. The client Bus then includes a
IONA-proprietary SOAP header (extension of WSSE BinarySecurityToken) in
the next request to the target server. The target server’s Bus contacts the
Artix security service to validate the SSO token passed in the WSSE
BinarySecurityToken.

Client configuration Example 24 shows a typical domain configuration for an SSO SOAP client
that employs username/password authentication.

Figure 18: Overview of Username/Password Authentication with SSO

Artix
Security
Service

TargetClient

User login

Retrieve user's
realms and roles

WSSE BinarySecurityToken

Login
Service

login(<username>,<password>)

<token>

Example 24:SOAP Client Configuration for Username/Password-Based
SSO

artix.cfg Domain Configuration
...

1 plugins:login_client:wsdl_url="../../wsdl/login_service.wsdl";
plugins:login_client:shlib_name = "it_login_client";
...
sso_soap_client {

2 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop", "soap", "http", "login_client"];
 94

Username/Password-Based SSO for SOAP Bindings
The preceding Artix configuration can be described as follows:

1. The plugins:login_client:wsdl_url variable specifies the location of
the Artix login service WSDL contract. You must edit this setting, if you
store this contract at a different location.

2. The orb_plugins list must include the login_client plug-in.

3. The Artix client request interceptor list must include the login_client
interceptor.

Target configuration Example 25 shows a typical domain configuration for an SSO SOAP target
server that accepts connections from clients that authenticate themselves
using username/password authentication.

3 binding:artix:client_request_interceptor_list=
"login_client";

 ...
};

Example 24:SOAP Client Configuration for Username/Password-Based
SSO

Example 25:SOAP Target Configuration for Username/Password-Based
SSO

artix.cfg Domain Configuration
...
sso_soap_target {
 plugins:artix_security:shlib_name = "it_security_plugin";

1 binding:artix:server_request_interceptor_list= "security";
 binding:client_binding_list = ["OTS+POA_Coloc", "POA_Coloc",

"OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
2 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop_tls", "soap", "http", "artix_security"];

3 policies:asp:enable_sso = "true";
4 policies:asp:enable_authorization = "true";

 plugins:asp:authentication_cache_size = "5";
 plugins:asp:authentication_cache_timeout = "10";
 plugins:is2_authorization:action_role_mapping =

"file://C:\artix_20/artix/2.0/demos/security/single_signon/et
c/helloworld_action_role_mapping.xml";

5 plugins:asp:security_level = "REQUEST_LEVEL";
};
95

CHAPTER 6 | Single Sign-On
The preceding Artix configuration can be described as follows:

1. The security interceptor must appear in the Artix server interceptor
list to enable the artix_security plug-in functionality.

2. The orb_plugins list must include the artix_security plug-in.

3. The policies:asp:enable_sso variable must be set to true to enable
SSO on the target server.

4. You can enable SSO with or without authentication. In this example,
the authentication feature is enabled.

5. The security level is set to REQUEST_LEVEL, implying that the username
and password are extracted from the SOAP header.

Artix login service configuration Example 26 shows the domain configuration for a standalone Artix login
service. The clients of this login service authenticate themselves to the login
service using WSSE UsernameToken credentials.

The preceding Artix configuration can be described as follows:

1. The security interceptor must appear in the Artix server interceptor
list to enable the artix_security plug-in functionality.

2. The orb_plugins list must include the artix_security plug-in and the
login_service plug-in.

Example 26:Artix Login Service Domain Configuration

artix.cfg Domain Configuration
...
sso_login_service {
 plugins:artix_security:shlib_name = "it_security_plugin";

1 binding:artix:server_request_interceptor_list= "security";
 binding:client_binding_list = ["OTS+POA_Coloc", "POA_Coloc",

"OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
2 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop_tls", "soap", "http", "artix_security",
"login_service"];

3 plugins:login_service:wsdl_url="../../wsdl/login_service.wsdl";
 plugins:login_service:shlib_name = "it_login_service";

4 plugins:asp:security_level = "REQUEST_LEVEL";
};
 96

Username/Password-Based SSO for SOAP Bindings
3. The plugins:login_service:wsdl_url variable specifies the location
of the Artix login service WSDL contract. You must edit this setting, if
you store this contract at a different location.

4. The security type setting selected here (REQUEST_LEVEL) implies that
the login service reads the WSSE UsernameToken and PasswordToken
credentials from the incoming client request messages.

You can change these settings to use different client credentials (for
example, MESSAGE_LEVEL for HTTP Basic Authentication), but you must
be careful to ensure that this matches the kind of credentials sent by
the client.

Login service WSDL configuration Example 27 shows an extract from the login service WSDL contract (in the
directory, artix/Version/demos/security/single_signon/wsdl) showing
details of the WSDL port settings.

Note the following points about the WSDL port settings:

• The login service listens on a fixed host and port,
http://localhost:4975. You will probably need to edit this setting
before deploying the login service in a real system.

Example 27:Extract from the Login Service WSDL Configuration

Login Service WSDL Contract
<definitions ... >
 ...
 <service name="LoginService">
 <port binding="tns:LoginServiceBinding"
 name="LoginServicePort">
 <soap:address
 location="http://localhost:49675"/>
 <bus-security:security
 enableSSO="false"
 enableAuthorization="false"
 authenticationCacheSize="1"
 authenticationCacheTimeout="1" />
 </port>
 </service>
</definitions>
97

CHAPTER 6 | Single Sign-On
However, you should not choose dynamic IP port allocation (for
example, using http://localhost:0), because the clients would not
be able to discover the value of the dynamically allocated port.

• You should not change the values of the attributes in the
<bus-security:security> tag. The values shown in Example 27 are
essential for the correct functioning of the Artix login service.

Related administration tasks For details of how to configure SSO token timeouts, see “Configuring Single
Sign-On Properties” on page 133.

WARNING: Example 27 shows a login service configuration with insecure
communications (HTTP). It is strongly recommended that you modify this
configuration to use TLS security (HTTPS).
 98

SSO Sample Configuration for SOAP Bindings
SSO Sample Configuration for SOAP Bindings

Overview This section provides SSO sample configurations for the SOAP binding
including configurations for a client, a server, and a standalone Artix login
service.

Client SSO configuration The secure_artix.single_signon.client configuration scope from
Example 28 can be used to configure a SOAP SSO client. This client
configuration has the following characteristics:

• The SSO client loads the login_client plug-in, which is responsible
for contacting the HTTP login server to obtain an SSO token.

• The client’s SOAP and HTTP security settings are stored separately in
the client’s copy of the WSDL contract.

Server SSO configuration The secure_artix.single_signon.server configuration scope from
Example 28 can be used to configure a SOAP SSO server. This server
configuration has the following characteristics:

• The SSO server loads the artix_security plug-in, which provides the
implementation of SSO on the server side.

• You can enable authorization while using SSO credentials (set
policies:asp:enable_authorization to true).

Artix login service configuration The secure_artix.single_signon.sso_service configuration scope from
Example 28 gives an example of a standalone Artix login service.

WARNING: It is strongly recommended that you configure the client’s
WSDL contract to use TLS security (HTTPS).

WARNING: It is strongly recommended that you configure the server’s
WSDL contract to use TLS security (HTTPS).

WARNING: It is strongly recommended that you configure the login
server’s WSDL contract to use TLS security (HTTPS).
99

CHAPTER 6 | Single Sign-On
SSO configuration example Example 28 shows sample configurations for a SOAP SSO client and a
SOAP SSO server.

Example 28:SOAP SSO Client and Server Configuration Examples

secure_artix {
 ...
 single_signon
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:iiops:1.2@localhost:55349,it_iiops:1.2@localhost:55
349/IT_SecurityService";

 security_service
 {
 ...
 };

 client
 {
 plugins:login_client:wsdl_url="../../wsdl/login_service.wsdl";
 plugins:login_client:shlib_name = "it_login_client";
 binding:artix:client_request_interceptor_list=

"login_client";
 orb_plugins = ["xmlfile_log_stream", "soap", "http",

"login_client"];
 };

 server
 {
 plugins:artix_security:shlib_name =

"it_security_plugin";
 binding:artix:server_request_interceptor_list=

"security";
 binding:client_binding_list = ["OTS+POA_Coloc",

"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
 orb_plugins = ["xmlfile_log_stream", "iiop_profile",

"giop", "iiop_tls", "soap", "http", "artix_security"];

 policies:asp:enable_sso = "true";
 policies:asp:enable_authorization = "true";
 plugins:asp:authentication_cache_size = "5";
 plugins:asp:authentication_cache_timeout = "10";
 plugins:is2_authorization:action_role_mapping =

"file://C:\artix_20/artix/2.0/demos/security/single_signon/et
c/helloworld_action_role_mapping.xml";
 100

SSO Sample Configuration for SOAP Bindings
 plugins:asp:security_level = "REQUEST_LEVEL";
 };

 sso_service
 {
 plugins:artix_security:shlib_name =

"it_security_plugin";
 binding:artix:server_request_interceptor_list=

"security";
 binding:client_binding_list = ["OTS+POA_Coloc",

"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
 orb_plugins = ["xmlfile_log_stream", "iiop_profile",

"giop", "iiop_tls", "soap", "http", "artix_security",
"login_service"];

 plugins:login_service:wsdl_url="../../wsdl/login_service.wsdl";
 plugins:login_service:shlib_name = "it_login_service";
 plugins:asp:security_level = "REQUEST_LEVEL";
 };
 };
 ...
};

Example 28:SOAP SSO Client and Server Configuration Examples
101

CHAPTER 6 | Single Sign-On
 102

CHAPTER 7

Configuring the
Artix Security
Service
This chapter describes how to configure the properties of the
Artix security service and, in particular, how to configure a
variety of adapters that can integrate the Artix security service
with third-party enterprise security back-ends (for example,
LDAP and SiteMinder).

In this chapter This chapter discusses the following topics:

Configuring the File Adapter page 104

Configuring the LDAP Adapter page 106

Configuring the SiteMinder Adapter page 112

Configuring the Kerberos Adapter page 114

Clustering and Federation page 118

Additional Security Configuration page 132
103

CHAPTER 7 | Configuring the Artix Security Service
Configuring the File Adapter

Overview The iSF file adapter enables you to store information about users, roles, and
realms in a flat file, a security information file. The file adapter is easy to
set up and configure, but is appropriate for demonstration purposes only.
This section describes how to set up and configure the iSF file adapter.

File locations The following files configure the iSF file adapter:

• is2.properties file—the default location of the iS2 properties file is as
follows:

See “iSF Properties File” on page 365 for details of how to customize
the default iS2 properties file location.

• Security information file—this file’s location is specified by the
com.iona.isp.adapter.file.param.filename property in the
is2.properties file.

File adapter properties Example 29 shows the properties to set for a file adapter.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

ArtixInstallDir/artix/2.0/bin/is2.properties

Example 29:Sample File Adapter Properties

1 com.iona.isp.adapters=file

##
##
Demo File Adapter Properties
##
##

2 com.iona.isp.adapter.file.class=com.iona.security.is2adapter.fil
e.FileAuthAdapter
 104

Configuring the File Adapter
The necessary properties for a file adapter are described as follows:

1. Set com.iona.isp.adapters=file to instruct the Artix security service
to load the file adapter.

2. The com.iona.isp.adapter.file.class property specifies the class
that implements the iSF file adapter.

3. The com.iona.isp.adapter.file.param.filename property specifies
the location of the security information file, which contains information
about users and roles.

4. (Optionally) You might also want to edit the general Artix security
service properties.

See “Additional Security Configuration” on page 132 for details.

3 com.iona.isp.adapter.file.param.filename=ArtixInstallDir/artix/2
.0/bin/is2_user_password_role_file.txt

##
General Artix security service Properties
##

4 # ... Generic properties not shown here ...

Example 29:Sample File Adapter Properties
105

CHAPTER 7 | Configuring the Artix Security Service
Configuring the LDAP Adapter

Overview The IONA security platform integrates with the Lightweight Directory Access
Protocol (LDAP) enterprise security infrastructure by using an LDAP adapter.
The LDAP adapter is configured in an is2.properties file. This section
discusses the following topics:

• Prerequisites

• File location.

• Minimal LDAP configuration.

• Basic LDAP properties.

• LDAP.param properties.

• LDAP server replicas.

• Logging on to an LDAP server.

Prerequisites Before configuring the LDAP adapter, you must have an LDAP security
system installed and running on your system. LDAP is not a standard part of
Artix, but you can use the Artix security service’s LDAP adapter with any
LDAP v.3 compatible system.

File location The following file configures the LDAP adapter:

• is2.properties file—the default location of the iS2 properties file is as
follows:

See “iSF Properties File” on page 365 for details of how to customize
the default iS2 properties file location.

ArtixInstallDir/artix/2.0/is2.properties
 106

Configuring the LDAP Adapter
Minimal LDAP configuration Example 30 shows the minimum set of iS2 properties that can be used to
configure an LDAP adapter.

The necessary properties for an LDAP adapter are described as follows:

1. Set com.iona.isp.adapters=LDAP to instruct the IONA Security
Platform to load the LDAP adapter.

2. The com.iona.isp.adapter.file.class property specifies the class
that implements the LDAP adapter.

Example 30:A Sample LDAP Adapter Configuration File

1 com.iona.isp.adapters=LDAP
##

LDAP Adapter Properties
##
##

2 com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.lda
p.LdapAdapter

3 com.iona.isp.adapter.LDAP.param.host.1=10.81.1.400
com.iona.isp.adapter.LDAP.param.port.1=389

4 com.iona.isp.adapter.LDAP.param.UserNameAttr=uid
com.iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona,dc=com
com.iona.isp.adapter.LDAP.param.UserObjectClass=organizationalPe

rson
com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB

5 com.iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn
com.iona.isp.adapter.LDAP.param.RoleNameAttr=cn

6 com.iona.isp.adapter.LDAP.param.GroupNameAttr=cn
com.iona.isp.adapter.LDAP.param.GroupObjectClass=groupofuniquena

mes
com.iona.isp.adapter.LDAP.param.GroupSearchScope=SUB
com.iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona,dc=com
com.iona.isp.adapter.LDAP.param.MemberDNAttr=uniqueMember

7 com.iona.isp.adapter.LDAP.param.version=3
107

CHAPTER 7 | Configuring the Artix Security Service
3. For each LDAP server replica, you must specify the host and port
where the LDAP server can be contacted. In this example, the host and
port parameters for the primary LDAP server, host.1 and port.1, are
specified.

4. These properties specify how the LDAP adapter finds a user name
within the LDAP directory schema. The properties are interpreted as
follows:

See “iSF Properties File” on page 365 for more details.

5. The following properties specify how the adapter extracts a user’s role
from the LDAP directory schema:

6. These properties specify how the LDAP adapter finds a group name
within the LDAP directory schema. The properties are interpreted as
follows:

UserNameAttr The attribute type whose corresponding value
uniquely identifies the user.

UserBaseDN The base DN of the tree in the LDAP directory
that stores user object class instances.

UserObjectClass The attribute type for the object class that
stores users.

UserSearchScope The user search scope specifies the search
depth relative to the user base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

UserRoleDNAttr The attribute type that stores a user’s role DN.

RoleNameAttr The attribute type that the LDAP server uses
to store the role name.

GroupNameAttr The attribute type whose corresponding
attribute value gives the name of the user
group.

GroupBaseDN The base DN of the tree in the LDAP directory
that stores user groups.

GroupObjectClass The object class that applies to user group
entries in the LDAP directory structure.
 108

Configuring the LDAP Adapter
See “iSF Properties File” on page 365 for more details.

7. The LDAP version number can be either 2 or 3, corresponding to
LDAP v.2 or LDAP v.3 respectively.

Basic LDAP properties The following properties must always be set as part of the LDAP adapter
configuration:

In addition to these basic properties, you must also set a number of LDAP
parameters, which are prefixed by com.iona.isp.adapter.LDAP.param.

GroupSearchScope The group search scope specifies the search
depth relative to the group base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

MemberDNAttr The attribute type that is used to retrieve
LDAP group members.

com.iona.isp.adapters=LDAP
com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.lda

p.LdapAdapter
109

CHAPTER 7 | Configuring the Artix Security Service
LDAP.param properties Table 1 shows all of the LDAP adapter properties from the
com.iona.isp.adapter.LDAP.param scope. Required properties are shown
in bold:

LDAP server replicas The LDAP adapter is capable of failing over to one or more backup replicas
of the LDAP server. Hence, properties such as host.<Index> and
port.<Index> include a replica index as part of the parameter name.

For example, host.1 and port.1 refer to the host and port of the primary
LDAP server, while host.2 and port.2 would refer to the host and port of an
LDAP backup server.

Table 1: LDAP Properties in the com.iona.isp.adapter.LDAP.param
Scope

LDAP Server Properties LDAP User/Role Configuration
Properties

host.<Index>
port.<Index>
SSLEnabled.<Index>
SSLCACertDir.<Index>
SSLClientCertFile.<Index>
SSLClientCertPassword.<Index>
PrincipalUserDN.<Index>
PrincipalUserPassword.<Index>

UserNameAttr
UserBaseDN
UserObjectClass
UserSearchScope
UserSearchFilter
UserRoleDNAttr
RoleNameAttr
UserCertAttrName

LDAP Group/Member
Configuration Properties

Other LDAP Properties

GroupNameAttr
GroupObjectClass
GroupSearchScope
GroupBaseDN
MemberDNAttr
MemberFilter

MaxConnectionPoolSize
version
UseGroupAsRole
RetrieveAuthInfo
CacheSize
CacheTimeToLive
 110

Configuring the LDAP Adapter
Logging on to an LDAP server The following properties can be used to configure login parameters for the
<Index> LDAP server replica:

PrincipalUserDN.<Index>
PrincipalUserPassword.<Index>

The properties need only be set if the LDAP server is configured to require
username/password authentication.

Secure connection to an LDAP
server

The following properties can be used to configure SSL/TLS security for the
connection between the Artix security service and the <Index> LDAP server
replica:

SSLEnabled.<Index>
SSLCACertDir.<Index>
SSLClientCertFile.<Index>
SSLClientCertPassword.<Index>

The properties need only be set if the LDAP server requires SSL/TLS mutual
authentication.

iS2 properties reference For more details about the Artix security service properties, see “iSF
Properties File” on page 365.
111

CHAPTER 7 | Configuring the Artix Security Service
Configuring the SiteMinder Adapter

Overview The SiteMinder adapter enables you to integrate the Artix security service
with SiteMinder, which is an enterprise security product from Netegrity. By
configuring the SiteMinder adapter, you ensure that any authentication
requests within the Artix Security Framework are delegated to SiteMinder.
This section describes how to set up and configure the SiteMinder adapter.

Prerequisites Ensure that the SiteMinder product is installed and configured on your
system. SiteMinder is not a standard part of Artix, but is available from
Netegrity at http://www.netegrity.com.

File location The following file configures the SiteMinder adapter:

• is2.properties file—the default location of the iS2 properties file is as
follows:

See “iSF Properties File” on page 365 for details of how to customize
the default iS2 properties file location.

SiteMinder adapter properties Example 31 shows the properties to set for the SiteMinder adapter.

ArtixInstallDir/artix/2.0/bin/is2.properties

Example 31:SiteMinder Adapter Properties

1 com.iona.isp.adapters=SiteMinder
##
##
SiteMinder Adapter Properties
##
##

2 com.iona.isp.adapter.SiteMinder.class=com.iona.security.is2adapt
er.smadapter.SiteMinderAgent

3 com.iona.isp.adapter.SiteMinder.param.ServerAddress=localhost
com.iona.isp.adapter.SiteMinder.param.ServerAuthnPort=400
com.iona.isp.adapter.SiteMinder.param.AgentSecret=secret
com.iona.isp.adapter.SiteMinder.param.AgentName=web
 112

http://www.netegrity.com

Configuring the SiteMinder Adapter
The necessary properties for a SiteMinder adapter are described as follows:

1. Set com.iona.isp.adapters=SiteMinder to instruct the Artix security
service to load the SiteMinder adapter.

2. The com.iona.isp.adapter.SiteMinder.class property specifies the
class that implements the SiteMinder adapter.

3. A SiteMinder adapter requires the following parameters:

4. (Optionally) You might also want to edit the general Artix security
service properties.

See “Additional Security Configuration” on page 132 for details.

##
General Artix security service Properties
##

4 # ... Generic properties not shown here ...

Example 31:SiteMinder Adapter Properties

ServerAddress Host address where SiteMinder is running.

ServerAuthnPort SiteMinder’s IP port number.

AgentName SiteMinder agent's name.

AgentSecret SiteMinder agent's password.
113

CHAPTER 7 | Configuring the Artix Security Service
Configuring the Kerberos Adapter

Overview The Kerberos adapter enables you to use the Kerberos Authentication
Service. By configuring the Kerberos adapter, you ensure that any
authentication requests within the Artix Security Framework are delegated to
Kerberos. This section describes how to set up and configure the Kerberos
adapter.

File location The following file configures the Kerberos adapter:

• is2.properties file—the default location of the iS2 properties file is as
follows:

See “iSF Properties File” on page 365 for details of how to customize the
default iS2 properties file location.

Kerberos adapter properties Example 32 shows the properties to set for the Kerberos adapter.

ArtixInstallDir/artix/2.0/bin/is2.properties

Example 32:Kerberos Adapter Properties

1 com.iona.isp.adapters=kbr5
##
##
Kerberos Adapter Properties
##
##

2 com.iona.isp.adapter.kbr5.class=com.iona.security.is2adapter.kbr
5.IS2KerberosAdapter

3 com.iona.isp.adapter.krb5.param.java.security.krb5.realm=MYREALM
.COMPANY.COM

com.iona.isp.adapter.krb5.param.java.security.krb5.kdc=10.65.3.7
4

com.iona.isp.adapter.krb5.param.java.security.auth.login.config=
jaas.conf

com.iona.isp.adapter.krb5.param.javax.security.auth.useSubjectCr
edsOnly=false
 114

Configuring the Kerberos Adapter
The necessary properties for a Kerberos adapter are described as follows:

1. Set com.iona.isp.adapters=kbr5 to instruct the Artix security service
to load the Kerberos adapter.

2. The com.iona.isp.adapter.kbr5.class property specifies the class
that implements the Kerberos adapter.

3. A Kerberos adapter requires the following parameters:

4. (Optionally) You might also want to edit the general Artix security
service properties.

See “Additional Security Configuration” on page 132 for details.

Retrieving the user’s group
information

Once the Kerberos token has been authenticated, the Kerberos adapter can
be configured to retrieve the user’s group information and save it for future
authorization purposes.

Example 33 shows a sample configuration for the Kerberos adapter that
retrieve the user’s group information.

##
General Artix security service Properties
##

4 # ... Generic properties not shown here ...

Example 32:Kerberos Adapter Properties

java.security.kbr5.realm The Kerberos Realm Name.

java.security.kbr5kdc The server name or IP address
of the Kerberos KDC server.

java.security.auth.login.config The configuration file for the
JAAS Login Module.

javax.security.auth.useSubjectCredsOnlyA required JAAS Login Module
property. Always set to false.

Example 33:Kerberos Configuration to Retrieve User Group Information

1 com.iona.isp.adapter.krb5.param.RetrieveAuthInfo=true
115

CHAPTER 7 | Configuring the Artix Security Service
The properties to configure the Kerberos adapter to retrieve a user’s group
information are explained as follows:

1. RetrieveAuthInfo=true activates this feature.

2. Set the connection information needed to open an LDAP connection to
the Active Directory Server.

3. Tell the adapter how to construct a filter to search the Active Directory
Server.

2 com.iona.isp.adapter.krb5.param.host.1=$ACTIVE_DIRECTORY_SERVER_
NAME$

com.iona.isp.adapter.krb5.param.port.1=389
com.iona.isp.adapter.krb5.param.SSLEnabled.1=no
com.iona.isp.adapter.krb5.param.SSLCACertDir.1=d:/certs/test
com.iona.isp.adapter.krb5.param.SSLClientCertFile.1=d:/certs/ver

isign.p12
com.iona.isp.adapter.krb5.param.SSLClientCertPassword.1=netfish
com.iona.isp.adapter.krb5.param.PrincipalUserDN.1=cn=administrat

or,cn=users,dc=boston,dc=amer,dc=iona,dc=com
com.iona.isp.adapter.krb5.param.PrincipalUserPassword.1=orbix
com.iona.isp.adapter.krb5.param.ConnectTimeout.1=15

3 com.iona.isp.adapter.krb5.param.UserNameAttr=CN
com.iona.isp.adapter.krb5.param.UserBaseDN=dc=boston,dc=amer,dc=

iona,dc=com
com.iona.isp.adapter.krb5.param.version=3
com.iona.isp.adapter.krb5.param.UserObjectClass=Person
com.iona.isp.adapter.krb5.param.GroupObjectClass=group
com.iona.isp.adapter.krb5.param.GroupSearchScope=SUB
com.iona.isp.adapter.krb5.param.GroupBaseDN=dc=boston,dc=amer,dc

=iona,dc=com
com.iona.isp.adapter.krb5.param.GroupNameAttr=CN
com.iona.isp.adapter.krb5.param.MemberDNAttr=memberOf
com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize=1
com.iona.isp.adapter.krb5.param.MinConnectionPoolSize=1

Example 33:Kerberos Configuration to Retrieve User Group Information

Note: If SSL needs to be enabled set
com.iona.isp.adapter.krb5.param.SSLEnabled.1=yes.
 116

Configuring the Kerberos Adapter
Kerberos logging support You can set two additional properties to check whether a valid Kerberos
KDC is running when the Artix security service starts up. Example 34 shows
how to configure the relevant properties:

The DummyPrincipal is a principal that is used for connecting to the KDC
server to check whether it is running. If the KDC server is not running, the
Artix security service writes a warning to its log.

Example 34:Configuration to Enable Kerberos Logging Support

is2.properties File
check.kdc.running=true
check.kdc.principal=DummyPrincipal
117

CHAPTER 7 | Configuring the Artix Security Service
Clustering and Federation

Overview Clustering and federation are two distinct, but related, features of the Artix
security service. Briefly, these features can be described as follows:

• Clustering—involves running several instances of the Artix security
service to provide what is effectively a single service. By running
multiple security service instances as a cluster, Artix enables you to
support fault tolerance features. Typically, in this case all of the
security services in a cluster are integrated with a single authentication
database back-end.

• Federation—enables SSO tokens to be recognized across multiple
security domains. Each security domain is served by a distinct security
service instance and each security service is integrated with a different
database back-end.

In this section This section contains the following subsections:

Federating the Artix Security Service page 119

Failover and Replication page 124

Client Load Balancing page 130
 118

Clustering and Federation
Federating the Artix Security Service

Overview Federation is meant to be used in deployment scenarios where there is more
than one instance of an Artix security service. By configuring the Artix
security service instances as a federation, the security services can talk to
each other and access each other’s session caches. Federation frequently
becomes necessary when single sign-on (SSO) is used, because an SSO
token can be verified only by the security service instance that originally
generated it.

Federation is not clustering Federation is not the same thing as clustering. In a federated system, user
data is not replicated across different security service instances and there
are no fault tolerance features provided.

Example federation scenario Consider a simple federation scenario consisting of two security domains,
each with their own Artix security service instances, as follows:

• LDAP security domain—consists of an Artix security service (with
is2.current.server.id property equal to 1) configured to store user
data in an LDAP database. The domain includes any Artix applications
that use this Artix security service (ID=1) to verify credentials.

In this domain, a login server is deployed which enables clients to use
single sign-on.

• Kerberos security domain—consists of an Artix security service (with
is2.current.server.id property equal to 2) configured to store user
data in a Kerberos database. The domain includes any Artix
applications that use this Artix security service (ID=2) to verify
credentials.

The two Artix security service instances are federated, using the
configuration described later in this section. With federation enabled, it is
possible for single sign-on clients to make invocations that cross security
domain boundaries.
119

CHAPTER 7 | Configuring the Artix Security Service
Federation scenario Figure 19 shows a typical scenario that illustrates how iSF federation might
be used in the context of an Artix system.

Figure 19: An iSF Federation Scenario

Security Service

Client

5

1

Login
Service

u/p/d

u/p/d

t

t

t

3

Authenticate
SSO token

4

User data store

Target A Target B

LDAP

2

Security Service

User data store

Kerberos

7

Authenticate
SSO token

6

LDAP Security Domain
Kerberos Security

Domain

ID=1 ID=2
 120

Clustering and Federation
Federation scenario steps The federation scenario in Figure 19 on page 120 can be described as
follows:

Stage Description

1 With single sign-on (SSO) enabled, the client calls out to the
login service, passing in the client’s GSSUP credentials, u/p/d,
in order to obtain an SSO token, t.

2 The login service delegates authentication to the Artix security
server (ID=1), which retrieves the user’s account data from the
LDAP backend.

3 The client invokes an operation on the Target A, belonging to
the LDAP security domain. The SSO token, t, is included in the
message.

4 Target A passes the SSO token to the Artix security server
(ID=1) to be authenticated. If authentication is successful, the
operation is allowed to proceed.

5 Subsequently, the client invokes an operation on the Target B,
belonging to the Kerberos security domain. The SSO token, t,
obtained in step 1 is included in the message.

6 Target B passes the SSO token to the second Artix security
server (ID=2) to be authenticated.

7 The second Artix security server examines the SSO token.
Because the SSO token is tagged with the first Artix security
server’s ID (ID=1), verification of the token is delegated to the
first Artix security server. The second Artix security server opens
an IIOP/TLS connection to the first Artix security service to
verify the token.
121

CHAPTER 7 | Configuring the Artix Security Service
Configuring the is2.properties files Each instance of the Artix security service should have its own
is2.properties file. Within each is2.properties file, you should set the
following:

• is2.current.server.id—a unique ID for this Artix security service
instance,

• is2.cluster.properties.filename—a shared cluster file.

• is2.sso.remote.token.cached—a boolean property enables caching
of remote token credentials in a federated system.

With caching enabled, the call from one federated security service to
another (step 7 of Figure 19 on page 120) is only necessary to
authenticate a token for the first time. For subsequent authentications,
the security service (with ID=2) can obtain the token’s security data
from its own token cache.

For example, the first Artix security server instance from Figure 19 on
page 120 could be configured as follows:

And the second Artix security server instance from Figure 19 on page 120
could be configured as follows:

iS2 Properties File, for Server ID=1
...
###
iSF federation related properties
###
is2.current.server.id=1
is2.cluster.properties.filename=C:/is2_config/cluster.properties
is2.sso.remote.token.cached=true
...

iS2 Properties File, for Server ID=2
...
###
iSF federation related properties
###
is2.current.server.id=2
is2.cluster.properties.filename=C:/is2_config/cluster.properties
is2.sso.remote.token.cached=true
...
 122

Clustering and Federation
Configuring the cluster properties
file

All the Artix security server instances within a federation should share a
cluster properties file. For example, the following extract from the
cluster.properties file shows how to configure the pair of embedded Artix
security servers shown in Figure 19 on page 120.

This assumes that the first security service (ID=1) runs on host
security_ldap1 and IP port 5001; the second security service (ID=2) runs
on host security_ldap2 and IP port 5002. To discover the appropriate host
and port settings for the security services, check the
plugins:security:iiop_tls settings in the relevant configuration scope in
the relevant Artix configuration file for each federated security service.

The securityInstanceURL.ServerID variable advertises the location of a
security service in the cluster. Normally, the most convenient way to set
these values is to use the corbaloc URL format.

Advertise the locations of the security services in the cluster.
com.iona.security.common.securityInstanceURL.1=corbaloc:it_iiops:1.2@security_ldap1:5001/IT_Secu

rityService
com.iona.security.common.securityInstanceURL.2=corbaloc:it_iiops:1.2@security_ldap2:5002/IT_Secu

rityService
123

CHAPTER 7 | Configuring the Artix Security Service
Failover and Replication

Overview To support high availability of the Artix security service, Artix implements
the following features:

• Failover—the security service is contacted using an IOR that contains
the address of every security service in a cluster. Hence, if one of the
services in the cluster crashes, or otherwise becomes unavailable, an
application can automatically try one of the alternative addresses listed
in the IOR.

• Replication—the data cache associated with single sign-on (SSO)
sessions can be replicated to other security services in the cluster. This
ensures that SSO session data is not lost if one member of the cluster
should become unavailable.

This subsection describes how to configure failover.
 124

Clustering and Federation
Failover scenario Example 20 shows a scenario for a highly available Artix security service
that consists of a cluster of three security services. The security and login
services run on separate hosts, security01, security02, and security03
respectively, and all of the services rely on the same third-party LDAP
database to store their user data.

In this scenario, it is assumed that both the client and the target application
are configured to perform random load balancing over the security services
in the cluster (see “Client Load Balancing” on page 130 for details). Each of
the security services in the cluster are configured for failover.

Figure 20: Failover Scenario for a Cluster of Three Security Services

Client

u/p/d

2

Authenticate
credentials

Target A
1

Security Service
Cluster

security01:5001 security02:5002 security03:5003IOR:

Initial Reference for Security Service

security02 Host

Security Service
ID=2

security01 Host

Security Service
ID=1

security03 Host

Security Service
ID=3

u/p/d
125

CHAPTER 7 | Configuring the Artix Security Service
Failover scenario steps The interaction of the client and target with the security service cluster
shown in Example 20 on page 125 can be described as follows:

Configuring the is2.properties file Each instance of the Artix security service should have its own
is2.properties file. Within each is2.properties file, you should set the
following:

• is2.current.server.id—a unique ID for this Artix security service
instance,

• is2.cluster.properties.filename—a shared cluster file.

For example, the first Artix security server instance from Figure 20 on
page 125 could be configured as follows:

The second and third Artix security services from Figure 20 on page 125
should be configured similarly, except that the is2.current.server.id
property should be set to 2 and 3 respectively.

Stage Description

1 The client invokes an operation on the target, sending the
username, password and domain (u/p/d) credentials supplied
by the user.

2 The target server checks the u/p/d credentials received from the
client by sending an invocation to the security service cluster. If
the target server already has an existing connection with a
service in the cluster, it re-uses that connection. Otherwise, the
target randomly picks an address from the list of addresses in
the IT_SecurityService IOR.

iS2 Properties File, for Server ID=1
...
###
iSF federation related properties
###
is2.current.server.id=1
is2.cluster.properties.filename=C:/is2_config/cluster.properties
...
 126

Clustering and Federation
Configuring the cluster properties
file

For the three-service cluster shown in Figure 20 on page 125, you could
configure the cluster.properties file as follows:

This file defines the following settings:

• securityInstanceURL.ServerID—advertises the location of a security
service in the cluster. Normally, the most convenient way to set these
values is to use the corbaloc URL format.

Artix configuration for the first
security service

Example 35 shows the details of the Artix configuration for the first Artix
security service in the cluster. To configure this security service to support
failover, you must ensure that the security service’s IOR contains a list
addresses for all of the services in the cluster.

Advertise the locations of the security services in the cluster.
com.iona.security.common.securityInstanceURL.1=corbaloc:it_iiops:1.2@security01:5001/IT_Security

Service
com.iona.security.common.securityInstanceURL.2=corbaloc:it_iiops:1.2@security02:5002/IT_Security

Service
com.iona.security.common.securityInstanceURL.3=corbaloc:it_iiops:1.2@security03:5003/IT_Security

Service

Example 35:Artix Security Service Configuration for Failover

Artix Configuration File
1 initial_references:IT_SecurityService:reference =

"IOR:010000002400000049444c3a696f6e612e636f6d2f49545f53656375
726974792f5365727665723a312e300001000000000000009200000001010
2000800000066626f6c74616e0000000000220000003a3e02333109536563
7572697479001249545f53656375726974795365727669636500000400000
0140000000800000001007e005e0078cf000000000800000001000000415f
5449010000001c00000001000000010001000100000001000105090101000
1000000000101000600000006000000010000000e00";

artix_services {
 ...

2 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data = ["filename=PKCS12File",

"password_file=CertPasswordFile"];

 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget",
"DetectMisordering", "DetectReplay", "Integrity"];
127

CHAPTER 7 | Configuring the Artix Security Service
The preceding Artix configuration can be explained as follows:

1. The IT_SecurityService initial reference is read by Artix applications
to locate the cluster of Artix security services. Embedded in this IOR is
a list of addresses for all of the security services in the cluster. The IOR
is generated by the Artix security service by running it in prepare
mode. For example, to run the security service with the preceding
configuration in prepare mode, you would issue the following
command:

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInClient",
"EstablishTrustInTarget", "DetectMisordering",
"DetectReplay", "Integrity"];

 security {
 ...

3 plugins:security:iiop_tls:addr_list = ["security01:5001",
"+security02:5002", "+security03:5003"];

4 plugins:security:iiop_tls:host = "5001";
 plugins:security:iiop_tls:port = "security01";

5 plugins:java_server:system_properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton","is2.properties=SecurityPropertiesDir/security01
.is2.properties","java.endorsed.dirs=ArtixInstallDir/artix/3.
0/lib/endorsed"];

 policies:iiop_tls:target_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

 policies:iiop_tls:target_secure_invocation_policy:supports
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

 ...
 };
};

Example 35:Artix Security Service Configuration for Failover

itsecurity -ORBname artix_services.security prepare
 128

Clustering and Federation
When you enter this command, the security service outputs all of its
initial references to the console window. You can then copy the
IT_SecurityService initial reference and paste it into the Artix
configuration file.

2. The Artix security service picks up most of its SSL/TLS security settings
from the artix_services scope. In particular, the default configuration
of the security service uses the X.509 certificate specified by the
principal_sponsor settings in this scope.

3. The plugins:security_cluster:iiop_tls:addr_list variable lists
the addresses of all of the security services in the cluster, with each
entry prefixed by a + sign. The + sign indicates that these entries only
determine the contents of the generated IOR; they do not determine
the security service’s listening port.

4. The plugins:security:iiop_tls:host and
plugins:security:iiop_tls:port settings specify the listening port
for this security service instance.

5. Edit the is2.properties entry in the
plugins:java_server:system_properties list to specify the location
of the properties file used by this security service instance (see
“Configuring the is2.properties files” on page 122). In this example,
the properties file is called security01.is2.properties.

Note: You can parse the contents of the stringified IOR using the
iordump tool.
129

CHAPTER 7 | Configuring the Artix Security Service
Client Load Balancing

Overview When you use a clustered security service, it is important to configure all of
the secure applications in the system (clients and servers) to perform client
load balancing (in this context, client means a client of the Artix security
service and thus includes ordinary Artix servers as well). This ensures that
the client load is evenly spread over all of the security services in the cluster.

Client load balancing is disabled by default.

Configuration for load balancing Example 36 shows an outline of the configuration for a client of a security
service cluster. Such clients must be configured to use random load
balancing to ensure that the load is spread evenly over the servers in the
cluster. The settings highlighted in bold should be added to the application’s
configuration scope.

Example 36:Configuration for Client of a Security Service Cluster

Artix Configuration File
...
load_balanced_app {
 ...
 plugins:asp:enable_security_service_load_balancing = "true";
 policies:iiop_tls:load_balancing_mechanism = "random";
};
 130

Clustering and Federation
Client load balancing mechanism The client load balancing mechanism is selected by setting the
policies:iiop_tls:load_balancing_mechanism variable. Two mechanisms
are supported, as follows:

• random—choose one of the addresses embedded in the IOR at random
(this is the default).

• sequential—choose the first address embedded in the IOR, moving
on to the next address in the list only if the previous address could not
be reached.

In general, this mechanism is not recommended for deployed systems,
because it usually results in all of the client applications connecting to
the first cluster member.

Note: This is the only mechanism suitable for use in a deployed
system.
131

CHAPTER 7 | Configuring the Artix Security Service
Additional Security Configuration

Overview This section describes how to configure optional features of the Artix security
server, such as single sign-on and the authorization manager. These
features can be combined with any iSF adapter type.

In this section This section contains the following subsections:

Configuring Single Sign-On Properties page 133

Configuring the Log4J Logging page 135
 132

Additional Security Configuration
Configuring Single Sign-On Properties

Overview The IONA security framework provides an optional single sign-on (SSO)
feature. If you want to use SSO with your applications, you must configure
the Artix security service as described in this section. SSO offers the
following advantages:

• User credentials can easily be propagated between applications in the
form of an SSO token.

• Performance is optimized, because the authentication step only needs
to be performed once within a distributed system.

• Because the user’s session is tracked centrally by the Artix security
service, it is possible to impose timeouts on the user sessions and
these timeouts are effective throughout the distributed system.

SSO tokens The Artix security service generates an SSO token in response to an
authentication operation. The SSO token is a compact key that the Artix
security service uses to access a user’s session details, which are stored in a
cache.

SSO properties Example 37 shows the iS2 properties needed for SSO:

The SSO properties are described as follows:

1. Setting this property to yes enables single sign-on.

2. The SSO session timeout sets the lifesaving of SSO tokens, in units of
seconds. Once the specified time interval elapses, the token expires.

Example 37:Single Sign-On Properties

iS2 Properties File
...
###
Single Sign On Session Info
###

1 is2.sso.enabled=yes
2 is2.sso.session.timeout=6000
3 is2.sso.session.idle.timeout=300
4 is2.sso.cache.size=10000
133

CHAPTER 7 | Configuring the Artix Security Service
3. The SSO session idle timeout sets the maximum length of time for
which an SSO session can remain idle, in units of seconds. If the Artix
security service registers no activity against a particular session for this
amount of time, the session and its token expire.

4. The size of the SSO cache, in units of number of sessions.
 134

Additional Security Configuration
Configuring the Log4J Logging

Overview log4j is a third-party toolkit from the Jakarta project,
http://jakarta.apache.org/log4j, that provides a flexible and efficient system
for capturing logging messages from an application. Because the Artix
security service’s logging is based on log4j, it is possible to configure the
output of iSF logging using a standard log4j properties file.

log4j documentation For complete log4j documentation, see the following Web page:

http://jakarta.apache.org/log4j/docs/documentation.html

Enabling log4j logging To enable log4j logging, you can specify the location of the log4j properties
file in either of the following ways:

• In the CLASSPATH.

• In the is2.properties file.

In the CLASSPATH You can specify the location of the log4j properties file by adding the file to
your CLASSPATH. For example, you could add an
/is2_config/log4j.properties file to your CLASSPATH as follows:

Windows
set CLASSPATH=C:\is2_config\log4j.properties;%CLASSPATH%

UNIX (Bourne shell)
export CLASSPATH=/is2_config/log4j.properties:$CLASSPATH;

In the is2.properties file You can specify the location of the log4j properties file in the
is2.properties file as follows:

iS2 Properties File, for Server ID=1
...
###
log4j Logging
###
log4j.configuration=C:/is2_config/log4j.properties
...
135

http://jakarta.apache.org/log4j/docs/documentation.html
http://jakarta.apache.org/log4j

CHAPTER 7 | Configuring the Artix Security Service
Configuring the log4j properties
file

The following example shows how to configure the log4j properties to
perform basic logging. In this example, the lowest level of logging is
switched on (DEBUG) and the output is sent to the console screen.

log4j Properties File
log4j.rootCategory=DEBUG, A1

A1 is set to be a ConsoleAppender.
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x

- %m%n
 136

CHAPTER 8

Managing Users,
Roles and
Domains
The Artix security service provides a variety of adapters that
enable you to integrate the Artix Security Framework with
third-party enterprise security products. This allows you to
manage users and roles using a third-party enterprise security
product.

In this chapter This chapter discusses the following topics:

Introduction to Domains and Realms page 138

Managing a File Security Domain page 146

Managing an LDAP Security Domain page 149

Managing a SiteMinder Security Domain page 150
137

CHAPTER 8 | Managing Users, Roles and Domains
Introduction to Domains and Realms

Overview This section introduces the concepts of an Artix security domain and an Artix
authorization realm, which are fundamental to the administration of the
Artix Security Framework. Within an Artix security domain, you can create
user accounts and within an Artix authorization realm you can assign roles
to users.

In this section This section contains the following subsections:

Artix security domains page 139

Artix Authorization Realms page 141
 138

Introduction to Domains and Realms
Artix security domains

Overview This subsection introduces the concept of an Artix security domain.

Domain architecture Figure 21 shows the architecture of an Artix security domain. The Artix
security domain is identified with an enterprise security service that plugs
into the Artix security service through an iSF adapter. User data needed for
authentication, such as username and password, are stored within the
enterprise security service. The Artix security service provides a central
access point to enable authentication within the Artix security domain.

Figure 21: Architecture of an Artix security domain

Artix
Server

Artix
Server

Artix
Server

Enterprise Security Service

Artix Security Service

iSF Security Domain

authenticate authenticate authenticate

User Data Store

Janet

John
139

CHAPTER 8 | Managing Users, Roles and Domains
Artix security domain An Artix security domain is a particular security system, or namespace
within a security system, designated to authenticate a user.

Here are some specific examples of Artix security domains:

• LDAP security domain—authentication provided by an LDAP security
backend, accessed through the Artix security service.

• SiteMinder security domain—authentication provided by a SiteMinder
security backend, accessed through the Artix security service.

Creating an Artix security domain Effectively, you create an Artix security domain by configuring the Artix
security service to link to an enterprise security service through an iSF
adapter (such as a SiteMinder adapter or an LDAP adapter). The enterprise
security service is the implementation of the Artix security domain.

Creating a user account User account data is stored in a third-party enterprise security service.
Hence, you should use the standard tools from the third-party enterprise
security product to create a user account.

For a simple example, see “Managing a File Security Domain” on page 146.
 140

Introduction to Domains and Realms
Artix Authorization Realms

Overview This subsection introduces the concept of an Artix authorization realm and
role-based access control, explaining how users, roles, realms, and servers
are interrelated.

Artix authorization realm An Artix authorization realm is a collection of secured resources that share a
common interpretation of role names. An authenticated user can have
different roles in different realms. When using a resource in realm R, only
the user's roles in realm R are applied to authorization decisions.

Role-based access control The Artix Security Framework supports a role-based access control (RBAC)
authorization scheme. Under RBAC, authorization is a two step process, as
follows:

1. User-to-role mapping—every user is associated with a set of roles in
each realm (for example, guest, administrator, and so on, in a realm,
Engineering). A user can belong to many different realms, having a
different set of roles in each realm.

The user-to-role assignments are managed centrally by the Artix
security service, which returns the set of realms and roles assigned to a
user when required.

2. Role-to-permission mapping (or action-role mapping)—in the RBAC
model, permissions are granted to roles, rather than directly to users.
The role-to-permission mapping is performed locally by a server, using
data stored in local access control list (ACL) files. For example, Artix
servers in the Artix security framework use an XML action-role mapping
file to control access to WSDL port types and operations.
141

CHAPTER 8 | Managing Users, Roles and Domains
Servers and realms From a server’s perspective, an Artix authorization realm is a way of
grouping servers with similar authorization requirements. Figure 22 shows
two Artix authorization realms, Engineering and Finance, each containing a
collection of server applications.

Adding a server to a realm To add an Artix server to a realm, add or modify the
plugins:asp:authorization_realm configuration variable within the
server’s configuration scope (in the artix.cfg file).

For example, if your server’s configuration is defined in the my_server_scope
scope, you can set the Artix authorization realm to Engineering as follows:

Figure 22: Server View of Artix authorization realms

IONAGlobalRealm

Srv1 Srv2

Srv3 Srv4

Engineering

Srv5 Srv6

Srv7 Srv8

Finance

Artix configuration file
...
my_server_scope {
 plugins:asp:authorization_realm = "Engineering";
 ...
};
 142

Introduction to Domains and Realms
Roles and realms From the perspective of role-based authorization, an Artix authorization
realm acts as a namespace for roles. For example, Figure 23 shows two
Artix authorization realms, Engineering and Finance, each associated with
a set of roles.

Creating realms and roles Realms and roles are usually administered from within the enterprise
security system that is plugged into the Artix security service through an
adapter. Not every enterprise security system supports realms and roles,
however.

For example, in the case of a security file connected to a file adapter (a
demonstration adapter provided by IONA), a realm or role is implicitly
created whenever it is listed amongst a user’s realms or roles.

Figure 23: Role View of Artix authorization realms

IONAGlobalRealm

Engineering Finance

guest

admin

developer

guest

admin

accountant

CFO
143

CHAPTER 8 | Managing Users, Roles and Domains
Assigning realms and roles to
users

The assignment of realms and roles to users is administered from within the
enterprise security system that is plugged into the Artix security service. For
example, Figure 24 shows how two users, Janet and John, are assigned
roles within the Engineering and Finance realms.

• Janet works in the engineering department as a developer, but
occasionally logs on to the Finance realm with guest permissions.

• John works as an accountant in finance, but also has guest
permissions with the Engineering realm.

Figure 24: Assignment of Realms and Roles to Users Janet and John

IONAGlobalRealm

Engineering Finance

guest

admin

developer

guest

admin

accountant

CFO

iSF Security Domain (users)

Janet John
 144

Introduction to Domains and Realms
Special realms and roles The following special realms and roles are supported by the Artix Security
Framework:

• IONAGlobalRealm realm—a special realm that encompasses every Artix
authorization realm. Roles defined within the IONAGlobalRealm are
valid within every Artix authorization realm.

• UnauthenticatedUserRole—a special role that can be used to specify
actions accessible to an unauthenticated user (in an action-role
mapping file). An unauthenticated user is a remote user without
credentials (that is, where the client is not configured to send GSSUP
credentials).

Actions mapped to the UnauthenticatedUserRole role are also
accessible to authenticated users.

The UnauthenticatedUserRole can be used only in action-role
mapping files.
145

CHAPTER 8 | Managing Users, Roles and Domains
Managing a File Security Domain

Overview The file security domain is active if the Artix security service has been
configured to use the iSF file adapter (see “Configuring the File Adapter” on
page 104). The main purpose of the iSF file adapter is to provide a
lightweight security domain for demonstration purposes. A realistic deployed
system, however, would use one of the other adapters (LDAP, SiteMinder,
or custom) instead.

Location of file The location of the security information file is specified by the
com.iona.isp.adapter.file.param.filename property in the Artix security
service’s is2.properties file.

Example Example 38 is an extract from a sample security information file that shows
you how to define users, realms, and roles in a file security domain.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

Example 38:Sample Security Information File for an iSF File Domain

<?xml version="1.0" encoding="utf-8" ?>

1 <ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
2 <users>
3 <user name="IONAAdmin" password="admin"

 description="Default IONA admin user">
4 <realm name="IONA" description="All IONA applications"/>

 </user>
 <user name="admin" password="admin" description="Old admin

user; will not have the same default privileges as
IONAAdmin.">

 <realm name="Corporate">
 <role name="Administrator"/>
 </realm>
 </user>
 <user name="alice" password="dost1234">
 146

Managing a File Security Domain
1. The <ns:securityInfo> tag can contain a nested <users> tag.

2. The <users> tag contains a sequence of <user> tags.

3. Each <user> tag defines a single user. The <user> tag’s name and
password attributes specify the user’s username and password. Within
the scope of the <user> tag, you can list the realms and roles with
which the user is associated.

4. When a <realm> tag appears within the scope of a <user> tag, it
implicitly defines a realm and specifies that the user belongs to this
realm. A <realm> must have a name and can optionally have a
description attribute.

5. A realm can optionally be associated with one or more roles by
including role elements within the <realm> scope.

Certificate-based authentication
for the file adapter

When performing certificate-based authentication for the CORBA binding,
the file adapter compares the certificate to be authenticated with a cached
copy of the user’s certificate.

5 <realm name="Financials"
 description="Financial Department">
 <role name="Manager" description="Department Manager" />
 <role name="Clerk"/>
 </realm>
 </user>
 <user name="bob" password="dost1234">
 <realm name="Financials">
 <role name="Clerk"/>
 </realm>
 </user>
 </users>
</ns:securityInfo>

Example 38:Sample Security Information File for an iSF File Domain

Note: This configuration step is not required for non-CORBA bindings.
Currently, the ASP security layer does not send the client’s X.509
certificate to the Artix security service.
147

CHAPTER 8 | Managing Users, Roles and Domains
To configure the file adapter to support X.509 certificate-based
authentication for the CORBA binding, perform the following steps:

1. Cache a copy of each user’s certificate, CertFile.pem, in a location
that is accessible to the file adapter.

2. Make the following type of entry for each user with a certificate:

The user’s name, CNfromSubjectDN, is derived from the certificate by
taking the Common Name (CN) from the subject DN of the X.509
certificate (for DN terminology, see “ASN.1 and Distinguished Names”
on page 395). The certificate attribute specifies the location of this
user’s X.509 certificate, CertFile.pem.

Example 39:File Adapter Entry for Certificate-Based Authentication

...
<user name="CNfromSubjectDN" certificate="CertFile.pem"

description="User certificate">
 <realm name="RealmName">
 ...
 </realm>
</user>
 148

Managing an LDAP Security Domain
Managing an LDAP Security Domain

Overview The Lightweight Directory Access Protocol (LDAP) can serve as the basis of
a database that stores users, groups, and roles. There are many
implementations of LDAP and the Artix security service’s LDAP adapter can
integrate with any LDAP v.3 implementation.

Please consult documentation from your third-party LDAP

implementation for detailed instructions on how to administer

users and roles within LDAP.

Configuring the LDAP adapter A prerequisite for using LDAP within the Artix Security Framework is that
the Artix security service be configured to use the LDAP adapter.

See “Configuring the LDAP Adapter” on page 106.

Certificate-based authentication
for the LDAP adapter

When performing certificate-based authentication for CORBA bindings, the
LDAP adapter compares the certificate to be authenticated with a cached
copy of the user’s certificate.

To configure the LDAP adapter to support X.509 certificate-based
authentication, perform the following steps:

1. Cache a copy of each user’s certificate, CertFile.pem, in a location
that is accessible to the LDAP adapter.

2. The user’s name, CNfromSubjectDN, is derived from the certificate by
taking the Common Name (CN) from the subject DN of the X.509
certificate (for DN terminology, see “ASN.1 and Distinguished Names”
on page 395).

3. Make (or modify) an entry in your LDAP database with the username,
CNfromSubjectDN, and specify the location of the cached certificate.

Note: This configuration step is not required for non-CORBA bindings.
Currently, the ASP security layer does not send the client’s X.509 to the
Artix security service.
149

CHAPTER 8 | Managing Users, Roles and Domains
Managing a SiteMinder Security Domain

Overview SiteMinder is an enterprise security product from Netegrity, which allows
you to manage user data stored in a central database. The Artix security
service can communicate with the SiteMinder agent, using it to perform
authentication.

Please consult the Netegrity SiteMinder documentation for detailed

instructions on how to administer users and roles within the

SiteMinder product.

Configuring the SiteMinder
adapter

A prerequisite for using SiteMinder within the Artix Security Framework is
that the Artix security service be configured to use the SiteMinder adapter.

See “Configuring the SiteMinder Adapter” on page 112.

References For more information on Netegrity SiteMinder, see the Netegrity Web site:

http://www.netegrity.com/
 150

http://www.netegrity.com/

CHAPTER 9

Managing
Access Control
Lists
The Artix Security Framework defines access control lists
(ACLs) for mapping roles to resources.

In this chapter This chapter discusses the following topics:

Overview of Artix ACL Files page 152

ACL File Format page 153

Generating ACL Files page 156

Deploying ACL Files page 159
151

CHAPTER 9 | Managing Access Control Lists
Overview of Artix ACL Files

Action-role mapping file The action-role mapping file is an XML file that specifies which user roles
have permission to perform specific actions on the server (that is, invoking
specific WSDL operations).

Deployment scenarios Artix supports the following deployment scenario for ACL files:

• Local ACL file.

Local ACL file In the local ACL file scenario, the action-role mapping file is stored on the
same host as the server application (see Figure 25). The application obtains
the action-role mapping data by reading the local ACL file.

In this case, the location of the ACL file is specified by a setting in the
application’s artix.cfg file.

Figure 25: Locally Deployed Action-Role Mapping ACL File

authentication

Action-role
mapping file

Artix Security Service

User Data

ARM

Application

Security Layer

authorization

Application Host Security Host
 152

ACL File Format
ACL File Format

Overview This subsection explains how to configure the action-role mapping ACL file
for Artix applications. Using an action-role mapping file, you can specify that
access to WSDL operations is restricted to specific roles.

Example WSDL For example, consider how to set the operation permissions for the WSDL
port type shown in Example 40.

Example action-role mapping Example 41 shows how you might configure an action-role mapping file for
the HelloWorldPortType port type given in the preceding Example 40 on
page 153.

Example 40:Sample WSDL for the ACL Example

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld" ... >

 ...
 <portType name="HelloWorldPortType">
 <operation name="greetMe">
 <input message="tns:greetMe" name="greetMe"/>
 <output message="tns:greetMeResponse"
 name="greetMeResponse"/>
 </operation>
 <operation name="sayHi">
 <input message="tns:sayHi" name="sayHi"/>
 <output message="tns:sayHiResponse"
 name="sayHiResponse"/>
 </operation>
 </portType>
 ...
</definitions>

Example 41:Artix Action-Role Mapping Example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>

1 <action-role-mapping>
2 <server-name>secure_artix.demos.hello_world</server-name>
153

CHAPTER 9 | Managing Access Control Lists
The preceding action-role mapping example can be explained as follows:

1. The <action-role-mapping> tag contains all of the permissions that
apply to a particular server application.

2. The <server-name> tag specifies the ORB name that is used by the
server in question. The value of this tag must match the ORB name
exactly. The ORB name is usually passed to an Artix server as the
value of the -ORBname command-line parameter.

3. The <interface> tag contains all of the access permissions for one
particular WSDL port type.

4. The <name> tag identifies a WSDL port type in the format
NamespaceURI:PortTypeName. That is, the PortTypeName comes from a
tag, <portType name="PortTypeName">, defined in the NamespaceURI
namespace.

For example, in Example 40 on page 153 the <definitions> tag
specifies the NamespaceURI as http://xmlbus.com/HelloWorld and
the PortTypeName is HelloWorldPortType. Hence, the port type name
is identified as:

<name>http://xmlbus.com/HelloWorld:HelloWorldPortType</name>

3 <interface>
4

<name>http://xmlbus.com/HelloWorld:HelloWorldPortType</name>
 <action-role>

5 <action-name>sayHi</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 <action-role>
 <action-name>greetMe</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 </interface>
 </action-role-mapping>
</secure-system>

Example 41:Artix Action-Role Mapping Example

Note: The ORB name also determines which configuration scopes
are read by the server.
 154

ACL File Format
5. The sayHi action name corresponds to the sayHi WSDL operation
name in the HelloWorldPortType port type (from the <operation
name="sayHi"> tag).

Action-role mapping DTD The syntax of the action-role mapping file is defined by the action-role
mapping DTD. See “Action-Role Mapping DTD” on page 401 for details.
155

CHAPTER 9 | Managing Access Control Lists
Generating ACL Files

Overview Artix provides a command-line tool, wsdltoacl, that enables you to generate
the prototype of an ACL file directly from a WSDL contract. You can use the
wsdltoacl utility to assign a default role to all of the operations in WSDL
contract. Alternatively, if you require more fine-grained control over the role
assignments, you can define a role-properties file, which assigns roles to
individual operations.

WSDL-to-ACL utility The wsdltoacl command-line utility has the following syntax:

Required arguments:

Optional arguments:

wsdltoacl { -s server-name } WSDL-URL
 [-i interface-name] [-r default-role-name]
 [-d output-directory] [-o output-file]
 [-props role-props-file] [-v] [-?]

-s server-name The server’s configuration scope from the Artix
domain configuration file (the same value as
specified to the -ORBname argument when the Artix
server is started from the command line).

For example, the basic/hello_world_soap_http
demonstration uses the
demos.hello_world_soap_http server name.

WSDL-URL URL location of the WSDL file from which an ACL
is generated.

-i interface-name Generates output for a specific WSDL port type,
interface-name. If this option is omitted, output is
generated for all of the port types in the WSDL file.

-r default-role-name Specify the role name that will be assigned to all
operations by default. Default is IONAUserRole.

The default role-name is not used for operations
listed in a role-properties file (see -props).
 156

Generating ACL Files
Example of generating an ACL file As example of how to generate an ACL file from WSDL, consider the
hello_world.wsdl WSDL file for the basic/hello_world_soap_http
demonstration, which is located in the following directory:

ArtixInstallDir/artix/Version/demos/basic/hello_world_soap_http/e
tc

The HelloWorld WSDL contract defines a single port type, Greeter, and two
operations: greetMe and sayHi. The server name (that is, configuration
scope) used by the HelloWorld server is demos.hello_world_soap_http.

Sample role-properties file For the HelloWorld WSDL contract, you can define a role-properties file,
role_properties.txt, that assigns the FooUser role to the greetMe
operation and the FooUser and BarUser roles to the sayHi operation, as
follows:

Sample generation command To generate an ACL file from the HelloWorld WSDL contract, using the
role_properties.txt role-properties file, enter the following at a
command-line prompt:

-d output-directory Specify an output directory for the generated ACL
file.

-o output-file Specify the name of the generated ACL file. Default
is WSDLFileRoot-acl.xml, where WSDLFileRoot is
the root name of the WSDL file.

-props

role-props-file
Specifies a file containing a list of role-properties,
where a role-property associates an operation
name with a list of roles. Each line of the
role-properties file has the following format:

OperationName = Role1, Role2, ...

-v Display version information for the utility.

-? Display usage summary for the wsdltoacl utility.

greetMe = FooUser
sayHi = FooUser, BarUser

wsdltoacl -s demos.hello_world_soap_http hello_world.wsdl -props
role_properties.txt
157

CHAPTER 9 | Managing Access Control Lists
Sample ACL output The preceding wsdltoacl command generates an ACL file,
hello_world-acl.xml, whose contents are shown in Example 42.

Example 42:ACL File Generated from HelloWorld WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>
 <action-role-mapping>
 <server-name>demos.hello_world_soap_http</server-name>
 <interface>
 <name>http://www.iona.com/hello_world_soap_http:Greeter</name>
 <action-role>
 <action-name>greetMe</action-name>
 <role-name>FooUser</role-name>
 </action-role>
 <action-role>
 <action-name>sayHi</action-name>
 <role-name>FooUser</role-name>
 <role-name>BarUser</role-name>
 </action-role>
 </interface>
 </action-role-mapping>
</secure-system>
 158

Deploying ACL Files
Deploying ACL Files

Configuring a local ACL file To configure an application to load action-role mapping data from a local
file, edit the artix.cfg configuration file, initializing the
plugins:is2_authorization:action_role_mapping configuration variable
with the ACL file location.

For example, an application with ORB name, my_server_scope, can be
initialized to load a local ACL file,
security_admin/action_role_mapping.xml, using the following
configuration:

Artix Configuration File
...
orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop_tls", "soap", "http", "artix_security"];

my_server_scope {
 plugins:is2_authorization:action_role_mapping =
 "file:///security_admin/action_role_mapping.xml";
 ...
};
159

CHAPTER 9 | Managing Access Control Lists
 160

CHAPTER 10

Managing
Certificates
TLS authentication uses X.509 certificates—a common,
secure and reliable method of authenticating your application
objects. This chapter explains how you can create X.509
certificates that identify your Artix applications.

In this chapter This chapter contains the following sections:

What are X.509 Certificates? page 162

Certification Authorities page 164

Certificate Chaining page 167

PKCS#12 Files page 169

Creating Your Own Certificates page 171

Deploying Certificates page 178
161

CHAPTER 10 | Managing Certificates
What are X.509 Certificates?

Role of certificates An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the
X.509 certificate.

Integrity of the public key Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaced the public
key with its own public key, it could impersonate the true application and
gain access to secure data.

To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms the
integrity of the public key value in a certificate.

Digital signatures A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA’s private key. The CA’s
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding
the CA’s digital signature with the CA’s public key.

WARNING: Most of the demonstration certificates supplied with Artix are
signed by the CA cacert.pem. This CA is completely insecure because
anyone can access its private key. To secure your system, you must create
new certificates signed by a trusted CA. This chapter describes the set of
certificates required by an Artix application and shows you how to replace
the default certificates.
 162

What are X.509 Certificates?
The contents of an X.509
certificate

An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate). A certificate is
encoded in Abstract Syntax Notation One (ASN.1), a standard syntax for
describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

• X.509 version information.

• A serial number that uniquely identifies the certificate.

• A subject DN that identifies the certificate owner.

• The public key associated with the subject.

• An issuer DN that identifies the CA that issued the certificate.

• The digital signature of the issuer.

• Information about the algorithm used to sign the certificate.

• Some optional X.509 v.3 extensions. For example, an extension exists
that distinguishes between CA certificates and end-entity certificates.

Distinguished names A distinguished name (DN) is a general purpose X.500 identifier that is
often used in the context of security.

See “ASN.1 and Distinguished Names” on page 395 for more details about
DNs.
163

CHAPTER 10 | Managing Certificates
Certification Authorities

Choice of CAs A CA must be trusted to keep its private key secure. When setting up an
Artix system, it is important to choose a suitable CA, make the CA certificate
available to all applications, and then use the CA to sign certificates for your
applications.

There are two types of CA you can use:

• A commercial CA is a company that signs certificates for many
systems.

• A private CA is a trusted node that you set up and use to sign
certificates for your system only.

In this section This section contains the following subsections:

Commercial Certification Authorities page 165

Private Certification Authorities page 166
 164

Certification Authorities
Commercial Certification Authorities

Signing certificates There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

Advantages of commercial CAs An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to
systems external to your organization, use a commercial CA to sign your
certificates. If your applications are for use within an internal network, a
private CA might be appropriate.

Criteria for choosing a CA Before choosing a CA, you should consider the following criteria:

• What are the certificate-signing policies of the commercial CAs?

• Are your applications designed to be available on an internal network
only?

• What are the potential costs of setting up a private CA?
165

CHAPTER 10 | Managing Certificates
Private Certification Authorities

Choosing a CA software package If you wish to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

OpenSSL software package One software package that allows you to set up a private CA is OpenSSL,
http://www.openssl.org. OpenSSL is derived from SSLeay, an
implementation of SSL developed by Eric Young (eay@cryptsoft.com).
Complete license information can be found in “License Issues” on page 433.
The OpenSSL package includes basic command line utilities for generating
and signing certificates and these utilities are available with every
installation of Artix. Complete documentation for the OpenSSL command
line utilities is available from http://www.openssl.org/docs.

Setting up a private CA using
OpenSSL

For instructions on how to set up a private CA, see “Creating Your Own
Certificates” on page 171.

Choosing a host for a private
certification authority

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Artix
applications, use any host that the application developers can access.
However, when you create the CA certificate and private key, do not make
the CA private key available on hosts where security-critical applications
run.

Security precautions If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

• Do not connect the CA to a network.

• Restrict all access to the CA to a limited set of trusted users.

• Protect the CA from radio-frequency surveillance using an RF-shield.
 166

Certificate Chaining
Certificate Chaining

Certificate chain A certificate chain is a sequence of certificates, where each certificate in
the chain is signed by the subsequent certificate.

Self-signed certificate The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.

Example Figure 26 shows an example of a simple certificate chain.

Chain of trust The purpose of certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

Figure 26: A Certificate Chain of Depth 2

CA
Certificate

Peer
Certificate

signs signs
167

CHAPTER 10 | Managing Certificates
Certificates signed by multiple
CAs

A CA certificate can be signed by another CA. For example, an application
certificate may be signed by the CA for the finance department of IONA
Technologies, which in turn is signed by a self-signed commercial CA.
Figure 27 shows what this certificate chain looks like.

Trusted CAs An application can accept a signed certificate if the CA certificate for any CA
in the signing chain is available in the certificate file in the local root
certificate directory.

See “Deploying Trusted Certificate Authority Certificates” on page 181.

Maximum chain length policy You can limit the length of certificate chains accepted by your CORBA
applications, with the maximum chain length policy. You can set a value for
the maximum length of a certificate chain with the
policies:iiop_tls:max_chain_length_policy configuration variable for
IIOP/TLS and the policies:max_chain_length_policy configuration
variable for HTTPS respectively.

Figure 27: A Certificate Chain of Depth 3

Finance
CA

Certificate

Peer
Certificate

signs signs Commercial
CA

Certificate

signs
 168

PKCS#12 Files
PKCS#12 Files

Overview Figure 28 shows the typical elements in a PKCS#12 file.

Contents of a PKCS#12 file A PKCS#12 file contains the following:

• An X.509 peer certificate (first in a chain).

• All the CA certificates in the certificate chain.

• A private key.

The file is encrypted with a pass phrase.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer.

Figure 28: Elements in a PKCS#12 File

X.509

PKCS#12 File

Private Key

Certificate Chain

X.509
CA

Note: The same pass phrase is used both for the encryption of the private
key within the PKCS#12 file and for the encryption of the PKCS#12 file
overall. This condition (same pass phrase) is not officially part of the
PKCS#12 standard, but it is enforced by most Web browsers and by Artix.
169

CHAPTER 10 | Managing Certificates
Creating a PKCS#12 file To create a PKCS#12 file, see “Use the CA to Create Signed Certificates” on
page 175.

Viewing a PKCS#12 file To view a PKCS#12 file, CertName.p12:

Importing and exporting
PKCS#12 files

The generated PKCS#12 files can be imported into browsers such as IE or
Netscape. Exported PKCS#12 files from these browsers can be used in
Artix.

openssl pkcs12 -in CertName.p12

Note: Use OpenSSL v0.9.2 or later; Internet Explorer 5.0 or later;
Netscape 4.7 or later.
 170

Creating Your Own Certificates
Creating Your Own Certificates

Overview This section describes the steps involved in setting up a CA and signing
certificates.

OpenSSL utilities The steps described in this section are based on the OpenSSL
command-line utilities from the OpenSSL project,
http://www.openssl.org—see “OpenSSL Utilities” on page 405. Further
documentation of the OpenSSL command-line utilities can be obtained from
http://www.openssl.org/docs.

Sample CA directory structure For the purposes of illustration, the CA database is assumed to have the
following directory structure:

Where X509CA is the parent directory of the CA database.

In this section This section contains the following subsections:

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl

Set Up Your Own CA page 172

Use the CA to Create Signed Certificates page 175
171

CHAPTER 10 | Managing Certificates
Set Up Your Own CA

Substeps to perform This section describes how to set up your own private CA. Before setting up
a CA for a real deployment, read the additional notes in “Choosing a host for
a private certification authority” on page 166.

To set up your own CA, perform the following substeps:

• Step 1—Add the bin directory to your PATH

• Step 2—Create the CA directory hierarchy

• Step 3—Copy and edit the openssl.cnf file

• Step 4—Initialize the CA database

• Step 5—Create a self-signed CA certificate and private key

Step 1—Add the bin directory to
your PATH

On the secure CA host, add the OpenSSL bin directory to your path:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Step 2—Create the CA directory
hierarchy

Create a new directory, X509CA, to hold the new CA. This directory will be
used to hold all of the files associated with the CA. Under the X509CA
directory, create the following hierarchy of directories:

Step 3—Copy and edit the
openssl.cnf file

Copy the sample openssl.cnf from your OpenSSL installation to the X509CA
directory.

Edit the openssl.cnf to reflect the directory structure of the X509CA directory
and to identify the files used by the new CA.

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl
 172

Creating Your Own Certificates
Edit the [CA_default] section of the openssl.cnf file to make it look like
the following:

You might like to edit other details of the OpenSSL configuration at this
point—for more details, see “The OpenSSL Configuration File” on page 415.

Step 4—Initialize the CA database In the X509CA directory, initialize two files, serial and index.txt.

Windows

> echo 01 > serial

To create an empty file, index.txt, in Windows start a Windows Notepad at
the command line in the X509CA directory, as follows:

> notepad index.txt

In response to the dialog box with the text, Cannot find the text.txt
file. Do you want to create a new file?, click Yes, and close Notepad.

UNIX

% echo "01" > serial
% touch index.txt

These files are used by the CA to maintain its database of certificate files.

###
[CA_default]

dir = X509CA # Where CA files are kept
certs = $dir/certs # Where issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file
new_certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new_ca.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/new_ca_pk.pem # The private key
RANDFILE = $dir/ca/.rand # Private random number file

x509_extensions = usr_cert # The extensions to add to the cert
...

Note: The index.txt file must initially be completely empty, not even
containing white space.
173

CHAPTER 10 | Managing Certificates
Step 5—Create a self-signed CA
certificate and private key

Create a new self-signed CA certificate and private key:

openssl req -x509 -new -config
X509CA/openssl.cnf -days 365 -out X509CA/ca/new_ca.pem
-keyout X509CA/ca/new_ca_pk.pem

The command prompts you for a pass phrase for the CA private key and
details of the CA distinguished name:

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
....+++++
.+++++
writing new private key to 'new_ca_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown
Email Address []:gbrown@iona.com

You should ensure that the file names and location of the CA certificate and
private key, new_ca.pem and new_ca_pk.pem, are the same as the values
specified in openssl.cnf (see the preceding step).

You are now ready to sign certificates with your CA.

Note: The security of the CA depends on the security of the private key
file and private key pass phrase used in this step.
 174

Creating Your Own Certificates
Use the CA to Create Signed Certificates

Substeps to perform If you have set up a private CA, as described in “Set Up Your Own CA” on
page 172, you are now ready to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, CertName.p12, perform
the following substeps:

• Step 1—Add the bin directory to your PATH

• Step 2—Create a certificate signing request

• Step 3—Sign the CSR

• Step 4—Concatenate the files

• Step 5—Create a PKCS#12 file

• Step 6—Repeat steps as required

Step 1—Add the bin directory to
your PATH

If you have not already done so, add the OpenSSL bin directory to your
path:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Step 2—Create a certificate
signing request

Create a new certificate signing request (CSR) for the CertName.p12
certificate:

openssl req -new -config X509CA/openssl.cnf
-days 365 -out X509CA/certs/CertName_csr.pem -keyout
X509CA/certs/CertName_pk.pem

This command prompts you for a pass phrase for the certificate’s private key
and information about the certificate’s distinguished name.

Some of the entries in the CSR distinguished name must match the values
in the CA certificate (specified in the CA Policy section of the openssl.cnf
file). The default openssl.cnf file requires the following entries to match:

• Country Name

• State or Province Name

• Organization Name
175

CHAPTER 10 | Managing Certificates
The Common Name must be distinct for every certificate generated by
OpenSSL.

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
.+++++
.+++++
writing new private key to 'X509CA/certs/CertName_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Artix
Email Address []:info@iona.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:password
An optional company name []:IONA

Step 3—Sign the CSR Sign the CSR using your CA:

openssl ca -config X509CA/openssl.cnf -days 365 -in
X509CA/certs/CertName_csr.pem -out X509CA/certs/CertName.pem

This command requires the pass phrase for the private key associated with
the new_ca.pem CA certificate:

Using configuration from X509CA/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName :PRINTABLE:'Dublin'
organizationName :PRINTABLE:'IONA Technologies PLC'
 176

Creating Your Own Certificates
organizationalUnitName:PRINTABLE:'Systems'
commonName :PRINTABLE:'Bank Server Certificate'
emailAddress :IA5STRING:'info@iona.com'
Certificate is to be certified until May 24 13:06:57 2000 GMT (365

days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

To sign the certificate successfully, you must enter the CA private key pass
phrase—see “Set Up Your Own CA” on page 172.

Step 4—Concatenate the files Concatenate the CA certificate file, CertName certificate file, and
CertName_pk.pem private key file as follows:

Windows

copy X509CA\ca\new_ca.pem +
X509CA\certs\CertName.pem +
X509CA\certs\CertName_pk.pem
X509CA\certs\CertName_list.pem

UNIX

cat X509CA/ca/new_ca.pem
X509CA/certs/CertName.pem
X509CA/certs/CertName_pk.pem >
X509CA/certs/CertName_list.pem

Step 5—Create a PKCS#12 file Create a PKCS#12 file from the CertName_list.pem file as follows:

openssl pkcs12 -export -in X509CA/certs/CertName_list.pem -out
X509CA/certs/CertName.p12 -name "New cert"

Step 6—Repeat steps as required Repeat steps 2 to 5, creating a complete set of certificates for your system.
A minimum set of Artix certificates must include a set of certificates for the
secure Artix services.
177

CHAPTER 10 | Managing Certificates
Deploying Certificates

Overview This section provides an overview of deploying X.509 certificates in a typical
secure Artix system, with detailed instructions on how to deploy certificates
for different parts of the Artix system.

In this section This section contains the following subsections:

Overview of Certificate Deployment page 179

Deploying Trusted Certificate Authority Certificates page 181

Deploying Application Certificates page 186
 178

Deploying Certificates
Overview of Certificate Deployment

Overview Because the HTTPS and IIOP/TLS transports use different security
mechanisms, it is necessary to deploy certificates for each of these
transports independently, as follows:

• Certificate deployment for HTTPS.

• Certificate deployment for IIOP/TLS.

Certificate deployment for HTTPS Certificates used by the HTTPS transport must be in PKCS#12 format. To
specify certificates for the HTTPS transport, you can either edit the Artix
configuration file or edit your application’s WSDL contract.

Certificate deployment for
IIOP/TLS

Certificates used by the IIOP/TLS transport must be in PKCS#12 format. To
specify certificates for the IIOP/TLS transport, you must edit the Artix
configuration file.

Order of precedence Certificate deployment settings can be specified in a number of different
ways. The order of precedence, from the highest to the lowest, is as follows:

• Programmatic settings—you can use Artix contexts to specify security
settings. See “Programming Authentication” on page 251 for details.

• WSDL settings (HTTPS only)—Artix enables you to specify security
settings using attributes of the http-conf:client and
http-conf:server elements.

• plugins:at_http settings in the Artix configuration file (HTTPS only).

• principal_sponsor, policies, policies:iiop_tls, and
policies:https settings in the Artix configuration file.

• Default settings—if no settings are explicitly provided, Artix falls back
on the defaults.

Note: Versions of Artix prior to 3.0 required certificates for the HTTPS
transport to be in Privacy Enhanced Mail (PEM) format. For instructions on
how to convert PEM certificates to PKCS#12 format, see “Converting
legacy certificates” on page 186.
179

CHAPTER 10 | Managing Certificates
Sample deployment directory
structure

For the purposes of illustration, the examples in this section deploy
certificates into the following sample directory structure:

Where X509Deploy is the parent directory for the deployed certificates.

X509Deploy/trusted_ca_lists

X509Deploy/certs
 180

Deploying Certificates
Deploying Trusted Certificate Authority Certificates

Overview This section how to deploy trusted root CA certificates for Artix applications.
In the current version of Artix, the procedure for deploying trusted CA
certificates depends on the type of transport, as follows:

• Deployment for the HTTPS and IIOP/TLS transports.

• Alternative HTTPS deployment in the Artix configuration file.

• Alternative HTTPS deployment by configuring the WSDL contract.

Deployment for the HTTPS and
IIOP/TLS transports

To deploy one or more trusted root CAs for the HTTPS and IIOP/TLS
transport, perform the following steps (the procedure for client and server
applications is the same):

1. Assemble the collection of trusted CA certificates that you want to
deploy. The trusted CA certificates could be obtained from public CAs
or private CAs (for details of how to generate your own CA certificates,
see “Set Up Your Own CA” on page 172). The trusted CA certificates
should be in PEM format. All you need are the certificates
themselves—the private keys and passwords are not required.

2. Organize the CA certificates into a collection of CA list files. For
example, you might create three CA list files as follows:

X509Deploy/trusted_ca_lists/ca_list01.pem
X509Deploy/trusted_ca_lists/ca_list02.pem
X509Deploy/trusted_ca_lists/ca_list03.pem

Each CA list file consists of a concatenated list of CA certificates. A CA
list file can be created using a simple file concatenation operation. For
example, if you have two CA certificate files, ca_cert01.pem and
ca_cert02.pem, you could combine them into a single CA list file,
ca_list01.pem, with the following command:

Windows
copy X509CA\ca\ca_cert01.pem +

X509CA\ca\ca_cert02.pem
X509Deploy\trusted_ca_lists\ca_list01.pem

UNIX
cat X509CA/ca/ca_cert01.pem X509CA/ca/ca_cert02.pem >>

X509Deploy/trusted_ca_lists/ca_list01.pem
181

CHAPTER 10 | Managing Certificates
The CA certificates are organized as lists as a convenient way of
grouping related CA certificates together.

3. Edit the artix.cfg file to specify the locations of the CA list files to be
used by your application. The artix.cfg file is located in the following
directory:

ArtixInstallDir/artix/Version/etc/domains

To specify the CA list files, go to your application’s configuration scope
in the artix.cfg file and edit the value of the
policies:iiop_tls:trusted_ca_list_policy configuration variable
for the IIOP/TLS transport and the
policies:https:trusted_ca_list_policy configuration variable for
the HTTPS transport.

For example, if your application picks up its configuration from the
SecureAppScope configuration scope and you want to include the CA
certificates from the ca_list01.pem and ca_list02.pem files, edit the
artix.cfg file as follows:

The directory containing the trusted CA certificate lists (for example,
X509Deploy/trusted_ca_lists/) should be a secure directory.

Artix configuration file.
...
SecureAppScope {
 ...
 policies:iiop_tls:trusted_ca_list_policy =

["X509Deploy/trusted_ca_lists/ca_list01.pem",
"X509Deploy/trusted_ca_lists/ca_list02.pem"];

 policies:https:trusted_ca_list_policy =
["X509Deploy/trusted_ca_lists/ca_list01.pem",
"X509Deploy/trusted_ca_lists/ca_list02.pem"];

 ...
;

Note: If an application supports authentication of a peer, that is a client
supports EstablishTrustInTarget, then a file containing trusted CA
certificates must be provided. If not, a NO_RESOURCES exception is raised.
 182

Deploying Certificates
Alternative HTTPS deployment in
the Artix configuration file

Alternatively, the at_http plug-in supports configuration variables that let
you specify the CA certificate list separately for the client role and the server
role.

Edit the Artix configuration file by adding (or modifying) the
plugins:at_http:client:trusted_root_certificates and
plugins:at_http:server:trusted_root_certificates configuration
variables, as follows:

Alternative HTTPS deployment by
configuring the WSDL contract

Alternatively, the HTTPS transport lets you specify the location of a CA list
file by configuring the WSDL contract. An advantage of this approach is that
it allows you to specify trusted CA lists independently for each port.

Edit the WSDL contract to specify the location of the CA list file. The details
of this step depend on whether you are deploying a trusted CA list on the
client side or on the server side.

secure_app {
 plugins:at_http:client:use_secure_sockets="true";
 plugins:at_http:client:trusted_root_certificates =

"X509Deploy/trusted_ca_lists/ca_list01.pem";
 ...
 plugins:at_http:server:trusted_root_certificates =

"X509Deploy/trusted_ca_lists/ca_list02.pem";
 ...
};

Note: These settings take precedence over the
policies:https:trusted_ca_list_policy variable.

Note: The settings in the WSDL contract take precedence over the
settings in the artix.cfg file.
183

CHAPTER 10 | Managing Certificates
Client side

Edit the client’s copy of the WSDL contract by adding (or modifying) the
TrustedRootCertificates attribute in the <http-conf:client> tag. For
example, to specify X509CA/ca/ca_list01.pem as the client’s trusted CA
certificate list, modify the client’s WSDL contract as follows:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration" ... >
...
<service name="...">
 <port binding="...">
 <http-conf:client ...

TrustedRootCertificates="X509CA/ca/ca_list01.pem"
 ... />
 ...
 </port>
</service>

WARNING: If you include security settings in the WSDL contract, you
must ensure that the WSDL publish plug-in, wsdl_publish, is not loaded
by your application (either on the client side or on the server side). The
WSDL publish plug-in makes WSDL contracts available through an
insecure HTTP port.
 184

Deploying Certificates
Server side

Edit the server’s copy of the WSDL contract by adding (or modifying) the
TrustedRootCertificates attribute in the <http-conf:server> tag. For
example, to specify X509CA/ca/ca_list01.pem as the server’s trusted CA
certificate list, modify the server’s WSDL contract as follows:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration" ... >
...
<service name="...">
 <port binding="...">
 ...
 <http-conf:server ...

TrustedRootCertificates="X509CA/ca/ca_list01.pem"
 ... />
 </port>
</service>

WARNING: If you include security settings in the WSDL contract, you
must ensure that the WSDL publish plug-in, wsdl_publish, is not loaded
by your application (either on the client side or on the server side). The
WSDL publish plug-in makes WSDL contracts available through an
insecure HTTP port.
185

CHAPTER 10 | Managing Certificates
Deploying Application Certificates

Overview This section describes how to deploy an Artix application’s own certificate.
In the current version of Artix, the procedure for deploying application
certificates depends on the type of transport, as follows:

• Deployment for the HTTPS and IIOP/TLS transports.

• Alternative HTTPS deployment in the Artix configuration file.

• Alternative HTTPS deployment by configuring the WSDL contract.

Converting legacy certificates For both the HTTPS and the IIOP/TLS transports, certificates must be
supplied in PKCS#12 format. If you have any legacy certificates in PEM
format, you can convert them to PKCS#12 format using the openssl
command-line utility, as follows:

Windows

Given the CA signing certificate, CACert.pem, the application certificate,
Cert.pem, and its private key, PrivKey.pem, enter the following at a
Windows command prompt:

> copy CACert.pem + Cert.pem + PrivKey.pem CertList.pem
> openssl pkcs12 -export -in CertList.pem -out Cert.p12

UNIX

Given the CA signing certificate, CACert.pem, the application certificate,
Cert.pem, and its private key, PrivKey.pem, enter the following at a UNIX
command prompt:

> cat CACert.pem Cert.pem PrivKey.pem > CertList.pem
> openssl pkcs12 -export -in CertList.pem -out Cert.p12

Note: The openssl utility is not included in the Artix distribution. To
obtain the openssl utility, go to www.openssl.org and download the latest
version of the OpenSSL software.
 186

Deploying Certificates
Deployment for the HTTPS and
IIOP/TLS transports

To deploy an Artix application’s own certificate, CertName.p12, for the
HTTPS and IIOP/TLS transports, perform the following steps:

1. Copy the application certificate, CertName.p12, to the certificates
directory—for example, X509Deploy/certs/applications—on the
deployment host.

The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

2. Edit the artix.cfg configuration file (usually
ArtixInstallDir/artix/Version/etc/domains/artix.cfg). Given
that your application picks up its configuration from the
SecureAppScope scope, change the principal sponsor configuration to
specify the CertName.p12 certificate, as follows:

3. By default, the application will prompt the user for the certificate pass
phrase as it starts up. To choose another option for providing the pass
phrase, see “Providing a Certificate Pass Phrase” on page 201.

Artix configuration file
...
SecureAppScope {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=X509Deploy/certs/applications/CertName.p1
2"];

};
187

CHAPTER 10 | Managing Certificates
Alternative HTTPS deployment in
the Artix configuration file

Alternatively, the at_http plug-in supports configuration variables that let
you specify the location of an application’s PKCS#12 separately for the
client role and the server role.

Edit the Artix configuration file by adding (or modifying) the following
highlighted configuration variables, as follows:

Alternative HTTPS deployment by
configuring the WSDL contract

Alternatively, the HTTPS transport lets you specify the location of an
application’s PKCS#12 file by configuring the WSDL contract.

secure_app {
 plugins:at_http:client:use_secure_sockets="true";
 // Client certificate settings.
 plugins:at_http:client:client_certificate =

"X509Deploy/certs/applications/CertName.p12";
 plugins:at_http:client:client_private_key_password =

"MyKeyPassword";
 ...
 // Server certificate settings.
 plugins:at_http:server:server_certificate =

"X509Deploy/certs/applications/CertName.p12";
 plugins:at_http:server:server_private_key_password =

"MyKeyPassword";
 ...
};

Note: These settings take precedence over the principal_sponsor:https
settings.

Note: The settings in the WSDL contract take precedence over the
settings in the artix.cfg file.
 188

Deploying Certificates
Edit the WSDL contract to specify the location of the application’s
PKCS#12 file. The details of this step depend on whether you are deploying
a trusted CA list on the client side or on the server side:

Client side

Edit the client’s copy of the WSDL contract by adding (or modifying) the
following highlighted attributes in the <http-conf:client> tag:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration" ... >
...
<service name="...">
 <port binding="...">
 <soap:address ...>
 <http-conf:client UseSecureSockets="true"
 ClientCertificate="X509Deploy/certs/applications/CertName.p12"
 ClientPrivateKeyPassword="MyKeyPassword"
 TrustedRootCertificates="RootCertPath"
 ... />
 </port>
</service>

WARNING: If you include security settings in the WSDL contract, you
must ensure that the WSDL publish plug-in, wsdl_publish, is not loaded
by your application (either on the client side or on the server side). The
WSDL publish plug-in makes WSDL contracts available through an
insecure HTTP port.
189

CHAPTER 10 | Managing Certificates
Server side

Edit the server’s copy of the WSDL contract by adding (or modifying) the
following highlighted attributes in the <http-conf:server> tag:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration" ... >
...
<service name="...">
 <port binding="...">
 <soap:address ...>
 <http-conf:server UseSecureSockets="true"
 ServerCertificate="X509Deploy/certs/applications/CertName.p12"
 ServerPrivateKeyPassword="MyKeyPassword"
 TrustedRootCertificates="RootCertPath"
 ... />
 </port>
</service>

Note: Because the private key passwords in the WSDL contracts appear
in plaintext form, you must ensure that the WSDL contract files themselves
are not readable/writable by every user. Use the operating system to
restrict read/write access to trusted users only.

Additionally, to avoid revealing the server’s security configuration to
clients, you should remove the <http-conf:server> tag from the client
copy of the WSDL contract.

WARNING: If you include security settings in the WSDL contract, you
must ensure that the WSDL publish plug-in, wsdl_publish, is not loaded
by your application (either on the client side or on the server side). The
WSDL publish plug-in makes WSDL contracts available through an
insecure HTTP port.
 190

CHAPTER 11

Configuring
HTTPS and
IIOP/TLS
Authentication
This chapter describes how to configure HTTPS and IIOP/TLS
authentication requirements for Artix applications.

In this chapter This chapter discusses the following topics:

Requiring Authentication page 192

Specifying Trusted CA Certificates page 199

Specifying an Application’s Own Certificate page 200

Providing a Certificate Pass Phrase page 201

Advanced Configuration Options page 204
191

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication
Requiring Authentication

Overview This section discusses how to specify the kind of authentication required,
whether mutual or target-only.

In this section There are two possible arrangements for a TLS secure association:

Target-Only Authentication page 193

Mutual Authentication page 196
 192

Requiring Authentication
Target-Only Authentication

Overview When an application is configured for target-only authentication, the target
authenticates itself to the client but the client is not authentic to the target
object—see Figure 29.

Security handshake Prior to running the application, the client and server should be set up as
follows:

• A certificate chain is associated with the server—the certificate chain is
provided in the form of a PKCS#12 file (for HTTPS and IIOP/TLS). See
“Specifying an Application’s Own Certificate” on page 200.

• One or more lists of trusted certification authorities (CA) are made
available to the client—see “Deploying Trusted Certificate Authority
Certificates” on page 181.

During the security handshake, the server sends its certificate chain to the
client—see Figure 29. The client then searches its trusted CA lists to find a
CA certificate that matches one of the CA certificates in the server’s
certificate chain.

Figure 29: Target Authentication Only

Secure Association
Client Server

Cert file

Trusted CA Lists
Authenticate
CertificateCA Cert List 1

CA Cert List 2
193

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication
HTTPS example The following extract from an artix.cfg configuration file shows the
target-only configuration of an Artix client application, bank_client, and an
Artix server application, bank_server, where the transport type is HTTPS.

Artix Configuration File
...
policies:mechanism_policy:protocol_version = "SSL_V3";
policies:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

bank_server {
 policies:target_secure_invocation_policy:requires =

["Confidentiality"];
 policies:target_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 ...
};

bank_client {
 ...
 policies:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

};
 194

Requiring Authentication
IIOP/TLS example The following extract from an artix.cfg configuration file shows the
target-only configuration of an Artix client application, bank_client, and an
Artix server application, bank_server, where the transport type is IIOP/TLS.

Artix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

bank_server {
 policies:iiop_tls:target_secure_invocation_policy:requires =

["Confidentiality"];
 policies:iiop_tls:target_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 ...
};

bank_client {
 ...
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

};
195

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication
Mutual Authentication

Overview When an application is configured for mutual authentication, the target
authenticates itself to the client and the client authenticates itself to the
target. This scenario is illustrated in Figure 30. In this case, the server and
the client each require an X.509 certificate for the security handshake.

Figure 30: Mutual Authentication

Secure Association
Client Server

Trusted CA Lists
Authenticate

Target

Trusted CA Lists

Authenticate
Client

Cert file

CA Cert List 1

CA Cert List 2

Cert file
CA Cert List 1

CA Cert List 2
 196

Requiring Authentication
Security handshake Prior to running the application, the client and server should be set up as
follows:

• Both client and server have an associated certificate chain (PKCS#12
file)—see “Specifying an Application’s Own Certificate” on page 200.

• Both client and server are configured with lists of trusted certification
authorities (CA)—see “Deploying Trusted Certificate Authority
Certificates” on page 181.

During the security handshake, the server sends its certificate chain to the
client, and the client sends its certificate chain to the server—see Figure 29.

HTTPS example The following sample extract from an artix.cfg configuration file shows the
configuration for mutual authentication of a client application,
secure_client_with_cert, and a server application,
secure_server_enforce_client_auth, where the transport type is HTTPS.

Artix Configuration File
...
policies:mechanism_policy:protocol_version = "SSL_V3";
policies:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

secure_server_enforce_client_auth
{
 policies:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality"];
 policies:target_secure_invocation_policy:supports =

["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 ...
};

secure_client_with_cert
{
 policies:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 ...
};
197

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication
IIOP/TLS example The following sample extract from an artix.cfg configuration file shows the
configuration for mutual authentication of a client application,
secure_client_with_cert, and a server application,
secure_server_enforce_client_auth, where the transport type is
IIOP/TLS.

Artix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

secure_server_enforce_client_auth
{
 policies:iiop_tls:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality"];
 policies:iiop_tls:target_secure_invocation_policy:supports =

["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 ...
};

secure_client_with_cert
{
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 ...
};
 198

Specifying Trusted CA Certificates
Specifying Trusted CA Certificates

Overview When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received
certificate by checking whether the issuer CA is one of a pre-defined set of
trusted CA certificates. If the received X.509 certificate is validly signed by
one of the application’s trusted CA certificates, the certificate is deemed
trustworthy; otherwise, it is rejected.

Which applications need to
specify trusted CA certificates?

Any application that is likely to receive an X.509 certificate as part of an
HTTPS or IIOP/TLS handshake must specify a list of trusted CA certificates.
For example, this includes the following types of application:

• All IIOP/TLS or HTTPS clients.

• Any IIOP/TLS or HTTPS servers that support mutual authentication.

How to deploy trusted CA
certificates

For more details about how to deploy trusted CA certificates, see the
following references:

• “Deploying Trusted Certificate Authority Certificates” on page 181.
199

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication
Specifying an Application’s Own Certificate

Overview To enable an Artix application to identify itself, it must be associated with an
X.509 certificate. The X.509 certificate is needed during an SSL/TLS
handshake, where it is used to authenticate the application to its peers. The
method you use to specify the certificate depends on the type of application:

• Security unaware—configuration only,

This section discusses how to specify a certificate by configuration only.

How to deploy an application
certificate

For details about how to deploy an application’s own certificate, see the
following reference:

• “Deploying Application Certificates” on page 186.
 200

Providing a Certificate Pass Phrase
Providing a Certificate Pass Phrase

Overview If an application is configured to have an X.509 certificate, it is necessary to
provide a pass phrase as the application starts up. There are various ways of
providing the certificate pass phrase, depending on the particular type of
transport used.

In this section This section contains the following subsections:

Certificate Pass Phrase for HTTPS and IIOP/TLS page 202
201

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication
Certificate Pass Phrase for HTTPS and IIOP/TLS

Overview Once you have specified a PKCS#12 certificate, you must also provide its
pass phrase. The pass phrase is needed to decrypt the certificate’s private
key (which is used during the TLS security handshake to prove the
certificate’s authenticity).

For the HTTPS and IIOP/TLS transports, the pass phrase can be provided in
one of the following ways:

• From a dialog prompt.

• In a password file.

• Directly in configuration.

From a dialog prompt If the pass phrase is not specified in any other way, Artix will prompt the
user for the pass phrase as the application starts up. This approach is
suitable for persistent (that is, manually-launched) servers.

C++ Applications

When a C++ application starts up, the user is prompted for the pass phrase
at the command line as follows:

Initializing the ORB
Enter password :

In a password file The pass phrase is stored in a password file whose location is specified in
the principal_sponsor:auth_method_data configuration variable using the
password_file option. In the following example, the SecureApp scope
configures the principal sponsor as follows:

Artix Configuration File
SecureApp {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=X509Deploy/certs/administrator.p12",
"password_file=X509Deploy/certs/administrator.pwf"];

 ...
};
 202

Providing a Certificate Pass Phrase
In this example, the pass phrase for the bank_server.p12 certificate is
stored in the administrator.pwf file, which contains the following pass
phrase:

administratorpass

Directly in configuration For a PKCS #12 file, the pass phrase can be specified directly in the
principal_sponsor:auth_method_data configuration variable using the
password option. For example, the bank_server demonstration configures
the principal sponsor as follows:

In this example, the pass phrase for the bank_server.p12 certificate is
bankserverpass.

WARNING: Because the password file stores the pass phrase in plain text,
the password file should not be readable by anyone except the
administrator. For greater security, you could supply the pass phrase from
a dialog prompt instead.

Artix Configuration File
bank_server {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\demos\ban
k_server.p12", "password=bankserverpass"];

};

WARNING: Storing the pass phrase directly in configuration is not
recommended for deployed systems. The pass phrase is in plain text and
could be read by anyone.
203

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication
Advanced Configuration Options

Overview For added security, the HTTPS and IIOP/TLS transports allows you to apply
extra conditions on certificates. Before reading this section you might find it
helpful to consult “Managing Certificates” on page 161, which provides
some background information on the structure of certificates.

In this section This section discusses the following advanced IIOP/TLS configuration
options:

Setting a Maximum Certificate Chain Length page 205

Applying Constraints to Certificates page 206
 204

Advanced Configuration Options
Setting a Maximum Certificate Chain Length

Max chain length policy You can use the maximum chain length policy to enforce the maximum
length of certificate chains presented by a peer during handshaking.

A certificate chain is made up of a root CA at the top, an application
certificate at the bottom and any number of CA intermediaries in between.
The length that this policy applies to is the (inclusive) length of the chain
from the application certificate presented to the first signer in the chain that
appears in the list of trusted CA's (as specified in the
TrustedCAListPolicy).

Example For example, a chain length of 2 mandates that the certificate of the
immediate signer of the peer application certificate presented must appear
in the list of trusted CA certificates.

Configuration variable You can specify the maximum length of certificate chains used in maximum
chain length policy with the policies:iiop_tls:max_chain_length_policy
and policies:max_chain_length_policy configuration variable. For
example:

policies:iiop_tls:max_chain_length_policy = "4";

Default value The default value is 2 (that is, the application certificate and its signer,
where the signer must appear in the list of trusted CA’s.
205

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication
Applying Constraints to Certificates

Certificate constraints policy You can use the certificate constraints policy to apply constraints to peer
X.509 certificates. These conditions are applied to the owner’s distinguished
name (DN) on the first certificate (peer certificate) of the received certificate
chain. Distinguished names are made up of a number of distinct fields, the
most common being Organization Unit (OU) and Common Name (CN).

Configuration variable You can specify a list of constraints to be used by the certificate constraints
policy through the policies:iiop_tls:certificate_constraints_policy
or policies:certificate_constraints_policy configuration variable. For
example:

policies:iiop_tls:certificate_constraints_policy =
["CN=Johnny*,OU=[unit1|IT_SSL],O=IONA,C=Ireland,ST=Dublin,L=Ea
rth","CN=Paul*,OU=SSLTEAM,O=IONA,C=Ireland,ST=Dublin,L=Earth",

"CN=TheOmnipotentOne"];

Constraint language These are the special characters and their meanings in the constraint list:

 * Matches any text. For example:

an* matches ant and anger, but not aunt

[] Grouping symbols.

 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1
or IT_SSL, the certificate is acceptable.

 =, != Signify equality and inequality respectively.
 206

Advanced Configuration Options
Example This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",

"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

If
The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "CN=" is recognized.

Distinguished names For more information on distinguished names, see “ASN.1 and
Distinguished Names” on page 395.
207

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication
 208

CHAPTER 12

Configuring
HTTPS and
IIOP/TLS Secure
Associations
The Artix HTTPS and IIOP/TLS transport layers offer additional
functionality that enables you to customize client-server
connections by specifying secure invocation policies and
security mechanism policies.

In this chapter This chapter discusses the following topics:

Overview of Secure Associations page 210

Setting Association Options page 212

Specifying Cipher Suites page 225

Caching Sessions page 235
209

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
Overview of Secure Associations

Secure association A secure association is a term that has its origins in the CORBA Security
Service and refers to any link between a client and a server that enables
invocations to be transmitted securely. In the present context, a secure
association is a HTTPS connection or an IIOP/TLS connection augmented by
a collection of security policies that govern the behavior of the connection.

TLS session A TLS session is the TLS implementation of a secure client-server
association. The TLS session is accompanied by a session state that stores
the security characteristics of the association.

A TLS session underlies each secure association in Artix.

Colocation For colocated invocations, that is where the calling code and called code
share the same address space, Artix supports the establishment of colocated
secure associations. A special interceptor, TLS_Coloc, is provided by the
security plug-in to optimize the transmission of secure, colocated
invocations.

Configuration overview The security characteristics of an association can be configured through the
following CORBA policy types:

• Client secure invocation policy—enables you to specify the security
requirements on the client side by setting association options. See
“Choosing Client Behavior” on page 217 for details.

• Target secure invocation policy—enables you to specify the security
requirements on the server side by setting association options. See
“Choosing Target Behavior” on page 219 for details.

• Mechanism policy—enables you to specify the security mechanism
used by secure associations. In the case of TLS, you are required to
specify a list of cipher suites for your application. See “Specifying
Cipher Suites” on page 225 for details.
 210

Overview of Secure Associations
Figure 31 illustrates all of the elements that configure a secure association.
The security characteristics of the client and the server can be configured
independently of each other.

Figure 31: Configuration of a Secure Association

Client

Client Invocation
Policy

Client Configuration

Association Options

Specified Cipher SuitesMechanism Policy

Secure Association
Server

Server Configuration

Target Invocation
Policy

Association Options

Specified Cipher SuitesMechanism Policy
211

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
Setting Association Options

Overview This section explains the meaning of the various association options and
describes how you can use the association options to set client and server
secure invocation policies for HTTPS and IIOP/TLS connections.

In this section The following subsections discuss the meaning of the settings and flags:

Secure Invocation Policies page 213

Association Options page 215

Choosing Client Behavior page 217

Choosing Target Behavior page 219

Hints for Setting Association Options page 221
 212

Setting Association Options
Secure Invocation Policies

Secure invocation policies You can set the minimum security requirements for the applications in your
system with two types of security policy:

• Client secure invocation policy—specifies the client association
options.

• Target secure invocation policy—specifies the association options on a
target object.

These policies can only be set through configuration; they cannot be
specified programmatically by security-aware applications.

IIOP/TLS configuration example For example, to specify that client authentication is required for IIOP/TLS
connections, you can set the following target secure invocation policy for
your server:

Artix Configuration File
secure_server_enforce_client_auth
{
 # IIOP/TLS Association Options
 policies:iiop_tls:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 # Other settings (not shown)...
};
213

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
HTTPS configuration example For example, to specify that client authentication is required for HTTPS
connections, you can set the following target secure invocation policy for
your server:

Artix Configuration File
secure_server_enforce_client_auth
{
 # HTTPS Association Options
 policies:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality"];

 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 # Other settings (not shown)...
};
 214

Setting Association Options
Association Options

Available options You can use association options to configure IIOP/TLS secure associations.
They can be set for clients or servers where appropriate. These are the
available options:

• NoProtection

• Integrity

• Confidentiality

• DetectReplay

• DetectMisordering

• EstablishTrustInTarget

• EstablishTrustInClient

NoProtection Use the NoProtection flag to set minimal protection.This means that
insecure bindings are supported, and (if the application supports something
other than NoProtection) the target can accept secure and insecure
invocations.

Integrity Use the Integrity flag to indicate that your application supports
integrity-protected invocations. Setting this flag implies that your TLS cipher
suites support message digests (such as MD5, SHA1).

Confidentiality Use the Confidentiality flag if your application requires or supports at
least confidentiality-protected invocations. The object can support this
feature if the cipher suites specified by the MechanismPolicy support
confidentiality-protected invocations.

DetectReplay Use the DetectReplay flag to indicate that your application supports or
requires replay detection on invocation messages. This is determined by
characteristics of the supported TLS cipher suites.

DetectMisordering Use the DetectMisordering flag to indicate that your application supports
or requires error detection on fragments of invocation messages. This is
determined by characteristics of the supported TLS cipher suites.
215

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
EstablishTrustInTarget The EstablishTrustInTarget flag is set for client policies only. Use the flag
to indicate that your client supports or requires that the target authenticate
its identity to the client. This is determined by characteristics of the
supported TLS cipher suites. This is normally set for both client supports
and requires unless anonymous cipher suites are supported.

EstablishTrustInClient Use the EstablishTrustInClient flag to indicate that your target object
requires the client to authenticate its privileges to the target. This option
cannot be required as a client policy.

If this option is supported on a client’s policy, it means that the client is
prepared to authenticate its privileges to the target. On a target policy, the
target supports having the client authenticate its privileges to the target.
 216

Setting Association Options
Choosing Client Behavior

Client secure invocation policy The client secure invocation policy type determines how a client handles
security issues.

IIOP/TLS configuration You can set this policy for IIOP/TLS connections through the following
configuration variables:

policies:iiop_tls:client_secure_invocation_policy:requires

Specifies the minimum security features that the client requires to
establish an IIOP/TLS connection.

policies:iiop_tls:client_secure_invocation_policy:supports

Specifies the security features that the client is able to support on
IIOP/TLS connections.

HTTPS configuration You can set this policy for HTTPS connections through the following
configuration variables:

policies:client_secure_invocation_policy:requires

Specifies the minimum security features that the client requires to
establish a HTTPS connection.

policies:client_secure_invocation_policy:supports

Specifies the security features that the client is able to support on
HTTPS connections.

Association options In both cases, you provide the details of the security levels in the form of
AssociationOption flags—see “Association Options” on page 215.

Default value The default value for the client secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget
217

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
Example The following example shows some sample settings for the client secure
invocation policy:

Artix Configuration File
 bank_client {
 ...
 policies:iiop_tls:client_secure_invocation_policy:requires =
 ["Confidentiality", "EstablishTrustInTarget"];

 policies:iiop_tls:client_secure_invocation_policy:supports =
 ["Confidentiality", "Integrity", "DetectReplay",
 "DetectMisordering", "EstablishTrustInTarget"];
 };
 ...
};
 218

Setting Association Options
Choosing Target Behavior

Target secure invocation policy The target secure invocation policy type operates in a similar way to the
client secure invocation policy type. It determines how a target handles
security issues.

IIOP/TLS configuration You can set the target secure invocation policy for IIOP/TLS connections
through the following configuration variables:

policies:iiop_tls:target_secure_invocation_policy:requires

Specifies the minimum security features that your targets require,
before they accept an IIOP/TLS connection.

policies:iiop_tls:target_secure_invocation_policy:supports

Specifies the security features that your targets are able to support on
IIOP/TLS connections.

HTTPS configuration You can set the target secure invocation policy for HTTPS connections
through the following configuration variables:

policies:target_secure_invocation_policy:requires

Specifies the minimum security features that your targets require,
before they accept a HTTPS connection.

policies:target_secure_invocation_policy:supports

Specifies the security features that your targets are able to support on
HTTPS connections.

Association options In both cases, you can provide the details of the security levels in the form of
AssociationOption flags—see “Association Options” on page 215.

Default value The default value for the target secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering
219

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
Example The following example shows some sample settings for the target secure
invocation policy:

Artix Configuration File
 ...
 bank_server {
 ...
 policies:iiop_tls:target_secure_invocation_policy:requires =
 ["Confidentiality"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
 ["Confidentiality", "Integrity", "DetectReplay",
 "DetectMisordering", "EstablishTrustInTarget"];
 ...
 };
 ...
 220

Setting Association Options
Hints for Setting Association Options

Overview This section gives an overview of how association options can be used in
real applications.

Rules of thumb The following rules of thumb should be kept in mind:

• If an association option is required by a particular invocation policy, it
must also be supported by that invocation policy. It makes no sense to
require an association option without supporting it.

• It is important to be aware that the secure invocation policies and the
security mechanism policy mutually interact with each other. That is,
the association options effective for a particular secure association
depend on the available cipher suites (see “Constraints Imposed on
Cipher Suites” on page 232).

• The NoProtection option must appear alone in a list of required
options. It does not make sense to require other security options in
addition to NoProtection.

Types of association option Association options can be categorized into the following different types, as
shown in Table 2.

Table 2: Description of Different Types of Association Option

Description Relevant Association Options

Request or require TLS peer
authentication.

EstablishTrustInTarget and
EstablishTrustInClient.

Quality of protection. Confidentiality, Integrity,
DetectReplay, and
DetectMisordering.

Allow or require insecure
connections.

NoProtection.
221

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
EstablishTrustInTarget and
EstablishTrustInClient

These association options are used as follows:

• EstablishTrustInTarget—determines whether a server sends its own
X.509 certificate to a client during the SSL/TLS handshake. In
practice, secure Artix applications must enable
EstablishTrustInTarget, because all of the cipher suites supported
by Artix require it.

The EstablishTrustInTarget association option should appear in all
of the configuration variables shown in the relevant row of Table 3.

• EstablishTrustInClient—determines whether a client sends its own
X.509 certificate to a server during the SSL/TLS handshake. The
EstablishTrustInClient feature is optional and various combinations
of settings are possible involving this assocation option.

The EstablishTrustInClient association option can appear in any of
the configuration variables shown in the relevant row of Table 3.

Table 3: Setting EstablishTrustInTarget and EstablishTrustInClient
Association Options

Association Option Client side—can appear in... Server side—can appear in...

EstablishTrustInTarget policies:client_secure_invocation_pol

icy:supports

policies:client_secure_invocation_pol

icy:requires

policies:target_secure_invoca

tion_policy:supports

EstablishTrustInClient policies:client_secure_invocation_pol

icy:supports
policies:target_secure_invoca

tion_policy:supports

policies:target_secure_invoca

tion_policy:requires

Note: The SSL/TLS client authentication step can also be affected by the
policies:allow_unauthenticated_clients_policy configuration
variable. See “policies” on page 328.
 222

Setting Association Options
Confidentiality, Integrity,
DetectReplay, and
DetectMisordering

These association options can be considered together, because normally you
would require either all or none of these options. Most of the cipher suites
supported by Orbix support all of these association options, although there
are a couple of integrity-only ciphers that do not support Confidentiality
(see Table 7 on page 233). As a rule of thumb, if you want security you
generally would want all of these association options.

A typical secure application would list all of these association options in all
of the configuration variables shown in Table 4.

NoProtection The NoProtection association option is used for two distinct purposes:

• Disabling security selectively—security is disabled, either in the client
role or in the server role, if NoProtection appears as the sole required
association option and as the sole supported association option in a
secure invocation policy. This mechanism is selective in the sense that
the client role and the server role can be independently configured as
either secure or insecure.

Table 4: Setting Quality of Protection Association Options

Association Options Client side—can appear in... Server side—can appear in...

Confidentiality,
Integrity,
DetectReplay, and
DetectMisordering

policies:client_secure_invocation_pol

icy:supports

policies:client_secure_invocation_pol

icy:requires

policies:target_secure_invoca

tion_policy:supports

policies:target_secure_invoca

tion_policy:requires

Note: Some of the sample configurations appearing in the generated
configuration file require Confidentiality, but not the other qualities of
protection. In practice, however, the list of required association options is
implicitly extended to include the other qualities of protection, because the
cipher suites that support Confidentiality also support the other
qualities of protection. This is an example of where the security
mechanism policy interacts with the secure invocation policies.

Note: In this case, the orb_plugins configuration variable should
include the iiop plug-in to enable insecure IIOP communication.
223

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
• Making an application semi-secure—an application is semi-secure,
either in the client role or in the server role, if NoProtection appears as
the sole required association option and as a supported association
option along with other secure association options. The meaning of
semi-secure in this context is, as follows:

♦ Semi-secure client—the client will open either a secure or an
insecure connection, depending on the disposition of the server
(that is, depending on whether the server accepts only secure
connections or only insecure connections). If the server is
semi-secure, the type of connection opened depends on the order
of the bindings in the binding:client_binding_list.

♦ Semi-secure server—the server accepts connections either from a
secure or an insecure client.

Table 5 shows the configuration variables in which the NoProtection
association option can appear.

Note: In this case, the orb_plugins configuration variable should
include both the iiop_tls plug-in and the iiop plug-in.

Table 5: Setting the NoProtection Association Option

Association Option Client side—can appear in... Server side—can appear in...

NoProtection policies:client_secure_invocation_pol

icy:supports

policies:client_secure_invocation_pol

icy:requires

policies:target_secure_invoca

tion_policy:supports

policies:target_secure_invoca

tion_policy:requires
 224

Specifying Cipher Suites
Specifying Cipher Suites

Overview This section explains how to specify the list of cipher suites that are made
available to an application (client or server) for the purpose of establishing
IIOP/TLS and HTTPS secure associations. During a security handshake, the
client chooses a cipher suite that matches one of the cipher suites available
to the server. The cipher suite then determines the security algorithms that
are used for the secure association.

In this section This section contains the following subsections:

Supported Cipher Suites page 226

Setting the Mechanism Policy page 229

Constraints Imposed on Cipher Suites page 232
225

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
Supported Cipher Suites

Artix cipher suites The following cipher suites are supported by IIOP/TLS and HTTPS, which
are both implemented using the Baltimore security toolkit:

• Null encryption, integrity-only ciphers:
RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

• Standard ciphers
RSA_EXPORT_WITH_RC4_40_MD5
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_EXPORT_WITH_DES40_CBC_SHA
RSA_WITH_DES_CBC_SHA
RSA_WITH_3DES_EDE_CBC_SHA

Security algorithms Each cipher suite specifies a set of three security algorithms, which are used
at various stages during the lifetime of a secure association:

• Key exchange algorithm—used during the security handshake to
enable authentication and the exchange of a symmetric key for
subsequent communication. Must be a public key algorithm.

• Encryption algorithm—used for the encryption of messages after the
secure association has been established. Must be a symmetric (private
key) encryption algorithm.

• Secure hash algorithm—used for generating digital signatures. This
algorithm is needed to guarantee message integrity.

Key exchange algorithms The following key exchange algorithms are supported:

RSA Rivest Shamir Adleman (RSA) public key encryption
using X.509v3 certificates. No restriction on the key size.

RSA_EXPORT RSA public key encryption using X.509v3 certificates.
Key size restricted to 512 bits.
 226

Specifying Cipher Suites
Encryption algorithms The following encryption algorithms are supported:

Secure hash algorithms The following secure hash algorithms are supported:

Cipher suite definitions The Baltimore-based cipher suites in Artix are defined as follows:

RC4_40 A symmetric encryption algorithm developed by RSA
data security. Key size restricted to 40 bits.

RC4_128 RC4 with a 128-bit key.

DES40_CBC Data encryption standard (DES) symmetric encryption.
Key size restricted to 40 bits.

DES_CBC DES with a 56-bit key.

3DES_EDE_CBC Triple DES (encrypt, decrypt, encrypt) with an effective
key size of 168 bits.

MD5 Message Digest 5 (MD5) hash algorithm. This algorithm
produces a 128-bit digest.

SHA Secure hash algorithm (SHA). This algorithm produces a
160-bit digest, but is somewhat slower than MD5.

Table 6: Cipher Suite Definitions

Cipher Suite Key Exchange
Algorithm

Encryption
Algorithm

Secure Hash
Algorithm

Exportable?

RSA_WITH_NULL_MD5 RSA NULL MD5 yes

RSA_WITH_NULL_SHA RSA NULL SHA yes

RSA_EXPORT_WITH_RC4_40_MD5 RSA_EXPORT RC4_40 MD5 yes

RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5 no

RSA_WITH_RC4_128_SHA RSA RC4_128 SHA no

RSA_EXPORT_WITH_DES40_CBC_SHA RSA_EXPORT DES40_CBC SHA yes

RSA_WITH_DES_CBC_SHA RSA DES_CBC SHA no

RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA no
227

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
Reference For further details about cipher suites in the context of TLS, see RFC 2246
from the Internet Engineering Task Force (IETF). This document is available
from the IETF Web site: http://www.ietf.org.
 228

http://www.ietf.org

Specifying Cipher Suites
Setting the Mechanism Policy

Mechanism policy To specify IIOP/TLS cipher suites, use the mechanism policy. The
mechanism policy is a client and server side security policy that determines

• Whether SSL or TLS is used, and

• Which specific cipher suites are to be used.

The protocol_version
configuration variable

You can specify whether SSL, TLS or both are used with a transport protocol
by assigning a list of protocol versions to the
policies:iiop_tls:mechanism_policy:protocol_version configuration
variable for IIOP/TLS and the
policies:https:mechanism_policy:protocol_version configuration
variable for HTTPS. For example:

You can set the protocol_version configuration variable to include one or
more of the following protocols:

TLS_V1
SSL_V3

The order of the entries in the protocol_version list is unimportant. During
the SSL/TLS handshake, the highest common protocol will be negotiated.

Interoperating with CORBA
applications on OS/390

There are some implementations of SSL/TLS on the OS/390 platform that
erroneously send SSL V2 client hellos at the start of an SSL V3 or TLS V1
handshake. If you need to interoperate with a CORBA application running
on OS/390, you can configure Artix to accept SSL V2 client hellos using the
policies:iiop_tls:mechanism_policy:accept_v2_hellos configuration
variable for IIOP/TLS. For example:

The default is false.

Artix Configuration File
policies:iiop_tls:mechanism_policy:protocol_version = ["TLS_V1",

"SSL_V3"];

Artix Configuration File
policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";
229

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
The cipher suites configuration
variable

You can specify the cipher suites available to a transport protocol by setting
the policies:iiop_tls:mechanism_policy:ciphersuites configuration
variable for IIOP/TLS and the
policies:https:mechanism_policy:ciphersuites configuration variable
for HTTPS. For example:

Cipher suite order The order of the entries in the mechanism policy’s cipher suites list is
important.

During a security handshake, the client sends a list of acceptable cipher
suites to the server. The server then chooses the first of these cipher suites
that it finds acceptable. The secure association is, therefore, more likely to
use those cipher suites that are near the beginning of the ciphersuites list.

Valid cipher suites You can specify any of the following cipher suites:

• Null encryption, integrity only ciphers:
RSA_WITH_NULL_MD5,
RSA_WITH_NULL_SHA

• Standard ciphers
RSA_EXPORT_WITH_RC4_40_MD5,
RSA_WITH_RC4_128_MD5,
RSA_WITH_RC4_128_SHA,
RSA_EXPORT_WITH_DES40_CBC_SHA,
RSA_WITH_DES_CBC_SHA,
RSA_WITH_3DES_EDE_CBC_SHA

Default values If no cipher suites are specified through configuration or application code,
the following apply:

RSA_WITH_RC4_128_SHA,
RSA_WITH_RC4_128_MD5,
RSA_WITH_3DES_EDE_CBC_SHA,
RSA_WITH_DES_CBC_SHA

Artix Configuration File
policies:iiop_tls:mechanism_policy:ciphersuites =
 ["RSA_WITH_NULL_MD5",
 "RSA_WITH_NULL_SHA",
 "RSA_EXPORT_WITH_RC4_40_MD5",
 "RSA_WITH_RC4_128_MD5"];
 230

Specifying Cipher Suites
That is, by default all of the null encryption cipher suites are disabled and all
of the non-export cipher suites are supported.
231

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
Constraints Imposed on Cipher Suites

Effective cipher suites Figure 32 shows that cipher suites initially specified in the configuration are
not necessarily made available to the application. Artix checks each cipher
suite for compatibility with the specified association options and, if
necessary, reduces the size of the list to produce a list of effective cipher
suites.

Required and supported
association options

For example, in the context of the IIOP/TLS protocol the list of cipher suites
is affected by the following configuration options:

• Required association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:requires on
the client side, or
policies:iiop_tls:target_secure_invocation_policy:requires on
the server side.

• Supported association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:supports on
the client side, or
policies:iiop_tls:target_secure_invocation_policy:supports on
the server side.

Figure 32: Constraining the List of Cipher Suites

Association
Options

Specified
Cipher Suites

constrain

Effective
Cipher Suites

yields
 232

Specifying Cipher Suites
Cipher suite compatibility table Use Table 7 to determine whether or not a particular cipher suite is
compatible with your association options.

Determining compatibility The following algorithm is applied to the initial list of cipher suites:

1. For the purposes of the algorithm, ignore the EstablishTrustInClient
and EstablishTrustInTarget association options. These options have
no effect on the list of cipher suites.

2. From the initial list, remove any cipher suite whose supported
association options (see Table 7) do not satisfy the configured required
association options.

3. From the remaining list, remove any cipher suite that supports an
option (see Table 7) not included in the configured supported
association options.

Table 7: Association Options Supported by Cipher Suites

Cipher Suite Supported Association Options

RSA_WITH_NULL_MD5 Integrity, DetectReplay,
DetectMisordering

RSA_WITH_NULL_SHA Integrity, DetectReplay,
DetectMisordering

RSA_EXPORT_WITH_RC4_40_MD5 Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_WITH_RC4_128_MD5 Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_WITH_RC4_128_SHA Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_EXPORT_WITH_DES40_CBC_SHA Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_WITH_DES_CBC_SHA Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_WITH_3DES_EDE_CBC_SHA Integrity, DetectReplay,
DetectMisordering, Confidentiality
233

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
No suitable cipher suites available If no suitable cipher suites are available as a result of incorrect
configuration, no communications will be possible and an exception will be
raised. Logging also provides more details on what went wrong.

Example For example, specifying a cipher suite such as RSA_WITH_RC4_128_MD5 that
supports Confidentiality, Integrity, DetectReplay, DetectMisordering,
EstablishTrustInTarget (and optionally EstablishTrustInClient) but
specifying a secure_invocation_policy that supports only a subset of
those features results in that cipher suite being ignored.
 234

Caching Sessions
Caching Sessions

Session caching policy You can use the IIOP/TLS and HTTPS session caching policies to control
TLS session caching and reuse for both the client side and the server side.

Configuration variable You can set the session caching policy with the
policies:iiop_tls:session_caching_policy or
policies:session_caching_policy configuration variables. For example:

policies:iiop_tls:session_caching_policy = "CACHE_CLIENT";

Valid values You can apply the following values to the session caching policy:

CACHE_NONE,
CACHE_CLIENT,
CACHE_SERVER,
CACHE_SERVER_AND_CLIENT

Default value The default value is CACHE_NONE.

Configuration variable plugins:atli_tls_tcp:session_cache_validity_period

This allows control over the period of time that SSL/TLS session caches
are valid for.

Valid values session_cache_validity_period is specified in seconds.

Default value The default value is 1 day.

Configuration variable plugins:atli_tls_tcp:session_cache_size

session_cache_size is the maximum number of SSL/TLS sessions that
are cached before sessions are flushed from the cache.

Default value This defaults to no limit specified for C++.
235

CHAPTER 12 | Configuring HTTPS and IIOP/TLS Secure Associations
 236

CHAPTER 13

Principal
Propagation
Principal propagation is a compatibility feature of Artix that is
designed to facilitate interoperability with legacy Orbix
applications.

In this chapter This chapter discusses the following topics:

Introduction to Principal Propagation page 238

Configuring page 239

Programming page 242

Interoperating with .NET page 245
237

CHAPTER 13 | Principal Propagation
Introduction to Principal Propagation

Overview Artix principal propagation is a transport-neutral mechanism that can be
used to transmit a secure identity from a client to a server. It is not
recommended that you use this feature in new applications. Principal
propagation is provided primarily in order to facilitate interoperability with
legacy Orbix applications.

Supported bindings/transports Support for principal propagation is limited to the following bindings and
transports:

• CORBA binding—the principal is sent in a GIOP service context.

• SOAP over HTTP—the principal is sent in a SOAP header.

Interoperability The primary purpose of Artix principal propagation is to facilitate
interoperability with legacy Orbix applications, in particular for applications
running on the mainframe.

Because Artix uses standard mechanisms to propagate the principal, this
feature ought to be compatible with third-party products as well.

WARNING: By default, the principal is propagated across the wire in
plaintext. Hence, the principal is vulnerable to snooping. To protect
against this possibility, you should enable SSL for your application.

Note: If a CORBA call is colocated, the principal is not propagated unless
you remove the POA_Coloc interceptor from the binding lists in the
artix.cfg file. This has the effect of disabling the CORBA colocated
binding optimization.
 238

Configuring
Configuring

Overview This section describes how to configure Artix to use principal propagation.
The following aspects of configuration are described:

• CORBA.

• SOAP over HTTP.

• Routing.

CORBA To use principal propagation with a CORBA binding, you must set the
following configuration variables in your artix.cfg file (located in the
ArtixInstallDir/artix/Version/etc/domains directory):

You can either add these settings to the global scope or to a specific
sub-scope (in which case you must specify the sub-scope to the -ORBname
command line switch when running the Artix application).

SOAP over HTTP SOAP over HTTP requires no special configuration to support principal
propagation. The Artix SOAP binding will always add a principal header.
The following cases arise:

• Principal set explicitly—the specified principal is sent in the principal
header.

• Principal not set—Artix reads the username from the operating system
and sends this username in the principal header.

Note: Principal configuration is not supported for any other bindings,
apart from CORBA and SOAP over HTTP.

Example 43:Configuring Principal Propagation for a CORBA Binding

policies:giop:interop_policy:send_principal = "true";
policies:giop:interop_policy:enable_principal_service_context =

"true";
239

CHAPTER 13 | Principal Propagation
If you want a SOAP server to authenticate a propagated principal using the
Artix security service, however, you do need to add some settings to the
server’s configuration scope in your artix.cfg file, as shown in
Example 44.

Setting plugins:asp:security_level equal to REQUEST_LEVEL specifies that
the received principal serves as the username for the purpose of
authentication. The plugins:asp:default_password value serves as the
password for the purpose of authentication. This latter setting is necessary
because, although the Artix security service requires a password, there is no
password propagated with the principal.

The net effect of the configuration shown in Example 44 is that the SOAP
server performs authentication by contacting the central Artix security
service.

See also “Security Layer” on page 17 and “Configuring the Artix Security
Service” on page 103 for more details about configuring the Artix security
service.

Example 44:Configuring Principal Authentication for SOAP

Security Layer Settings
policies:asp:enable_authorization = "true";
plugins:is2_authorization:action_role_mapping =

"file://C:\artix/artix/1.2/demos/secure_hello_world/http_soap
/config/helloworld_action_role_mapping.xml";

plugins:asp:authorization_realm = "IONAGlobalRealm";

plugins:asp:security_level = "REQUEST_LEVEL";
plugins:asp:default_password = "default_password";

WARNING: The procedure of supplying a default password for the
principal enables you to integrate principals with the Artix security service.
Users identified in this way, however, do not have the same status as
properly authenticated users. For security purposes, such users should
enjoy lesser privileges and be treated in the same way as unauthenticated
users.
 240

Configuring
Routing The Artix router automatically propagates the Principal from the route
source to the route destination, as long as the bindings in the route are
either CORBA or SOAP/HTTP.
241

CHAPTER 13 | Principal Propagation
Programming

Overview This section describes how to program an Artix client and server to set
(client side) and get (server side) a principal value.

The code examples are written using the contexts API. For more details
about contexts, see Developing Artix Applications in C++.

Client example Example 45 shows how to set the principal prior to invoking an operation,
echoString(), on a proxy object, of MyProxy type.

Example 45:Setting a Principal on the Client Side

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the bus-security context
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/context_constants.h>

IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Obtain a reference to the ContextCurrent
 ContextCurrent& context_current =
 context_registry->get_current();
 242

Programming
The preceding code can be explained as follows:

1. Call IT_Bus::ContextContainer::set_context_as_string() to
initialize the string value of the principal context. The
IT_ContextAttributes::PRINCIPAL_CONTEXT_ATTRIBUTE constant is a
QName constant, initialized with the context name of the
pre-registered principal context.

 // Obtain a pointer to the Request ContextContainer
 ContextContainer* context_container =
 context_current.request_contexts();

 // Set the principal context value
 IT_Bus::String principal("artix_user");

1 context_container->set_context_as_string(
 PRINCIPAL_CONTEXT_ATTRIBUTE,
 principal
);
 ...
 // Invoke the remote operation, echoString()
 MyProxy echo_proxy;
 echo_proxy.echoString("Echo me!")
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 45:Setting a Principal on the Client Side
243

CHAPTER 13 | Principal Propagation
Server example Example 46 shows how to read the principal on the server side, when the
servant is invoked by a client that uses principal propagation.

The preceding server example can be explained as follows:

1. The IT_Bus::ContextContainer::get_context_as_string() function
returns the principal value that was extracted from the received request
message.

Example 46:Reading the Principal on the Server Side

// C++
// in operation
void MyImpl::echoString(const IT_Bus::String& inputString,
 IT_Bus::String& Response)
IT_THROW_DECL((IT_Bus::Exception))
{
 Response = inputString;
 try {
 IT_Bus::Bus_var bus = IT_Bus::Bus::create_reference();

 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Obtain a reference to the ContextCurrent
 ContextCurrent& context_current =
 context_registry->get_current();

 // Obtain a pointer to the Request ContextContainer
 ContextContainer* context_container =
 context_current.request_contexts();

 // Obtain a reference to the context
1 IT_Bus::String & principal =

 context_container->get_context_as_string(
 PRINCIPAL_CONTEXT_ATTRIBUTE,
);
 ...
 }
 catch(IT_Bus::Exception& e) { ... }
}

 244

Interoperating with .NET
Interoperating with .NET

Overview If your Artix applications must interoperate with other Web service products,
for example .NET, you need to modify your WSDL contract in order to make
the principal header interoperable. This section describes the changes you
can make to a WSDL contract to facilitate interoperability with other Web
services platforms.

In this section This section contains the following subsections:

Explicitly Declaring the Principal Header page 246

Modifying the SOAP Header page 248
245

CHAPTER 13 | Principal Propagation
Explicitly Declaring the Principal Header

Overview Artix applications do not require any modifications to the WSDL contract in
order to use principal headers. An Artix service is inherently able to read a
user’s principal from a received SOAP header.

In contrast to this, non-Artix services, for example, .NET services, require
the principal header to be declared explicitly in the WSDL contract.
Otherwise, the non-Artix services would be unable to access the principal.

Declaring the principal header in
WSDL

Example 47 shows the typical modifications you must make to a WSDL
contract in order to make the principal value accessible to non-Artix
applications.

Example 47:WSDL Declaration of the Principal Header

<definitions ... >
 <types>
 <schema targetNamespace="TypeSchema" ... >
 ...

1 <element name="principal" type="xsd:string"/>
 ...
 </schema>
 </type>
 ...

2 <message targetNamespace="http://schemas.iona.com/security"
 name="principal">

3 <part element="TypePrefix:principal" name="principal"/>
 </message>
 ...

4 <binding ... xmlns:sec="http://schemas.iona.com/security">
 ...

5 <operation ...>
 ...
 <input>
 <soap:body ...>

6 <soap:header message="sec:principal"
 part="principal" use="literal">
 </input>
 </operation>
 </binding>
 ...
</definitions>
 246

Interoperating with .NET
The preceding WSDL extract can be explained as follows:

1. Declare a principal element in the type schema, which must be
declared to be of type, xsd:string. In this example, the principal
element belongs to the TypeSchema namespace.

2. Add a new message element.

3. The <part> tag’s element attribute is set equal to the QName of the
preceding principal element. Hence, in this example the TypePrefix
appearing in element="TypePrefix:principal" must be a prefix
associated with the TypeSchema namespace.

4. Edit the binding, or bindings, for which you might need to access the
principal header. You should define a prefix for the
http://schemas.iona.com/security namespace within the <binding>
tag, which in this example is sec.

5. Edit each operation for which you might need to access the principal
header.

6. Add a <soap:header> tag to the operation’s input part, as shown.
247

CHAPTER 13 | Principal Propagation
Modifying the SOAP Header

Overview It is possible to change the default format of the principal header by making
appropriate modifications to the WSDL contract. It is usually not necessary
to modify the header format in this way, but in some cases it could facilitate
interoperability.

Default SOAP header By default, when a client uses principal propagation with SOAP over HTTP,
the input message sent over the wire includes the following form of header:

Custom SOAP header You can change the form of the SOAP header that is sent over the wire to
have the following custom format (replacing <sec:principal> by a custom
tag, <sec:PrincipalTag>):

WSDL modifications To change the tag that is sent in the SOAP header to be PrincipalTag, you
can modify your WSDL contract as shown in Example 48.

<SOAP-ENV:Header>
 <sec:principal xmlns:sec="http://schemas.iona.com/security"
 xsi:type="xsd:string">my_principal</sec:principal>
</SOAP-ENV:Header>

<SOAP-ENV:Header>
 <sec:PrincipalTag

xmlns:sec="http://schemas.iona.com/security"
 xsi:type="xsd:string">my_principal</sec:PrincipalTag>
</SOAP-ENV:Header>

Example 48:Customizing the Form of the Principal Header

<definitions ... >
 <types>
 <schema targetNamespace="TypeSchema" ... >
 ...

1 <element name="PrincipalTag" type="xsd:string"/>
 ...
 </schema>
 </type>
 ...
 248

Interoperating with .NET
The preceding WSDL extract can be explained as follows:

1. Modify the principal element in the type schema to give it an
arbitrary QName. In this example, the <PrincipalTag> element
belongs to the TypeSchema namespace.

2. The <part> tag’s element attribute is set equal to the QName of the
preceding principal element. Hence, in this example the TypePrefix
appearing in element="TypePrefix:PrincipalTag" must be a prefix
associated with the TypeSchema namespace.

3. The <soap:header> tag must be defined precisely as shown here. That
is, when writing or reading a principal header, Artix looks for the
principal part of the message with QName, principal, in the
namespace, http://schemas.iona.com/security.

 <message targetNamespace="http://schemas.iona.com/security"
 name="principal">

2 <part element="TypePrefix:PrincipalTag"
name="principal"/>

 </message>
 ...
 <binding ... xmlns:sec="http://schemas.iona.com/security">
 ...
 <operation ...>
 ...
 <input>
 <soap:body ...>

3 <soap:header message="sec:principal"
 part="principal" use="literal">
 </input>
 </operation>
 </binding>
 ...
</definitions>

Example 48:Customizing the Form of the Principal Header
249

CHAPTER 13 | Principal Propagation
 250

CHAPTER 14

Programming
Authentication
To ensure that Web services and Web service clients
developed using Artix can interoperate with the widest possible
array of Web services, Artix supports the WS Security
specification for propagating Kerberos security tokens and
username/password security tokens in SOAP message
headers. The security tokens are placed into the SOAP
message header using Artix APIs that format the tokens and
place them in the header correctly.

In this chapter This chapter discusses the following topics:

Propagating a Username/Password Token page 252

Propagating a Kerberos Token page 257
251

CHAPTER 14 | Programming Authentication
Propagating a Username/Password Token

Overview Many Web services use simple username/password authentication to ensure
that only preapproved clients an access them. Artix provides a simple client
side API for embedding the username and password into the SOAP message
header of requests in a WS Security compliant manner.

C++ Procedure Embedding a username and password token into the SOAP header of a
request in Artix C++ requires you to do the following:

1. Make sure that your application makefile is configured to link with the
it_context_attribute library (it_context_attribute.lib on
Windows and it_context_attribute.so or it_context_attribute.a
on UNIX) which contains the bus-security context stub code.

2. Get a reference to the current IT_ContextAttributes::BusSecurity
context data type, using the Artix context API (see Developing Artix
Applications in C++).

3. Set the WSSEUsernameToken property on the BusSecurity context using
the setWSSEUsernameToken() method.

4. Set the WSSEPasswordToken property on the BusSecurity context using
the setWSSEPasswordToken() method.

C++ Example Example 49 shows how to set the Web services username/password token
in a C++ client prior to invoking a remote operation.

Example 49:Setting a WS Username/Password Token in a C++ Client

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the bus-security context
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/bus_security_xsdTypes.h>
 252

Propagating a Username/Password Token
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Obtain a reference to the ContextCurrent
 ContextCurrent& context_current =
 context_registry->get_current();

 // Obtain a pointer to the Request ContextContainer
 ContextContainer* context_container =
 context_current.request_contexts();

 // Obtain a reference to the context
1 AnyType* info = context_container->get_context(

 IT_ContextAttributes::SECURITY_SERVER_CONTEXT,
 true
);

 // Cast the context into a BusSecurity object
2 BusSecurity* bus_security_ctx =

 dynamic_cast<BusSecurity*> (info);

 // Set the WS Username and Password tokens
3 bus_security_ctx->setWSSEUsernameToken("artix_user");

 bus_security_ctx->setWSSEPasswordToken("artix");
 ...
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }

Example 49:Setting a WS Username/Password Token in a C++ Client
253

CHAPTER 14 | Programming Authentication
The preceding code can be explained as follows:

1. Call the IT_Bus::ContextContainer::get_context() function to
obtain a pointer to a BusSecurity object. The first parameter is the
QName of the BusSecurity context and the second parameter is set to
true, indicating that a context with that QName will be created if none
already exists.

2. Cast the IT_Bus::AnyType instance, info, to its derived type,
IT_ContextAttributes::BusSecurity, which is the bus-security
context data type.

3. Use the BusSecurity API to set the WSSE username and password
tokens. After this point, any SOAP operations invoked from the current
thread will include the specified WSSE username and password in the
request message.

Java Procedure Embedding a username and password token into the SOAP header of a
request in Artix Java requires you to do the following:

1. Create a new com.iona.schemas.bus.security_context.BusSecurity
context data object.

2. Set the WSSEUsernameToken property on the BusSecurity context using
the setWSSEUsernameToken() method.

3. Set the WSSEPasswordToken property on the BusSecurity context using
the setWSSEPasswordToken() method.

4. Set the bus-security context for the outgoing request message by
calling setRequestContext() on an IonaMessageContext object (see
Developing Artix Applications in Java).

 return 0;
}

Example 49:Setting a WS Username/Password Token in a C++ Client
 254

Propagating a Username/Password Token
Java Example Example 50 shows how to set the Web services username/password token
in a Java client prior to invoking a remote operation.

1. Create a new com.iona.schemas.bus.security_context.BusSecurity
object to hold the context data and initialize the WSSEUsernameToken
and WSSEPasswordToken properties on this BusSecurity object.

2. Initialize the name of the bus-security context. Because the
bus-security context type is pre-registered by the Artix runtime (thus
fixing the context name) the bus-security name must be set to the
value shown here.

Example 50:Setting a WS Username/Password Token in a Java Client

// Java
import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.jbus.ContextRegistry;
import com.iona.jbus.IonaMessageContext;
import com.iona.schemas.bus.security_context.BusSecurity;
import com.iona.schemas.bus.security_context.BusSecurityLevel;
...
// Set the BuSecurity Context
//---------------------------
// Insert the following lines of code prior to making a
// WS-secured invocation:

1 BusSecurity security = new BusSecurity();
security.setWSSEUsernameToken("user_test");
security.setWSSEPasswordToken("user_password");

2 QName SECURITY_CONTEXT =
 new QName(
 "http://schemas.iona.com/bus/security_context",
 "bus-security"
);

3 ContextRegistry registry = bus.getContextRegistry();
4 IonaMessageContext contextimpl =

(IonaMessageContext)registry.getCurrent();
5 contextimpl.setRequestContext(SECURITY_CONTEXT, security);

...
255

CHAPTER 14 | Programming Authentication
3. The com.iona.jbus.ContextRegistry object manages all of the
context objects for the application.

4. The com.iona.jbus.IonaMessageContext object returned from
getCurrent() holds all of the context data objects associated with the
current thread.

5. Call setRequestContext() to initialize the bus-security context for
outgoing request messages.
 256

Propagating a Kerberos Token
Propagating a Kerberos Token

Overview Using the Kerberos Authentication Service requires you to make a few
changes to your client code. First you need to acquire a valid Kerberos
token. Then you need to embed it into the SOAP message header of all the
request being made on the secure server.

Acquiring a Kerberos Token To get a security token from the Kerberos Authentication Service is you must
use platform specific APIs and then base64 encode the returned binary
token so that it can be placed into the SOAP header.

On UNIX platforms, use the GSS APIs to contact Kerberos and get a token
for the service you wish to make requests upon. On Windows platforms, use
the Microsoft Security Framework APIs to contact Kerberos and get a token
for the service you wish to contact.

C++ embedding the Kerberos
token in the SOAP header

Embedding a Kerberos token into the SOAP header of a request using the
Artix APIs requires you to do the following:

1. Make sure that your application makefile is configured to link with the
it_context_attribute library (it_context_attribute.lib on
Windows and it_context_attribute.so or it_context_attribute.a
on UNIX) which contains the bus-security context stub code.

2. Get a reference to the current IT_ContextAttributes::BusSecurity
context data type, using the Artix context API (see Developing Artix
Applications in C++).

3. Set the WSSEKerberosv5SToken property on the BusSecurity context
using the setWSSEKerberosv5SToken() method.
257

CHAPTER 14 | Programming Authentication
C++ Example Example 51 shows how to set the Kerberos token prior to invoking a remote
operation.

Example 51:Setting a Kerberos Token on the Client Side

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the bus-security context
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/bus_security_xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Obtain a reference to the ContextCurrent
 ContextCurrent& context_current =
 context_registry->get_current();

 // Obtain a pointer to the Request ContextContainer
 ContextContainer* context_container =
 context_current.request_contexts();

 // Obtain a reference to the context
1 AnyType* info = context_container->get_context(

 IT_ContextAttributes::SECURITY_SERVER_CONTEXT,
 true
);
 258

Propagating a Kerberos Token
The preceding code can be explained as follows:

1. The IT_Bus::ContextContainer::get_context() function is called
with its second parameter set to true, indicating that a context with
that name will be created if none already exists.

2. Cast the IT_Bus::AnyType instance, info, to its derived type,
IT_ContextAttributes::BusSecurity, which is the bus-security
context data type.

3. Use the BusSecurity API to set the WSSE Kerberos token,
kerberos_token_string. The argument to
setWSSEKerberosv5SToken() is a base-64 encoded Kerberos token
received from a Kerberos server.

The next operation invoked from this thread will include the specified
Kerberos token in the request message.

 // Cast the context into a BusSecurity object
2 BusSecurity* bus_security_ctx =

 dynamic_cast<BusSecurity*> (info);

 // Set the Kerberos token
3 bus_security_ctx->setWSSEKerberosv5SToken(

 kerberos_token_string
);
 ...
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 51:Setting a Kerberos Token on the Client Side
259

CHAPTER 14 | Programming Authentication
Java embedding the Kerberos
token in the SOAP header

Embedding a Kerberos token into the SOAP header of a request in Artix Java
requires you to do the following:

1. Create a new com.iona.schemas.bus.security_context.BusSecurity
context data object.

2. Set the WSSEKerberosv2SToken property on the BusSecurity context
using the setWSSEKerberosv2SToken() method.

3. Set the bus-security context for the outgoing request message by
calling setRequestContext() on an IonaMessageContext object (see
Developing Artix Applications in Java).

Java Example Example 52 shows how to set the Kerberos token in a Java client prior to
invoking a remote operation.

Example 52:Setting a Kerberos Token in a Java Client

// Java
import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.jbus.ContextRegistry;
import com.iona.jbus.IonaMessageContext;
import com.iona.schemas.bus.security_context.BusSecurity;
import com.iona.schemas.bus.security_context.BusSecurityLevel;
...
// Set the BuSecurity Context
//---------------------------
// Insert the following lines of code prior to making a
// WS-secured invocation:

1 BusSecurity security = new BusSecurity();
security.setWSSEKerberosv5SToken(kerberos_token_string);

2 QName SECURITY_CONTEXT =
 new QName(
 "http://schemas.iona.com/bus/security_context",
 "bus-security"
);

3 ContextRegistry registry = bus.getContextRegistry();
4 IonaMessageContext contextimpl =

(IonaMessageContext)registry.getCurrent();
 260

Propagating a Kerberos Token
1. Create a new com.iona.schemas.bus.security_context.BusSecurity
object to hold the context data and initialize the
WSSEKerberosv2SToken on this BusSecurity object.

The argument to setWSSEKerberosv5SToken() is a base-64 encoded
Kerberos token received from a Kerberos server.

2. Initialize the name of the bus-security context. Because the
bus-security context type is pre-registered by the Artix runtime (thus
fixing the context name) the bus-security name must be set to the
value shown here.

3. The com.iona.jbus.ContextRegistry object manages all of the
context objects for the application.

4. The com.iona.jbus.IonaMessageContext object returned from
getCurrent() holds all of the context data objects associated with the
current thread.

5. Call setRequestContext() to initialize the bus-security context for
outgoing request messages.

5 contextimpl.setRequestContext(SECURITY_CONTEXT, security);
...

Example 52:Setting a Kerberos Token in a Java Client
261

CHAPTER 14 | Programming Authentication
 262

CHAPTER 15

Configuring the
Artix Security
Plug-In
Artix allows you to configure a number of security features
directly from the Artix contract describing your system.

In this chapter This chapter discusses the following topics:

The Artix Security Plug-In page 264

Configuring an Artix Configuration File page 265

Configuring a WSDL Contract page 267
263

CHAPTER 15 | Configuring the Artix Security Plug-In
The Artix Security Plug-In

Overview This section describes how to initialize the Artix security plug-in, which is
responsible for performing authentication and authorization for non-CORBA
bindings (CORBA bindings use the gsp plug-in).

The Artix security plug-in implements only a part of Artix security.
Specifically, it is not responsible for transmitting credentials, nor does it
implement any cryptographic algorithms.

Load the artix_security plug-in Edit your application’s configuration scope in the artix.cfg file so that it
includes the following configuration settings:

The orb_plugins list for your application might differ from the one shown
here, but it should include the artix_security entry.

Artix Configuration File
...
orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop_tls", "soap", "at_http", "artix_security", "https"];

plugins:artix_security:shlib_name = "it_security_plugin";
binding:artix:server_request_interceptor_list = "security";
 264

Configuring an Artix Configuration File
Configuring an Artix Configuration File

Overview You can tailor the behavior of the Artix security plug-in by setting
configuration variables in the Artix configuration file, artix.cfg, as
described here. The settings in the configuration file are applied, by default,
to all the services and ports in your WSDL contract.

Namespace The XML namespace defining <bus-security:security> is
http://schemas.iona.com/bus/security. You need to add the following
line to the definitions element of any WSDL contracts that use the Artix
security plug-in:

Artix security plug-in
configuration variables

The complete set of Artix security plug-in variables, which are all optional,
are listed and described in Table 8. These settings are applied by default to
all services and ports in the WSDL contract.

xmlns:bus-security="http://schemas.iona.com/bus/security"

Table 8: The Artix Security Plug-In Configuration Variables

Configuration Variable Description

policies:asp:enable_security A boolean variable that enables the artix_security
plug-in. When true, the plug-in is enabled; when
false, the plug-in is disabled. Default is true.

plugins:is2_authorization:action_role_mapping A variable that specifies the action-role mapping file
URL.

policies:asp:enable_authorization A boolean variable that specifies whether Artix should
enable authorization using the Artix Security
Framework. Default is false.

plugins:asp:authentication_cache_size The maximum number of credentials stored in the
authentication cache. If exceeded, the oldest
credential in the cache is removed.

A value of -1 (the default) means unlimited size. A
value of 0 means disable the cache.
265

CHAPTER 15 | Configuring the Artix Security Plug-In
plugins:asp:authentication_cache_timeout The time (in seconds) after which a credential is
considered stale. Stale credentials are removed from
the cache and the server must re-authenticate with the
Artix security service on the next call from that user.

A value of -1 (the default) means an infinite time-out.
A value of 0 means disable the cache.

plugins:asp:security_level This variable specifies the level from which security
credentials are picked up. For a detailed description of
the allowed values, see
plugins:asp:security_level.

plugins:asp:authorization_realm This variable specifies the Artix authorization realm to
which an Artix server belongs. The value of this
variable determines which of a user’s roles are
considered when making an access control decision.

plugins:asp:default_password This variable specifies the password to use on the
server side when the securityType attribute is set to
either PRINCIPAL or CERT_SUBJECT.

Table 8: The Artix Security Plug-In Configuration Variables

Configuration Variable Description
 266

Configuring a WSDL Contract
Configuring a WSDL Contract

Overview Occasionally you will need finer grained control of your systems security
than is provided through the standard Artix and security configuration. Artix
provides the ability to control security on a per-port basis by describing the
service’s security settings in the Artix contract that describes it. This is done
by using the <bus-security:security> extension in the port element
describing the service’s address and transport details.

Namespace The XML namespace defining <bus-security:security> is
http://schemas.iona.com/bus. You need to add the following line to the
definitions element of any contracts that use the bus-security:security
element:

<bus-security:security>
attributes

The complete set of <bus-security:security> attributes, which are all
optional, are listed Table 9. Each attribute maps to an equivalent
configuration variable, as shown in the table. The attributes specified in the
WSDL contract override settings specified in the Artix configuration file,
artix.cfg.

xmlns:bus-security="http://schemas.iona.com/bus/security"

Table 9: <bus-security:security> Attributes

<bus-security:security> Attribute Equivalent Configuration Variable

enableSecurity policies:asp:enable_security

is2AuthorizationActionRoleMapping plugins:is2_authorization:action_role_mapping

enableAuthorization policies:asp:enable_authorization

authenticationCacheSize plugins:asp:authentication_cache_size

authenticationCacheTimeout plugins:asp:authentication_cache_timeout

securityType plugins:asp:security_type (Obsolete)

securityLevel plugins:asp:security_level
267

CHAPTER 15 | Configuring the Artix Security Plug-In
Enabling security for a service Example 53 shows how to enable security for the service
personalInfoService.

The bus-security:security element in Example 53 configures
personalInfoService to use WS Security compliant username/password
authentication.

authorizationRealm plugins:asp:authorization_realm

defaultPassword plugins:asp:default_password

Table 9: <bus-security:security> Attributes

<bus-security:security> Attribute Equivalent Configuration Variable

Example 53:Enabling Security in an Artix Contract

<definitions
 xmlns:bus-security="http://schemas.iona.com/bus/security"
 ...>
...
<service name="personalInfoService">
 <port name="personalInfoServicePort" binding="tns:infoSOAPBinding">
 <soap:address location="http://localhost:8080"/>
 <bus-security:security enableSecurity="true"
 is2AuthorizationActionRoleMapping="file://c:/iona/artix/2.0/bin/action_role.xml"
 enableAuthorization="true"
 securityLevel="REQUEST_LEVEL"
 securityType="USERNAME_PASSWORD"
 authenticationCacheSize="5"
 authenticationCacheTimeout="10" />
 </port>
</service>
</definitions>
 268

Configuring a WSDL Contract
Disabling security for a service Example 54 shows how to disable security for the service widgetService.

Overriding specific security
properties for a service

Example 55 shows how to specify that a particular service,
kerberosWidgetService, is to use WS Security compliant Kerberos token for
authentication while the remaining services in the domain are using HTTPS
authentication.

Example 54:Disabling Security in an Artix Contract

<definitions
 xmlns:bus-security="http://schemas.iona.com/bus/security"
 ...>
...
<service name="widgetService">
 <port name="widgetServicePort" binding="tns:widgetSOAPBinding">
 <soap:address location="http://localhost:8080"/>
 <bus-security:security enableSecurity="false" />
 </port>
</service>
</definitions>

Example 55:Changing Security Configuration in an Artix Contract

<definitions
 xmlns:bus-security="http://schemas.iona.com/bus/security"
 ...>
...
<service name="kerberosWidgetService">
 <port name="kerberosWidgetServicePort" binding="tns:widgetSOAPBinding">
 <soap:address location="http://localhost:8080"/>
 <bus-security:security securityLevel="REQUEST_LEVEL"
 securityType="KERBEROS" />
 </port>
</service>
</definitions>
269

CHAPTER 15 | Configuring the Artix Security Plug-In
 270

CHAPTER 16

Developing an iSF
Adapter
An iSF adapter is a replaceable component of the iSF server
module that enables you to integrate iSF with any third-party
enterprise security service. This chapter explains how to
develop and configure a custom iSF adapter implementation.

In this chapter This chapter discusses the following topics:

iSF Security Architecture page 272

iSF Server Module Deployment Options page 276

iSF Adapter Overview page 278

Implementing the IS2Adapter Interface page 279

Deploying the Adapter page 289
271

CHAPTER 16 | Developing an iSF Adapter
iSF Security Architecture

Overview This section introduces the basic components and concepts of the iSF
security architecture, as follows:

• Architecture.

• iSF client.

• iSF client SDK.

• Artix Security Service.

• iSF adapter SDK.

• iSF adapter.

• Example adapters.
 272

iSF Security Architecture
Architecture Figure 33 gives an overview of the Artix Security Service, showing how it fits
into the overall context of a secure system.

iSF client An iSF client is an application that communicates with the Artix Security
Service to perform authentication and authorization operations. The
following are possible examples of iSF client applications:

• CORBA servers.

• Artix servers.

• Any server that has a requirement to authenticate its clients.

Hence, an iSF client can also be a server. It is a client only with respect to
the Artix Security Service.

Figure 33: Overview of the Artix Security Service

Java
application

iSF Server Module

iSF client SDK

C / C++
application

iSF client SDK

iSF adapter

iSF adapter SDK

Third-party security service

Artix Security Service
273

CHAPTER 16 | Developing an iSF Adapter
iSF client SDK The iSF client SDK is the programming interface that enables the iSF clients
to communicate (usually remotely) with the Artix Security Service.

Artix Security Service The Artix Security Service is a standalone process that acts a thin wrapper
layer around the iSF server module. On its own, the iSF server module is a
Java library which could be accessed only through local calls. By embedding
the iSF server module within the Artix Security Service, however, it becomes
possible to access the security service remotely.

iSF server module The iSF server module is a broker that mediates between iSF clients, which
request the security service to perform security operations, and a third-party
security service, which is the ultimate repository for security data.

The iSF server module has the following special features:

• A replaceable iSF adapter component that enables integration with a
third-party enterprise security service.

• A single sign-on feature with user session caching.

iSF adapter SDK The iSF adapter SDK is the Java API that enables a developer to create a
custom iSF adapter that plugs into the iSF server module.

iSF adapter An iSF adapter is a replaceable component of the iSF server module that
enables you to integrate with any third-party enterprise security service. An
iSF adapter implementation provides access to a repository of authentication
data and (optionally) authorization data as well.

Note: The iSF client SDK is only used internally. It is currently not
available as a public programming interface.
 274

iSF Security Architecture
Example adapters The following standard adapters are provided with Artix:

• Lightweight Directory Access Protocol (LDAP).

• File—a simple adapter implementation that stores authentication and
authorization data in a flat file.

WARNING: The file adapter is intended for demonstration purposes only.
It is not industrial strength and is not meant to be used in a production
environment.
275

CHAPTER 16 | Developing an iSF Adapter
iSF Server Module Deployment Options

Overview The iSF server module, which is fundamentally implemented as a Java
library, can be deployed in one of the following ways:

• CORBA service.

• Java library.

CORBA service The iSF server module can be deployed as a CORBA service (Artix Security
Service), as shown in Figure 34. This is the default deployment model for
the iSF server module in Artix. This deployment option has the advantage
that any number of distributed iSF clients can communicate with the iSF
server module over IIOP/TLS.

With this type of deployment, the iSF server module is packaged as an
application plug-in to the Orbix generic server. The Artix Security Service
can be launched by the itsecurity executable and basic configuration is
set in the iona_services.security scope of the Artix configuration file.

Figure 34: iSF Server Module Deployed as a CORBA Service

Application

iSF Security Module

iSF client SDK

iSF adapter

CORBA Service

IDL Interface

IIOP/TLS
 276

iSF Server Module Deployment Options
Java library The iSF server module can be deployed as a Java library, as shown in
Figure 35, which permits access to the iSF server module from a single iSF
client only.

With this type of deployment, the iSF security JAR file is loaded directly into
a Java application. The security service is then instantiated as a local object
and all calls made through the iSF client SDK are local calls.

Figure 35: iSF Server Module Deployed as a Java Library

Java application

iSF Security Module

iSF client SDK

iSF adapter
277

CHAPTER 16 | Developing an iSF Adapter
iSF Adapter Overview

Overview This section provides an overview of the iSF adapter architecture. The
modularity of the iSF server module design makes it relatively
straightforward to implement a custom iSF adapter written in Java.

Standard iSF adapters IONA provides several ready-made adapters that are implemented with the
iSF adapter API. The following standard adapters are currently available:

• File adapter.

• LDAP adapter.

Custom iSF adapters The iSF server module architecture also allows you to implement your own
custom iSF adapter and use it instead of a standard adapter.

Main elements of a custom iSF
adapter

The main elements of a custom iSF adapter are, as follows:

• Implementation of the ISF Adapter Java interface.

• Configuration of the ISF adapter using the iSF properties file.

Implementation of the ISF
Adapter Java interface

The only code that needs to be written to implement an iSF adapter is a
class to implement the IS2Adapter Java interface. The adapter
implementation class should respond to authentication requests either by
checking a repository of user data or by forwarding the requests to a
third-party enterprise security service.

Configuration of the ISF adapter
using the iSF properties file

The iSF adapter is configured by setting Java properties in the
is2.properties file. The is2.properties file stores two kinds of
configuration data for the iSF adapter:

• Configuration of the iSF server module to load the adapter—see
“Configuring iSF to Load the Adapter” on page 290.

• Configuration of the adapter itself—see “Setting the Adapter
Properties” on page 291.
 278

Implementing the IS2Adapter Interface
Implementing the IS2Adapter Interface

Overview The com.iona.security.is2adapter package defines an IS2Adapter Java
interface, which a developer must implement to create a custom iSF
adapter. The methods defined on the ISFAdapter class are called by the iSF
server module in response to requests received from iSF clients.

This section describes a simple example implementation of the IS2Adapter
interface, which is capable of authenticating a single test user with
hard-coded authorization properties.

Test user The example adapter implementation described here permits authentication
of just a single user, test_user. The test user has the following
authentication data:

Username: test_user
Password: test_password

and the following authorization data:

• The user’s global realm contains the GuestRole role.

• The user’s EngRealm realm contains the EngineerRole role.

• The user’s FinanceRealm realm contains the AccountantRole role.

iSF adapter example Example 56 shows a sample implementation of an iSF adapter class,
ExampleAdapter, that permits authentication of a single user. The user’s
username, password, and authorization are hard-coded. In a realistic
system, however, the user data would probably be retrieved from a database
or from a third-party enterprise security system.

Example 56:Sample ISF Adapter Implementation

import com.iona.security.azmgr.AuthorizationManager;
import com.iona.security.common.AuthenticatedPrincipal;
import com.iona.security.common.Realm;
import com.iona.security.common.Role;
import com.iona.security.is2adapter.IS2Adapter;
import com.iona.security.is2adapter.IS2AdapterException;
import java.util.Properties;
import java.util.ArrayList;
import java.security.cert.X509Certificate;
279

CHAPTER 16 | Developing an iSF Adapter
import org.apache.log4j.*;
import java.util.ResourceBundle;

import java.util.MissingResourceException;

public class ExampleAdapter implements IS2Adapter {

 public final static String EXAMPLE_PROPERTY =
"example_property";

 public final static String ADAPTER_NAME = "ExampleAdapter";

1 private final static String MSG_EXAMPLE_ADAPTER_INITIALIZED
= "initialized";

 private final static String MSG_EXAMPLE_ADAPTER_CLOSED
= "closed";

 private final static String MSG_EXAMPLE_ADAPTER_AUTHENTICATE
= "authenticate";

 private final static String
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_REALM =
"authenticate_realm";

 private final static String
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK = "authenticateok";

 private final static String MSG_EXAMPLE_ADAPTER_GETAUTHINFO
= "getauthinfo";

 private final static String
MSG_EXAMPLE_ADAPTER_GETAUTHINFO_OK = "getauthinfook";

 private ResourceBundle _res_bundle = null;

2 private static Logger LOG =
Logger.getLogger(ExampleAdapter.class.getName());

 public ExampleAdapter() {
3 _res_bundle = ResourceBundle.getBundle("ExampleAdapter");

 LOG.setResourceBundle(_res_bundle);
 }

4 public void initialize(Properties props)
 throws IS2AdapterException {

 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_INITIALIZED,null);

Example 56:Sample ISF Adapter Implementation
 280

Implementing the IS2Adapter Interface
 // example property
 String propVal = props.getProperty(EXAMPLE_PROPERTY);
 LOG.info(propVal);

 }

5 public void close() throws IS2AdapterException {
 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +

MSG_EXAMPLE_ADAPTER_CLOSED, null);
 }

6 public AuthenticatedPrincipal authenticate(String username,
String password)

 throws IS2AdapterException {

7 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE,new
Object[]{username,password},null);

 AuthenticatedPrincipal ap = null;
 try{
 if (username.equals("test_user")
 && password.equals("test_password")){

8 ap = getAuthorizationInfo(new
AuthenticatedPrincipal(username));

 }
 else {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.WRONG_NAME_PASSWORD,null);
9 throw new IS2AdapterException(_res_bundle,this,

IS2AdapterException.WRONG_NAME_PASSWORD, new
Object[]{username});

 }

 } catch (Exception e) {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
 throw new IS2AdapterException(_res_bundle,this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
 }

 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK,null);
 return ap;

Example 56:Sample ISF Adapter Implementation
281

CHAPTER 16 | Developing an iSF Adapter
 }

10 public AuthenticatedPrincipal authenticate(String realmname,
String username, String password)

 throws IS2AdapterException {

 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_REALM,new
Object[]{realmname,username,password},null);

 AuthenticatedPrincipal ap = null;
 try{
 if (username.equals("test_user")
 && password.equals("test_password")){

11 AuthenticatedPrincipal principal = new
AuthenticatedPrincipal(username);

 principal.setCurrentRealm(realmname);
 ap = getAuthorizationInfo(principal);
 }
 else {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.WRONG_NAME_PASSWORD,null);
 throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.WRONG_NAME_PASSWORD, new
Object[]{username});

 }

 } catch (Exception e) {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
 throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
 }

 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK,null);

 return ap;
 }

12 public AuthenticatedPrincipal authenticate(X509Certificate
certificate)

 throws IS2AdapterException {
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED

Example 56:Sample ISF Adapter Implementation
 282

Implementing the IS2Adapter Interface
);
 }

13 public AuthenticatedPrincipal authenticate(String realm,
X509Certificate certificate)

 throws IS2AdapterException {
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);
 }

14 public AuthenticatedPrincipal
getAuthorizationInfo(AuthenticatedPrincipal principal) throws
IS2AdapterException{

 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_GETAUTHINFO,new
Object[]{principal.getUserID()},null);

 AuthenticatedPrincipal ap = null;
 String username = principal.getUserID();
 String realmname = principal.getCurrentRealm();

 try{
 if (username.equals("test_user")) {

15 ap = new AuthenticatedPrincipal(username);
16 ap.addRole(new Role("GuestRole", ""));

17 if (realmname == null || (realmname != null &&

realmname.equals("EngRealm")))
 {
 ap.addRealm(new Realm("EngRealm", ""));
 ap.addRole("EngRealm", new

Role("EngineerRole", ""));
 }

18 if (realmname == null || (realmname != null &&
realmname.equals("FinanceRealm")))

 {
 ap.addRealm(new Realm("FinanceRealm",""));
 ap.addRole("FinanceRealm", new

Role("AccountantRole", ""));
 }
 }

Example 56:Sample ISF Adapter Implementation
283

CHAPTER 16 | Developing an iSF Adapter
 else {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.USER_NOT_EXIST, new Object[]{username},
null);

 throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.USER_NOT_EXIST, new Object[]{username});

 }

 } catch (Exception e) {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
 throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
 }

 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_GETAUTHINFO_OK,null);

 return ap;
 }

19 public AuthenticatedPrincipal getAuthorizationInfo(String

username) throws IS2AdapterException{

 // this method has been deprecated
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);
 }

20 public AuthenticatedPrincipal getAuthorizationInfo(String
realmname, String username) throws IS2AdapterException{

 // this method has been deprecated
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);
 }

21 public ArrayList getAllUsers()
 throws IS2AdapterException {

Example 56:Sample ISF Adapter Implementation
 284

Implementing the IS2Adapter Interface
The preceding iSF adapter code can be explained as follows:

1. These lines list the keys to the messages from the adapter’s resource
bundle. The resource bundle stores messages used by the Log4J logger
and exceptions thrown in the adapter.

2. This line creates a Log4J logger.

3. This line loads the resource bundle for the adapter.

4. The initialize() method is called just after the adapter is loaded.
The properties passed to the initialize() method, props, are the
adapter properties that the iSF server module has read from the
is2.properties file.

See “Setting the Adapter Properties” on page 291 for more details.

5. The close() method is called to shut down the adapter. This gives you
an opportunity to clean up and free resources used by the adapter.

6. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with
username and password parameters.

In this simple demonstration implementation, the authenticate()
method recognizes only one user, test_user, with password,
test_password.

7. This line calls a Log4J method in order to log a localized and
parametrized message to indicate that the authenticate method has
been called with the specified username and password values. Since

 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);

 }

22 public void logout(AuthenticatedPrincipal ap) throws
IS2AdapterException {

 }
}

Example 56:Sample ISF Adapter Implementation
285

CHAPTER 16 | Developing an iSF Adapter
all the keys in the resource bundle begin with the adapter name, the
adapter name is prepended to the key. The l7dlog() method is used

because it automatically searches the resource beundle which was set previously by

the loggers setResourceBundle() method.

8. If authentication is successful; that is, if the name and password
passed in match test_user and test_password, the
getAuthorizationInfo() method is called to obtain an
AuthenticatedPrincipal object populated with all of the user’s realms
and role

9. If authentication fails, an IS2AdapterException is raised with minor
code IS2AdapterException.WRONG_NAME_PASSWORD.
The resource bundle is passed to the exception as it accesses the
exception message from the bundle using the key,
ExampleAdapter.wrongUsernamePassword.

10. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with realm
name, username and password parameters.

This method differs from the preceding username/password
authenticate() method in that only the authorization data for the
specified realm and the global realm are included in the return value.

11. If authentication is successful, the getAuthorizationInfo() method is
called to obtain an AuthenticatedPrincipal object populated with the
authorization data from the specified realm and the global realm.

12. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with an
X.509 certificate parameter.

13. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with a
realm name and an X.509 certificate parameter.

This method differs from the preceding certificate authenticate()
method in that only the authorization data for the specified realm and
the global realm are included in the return value.

14. This method should create an AuthenticatedPrincipal object for the
username user. If a realm is not specified in the principal, the
AuthenticatedPrincipal is populated with all realms and roles for this
 286

Implementing the IS2Adapter Interface
user. If a realm is specified in the principal, the
AuthenticatedPrincipal is populated with authorization data from
the specified realm and the global realm only.

15. This line creates a new AuthenticatedPrincipal object for the
username user to hold the user’s authorization data.

16. This line adds a GuestRole role to the global realm, IONAGlobalRealm,
using the single-argument form of addRole(). Roles added to the
global realm implicitly belong to every named realm as well.

17. This line checks if no realm is specified in the principal or if the realm,
EngRealm, is specified. If either of these is true, the following lines add
the authorization realm, EngRealm, to the AuthenticatedPrincipal
object and add the EngineerRole role to the EngRealm authorization
realm.

18. This line checks if no realm is specified in the principal or if the realm,
FinanceRealm, is specified. If either of these is true, the following lines
add the authorization realm, FinanceRealm, to the
AuthenticatedPrincipal object and add the AccountantRole role to
the FinanceRealm authorization realm.

19. Since SSO was introduced to Artix, this variant of the
IS2Adapter.getAuthorizationInfo() method has been deprecated.
The method
IS2Adapter.getAuthorizationInfo(AuthenticatedPrincipal

principal) should be used instead

20. Since SSO was introduced to Artix, this variant of the
IS2Adapter.getAuthorizationInfo() method has also been
deprecated. The method
IS2Adapter.getAuthorizationInfo(AuthenticatedPrincipal

principal) should be used instead

21. The getAllUsers() method is currently not used by the iSF server
module during runtime. Hence, there is no need to implement this
method currently.
287

CHAPTER 16 | Developing an iSF Adapter
22. When the logout() method is called, you can perform cleanup and
release any resources associated with the specified user principal. The
iSF server module calls back on IS2Adapter.logout() either in
response to a user calling AuthManager.logout() explicitly or after an
SSO session has timed out.
 288

Deploying the Adapter
Deploying the Adapter

Overview This section explains how to deploy a custom iSF adapter.

In this section This section contains the following subsections:

Configuring iSF to Load the Adapter page 290

Setting the Adapter Properties page 291

Loading the Adapter Class and Associated Resource Files page 292
289

CHAPTER 16 | Developing an iSF Adapter
Configuring iSF to Load the Adapter

Overview You can configure the iSF server module to load a custom adapter by setting
the following properties in the iSF server module’s is2.properties file:

• Adapter name.

• Adapter class.

Adapter name The iSF server module loads the adapter identified by the
com.iona.isp.adapters property. Hence, to load a custom adapter,
AdapterName, set the property as follows:

com.iona.isp.adapters=AdapterName

Adapter class The name of the adapter class to be loaded is specified by the following
property setting:

com.iona.isp.adapter.AdapterName.class=AdapterClass

Example adapter For example, the example adapter provided shown previously can be
configured to load by setting the following properties:

com.iona.isp.adapters=example
com.iona.isp.adapter.example.class=isfadapter.ExampleAdapter

Note: In the current implementation, the iSF server module can load only
a single adapter at a time.
 290

Deploying the Adapter
Setting the Adapter Properties

Overview This subsection explains how you can set properties for a specific custom
adapter in the is2.properties file.

Adapter property name format All configurable properties for a custom file adapter, AdapterName, should
have the following format:

com.iona.isp.adapter.AdapterName.param.PropertyName

Truncation of property names Adapter property names are truncated before being passed to the iSF
adapter. That is, the com.iona.ispadapter.AdapterName.param prefix is
stripped from each property name.

Example For example, given an adapter named ExampleAdapter which has two
properties, host and port, these properties would be set as follows in the
is2.properties file:

com.iona.isp.adapter.example.param.example_property="This is an
example property"

Before these properties are passed to the iSF adapter, the property names
are truncated as if they had been set as follows:

example_property="This is an example property"

Accessing properties from within
an iSF adapter

The adapter properties are passed to the iSF adapter through the
com.iona.security.is2adapter.IS2Adapter.initialize() callback
method. For example:

...
public void initialize(java.util.Properties props)
throws IS2AdapterException {
 // Access a property through its truncated name.
 String propVal = props.getProperty("PropertyName")
 ...
}

291

CHAPTER 16 | Developing an iSF Adapter
Loading the Adapter Class and Associated Resource Files

Overview You need to make appropriate modifications to your CLASSPATH to ensure
that the iSF server module can find your custom adapter class. You need to
distinguish between the following usages of the iSF server module:

• CORBA service.

• Java library

In all cases, the location of the file used to configure Log4j logging can be
set using the log4j.configuration property in the is2.properties file.

CORBA service By default, the Artix Security Service uses the
secure_artix.full_security.security_service scope in your Orbix
configuration file (or configuration repository service). Modify the
plugins:java_server:classpath variable to include the directory
containing the compiled adapter class and the adapter’s resource bundle.
The plugins:java_server:classpath variable uses the value of the
SECURITY_CLASSPATH variable.

For example, if the adapter class and adapter resource bundle are located in
the ArtixInstallDir\ExampleAdapter directory, you should set the
SECURITY_CLASSPATH variable as follows:

Java library In this case, to make the custom iSF adapter class available to an iSF client,
add the directory containing the compiled adapter class and adapter
resource bundle to your CLASSPATH.

You must also specify the location of the license file, which can be set in
one of the following ways:

Artix configuration file
SECURITY_CLASSPATH =

"ArtixInstallDir\ExampleAdapter;ArtixInstallDir\lib\corba\sec
urity_service\5.1\security_service-rt.jar";
 292

Deploying the Adapter
• Uncomment and set the value of the is2.license.filename property
in your domain’s is2.properties file to point to license file for
product. For example:

• Add the license file to the CLASSPATH used for the iSF client.

• Pass the license file location to the iSF client using a Java system
property:
java -DIT_LICENSE_FILE=LocationOfLicenseFile iSFClientClass

• Set the license in the code for the iSF client. For example:

iSF properties file
is2.license.filename=ArtixInstallDir/licenses.txt

// Java
...
SecurityService service = SecurityService.instance();
Properties props = new Properties();
props.load(new FileInputStream(propsFileName));
props.setProperty(
 SecurityService.IS2_LICENSE_FILE_NAME,
 LocationOfLicenseFile
);
service.initializeSecurity(props);
293

CHAPTER 16 | Developing an iSF Adapter
 294

APPENDIX A

Artix Security
This appendix describes variables used by the IONA Security
Framework. The Artix security infrastructure is highly
configurable.

In this appendix This appendix discusses the following topics:

Applying Constraints to Certificates page 297

initial_references page 299

plugins:asp page 300

plugins:at_http page 302

plugins:atli2_tls page 306

plugins:csi page 307

plugins:csi page 307

plugins:gsp page 308

plugins:http page 312

plugins:iiop_tls page 317

plugins:kdm page 321

plugins:kdm_adm page 323

plugins:login_client page 324
295

APPENDIX A | Artix Security
plugins:login_service page 325

plugins:schannel page 326

plugins:security page 327

policies page 328

policies:asp page 334

policies:bindings:corba page 335

policies:csi page 336

policies:https page 339

policies:iiop_tls page 344

principal_sponsor page 354

principal_sponsor:csi page 358

principal_sponsor:https page 361
 296

Applying Constraints to Certificates
Applying Constraints to Certificates

Certificate constraints policy You can use the CertConstraintsPolicy to apply constraints to peer X.509
certificates by the default CertificateValidatorPolicy. These conditions
are applied to the owner’s distinguished name (DN) on the first certificate
(peer certificate) of the received certificate chain. Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN).

Configuration variable You can specify a list of constraints to be used by CertConstraintsPolicy
through the policies:iiop_tls:certificate_constraints_policy or
policies:https:certificate_constraints_policy configuration variables.
For example:

policies:iiop_tls:certificate_constraints_policy =
["CN=Johnny*,OU=[unit1|IT_SSL],O=IONA,C=Ireland,ST=Dublin,L=Ea
rth","CN=Paul*,OU=SSLTEAM,O=IONA,C=Ireland,ST=Dublin,L=Earth",

"CN=TheOmnipotentOne"];

Constraint language These are the special characters and their meanings in the constraint list:

Example This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",

"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

 * Matches any text. For example:

an* matches ant and anger, but not aunt

[] Grouping symbols.

 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1
or IT_SSL, the certificate is acceptable.

 =, != Signify equality and inequality respectively.
297

APPENDIX A | Artix Security
This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

If
The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "CN=" is recognized.

Distinguished names For more information on distinguished names, see the Security Guide.
 298

initial_references
initial_references
The initial_references namespace contains the following configuration
variables:

• IT_TLS_Toolkit:plugin

IT_TLS_Toolkit:plugin

This configuration variable enables you to specify the underlying SSL/TLS
toolkit to be used by Artix. It is used in conjunction with the
plugins:baltimore_toolkit:shlib_name,
plugins:schannel_toolkit:shlib_name (Windows only) and
plugins:systemssl_toolkit:shlib_name (z/OS only) configuration
variables to implement SSL/TLS toolkit replaceability.

The default is the Baltimore toolkit.

For example, to specify that an application should use the Schannel
SSL/TLS toolkit, you would set configuration variables as follows:

initial_references:IT_TLS_Toolkit:plugin = "schannel_toolkit";
plugins:schannel_toolkit:shlib_name = "it_tls_schannel";
299

APPENDIX A | Artix Security
plugins:asp
The plugins:asp namespace contains the following variables:

• authentication_cache_size

• authentication_cache_timeout

• authorization_realm

• default_password

• security_type

• security_level

authentication_cache_size

For SOAP bindings, the maximum number of credentials stored in the
authentication cache. If this size is exceeded the oldest credential in the
cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

authentication_cache_timeout

For SOAP bindings, the time (in seconds) after which a credential is
considered stale. Stale credentials are removed from the cache and the
server must re-authenticate with the Artix security service on the next call
from that user.

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

authorization_realm

Specifies the Artix authorization realm to which an Artix server belongs. The
value of this variable determines which of a user’s roles are considered
when making an access control decision.
 300

plugins:asp
For example, consider a user that belongs to the ejb-developer and
corba-developer roles within the Engineering realm, and to the ordinary
role within the Sales realm. If you set plugins:asp:authorization_realm
to Sales for a particular server, only the ordinary role is considered when
making access control decisions (using the action-role mapping file).

The default is IONAGlobalRealm.

default_password

When the client credentials originate either from a CORBA Principal
(embedded in a SOAP header) or from a certificate subject, the
default_password variable specifies the password to use on the server side.
The plugins:asp:default_password variable is used to get around the
limitation that a PRINCIPAL identity and a CERT_SUBJECT are propagated
without an accompanying password.

The artix_security plug-in uses the received client principal together with
the password specified by plugins:asp:default_password to authenticate
the user through the Artix security service.

The default value is the string, default_password.

security_type

(Obsolete) From Artix 3.0 onwards, this variable is ignored.

security_level

Specifies the level from which security credentials are picked up. The
following options are supported by the artix_security plug-in:

MESSAGE_LEVEL Get security information from the transport header. This
is the default.

REQUEST_LEVEL Get the security information from the message header.
301

APPENDIX A | Artix Security
plugins:at_http
The plugins:at_http configuration variables are provided to facilitate
migration from legacy Artix applications (that is, Artix releases prior to
version 3.0). The plugins:at_http namespace contains variables that are
similar to the variables from the old (pre-version 3.0) plugins:http
namespace. One important change made in 3.0, however, is that an
application’s own certificate must now be provided in PKCS#12 format
(where they were previously supplied in PEM format).

If the variables from the plugins:at_http namespace are used, they take
precedence over the analogous variables from the
principal_sponsor:https and policies:https namespaces.

The plugins:at_http namespace contains the following variables:

• client:client_certificate.

• client:client_private_key_password.

• client:trusted_root_certificates.

• client:use_secure_sockets.

• server:server_certificate.

• server:server_private_key_password.

• server:trusted_root_certificates.

• server:use_secure_sockets.

client:client_certificate

This variable specifies the full path to the PKCS#12-encoded X.509
certificate issued by the certificate authority for the client. For example:

plugins:at_http:client:client_certificate =
"C:\aspen\x509\certs\key.cert.p12"

client:client_private_key_password

This variable specifies the password to decrypt the contents of the
PKCS#12 certificate file specified by client:client_certificate.
 302

plugins:at_http
client:trusted_root_certificates

This variable specifies the path to a file containing a concatenated list of CA
certificates in PEM format. The client uses this CA list during the TLS
handshake to verify that the server’s certificate has been signed by a trusted
CA.

client:use_secure_sockets

The effect of the client:use_secure_sockets variable depends on the type
of URL specifying the remote service location:

• https://host:port URL format—the client always attempts to open a
secure connection. That is, the value of
plugins:at_http:client:use_secure_sockets is effectively ignored.

• http://host:port URL format—whether the client attempts to open a
secure connection or not depends on the value of
plugins:at_http:client:use_secure_sockets, as follows:

♦ true—the client attempts to open a secure connection (that is,
HTTPS running over SSL or TLS). If no port is specified in the
http URL, the client uses port 443 for secure HTTPS.

♦ false—the client attempts to open an insecure connection (that
is, plain HTTP).

If plugins:at_http:client:use_secure_sockets is true and the client
decides to open a secure connection, the at_http plug-in then automatically
loads the https plug-in.

Note: If plugins:at_http:client:use_secure_sockets is true and the
client decides to open a secure connection, Artix effectively uses the
following client secure invocation policies:

 policies:https:client_secure_invocation_policy:requires =

["Confidentiality","Integrity", "DetectReplay",

"DetectMisordering", "EstablishTrustInTarget"];

 policies:https:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",

"DetectMisordering", "EstablishTrustInTarget",

"EstablishTrustInClient"];
303

APPENDIX A | Artix Security
server:server_certificate

This variable specifies the full path to the PKCS#12-encoded X.509
certificate issued by the certificate authority for the server. For example:

plugins:at_http:server:server_certificate =
"c:\aspen\x509\certs\key.cert.p12"

server:server_private_key_password

This variable specifies the password to decrypt the contents of the
PKCS#12 certificate file specified by server:server_certificate.

server:trusted_root_certificates

This variable specifies the path to a file containing a concatenated list of CA
certificates in PEM format. The server uses this CA list during the TLS
handshake to verify that the client’s certificate has been signed by a trusted
CA.

server:use_secure_sockets

The effect of the server:use_secure_sockets variable depends on the type
of URL advertising the service location:

• https://host:port URL format—the server accepts only secure
connection attempts. That is, the value of
plugins:at_http:server:use_secure_sockets is effectively ignored.

• http://host:port URL format—whether the server accepts secure
connection attempts or not depends on the value of
plugins:at_http:server:use_secure_sockets, as follows:

♦ true—the server accepts secure connection attempts (that is,
HTTPS running over SSL or TLS). If no port is specified in the
http URL, the server uses port 443 for secure HTTPS.

♦ false—the server accepts insecure connection attempts (that is,
plain HTTP).
 304

plugins:at_http
If plugins:at_http:server:use_secure_sockets is set and the server
accepts a secure connection, the at_http plug-in then automatically loads
the https plug-in.

Note: If plugins:at_http:server:use_secure_sockets is set and the
server accepts a secure connection, Artix effectively uses the following
server secure invocation policies:

 policies:https:server_secure_invocation_policy:requires =

["Confidentiality","Integrity", "DetectReplay",

"DetectMisordering", "EstablishTrustInClient"];

 policies:https:server_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",

"DetectMisordering", "EstablishTrustInTarget",

"EstablishTrustInClient"];
305

APPENDIX A | Artix Security
plugins:atli2_tls
The plugins:atli2_tls namespace contains the following variable:

• use_jsse_tk

use_jsse_tk

(Java only) Specifies whether or not to use the JSSE/JCE architecture with
the CORBA binding. If true, the CORBA binding uses the JSSE/JCE
architecture to implement SSL/TLS security; if false, the CORBA binding
uses the Baltimore SSL/TLS toolkit.

The default is false.
 306

plugins:csi
plugins:csi
The policies:csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

• ClassName

• shlib_name

ClassName

ClassName specifies the Java class that implements the csi plugin. The
default setting is:

plugins:csi:ClassName = "com.iona.corba.security.csi.CSIPlugin";

This configuration setting makes it possible for the Artix core to load the
plugin on demand. Internally, the Artix core uses a Java class loader to load
and instantiate the csi class. Plugin loading can be initiated either by
including the csi in the orb_plugins list, or by associating the plugin with
an initial reference.

shlib_name

shlib_name identifies the shared library (or DLL in Windows) containing the
csi plugin implementation.

plugins:csi:shlib_name = "it_csi_prot";

The csi plug-in becomes associated with the it_csi_prot shared library,
where it_csi_prot is the base name of the library. The library base name,
it_csi_prot, is expanded in a platform-dependent manner to obtain the full
name of the library file.
307

APPENDIX A | Artix Security
plugins:gsp
The plugins:gsp namespace includes variables that specify settings for the
Generic Security Plugin (GSP). This provides authorization by checking a
user’s roles against the permissions stored in an action-role mapping file. It
includes the following:

• accept_asserted_authorization_info

• action_role_mapping_file

• assert_authorization_info

• authentication_cache_size

• authentication_cache_timeout

• authorization_realm

• ClassName

• enable_authorization

• enable_gssup_sso

• enable_user_id_logging

• enable_x509_sso

• enforce_secure_comms_to_sso_server

• enable_security_service_cert_authentication

• sso_server_certificate_constraints

• use_client_load_balancing

accept_asserted_authorization_info

If false, SAML data is not read from incoming connections. Default is true.

action_role_mapping_file

Specifies the action-role mapping file URL. For example:

plugins:gsp:action_role_mapping_file =
"file:///my/action/role/mapping";
 308

plugins:gsp
assert_authorization_info

If false, SAML data is not sent on outgoing connections. Default is true.

authentication_cache_size

The maximum number of credentials stored in the authentication cache. If
this size is exceeded the oldest credential in the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

authentication_cache_timeout

The time (in seconds) after which a credential is considered stale. Stale
credentials are removed from the cache and the server must re-authenticate
with the Artix security service on the next call from that user. The cache
timeout should be configured to be smaller than the timeout set in the
is2.properties file (by default, that setting is
is2.sso.session.timeout=600).

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

authorization_realm

authorization_realm specifies the iSF authorization realm to which a
server belongs. The value of this variable determines which of a user's roles
are considered when making an access control decision.

For example, consider a user that belongs to the ejb-developer and
corba-developer roles within the Engineering realm, and to the ordinary
role within the Sales realm. If you set plugins:gsp:authorization_realm to
Sales for a particular server, only the ordinary role is considered when
making access control decisions (using the action-role mapping file).
309

APPENDIX A | Artix Security
ClassName

ClassName specifies the Java class that implements the gsp plugin. This
configuration setting makes it possible for the Artix core to load the plugin
on demand. Internally, the Artix core uses a Java class loader to load and
instantiate the gsp class. Plugin loading can be initiated either by including
the csi in the orb_plugins list, or by associating the plugin with an initial
reference.

enable_authorization

A boolean GSP policy that, when true, enables authorization using
action-role mapping ACLs in server.

Default is true.

enable_gssup_sso

Enables SSO with a username and a password (that is, GSSUP) when set to
true.

enable_user_id_logging

A boolean variable that enables logging of user IDs on the server side.
Default is false.

Up until the release of Orbix 6.1 SP1, the GSP plug-in would log messages
containing user IDs. For example:

[junit] Fri, 28 May 2004 12:17:22.0000000 [SLEEPY:3284]
(IT_CSI:205) I - User alice authenticated successfully.

In some cases, however, it might not be appropriate to expose user IDs in
the Orbix log. From Orbix 6.2 onward, the default behavior of the GSP
plug-in is changed, so that user IDs are not logged by default. To restore the
pre-Orbix 6.2 behavior and log user IDs, set this variable to true.
 310

plugins:gsp
enable_x509_sso

Enables certificate-based SSO when set to true.

enforce_secure_comms_to_sso_server

Enforces a secure SSL/TLS link between a client and the login service when
set to true. When this setting is true, the value of the SSL/TLS client secure
invocation policy does not affect the connection between the client and the
login service.

Default is true.

enable_security_service_cert_authentication

A boolean GSP policy that enables X.509 certificate-based authentication
on the server side using the Artix security service.

Default is false.

sso_server_certificate_constraints

A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. For details of the
pattern constraint language, see “Applying Constraints to Certificates” on
page 297.

use_client_load_balancing

A boolean variable that enables load balancing over a cluster of security
services. If an application is deployed in a domain that uses security service
clustering, the application should be configured to use client load balancing
(in this context, client means a client of the Artix security service). See also
policies:iiop_tls:load_balancing_mechanism.

Default is true.
311

APPENDIX A | Artix Security
plugins:http
The plugins:http namespace contains the following variables:

• client:client_certificate

• client:client_certificate_chain

• client:client_private_key

• client:client_private_key_password

• client:trusted_root_certificates

• client:use_secure_sockets

• server:server_certificate

• server:server_certificate_chain

• server:server_private_key

• server:server_private_key_password

• server:trusted_root_certificates

• server:use_secure_sockets

client:client_certificate

This variable specifies the full path to the PEM-encoded X.509 certificate
issued by the certificate authority for the client. For example:

plugins:http:client:client_certificate =
"c:\aspen\x509\certs\key.cert.pem"

This setting is ignored if plugins:http:client:use_secure_sockets is
false.

client:client_certificate_chain

(Optional) This variable specifies the full path to the PEM-encoded X.509
certificate chain for the client. For example:

plugins:http:client:client_certificate_chain =
"c:\aspen\x509\certs\key.cert.pem"

This setting is ignored if plugins:http:client:use_secure_sockets is
false.
 312

plugins:http
client:client_private_key

This variable specifies a PEM file containing the client certificate’s encrypted
private key. This private key enables the client to respond to a challenge
from a server during an SSL/TLS handshake.

This setting is ignored if plugins:http:client:use_secure_sockets is
false.

client:client_private_key_password

This variable specifies the password to decrypt the contents of the
client_private_key file.

This setting is ignored if plugins:http:client:use_secure_sockets is
false.

client:trusted_root_certificates

This variable specifies the path to a file containing a concatenated list of CA
certificates in PEM format. The client uses this CA list during the TLS
handshake to verify that the server’s certificate has been signed by a trusted
CA.

This setting is ignored if plugins:http:client:use_secure_sockets is
false.

client:use_secure_sockets

This variable specifies whether the client wants to open a HTTPS
connection (that is, HTTP running over SSL or TLS) or an insecure
connection (that is, plain HTTP).

Valid values are true, for HTTPS, and false, for HTTP. The default is
false.
313

APPENDIX A | Artix Security
server:server_certificate

This variable specifies the full path to the PEM-encoded X.509 certificate
issued by the certificate authority for the server. For example:

plugins:http:server:server_certificate =
"c:\aspen\x509\certs\key.cert.pem"

This setting is ignored if plugins:http:server:use_secure_sockets is
false.

server:server_certificate_chain

(Optional) This variable specifies the full path to the PEM-encoded X.509
certificate chain for the server. For example:

plugins:http:server:server_certificate_chain =
"c:\aspen\x509\certs\key.cert.pem"

This setting is ignored if plugins:http:server:use_secure_sockets is
false.

server:server_private_key

This variable specifies a PEM file containing the server certificate’s
encrypted private key. This private key enables the server to respond to a
challenge from a client during an SSL/TLS handshake.

This setting is ignored if plugins:http:server:use_secure_sockets is
false.

server:server_private_key_password

This variable specifies the password to decrypt the contents of the
server_private_key file.

This setting is ignored if plugins:http:server:use_secure_sockets is
false.
 314

plugins:http
server:trusted_root_certificates

This variable specifies the path to a file containing a concatenated list of CA
certificates in PEM format. The server uses this CA list during the TLS
handshake to verify that the client’s certificate has been signed by a trusted
CA.

This setting is ignored if plugins:http:server:use_secure_sockets is
false.

server:use_secure_sockets

This variable specifies whether the server accepts HTTPS connection
attempts (that is, HTTP running over SSL or TLS) or insecure connection
attempts (that is, plain HTTP) from a client.

Valid values are true, for HTTPS, and false, for HTTP. The default is
false.
315

APPENDIX A | Artix Security
plugins:https
The plugins:https namespace contains the following variable:

• ClassName

ClassName

(Java only) This variable specifies the class name of the https plug-in
implementation. For example:

plugins:https:ClassName = "com.iona.corba.https.HTTPSPlugIn";
 316

plugins:iiop_tls
plugins:iiop_tls
The plugins:iiop_tls namespace contains the following variables:

• buffer_pool:recycle_segments

• buffer_pool:segment_preallocation

• buffer_pools:max_incoming_buffers_in_pool

• buffer_pools:max_outgoing_buffers_in_pool

• delay_credential_gathering_until_handshake

• enable_iiop_1_0_client_support

• incoming_connections:hard_limit

• incoming_connections:soft_limit

• outgoing_connections:hard_limit

• outgoing_connections:soft_limit

• tcp_listener:reincarnate_attempts

• tcp_listener:reincarnation_retry_backoff_ratio

• tcp_listener:reincarnation_retry_delay

buffer_pool:recycle_segments

(Java only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pool:recycle_segments variable’s value.

buffer_pool:segment_preallocation

(Java only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pool:segment_preallocation variable’s value.
317

APPENDIX A | Artix Security
buffer_pools:max_incoming_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pools:max_incoming_buffers_in_pool variable’s
value.

buffer_pools:max_outgoing_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pools:max_outgoing_buffers_in_pool variable’s
value.

delay_credential_gathering_until_handshake

(Windows and Schannel only) This client configuration variable provides an
alternative to using the principal_sponsor variables to specify an
application’s own certificate. When this variable is set to true and
principal_sponsor:use_principal_sponsor is set to false, the client
delays sending its certificate to a server. The client will wait until the server
explicitly requests the client to send its credentials during the SSL/TLS
handshake.

This configuration variable can be used in conjunction with the
plugins:schannel:prompt_with_credential_choice configuration variable.

enable_iiop_1_0_client_support

This variable enables client-side interoperability of Artix SSL/TLS
applications with legacy IIOP 1.0 SSL/TLS servers, which do not support
IIOP 1.1.

The default value is false. When set to true, Artix SSL/TLS searches secure
target IIOP 1.0 object references for legacy IIOP 1.0 SSL/TLS tagged
component data, and attempts to connect on the specified port.

Note: This variable will not be necessary for most users.
 318

plugins:iiop_tls
incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side) connections
permitted to IIOP. IIOP does not accept new connections above this limit.
Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:incoming_connections:hard_limit variable’s
value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.

incoming_connections:soft_limit

Specifies the number of connections at which IIOP should begin closing
incoming (server-side) connections. Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:incoming_connections:soft_limit variable’s
value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.

outgoing_connections:hard_limit

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:outgoing_connections:hard_limit variable’s
value.

outgoing_connections:soft_limit

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:outgoing_connections:soft_limit variable’s
value.
319

APPENDIX A | Artix Security
tcp_listener:reincarnate_attempts

(Windows only)

plugins:iiop_tls:tcp_listener:reincarnate_attempts specifies the
number of times that a Listener recreates its listener socket after recieving a
SocketException.

Sometimes a network error may occur, which results in a listening socket
being closed. On Windows, you can configure the listener to attempt a
reincarnation, which enables new connections to be established. This
variable only affects Java and C++ applications on Windows. Defaults to 0
(no attempts).

tcp_listener:reincarnation_retry_backoff_ratio

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_delay specifies a
delay between reincarnation attempts. Data type is long. Defaults to 0 (no
delay).

tcp_listener:reincarnation_retry_delay

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_backoff_ratiosp
ecifies the degree to which delays between retries increase from one retry to
the next. Datatype is long. Defaults to 1.
 320

plugins:kdm
plugins:kdm
The plugins:kdm namespace contains the following variables:

• cert_constraints

• iiop_tls:port

• checksums_optional

cert_constraints

Specifies the list of certificate constraints for principals attempting to open a
connection to the KDM server plug-in. See “Applying Constraints to
Certificates” on page 297 for a description of the certificate constraint
syntax.

To protect the sensitive data stored within it, the KDM applies restrictions
on which entities are allowed talk to it. A security administrator should
choose certificate constraints that restrict access to the following principals:

• The locator service (requires read-only access).

• The kdm_adm plug-in, which is normally loaded into the itadmin utility
(requires read-write access).

All other principals should be blocked from access. For example, you might
define certificate constraints similar to the following:

plugins:kdm:cert_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Secure admin*",
"C=US,ST=Boston,O=ABigBank*,CN=Orbix2000 Locator Service*"]

Your choice of certificate constraints will depend on the naming scheme for
your subject names.
321

APPENDIX A | Artix Security
iiop_tls:port

Specifies the well known IP port on which the KDM server listens for
incoming calls.

checksums_optional

When equal to false, the secure information associated with a server must
include a checksum; when equal to true, the presence of a checksum is
optional. Default is false.
 322

plugins:kdm_adm
plugins:kdm_adm
The plugins:kdm_adm namespace contains the following variable:

• cert_constraints

cert_constraints

Specifies the list of certificate constraints that are applied when the KDM
administration plug-in authenticates the KDM server. See “Applying
Constraints to Certificates” on page 297 for a description of the certificate
constraint syntax.

The KDM administration plug-in requires protection against attack from
applications that try to impersonate the KDM server. A security
administrator should, therefore, choose certificate constraints that restrict
access to trusted KDM servers only. For example, you might define
certificate constraints similar to the following:

plugins:kdm_adm:cert_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=IT_KDM*"];

Your choice of certificate constraints will depend on the naming scheme for
your subject names.
323

APPENDIX A | Artix Security
plugins:login_client
The plugins:login_client namespace contains the following variables:

• wsdl_url

wsdl_url

Specifies the location of the login service WSDL to the login_client
plug-in. The value of this variable can either be a relative pathname or an
URL. The login_client requires access to the login service WSDL in order
to obtain details of the physical contract (for example, host and IP port).
 324

plugins:login_service
plugins:login_service
The plugins:login_service namespace contains the following variables:

• wsdl_url

wsdl_url

Specifies the location of the login service WSDL to the login_service
plug-in. The value of this variable can either be a relative pathname or an
URL. The login_service requires access to the login service WSDL in order
to obtain details of the physical contract (for example, host and IP port).
325

APPENDIX A | Artix Security
plugins:schannel
The plugins:schannel namespace contains the following variable:

• prompt_with_credential_choice

prompt_with_credential_choice

(Windows and Schannel only) Setting both this variable and the
plugins:iiop_tls:delay_credential_gathering_until_handshake
variable to true on the client side allows the user to choose which
credentials to use for the server connection. The choice of credentials
offered to the user is based on the trusted CAs sent to the client in an
SSL/TLS handshake message.

If prompt_with_credential_choice is set to false, runtime chooses the
first certificate it finds in the certificate store that meets the applicable
constraints.

The certificate prompt can be replaced by implementing an IDL interface
and registering it with the ORB.
 326

plugins:security
plugins:security
The plugins:security namespace contains the following variable:

• share_credentials_across_orbs

share_credentials_across_orbs

Enables own security credentials to be shared across ORBs. Normally, when
you specify an own SSL/TLS credential (using the principal sponsor or the
principal authenticator), the credential is available only to the ORB that
created it. By setting the
plugins:security:share_credentials_across_orbs variable to true,
however, the own SSL/TLS credentials created by one ORB are
automatically made available to any other ORBs that are configured to share
credentials.

See also principal_sponsor:csi:use_existing_credentials for details of
how to enable sharing of CSI credentials.

Default is false.
327

APPENDIX A | Artix Security
policies
The policies namespace defines the default CORBA policies for an ORB.
Many of these policies can also be set programmatically from within an
application. SSL/TLS-specific variables in the policies namespace include:

• allow_unauthenticated_clients_policy

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• max_chain_length_policy

• mechanism_policy:accept_v2_hellos

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• session_caching_policy

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• trusted_ca_list_policy

allow_unauthenticated_clients_policy

(Deprecated in favor of
policies:iiop_tls:allow_unauthenticated_clients_policy and
policies:https:allow_unauthenticated_clients_policy.)

A generic variable that sets this policy both for iiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.
 328

policies
certificate_constraints_policy

(Deprecated in favor of
policies:iiop_tls:certificate_constraints_policy and
policies:https:certificate_constraints_policy.)

A generic variable that sets this policy both for iiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.

client_secure_invocation_policy:requires

(Deprecated in favor of
policies:iiop_tls:client_secure_invocation_policy:requires and
policies:https:client_secure_invocation_policy:requires.)

A generic variable that sets this policy both for iiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.

client_secure_invocation_policy:supports

(Deprecated in favor of
policies:iiop_tls:client_secure_invocation_policy:supports and
policies:https:client_secure_invocation_policy:supports.)

A generic variable that sets this policy both for iiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.
329

APPENDIX A | Artix Security
max_chain_length_policy

(Deprecated in favor of policies:iiop_tls:max_chain_length_policy and
policies:https:max_chain_length_policy.)

max_chain_length_policy specifies the maximum certificate chain length
that an ORB will accept. The policy can also be set programmatically using
the IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

(Deprecated in favor of
policies:iiop_tls:mechanism_policy:accept_v2_hellos and
policies:https:mechanism_policy:accept_v2_hellos.)

The accept_v2_hellos policy is a special setting that facilitates
interoperability with an Artix application deployed on the z/OS platform.
When true, the Artix application accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS_V1 protocol. When false, the
Artix application throws an error, if it receives a V2 client hello. The default
is false.

For example:

policies:mechanism_policy:accept_v2_hellos = "true";

Note: The max_chain_length_policy is not currently supported on the
z/OS platform.
 330

policies
mechanism_policy:ciphersuites

(Deprecated in favor of
policies:iiop_tls:mechanism_policy:ciphersuites and
policies:https:mechanism_policy:ciphersuites.)

mechanism_policy:ciphersuites specifies a list of cipher suites for the
default mechanism policy. One or more of the cipher suites shown in
Table 10 can be specified in this list.

If you do not specify the list of cipher suites explicitly, all of the null
encryption ciphers are disabled and all of the non-export strength ciphers
are supported by default.

mechanism_policy:protocol_version

(Deprecated in favor of
policies:iiop_tls:mechanism_policy:protocol_version and
policies:https:mechanism_policy:protocol_version.)

mechanism_policy:protocol_version specifies the list of protocol versions
used by a security capsule (ORB instance). The list can include one or more
of the values SSL_V3 and TLS_V1. For example:

Table 10: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA

policies:mechanism_policy:protocol_version=["TLS_V1", "SSL_V3"];
331

APPENDIX A | Artix Security
session_caching_policy

session_caching_policy specifies whether an ORB caches the session
information for secure associations when acting in a client role, a server
role, or both. The purpose of session caching is to enable closed connections
to be re-established quickly. The following values are supported:

CACHE_NONE(default)

CACHE_CLIENT
CACHE_SERVER
CACHE_SERVER_AND_CLIENT

The policy can also be set programmatically using the
IT_TLS_API::SessionCachingPolicy CORBA policy.

target_secure_invocation_policy:requires

(Deprecated in favor of
policies:iiop_tls:target_secure_invocation_policy:requires and
policies:https:target_secure_invocation_policy:requires.)

target_secure_invocation_policy:requires specifies the minimum level
of security required by a server. The value of this variable is specified as a
list of association options.

target_secure_invocation_policy:supports

(Deprecated in favor of
policies:iiop_tls:target_secure_invocation_policy:supports and
policies:https:target_secure_invocation_policy:supports.)

supports specifies the maximum level of security supported by a server. The
value of this variable is specified as a list of association options. This policy
can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.
 332

policies
trusted_ca_list_policy

(Deprecated in favor of policies:iiop_tls:trusted_ca_list_policy and
policies:https:trusted_ca_list_policy.)

trusted_ca_list_policy specifies a list of filenames, each of which
contains a concatenated list of CA certificates in PEM format. The aggregate
of the CAs in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

policies:trusted_ca_list_policy =
["install_dir/asp/version/etc/tls/x509/ca/ca_list1.pem",
"install_dir/asp/version/etc/tls/x509/ca/ca_list_extra.pem"];
333

APPENDIX A | Artix Security
policies:asp
The policies:asp namespace contains the following variables:

• enable_authorization

• enable_sso

enable_authorization

A boolean variable that specifies whether Artix should enable authorization
using the Artix Security Framework. Default is false.

enable_sso

A boolean variable that specifies whether Artix enables single-sign on (SSO)
on the server-side. Default is false.
 334

policies:bindings:corba
policies:bindings:corba
The policies:bindings:corba namespace contains the following variables:

• token_propagation

• gssup_propagation

token_propagation

A boolean variable that can be used in a SOAP-to-CORBA router to enable
the transfer of an SSO token from an incoming SOAP request into an
outgoing CORBA request.

The CORBA binding extracts the SSO token from incoming SOAP/HTTP
invocations and inserts the token into an outgoing IIOP request, to be
transmitted using CSI identity assertion.

gssup_propagation

A boolean variable that can be used in a SOAP-to-CORBA router to enable
the transfer of incoming SOAP credentials into outgoing CORBA credentials.

The CORBA binding extracts the username and password credentials from
incoming SOAP/HTTP invocations and inserts them into an outgoing GSSUP
credentials object, to be transmitted using CSI authentication over transport.
The domain name in the outgoing GSSUP credentials is set to a blank
string. Default is false.
335

APPENDIX A | Artix Security
policies:csi
The policies:csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

• attribute_service:backward_trust:enabled

• attribute_service:client_supports

• attribute_service:target_supports

• auth_over_transport:authentication_service

• auth_over_transport:client_supports

• auth_over_transport:server_domain_name

• auth_over_transport:target_requires

• auth_over_transport:target_supports

attribute_service:backward_trust:enabled

(Obsolete)

attribute_service:client_supports

attribute_service:client_supports is a client-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. This policy is normally specified in an intermediate
server so that it propagates CSIv2 identity tokens to a target server. For
example:

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];
 336

policies:csi
attribute_service:target_supports

attribute_service:target_supports is a server-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. For example:

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

auth_over_transport:authentication_service

(Java CSI plug-in only) The name of a Java class that implements the
IT_CSI::AuthenticateGSSUPCredentials IDL interface. The authentication
service is implemented as a callback object that plugs into the CSIv2
framework on the server side. By replacing this class with a custom
implementation, you could potentially implement a new security technology
domain for CSIv2.

By default, if no value for this variable is specified, the Java CSI plug-in uses
a default authentication object that always returns false when the
authenticate() operation is called.

auth_over_transport:client_supports

auth_over_transport:client_supports is a client-side policy that specifies
the association options supported by CSIv2 authorization over transport.
The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];
337

APPENDIX A | Artix Security
auth_over_transport:server_domain_name

The iSF security domain (CSIv2 authentication domain) to which this server
application belongs. The iSF security domains are administered within an
overall security technology domain.

The value of the server_domain_name variable will be embedded in the IORs
generated by the server. A CSIv2 client about to open a connection to this
server would check that the domain name in its own CSIv2 credentials
matches the domain name embedded in the IOR.

auth_over_transport:target_requires

auth_over_transport:target_requires is a server-side policy that
specifies the association options required for CSIv2 authorization over
transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

auth_over_transport:target_supports

auth_over_transport:target_supports is a server-side policy that
specifies the association options supported by CSIv2 authorization over
transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];
 338

policies:https
policies:https
The policies:https namespace contains variables used to configure the
https plugin. It contains the following variables:

• allow_unauthenticated_clients_policy

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• max_chain_length_policy

• mechanism_policy:accept_v2_hellos

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• session_caching_policy

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• trusted_ca_list_policy

allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is false.

This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoProtection (a semi-secure
server).

certificate_constraints_policy

A list of constraints applied to peer certificates—see “Applying Constraints
to Certificates” on page 297 for the syntax of the pattern constraint
language. If a peer certificate fails to match any of the constraints, the
certificate validation step will fail.
339

APPENDIX A | Artix Security
The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.

client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for details on how to set SSL/TLS association options.

client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options—see the
Orbix Security Guide for details on how to set SSL/TLS association options.

max_chain_length_policy

The maximum certificate chain length that an ORB will accept (see the
discussion of certificate chaining in the Orbix Security Guide).

The policy can also be set programmatically using the
IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

This HTTPS-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

Note: This policy can be upgraded programmatically using either the QOP
or the EstablishTrust policies.

Note: The max_chain_length_policy is not currently supported on the
z/OS platform.
 340

policies:https
The accept_v2_hellos policy is a special setting that facilitates HTTPS
interoperability with certain Web browsers. Many Web browsers send SSL
V2 client hellos, because they do not know what SSL version the server
supports.

When true, the Artix server accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS_V1 protocol. When false, the
Artix server throws an error, if it receives a V2 client hello. The default is
true.

For example:

policies:https:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

If you do not specify the list of cipher suites explicitly, all of the null
encryption ciphers are disabled and all of the non-export strength ciphers
are supported by default.

Note: This default value is deliberately different from the
policies:iiop_tls:mechanism_policy:accept_v2_hellos default value.

Table 11: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA
341

APPENDIX A | Artix Security
mechanism_policy:protocol_version

This HTTPS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.

Specifies the list of protocol versions used by a security capsule (ORB
instance). Can include one or more of the following values:

TLS_V1
SSL_V3

The default setting is SSL_V3 and TLS_V1.

For example:

policies:https:mechanism_policy:protocol_version = ["TLS_V1",
"SSL_V3"];

session_caching_policy

When this policy is set, the https plug-in reads this policy’s value instead of
the policies:session_caching policy’s value (C++) or
policies:session_caching_policy policy’s value (Java).

target_secure_invocation_policy:requires

Specifies the minimum level of security required by a server. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

target_secure_invocation_policy:supports

Specifies the maximum level of security supported by a server. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.
 342

policies:https
trusted_ca_list_policy

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.
343

APPENDIX A | Artix Security
policies:iiop_tls
The policies:iiop_tls namespace contains variables used to set
IIOP-related policies for a secure environment. These setting affect the
iiop_tls plugin. It contains the following variables:

• allow_unauthenticated_clients_policy

• buffer_sizes_policy:default_buffer_size

• buffer_sizes_policy:max_buffer_size

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• client_version_policy

• connection_attempts

• connection_retry_delay

• load_balancing_mechanism

• max_chain_length_policy

• mechanism_policy:accept_v2_hellos

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• server_address_mode_policy:local_domain

• server_address_mode_policy:local_hostname

• server_address_mode_policy:port_range

• server_address_mode_policy:publish_hostname

• server_version_policy

• session_caching_policy

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• tcp_options_policy:no_delay

• tcp_options_policy:recv_buffer_size

• tcp_options_policy:send_buffer_size

• trusted_ca_list_policy
 344

policies:iiop_tls
allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is false.

This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoProtection (a semi-secure
server).

buffer_sizes_policy:default_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:buffer_sizes_policy:default_buffer_size
policy’s value.

buffer_sizes_policy:default_buffer_size specifies, in bytes, the initial
size of the buffers allocated by IIOP. Defaults to 16000. This value must be
greater than 80 bytes, and must be evenly divisible by 8.

buffer_sizes_policy:max_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:buffer_sizes_policy:max_buffer_size
policy’s value.

buffer_sizes_policy:max_buffer_size specifies the maximum buffer size
permitted by IIOP, in kilobytes. Defaults to 512. A value of -1 indicates
unlimited size. If not unlimited, this value must be greater than 80.

certificate_constraints_policy

A list of constraints applied to peer certificates—see the discussion of
certificate constraints in the Artix security guide for the syntax of the pattern
constraint language. If a peer certificate fails to match any of the
constraints, the certificate validation step will fail.

The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.
345

APPENDIX A | Artix Security
client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options—see the Artix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options—see the
Artix Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

client_version_policy

client_version_policy specifies the highest IIOP version used by clients. A
client uses the version of IIOP specified by this variable, or the version
specified in the IOR profile, whichever is lower. Valid values for this variable
are: 1.0, 1.1, and 1.2.

For example, the following file-based configuration entry sets the server IIOP
version to 1.1.

The following itadmin command set this variable:

connection_attempts

connection_attempts specifies the number of connection attempts used
when creating a connected socket using a Java application. Defaults to 5.

policies:iiop:server_version_policy="1.1";

itadmin variable modify -type string -value "1.1"
policies:iiop:server_version_policy
 346

policies:iiop_tls
connection_retry_delay

connection_retry_delay specifies the delay, in seconds, between
connection attempts when using a Java application. Defaults to 2.

load_balancing_mechanism

Specifies the load balancing mechanism for the client of a security service
cluster (see also plugins:gsp:use_client_load_balancing). In this
context, a client can also be an Artix server. This policy only affects
connections made using IORs that contain multiple addresses. The
iiop_tls plug-in load balances over the addresses embedded in the IOR.

The following mechanisms are supported:

• random—choose one of the addresses embedded in the IOR at random
(this is the default).

• sequential—choose the first address embedded in the IOR, moving
on to the next address in the list only if the previous address could not
be reached.

max_chain_length_policy

This policy overides policies:max_chain_length_policy for the iiop_tls
plugin.

The maximum certificate chain length that an ORB will accept.

The policy can also be set programmatically using the
IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.

Note: The max_chain_length_policy is not currently supported on the
z/OS platform.
347

APPENDIX A | Artix Security
The accept_v2_hellos policy is a special setting that facilitates
interoperability with an Artix application deployed on the z/OS platform.
Artix security on the z/OS platform is based on IBM’s System/SSL toolkit,
which implements SSL version 3, but does so by using SSL version 2 hellos
as part of the handshake. This form of handshake causes interoperability
problems, because applications on other platforms identify the handshake
as an SSL version 2 handshake. The misidentification of the SSL protocol
version can be avoided by setting the accept_v2_hellos policy to true in
the non-z/OS application (this bug also affects some old versions of
Microsoft Internet Explorer).

When true, the Artix application accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS_V1 protocol. When false, the
Artix application throws an error, if it receives a V2 client hello. The default
is false.

For example:

policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

This policy overides policies:mechanism_policy:ciphersuites for the
iiop_tls plugin.

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

Note: This default value is deliberately different from the
policies:https:mechanism_policy:accept_v2_hellos default value.

Table 12: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA
 348

policies:iiop_tls
If you do not specify the list of cipher suites explicitly, all of the null
encryption ciphers are disabled and all of the non-export strength ciphers
are supported by default.

mechanism_policy:protocol_version

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.

Specifies the list of protocol versions used by a security capsule (ORB
instance). Can include one or more of the following values:

TLS_V1
SSL_V3
SSL_V2V3 (Deprecated)

The default setting is SSL_V3 and TLS_V1.

For example:

policies:iiop_tls:mechanism_policy:protocol_version = ["TLS_V1",
"SSL_V3"];

The SSL_V2V3 value is now deprecated. It was previously used to facilitate
interoperability with Artix applications deployed on the z/OS platform. If you
have any legacy configuration that uses SSL_V2V3, you should replace it with
the following combination of settings:

policies:iiop_tls:mechanism_policy:protocol_version = ["SSL_V3",
"TLS_V1"];

policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

server_address_mode_policy:local_domain

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:local_domain policy’s value.

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA

Table 12: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers
349

APPENDIX A | Artix Security
server_address_mode_policy:local_hostname

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:local_hostname policy’s
value.

server_address_mode_policy:local_hostname specifies the hostname
advertised by the locator daemon, and listened on by server-side IIOP.

Some machines have multiple hostnames or IP addresses (for example,
those using multiple DNS aliases or multiple network cards). These
machines are often termed multi-homed hosts. The local_hostname
variable supports these type of machines by enabling you to explicitly
specify the host that servers listen on and publish in their IORs.

For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this variable to
either address:

By default, the local_hostname variable is unspecified. Servers use the
default hostname configured for the machine with the Orbix configuration
tool.

server_address_mode_policy:port_range

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:port_range policy’s value.

server_address_mode_policy:port_range specifies the range of ports that
a server uses when there is no well-known addressing policy specified for
the port.

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";
 350

policies:iiop_tls
server_address_mode_policy:publish_hostname

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the
policies:iiop:server_address_mode_policy:publish_hostname policy’s
value.

server_address_mode-policy:publish_hostname specifes whether IIOP
exports hostnames or IP addresses in published profiles. Defaults to false
(exports IP addresses, and does not export hostnames). To use hostnames
in object references, set this variable to true, as in the following file-based
configuration entry:

The following itadmin command is equivalent:

server_version_policy

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:server_version_policy policy’s value.

server_version_policy specifies the GIOP version published in IIOP
profiles. This variable takes a value of either 1.1 or 1.2. Orbix servers do not
publish IIOP 1.0 profiles. The default value is 1.2.

session_caching_policy

This policy overides policies:session_caching_policy for the iiop_tls
plugin.

policies:iiop:server_address_mode_policy:publish_hostname=true

itadmin variable create -type bool -value true
policies:iiop:server_address_mode_policy:publish_hostname
351

APPENDIX A | Artix Security
target_secure_invocation_policy:requires

This policy overides
policies:target_secure_invocation_policy:requires for the iiop_tls
plugin.

Specifies the minimum level of security required by a server. The value of
this variable is specified as a list of association options—see the Artix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

target_secure_invocation_policy:supports

This policy overides
policies:target_secure_invocation_policy:supports for the iiop_tls
plugin.

Specifies the maximum level of security supported by a server. The value of
this variable is specified as a list of association options—see the Artix
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

tcp_options_policy:no_delay

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:no_delay policy’s
value.

tcp_options_policy:no_delay specifies whether the TCP_NODELAY option
should be set on connections. Defaults to false.
 352

policies:iiop_tls
tcp_options_policy:recv_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:recv_buffer_size
policy’s value.

tcp_options_policy:recv_buffer_size specifies the size of the TCP
receive buffer. This variable can only be set to 0, which coresponds to using
the default size defined by the operating system.

tcp_options_policy:send_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:send_buffer_size
policy’s value.

tcp_options_policy:send_buffer_size specifies the size of the TCP send
buffer. This variable can only be set to 0, which coresponds to using the
default size defined by the operating system.

trusted_ca_list_policy

This policy overides the policies:trusted_ca_list_policy for the
iiop_tls plugin.

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.
353

APPENDIX A | Artix Security
principal_sponsor
The principal_sponsor namespace stores configuration information to be
used when obtaining credentials. the CORBA binding provides an
implementation of a principal sponsor that creates credentials for
applications automatically.

Use of the PrincipalSponsor is disabled by default and can only be enabled
through configuration.

The PrincipalSponsor represents an entry point into the secure system. It
must be activated and authenticate the user, before any application-specific
logic executes. This allows unmodified, security-unaware applications to
have Credentials established transparently, prior to making invocations.

In this section The following variables are in this namespace:

• use_principal_sponsor

• auth_method_id

• auth_method_data

• callback_handler:ClassName

• login_attempts

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaults to false. If set to true, the following
principal_sponsor variables must contain data in order for anything to
actually happen.
 354

principal_sponsor
auth_method_id

auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

For example, you can select the pkcs12_file authentication method as
follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the pkcs12_file authentication method, the following authentication
data can be provided in auth_method_data:

pkcs12_file The authentication method uses a PKCS#12 file.

pkcs11 Java only. The authentication data is provided by a
smart card.

security_label Windows and Schannel only. The authentication
data is specified by supplying the common name
(CN) from an application certificate’s subject DN.

principal_sponsor:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain and
private key—required.

password A password for the private key—optional.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the password for the private
key—optional.

This option is not recommended for deployed systems.
355

APPENDIX A | Artix Security
For the pkcs11 (smart card) authentication method, the following
authentication data can be provided in auth_method_data:

For the security_label authentication method on Windows, the following
authentication data can be provided in auth_method_data:

For example, to configure an application on Windows to use a certificate,
bob.p12, whose private key is encrypted with the bobpass password, set the
auth_method_data as follows:

The following points apply to Java implementations:

• If the file specified by filename= is not found, it is searched for on the
classpath.

• The file specified by filename= can be supplied with a URL instead of
an absolute file location.

• The mechanism for prompting for the password if the password is
supplied through password= can be replaced with a custom
mechanism, as demonstrated by the login demo.

provider A name that identifies the underlying PKCS #11
toolkit used by Orbix to communicate with the smart
card.

The toolkit currently used by Orbix has the provider
name dkck132.dll (from Baltimore).

slot The number of a particular slot on the smart card
(for example, 0) containing the user’s credentials.

pin A PIN to gain access to the smart card—optional.

It is bad practice to supply the PIN from
configuration for deployed systems. If the PIN is not
supplied, the user is prompted for it.

label (Windows and Schannel only.) The common name
(CN) from an application certificate’s subject DN

principal_sponsor:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];
 356

principal_sponsor
• There are two extra configuration variables available as part of the
principal_sponsor namespace, namely
principal_sponsor:callback_handler and
principal_sponsor:login_attempts. These are described below.

• These Java-specific features are available subject to change in future
releases; any changes that can arise probably come from customer
feedback on this area.

callback_handler:ClassName

callback_handler:ClassName specifies the class name of an interface that
implements the interface com.iona.corba.tls.auth.CallbackHandler. This
variable is only used for Java clients.

login_attempts

login_attempts specifies how many times a user is prompted for
authentication data (usually a password). It applies for both internal and
custom CallbackHandlers; if a CallbackHandler is supplied, it is invoked
upon up to login_attempts times as long as the PrincipalAuthenticator
returns SecAuthFailure. This variable is only used by Java clients.
357

APPENDIX A | Artix Security
principal_sponsor:csi
The principal_sponsor:csi namespace stores configuration information to
be used when obtaining CSI (Common Secure Interoperability) credentials.
It includes the following:

• use_existing_credentials

• use_principal_sponsor

• auth_method_data

• auth_method_id

use_existing_credentials

A boolean value that specifies whether ORBs that share credentials can also
share CSI credentials. If true, any CSI credentials loaded by one
credential-sharing ORB can be used by other credential-sharing ORBs
loaded after it; if false, CSI credentials are not shared.

This variable has no effect, unless the
plugins:security:share_credentials_across_orbs variable is also true.

Default is false.

use_principal_sponsor

use_principal_sponsor is a boolean value that switches the CSI principal
sponsor on or off.

If set to true, the CSI principal sponsor is enabled; if false, the CSI
principal sponsor is disabled and the remaining principal_sponsor:csi
variables are ignored. Defaults to false.
 358

principal_sponsor:csi
auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the GSSUPMech authentication method, the following authentication
data can be provided in auth_method_data:

If any of the preceding data are omitted, the user is prompted to enter
authentication data when the application starts up.

For example, to log on to a CSIv2 application as the administrator user in
the US-SantaClara domain:

principal_sponsor:csi:auth_method_data =
["username=administrator", "domain=US-SantaClara"];

username The username for CSIv2 authorization. This is optional.
Authentication of CSIv2 usernames and passwords is
performed on the server side. The administration of
usernames depends on the particular security mechanism
that is plugged into the server side see
auth_over_transport:authentication_service.

password The password associated with username. This is optional. It is
bad practice to supply the password from configuration for
deployed systems. If the password is not supplied, the user is
prompted for it.

domain The CSIv2 authentication domain in which the
username/password pair is authenticated.

When the client is about to open a new connection, this
domain name is compared with the domain name embedded
in the relevant IOR (see
policies:csi:auth_over_transport:server_domain_name).
The domain names must match.

Note: If domain is an empty string, it matches any target
domain. That is, an empty domain string is equivalent to a
wildcard.
359

APPENDIX A | Artix Security
When the application is started, the user is prompted for the administrator
password.

auth_method_id

auth_method_id specifies a string that selects the authentication method to
be used by the CSI application. The following authentication method is
available:

For example, you can select the GSSUPMech authentication method as
follows:

principal_sponsor:csi:auth_method_id = "GSSUPMech";

Note: It is currently not possible to customize the login prompt associated
with the CSIv2 principal sponsor. As an alternative, you could implement
your own login GUI by programming and pass the user input directly to the
principal authenticator.

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.
 360

principal_sponsor:https
principal_sponsor:https
The principal_sponsor:https namespace provides configuration variables
that enable you to specify the own credentials used with the HTTPS
transport. The variables in the principal_sponsor:https namespace
(which are specific to the HTTPS protocol) have precedence over the
analogous variables in the principal_sponsor namespace.

Use of the PrincipalSponsor is disabled by default and can only be enabled
through configuration.

The PrincipalSponsor represents an entry point into the secure system. It
must be activated and authenticate the user, before any application-specific
logic executes. This allows unmodified, security-unaware applications to
have Credentials established transparently, prior to making invocations.

In this section The following variables are in this namespace:

• use_principal_sponsor

• auth_method_id

• auth_method_data

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaults to false. If set to true, the following
principal_sponsor:https variables must contain data in order for anything
to actually happen:

• auth_method_id

• auth_method_data
361

APPENDIX A | Artix Security
auth_method_id

auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

For example, you can select the pkcs12_file authentication method as
follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the pkcs12_file authentication method, the following authentication
data can be provided in auth_method_data:

For example, to configure an application on Windows to use a certificate,
bob.p12, whose private key is encrypted with the bobpass password, set the
auth_method_data as follows:

pkcs12_file The authentication method uses a PKCS#12 file

principal_sponsor:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain and
private key—required.

password A password for the private key—optional.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the password for the private
key—optional.

This option is not recommended for deployed systems.

principal_sponsor:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];
 362

APPENDIX B

iSF Configuration
This appendix provides details of how to configure the Artix
security server.

In this appendix This appendix contains the following sections:

Properties File Syntax page 364

iSF Properties File page 365

Cluster Properties File page 389

log4j Properties File page 392
363

CHAPTER B | iSF Configuration
Properties File Syntax

Overview The Artix security service uses standard Java property files for its
configuration. Some aspects of the Java properties file syntax are
summarized here for your convenience.

Property definitions A property is defined with the following syntax:

The <PropertyName> is a compound identifier, with each component
delimited by the . (period) character. For example,
is2.current.server.id. The <PropertyValue> is an arbitrary string,
including all of the characters up to the end of the line (embedded spaces
are allowed).

Specifying full pathnames When setting a property equal to a filename, you normally specify a full
pathname, as follows:

UNIX
/home/data/securityInfo.xml

Windows
D:/iona/securityInfo.xml

or, if using the backslash as a delimiter, it must be escaped as follows:

Specifying relative pathnames If you specify a relative pathname when setting a property, the root directory
for this path must be added to the Artix security service’s classpath. For
example, if you specify a relative pathname as follows:

UNIX
securityInfo.xml

The security service’s classpath must include the file’s parent directory:

<PropertyName>=<PropertyValue>

D:\\iona\\securityInfo.xml

CLASSPATH = /home/data/:<rest_of_classpath>
 364

iSF Properties File
iSF Properties File

Overview An iSF properties file is used to store the properties that configure a specific
Artix security service instance. Generally, every Artix security service
instance should have its own iSF properties file. This section provides
descriptions of all the properties that can be specified in an iSF properties
file.

File location The default location of the iSF properties file is the following:

In general, the iSF properties file location is specified in the Artix
configuration by setting the is2.properties property in the
plugins:java_server:system_properties property list.

For example, on UNIX the security server’s property list is normally
initialized in the iona_services.security configuration scope as follows:

ArtixInstallDir/artix/Version/bin/is2.properties

Artix configuration file
...
iona_services {
 ...
 security {
 ...
 plugins:java_server:system_properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=ArtixInstallDir/artix/2.0/bin/is2.properties"
];

 ...
 };
};
365

CHAPTER B | iSF Configuration
List of properties The following properties can be specified in the iSF properties file:

check.kdc.running

A boolean property that specifies whether or not the Artix security service
should check whether the Kerberos KDC server is running. Default is false.

check.kdc.principal

(Used in combination with the check.kdc.running property.) Specifies the
dummy KDC principal that is used for connecting to the KDC server, in order
to check whether it is running or not.

com.iona.isp.adapters

Specifies the iSF adapter type to be loaded by the Artix security service at
runtime. Choosing a particular adapter type is equivalent to choosing an
Artix security domain. Currently, you can specify one of the following
adapter types:

• file

• LDAP

• SiteMinder

• krb5

For example, you can select the LDAP adapter as follows:

com.iona.isp.adapter.file.class

Specifies the Java class that implements the file adapter.

com.iona.isp.adapters=LDAP

Note: The file adapter is intended for demonstration purposes only. Use
of the file adapter is not supported in production systems.
 366

iSF Properties File
For example, the default implementation of the file adapter provided with
Artix is selected as follows:

com.iona.isp.adapter.file.param.filename

Specifies the name and location of a file that is used by the file adapter to
store user authentication data.

For example, you can specify the file, C:/is2_config/security_info.xml,
as follows:

com.iona.isp.adapter.file.params

Obsolete. This property was needed by earlier versions of the Artix security
service, but is now ignored.

com.iona.isp.adapter.LDAP.class

Specifies the Java class that implements the LDAP adapter.

For example, the default implementation of the LDAP adapter provided with
Artix is selected as follows:

com.iona.isp.adapter.LDAP.param.CacheSize

Specifies the maximum LDAP cache size in units of bytes. This maximum
applies to the total LDAP cache size, including all LDAP connections
opened by this Artix security service instance.

com.iona.isp.adapter.file.class=com.iona.security.is2adapter.file.FileAuthAdapter

com.iona.isp.adapter.file.param.filename=C:/is2_config/security_info.xml

com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.ldap.LdapAdapter
367

CHAPTER B | iSF Configuration
Internally, the Artix security service uses a third-party toolkit (currently the
iPlanet SDK) to communicate with an LDAP server. The cache referred to
here is one that is maintained by the LDAP third-party toolkit. Data retrieved
from the LDAP server is temporarily stored in the cache in order to optimize
subsequent queries.

For example, you can specify a cache size of 1000 as follows:

com.iona.isp.adapter.LDAP.param.CacheTimeToLive

Specifies the LDAP cache time to-live in units of seconds. For example, you
can specify a cache time to-live of one minute as follows:

com.iona.isp.adapter.LDAP.param.GroupBaseDN

Specifies the base DN of the tree in the LDAP directory that stores user
groups.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.LDAP.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the
name of the user group. The default is CN.

For example, you can use the common name, CN, attribute type to store the
user group’s name by setting this property as follows:

com.iona.isp.adapter.LDAP.param.CacheSize=1000

com.iona.isp.adapter.LDAP.param.CacheTimeToLive=60

com.iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona,dc=com

Note: The order of the RDNs is significant. The order should be based on
the LDAP schema configuration.

com.iona.isp.adapter.LDAP.param.GroupNameAttr=cn
 368

iSF Properties File
com.iona.isp.adapter.LDAP.param.GroupObjectClass

Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed
attributes of an entry. The default is groupOfUniqueNames.

For example, to specify that all user group entries belong to the
groupOfUniqueNames object class:

com.iona.isp.adapter.LDAP.param.GroupSearchScope

Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur.
This property can be set to one of the following values:

• BASE—Search a single entry (the base object).

• ONE—Search all entries immediately below the base DN.

• SUB—Search all entries from a whole subtree of entries.

Default is SUB.

For example:

com.iona.isp.adapter.LDAP.param.host.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the IP hostname
where the LDAP server is running. The <cluster_index> is 1 for the primary
server, 2 for the first failover replica, and so on.

For example, you could specify that the primary LDAP server is running on
host 10.81.1.100 as follows:

com.iona.isp.adapter.LDAP.param.GroupObjectClass=groupofuniquenames

com.iona.isp.adapter.LDAP.param.GroupSearchScope=SUB

com.iona.isp.adapter.LDAP.param.host.1=10.81.1.100
369

CHAPTER B | iSF Configuration
com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize

Specifies the maximum LDAP connection pool size for the Artix security
service (a strictly positive integer). The maximum connection pool size is the
maximum number of LDAP connections that would be opened and cached
by the Artix security service. The default is 1.

For example, to limit the Artix security service to open a maximum of 50
LDAP connections at a time:

com.iona.isp.adapter.LDAP.param.MemberDNAttr

Specifies which LDAP attribute is used to retrieve group members. The
LDAP adapter uses the MemberDNAttr property to construct a query to find
out which groups a user belongs to.

The list of the user’s groups is needed to determine the complete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves
all the roles assigned to those groups.

Default is uniqueMember.

For example, you can select the uniqueMember attribute as follows:

com.iona.isp.adapter.LDAP.param.MemberFilter

Specifies how to search for members in a group. The value specified for this
property must be an LDAP search filter (can be a custom filter).

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize=50

com.iona.isp.adapter.LDAP.param.MemberDNAttr=uniqueMember
 370

iSF Properties File
com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize

Specifies the minimum LDAP connection pool size for the Artix security
service. The minimum connection pool size specifies the number of LDAP
connections that are opened during initialization of the Artix security service.
The default is 1.

For example, to specify a minimum of 10 LDAP connections at a time:

com.iona.isp.adapter.LDAP.param.port.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the IP port where
the LDAP server is listening. The <cluster_index> is 1 for the primary
server, 2 for the first failover replica, and so on. The default is 389.

For example, you could specify that the primary LDAP server is listening on
port 636 as follows:

com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the username that
is used to login to the LDAP server (in distinguished name format). This
property need only be set if the LDAP server is configured to require
username/password authentication.

No default.

com.iona.isp.adapter.LDAP.param.PrincipalUserPassword.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the password that is
used to login to the LDAP server. This property need only be set if the LDAP
server is configured to require username/password authentication.

com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize=10

com.iona.isp.adapter.LDAP.param.port.1=636
371

CHAPTER B | iSF Configuration
No default.

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo

Specifies whether or not the Artix security service retrieves authorization
information from the LDAP server. This property selects one of the following
alternatives:

• yes—the Artix security service retrieves authorization information from
the LDAP server.

• no—the Artix security service retrieves authorization information from
the iS2 authorization manager..

Default is no.

For example, to use the LDAP server’s authorization information:

com.iona.isp.adapter.LDAP.param.RoleNameAttr

Specifies the attribute type that the LDAP server uses to store the role name.
The default is CN.

For example, you can specify the common name, CN, attribute type as
follows:

com.iona.isp.adapter.LDAP.param.SSLCACertDir.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the directory name
for trusted CA certificates. All certificate files in this directory are loaded and
set as trusted CA certificates, for the purpose of opening an SSL connection
to the LDAP server. The CA certificates can either be in DER-encoded X.509
format or in PEM-encoded X.509 format.

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo=yes

com.iona.isp.adapter.LDAP.param.RoleNameAttr=cn
 372

iSF Properties File
No default.

For example, to specify that the primary LDAP server uses the
d:/certs/test directory to store CA certificates:

com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<cluster_index>

Specifies the client certificate file that is used to identify the Artix security
service to the <cluster_index> LDAP server replica. This property is needed
only if the LDAP server requires SSL/TLS mutual authentication. The
certificate must be in PKCS#12 format.

No default.

com.iona.isp.adapter.LDAP.param.SSLClientCertPassword.<cluster_index>

Specifies the password for the client certificate that identifies the Artix
security service to the <cluster_index> LDAP server replica. This property
is needed only if the LDAP server requires SSL/TLS mutual authentication.

com.iona.isp.adapter.LDAP.param.SSLEnabled.<cluster_index>

Enables SSL/TLS security for the connection between the Artix security
service and the <cluster_index> LDAP server replica. The possible values
are yes or no. Default is no.

For example, to enable an SSL/TLS connection to the primary LDAP server:

com.iona.isp.adapter.LDAP.param.SSLCACertDir.1=d:/certs/test

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.SSLEnabled.1=yes
373

CHAPTER B | iSF Configuration
com.iona.isp.adapter.LDAP.param.UseGroupAsRole

Specifies whether a user’s groups should be treated as roles. The following
alternatives are available:

• yes—each group name is interpreted as a role name.

• no—for each of the user’s groups, retrieve all roles assigned to the
group.

This option is useful for some older versions of LDAP, such as iPlanet 4.0,
that do not have the role concept.

Default is no.

For example:

com.iona.isp.adapter.LDAP.param.UserBaseDN

Specifies the base DN (an ordered sequence of RDNs) of the tree in the
LDAP directory that stores user object class instances.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.LDAP.param.UserCertAttrName

Specifies the attribute type that stores a user certificate. The default is
userCertificate.

For example, you can explicitly specify the attribute type for storing user
certificates to be userCertificate as follows:

com.iona.isp.adapter.LDAP.param.UseGroupAsRole=no

com.iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona,dc=com

com.iona.isp.adapter.LDAP.param.UserCertAttrName=userCertificate
 374

iSF Properties File
com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

Specifies the attribute type whose corresponding value uniquely identifies
the user. This is the attribute used as the user’s login ID. The default is uid.

For example:

com.iona.isp.adapter.LDAP.param.UserObjectClass

Specifies the attribute type for the object class that stores users. The default
is organizationalPerson.

For example:

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr

Specifies the attribute type that stores a user’s role DN. The default is
nsRoleDn (from the Netscape LDAP directory schema).

For example:

com.iona.isp.adapter.LDAP.param.UserSearchFilter

Custom filter for retrieving users. In the current version, $USER_NAME$ is the
only replaceable parameter supported. This parameter would be replaced
during runtime by the LDAP adapter with the current User's login ID. This
property uses the standard LDAP search filter syntax.

For example:

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

com.iona.isp.adapter.LDAP.param.UserObjectClass=organizationalPerson

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn

&(uid=$USER_NAME$)(objectclass=organizationalPerson)
375

CHAPTER B | iSF Configuration
com.iona.isp.adapter.LDAP.param.UserSearchScope

Specifies the user search scope. This property can be set to one of the
following values:

• BASE—Search a single entry (the base object).

• ONE—Search all entries immediately below the base DN.

• SUB—Search all entries from a whole subtree of entries.

Default is SUB.

For example:

com.iona.isp.adapter.LDAP.param.version

Specifies the LDAP protocol version that the Artix security service uses to
communicate with LDAP servers. The only supported version is 3 (for LDAP
v3, http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com.iona.isp.adapter.LDAP.params

Obsolete. This property was needed by earlier versions of the Artix security
service, but is now ignored.

com.iona.isp.adapter.krb5.class

Specifies the Java class that implements the Kerberos adapter.

For example, the default implementation of the Kerberos adapter provided
with Artix is selected as follows:

com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB

com.iona.isp.adapter.LDAP.param.version=3

com.iona.isp.adapter.kbr5.class=com.iona.security.is2adapter.kbr5.IS2KerberosAdapter
 376

http://www.ietf.org/rfc/rfc2251.txt

iSF Properties File
com.iona.isp.adapter.krb5.param.ConnectTimeout.1

Specifies the time-out interval for the connection to the Active Directory
Server.

com.iona.isp.adapter.krb5.param.GroupBaseDN

Specifies the base DN of the tree in the LDAP directory that stores user
groups.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.krb5.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the
name of the user group. The default is CN.

For example, you can use the common name, CN, attribute type to store the
user group’s name by setting this property as follows:

com.iona.isp.adapter.krb5.param.GroupObjectClass

Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed
attributes of an entry. The default is groupOfUniqueNames.

For example, to specify that all user group entries belong to the
groupOfWriters object class:

com.iona.isp.adapter.krb5.param.GroupBaseDN=dc=iona,dc=com

Note: The order of the RDNs is significant. The order should be
based on the LDAP schema configuration.

com.iona.isp.adapter.krb5.param.GroupNameAttr=cn

com.iona.isp.adapter.krb5.param.GroupObjectClass=groupOfWriters
377

CHAPTER B | iSF Configuration
com.iona.isp.adapter.krb5.param.GroupSearchScope

Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur.
This property can be set to one of the following values:

• BASE—Search a single entry (the base object).

• ONE—Search all entries immediately below the base DN.

• SUB—Search all entries from a whole subtree of entries.

Default is SUB.

For example, to search just the entries immediately bellow the base DN you
would use the following:

com.iona.isp.adapter.krb5.param.host.1

Specifies the server name or IP address of the Active Directory Server used
to retrieve a user’s group information.

com.iona.isp.adapter.krb5.param.java.security.auth.login.config

Specifies the JAAS login module configuration file. For example, if your
JAAS login module configuration file is jaas.config, your Artix security
service configuration would contain the following:

com.iona.isp.adapter.krb5.param.java.security.krb5.kdc

Specifies the server name or IP address of the Kerberos KDC server.

com.iona.isp.adapter.krb5.param.java.security.krb5.realm

Specifies the Kerberos Realm name.

com.iona.isp.adapter.krb5.param.GroupSearchScope=ONE

com.iona.isp.adapter.krb5.param.java.security.auth.login.config=jaas.conf
 378

iSF Properties File
For example, to specify that the Kerberos Realm is is2.iona.com would
require an entry similar to:

com.iona.isp.adapter.krb5.param.javax.security.auth.useSubjectCredsOnly

This is a JAAS login module property that must be set to false when using
Artix.

com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize

Specifies the maximum LDAP connection pool size for the Kerberos adapter
(a strictly positive integer). The maximum connection pool size is the
maximum number of LDAP connections that would be opened and cached
by the Kerberos adapter. The default is 1.

For example, to limit the Kerberos adapter to open a maximum of 50 LDAP
connections at a time:

com.iona.isp.adapter.krb5.params.MemberDNAttr

Specifies which LDAP attribute is used to retrieve group members. The
Kerberos adapter uses the MemberDNAttr property to construct a query to
find out which groups a user belongs to.

The list of the user’s groups is needed to determine the complete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves
all the roles assigned to those groups.

Default is uniqueMember.

For example, you can select the uniqueMember attribute as follows:

com.iona.isp.adapter.krb5.param.java.security.krb5.realm=is2.iona.com

com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize=50

com.iona.isp.adapter.krb5.param.MemberDNAttr=uniqueMember
379

CHAPTER B | iSF Configuration
com.iona.isp.adapter.krb5.param.MinConnectionPoolSize

Specifies the minimum LDAP connection pool size for the Kerberos adapter.
The minimum connection pool size specifies the number of LDAP
connections that are opened during initialization of the Kerberos adapter.
The default is 1.

For example, to specify a minimum of 10 LDAP connections at a time:

com.iona.isp.adapter.krb5.param.port.1

Specifies the port on which the Active Directory Server can be contacted.

com.iona.adapter.krb5.param.PrincipleUserDN.1

Specifies the username that is used to login to the Active Directory Server (in
distinguished name format). This property need only be set if the Active
Directory Server is configured to require username/password authentication.

com.iona.isp.adapter.krb5.param.PrincipalUserPassword.1

Specifies the password that is used to login to the Active Directory Server.
This property need only be set if the Active Directory Server is configured to
require username/password authentication.

com.iona.isp.adapter.kbr5.param.RetrieveAuthInfo

Specifies if the user’s group information needs to be retrieved from the
Active Directory Server. Default is false.

com.iona.isp.adapter.krb5.param.MinConnectionPoolSize=10

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.
 380

iSF Properties File
To instruct the Kerberos adapter to retrieve the user’s group information, use
the following:

com.iona.isp.adapter.krb5.param.SSLCACertDir.1

Specifies the directory name for trusted CA certificates. All certificate files in
this directory are loaded and set as trusted CA certificates, for the purpose of
opening an SSL connection to the Active Directory Server. The CA
certificates can either be in DER-encoded X.509 format or in PEM-encoded
X.509 format.

For example, to specify that the Kerberos adapter uses the d:/certs/test
directory to store CA certificates:

com.iona.isp.adapter.krb5.param.SSLClientCertFile.1

Specifies the client certificate file that is used to identify the Artix security
service to the Active Directory Server. This property is needed only if the
Active Directory Server requires SSL/TLS mutual authentication. The
certificate must be in PKCS#12 format.

com.iona.isp.adapter.krb5.param.SSLClientCertPassword.1

Specifies the password for the client certificate that identifies the Artix
security service to the Active Directory Server. This property is needed only if
the Active Directory Server requires SSL/TLS mutual authentication.

com.iona.isp.adapter.krb5.param.RetrieveAuthInfo=true

com.iona.isp.adapter.kbr5.param.SSLCACertDir.1=d:/certs/test

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.
381

CHAPTER B | iSF Configuration
com.iona.isp.adapter.krb5.param.SSLEnabled.1

Specifies if SSL is needed to connect with the Active Directory Server. The
default is no.

To use SSL when contacting the Active Directory Server use the following:

com.iona.isp.adapter.param.UserBaseDN

Specifies the base DN (an ordered sequence of RDNs) of the tree in the
active directory that stores user object class instances.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.krb5.param.UserNameAttr

Specifies the attribute type whose corresponding value uniquely identifies
the user. This is the attribute used as the user’s login ID. The default is uid.

For example:

com.iona.isp.adapter.krb5.param.UserObjectClass

Specifies the attribute type for the object class that stores users. The default
is organizationalPerson.

For example to set the class to Person you would use the following:

com.iona.isp.adapter.krb5.param.SSLEnabled.1=yes

com.iona.isp.adapter.krb5.param.UserBaseDN=dc=iona,dc=com

com.iona.isp.adapter.krb5.param.UserNameAttr=uid

com.iona.isp.adapter.krb5.param.UserObjectClass=Person
 382

iSF Properties File
com.iona.isp.adapter.krb5.param.version

Specifies the LDAP protocol version that the Kerberos adapter uses to
communicate with the Active Directory Server. The only supported version is
3 (for LDAP v3, http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com.iona.isp.adapter.SiteMinder.class

Specifies the Java class that implements the SiteMinder adapter.

For example, the default implementation of the SiteMinder adapter provided
with Artix is selected as follows:

com.iona.isp.adapter.SiteMinder.param.AgentName

Specifies the SiteMinder agent’s name.

For example:

com.iona.isp.adapter.SiteMinder.param.AgentSecret

Specifies the SiteMinder agent’s password.

For example:

com.iona.isp.adapter.SiteMinder.param.ServerAddress

Specifies the IP hostname where the SiteMinder server is running.

com.iona.isp.adapter.krb5.param.version=3

com.iona.isp.adapter.SiteMinder.class=com.iona.security.is2adapter.smadapter.SiteMinderAgent

com.iona.isp.adapter.SiteMinder.param.AgentName=web

com.iona.isp.adapter.SiteMinder.param.AgentSecret=secret
383

http://www.ietf.org/rfc/rfc2251.txt

CHAPTER B | iSF Configuration
For example:

com.iona.isp.adapter.SiteMinder.param.ServerAuthnPort

Specifies the IP port where the SiteMinder server is listening.

For example:

com.iona.isp.adapter.SiteMinder.params

Obsolete. This property was needed by earlier versions of the Artix security
service, but is now ignored.

com.iona.isp.authz.adapters

Specifies the name of the adapter that is loaded to perform authorization.
The adapter name is an arbitrary identifier, AdapterName, which is used to
construct the names of the properties that configure the adapter—that is,
com.iona.isp.authz.adapter.AdapterName.class and
com.iona.isp.authz.adapter.AdapterName.param.filelist. For example:

com.iona.isp.authz.adapter.AdapterName.class

Selects the authorization adapter class for the AdapterName adapter. The
following adapter implementations are provided by Orbix:

• com.iona.security.is2AzAdapter.multifile.MultiFileAzAdapter—
an authorization adapter that enables you to specify multiple ACL files.
It is used in conjunction with the
com.iona.isp.authz.adapter.file.param.filelist property.

com.iona.isp.adapter.SiteMinder.param.ServerAddress=localhost

com.iona.isp.adapter.SiteMinder.param.ServerAuthnPort=44442

com.iona.isp.authz.adapters=file
com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzAda

pter.multifile.MultiFileAzAdapter
com.iona.isp.authz.adapter.file.param.filelist=ACLFileListFile;
 384

iSF Properties File
For example:

com.iona.isp.authz.adapter.AdapterName.param.filelist

Specifies the absolute pathname of a file containing a list of ACL files for the
AdapterName adapter. Each line of the specified file has the following
format:

A file name can optionally be preceded by an ACL key and an equals sign,
ACLKey=, if you want to select the file by ACL key. The ACL file,
ACLFileName, is specified using an absolute pathname in the local file
format.

For example, on Windows you could specify a list of ACL files as follows:

is2.current.server.id

The server ID is an alphanumeric string (excluding spaces) that specifies the
current Orbix security service’s ID. The server ID is needed for clustering.
When a secure application obtains a single sign-on (SSO) token from this
Orbix security service, the server ID is embedded into the SSO token.
Subsequently, if the SSO token is passed to a second Orbix security service
instance, the second Orbix security service recognizes that the SSO token
originates from the first Orbix security service and delegates security
operations to the first Orbix security service.

The server ID is also used to identify replicas in the cluster.properties
file.

For example, to assign a server ID of 1 to the current Orbix security service:

com.iona.isp.authz.adapters = file
com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzAda

pter.multifile.MultiFileAzAdapter

[ACLKey=]ACLFileName

U:/orbix_security/etc/acl_files/server_A.xml
U:/orbix_security/etc/acl_files/server_B.xml
U:/orbix_security/etc/acl_files/server_C.xml

is2.current.server.id=1
385

CHAPTER B | iSF Configuration
is2.cluster.properties.filename

Specifies the file that stores the configuration properties for clustering. For
example:

is2.replication.required

Enables the replication feature of the Artix security service, which can be
used in the context of security service clustering. The possible values are
true (enabled) and false (disabled). When replication is enabled, the
security service pushes its cache of SSO data to other servers in the cluster
at regular intervals.

Default is false.

For example:

is2.replication.interval

Specifies the time interval between replication updates to other servers in
the security service cluster. The value is specified in units of a second.

Default is 30 seconds.

For example:

is2.replica.selector.classname

If replication is enabled (see is2.replication.required), you must set this
variable equal to com.iona.security.replicate.StaticReplicaSelector.

For example:

is2.cluster.properties.filename=C:/is2_config/cluster.properties

is2.replication.required=true

is2.replication.interval=10

is2.replica.selector.classname=com.iona.security.replicate.Stati
cReplicaSelector
 386

iSF Properties File
is2.sso.cache.size

Specifies the maximum cache size (number of user sessions) associated
with single sign-on (SSO) feature. The SSO caches user information,
including the user’s group and role information. If the maximum cache size
is reached, the oldest sessions are deleted from the session cache.

No default.

For example:

is2.sso.enabled

Enables the single sign-on (SSO) feature of the Artix security service. The
possible values are yes (enabled) and no (disabled).

Default is yes.

For example:

is2.sso.remote.token.cached

In a federated scenario, this variable enables caching of token data for
tokens that originate from another security service in the federated cluster.
When this variable is set to true, a security service need contact another
security service in the cluster, only when the remote token is authenticated
for the first time. For subsequent token authentications, the token data for
the remote token can be retrieved from the local cache.

Default is false.

is2.sso.session.idle.timeout

Sets the session idle time-out in units of seconds for the single sign-on
(SSO) feature of the Artix security service. A zero value implies no time-out.

is2.sso.cache.size=1000

is2.sso.enabled=yes
387

CHAPTER B | iSF Configuration
If a user logs on to the Artix Security Framework (supplying username and
password) with SSO enabled, the Artix security service returns an SSO token
for the user. The next time the user needs to access a resource, there is no
need to log on again because the SSO token can be used instead. However,
if no secure operations are performed using the SSO token for the length of
time specified in the idle time-out, the SSO token expires and the user must
log on again.

Default is 0 (no time-out).

For example:

is2.sso.session.timeout

Sets the absolute session time-out in units of seconds for the single sign-on
(SSO) feature of the Artix security service. A zero value implies no time-out.

This is the maximum length of time since the time of the original user login
for which an SSO token remains valid. After this time interval elapses, the
session expires irrespective of whether the session has been active or idle.
The user must then login again.

Default is 0 (no time-out).

For example:

log4j.configuration

Specifies the log4j configuration filename. You can use the properties in this
file to customize the level of debugging output from the Artix security
service. See also “log4j Properties File” on page 392.

For example:

is2.sso.session.idle.timeout=0

is2.sso.session.timeout=0

log4j.configuration=d:/temp/myconfig.txt
 388

Cluster Properties File
Cluster Properties File

Overview The cluster properties file is used to store properties common to a group of
Artix security service instances that operate as a cluster or federation. This
section provides descriptions of all the properties that can be specified in a
cluster file.

File location The location of the cluster properties file is specified by the
is2.cluster.properties.filename property in the iSF properties file. All of
the Artix security service instances in a cluster or federation must share the
same cluster properties file.

List of properties The following properties can be specified in the cluster properties file:

com.iona.security.common.securityInstanceURL.<server_ID>

Specifies the server URL for the <server_ID> Artix security service instance.

When single sign-on (SSO) is enabled together with clustering or federation,
the Artix security service instances use the specified instance URLs to
communicate with each other. By specifying the URL for a particular Artix
security service instance, you are instructing the instance to listen for
messages at that URL. Because the Artix security service instances share
the same cluster file, they can read each other’s URLs and open connections
to each other.

The connections between Artix security service instances can either be
insecure (HTTP) or secure (HTTPS). To enable SSL/TLS security, use the
https: prefix in each of the instance URLs.

For example, to configure two Artix security service instances to operate in a
cluster or federation using insecure communications (HTTP):

com.iona.security.common.securityInstanceURL.1=http://localhost:8080/isp/AuthService
com.iona.security.common.securityInstanceURL.2=http://localhost:8081/isp/AuthService
389

CHAPTER B | iSF Configuration
Alternatively, to configure two Artix security service instances to operate in a
cluster or federation using secure communications (HTTPS):

In the secure case, you must also configure the certificate-related cluster
properties (described in this section) for each Artix security service instance.

com.iona.security.common.replicaURL.<server_ID>

A comma-separated list of URLs for the other security services to which this
service replicates its SSO token data.

com.iona.security.common.cACertDir.<server_ID>

For the <server_ID> Artix security service instance in a HTTPS cluster or
federation, specifies the directory containing trusted CA certificates. The CA
certificates can either be in DER-encoded X.509 format or in PEM-encoded
X.509 format.

For example, to specify d:/temp/cert as the CA certificate directory for the
primary Artix security service instance:

com.iona.security.common.clientCertFileName.<server_ID>

For the <server_ID> Artix security service instance in a HTTPS cluster or
federation, specifies the client certificate file that identifies the Artix security
service to its peers within a cluster or federation. The certificate must be in
PKCS#12 format.

com.iona.security.common.clientCertPassword.<server_ID>

For the <server_ID> Artix security service instance in a HTTPS cluster or
federation, specifies the password for the client certificate that identifies the
Artix security service to its peers within a cluster or federation.

com.iona.security.common.securityInstanceURL.1=https://localhost:8080/isp/AuthService
com.iona.security.common.securityInstanceURL.2=https://localhost:8081/isp/AuthService

com.iona.security.common.cACertDir.1=d:/temp/cert
 390

Cluster Properties File
WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.
391

CHAPTER B | iSF Configuration
log4j Properties File

Overview The log4j properties file configures log4j logging for your Artix security
service. This section describes a minimal set of log4j properties that can be
used to configure basic logging.

log4j documentation For complete log4j documentation, see the following Web page:

http://jakarta.apache.org/log4j/docs/documentation.html

File location The location of the log4j properties file is specified by the
log4j.configuration property in the iSF properties file. For ease of
administration, different Artix security service instances can optionally share
a common log4j properties file.

List of properties To give you some idea of the capabilities of log4j, the following is an
incomplete list of properties that can be specified in a log4j properties file:

log4j.appender.<AppenderHandle>

This property specifies a log4j appender class that directs
<AppenderHandle> logging messages to a particular destination. For
example, one of the following standard log4j appender classes could be
specified:

• org.apache.log4j.ConsoleAppender

• org.apache.log4j.FileAppender

• org.apache.log4j.RollingFileAppender

• org.apache.log4j.DailyRollingFileAppender

• org.apache.log4j.AsynchAppender

• org.apache.log4j.WriterAppender

For example, to log messages to the console screen for the A1 appender
handle:

log4j.appender.A1=org.apache.log4j.ConsoleAppender
 392

http://jakarta.apache.org/log4j/docs/documentation.html

log4j Properties File
log4j.appender.<AppenderHandle>.layout

This property specifies a log4j layout class that is used to format
<AppenderHandle> logging messages. One of the following standard log4j
layout classes could be specified:

• org.apache.log4j.PatternLayout

• org.apache.log4j.HTMLLayout

• org.apache.log4j.SimpleLayout

• org.apache.log4j.TTCCLayout

For example, to use the pattern layout class for log messages processed by
the A1 appender:

log4j.appender.<AppenderHandle>.layout.ConversionPattern

This property is used only in conjunction with the
org.apache.log4j.PatternLayout class (when specified by the
log4j.appender.<AppenderHandle>.layout property) to define the format
of a log message.

For example, you can specify a basic conversion pattern for the A1 appender
as follows:

log4j.rootCategory

This property is used to specify the logging level of the root logger and to
associate the root logger with one or more appenders. The value of this
property is specified as a comma separated list as follows:

The logging level, <LogLevel>, can have one of the following values:

• DEBUG

• INFO

• WARN

• ERORR

log4j.appender.A1.layout=org.apache.log4j.PatternLayout

log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

<LogLevel>, <AppenderHandle01>, <AppenderHandle02>, ...
393

CHAPTER B | iSF Configuration
• FATAL

An appender handle is an arbitrary identifier that associates a logger with a
particular logging destination.

For example, to select all messages at the DEBUG level and direct them to the
A1 appender, you can set the property as follows:

log4j.rootCategory=DEBUG, A1
 394

APPENDIX C

ASN.1 and
Distinguished
Names
The OSI Abstract Syntax Notation One (ASN.1) and X.500
Distinguished Names play an important role in the security
standards that define X.509 certificates and LDAP directories.

In this appendix This appendix contains the following section:

ASN.1 page 396

Distinguished Names page 397
395

CHAPTER C | ASN.1 and Distinguished Names
ASN.1

Overview The Abstract Syntax Notation One (ASN.1) was defined by the OSI
standards body in the early 1980s to provide a way of defining data types
and structures that is independent of any particular machine hardware or
programming language. In many ways, ASN.1 can be considered a
forerunner of the OMG’s IDL, because both languages are concerned with
defining platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards
(for example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitous
in the field of security standards—the formal definitions of X.509 certificates
and distinguished names are described using ASN.1 syntax. You do not
require detailed knowledge of ASN.1 syntax to use these security standards,
but you need to be aware that ASN.1 is used for the basic definitions of
most security-related data types.

BER The OSI’s Basic Encoding Rules (BER) define how to translate an ASN.1
data type into a sequence of octets (binary representation). The role played
by BER with respect to ASN.1 is, therefore, similar to the role played by
GIOP with respect to the OMG IDL.

DER The OSI’s Distinguished Encoding Rules (DER) are a specialization of the
BER. The DER consists of the BER plus some additional rules to ensure that
the encoding is unique (BER encodings are not).

References You can read more about ASN.1 in the following standards documents:

• ASN.1 is defined in X.208.

• BER is defined in X.209.
 396

Distinguished Names
Distinguished Names

Overview Historically, distinguished names (DN) were defined as the primary keys in
an X.500 directory structure. In the meantime, however, DNs have come to
be used in many other contexts as general purpose identifiers. In the Artix
Security Framework, DNs occur in the following contexts:

• X.509 certificates—for example, one of the DNs in a certificate
identifies the owner of the certificate (the security principal).

• LDAP—DNs are used to locate objects in an LDAP directory tree.

String representation of DN Although a DN is formally defined in ASN.1, there is also an LDAP standard
that defines a UTF-8 string representation of a DN (see RFC 2253). The
string representation provides a convenient basis for describing the structure
of a DN.

DN string example The following string is a typical example of a DN:

C=US,O=IONA Technologies,OU=Engineering,CN=A. N. Other

Structure of a DN string A DN string is built up from the following basic elements:

• OID.

• Attribute types.

• AVA.

• RDN.

OID An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely
identifies a grammatical construct in ASN.1.

Note: The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, a DN that is converted from
string format back to DER format does not always recover the original DER
encoding.
397

CHAPTER C | ASN.1 and Distinguished Names
Attribute types The variety of attribute types that could appear in a DN is theoretically
open-ended, but in practice only a small subset of attribute types are used.
Table 13 shows a selection of the attribute types that you are most likely to
encounter:

AVA An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type>=<attr-value>

For example:

CN=A. N. Other

Alternatively, you can use the equivalent OID to identify the attribute type in
the string representation (see Table 13). For example:

2.5.4.3=A. N. Other

Table 13: Commonly Used Attribute Types

String
Representation

X.500 Attribute Type Size of Data Equivalent OID

C countryName 2 2.5.4.6

O organizationName 1...64 2.5.4.10

OU organizationalUnitName 1...64 2.5.4.11

CN commonName 1...64 2.5.4.3

ST stateOrProvinceName 1...64 2.5.4.8

L localityName 1...64 2.5.4.7

STREET streetAddress

DC domainComponent

UID userid
 398

Distinguished Names
RDN A relative distinguished name (RDN) represents a single node of a DN (the
bit that appears between the commas in the string representation).
Technically, an RDN might contain more than one AVA (it is formally
defined as a set of AVAs); in practice, however, this almost never occurs. In
the string representation, an RDN has the following syntax:

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

Here is an example of a (very unlikely) multiple-value RDN:

OU=Eng1+OU=Eng2+OU=Eng3

Here is an example of a single-value RDN:

OU=Engineering
399

CHAPTER C | ASN.1 and Distinguished Names
 400

APPENDIX D

Action-Role
Mapping DTD
This appendix presents the document type definition (DTD) for
the action-role mapping XML file.

DTD file The action-role mapping DTD is shown in Example 57.

Action-role mapping elements The elements of the action-role mapping DTD can be described as follows:

<!ELEMENT action-name (#PCDATA)>

Specifies the action name to which permissions are assigned. The
interpretation of the action name depends on the type of application:

Example 57:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT action-name (#PCDATA)>
<!ELEMENT role-name (#PCDATA)>
<!ELEMENT server-name (#PCDATA)>
<!ELEMENT action-role-mapping (server-name, interface+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT interface (name, action-role+)>
<!ELEMENT action-role (action-name, role-name+)>
<!ELEMENT allow-unlisted-interfaces (#PCDATA)>
<!ELEMENT secure-system (allow-unlisted-interfaces*,

action-role-mapping+)>
401

CHAPTER D | Action-Role Mapping DTD
♦ CORBA server—for IDL operations, the action name corresponds
to the GIOP on-the-wire format of the operation name (usually the
same as it appears in IDL).

For IDL attributes, the accessor or modifier action name
corresponds to the GIOP on-the-wire format of the attribute
accessor or modifier. For example, an IDL attribute, foo, would
have an accessor, _get_foo, and a modifier, _set_foo.

♦ Artix server—for WSDL operations, the action name is equivalent
to a WSDL operation name; that is, the OperationName from a
tag, <operation name="OperationName">.

<!ELEMENT action-role (action-name, role-name+)>

Groups together a particular action and all of the roles permitted to
perform that action.

<!ELEMENT action-role-mapping (server-name, interface+)>

Contains all of the permissions that apply to a particular server
application.

<!ELEMENT allow-unlisted-interfaces (#PCDATA)>

Specifies the default access permissions that apply to interfaces not
explicitly listed in the action-role mapping file. The element contents
can have the following values:

♦ true—for any interfaces not listed, access to all of the interfaces’
actions is allowed for all roles. If the remote user is
unauthenticated (in the sense that no credentials are sent by the
client), access is also allowed.

♦ false—for any interfaces not listed, access to all of the interfaces’
actions is denied for all roles. Unauthenticated users are also
denied access.

Default is false.

Note: However, if <allow-unlisted-interfaces> is true and a
particular interface is listed, then only the actions explicitly listed
within that interface’s interface element are accessible. Unlisted
actions from the listed interface are not accessible.
 402

<!ELEMENT interface (name, action-role+)>

In the case of a CORBA server, the interface element contains all of
the access permissions for one particular IDL interface.

In the case of an Artix server, the interface element contains all of the
access permissions for one particular WSDL port type.

<!ELEMENT name (#PCDATA)>

Within the scope of an interface element, identifies the interface (IDL
interface or WSDL port type) with which permissions are being
associated. The format of the interface name depends on the type of
application, as follows:

♦ CORBA server—the name element identifies the IDL interface
using the interface’s OMG repository ID. The repository ID
normally consists of the characters IDL: followed by the fully
scoped name of the interface (using / instead of :: as the scoping
character), followed by the characters :1.0. Hence, the
Simple::SimpleObject IDL interface is identified by the
IDL:Simple/SimpleObject:1.0 repository ID.

♦ Artix server—the name element contains a WSDL port type name,
specified in the following format:

NamespaceURI:PortTypeName

The PortTypeName comes from a tag, <portType
name="PortTypeName">, defined in the NamespaceURI namespace.
The NamespaceURI is usually defined in the <definitions
targetNamespace="NamespaceURI" ...> tag of the WSDL
contract.

<!ELEMENT role-name (#PCDATA)>

Specifies a role to which permission is granted. The role name can be
any role that belongs to the server’s Artix authorization realm (for
CORBA bindings, the realm name is specified by the

Note: The form of the repository ID can also be affected by various
#pragma directives appearing in the IDL file. A commonly used
directive is #pragma prefix.

For example, the CosNaming::NamingContext interface in the naming
service module, which uses the omg.org prefix, has the following
repository ID: IDL:omg.org/CosNaming/NamingContext:1.0
403

CHAPTER D | Action-Role Mapping DTD
plugins:gsp:authorization_realm configuration variable; for SOAP
bindings, the realm name is specified by the
plugins:asp:authorization_realm configuration variable) or to the
IONAGlobalRealm realm. The roles themselves are defined in the
security server backend; for example, in a file adapter file or in an
LDAP backend.

<!ELEMENT secure-system (allow-unlisted-interfaces*,
action-role-mapping+)>

The outermost scope of an action-role mapping file groups together a
collection of action-role-mapping elements.

<!ELEMENT server-name (#PCDATA)>

The server-name element specifies the configuration scope (that is, the
ORB name) used by the server in question. This is normally the value
of the -ORBname parameter passed to the server executable on the
command line.
 404

APPENDIX E

OpenSSL Utilities
The openssl program consists of a large number of utilities that
have been combined into one program. This appendix
describes how you use the openssl program with Artix when
managing X.509 certificates and private keys.

In this appendix This appendix contains the following sections:

Using OpenSSL Utilities page 406

The OpenSSL Configuration File page 415
405

CHAPTER E | OpenSSL Utilities
Using OpenSSL Utilities

The OpenSSL package Orbix ships a version of the OpenSSL program that is available with Eric
Young’s openssl package. OpenSSL is a publicly available implementation of
the SSL protocol. Consult “License Issues” on page 433 for information
about the copyright terms of OpenSSL.

Command syntax An openssl command line takes the following form:

openssl utility arguments

For example:

openssl x509 -in OrbixCA -text

The openssl utilities This appendix describes four openssl utilities:

The -help option To get a list of the arguments associated with a particular command, use
the -help option as follows:

openssl utility -help

For example:

openssl x509 -help

Note: For complete documentation of the OpenSSL utilities, consult the
documentation at the OpenSSL web site http://www.openssl.org/docs.

x509 Manipulates X.509 certificates.

req Creates and manipulates certificate signing requests, and self-signed
certificates.

rsa Manipulates RSA private keys.

ca Implements a Certification Authority (CA).
 406

Using OpenSSL Utilities
The x509 Utility

Purpose of the x509 utility In Orbix the x509 utility is mainly used for:

• Printing text details of certificates you wish to examine.

• Converting certificates to different formats.

Options The options supported by the openssl x509 utility are as follows:

-inform arg - input format - default PEM
(one of DER, NET or PEM)

-outform arg - output format - default PEM
(one of DER, NET or PEM

-keyform arg - private key format - default PEM

-CAform arg - CA format - default PEM

-CAkeyform arg - CA key format - default PEM

-in arg - input file - default stdin

-out arg - output file - default stdout

-serial - print serial number value

-hash - print serial number value

-subject - print subject DN

-issuer - print issuer DN

-startdate - notBefore field

-enddate - notAfter field

-dates - both Before and After dates

-modulus - print the RSA key modulus

-fingerprint - print the certificate fingerprint

-noout - no certificate output

-days arg - How long till expiry of a signed certificate
- def 30 days

-signkey arg - self sign cert with arg

-x509toreq - output a certification request object

-req - input is a certificate request, sign and
output

-CA arg - set the CA certificate, must be PEM format
407

CHAPTER E | OpenSSL Utilities
Using the x509 utility To print the text details of an existing PEM-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in MyCert.pem -inform PEM -text

To print the text details of an existing DER-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in MyCert.der -inform DER -text

To change a certificate from PEM format to DER format, use the x509 utility
as follows:

openssl x509 -in MyCert.pem -inform PEM -outform DER -out
MyCert.der

-CAkey arg - set the CA key, must be PEM format. If missing
it is assumed to be in the CA file

-CAcreateserial - create serial number file if it does not exist

-CAserial - serial file

-text - print the certificate in text form

-C - print out C code forms

-md2/-md5/-sha1/
-mdc2

- digest to do an RSA sign with
 408

Using OpenSSL Utilities
The req Utility

Purpose of the x509 utility The req utility is used to generate a self-signed certificate or a certificate
signing request (CSR). A CSR contains details of a certificate to be issued by
a CA. When creating a CSR, the req command prompts you for the
necessary information from which a certificate request file and an encrypted
private key file are produced. The certificate request is then submitted to a
CA for signing.

If the -nodes (no DES) parameter is not supplied to req, you are prompted
for a pass phrase which will be used to protect the private key.

Options The options supported by the openssl req utility are as follows:

Note: It is important to specify a validity period (using the -days
parameter). If the certificate expires, applications that are using that
certificate will not be authenticated successfully.

-inform arg input format - one of DER TXT PEM

-outform arg output format - one of DER TXT PEM

-in arg inout file

-out arg output file

-text text form of request

-noout do not output REQ

-verify verify signature on REQ

-modulus RSA modulus

-nodes do not encrypt the output key

-key file use the private key contained in file

-keyform arg key file format

-keyout arg file to send the key to

-newkey rsa:bits generate a new RSA key of ‘bits’ in size

-newkey dsa:file generate a new DSA key, parameters taken from
CA in ‘file’

-[digest] Digest to sign with (md5, sha1, md2, mdc2)

-config file request template file
409

CHAPTER E | OpenSSL Utilities
Using the req Utility To create a self-signed certificate with an expiry date a year from now, the
req utility can be used as follows to create the certificate CA_cert.pem and
the corresponding encrypted private key file CA_pk.pem:

openssl req -config ssl_conf_path_name -days 365
-out CA_cert.pem -new -x509 -keyout CA_pk.pem

This following command creates the certificate request MyReq.pem and the
corresponding encrypted private key file MyEncryptedKey.pem:

openssl req -config ssl_conf_path_name -days 365
-out MyReq.pem -new -keyout MyEncryptedKey.pem

-new new request

-x509 output an x509 structure instead of a
certificate req. (Used for creating self signed
certificates)

-days number of days an x509 generated by -x509 is
valid for

-asn1-kludge Output the ‘request’ in a format that is wrong
but some CA’s have been reported as requiring
[It is now always turned on but can be turned
off with -no-asn1-kludge]
 410

Using OpenSSL Utilities
The rsa Utility

Purpose of the rsa utility The rsa command is a useful utility for examining and modifying RSA
private key files. Generally RSA keys are stored encrypted with a symmetric
algorithm using a user-supplied pass phrase. The OpenSSL req command
prompts the user for a pass phrase in order to encrypt the private key. By
default, req uses the triple DES algorithm. The rsa command can be used
to change the password that protects the private key and to convert the
format of the private key. Any rsa command that involves reading an
encrypted rsa private key will prompt for the PEM pass phrase used to
encrypt it.

Options The options supported by the openssl rsa utility are as follows:

Using the rsa Utility Converting a private key to PEM format from DER format involves using the
rsa utility as follows:

openssl rsa -inform DER -in MyKey.der -outform PEM -out MyKey.pem

Changing the pass phrase which is used to encrypt the private key involves
using the rsa utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey.pem
-des3

Removing encryption from the private key (which is not recommended)
involves using the rsa command utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey2.pem

-inform arg input format - one of DER NET PEM

-outform arg output format - one of DER NET PEM

-in arg inout file

-out arg output file

-des encrypt PEM output with cbc des

-des3 encrypt PEM output with ede cbc des using
168 bit key

-text print the key in text

-noout do not print key out

-modulus print the RSA key modulus
411

CHAPTER E | OpenSSL Utilities
Note: Do not specify the same file for the -in and -out parameters,
because this can corrupt the file.
 412

Using OpenSSL Utilities
The ca Utility

Purpose of the ca utility You can use the ca utility create X.509 certificates by signing existing
signing requests. It is imperative that you check the details of a certificate
request before signing. Your organization should have a policy with respect
to the issuing of certificates.

The ca utility is used to sign certificate requests thereby creating a valid
X.509 certificate which can be returned to the request submitter. It can also
be used to generate Certificate Revocation Lists (CRLS). For information on
the ca -policy and -name options, refer to “The OpenSSL Configuration
File” on page 415.

Creating a new CA To create a new CA using the openssl ca utility, two files (serial and
index.txt) need to be created in the location specified by the openssl
configuration file that you are using.

Options The options supported by the openssl ca utility are as follows:

-verbose - Talk alot while doing things

-config file - A config file

-name arg - The particular CA definition to use

-gencrl - Generate a new CRL

-crldays days - Days is when the next CRL is due

-crlhours hours - Hours is when the next CRL is due

-days arg - number of days to certify the certificate for

-md arg - md to use, one of md2, md5, sha or sha1

-policy arg - The CA ‘policy’ to support

-keyfile arg - PEM private key file

-key arg - key to decode the private key if it is
encrypted

-cert - The CA certificate

-in file - The input PEM encoded certificate request(s)

-out file - Where to put the output file(s)

-outdir dir - Where to put output certificates
413

CHAPTER E | OpenSSL Utilities
Note: Most of the above parameters have default values as defined in
openssl.cnf.

Using the ca Utility Converting a private key to PEM format from DER format involves using the
ca utility as shown in the following example. To sign the supplied CSR
MyReq.pem to be valid for 365 days and create a new X.509 certificate in
PEM format, use the ca utility as follows:

openssl ca -config ssl_conf_path_name -days 365
-in MyReq.pem -out MyNewCert.pem

-infiles.... - The last argument, requests to process

-spkac file - File contains DN and signed public key and
challenge

-preserveDN - Do not re-order the DN

-batch - Do not ask questions

-msie_hack - msie modifications to handle all thos
universal strings
 414

The OpenSSL Configuration File
The OpenSSL Configuration File

Overview A number of OpenSSL commands (for example, req and ca) take a -config
parameter that specifies the location of the openssl configuration file. This
section provides a brief description of the format of the configuration file and
how it applies to the req and ca commands. An example configuration file is
listed at the end of this section.

Structure of openssl.cnf The openssl.cnf configuration file consists of a number of sections that
specify a series of default values that are used by the openssl commands.

In this section This section contains the following subsections:

[req] Variables page 416

[ca] Variables page 417

[policy] Variables page 418

Example openssl.cnf File page 419
415

CHAPTER E | OpenSSL Utilities
[req] Variables

Overview of the variables The req section contains the following variables:

default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

default_bits configuration
variable

The default_bits variable is the default RSA key size that you wish to use.
Other possible values are 512, 2048, and 4096.

default_keyfile configuration
variable

The default_keyfile variable is the default name for the private key file
created by req.

distinguished_name
configuration variable

The distinguished_name variable specifies the section in the configuration
file that defines the default values for components of the distinguished name
field. The req_attributes variable specifies the section in the configuration
file that defines defaults for certificate request attributes.
 416

The OpenSSL Configuration File
[ca] Variables

Choosing the CA section You can configure the file openssl.cnf to support a number of CAs that
have different policies for signing CSRs. The -name parameter to the ca
command specifies which CA section to use. For example:

openssl ca -name MyCa ...

This command refers to the CA section [MyCa]. If -name is not supplied to
the ca command, the CA section used is the one indicated by the
default_ca variable. In the “Example openssl.cnf File” on page 419, this is
set to CA_default (which is the name of another section listing the defaults
for a number of settings associated with the ca command). Multiple
different CAs can be supported in the configuration file, but there can be
only one default CA.

Overview of the variables Possible [ca] variables include the following

dir: The location for the CA database
The database is a simple text database containing the

following tab separated fields:

status: A value of ‘R’ - revoked, ‘E’ -expired or ‘V’ valid
issued date: When the certificate was certified
revoked date: When it was revoked, blank if not revoked
serial number: The certificate serial number
certificate: Where the certificate is located
CN: The name of the certificate

The serial number field should be unique, as should the CN/status
combination. The ca utility checks these at startup.

certs: This is where all the previously issued certificates are
kept
417

CHAPTER E | OpenSSL Utilities
[policy] Variables

Choosing the policy section The policy variable specifies the default policy section to be used if the
-policy argument is not supplied to the ca command. The CA policy section
of a configuration file identifies the requirements for the contents of a
certificate request which must be met before it is signed by the CA.

There are two policy sections defined in the “Example openssl.cnf File” on
page 419: policy_match and policy_anything.

Example policy section The policy_match section of the example openssl.cnf file specifies the
order of the attributes in the generated certificate as follows:

countryName
stateOrProvinceName
organizationName
organizationalUnitName
commonName
emailAddress

The match policy value Consider the following value:

countryName = match

This means that the country name must match the CA certificate.

The optional policy value Consider the following value:

organisationalUnitName = optional

This means that the organisationalUnitName does not have to be present.

The supplied policy value Consider the following value:

commonName = supplied

This means that the commonName must be supplied in the certificate request.
 418

The OpenSSL Configuration File
Example openssl.cnf File

Listing The following listing shows the contents of an example openssl.cnf
configuration file:

##
openssl example configuration file.
This is mostly used for generation of certificate requests.
###
[ca]
default_ca= CA_default # The default ca section
###

[CA_default]

dir=/opt/iona/OrbixSSL1.0c/certs # Where everything is kept

certs=$dir # Where the issued certs are kept
crl_dir= $dir/crl # Where the issued crl are kept
database= $dir/index.txt # database index file
new_certs_dir= $dir/new_certs # default place for new certs
certificate=$dir/CA/OrbixCA # The CA certificate
serial= $dir/serial # The current serial number
crl= $dir/crl.pem # The current CRL
private_key= $dir/CA/OrbixCA.pk # The private key
RANDFILE= $dir/.rand # private random number file
default_days= 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md= md5 # which message digest to use
preserve= no # keep passed DN ordering

A few different ways of specifying how closely the request
should

conform to the details of the CA

policy= policy_match

For the CA policy

[policy_match]
countryName= match
stateOrProvinceName= match
organizationName= match
organizationalUnitName= optional
commonName= supplied
419

CHAPTER E | OpenSSL Utilities
emailAddress= optional

For the ‘anything’ policy
At this point in time, you must list all acceptable ‘object’
types

[policy_anything]
countryName = optional
stateOrProvinceName= optional
localityName= optional
organizationName = optional
organizationalUnitName = optional
commonName= supplied
emailAddress= optional

[req]
default_bits = 1024
default_keyfile= privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

[req_distinguished_name]
countryName= Country Name (2 letter code)
countryName_min= 2
countryName_max = 2
stateOrProvinceName= State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)
organizationalUnitName = Organizational Unit Name (eg, section)
commonName = Common Name (eg. YOUR name)
commonName_max = 64
emailAddress = Email Address
emailAddress_max = 40

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20
unstructuredName= An optional company name
 420

APPENDIX F

bus-security C++
Context Data
This appendix lists the bus-security C++ context data types.
You can use these C++ types in conjunction with the context
API to set the security properties programatically.

C++ mapped classes Example 58 shows the context data types that are generated when the
bus-security.xsd schema is mapped to C++.

Example 58:The bus-security C++ Context Data Types

// C++
namespace IT_ContextAttributes
{
 ...
 class BusSecurityLevel : public IT_Bus::AnySimpleType
 {
 public:
 ...
 static const IT_Bus::String MESSAGE_LEVEL;
 static const IT_Bus::String REQUEST_LEVEL;
 ...
 BusSecurityLevel();
 BusSecurityLevel(const BusSecurityLevel & copy);
 BusSecurityLevel(const IT_Bus::String & value);
 virtual ~BusSecurityLevel();
 ...
 void setvalue(const IT_Bus::String & value);
421

CHAPTER F | bus-security C++ Context Data
 const IT_Bus::String & getvalue() const;
 ...
 };
 typedef IT_AutoPtr<BusSecurityLevel> BusSecurityLevelPtr;

 class BusSecurityType : public IT_Bus::AnySimpleType
 {
 public:
 ...
 static const IT_Bus::String USERNAME_PASSWORD;
 static const IT_Bus::String PRINCIPAL;
 static const IT_Bus::String CERT_SUBJECT;
 static const IT_Bus::String ENCODED_TOKEN;
 static const IT_Bus::String KERBEROS_TOKEN;
 ...
 BusSecurityType();
 BusSecurityType(const BusSecurityType & copy);
 BusSecurityType(const IT_Bus::String & value);
 virtual ~BusSecurityType();
 ...
 void setvalue(const IT_Bus::String & value);
 const IT_Bus::String & getvalue() const;
 ...
 };
 typedef IT_AutoPtr<BusSecurityType> BusSecurityTypePtr;

 class BusSecurity
 : public IT_tExtensibilityElementData,
 public virtual IT_Bus::ComplexContentComplexType
 {
 public:
 ...
 BusSecurity();
 BusSecurity(const BusSecurity & copy);
 virtual ~BusSecurity();
 ...
 IT_Bus::String *
 getis2AuthorizationActionRoleMapping();

 const IT_Bus::String *
 getis2AuthorizationActionRoleMapping() const;

 void setis2AuthorizationActionRoleMapping(
 const IT_Bus::String * val
);

Example 58:The bus-security C++ Context Data Types
 422

 void setis2AuthorizationActionRoleMapping(
 const IT_Bus::String & val
);

 IT_Bus::Boolean * getenableSecurity();
 const IT_Bus::Boolean * getenableSecurity() const;
 void setenableSecurity(const IT_Bus::Boolean * val);
 void setenableSecurity(const IT_Bus::Boolean & val);

 IT_Bus::Boolean * getenableAuthorization();
 const IT_Bus::Boolean * getenableAuthorization() const;
 void setenableAuthorization(const IT_Bus::Boolean * val);
 void setenableAuthorization(const IT_Bus::Boolean & val);

 IT_Bus::Boolean * getenableSSO();
 const IT_Bus::Boolean * getenableSSO() const;
 void setenableSSO(const IT_Bus::Boolean * val);
 void setenableSSO(const IT_Bus::Boolean & val);

 BusSecurityLevel * getsecurityLevel();
 const BusSecurityLevel * getsecurityLevel() const;
 void setsecurityLevel(const BusSecurityLevel * val);
 void setsecurityLevel(const BusSecurityLevel & val);

 BusSecurityType * getsecurity_Type();
 const BusSecurityType * getsecurity_Type() const;
 void setsecurity_Type(const BusSecurityType * val);
 void setsecurity_Type(const BusSecurityType & val);

 IT_Bus::Int * getauthenticationCacheSize();
 const IT_Bus::Int * getauthenticationCacheSize() const;
 void setauthenticationCacheSize(const IT_Bus::Int * val);
 void setauthenticationCacheSize(const IT_Bus::Int & val);

 IT_Bus::Int * getauthenticationCacheTimeout();
 const IT_Bus::Int * getauthenticationCacheTimeout()

const;
 void setauthenticationCacheTimeout(
 const IT_Bus::Int * val
);
 void setauthenticationCacheTimeout(
 const IT_Bus::Int & val
);

Example 58:The bus-security C++ Context Data Types
423

CHAPTER F | bus-security C++ Context Data
 IT_Bus::String * getauthorizationRealm();
 const IT_Bus::String * getauthorizationRealm() const;
 void setauthorizationRealm(const IT_Bus::String * val);
 void setauthorizationRealm(const IT_Bus::String & val);

 IT_Bus::String * getdefaultPassword();
 const IT_Bus::String * getdefaultPassword() const;
 void setdefaultPassword(const IT_Bus::String * val);
 void setdefaultPassword(const IT_Bus::String & val);

 IT_Bus::String * getPrincipal();
 const IT_Bus::String * getPrincipal() const;
 void setPrincipal(const IT_Bus::String * val);
 void setPrincipal(const IT_Bus::String & val);

 IT_Bus::String * getWSSEKerberosv5SToken();
 const IT_Bus::String * getWSSEKerberosv5SToken() const;
 void setWSSEKerberosv5SToken(const IT_Bus::String * val);
 void setWSSEKerberosv5SToken(const IT_Bus::String & val);

 IT_Bus::String * getWSSEUsernameToken();
 const IT_Bus::String * getWSSEUsernameToken() const;
 void setWSSEUsernameToken(const IT_Bus::String * val);
 void setWSSEUsernameToken(const IT_Bus::String & val);

 IT_Bus::String * getWSSEPasswordToken();
 const IT_Bus::String * getWSSEPasswordToken() const;
 void setWSSEPasswordToken(const IT_Bus::String * val);
 void setWSSEPasswordToken(const IT_Bus::String & val);

 IT_Bus::String * getWSSEX509Cert();
 const IT_Bus::String * getWSSEX509Cert() const;
 void setWSSEX509Cert(const IT_Bus::String * val);
 void setWSSEX509Cert(const IT_Bus::String & val);

 IT_Bus::String * getUsername();
 const IT_Bus::String * getUsername() const;
 void setUsername(const IT_Bus::String * val);
 void setUsername(const IT_Bus::String & val);

 IT_Bus::String * getPassword();
 const IT_Bus::String * getPassword() const;
 void setPassword(const IT_Bus::String * val);
 void setPassword(const IT_Bus::String & val);

Example 58:The bus-security C++ Context Data Types
 424

 IT_Bus::String * getSSOToken();
 const IT_Bus::String * getSSOToken() const;
 void setSSOToken(const IT_Bus::String * val);
 void setSSOToken(const IT_Bus::String & val);

 IT_Bus::String * getCertificateSubject();
 const IT_Bus::String * getCertificateSubject() const;
 void setCertificateSubject(const IT_Bus::String * val);
 void setCertificateSubject(const IT_Bus::String & val);

 IT_Bus::String * getencoded_token();
 const IT_Bus::String * getencoded_token() const;
 void setencoded_token(const IT_Bus::String * val);
 void setencoded_token(const IT_Bus::String & val);

 IT_Bus::Boolean * getIsTransportCredential();
 const IT_Bus::Boolean * getIsTransportCredential() const;
 void setIsTransportCredential(
 const IT_Bus::Boolean * val
);
 void setIsTransportCredential(
 const IT_Bus::Boolean & val
);
 ...
 };
 typedef IT_AutoPtr<BusSecurity> BusSecurityPtr;
}

Example 58:The bus-security C++ Context Data Types
425

CHAPTER F | bus-security C++ Context Data
 426

APPENDIX G

bus-security Java
Context Data
This appendix lists the bus-security Java context data types.
You can use these Java types in conjunction with the context
API to set the security properties programatically.

Java BusSecurityLevel class The BusSecurityLevel type is used to set the securityLevel attribute of
the BusSecurity context. Example 59 shows the definition of the
BusSecurityLevel class.

Example 59:The BusSecurityLevel Class

// Java
package com.iona.schemas.bus.security_context;

import java.util.*;
import java.lang.String;

public class BusSecurityLevel {
 public static final String TARGET_NAMESPACE =

"http://schemas.iona.com/bus/security_context";
 ...
 public static final String _MESSAGE_LEVEL = "MESSAGE_LEVEL";
 public static final

com.iona.schemas.bus.security_context.BusSecurityLevel
MESSAGE_LEVEL = new
com.iona.schemas.bus.security_context.BusSecurityLevel(_MESSA
GE_LEVEL);
427

CHAPTER G | bus-security Java Context Data
Java BusSecurityType class The BusSecurityType type is used to set the securityType attribute of the
BusSecurity context. Example 59 shows the definition of the
BusSecurityType class.

 public static final String _REQUEST_LEVEL = "REQUEST_LEVEL";
 public static final

com.iona.schemas.bus.security_context.BusSecurityLevel
REQUEST_LEVEL = new
com.iona.schemas.bus.security_context.BusSecurityLevel(_REQUE
ST_LEVEL);

 ...
 public String getValue();

 public static
com.iona.schemas.bus.security_context.BusSecurityLevel
fromValue(String value);

 public static
com.iona.schemas.bus.security_context.BusSecurityLevel
fromString(String value);

 public String toString();
}

Example 59:The BusSecurityLevel Class

Example 60:The BusSecurityType Class

// Java
package com.iona.schemas.bus.security_context;

import java.util.*;
import java.lang.String;

public class BusSecurityType {
 public static final String TARGET_NAMESPACE =

"http://schemas.iona.com/bus/security_context";
 ...
 public static final String _USERNAME_PASSWORD =

"USERNAME_PASSWORD";
 428

 public static final
com.iona.schemas.bus.security_context.BusSecurityType
USERNAME_PASSWORD = new
com.iona.schemas.bus.security_context.BusSecurityType(_USERNA
ME_PASSWORD);

 public static final String _PRINCIPAL = "PRINCIPAL";
 public static final

com.iona.schemas.bus.security_context.BusSecurityType
PRINCIPAL = new
com.iona.schemas.bus.security_context.BusSecurityType(_PRINCI
PAL);

 public static final String _CERT_SUBJECT = "CERT_SUBJECT";
 public static final

com.iona.schemas.bus.security_context.BusSecurityType
CERT_SUBJECT = new
com.iona.schemas.bus.security_context.BusSecurityType(_CERT_S
UBJECT);

 public static final String _ENCODED_TOKEN = "ENCODED_TOKEN";
 public static final

com.iona.schemas.bus.security_context.BusSecurityType
ENCODED_TOKEN = new
com.iona.schemas.bus.security_context.BusSecurityType(_ENCODE
D_TOKEN);

 public static final String _KERBEROS_TOKEN =
"KERBEROS_TOKEN";

 public static final
com.iona.schemas.bus.security_context.BusSecurityType
KERBEROS_TOKEN = new
com.iona.schemas.bus.security_context.BusSecurityType(_KERBER
OS_TOKEN);

 ...
 public String getValue();

 public static
com.iona.schemas.bus.security_context.BusSecurityType
fromValue(String value);

 public static
com.iona.schemas.bus.security_context.BusSecurityType
fromString(String value);

Example 60:The BusSecurityType Class
429

CHAPTER G | bus-security Java Context Data
Java BusSecurity class Example 61 shows the definition of the BusSecurity context data type that
are generated when the bus-security.xsd schema is mapped to Java.

 public String toString();
}

Example 60:The BusSecurityType Class

Example 61:The BusSecurity Context Data Type, Java

// Java
package com.iona.schemas.bus.security_context;

import java.util.*;

import java.lang.String;
import java.lang.Boolean;
import java.lang.Integer;

public class BusSecurity extends
org.xmlsoap.schemas.wsdl.context.TExtensibilityElement {

 public static final String TARGET_NAMESPACE =
"http://schemas.iona.com/bus/security_context";

 ...
 public String getIs2AuthorizationActionRoleMapping();
 public void setIs2AuthorizationActionRoleMapping(String val);

 public Boolean isEnableSecurity();
 public void setEnableSecurity(Boolean val);

 public Boolean isEnableAuthorization();
 public void setEnableAuthorization(Boolean val);

 public Boolean isEnableSSO();
 public void setEnableSSO(Boolean val);

 public BusSecurityLevel getSecurityLevel();
 public void setSecurityLevel(BusSecurityLevel val);

 public BusSecurityType getSecurity_Type();
 public void setSecurity_Type(BusSecurityType val);

 public Integer getAuthenticationCacheSize();
 public void setAuthenticationCacheSize(Integer val);
 430

 public Integer getAuthenticationCacheTimeout();
 public void setAuthenticationCacheTimeout(Integer val);

 public String getAuthorizationRealm();
 public void setAuthorizationRealm(String val);

 public String getDefaultPassword();
 public void setDefaultPassword(String val);

 public String getPrincipal();
 public void setPrincipal(String val);

 public String getWSSEKerberosv5SToken();
 public void setWSSEKerberosv5SToken(String val);

 public String getWSSEUsernameToken();
 public void setWSSEUsernameToken(String val);

 public String getWSSEPasswordToken();
 public void setWSSEPasswordToken(String val);

 public String getWSSEX509Cert();
 public void setWSSEX509Cert(String val);

 public String getUsername();
 public void setUsername(String val);

 public String getPassword();
 public void setPassword(String val);

 public String getSSOToken();
 public void setSSOToken(String val);

 public String getCertificateSubject();
 public void setCertificateSubject(String val);

 public String getEncoded_token();
 public void setEncoded_token(String val);

 public Boolean isIsTransportCredential();
 public void setIsTransportCredential(Boolean val);

 public String toString();
}

Example 61:The BusSecurity Context Data Type, Java
431

CHAPTER G | bus-security Java Context Data
 432

APPENDIX H

License Issues
This appendix contains the text of licenses relevant to Artix.

In this appendix This appendix contains the following section:

OpenSSL License page 434
433

CHAPTER H | License Issues
OpenSSL License

Overview The licence agreement for the usage of the OpenSSL command line utility
shipped with Artix SSL/TLS is as follows:

LICENSE ISSUES
==============
 The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
 the OpenSSL License and the original SSLeay license apply to the toolkit.
 See below for the actual license texts. Actually both licenses are BSD-style
 Open Source licenses. In case of any license issues related to OpenSSL
 please contact openssl-core@openssl.org.

 OpenSSL License

/* ==
* Copyright (c) 1998-1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
 434

OpenSSL License
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
435

CHAPTER H | License Issues
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
 436

Index

Symbols
.NET

and principal propagation 245
<action-role-mapping> tag 154
<interface> tag 154
<name> tag 154
<realm> tag 147
<role> tag 147
<server-name> tag 154
<users> tag 147

A
access control

wsdltoacl utility 156
ACL

<action-role-mapping> tag 154
<interface> tag 154
<name> tag 154
<server-name> tag 154
action_role_mapping configuration variable 159
action-role mapping file 153
action-role mapping file, example 153

action-role mapping
and role-based access control 141

action_role_mapping configuration variable 74, 159
action-role mapping file

<action-role-mapping> tag 154
<interface> tag 154
<name> tag 154
<server-name> tag 154
CORBA

configuring 153
example 153

administration
OpenSSL command-line utilities 171

AgentSecret property 113
and iSF adapter properties 291
Artix security layer

and certificate-based authentication 51
Artix security plug-in

and security layer 29
authentication_cache_size configuration

variable 32
Artix security plug-in plug-in
authentication_cache_timeout configuration

variable 32
Artix security service

and embedded deployment 277
architecture 273
configuring 103
definition 274
features 274
file adapter 104
is2.properties file 104
LDAP adapter 106
LDAP adapter, properties 107
log4j logging 135
plugins:java_server:classpath configuration

variable 292
security infomation file 104
SiteMinder adapter, configuring 112
standalone deployment of 276

ASN.1 163, 395
attribute types 398
AVA 398
OID 397
RDN 399

ASP plug-in
caching of credentials 31

asp plug-in
default_password configuration value 240
security_type configuration variable 240

ASP security layer
and HTTP 35
and SOAP binding 59

association options
and cipher suite constraints 232
and mechanism policy 221
client secure invocation policy, default 217
compatibility with cipher suites 233
EstablishTrustInClient 39, 41, 66, 80
NoProtection 69
rules of thumb 221
SSL/TLS

Confidentiality 215
DetectMisordering 215
437

INDEX
DetectReplay 215
EstablishTrustInClient 216
EstablishTrustInTarget 216
Integrity 215
NoProtection 215
setting 212

target secure invocation policy, default 219
attribute value assertion 398
authenticate() method

in IS2Adapter 285
authentication

and security layer 29
caching of credentials 31
certificate-based 26
CSI 26
HTTP Basic Authentication 26
iSF

process of 71
own certificate, specifying 200
pass phrase

dialog prompt, C++ 202
in configuration 203
password file, from 202

SSL/TLS
mutual 196
target only 193
trusted CA list 199

authentication_cache_size configuration
variable 31, 32

authentication_cache_timeout configuration
variable 31, 32

authorization
and security layer 29
caching of credentials 31
role-based access control 141
roles

creating 143
special 145

authorization realm
adding a server 142
IONAGlobalRealm realm 145
iSF 141
iSF, setting in server 74
roles in 143
servers in 142
special 145

authorization realms
creating 143

AVA 398
 438
B
backward trust 81
Baltimore toolkit

selecting for C++ applications 299
Basic Encoding Rules 396
BER 396
bus:security 267
bus-security:security interceptor 49, 96

C
CA 162

choosing a host 166
commercial CAs 165
index file 173
list of trusted 168
multiple CAs 168
private CAs 166
private key, creating 174
security precautions 166
See Alsocertificate authority
self-signed 174
serial file 173
trusted list 181, 199

417
CA, setting up 172
CACHE_CLIENT session caching value 235
CACHE_NONE session caching value 235
CACHE_SERVER_AND_CLIENT session caching

value 235
CACHE_SERVER session caching value 235
caching

authentication_cache_size configuration
variable 31, 32

authentication_cache_timeout configuration
variable 31, 32

CACHE_CLIENT session caching value 235
CACHE_NONE session caching value 235
CACHE_SERVER_AND_CLIENT session caching

value 235
CACHE_SERVER session caching value 235
of credentials 31
SSL/TLS

cache size 235
validity period 235

Caching sessions 235
CAs 172
ca utility 413
CertConstraintsPolicy 297

INDEX
CertConstraintsPolicy policy 297
certificate authority

and certificate signing 162
certificate-based authentication 26

and HTTP 36
example scenario 51, 82
file adapter, configuring 147
LDAP adapter, configuring 149

certificate constraints policy
three-tier target server 81

certificate_constraints_policy variable 206, 297
Certificates

chain length 205
constraints 206, 297

certificates
CertConstraintsPolicy policy 297
chaining 167
constraint language 206, 297
constraints policy 81
contents of 163
creating and signing 175
deployment, 180
importing and exporting 170
length limit 168
own, specifying 200
pass phrase 202
peer 167
PKCS#12 file 169
public key 163
public key encryption 226
security handshake 193, 197
self-signed 167, 174
serial number 163
signing 162, 176
signing request 175
trusted CA list 181, 199
X.509 162

certificate signing request 175
common name 176
signing 176

chaining of certificates 167
ciper suites

order of 230
cipher suites

ciphersuites configuration variable 230
compatibility algorithm 233
compatibility with association options 233
default list 230
definitions 227
effective 232
encryption algorithm 226
exportable 227
integrity-only ciphers 226
key exchange algorithm 226
mechanism policy 229
secure hash algorithm 226
secure hash algorithms 227
security algorithms 226
specifying 225
standard ciphers 226

ciphersuites configuration variable 230
CLASSPATH 292
client_binding_list configuration variable

iSF, client configuration 72
secure client 65

ClientCertificate attribute 42
ClientPrivateKeyPassword attribute 42
client secure invocation policy 232

HTTPS 217
IIOP/TLS 217

ClientSecureInvocationPolicy policy 213
client_version_policy

IIOP 346
close() method 285
cluster.properties file

example 127
clustering

definition 118
is2.cluster.properties.filename property 126
is2.replica.selector.classname 126
IT_SecurityService initial reference 128
load balancing 130
login service 125, 126
plugins:security:iiop_tls:addr_list variable 129
plugins:security:iiop_tls:host variable 129
plugins:security:iiop_tls:port variable 129
policies:iiop_tls:load_balancing_mechanism

variable 131
securityInstanceURL property 127

cluster properties file 123
colocated invocations

and secure associations 210
colocation

incompatibility with principal propagation 238
com.iona.isp.adapters property 290
common names

uniqueness 176
Confidentiality association option 215
439

INDEX
hints 223
Confidentiality option 215
configuration

and iSF standalone deployment 276
of the iSF adapter 290
plugins:java_server:classpath configuration

variable 292
Configuration file 415
connection_attempts 346
constraint language 206, 297
Constraints

for certificates 206, 297
CORBA

action-role mapping file 153
action-role mapping file, example 153
and iSF client SDK 274
configuring principal propagation 239
intermediate server configuration 77
iSF, three-tier system 76
principal propagation 238
security, overview 62
SSL/TLS

client configuration 64
securing communications 64

three-tier target server configuration 79
CORBA binding

CSI authorization over transport 26
CSI identity assertion 26
protocol layers 28
SSO overview 90

CORBA Principal 25, 60
CORBA security

CSIv2 plug-in 63
GSP plug-in 63
IIOP/TLS plug-in 63

CSI
authorization over transport 26
identity assertion 26

CSI interceptor 72
CSIv2

certificate constraints policy 81
principal sponsor

client configuration 73
CSIv2 plug-in

CORBA security 63
CSR 175

D
data encryption standard
 440
see DES
default_password configuration value 240
DER 396
DES

symmetric encryption 227
DetectMisordering association option 215

hints 223
DetectMisordering option 215
DetectReplay association option 215

hints 223
DetectReplay option 215
Distinguished Encoding Rules 396
distinguished names

definition 397
DN

definition 397
string representation 397

domain name
ignored by iSF 71

domains
federating across 119

E
effective cipher suites

definition 232
embedded deployment 277

loading an adapter class 292
enable_principal_service_context configuration

variable 239
encryption algorithm

RC4 227
encryption algorithms 226

DES 227
symmetric 227
triple DES 227

enterprise security service
and iSF security domains 139

EstablishTrustInClient association option 39, 41,
66, 216

hints 222
three-tier target server 80

EstablishTrustInClient option 216
EstablishTrustInTarget association option 216

hints 222
EstablishTrustInTarget option 216
exportable cipher suites 227

INDEX
F
failover

definition 124
features, of the Artix security service 274
federation

and the security service 119
cluster properties file 123
definition 118
is2.cluster.properties.filename property 122
is2.current.server.id property 119
is2.properties file 122, 126
plugins:security:iiop_tls settings 123

file adapter 104
configuring certificate-based authentication 147
properties 104

file domain
<realm> tag 147
<users> tag 147
example 146
file location 146
managing 146

G
generic server 276
getAllUsers() method 287
getAuthorizationInfo() method 286
GroupBaseDN property 108
GroupNameAttr property 108
GroupObjectClass property 108
GroupSearchScope property 109
GSP plug-in

and security layer 29
and the login service 90
authentication_cache_size configuration

variable 31
authentication_cache_timeout configuration

variable 31
caching of credentials 31
CORBA security 63

GSSUP credentials 121

H
high availability 124
HTTP

ASP security layer 35
security layers 34

HTTP Basic Authentication 26, 36
overview 47
HTTP-compatible binding
compatible bindings 35
overview 34
protocol layers 27

HTTPS
ciphersuites configuration variable 230
client configuration 37, 39
mutual authentication 41

HTTPS security
overview 37

I
identity assertion 26
IIOP/TLS

ciphersuites configuration variable 230
IIOP/TLS plug-in

CORBA security 63
IIOP plug-in

and semi-secure clients 65
IIOP policies 339, 344

client version 346
connection attempts 346
export hostnames 351
export IP addresses 351
GIOP version in profiles 351
server hostname 350
TCP options

delay connections 352
receive buffer size 353

IIOP policy
ports 350

IIOP_TLS interceptor 65
index file 173
initialize() method 285, 291
Integrity association option 215

hints 223
integrity-only ciphers 226
Integrity option 215
interceptors

artix security 49
bus-security 96
login_client 95

interoperability
explicit principal header 246
with .NET 245
with Orbix applications 238

invocation policies
interaction with mechanism policy 221

IONAGlobalRealm 287
441

INDEX
IONAGlobalRealm realm 145
IONAUserRole 156
is2.cluster.properties.filename property

and clustering 126
and federation 122

is2.current.server.id property 119
and clustering 126

is2.properties file 104
and clustering 126
and federation 122, 126
and iSF adapter configuration 278

IS2AdapterException class 286
IS2Adapter Java interface 278

implementing 279
iS2 adapters

file domain
managing 146

LDAP domain
managing 149

SiteMinder domain
managing 150

standard adapters 275
iSF

action_role_mapping configuration variable 74
and certificate-based authentication 82
authorization realm

setting in server 74
client configuration

CSI interceptor 72
CORBA

three-tier system 76
three-tier target server configuration 79
two-tier scenario description 71

CORBA security 62
domain name, ignoring 71
intermediate server configuration 77
security domain

creating 140
server configuration

server_binding_list 72
server_domain_name configuration variable 74
three-tier scenario description 77
user account

creating 140
iSF adapter

adapter class property 290
and IONAGlobalRealm 287
and the iSF architecture 274
authenticate() method 285
 442
close() method 285
com.iona.isp.adapters property 290
configuring to load 290
custom adapter, main elements 278
example code 279
getAllUsers() method 287
getAuthorizationInfo() method 286
initialize() method 285, 291
logout() method 288
overview 278
property format 291
property truncation 291
WRONG_NAME_PASSWORD minor

exception 286
iSF adapters

enterprise security service 139
iSF adapter SDK

and the iSF architetecture 274
iSF client

in iSF architecture 273
iSF client SDK 274
iSF server

plugins:java_server:classpath configuration
variable 292

IT_SecurityService initial reference 128

J
J2EE

and iSF client SDK 274
JCE architecture

enabling 306

K
kdc property 115
Kerberos 114

token 25
Kerberos adapter

Kerberos KDC server 115
properties 114

Kerberos property
RetrieveAuthInfo 116

Kerberos Realm Name property 115
key exchange algorithms 226

L
LDAP adapter 106

basic properties 109
configuring certificate-based authentication 149

INDEX
GroupBaseDN property 108
GroupNameAttr property 108
GroupObjectClass property 108, 109
LDAP server replicas 110
MemberDNAttr property 109
PrincipalUserDN property 111
PrincipalUserPassword property 111
properties 107
replica index 110
RoleNameAttr property 108
SSLCACertDir property 111
SSLClientCertFile property 111
SSLClientCertPassword property 111
SSLEnabled property 111
UserBaseDN property 108
UserNameAttr property 108
UserObjectClass property 108
UserRoleDNAttr property 108

LDAP database
and clustering 125

LDAP domain
managing 149

Lightweight Directory Access Protocol
see LDAP

load balancing 125
and clustering 130
policies:iiop_tls:load_balancing_mechanism

variable 131
local_hostname 350
log4j 135

documentation 135
properties file 135

logging
in secure client 39, 66
log4j 135

login_client:login_client interceptor 95
login_client plug-in 95

and the login service 90
login service

and single sign-on 90
standalone deployment 91
WSDL contract for 97

login_service plug-in
configuring 97

logout() method 288

M
max_chain_length_policy configuration variable 205
MD5 215, 227
mechamism policy
interaction with invocation policies 221

MechanismPolicy 215
mechanism policy 229
MemberDNAttr property 109
message digest 5

see MD5
message digests 215
message fragments 215
MESSAGE_LEVEL security level 97
mixed configurations, SSL/TLS 68
multi-homed hosts, configure support for 350
multiple CAs 168
mutual authentication 196

HTTPS 41

N
namespace

plugins:csi 307
plugins:gsp 308
policies 328
policies:csi 336
policies:https 339
policies:iiop_tls 343
principal_sponsor:csi 358
principle_sponsor 354, 361

no_delay 352
NoProtection assocation option

rules of thumb 221
NoProtection association option 69, 215

hints 223
semi-secure applications 224

NoProtection option 215

O

opage Abstract Syntax Notation One
see ASN.1 395

OpenSSL 166, 405
openSSL

configuration file 415
utilities 406

openSSL.cnf example file 419
OpenSSL command-line utilities 171
Orbix configuration file 276
-ORBname argument 156
orb_plugins configuration variable 38, 65

client configuration 72
443

INDEX
orb_plugins variable
and the NoProtection association option 223
semi-secure configuration 224

P
pass phrase 202

dialog prompt, C++ 202
in configuration 203
password file, from 202

Password attribute 48
peer certificate 167
performance

caching of credentials 31
PKCS#12 files

creating 170, 175
definition 169
importing and exporting 170
pass phrase 202
viewing 170

plug-ins
CSIv2, in CORBA security 63
GSP, in CORBA security 63
IIOP 65
IIOP/TLS, in CORBA security 63

plugins:asp:default_password configuration
variable 53

plugins:asp:security_level 301
plugins:asp:security_type configuration variable 49
plugins:csi:ClassName 307
plugins:csi:shlib_name 307
plugins:gsp:authorization_realm 309
plugins:gsp:ClassName 310
plugins:iiop:tcp_listener:reincarnate_attempts 320
plugins:iiop:tcp_listener:reincarnation_retry_backoff_

ratio 320
plugins:iiop:tcp_listener:reincarnation_retry_delay 3

20
plugins:iiop_tls:hfs_keyring_file_password 347
plugins:iiop_tls:tcp_listener:reincarnation_retry_back

off_ratio 320
plugins:iiop_tls:tcp_listener:reincarnation_retry_dela

y 320
plugins:java_server:classpath configuration

variable 292
plugins:login_client:wsdl_url configuration

variable 95
plugins:login_service:wsdl_url configuration

variable 97
plugins:security:iiop_tls:addr_list variable
 444
and clustering 129
plugins:security:iiop_tls:host variable 129
plugins:security:iiop_tls:port variable 129
plugins:security:iiop_tls settings 123
POA_Coloc interceptor 238
polices:max_chain_length_policy 330
policies

CertConstraintsPolicy 297
client secure invocation 232
ClientSecureInvocationPolicy 213
HTTPS

client secure invocation 217
target secure invocation 219

IIOP/TLS
client secure invocation 217
target secure invocation 219

target secure invocation 232
TargetSecureInvocationPolicy 213

policies:allow_unauthenticated_clients_policy 328
policies:asp:enable_authorization configuration

variable 49
policies:asp:enable_sso configuration variable 96
policies:certificate_constraints_policy 329
policies:csi:attribute_service:client_supports 336
policies:csi:attribute_service:target_supports 337
policies:csi:auth_over_transpor:target_supports 338
policies:csi:auth_over_transport:client_supports 33

7
policies:csi:auth_over_transport:target_requires 338
policies:https:allow_unauthenticated_clients_policy

339
policies:https:certificate_constraints_policy 339
policies:https:client_secure_invocation_policy:requir

es 340
policies:https:client_secure_invocation_policy:suppo

rts 340
policies:https:max_chain_length_policy 340
policies:https:mechanism_policy:ciphersuites 341
policies:https:mechanism_policy:protocol_version 3

42
policies:https:session_caching_policy 342
policies:https:target_secure_invocation_policy:requir

es 342
policies:https:target_secure_invocation_policy:suppo

rts 342
policies:https:trusted_ca_list_policy 343
policies:iiop_tls:allow_unauthenticated_clients_polic

y 345
policies:iiop_tls:certificate_constraints_policy 345

INDEX
policies:iiop_tls:client_secure_invocation_policy:requ
ires 346

policies:iiop_tls:client_secure_invocation_policy:sup
ports 346

policies:iiop_tls:client_version_policy 346
policies:iiop_tls:connection_attempts 346
policies:iiop_tls:connection_retry_delay 347
policies:iiop_tls:load_balancing_mechanism

variable 131
policies:iiop_tls:max_chain_length_policy 347
policies:iiop_tls:mechanism_policy:ciphersuites 348
policies:iiop_tls:mechanism_policy:protocol_version

349
policies:iiop_tls:server_address_mode_policy:local_h

ostname 350
policies:iiop_tls:server_address_mode_policy:port_ra

nge 350
policies:iiop_tls:server_address_mode_policy:publish

_hostname 351
policies:iiop_tls:server_version_policy 351
policies:iiop_tls:session_caching_policy 351
policies:iiop_tls:target_secure_invocation_policy:req

uires 352
policies:iiop_tls:target_secure_invocation_policy:sup

ports 352
policies:iiop_tls:tcp_options:send_buffer_size 353
policies:iiop_tls:tcp_options_policy:no_delay 352
policies:iiop_tls:tcp_options_policy:recv_buffer_size

353
policies:iiop_tls:trusted_ca_list_policy 353
policies:mechanism_policy:ciphersuites 331
policies:mechanism_policy:protocol_version 331
policies:session_caching_policy 332
policies:target_secure_invocation_policy:requires 33

2
policies:target_secure_invocation_policy:supports 3

32
policies:trusted_ca_list_policy 333
418

Principal 25
principals

and colocation 238
configuring propagation 239
explicit principal header 246
from O/S username 239
interoperability 238
interoperating with .NET 245
overview 238
reading on the server side 244
setting on the client side 242
principal sponsor

CSIv2
client configuration 73

SSL/TLS
enabling 44, 68

SSL/TLS, disabling 39, 41, 66
principal_sponsor:csi:auth_method_data 359
principal_sponsor:csi:use_principal_sponsor 358
principal_sponsor Namespace Variables 354, 361
PrincipalUserDN property 111
PrincipalUserPassword property 111
principle_sponsor:auth_method_data 355, 362
principle_sponsor:auth_method_id 355, 362
principle_sponsor:callback_handler:ClassName 357
principle_sponsor:login_attempts 357
principle_sponsor:use_principle_sponsor 354, 361
private key 174
protocol_version configuration variable 229
public key encryption 226
public keys 163
publish_hostname 351

R
RC4 encryption 227
RDN 399
realm

see authorization realm
realm property 115
realms

IONAGlobalRealm, adding to 287
recv_buffer_size 353
relative distinguished name 399
Replay detection 215
replication

definition 124
416

REQUEST_LEVEL security level 96
req utility 409
req Utility command 409
Rivest Shamir Adleman

see RSA
role-based access control 141

example 144
RoleNameAttr property 108
role-properties file 157
roles

creating 143
special 145
445

INDEX
root certificate directory 168
RSA 226

symmetric encryption algorithm 227
RSA_EXPORT_WITH_DES40_CBC_SHA cipher

suite 226, 233
RSA_EXPORT_WITH_RC4_40_MD5 cipher

suite 226, 233
rsa utility 411
rsa Utility command 411
RSA_WITH_3DES_EDE_CBC_SHA cipher

suite 226, 233
RSA_WITH_DES_CBC_SHA cipher suite 226, 233
RSA_WITH_NULL_MD5 cipher suite 226, 233
RSA_WITH_NULL_SHA cipher suite 226, 233
RSA_WITH_RC4_128_MD5 cipher suite 226, 233
RSA_WITH_RC4_128_SHA cipher suite 226, 233

S
Schannel toolkit

selecting for C++ applications 299
secure associations

client behavior 217
definition 210
TLS_Coloc interceptor 210

secure hash algorithms 226, 227
security algorithms

and cipher suites 226
security domain

creating 140
security domains

architecture 139
iSF 140

security handshake
cipher suites 225
SSL/TLS 193, 197

security infomation file 104
securityInstanceURL property 127
security layer

overview 29
security levels

MESSAGE_LEVEL 97
REQUEST_LEVEL 96

security service
federation of 119

security_type configuration variable 240
self-signed CA 174
self-signed certificate 167
semi-secure applications

and NoProtection 224
 446
send_principal configuration variable 239
serial file 173
serial number 163
ServerAddress property 113
ServerAuthnPort property 113
server_binding_list configuration variable 72
ServerCertificate attribute 45
server_domain_name configuration variable

iSF, ignored by 74
ServerPrivateKeyPassword attribute 46
server_version_policy

IIOP 351
session_cache_size configuration variable 235
session_cache_validity_period configuration

variable 235
session_caching_policy configuraion variable 235
session_caching_policy variable 235
session idle timeout

SSO 92
session timeout

SSO 92
SHA 227
SHA1 215
signing certificates 162
Single sign-on

and security layer 29
single sign-on

SSO token 26
token timeouts 92

SiteMinder adapter
AgentSecret property 113
configuring 112
properties 112
ServerAddress property 113
ServerAuthnPort property 113

SiteMinder domain
managing 150

SOAP
principal propagation 238

SOAP binding
ASP security layer 59
configuring principal propagation 239
protocol layers 28, 58
SOAP protocol layer 59
SSO overview 90

Specifying ciphersuites 225
SSL/TLS

association options
setting 212

INDEX
caching validity period 235
cipher suites 225
client configuration 64
colocated invocations 210
encryption algorithm 226
IIOP_TLS interceptor 65
key exchange algorithm 226
logging 39, 66
mechanism policy 229
mixed configurations 68
orb_plugins list 38, 65
principal sponsor

disabling 39, 41, 66
enabling 44, 68

protocol_version configuration variable 229
secure associations 210
secure hash algorithm 226
secure hash algorithms 227
securing communications 64
security handshake 193, 197
selecting a toolkit, C++ 299
semi-secure client

IIOP plug-in 65
session cache size 235
TLS session 210

SSLCACertDir property 111
SSLClientCertFile property 111
SSLClientCertPassword property 111
SSLeay 166
SSLEnabled property 111
SSO

advantages 91
CORBA binding 90
login_client plug-in 95
login service WSDL 97
sample configurations 99
session idle timeout 92
session timeout 92
SOAP binding 90
username/password-based authentication 94

SSO token 26
and the login service 90
automatic refresh 92
timeouts 92

standalone deployment 276
standard ciphers 226
symmetric encryption algorithms 227
T
Target

choosing behavior 219
target authentication 193
target secure invocation policy 232

HTTPS 219
IIOP/TLS 219

TargetSecureInvocationPolicy policy 213
TCP policies

delay connections 352
receive buffer size 353

three-tier scenario description 77
TLS_Coloc interceptor 210
TLS security

and HTTP 34
TLS session

definition 210
toolkit replaceability

enabling JCE architecture 306
selecting the toolkit, C++ 299

triple DES 227
truncation of property names 291
trusted CA list 181
trusted CA list policy 199
trusted CAs 168
TrustedRootCertificates attribute 46

U
use_jsse_tk configuration variable 306
user account

creating 140
UserBaseDN property 108
username/password-based authentication

overview 93
SSO 94

UserName attribute 48
UserNameAttr property 108
UserObjectClass property 108
UserRoleDNAttr property 108
UserSearchScope property

LDAP adapter
UserObjectClass property 108

UseSecureSockets attribute 45
utilities

wsdltoacl 156

V
Variables 416, 417, 418
447

INDEX
W
Web service security extension

opage see WSSE 25
WRONG_NAME_PASSWORD minor exception 286
wsdltoacl utility 156

role-properties file 157
WSSE

Kerberos token 25
UsernameToken 25

WSSE Kerberos credentials 60
WSSE UsernameToken credentials 60
WSSEUsernameToken property 252, 254, 257,

260

X
X.500 395
X.509

public key encryption 226
X.509 certificate

definition 162
X.509 certificates 161
x509 utility 407
 448

	Security Guide
	List of Tables
	List of Figures
	Preface
	Getting Started with Artix Security
	Security for SOAP Bindings
	Secure Hello World Example
	HTTPS Connection
	IIOP/TLS Connection
	Security Layer

	Introduction to the Artix Security Framework
	Artix Security Architecture
	Types of Security Credential
	Protocol Layers
	Security Layer
	Using Multiple Bindings

	Caching of Credentials

	Security for HTTP-Compatible Bindings
	Overview of HTTP Security
	Securing HTTP Communications with SSL/TLS
	HTTP Basic Authentication
	X.509 Certificate-Based Authentication with HTTPS

	Security for SOAP Bindings
	Overview of SOAP Security

	Security for CORBA Bindings
	Overview of CORBA Security
	Securing IIOP Communications with SSL/TLS
	Securing Two-Tier CORBA Systems with CSI
	Securing Three-Tier CORBA Systems with CSI
	X.509 Certificate-Based Authentication for CORBA Bindings

	Single Sign-On
	SSO and the Login Service
	Username/Password-Based SSO for SOAP Bindings
	SSO Sample Configuration for SOAP Bindings

	Configuring the Artix Security Service
	Configuring the File Adapter
	Configuring the LDAP Adapter
	Configuring the SiteMinder Adapter
	Configuring the Kerberos Adapter
	Clustering and Federation
	Federating the Artix Security Service
	Failover and Replication
	Client Load Balancing

	Additional Security Configuration
	Configuring Single Sign-On Properties
	Configuring the Log4J Logging

	Managing Users, Roles and Domains
	Introduction to Domains and Realms
	Artix security domains
	Artix Authorization Realms

	Managing a File Security Domain
	Managing an LDAP Security Domain
	Managing a SiteMinder Security Domain

	Managing Access�Control Lists
	Overview of Artix ACL Files
	ACL File Format
	Generating ACL Files
	Deploying ACL Files

	Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Creating Your Own Certificates
	Set Up Your Own CA
	Use the CA to Create Signed Certificates

	Deploying Certificates
	Overview of Certificate Deployment
	Deploying Trusted Certificate Authority Certificates
	Deploying Application Certificates

	Configuring HTTPS and IIOP/TLS Authentication
	Requiring Authentication
	Target-Only Authentication
	Mutual Authentication

	Specifying Trusted CA Certificates
	Specifying an Application’s Own Certificate
	Providing a Certificate Pass Phrase
	Certificate Pass Phrase for HTTPS and IIOP/TLS

	Advanced Configuration Options
	Setting a Maximum Certificate Chain Length
	Applying Constraints to Certificates

	Configuring HTTPS and IIOP/TLS Secure Associations
	Overview of Secure Associations
	Setting Association Options
	Secure Invocation Policies
	Association Options
	Choosing Client Behavior
	Choosing Target Behavior
	Hints for Setting Association Options

	Specifying Cipher Suites
	Supported Cipher Suites
	Setting the Mechanism Policy
	Constraints Imposed on Cipher Suites

	Caching Sessions

	Principal Propagation
	Introduction to Principal Propagation
	Configuring
	Programming
	Interoperating with .NET
	Explicitly Declaring the Principal Header
	Modifying the SOAP Header

	Programming Authentication
	Propagating a Username/Password Token
	Propagating a Kerberos Token

	Configuring the Artix Security Plug-In
	The Artix Security Plug-In
	Configuring an Artix Configuration File
	Configuring a WSDL Contract

	Developing an iSF Adapter
	iSF Security Architecture
	iSF Server Module Deployment Options
	iSF Adapter Overview
	Implementing the IS2Adapter Interface
	Deploying the Adapter
	Configuring iSF to Load the Adapter
	Setting the Adapter Properties
	Loading the Adapter Class and Associated Resource Files

	Artix Security
	Applying Constraints to Certificates
	initial_references
	plugins:asp
	plugins:at_http
	plugins:atli2_tls
	plugins:csi
	plugins:gsp
	plugins:http
	plugins:https
	plugins:iiop_tls
	plugins:kdm
	plugins:kdm_adm
	plugins:login_client
	plugins:login_service
	plugins:schannel
	plugins:security
	policies
	policies:asp
	policies:bindings:corba
	policies:csi
	policies:https
	policies:iiop_tls
	principal_sponsor
	principal_sponsor:csi
	principal_sponsor:https

	iSF Configuration
	Properties File Syntax
	iSF Properties File
	Cluster Properties File
	log4j Properties File

	ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Action-Role Mapping DTD
	OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility
	The req Utility
	The rsa Utility
	The ca Utility

	The OpenSSL Configuration File
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	bus-security C++ Context Data
	bus-security Java Context Data
	License Issues
	OpenSSL License

	Index

